* [PATCH v6 0/3] add the GPMI controller driver for IMX23/IMX28
@ 2011-04-20 2:45 Huang Shijie
2011-04-20 2:45 ` [PATCH v6 1/3] MTD : add the common code for GPMI controller driver Huang Shijie
` (2 more replies)
0 siblings, 3 replies; 10+ messages in thread
From: Huang Shijie @ 2011-04-20 2:45 UTC (permalink / raw)
To: linux-arm-kernel
The general-purpose media interface(GPMI) controller is a flexible interface
to up to several NAND flashs.
The Bose Ray-Choudhury Hocquenghem(BCH) module is a hardware ECC accelerator.
With the help of BCH, the GPMI controller can choose to do the hardware ECC or
not.
This driver is a _pure_ MTD NAND controller driver now.
The driver depends on another patch set, you can find them at :
[1] http://lists.infradead.org/pipermail/linux-mtd/2011-April/035031.html
[2] http://lists.infradead.org/pipermail/linux-mtd/2011-April/035032.html
[3] http://lists.infradead.org/pipermail/linux-mtd/2011-April/035033.html
Test environment:
Using imx23 and imx28 boards with the rootfs in the nand flash.
The command line is:
# console=ttyAMA0,115200 mtdparts=gpmi-nfc-main:20m(boot),-(user) ubi.mtd=1 root=ubi0:rootfs0 rootfstype=ubifs gpmi_debug_init
v5 --> v6:
[0] split out the IMX23/IMX28 arch code to separate patches.
[1] fix bug : missing empty item in the end of platform_id array.
[2] inconsistent identation.
[3] others
v4 --> v5:
[0] rename the files.
[1] fix PM bug
[2] remove the rom_helper code, and move the necessary initialization code
to the main file.
[3] change the macros from CPU_IS_* to GPMI_IS_*
[4] remove the default partition layout init code. revert back the
partition parsing command line code.
[5] others
v3 --> v4:
[0] use the nand_ids{} as the nand database, drop my own database.
[1] remove the patch for DMA enginer, Shawn will submit his own version.
[2] use the platform_id to distinguish different Archs.
[3] fix the strange coding style.
[4] others.
v2 --> v3:
[0] merge the imx23 and imx28 into one file(including the header file).
[1] remove the unuse registers in the headers.
[2] fix DMA bugs
[3] add bus width field to nand_attr{}
[4] others
v1 --> v2:
[0] merge the common files into the gpmi-nfc-main.c
[1] change the code to get the clock.
[2] remove the timing in the nand_device_info{}
[3] fix DMA errors
[4] add the nand_device_info.[ch] to generic code
[5] use the chip->onfi_version for the ONFI nand
[6] useless init
[7] others
Huang Shijie (3):
MTD : add the common code for GPMI controller driver
MTD : add support for imx23 and imx28
MTD : add GPMI driver in the config and Makefile
drivers/mtd/nand/Kconfig | 11 +
drivers/mtd/nand/Makefile | 1 +
drivers/mtd/nand/gpmi-nfc/Makefile | 3 +
drivers/mtd/nand/gpmi-nfc/bch-regs.h | 88 ++
drivers/mtd/nand/gpmi-nfc/gpmi-nfc.c | 2501 +++++++++++++++++++++++++++++++++
drivers/mtd/nand/gpmi-nfc/gpmi-nfc.h | 488 +++++++
drivers/mtd/nand/gpmi-nfc/gpmi-regs.h | 163 +++
drivers/mtd/nand/gpmi-nfc/hal-mxs.c | 554 ++++++++
8 files changed, 3809 insertions(+), 0 deletions(-)
create mode 100644 drivers/mtd/nand/gpmi-nfc/Makefile
create mode 100644 drivers/mtd/nand/gpmi-nfc/bch-regs.h
create mode 100644 drivers/mtd/nand/gpmi-nfc/gpmi-nfc.c
create mode 100644 drivers/mtd/nand/gpmi-nfc/gpmi-nfc.h
create mode 100644 drivers/mtd/nand/gpmi-nfc/gpmi-regs.h
create mode 100644 drivers/mtd/nand/gpmi-nfc/hal-mxs.c
^ permalink raw reply [flat|nested] 10+ messages in thread
* [PATCH v6 1/3] MTD : add the common code for GPMI controller driver
2011-04-20 2:45 [PATCH v6 0/3] add the GPMI controller driver for IMX23/IMX28 Huang Shijie
@ 2011-04-20 2:45 ` Huang Shijie
2011-04-21 7:49 ` Lothar Waßmann
2011-04-28 19:20 ` Russell King - ARM Linux
2011-04-20 2:45 ` [PATCH v6 2/3] MTD : add support for imx23 and imx28 Huang Shijie
2011-04-20 2:45 ` [PATCH v6 3/3] MTD : add GPMI driver in the config and Makefile Huang Shijie
2 siblings, 2 replies; 10+ messages in thread
From: Huang Shijie @ 2011-04-20 2:45 UTC (permalink / raw)
To: linux-arm-kernel
These files contain the common code for the GPMI driver.
Signed-off-by: Huang Shijie <b32955@freescale.com>
---
drivers/mtd/nand/gpmi-nfc/gpmi-nfc.c | 2501 ++++++++++++++++++++++++++++++++++
drivers/mtd/nand/gpmi-nfc/gpmi-nfc.h | 488 +++++++
2 files changed, 2989 insertions(+), 0 deletions(-)
create mode 100644 drivers/mtd/nand/gpmi-nfc/gpmi-nfc.c
create mode 100644 drivers/mtd/nand/gpmi-nfc/gpmi-nfc.h
diff --git a/drivers/mtd/nand/gpmi-nfc/gpmi-nfc.c b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc.c
new file mode 100644
index 0000000..53d6915
--- /dev/null
+++ b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc.c
@@ -0,0 +1,2501 @@
+/*
+ * Freescale GPMI NFC NAND Flash Driver
+ *
+ * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
+ * Copyright (C) 2008 Embedded Alley Solutions, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+#include <linux/slab.h>
+#include "gpmi-nfc.h"
+
+/* add our owner bbt descriptor */
+static uint8_t scan_ff_pattern[] = { 0xff };
+static struct nand_bbt_descr gpmi_bbt_descr = {
+ .options = 0,
+ .offs = 0,
+ .len = 1,
+ .pattern = scan_ff_pattern
+};
+
+/* debug control */
+int gpmi_debug;
+
+static ssize_t show_gpmi_debug(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ return sprintf(buf, "%d\n", gpmi_debug);
+}
+
+static ssize_t
+store_gpmi_debug(struct device *dev, struct device_attribute *attr,
+ const char *buf, size_t size)
+{
+ const char *p = buf;
+ unsigned long v;
+
+ if (strict_strtoul(p, 0, &v) < 0)
+ return size;
+
+ gpmi_debug = v;
+ return size;
+}
+
+static ssize_t show_ignorebad(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct gpmi_nfc_data *this = dev_get_drvdata(dev);
+ struct mil *mil = &this->mil;
+
+ return sprintf(buf, "%d\n", mil->ignore_bad_block_marks);
+}
+
+static ssize_t
+store_ignorebad(struct device *dev, struct device_attribute *attr,
+ const char *buf, size_t size)
+{
+ struct gpmi_nfc_data *this = dev_get_drvdata(dev);
+ struct mil *mil = &this->mil;
+ const char *p = buf;
+ unsigned long v;
+
+ if (strict_strtoul(p, 0, &v) < 0)
+ return size;
+
+ if (v > 0)
+ v = 1;
+
+ if (v != mil->ignore_bad_block_marks) {
+ if (v) {
+ /*
+ * This will cause the NAND Flash MTD code to believe
+ * that it never created a BBT and force it to call our
+ * block_bad function.
+ *
+ * See mil_block_bad for more details.
+ */
+ mil->saved_bbt = mil->nand.bbt;
+ mil->nand.bbt = NULL;
+ } else {
+ /*
+ * Restore the NAND Flash MTD's pointer
+ * to its in-memory BBT.
+ */
+ mil->nand.bbt = mil->saved_bbt;
+ }
+ mil->ignore_bad_block_marks = v;
+ }
+ return size;
+}
+
+static DEVICE_ATTR(ignorebad, 0644, show_ignorebad, store_ignorebad);
+static DEVICE_ATTR(gpmi_debug, 0644, show_gpmi_debug, store_gpmi_debug);
+static struct device_attribute *device_attributes[] = {
+ &dev_attr_ignorebad,
+ &dev_attr_gpmi_debug,
+};
+
+static irqreturn_t bch_irq(int irq, void *cookie)
+{
+ struct gpmi_nfc_data *this = cookie;
+ struct nfc_hal *nfc = this->nfc;
+
+ /* Clear the BCH interrupt */
+ nfc->clear_bch(this);
+
+ complete(&nfc->bch_done);
+ return IRQ_HANDLED;
+}
+
+/* calculate the ECC strength by hand */
+static inline int get_ecc_strength(struct gpmi_nfc_data *this)
+{
+ struct mtd_info *mtd = &this->mil.mtd;
+ int ecc_strength = 0;
+
+ switch (mtd->writesize) {
+ case 2048:
+ ecc_strength = 8;
+ break;
+ case 4096:
+ switch (mtd->oobsize) {
+ case 128:
+ ecc_strength = 8;
+ break;
+ case 224:
+ case 218:
+ ecc_strength = 16;
+ break;
+ }
+ break;
+ case 8192:
+ ecc_strength = 24;
+ break;
+ }
+
+ return ecc_strength;
+}
+
+static inline bool is_ddr_nand(struct nand_chip *chip)
+{
+ /* ONFI nand */
+ if (chip->onfi_version != 0)
+ return true;
+
+ /* TOGGLE nand */
+
+ return false;
+}
+
+static inline int get_ecc_chunk_size(struct gpmi_nfc_data *this)
+{
+ struct nand_chip *chip = &this->mil.nand;
+
+ /* the ONFI/TOGGLE nands use 1k ecc chunk size */
+ if (is_ddr_nand(chip))
+ return 1024;
+
+ /* for historical reason */
+ return 512;
+}
+
+int common_nfc_set_geometry(struct gpmi_nfc_data *this)
+{
+ struct nfc_geometry *geo = &this->nfc_geometry;
+ struct mtd_info *mtd = &this->mil.mtd;
+ struct nand_chip *chip = &this->mil.nand;
+ unsigned int metadata_size;
+ unsigned int status_size;
+ unsigned int chunk_data_size_in_bits;
+ unsigned int chunk_ecc_size_in_bits;
+ unsigned int chunk_total_size_in_bits;
+ unsigned int block_mark_chunk_number;
+ unsigned int block_mark_chunk_bit_offset;
+ unsigned int block_mark_bit_offset;
+
+ /* We only support BCH now. */
+ geo->ecc_algorithm = "BCH";
+
+ /*
+ * We always choose a metadata size of 10. Don't try to make sense of
+ * it -- this is really only for historical compatibility.
+ */
+ geo->metadata_size_in_bytes = 10;
+
+ /* ECC chunks */
+ geo->ecc_chunk_size_in_bytes = get_ecc_chunk_size(this);
+
+ /*
+ * Compute the total number of ECC chunks in a page. This includes the
+ * slightly larger chunk at the beginning of the page, which contains
+ * both data and metadata.
+ */
+ geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size_in_bytes;
+
+ /*
+ * We use the same ECC strength for all chunks, including the first one.
+ */
+ geo->ecc_strength = get_ecc_strength(this);
+ if (!geo->ecc_strength) {
+ log("Page size : %d, OOB : %d", mtd->writesize, mtd->oobsize);
+ return -EINVAL;
+ }
+
+ /* Compute the page size, include page and oob. */
+ geo->page_size_in_bytes = mtd->writesize + mtd->oobsize;
+
+ /*
+ * ONFI/TOGGLE nand needs GF14, so re-calculate DMA page size.
+ * The ONFI nand must do the recalculation,
+ * else it will fail in DMA in some platform(such as imx50).
+ */
+ if (is_ddr_nand(chip))
+ geo->page_size_in_bytes = mtd->writesize +
+ geo->metadata_size_in_bytes +
+ (geo->ecc_strength * 14 * 8 / geo->ecc_chunk_count);
+
+ geo->payload_size_in_bytes = mtd->writesize;
+ /*
+ * In principle, computing the auxiliary buffer geometry is NFC
+ * version-specific. However, at this writing, all versions share the
+ * same model, so this code can also be shared.
+ *
+ * The auxiliary buffer contains the metadata and the ECC status. The
+ * metadata is padded to the nearest 32-bit boundary. The ECC status
+ * contains one byte for every ECC chunk, and is also padded to the
+ * nearest 32-bit boundary.
+ */
+ metadata_size = ALIGN(geo->metadata_size_in_bytes, 4);
+ status_size = ALIGN(geo->ecc_chunk_count, 4);
+
+ geo->auxiliary_size_in_bytes = metadata_size + status_size;
+ geo->auxiliary_status_offset = metadata_size;
+
+ /* Check if we're going to do block mark swapping. */
+ if (!this->swap_block_mark)
+ return 0;
+
+ /*
+ * If control arrives here, we're doing block mark swapping, so we need
+ * to compute the byte and bit offsets of the physical block mark within
+ * the ECC-based view of the page data. In principle, this isn't a
+ * difficult computation -- but it's very important and it's easy to get
+ * it wrong, so we do it carefully.
+ *
+ * Note that this calculation is simpler because we use the same ECC
+ * strength for all chunks, including the zero'th one, which contains
+ * the metadata. The calculation would be slightly more complicated
+ * otherwise.
+ *
+ * We start by computing the physical bit offset of the block mark. We
+ * then subtract the number of metadata and ECC bits appearing before
+ * the mark to arrive at its bit offset within the data alone.
+ */
+
+ /* Compute some important facts about chunk geometry. */
+ chunk_data_size_in_bits = geo->ecc_chunk_size_in_bytes * 8;
+
+ /* ONFI/TOGGLE nand needs GF14 */
+ if (is_ddr_nand(chip))
+ chunk_ecc_size_in_bits = geo->ecc_strength * 14;
+ else
+ chunk_ecc_size_in_bits = geo->ecc_strength * 13;
+
+ chunk_total_size_in_bits =
+ chunk_data_size_in_bits + chunk_ecc_size_in_bits;
+
+ /* Compute the bit offset of the block mark within the physical page. */
+ block_mark_bit_offset = mtd->writesize * 8;
+
+ /* Subtract the metadata bits. */
+ block_mark_bit_offset -= geo->metadata_size_in_bytes * 8;
+
+ /*
+ * Compute the chunk number (starting at zero) in which the block mark
+ * appears.
+ */
+ block_mark_chunk_number =
+ block_mark_bit_offset / chunk_total_size_in_bits;
+
+ /*
+ * Compute the bit offset of the block mark within its chunk, and
+ * validate it.
+ */
+ block_mark_chunk_bit_offset =
+ block_mark_bit_offset -
+ (block_mark_chunk_number * chunk_total_size_in_bits);
+
+ if (block_mark_chunk_bit_offset > chunk_data_size_in_bits) {
+ /*
+ * If control arrives here, the block mark actually appears in
+ * the ECC bits of this chunk. This wont' work.
+ */
+ log("Unsupported page geometry (block mark in ECC): %u:%u",
+ mtd->writesize, mtd->oobsize);
+ return -EINVAL;
+ }
+
+ /*
+ * Now that we know the chunk number in which the block mark appears,
+ * we can subtract all the ECC bits that appear before it.
+ */
+ block_mark_bit_offset -=
+ block_mark_chunk_number * chunk_ecc_size_in_bits;
+
+ /*
+ * We now know the absolute bit offset of the block mark within the
+ * ECC-based data. We can now compute the byte offset and the bit
+ * offset within the byte.
+ */
+ geo->block_mark_byte_offset = block_mark_bit_offset / 8;
+ geo->block_mark_bit_offset = block_mark_bit_offset % 8;
+
+ return 0;
+}
+
+struct dma_chan *get_dma_chan(struct gpmi_nfc_data *this)
+{
+ int chip = this->mil.current_chip;
+
+ BUG_ON(chip < 0);
+ return this->dma_chans[chip];
+}
+
+/* Can we use the upper's buffer directly for DMA? */
+void prepare_data_dma(struct gpmi_nfc_data *this, enum dma_data_direction dr)
+{
+ struct mil *mil = &this->mil;
+ struct scatterlist *sgl = &mil->data_sgl;
+ int ret;
+
+ mil->direct_dma_map_ok = true;
+
+ /* first try to map the upper buffer directly */
+ sg_init_one(sgl, mil->upper_buf, mil->upper_len);
+ ret = dma_map_sg(this->dev, sgl, 1, dr);
+ if (ret == 0) {
+ /* We have to use our own DMA buffer. */
+ sg_init_one(sgl, mil->data_buffer_dma, PAGE_SIZE);
+
+ if (dr == DMA_TO_DEVICE)
+ memcpy(mil->data_buffer_dma, mil->upper_buf,
+ mil->upper_len);
+
+ ret = dma_map_sg(this->dev, sgl, 1, dr);
+ BUG_ON(ret == 0);
+
+ mil->direct_dma_map_ok = false;
+ }
+}
+
+/* This will be called after the DMA operation is finished. */
+static void dma_irq_callback(void *param)
+{
+ struct gpmi_nfc_data *this = param;
+ struct nfc_hal *nfc = this->nfc;
+ struct mil *mil = &this->mil;
+
+ complete(&nfc->dma_done);
+
+ switch (this->dma_type) {
+ case DMA_FOR_COMMAND:
+ dma_unmap_sg(this->dev, &mil->cmd_sgl, 1, DMA_TO_DEVICE);
+ break;
+
+ case DMA_FOR_READ_DATA:
+ dma_unmap_sg(this->dev, &mil->data_sgl, 1, DMA_FROM_DEVICE);
+ if (mil->direct_dma_map_ok == false)
+ memcpy(mil->upper_buf, (char *)mil->data_buffer_dma,
+ mil->upper_len);
+ break;
+
+ case DMA_FOR_WRITE_DATA:
+ dma_unmap_sg(this->dev, &mil->data_sgl, 1, DMA_TO_DEVICE);
+ break;
+
+ case DMA_FOR_READ_ECC_PAGE:
+ case DMA_FOR_WRITE_ECC_PAGE:
+ /* We have to wait the BCH interrupt to finish. */
+ break;
+
+ default:
+ BUG();
+ }
+}
+
+int start_dma_without_bch_irq(struct gpmi_nfc_data *this,
+ struct dma_async_tx_descriptor *desc)
+{
+ struct nfc_hal *nfc = this->nfc;
+ int err;
+
+ init_completion(&nfc->dma_done);
+
+ desc->callback = dma_irq_callback;
+ desc->callback_param = this;
+ dmaengine_submit(desc);
+
+ /* Wait for the interrupt from the DMA block. */
+ err = wait_for_completion_timeout(&nfc->dma_done,
+ msecs_to_jiffies(1000));
+ err = (!err) ? -ETIMEDOUT : 0;
+ if (err)
+ log("DMA timeout!!!");
+ return err;
+}
+
+/*
+ * This function is used in BCH reading or BCH writing pages.
+ * It will wait for the BCH interrupt as long as ONE second.
+ * Actually, we must wait for two interrupts :
+ * [1] firstly the DMA interrupt and
+ * [2] secondly the BCH interrupt.
+ *
+ * @this: Per-device data structure.
+ * @desc: DMA channel
+ */
+int start_dma_with_bch_irq(struct gpmi_nfc_data *this,
+ struct dma_async_tx_descriptor *desc)
+{
+ struct nfc_hal *nfc = this->nfc;
+ int err;
+
+ /* Prepare to receive an interrupt from the BCH block. */
+ init_completion(&nfc->bch_done);
+
+ /* start the DMA */
+ start_dma_without_bch_irq(this, desc);
+
+ /* Wait for the interrupt from the BCH block. */
+ err = wait_for_completion_timeout(&nfc->bch_done,
+ msecs_to_jiffies(1000));
+ err = (!err) ? -ETIMEDOUT : 0;
+ if (err)
+ log("bch timeout!!!");
+ return err;
+}
+
+/**
+ * ns_to_cycles - Converts time in nanoseconds to cycles.
+ *
+ * @ntime: The time, in nanoseconds.
+ * @period: The cycle period, in nanoseconds.
+ * @min: The minimum allowable number of cycles.
+ */
+static unsigned int ns_to_cycles(unsigned int time,
+ unsigned int period, unsigned int min)
+{
+ unsigned int k;
+
+ /*
+ * Compute the minimum number of cycles that entirely contain the
+ * given time.
+ */
+ k = (time + period - 1) / period;
+ return max(k, min);
+}
+
+/**
+ * gpmi_compute_hardware_timing - Apply timing to current hardware conditions.
+ *
+ * @this: Per-device data.
+ * @hardware_timing: A pointer to a hardware timing structure that will receive
+ * the results of our calculations.
+ */
+int gpmi_nfc_compute_hardware_timing(struct gpmi_nfc_data *this,
+ struct gpmi_nfc_hardware_timing *hw)
+{
+ struct gpmi_nfc_platform_data *pdata = this->pdata;
+ struct nfc_hal *nfc = this->nfc;
+ struct nand_chip *nand = &this->mil.nand;
+ struct nand_timing target = nfc->timing;
+ bool improved_timing_is_available;
+ unsigned long clock_frequency_in_hz;
+ unsigned int clock_period_in_ns;
+ bool dll_use_half_periods;
+ unsigned int dll_delay_shift;
+ unsigned int max_sample_delay_in_ns;
+ unsigned int address_setup_in_cycles;
+ unsigned int data_setup_in_ns;
+ unsigned int data_setup_in_cycles;
+ unsigned int data_hold_in_cycles;
+ int ideal_sample_delay_in_ns;
+ unsigned int sample_delay_factor;
+ int tEYE;
+ unsigned int min_prop_delay_in_ns = pdata->min_prop_delay_in_ns;
+ unsigned int max_prop_delay_in_ns = pdata->max_prop_delay_in_ns;
+
+ /*
+ * If there are multiple chips, we need to relax the timings to allow
+ * for signal distortion due to higher capacitance.
+ */
+ if (nand->numchips > 2) {
+ target.data_setup_in_ns += 10;
+ target.data_hold_in_ns += 10;
+ target.address_setup_in_ns += 10;
+ } else if (nand->numchips > 1) {
+ target.data_setup_in_ns += 5;
+ target.data_hold_in_ns += 5;
+ target.address_setup_in_ns += 5;
+ }
+
+ /* Check if improved timing information is available. */
+ improved_timing_is_available =
+ (target.tREA_in_ns >= 0) &&
+ (target.tRLOH_in_ns >= 0) &&
+ (target.tRHOH_in_ns >= 0) ;
+
+ /* Inspect the clock. */
+ clock_frequency_in_hz = nfc->clock_frequency_in_hz;
+ clock_period_in_ns = 1000000000 / clock_frequency_in_hz;
+
+ /*
+ * The NFC quantizes setup and hold parameters in terms of clock cycles.
+ * Here, we quantize the setup and hold timing parameters to the
+ * next-highest clock period to make sure we apply at least the
+ * specified times.
+ *
+ * For data setup and data hold, the hardware interprets a value of zero
+ * as the largest possible delay. This is not what's intended by a zero
+ * in the input parameter, so we impose a minimum of one cycle.
+ */
+ data_setup_in_cycles = ns_to_cycles(target.data_setup_in_ns,
+ clock_period_in_ns, 1);
+ data_hold_in_cycles = ns_to_cycles(target.data_hold_in_ns,
+ clock_period_in_ns, 1);
+ address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns,
+ clock_period_in_ns, 0);
+
+ /*
+ * The clock's period affects the sample delay in a number of ways:
+ *
+ * (1) The NFC HAL tells us the maximum clock period the sample delay
+ * DLL can tolerate. If the clock period is greater than half that
+ * maximum, we must configure the DLL to be driven by half periods.
+ *
+ * (2) We need to convert from an ideal sample delay, in ns, to a
+ * "sample delay factor," which the NFC uses. This factor depends on
+ * whether we're driving the DLL with full or half periods.
+ * Paraphrasing the reference manual:
+ *
+ * AD = SDF x 0.125 x RP
+ *
+ * where:
+ *
+ * AD is the applied delay, in ns.
+ * SDF is the sample delay factor, which is dimensionless.
+ * RP is the reference period, in ns, which is a full clock period
+ * if the DLL is being driven by full periods, or half that if
+ * the DLL is being driven by half periods.
+ *
+ * Let's re-arrange this in a way that's more useful to us:
+ *
+ * 8
+ * SDF = AD x ----
+ * RP
+ *
+ * The reference period is either the clock period or half that, so this
+ * is:
+ *
+ * 8 AD x DDF
+ * SDF = AD x ----- = --------
+ * f x P P
+ *
+ * where:
+ *
+ * f is 1 or 1/2, depending on how we're driving the DLL.
+ * P is the clock period.
+ * DDF is the DLL Delay Factor, a dimensionless value that
+ * incorporates all the constants in the conversion.
+ *
+ * DDF will be either 8 or 16, both of which are powers of two. We can
+ * reduce the cost of this conversion by using bit shifts instead of
+ * multiplication or division. Thus:
+ *
+ * AD << DDS
+ * SDF = ---------
+ * P
+ *
+ * or
+ *
+ * AD = (SDF >> DDS) x P
+ *
+ * where:
+ *
+ * DDS is the DLL Delay Shift, the logarithm to base 2 of the DDF.
+ */
+ if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) {
+ dll_use_half_periods = true;
+ dll_delay_shift = 3 + 1;
+ } else {
+ dll_use_half_periods = false;
+ dll_delay_shift = 3;
+ }
+
+ /*
+ * Compute the maximum sample delay the NFC allows, under current
+ * conditions. If the clock is running too slowly, no sample delay is
+ * possible.
+ */
+ if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns)
+ max_sample_delay_in_ns = 0;
+ else {
+ /*
+ * Compute the delay implied by the largest sample delay factor
+ * the NFC allows.
+ */
+ max_sample_delay_in_ns =
+ (nfc->max_sample_delay_factor * clock_period_in_ns) >>
+ dll_delay_shift;
+
+ /*
+ * Check if the implied sample delay larger than the NFC
+ * actually allows.
+ */
+ if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns)
+ max_sample_delay_in_ns = nfc->max_dll_delay_in_ns;
+ }
+
+ /*
+ * Check if improved timing information is available. If not, we have to
+ * use a less-sophisticated algorithm.
+ */
+ if (!improved_timing_is_available) {
+ /*
+ * Fold the read setup time required by the NFC into the ideal
+ * sample delay.
+ */
+ ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns +
+ nfc->internal_data_setup_in_ns;
+
+ /*
+ * The ideal sample delay may be greater than the maximum
+ * allowed by the NFC. If so, we can trade off sample delay time
+ * for more data setup time.
+ *
+ * In each iteration of the following loop, we add a cycle to
+ * the data setup time and subtract a corresponding amount from
+ * the sample delay until we've satisified the constraints or
+ * can't do any better.
+ */
+ while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
+ (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
+
+ data_setup_in_cycles++;
+ ideal_sample_delay_in_ns -= clock_period_in_ns;
+
+ if (ideal_sample_delay_in_ns < 0)
+ ideal_sample_delay_in_ns = 0;
+
+ }
+
+ /*
+ * Compute the sample delay factor that corresponds most closely
+ * to the ideal sample delay. If the result is too large for the
+ * NFC, use the maximum value.
+ *
+ * Notice that we use the ns_to_cycles function to compute the
+ * sample delay factor. We do this because the form of the
+ * computation is the same as that for calculating cycles.
+ */
+ sample_delay_factor =
+ ns_to_cycles(
+ ideal_sample_delay_in_ns << dll_delay_shift,
+ clock_period_in_ns, 0);
+
+ if (sample_delay_factor > nfc->max_sample_delay_factor)
+ sample_delay_factor = nfc->max_sample_delay_factor;
+
+ /* Skip to the part where we return our results. */
+ goto return_results;
+ }
+
+ /*
+ * If control arrives here, we have more detailed timing information,
+ * so we can use a better algorithm.
+ */
+
+ /*
+ * Fold the read setup time required by the NFC into the maximum
+ * propagation delay.
+ */
+ max_prop_delay_in_ns += nfc->internal_data_setup_in_ns;
+
+ /*
+ * Earlier, we computed the number of clock cycles required to satisfy
+ * the data setup time. Now, we need to know the actual nanoseconds.
+ */
+ data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles;
+
+ /*
+ * Compute tEYE, the width of the data eye when reading from the NAND
+ * Flash. The eye width is fundamentally determined by the data setup
+ * time, perturbed by propagation delays and some characteristics of the
+ * NAND Flash device.
+ *
+ * start of the eye = max_prop_delay + tREA
+ * end of the eye = min_prop_delay + tRHOH + data_setup
+ */
+ tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns +
+ (int)data_setup_in_ns;
+
+ tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns;
+
+ /*
+ * The eye must be open. If it's not, we can try to open it by
+ * increasing its main forcer, the data setup time.
+ *
+ * In each iteration of the following loop, we increase the data setup
+ * time by a single clock cycle. We do this until either the eye is
+ * open or we run into NFC limits.
+ */
+ while ((tEYE <= 0) &&
+ (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
+ /* Give a cycle to data setup. */
+ data_setup_in_cycles++;
+ /* Synchronize the data setup time with the cycles. */
+ data_setup_in_ns += clock_period_in_ns;
+ /* Adjust tEYE accordingly. */
+ tEYE += clock_period_in_ns;
+ }
+
+ /*
+ * When control arrives here, the eye is open. The ideal time to sample
+ * the data is in the center of the eye:
+ *
+ * end of the eye + start of the eye
+ * --------------------------------- - data_setup
+ * 2
+ *
+ * After some algebra, this simplifies to the code immediately below.
+ */
+ ideal_sample_delay_in_ns =
+ ((int)max_prop_delay_in_ns +
+ (int)target.tREA_in_ns +
+ (int)min_prop_delay_in_ns +
+ (int)target.tRHOH_in_ns -
+ (int)data_setup_in_ns) >> 1;
+
+ /*
+ * The following figure illustrates some aspects of a NAND Flash read:
+ *
+ *
+ * __ _____________________________________
+ * RDN \_________________/
+ *
+ * <---- tEYE ----->
+ * /-----------------\
+ * Read Data ----------------------------< >---------
+ * \-----------------/
+ * ^ ^ ^ ^
+ * | | | |
+ * |<--Data Setup -->|<--Delay Time -->| |
+ * | | | |
+ * | | |
+ * | |<-- Quantized Delay Time -->|
+ * | | |
+ *
+ *
+ * We have some issues we must now address:
+ *
+ * (1) The *ideal* sample delay time must not be negative. If it is, we
+ * jam it to zero.
+ *
+ * (2) The *ideal* sample delay time must not be greater than that
+ * allowed by the NFC. If it is, we can increase the data setup
+ * time, which will reduce the delay between the end of the data
+ * setup and the center of the eye. It will also make the eye
+ * larger, which might help with the next issue...
+ *
+ * (3) The *quantized* sample delay time must not fall either before the
+ * eye opens or after it closes (the latter is the problem
+ * illustrated in the above figure).
+ */
+
+ /* Jam a negative ideal sample delay to zero. */
+ if (ideal_sample_delay_in_ns < 0)
+ ideal_sample_delay_in_ns = 0;
+
+ /*
+ * Extend the data setup as needed to reduce the ideal sample delay
+ * below the maximum permitted by the NFC.
+ */
+ while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
+ (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
+
+ /* Give a cycle to data setup. */
+ data_setup_in_cycles++;
+ /* Synchronize the data setup time with the cycles. */
+ data_setup_in_ns += clock_period_in_ns;
+ /* Adjust tEYE accordingly. */
+ tEYE += clock_period_in_ns;
+
+ /*
+ * Decrease the ideal sample delay by one half cycle, to keep it
+ * in the middle of the eye.
+ */
+ ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
+
+ /* Jam a negative ideal sample delay to zero. */
+ if (ideal_sample_delay_in_ns < 0)
+ ideal_sample_delay_in_ns = 0;
+ }
+
+ /*
+ * Compute the sample delay factor that corresponds to the ideal sample
+ * delay. If the result is too large, then use the maximum allowed
+ * value.
+ *
+ * Notice that we use the ns_to_cycles function to compute the sample
+ * delay factor. We do this because the form of the computation is the
+ * same as that for calculating cycles.
+ */
+ sample_delay_factor =
+ ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift,
+ clock_period_in_ns, 0);
+
+ if (sample_delay_factor > nfc->max_sample_delay_factor)
+ sample_delay_factor = nfc->max_sample_delay_factor;
+
+ /*
+ * These macros conveniently encapsulate a computation we'll use to
+ * continuously evaluate whether or not the data sample delay is inside
+ * the eye.
+ */
+ #define IDEAL_DELAY ((int) ideal_sample_delay_in_ns)
+
+ #define QUANTIZED_DELAY \
+ ((int) ((sample_delay_factor * clock_period_in_ns) >> \
+ dll_delay_shift))
+
+ #define DELAY_ERROR (abs(QUANTIZED_DELAY - IDEAL_DELAY))
+
+ #define SAMPLE_IS_NOT_WITHIN_THE_EYE (DELAY_ERROR > (tEYE >> 1))
+
+ /*
+ * While the quantized sample time falls outside the eye, reduce the
+ * sample delay or extend the data setup to move the sampling point back
+ * toward the eye. Do not allow the number of data setup cycles to
+ * exceed the maximum allowed by the NFC.
+ */
+ while (SAMPLE_IS_NOT_WITHIN_THE_EYE &&
+ (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
+ /*
+ * If control arrives here, the quantized sample delay falls
+ * outside the eye. Check if it's before the eye opens, or after
+ * the eye closes.
+ */
+ if (QUANTIZED_DELAY > IDEAL_DELAY) {
+ /*
+ * If control arrives here, the quantized sample delay
+ * falls after the eye closes. Decrease the quantized
+ * delay time and then go back to re-evaluate.
+ */
+ if (sample_delay_factor != 0)
+ sample_delay_factor--;
+ continue;
+ }
+
+ /*
+ * If control arrives here, the quantized sample delay falls
+ * before the eye opens. Shift the sample point by increasing
+ * data setup time. This will also make the eye larger.
+ */
+
+ /* Give a cycle to data setup. */
+ data_setup_in_cycles++;
+ /* Synchronize the data setup time with the cycles. */
+ data_setup_in_ns += clock_period_in_ns;
+ /* Adjust tEYE accordingly. */
+ tEYE += clock_period_in_ns;
+
+ /*
+ * Decrease the ideal sample delay by one half cycle, to keep it
+ * in the middle of the eye.
+ */
+ ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
+
+ /* ...and one less period for the delay time. */
+ ideal_sample_delay_in_ns -= clock_period_in_ns;
+
+ /* Jam a negative ideal sample delay to zero. */
+ if (ideal_sample_delay_in_ns < 0)
+ ideal_sample_delay_in_ns = 0;
+
+ /*
+ * We have a new ideal sample delay, so re-compute the quantized
+ * delay.
+ */
+ sample_delay_factor =
+ ns_to_cycles(
+ ideal_sample_delay_in_ns << dll_delay_shift,
+ clock_period_in_ns, 0);
+
+ if (sample_delay_factor > nfc->max_sample_delay_factor)
+ sample_delay_factor = nfc->max_sample_delay_factor;
+ }
+
+ /* Control arrives here when we're ready to return our results. */
+return_results:
+ hw->data_setup_in_cycles = data_setup_in_cycles;
+ hw->data_hold_in_cycles = data_hold_in_cycles;
+ hw->address_setup_in_cycles = address_setup_in_cycles;
+ hw->use_half_periods = dll_use_half_periods;
+ hw->sample_delay_factor = sample_delay_factor;
+
+ /* Return success. */
+ return 0;
+}
+
+static int acquire_register_block(struct gpmi_nfc_data *this,
+ const char *resource_name, void **reg_block_base)
+{
+ struct platform_device *pdev = this->pdev;
+ struct resource *r;
+ void *p;
+
+ r = platform_get_resource_byname(pdev, IORESOURCE_MEM, resource_name);
+ if (!r) {
+ log("Can't get resource information for '%s'", resource_name);
+ return -ENXIO;
+ }
+
+ /* remap the register block */
+ p = ioremap(r->start, resource_size(r));
+ if (!p) {
+ log("Can't remap %s", resource_name);
+ return -ENOMEM;
+ }
+
+ *reg_block_base = p;
+ return 0;
+}
+
+static void release_register_block(struct gpmi_nfc_data *this,
+ void *reg_block_base)
+{
+ iounmap(reg_block_base);
+}
+
+static int acquire_interrupt(struct gpmi_nfc_data *this,
+ const char *resource_name,
+ irq_handler_t interrupt_handler, int *lno, int *hno)
+{
+ struct platform_device *pdev = this->pdev;
+ struct resource *r;
+ int err;
+
+ r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, resource_name);
+ if (!r) {
+ log("Can't get resource information for '%s'", resource_name);
+ return -ENXIO;
+ }
+
+ BUG_ON(r->start != r->end);
+ err = request_irq(r->start, interrupt_handler, 0, resource_name, this);
+ if (err) {
+ log("Can't own %s", resource_name);
+ return err;
+ }
+
+ *lno = r->start;
+ *hno = r->end;
+ return 0;
+}
+
+static void release_interrupt(struct gpmi_nfc_data *this,
+ int low_interrupt_number, int high_interrupt_number)
+{
+ int i;
+ for (i = low_interrupt_number; i <= high_interrupt_number; i++)
+ free_irq(i, this);
+}
+
+static bool gpmi_dma_filter(struct dma_chan *chan, void *param)
+{
+ struct gpmi_nfc_data *this = param;
+ struct resource *r = this->private;
+
+ if (!mxs_dma_is_apbh(chan))
+ return false;
+ /*
+ * only catch the GPMI dma channels :
+ * for mx23 : MX23_DMA_GPMI0 ~ MX23_DMA_GPMI3
+ * (These four channels share the same IRQ!)
+ *
+ * for mx28 : MX28_DMA_GPMI0 ~ MX28_DMA_GPMI7
+ * (These eight channels share the same IRQ!)
+ */
+ if (r->start <= chan->chan_id && chan->chan_id <= r->end) {
+ chan->private = &this->dma_data;
+ return true;
+ }
+ return false;
+}
+
+static void release_dma_channels(struct gpmi_nfc_data *this)
+{
+ unsigned int i;
+ for (i = 0; i < DMA_CHANS; i++)
+ if (this->dma_chans[i]) {
+ dma_release_channel(this->dma_chans[i]);
+ this->dma_chans[i] = NULL;
+ }
+}
+
+static int acquire_dma_channels(struct gpmi_nfc_data *this,
+ const char *resource_name,
+ unsigned *low_channel, unsigned *high_channel)
+{
+ struct platform_device *pdev = this->pdev;
+ struct resource *r, *r_dma;
+ unsigned int i;
+
+ r = platform_get_resource_byname(pdev, IORESOURCE_DMA, resource_name);
+ r_dma = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
+ GPMI_NFC_DMA_INTERRUPT_RES_NAME);
+ if (!r || !r_dma) {
+ log("Can't get resource for DMA");
+ return -ENXIO;
+ }
+
+ /* used in gpmi_dma_filter() */
+ this->private = r;
+
+ for (i = r->start; i <= r->end; i++) {
+ dma_cap_mask_t mask;
+ struct dma_chan *dma_chan;
+
+ dma_cap_zero(mask);
+ dma_cap_set(DMA_SLAVE, mask);
+
+ /* get the DMA interrupt */
+ this->dma_data.chan_irq = r_dma->start +
+ ((r_dma->start != r_dma->end) ? (i - r->start) : 0);
+
+ dma_chan = dma_request_channel(mask, gpmi_dma_filter, this);
+ if (!dma_chan)
+ goto acquire_err;
+ /* fill the first empty item */
+ this->dma_chans[i - r->start] = dma_chan;
+ }
+
+ *low_channel = r->start;
+ *high_channel = r->end;
+ return 0;
+
+acquire_err:
+ log("Can't acquire DMA channel %u", i);
+ release_dma_channels(this);
+ return -EINVAL;
+}
+
+static inline int acquire_clock(struct gpmi_nfc_data *this, struct clk **clock)
+{
+ struct clk *c;
+
+ c = clk_get(&this->pdev->dev, NULL);
+ if (IS_ERR(c)) {
+ log("Can't own clock");
+ return PTR_ERR(c);
+ }
+ *clock = c;
+ return 0;
+}
+
+static void release_clock(struct gpmi_nfc_data *this, struct clk *clock)
+{
+ clk_put(clock);
+}
+
+static int acquire_resources(struct gpmi_nfc_data *this)
+{
+ struct resources *resources = &this->resources;
+ int error;
+
+ /* Attempt to acquire the GPMI register block. */
+ error = acquire_register_block(this,
+ GPMI_NFC_GPMI_REGS_ADDR_RES_NAME,
+ &resources->gpmi_regs);
+ if (error)
+ goto exit_gpmi_regs;
+
+ /* Attempt to acquire the BCH register block. */
+ error = acquire_register_block(this,
+ GPMI_NFC_BCH_REGS_ADDR_RES_NAME,
+ &resources->bch_regs);
+ if (error)
+ goto exit_bch_regs;
+
+ /* Attempt to acquire the BCH interrupt. */
+ error = acquire_interrupt(this,
+ GPMI_NFC_BCH_INTERRUPT_RES_NAME,
+ bch_irq,
+ &resources->bch_low_interrupt,
+ &resources->bch_high_interrupt);
+ if (error)
+ goto exit_bch_interrupt;
+
+ /* Attempt to acquire the DMA channels. */
+ error = acquire_dma_channels(this,
+ GPMI_NFC_DMA_CHANNELS_RES_NAME,
+ &resources->dma_low_channel,
+ &resources->dma_high_channel);
+ if (error)
+ goto exit_dma_channels;
+
+ /* Attempt to acquire our clock. */
+ error = acquire_clock(this, &resources->clock);
+ if (error)
+ goto exit_clock;
+ return 0;
+
+exit_clock:
+ release_dma_channels(this);
+exit_dma_channels:
+ release_interrupt(this, resources->bch_low_interrupt,
+ resources->bch_high_interrupt);
+exit_bch_interrupt:
+ release_register_block(this, resources->bch_regs);
+exit_bch_regs:
+ release_register_block(this, resources->gpmi_regs);
+exit_gpmi_regs:
+ return error;
+}
+
+static void release_resources(struct gpmi_nfc_data *this)
+{
+ struct resources *resources = &this->resources;
+
+ release_clock(this, resources->clock);
+ release_register_block(this, resources->gpmi_regs);
+ release_register_block(this, resources->bch_regs);
+ release_interrupt(this, resources->bch_low_interrupt,
+ resources->bch_low_interrupt);
+ release_dma_channels(this);
+}
+
+static void exit_nfc_hal(struct gpmi_nfc_data *this)
+{
+ if (this->nfc)
+ this->nfc->exit(this);
+}
+
+static int set_up_nfc_hal(struct gpmi_nfc_data *this)
+{
+ struct nfc_hal *nfc = NULL;
+ int error;
+
+ /*
+ * This structure contains the "safe" GPMI timing that should succeed
+ * with any NAND Flash device
+ * (although, with less-than-optimal performance).
+ */
+ static struct nand_timing safe_timing = {
+ .data_setup_in_ns = 80,
+ .data_hold_in_ns = 60,
+ .address_setup_in_ns = 25,
+ .gpmi_sample_delay_in_ns = 6,
+ .tREA_in_ns = -1,
+ .tRLOH_in_ns = -1,
+ .tRHOH_in_ns = -1,
+ };
+
+ if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this))
+ nfc = &gpmi_nfc_hal_imx23_imx28;
+
+ BUG_ON(nfc == NULL);
+ this->nfc = nfc;
+
+ /* Initialize the NFC HAL. */
+ error = nfc->init(this);
+ if (error)
+ return error;
+
+ /* Set up safe timing. */
+ nfc->set_timing(this, &safe_timing);
+ return 0;
+}
+
+/* Creates/Removes sysfs files for this device.*/
+static void manage_sysfs_files(struct gpmi_nfc_data *this, int create)
+{
+ struct device *dev = this->dev;
+ struct device_attribute **attr;
+ unsigned int i;
+ int error;
+
+ for (i = 0, attr = device_attributes;
+ i < ARRAY_SIZE(device_attributes); i++, attr++) {
+
+ if (create) {
+ error = device_create_file(dev, *attr);
+ if (error) {
+ while (--attr >= device_attributes)
+ device_remove_file(dev, *attr);
+ return;
+ }
+ } else {
+ device_remove_file(dev, *attr);
+ }
+ }
+}
+
+static int read_page_prepare(struct gpmi_nfc_data *this,
+ void *destination, unsigned length,
+ void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
+ void **use_virt, dma_addr_t *use_phys)
+{
+ struct device *dev = this->dev;
+ dma_addr_t destination_phys = ~0;
+
+ if (virt_addr_valid(destination))
+ destination_phys = dma_map_single(dev, (void *)destination,
+ length, DMA_FROM_DEVICE);
+
+ if (dma_mapping_error(dev, destination_phys)) {
+ if (alt_size < length) {
+ log("Alternate buffer is too small for incoming I/O.");
+ return -ENOMEM;
+ }
+
+ *use_virt = alt_virt;
+ *use_phys = alt_phys;
+ } else {
+ *use_virt = destination;
+ *use_phys = destination_phys;
+ }
+ return 0;
+}
+
+static void read_page_end(struct gpmi_nfc_data *this,
+ void *destination, unsigned length,
+ void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
+ void *used_virt, dma_addr_t used_phys)
+{
+ struct device *dev = this->dev;
+
+ if (used_virt == destination)
+ dma_unmap_single(dev, used_phys, length, DMA_FROM_DEVICE);
+ else
+ memcpy(destination, alt_virt, length);
+}
+
+static int send_page_prepare(struct gpmi_nfc_data *this,
+ const void *source, unsigned length,
+ void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
+ const void **use_virt, dma_addr_t *use_phys)
+{
+ dma_addr_t source_phys = ~0;
+ struct device *dev = this->dev;
+
+ if (virt_addr_valid(source))
+ source_phys = dma_map_single(dev,
+ (void *)source, length, DMA_TO_DEVICE);
+
+ if (dma_mapping_error(dev, source_phys)) {
+ if (alt_size < length) {
+ log("Alternate buffer is too small for outgoing I/O");
+ return -ENOMEM;
+ }
+
+ /*
+ * Copy the contents of the source buffer into the alternate
+ * buffer and set up the return values accordingly.
+ */
+ memcpy(alt_virt, source, length);
+
+ *use_virt = alt_virt;
+ *use_phys = alt_phys;
+ } else {
+ *use_virt = source;
+ *use_phys = source_phys;
+ }
+ return 0;
+}
+
+static void send_page_end(struct gpmi_nfc_data *this,
+ const void *source, unsigned length,
+ void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
+ const void *used_virt, dma_addr_t used_phys)
+{
+ struct device *dev = this->dev;
+ if (used_virt == source)
+ dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
+}
+
+static void mil_free_dma_buffer(struct gpmi_nfc_data *this)
+{
+ struct device *dev = this->dev;
+ struct mil *mil = &this->mil;
+
+ if (mil->page_buffer_virt && virt_addr_valid(mil->page_buffer_virt))
+ dma_free_coherent(dev, mil->page_buffer_size,
+ mil->page_buffer_virt,
+ mil->page_buffer_phys);
+ kfree(mil->cmd_buffer);
+ kfree(mil->data_buffer_dma);
+
+ mil->cmd_buffer = NULL;
+ mil->data_buffer_dma = NULL;
+ mil->page_buffer_virt = NULL;
+ mil->page_buffer_size = 0;
+ mil->page_buffer_phys = ~0;
+}
+
+/* Allocate the DMA buffers */
+static int mil_alloc_dma_buffer(struct gpmi_nfc_data *this)
+{
+ struct nfc_geometry *geo = &this->nfc_geometry;
+ struct device *dev = this->dev;
+ struct mil *mil = &this->mil;
+
+ /* [1] Allocate a command buffer. PAGE_SIZE is enough. */
+ mil->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA);
+ if (mil->cmd_buffer == NULL)
+ goto error_alloc;
+
+ /* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */
+ mil->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA);
+ if (mil->data_buffer_dma == NULL)
+ goto error_alloc;
+
+ /*
+ * [3] Allocate the page buffer.
+ *
+ * Both the payload buffer and the auxiliary buffer must appear on
+ * 32-bit boundaries. We presume the size of the payload buffer is a
+ * power of two and is much larger than four, which guarantees the
+ * auxiliary buffer will appear on a 32-bit boundary.
+ */
+ mil->page_buffer_size = geo->payload_size_in_bytes +
+ geo->auxiliary_size_in_bytes;
+
+ mil->page_buffer_virt = dma_alloc_coherent(dev, mil->page_buffer_size,
+ &mil->page_buffer_phys, GFP_DMA);
+ if (!mil->page_buffer_virt)
+ goto error_alloc;
+
+
+ /* Slice up the page buffer. */
+ mil->payload_virt = mil->page_buffer_virt;
+ mil->payload_phys = mil->page_buffer_phys;
+ mil->auxiliary_virt = ((char *) mil->payload_virt) +
+ geo->payload_size_in_bytes;
+ mil->auxiliary_phys = mil->payload_phys +
+ geo->payload_size_in_bytes;
+ return 0;
+
+error_alloc:
+ mil_free_dma_buffer(this);
+ log("allocate DMA buffer error!!");
+ return -ENOMEM;
+}
+
+static void mil_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct gpmi_nfc_data *this = nand->priv;
+ struct mil *mil = &this->mil;
+ struct nfc_hal *nfc = this->nfc;
+ int error;
+
+ /*
+ * Every operation begins with a command byte and a series of zero or
+ * more address bytes. These are distinguished by either the Address
+ * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
+ * asserted. When MTD is ready to execute the command, it will deassert
+ * both latch enables.
+ *
+ * Rather than run a separate DMA operation for every single byte, we
+ * queue them up and run a single DMA operation for the entire series
+ * of command and data bytes. NAND_CMD_NONE means the END of the queue.
+ */
+ if ((ctrl & (NAND_ALE | NAND_CLE))) {
+ if (data != NAND_CMD_NONE)
+ mil->cmd_buffer[mil->command_length++] = data;
+ return;
+ }
+
+ if (!mil->command_length)
+ return;
+
+ error = nfc->send_command(this);
+ if (error)
+ log("Chip: %u, Error %d", mil->current_chip, error);
+
+ mil->command_length = 0;
+}
+
+static int mil_dev_ready(struct mtd_info *mtd)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct gpmi_nfc_data *this = nand->priv;
+ struct nfc_hal *nfc = this->nfc;
+ struct mil *mil = &this->mil;
+
+ return nfc->is_ready(this, mil->current_chip);
+}
+
+static void mil_select_chip(struct mtd_info *mtd, int chip)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct gpmi_nfc_data *this = nand->priv;
+ struct nfc_hal *nfc = this->nfc;
+ struct mil *mil = &this->mil;
+
+ if ((mil->current_chip < 0) && (chip >= 0))
+ nfc->begin(this);
+ else if ((mil->current_chip >= 0) && (chip < 0))
+ nfc->end(this);
+ else
+ ;
+
+ mil->current_chip = chip;
+}
+
+static void mil_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct gpmi_nfc_data *this = nand->priv;
+ struct nfc_hal *nfc = this->nfc;
+ struct mil *mil = &this->mil;
+
+ logio(GPMI_DEBUG_READ);
+ /* save the info in mil{} for future */
+ mil->upper_buf = buf;
+ mil->upper_len = len;
+
+ nfc->read_data(this);
+}
+
+static void mil_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct gpmi_nfc_data *this = nand->priv;
+ struct nfc_hal *nfc = this->nfc;
+ struct mil *mil = &this->mil;
+
+ logio(GPMI_DEBUG_WRITE);
+ /* save the info in mil{} for future */
+ mil->upper_buf = (uint8_t *)buf;
+ mil->upper_len = len;
+
+ nfc->send_data(this);
+}
+
+static uint8_t mil_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct gpmi_nfc_data *this = nand->priv;
+ struct mil *mil = &this->mil;
+ uint8_t *buf = mil->data_buffer_dma;
+
+ mil_read_buf(mtd, buf, 1);
+ return buf[0];
+}
+
+/**
+ * mil_handle_block_mark_swapping() - Handles block mark swapping.
+ *
+ * Note that, when this function is called, it doesn't know whether it's
+ * swapping the block mark, or swapping it *back* -- but it doesn't matter
+ * because the the operation is the same.
+ *
+ * @this: Per-device data.
+ * @payload: A pointer to the payload buffer.
+ * @auxiliary: A pointer to the auxiliary buffer.
+ */
+static void mil_handle_block_mark_swapping(struct gpmi_nfc_data *this,
+ void *payload, void *auxiliary)
+{
+ struct nfc_geometry *nfc_geo = &this->nfc_geometry;
+ unsigned char *p;
+ unsigned char *a;
+ unsigned int bit;
+ unsigned char mask;
+ unsigned char from_data;
+ unsigned char from_oob;
+
+ /* Check if we're doing block mark swapping. */
+ if (!this->swap_block_mark)
+ return;
+
+ /*
+ * If control arrives here, we're swapping. Make some convenience
+ * variables.
+ */
+ bit = nfc_geo->block_mark_bit_offset;
+ p = payload + nfc_geo->block_mark_byte_offset;
+ a = auxiliary;
+
+ /*
+ * Get the byte from the data area that overlays the block mark. Since
+ * the ECC engine applies its own view to the bits in the page, the
+ * physical block mark won't (in general) appear on a byte boundary in
+ * the data.
+ */
+ from_data = (p[0] >> bit) | (p[1] << (8 - bit));
+
+ /* Get the byte from the OOB. */
+ from_oob = a[0];
+
+ /* Swap them. */
+ a[0] = from_data;
+
+ mask = (0x1 << bit) - 1;
+ p[0] = (p[0] & mask) | (from_oob << bit);
+
+ mask = ~0 << bit;
+ p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
+}
+
+static int mil_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
+ uint8_t *buf, int page)
+{
+ struct gpmi_nfc_data *this = nand->priv;
+ struct nfc_hal *nfc = this->nfc;
+ struct nfc_geometry *nfc_geo = &this->nfc_geometry;
+ struct mil *mil = &this->mil;
+ void *payload_virt;
+ dma_addr_t payload_phys;
+ void *auxiliary_virt;
+ dma_addr_t auxiliary_phys;
+ unsigned int i;
+ unsigned char *status;
+ unsigned int failed;
+ unsigned int corrected;
+ int error;
+
+ logio(GPMI_DEBUG_ECC_READ);
+ error = read_page_prepare(this, buf, mtd->writesize,
+ mil->payload_virt, mil->payload_phys,
+ nfc_geo->payload_size_in_bytes,
+ &payload_virt, &payload_phys);
+ if (error) {
+ log("Inadequate DMA buffer");
+ error = -ENOMEM;
+ return error;
+ }
+ auxiliary_virt = mil->auxiliary_virt;
+ auxiliary_phys = mil->auxiliary_phys;
+
+ /* ask the NFC */
+ error = nfc->read_page(this, payload_phys, auxiliary_phys);
+ if (error) {
+ log("Error in ECC-based read: %d", error);
+ goto exit_nfc;
+ }
+
+ /* handle the block mark swapping */
+ mil_handle_block_mark_swapping(this, payload_virt, auxiliary_virt);
+
+ /* Loop over status bytes, accumulating ECC status. */
+ failed = 0;
+ corrected = 0;
+ status = auxiliary_virt + nfc_geo->auxiliary_status_offset;
+
+ for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
+ if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
+ continue;
+
+ if (*status == STATUS_UNCORRECTABLE) {
+ failed++;
+ continue;
+ }
+ corrected += *status;
+ }
+
+ /*
+ * Propagate ECC status to the owning MTD only when failed or
+ * corrected times nearly reaches our ECC correction threshold.
+ */
+ if (failed || corrected >= (nfc_geo->ecc_strength - 1)) {
+ mtd->ecc_stats.failed += failed;
+ mtd->ecc_stats.corrected += corrected;
+ }
+
+ /*
+ * It's time to deliver the OOB bytes. See mil_ecc_read_oob() for
+ * details about our policy for delivering the OOB.
+ *
+ * We fill the caller's buffer with set bits, and then copy the block
+ * mark to th caller's buffer. Note that, if block mark swapping was
+ * necessary, it has already been done, so we can rely on the first
+ * byte of the auxiliary buffer to contain the block mark.
+ */
+ memset(nand->oob_poi, ~0, mtd->oobsize);
+ nand->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0];
+
+exit_nfc:
+ read_page_end(this, buf, mtd->writesize,
+ mil->payload_virt, mil->payload_phys,
+ nfc_geo->payload_size_in_bytes,
+ payload_virt, payload_phys);
+ return error;
+}
+
+static void mil_ecc_write_page(struct mtd_info *mtd,
+ struct nand_chip *nand, const uint8_t *buf)
+{
+ struct gpmi_nfc_data *this = nand->priv;
+ struct nfc_hal *nfc = this->nfc;
+ struct nfc_geometry *nfc_geo = &this->nfc_geometry;
+ struct mil *mil = &this->mil;
+ const void *payload_virt;
+ dma_addr_t payload_phys;
+ const void *auxiliary_virt;
+ dma_addr_t auxiliary_phys;
+ int error;
+
+ logio(GPMI_DEBUG_ECC_WRITE);
+ if (this->swap_block_mark) {
+ /*
+ * If control arrives here, we're doing block mark swapping.
+ * Since we can't modify the caller's buffers, we must copy them
+ * into our own.
+ */
+ memcpy(mil->payload_virt, buf, mtd->writesize);
+ payload_virt = mil->payload_virt;
+ payload_phys = mil->payload_phys;
+
+ memcpy(mil->auxiliary_virt, nand->oob_poi,
+ nfc_geo->auxiliary_size_in_bytes);
+ auxiliary_virt = mil->auxiliary_virt;
+ auxiliary_phys = mil->auxiliary_phys;
+
+ /* Handle block mark swapping. */
+ mil_handle_block_mark_swapping(this,
+ (void *) payload_virt, (void *) auxiliary_virt);
+ } else {
+ /*
+ * If control arrives here, we're not doing block mark swapping,
+ * so we can to try and use the caller's buffers.
+ */
+ error = send_page_prepare(this,
+ buf, mtd->writesize,
+ mil->payload_virt, mil->payload_phys,
+ nfc_geo->payload_size_in_bytes,
+ &payload_virt, &payload_phys);
+ if (error) {
+ log("Inadequate payload DMA buffer");
+ return;
+ }
+
+ error = send_page_prepare(this,
+ nand->oob_poi, mtd->oobsize,
+ mil->auxiliary_virt, mil->auxiliary_phys,
+ nfc_geo->auxiliary_size_in_bytes,
+ &auxiliary_virt, &auxiliary_phys);
+ if (error) {
+ log("Inadequate auxiliary DMA buffer");
+ goto exit_auxiliary;
+ }
+ }
+
+ /* Ask the NFC. */
+ error = nfc->send_page(this, payload_phys, auxiliary_phys);
+ if (error)
+ log("Error in ECC-based write: %d", error);
+
+ if (!this->swap_block_mark) {
+ send_page_end(this, nand->oob_poi, mtd->oobsize,
+ mil->auxiliary_virt, mil->auxiliary_phys,
+ nfc_geo->auxiliary_size_in_bytes,
+ auxiliary_virt, auxiliary_phys);
+exit_auxiliary:
+ send_page_end(this, buf, mtd->writesize,
+ mil->payload_virt, mil->payload_phys,
+ nfc_geo->payload_size_in_bytes,
+ payload_virt, payload_phys);
+ }
+}
+
+static int mil_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+ register struct nand_chip *chip = mtd->priv;
+ struct gpmi_nfc_data *this = chip->priv;
+ struct mil *mil = &this->mil;
+ int ret;
+
+ mil->marking_a_bad_block = true;
+ ret = mil->hooked_block_markbad(mtd, ofs);
+ mil->marking_a_bad_block = false;
+ return ret;
+}
+
+/**
+ * mil_ecc_read_oob() - MTD Interface ecc.read_oob().
+ *
+ * There are several places in this driver where we have to handle the OOB and
+ * block marks. This is the function where things are the most complicated, so
+ * this is where we try to explain it all. All the other places refer back to
+ * here.
+ *
+ * These are the rules, in order of decreasing importance:
+ *
+ * 1) Nothing the caller does can be allowed to imperil the block mark, so all
+ * write operations take measures to protect it.
+ *
+ * 2) In read operations, the first byte of the OOB we return must reflect the
+ * true state of the block mark, no matter where that block mark appears in
+ * the physical page.
+ *
+ * 3) ECC-based read operations return an OOB full of set bits (since we never
+ * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
+ * return).
+ *
+ * 4) "Raw" read operations return a direct view of the physical bytes in the
+ * page, using the conventional definition of which bytes are data and which
+ * are OOB. This gives the caller a way to see the actual, physical bytes
+ * in the page, without the distortions applied by our ECC engine.
+ *
+ *
+ * What we do for this specific read operation depends on two questions:
+ *
+ * 1) Are we doing a "raw" read, or an ECC-based read?
+ *
+ * 2) Are we using block mark swapping or transcription?
+ *
+ * There are four cases, illustrated by the following Karnaugh map:
+ *
+ * | Raw | ECC-based |
+ * -------------+-------------------------+-------------------------+
+ * | Read the conventional | |
+ * | OOB at the end of the | |
+ * Swapping | page and return it. It | |
+ * | contains exactly what | |
+ * | we want. | Read the block mark and |
+ * -------------+-------------------------+ return it in a buffer |
+ * | Read the conventional | full of set bits. |
+ * | OOB at the end of the | |
+ * | page and also the block | |
+ * Transcribing | mark in the metadata. | |
+ * | Copy the block mark | |
+ * | into the first byte of | |
+ * | the OOB. | |
+ * -------------+-------------------------+-------------------------+
+ *
+ * Note that we break rule #4 in the Transcribing/Raw case because we're not
+ * giving an accurate view of the actual, physical bytes in the page (we're
+ * overwriting the block mark). That's OK because it's more important to follow
+ * rule #2.
+ *
+ * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
+ * easy. When reading a page, for example, the NAND Flash MTD code calls our
+ * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
+ * ECC-based or raw view of the page is implicit in which function it calls
+ * (there is a similar pair of ECC-based/raw functions for writing).
+ *
+ * Since MTD assumes the OOB is not covered by ECC, there is no pair of
+ * ECC-based/raw functions for reading or or writing the OOB. The fact that the
+ * caller wants an ECC-based or raw view of the page is not propagated down to
+ * this driver.
+ *
+ * @mtd: A pointer to the owning MTD.
+ * @nand: A pointer to the owning NAND Flash MTD.
+ * @page: The page number to read.
+ * @sndcmd: Indicates this function should send a command to the chip before
+ * reading the out-of-band bytes. This is only false for small page
+ * chips that support auto-increment.
+ */
+static int mil_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
+ int page, int sndcmd)
+{
+ struct gpmi_nfc_data *this = nand->priv;
+
+ /* clear the OOB buffer */
+ memset(nand->oob_poi, ~0, mtd->oobsize);
+
+ /* Read out the conventional OOB. */
+ nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
+ nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
+
+ /*
+ * Now, we want to make sure the block mark is correct. In the
+ * Swapping/Raw case, we already have it. Otherwise, we need to
+ * explicitly read it.
+ */
+ if (!this->swap_block_mark) {
+ /* Read the block mark into the first byte of the OOB buffer. */
+ nand->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
+ nand->oob_poi[0] = nand->read_byte(mtd);
+ }
+
+ /*
+ * Return true, indicating that the next call to this function must send
+ * a command.
+ */
+ return true;
+}
+
+static int mil_ecc_write_oob(struct mtd_info *mtd,
+ struct nand_chip *nand, int page)
+{
+ struct gpmi_nfc_data *this = nand->priv;
+ struct device *dev = this->dev;
+ struct mil *mil = &this->mil;
+ uint8_t *block_mark;
+ int block_mark_column;
+ int status;
+ int error = 0;
+
+ /* Only marking a block bad is permitted to write the OOB. */
+ if (!mil->marking_a_bad_block) {
+ dev_emerg(dev, "This driver doesn't support writing the OOB\n");
+ WARN_ON(1);
+ error = -EIO;
+ goto exit;
+ }
+
+ if (this->swap_block_mark)
+ block_mark_column = mtd->writesize;
+ else
+ block_mark_column = 0;
+
+ /* Write the block mark. */
+ block_mark = mil->data_buffer_dma;
+ block_mark[0] = 0; /* bad block marker */
+
+ nand->cmdfunc(mtd, NAND_CMD_SEQIN, block_mark_column, page);
+ nand->write_buf(mtd, block_mark, 1);
+ nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+
+ status = nand->waitfunc(mtd, nand);
+
+ /* Check if it worked. */
+ if (status & NAND_STATUS_FAIL)
+ error = -EIO;
+exit:
+ return error;
+}
+
+/**
+ * mil_block_bad - Claims all blocks are good.
+ *
+ * In principle, this function is *only* called when the NAND Flash MTD system
+ * isn't allowed to keep an in-memory bad block table, so it is forced to ask
+ * the driver for bad block information.
+ *
+ * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
+ * this function is *only* called when we take it away.
+ *
+ * We take away the in-memory BBT when the user sets the "ignorebad" parameter,
+ * which indicates that all blocks should be reported good.
+ *
+ * Thus, this function is only called when we want *all* blocks to look good,
+ * so it *always* return success.
+ *
+ * @mtd: Ignored.
+ * @ofs: Ignored.
+ * @getchip: Ignored.
+ */
+static int mil_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
+{
+ return 0;
+}
+
+static int nand_boot_set_geometry(struct gpmi_nfc_data *this)
+{
+ struct boot_rom_geometry *geometry = &this->rom_geometry;
+
+ /*
+ * Set the boot block stride size.
+ *
+ * In principle, we should be reading this from the OTP bits, since
+ * that's where the ROM is going to get it. In fact, we don't have any
+ * way to read the OTP bits, so we go with the default and hope for the
+ * best.
+ */
+ geometry->stride_size_in_pages = 64;
+
+ /*
+ * Set the search area stride exponent.
+ *
+ * In principle, we should be reading this from the OTP bits, since
+ * that's where the ROM is going to get it. In fact, we don't have any
+ * way to read the OTP bits, so we go with the default and hope for the
+ * best.
+ */
+ geometry->search_area_stride_exponent = 2;
+
+ if (gpmi_debug & GPMI_DEBUG_INIT)
+ log("stride size in page : %d, search areas : %d",
+ geometry->stride_size_in_pages,
+ geometry->search_area_stride_exponent);
+ return 0;
+}
+
+static const char *fingerprint = "STMP";
+static int mx23_check_transcription_stamp(struct gpmi_nfc_data *this)
+{
+ struct boot_rom_geometry *rom_geo = &this->rom_geometry;
+ struct mil *mil = &this->mil;
+ struct mtd_info *mtd = &mil->mtd;
+ struct nand_chip *nand = &mil->nand;
+ unsigned int search_area_size_in_strides;
+ unsigned int stride;
+ unsigned int page;
+ loff_t byte;
+ uint8_t *buffer = nand->buffers->databuf;
+ int saved_chip_number;
+ int found_an_ncb_fingerprint = false;
+
+ /* Compute the number of strides in a search area. */
+ search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
+
+ /* Select chip 0. */
+ saved_chip_number = mil->current_chip;
+ nand->select_chip(mtd, 0);
+
+ /*
+ * Loop through the first search area, looking for the NCB fingerprint.
+ */
+ pr_info("Scanning for an NCB fingerprint...\n");
+
+ for (stride = 0; stride < search_area_size_in_strides; stride++) {
+ /* Compute the page and byte addresses. */
+ page = stride * rom_geo->stride_size_in_pages;
+ byte = page * mtd->writesize;
+
+ pr_info(" Looking for a fingerprint in page 0x%x\n", page);
+
+ /*
+ * Read the NCB fingerprint. The fingerprint is four bytes long
+ * and starts in the 12th byte of the page.
+ */
+ nand->cmdfunc(mtd, NAND_CMD_READ0, 12, page);
+ nand->read_buf(mtd, buffer, strlen(fingerprint));
+
+ /* Look for the fingerprint. */
+ if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
+ found_an_ncb_fingerprint = true;
+ break;
+ }
+
+ }
+
+ /* Deselect chip 0. */
+ nand->select_chip(mtd, saved_chip_number);
+
+ if (found_an_ncb_fingerprint)
+ pr_info(" Found a fingerprint\n");
+ else
+ pr_info(" No fingerprint found\n");
+ return found_an_ncb_fingerprint;
+}
+
+/* Writes a transcription stamp. */
+static int mx23_write_transcription_stamp(struct gpmi_nfc_data *this)
+{
+ struct device *dev = this->dev;
+ struct boot_rom_geometry *rom_geo = &this->rom_geometry;
+ struct mil *mil = &this->mil;
+ struct mtd_info *mtd = &mil->mtd;
+ struct nand_chip *nand = &mil->nand;
+ unsigned int block_size_in_pages;
+ unsigned int search_area_size_in_strides;
+ unsigned int search_area_size_in_pages;
+ unsigned int search_area_size_in_blocks;
+ unsigned int block;
+ unsigned int stride;
+ unsigned int page;
+ loff_t byte;
+ uint8_t *buffer = nand->buffers->databuf;
+ int saved_chip_number;
+ int status;
+
+ /* Compute the search area geometry. */
+ block_size_in_pages = mtd->erasesize / mtd->writesize;
+ search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
+ search_area_size_in_pages = search_area_size_in_strides *
+ rom_geo->stride_size_in_pages;
+ search_area_size_in_blocks =
+ (search_area_size_in_pages + (block_size_in_pages - 1)) /
+ block_size_in_pages;
+
+ pr_info("-------------------------------------------\n");
+ pr_info("Search Area Geometry\n");
+ pr_info("-------------------------------------------\n");
+ pr_info("Search Area Size in Blocks : %u", search_area_size_in_blocks);
+ pr_info("Search Area Size in Strides: %u", search_area_size_in_strides);
+ pr_info("Search Area Size in Pages : %u", search_area_size_in_pages);
+
+ /* Select chip 0. */
+ saved_chip_number = mil->current_chip;
+ nand->select_chip(mtd, 0);
+
+ /* Loop over blocks in the first search area, erasing them. */
+ pr_info("Erasing the search area...\n");
+
+ for (block = 0; block < search_area_size_in_blocks; block++) {
+ /* Compute the page address. */
+ page = block * block_size_in_pages;
+
+ /* Erase this block. */
+ pr_info(" Erasing block 0x%x\n", block);
+ nand->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
+ nand->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
+
+ /* Wait for the erase to finish. */
+ status = nand->waitfunc(mtd, nand);
+ if (status & NAND_STATUS_FAIL)
+ dev_err(dev, "[%s] Erase failed.\n", __func__);
+ }
+
+ /* Write the NCB fingerprint into the page buffer. */
+ memset(buffer, ~0, mtd->writesize);
+ memset(nand->oob_poi, ~0, mtd->oobsize);
+ memcpy(buffer + 12, fingerprint, strlen(fingerprint));
+
+ /* Loop through the first search area, writing NCB fingerprints. */
+ pr_info("Writing NCB fingerprints...\n");
+ for (stride = 0; stride < search_area_size_in_strides; stride++) {
+ /* Compute the page and byte addresses. */
+ page = stride * rom_geo->stride_size_in_pages;
+ byte = page * mtd->writesize;
+
+ /* Write the first page of the current stride. */
+ pr_info(" Writing an NCB fingerprint in page 0x%x\n", page);
+ nand->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
+ nand->ecc.write_page_raw(mtd, nand, buffer);
+ nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+
+ /* Wait for the write to finish. */
+ status = nand->waitfunc(mtd, nand);
+ if (status & NAND_STATUS_FAIL)
+ dev_err(dev, "[%s] Write failed.\n", __func__);
+ }
+
+ /* Deselect chip 0. */
+ nand->select_chip(mtd, saved_chip_number);
+ return 0;
+}
+
+int mx23_boot_init(struct gpmi_nfc_data *this)
+{
+ struct device *dev = this->dev;
+ struct mil *mil = &this->mil;
+ struct nand_chip *nand = &mil->nand;
+ struct mtd_info *mtd = &mil->mtd;
+ unsigned int block_count;
+ unsigned int block;
+ int chip;
+ int page;
+ loff_t byte;
+ uint8_t block_mark;
+ int error = 0;
+
+ /*
+ * If control arrives here, we can't use block mark swapping, which
+ * means we're forced to use transcription. First, scan for the
+ * transcription stamp. If we find it, then we don't have to do
+ * anything -- the block marks are already transcribed.
+ */
+ if (mx23_check_transcription_stamp(this))
+ return 0;
+
+ /*
+ * If control arrives here, we couldn't find a transcription stamp, so
+ * so we presume the block marks are in the conventional location.
+ */
+ pr_info("Transcribing bad block marks...\n");
+
+ /* Compute the number of blocks in the entire medium. */
+ block_count = nand->chipsize >> nand->phys_erase_shift;
+
+ /*
+ * Loop over all the blocks in the medium, transcribing block marks as
+ * we go.
+ */
+ for (block = 0; block < block_count; block++) {
+ /*
+ * Compute the chip, page and byte addresses for this block's
+ * conventional mark.
+ */
+ chip = block >> (nand->chip_shift - nand->phys_erase_shift);
+ page = block << (nand->phys_erase_shift - nand->page_shift);
+ byte = block << nand->phys_erase_shift;
+
+ /* Select the chip. */
+ nand->select_chip(mtd, chip);
+
+ /* Send the command to read the conventional block mark. */
+ nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
+
+ /* Read the conventional block mark. */
+ block_mark = nand->read_byte(mtd);
+
+ /*
+ * Check if the block is marked bad. If so, we need to mark it
+ * again, but this time the result will be a mark in the
+ * location where we transcribe block marks.
+ *
+ * Notice that we have to explicitly set the marking_a_bad_block
+ * member before we call through the block_markbad function
+ * pointer in the owning struct nand_chip. If we could call
+ * though the block_markbad function pointer in the owning
+ * struct mtd_info, which we have hooked, then this would be
+ * taken care of for us. Unfortunately, we can't because that
+ * higher-level code path will do things like consulting the
+ * in-memory bad block table -- which doesn't even exist yet!
+ * So, we have to call at a lower level and handle some details
+ * ourselves.
+ */
+ if (block_mark != 0xff) {
+ pr_info("Transcribing mark in block %u\n", block);
+ mil->marking_a_bad_block = true;
+ error = nand->block_markbad(mtd, byte);
+ mil->marking_a_bad_block = false;
+ if (error)
+ dev_err(dev, "Failed to mark block bad with "
+ "error %d\n", error);
+ }
+
+ /* Deselect the chip. */
+ nand->select_chip(mtd, -1);
+ }
+
+ /* Write the stamp that indicates we've transcribed the block marks. */
+ mx23_write_transcription_stamp(this);
+ return 0;
+}
+
+static int nand_boot_init(struct gpmi_nfc_data *this)
+{
+ nand_boot_set_geometry(this);
+
+ /* This is ROM arch-specific initilization before the BBT scanning. */
+ if (GPMI_IS_MX23(this))
+ return mx23_boot_init(this);
+ return 0;
+}
+
+static void show_nfc_geometry(struct nfc_geometry *geo)
+{
+ pr_info("---------------------------------------\n");
+ pr_info(" NFC Geometry (used by BCH)\n");
+ pr_info("---------------------------------------\n");
+ pr_info("ECC Algorithm : %s\n", geo->ecc_algorithm);
+ pr_info("ECC Strength : %u\n", geo->ecc_strength);
+ pr_info("Page Size in Bytes : %u\n", geo->page_size_in_bytes);
+ pr_info("Metadata Size in Bytes : %u\n", geo->metadata_size_in_bytes);
+ pr_info("ECC Chunk Size in Bytes: %u\n", geo->ecc_chunk_size_in_bytes);
+ pr_info("ECC Chunk Count : %u\n", geo->ecc_chunk_count);
+ pr_info("Payload Size in Bytes : %u\n", geo->payload_size_in_bytes);
+ pr_info("Auxiliary Size in Bytes: %u\n", geo->auxiliary_size_in_bytes);
+ pr_info("Auxiliary Status Offset: %u\n", geo->auxiliary_status_offset);
+ pr_info("Block Mark Byte Offset : %u\n", geo->block_mark_byte_offset);
+ pr_info("Block Mark Bit Offset : %u\n", geo->block_mark_bit_offset);
+}
+
+static int mil_set_geometry(struct gpmi_nfc_data *this)
+{
+ struct nfc_hal *nfc = this->nfc;
+ struct nfc_geometry *geo = &this->nfc_geometry;
+ int error;
+
+ /* Free the temporary DMA memory for read ID case */
+ mil_free_dma_buffer(this);
+
+ /* Set up the NFC geometry which is used by BCH. */
+ error = nfc->set_geometry(this);
+ if (error != 0) {
+ log("NFC set geometry error : %d", error);
+ return error;
+ }
+ if (gpmi_debug & GPMI_DEBUG_INIT)
+ show_nfc_geometry(geo);
+
+ /* Alloc the new DMA buffers according to the pagesize and oobsize */
+ return mil_alloc_dma_buffer(this);
+}
+
+static int mil_pre_bbt_scan(struct gpmi_nfc_data *this)
+{
+ struct nand_chip *nand = &this->mil.nand;
+ struct mtd_info *mtd = &this->mil.mtd;
+ struct nand_ecclayout *layout = nand->ecc.layout;
+ struct nfc_hal *nfc = this->nfc;
+ int error;
+
+ /* fix the ECC layout before the scanning */
+ layout->eccbytes = 0;
+ layout->oobavail = mtd->oobsize;
+ layout->oobfree[0].offset = 0;
+ layout->oobfree[0].length = mtd->oobsize;
+
+ mtd->oobavail = nand->ecc.layout->oobavail;
+
+ /* Set up swap block-mark, must be set before the mil_set_geometry() */
+ if (GPMI_IS_MX23(this))
+ this->swap_block_mark = false;
+ else
+ this->swap_block_mark = true;
+
+ /* Set up the medium geometry */
+ error = mil_set_geometry(this);
+ if (error)
+ return error;
+
+ /* extra init */
+ if (nfc->extra_init) {
+ error = nfc->extra_init(this);
+ if (error != 0)
+ return error;
+ }
+
+ /* NAND boot init, depends on the mil_set_geometry(). */
+ return nand_boot_init(this);
+}
+
+static int mil_scan_bbt(struct mtd_info *mtd)
+{
+ struct nand_chip *nand = mtd->priv;
+ struct gpmi_nfc_data *this = nand->priv;
+ int error;
+
+ /* Prepare for the BBT scan. */
+ error = mil_pre_bbt_scan(this);
+ if (error)
+ return error;
+
+ /* use the default BBT implementation */
+ return nand_default_bbt(mtd);
+}
+
+static const char *cmd_parse = "cmdlinepart";
+static int mil_partitions_init(struct gpmi_nfc_data *this)
+{
+ struct gpmi_nfc_platform_data *pdata = this->pdata;
+ struct mil *mil = &this->mil;
+ struct mtd_info *mtd = &mil->mtd;
+
+ /* use the command line for simple partitions layout */
+ mil->partition_count = parse_mtd_partitions(mtd, &cmd_parse,
+ &mil->partitions, 0);
+ if (mil->partition_count)
+ return add_mtd_partitions(mtd, mil->partitions,
+ mil->partition_count);
+
+ /* The complicated partitions layout uses this. */
+ if (pdata->partitions && pdata->partition_count > 0)
+ return add_mtd_partitions(mtd, pdata->partitions,
+ pdata->partition_count);
+ return 0;
+}
+
+static void mil_partitions_exit(struct gpmi_nfc_data *this)
+{
+ struct mil *mil = &this->mil;
+
+ if (mil->partition_count) {
+ struct mtd_info *mtd = &mil->mtd;
+
+ del_mtd_partitions(mtd);
+ kfree(mil->partitions);
+ mil->partition_count = 0;
+ }
+}
+
+/* Initializes the MTD Interface Layer */
+int gpmi_nfc_mil_init(struct gpmi_nfc_data *this)
+{
+ struct gpmi_nfc_platform_data *pdata = this->pdata;
+ struct mil *mil = &this->mil;
+ struct mtd_info *mtd = &mil->mtd;
+ struct nand_chip *nand = &mil->nand;
+ int error;
+
+ /* Initialize MIL data */
+ mil->current_chip = -1;
+ mil->command_length = 0;
+ mil->page_buffer_virt = NULL;
+ mil->page_buffer_phys = ~0;
+ mil->page_buffer_size = 0;
+
+ /* Initialize the MTD data structures */
+ mtd->priv = nand;
+ mtd->name = "gpmi-nfc-main";
+ mtd->owner = THIS_MODULE;
+ nand->priv = this;
+
+ /* Controls */
+ nand->select_chip = mil_select_chip;
+ nand->cmd_ctrl = mil_cmd_ctrl;
+ nand->dev_ready = mil_dev_ready;
+
+ /*
+ * Low-level I/O :
+ * We don't support a 16-bit NAND Flash bus,
+ * so we don't implement read_word.
+ */
+ nand->read_byte = mil_read_byte;
+ nand->read_buf = mil_read_buf;
+ nand->write_buf = mil_write_buf;
+
+ /* ECC-aware I/O */
+ nand->ecc.read_page = mil_ecc_read_page;
+ nand->ecc.write_page = mil_ecc_write_page;
+
+ /* High-level I/O */
+ nand->ecc.read_oob = mil_ecc_read_oob;
+ nand->ecc.write_oob = mil_ecc_write_oob;
+
+ /* Bad Block Management */
+ nand->block_bad = mil_block_bad;
+ nand->scan_bbt = mil_scan_bbt;
+ nand->badblock_pattern = &gpmi_bbt_descr;
+
+ /* Disallow partial page writes */
+ nand->options |= NAND_NO_SUBPAGE_WRITE;
+
+ /*
+ * Tell the NAND Flash MTD system that we'll be handling ECC with our
+ * own hardware. It turns out that we still have to fill in the ECC size
+ * because the MTD code will divide by it -- even though it doesn't
+ * actually care.
+ */
+ nand->ecc.mode = NAND_ECC_HW;
+ nand->ecc.size = 1;
+
+ /* use our layout */
+ nand->ecc.layout = &mil->oob_layout;
+
+ /* Allocate a temporary DMA buffer for reading ID in the nand_scan() */
+ this->nfc_geometry.payload_size_in_bytes = 1024;
+ this->nfc_geometry.auxiliary_size_in_bytes = 128;
+ error = mil_alloc_dma_buffer(this);
+ if (error)
+ goto exit_dma_allocation;
+
+ pr_info("Scanning for NAND Flash chips...\n");
+ error = nand_scan(mtd, pdata->max_chip_count);
+ if (error) {
+ log("Chip scan failed");
+ goto exit_nand_scan;
+ }
+
+ /* Take over the management of the OOB */
+ mil->hooked_block_markbad = mtd->block_markbad;
+ mtd->block_markbad = mil_hook_block_markbad;
+
+ /* Construct partitions as necessary. */
+ error = mil_partitions_init(this);
+ if (error)
+ goto exit_partitions;
+ return 0;
+
+exit_partitions:
+ nand_release(&mil->mtd);
+exit_nand_scan:
+ mil_free_dma_buffer(this);
+exit_dma_allocation:
+ return error;
+}
+
+void gpmi_nfc_mil_exit(struct gpmi_nfc_data *this)
+{
+ struct mil *mil = &this->mil;
+
+ mil_partitions_exit(this);
+ nand_release(&mil->mtd);
+ mil_free_dma_buffer(this);
+}
+static int gpmi_nfc_probe(struct platform_device *pdev)
+{
+ struct gpmi_nfc_platform_data *pdata = pdev->dev.platform_data;
+ struct gpmi_nfc_data *this;
+ int error;
+
+ this = kzalloc(sizeof(*this), GFP_KERNEL);
+ if (!this) {
+ log("Failed to allocate per-device memory\n");
+ return -ENOMEM;
+ }
+
+ /* Set up our data structures. */
+ platform_set_drvdata(pdev, this);
+ this->pdev = pdev;
+ this->dev = &pdev->dev;
+ this->pdata = pdata;
+
+ /* Acquire the resources we need. */
+ error = acquire_resources(this);
+ if (error)
+ goto exit_acquire_resources;
+
+ /* Set up the NFC. */
+ error = set_up_nfc_hal(this);
+ if (error)
+ goto exit_nfc_init;
+
+ /* Initialize the MTD Interface Layer. */
+ error = gpmi_nfc_mil_init(this);
+ if (error)
+ goto exit_mil_init;
+
+ manage_sysfs_files(this, true);
+ return 0;
+
+exit_mil_init:
+ exit_nfc_hal(this);
+exit_nfc_init:
+ release_resources(this);
+exit_acquire_resources:
+ platform_set_drvdata(pdev, NULL);
+ kfree(this);
+ return error;
+}
+
+static int __exit gpmi_nfc_remove(struct platform_device *pdev)
+{
+ struct gpmi_nfc_data *this = platform_get_drvdata(pdev);
+
+ manage_sysfs_files(this, false);
+ gpmi_nfc_mil_exit(this);
+ exit_nfc_hal(this);
+ release_resources(this);
+ platform_set_drvdata(pdev, NULL);
+ kfree(this);
+ return 0;
+}
+
+#ifdef CONFIG_PM
+static int gpmi_nfc_suspend(struct platform_device *pdev, pm_message_t state)
+{
+ return 0;
+}
+static int gpmi_nfc_resume(struct platform_device *pdev)
+{
+ return 0;
+}
+#else
+#define gpmi_nfc_suspend NULL
+#define gpmi_nfc_resume NULL
+#endif
+
+static const struct platform_device_id gpmi_ids[] = {
+ {
+ .name = "imx23-gpmi-nfc",
+ .driver_data = IS_MX23,
+ }, {
+ .name = "imx28-gpmi-nfc",
+ .driver_data = IS_MX28,
+ }, {},
+};
+
+/* This structure represents this driver to the platform management system. */
+static struct platform_driver gpmi_nfc_driver = {
+ .driver = {
+ .name = "gpmi-nfc",
+ },
+ .probe = gpmi_nfc_probe,
+ .remove = __exit_p(gpmi_nfc_remove),
+ .suspend = gpmi_nfc_suspend,
+ .resume = gpmi_nfc_resume,
+ .id_table = gpmi_ids,
+};
+
+static int __init gpmi_nfc_init(void)
+{
+ int err;
+
+ err = platform_driver_register(&gpmi_nfc_driver);
+ if (err == 0)
+ printk(KERN_INFO "GPMI NFC driver registered. (IMX)\n");
+ else
+ pr_err("i.MX GPMI NFC driver registration failed\n");
+ return err;
+}
+
+static void __exit gpmi_nfc_exit(void)
+{
+ platform_driver_unregister(&gpmi_nfc_driver);
+}
+
+static int __init gpmi_debug_setup(char *__unused)
+{
+ gpmi_debug = GPMI_DEBUG_INIT;
+ return 1;
+}
+__setup("gpmi_debug_init", gpmi_debug_setup);
+
+module_init(gpmi_nfc_init);
+module_exit(gpmi_nfc_exit);
+
+MODULE_AUTHOR("Freescale Semiconductor, Inc.");
+MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/mtd/nand/gpmi-nfc/gpmi-nfc.h b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc.h
new file mode 100644
index 0000000..d0f363e
--- /dev/null
+++ b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc.h
@@ -0,0 +1,488 @@
+/*
+ * Freescale GPMI NFC NAND Flash Driver
+ *
+ * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
+ * Copyright (C) 2008 Embedded Alley Solutions, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+#ifndef __DRIVERS_MTD_NAND_GPMI_NFC_H
+#define __DRIVERS_MTD_NAND_GPMI_NFC_H
+
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/io.h>
+#include <linux/interrupt.h>
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/platform_device.h>
+#include <linux/dma-mapping.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/concat.h>
+#include <linux/dmaengine.h>
+#include <asm/sizes.h>
+
+#include <mach/mxs.h>
+#include <mach/common.h>
+#include <mach/dma.h>
+#include <mach/gpmi-nfc.h>
+#include <mach/system.h>
+#include <mach/clock.h>
+
+/**
+ * struct resources - The collection of resources the driver needs.
+ *
+ * @gpmi_regs: A pointer to the GPMI registers.
+ * @bch_regs: A pointer to the BCH registers.
+ * @bch_interrupt: The BCH interrupt number.
+ * @dma_low_channel: The low DMA channel.
+ * @dma_high_channel: The high DMA channel.
+ * @clock: A pointer to the struct clk for the NFC's clock.
+ */
+struct resources {
+ void *gpmi_regs;
+ void *bch_regs;
+ unsigned int bch_low_interrupt;
+ unsigned int bch_high_interrupt;
+ unsigned int dma_low_channel;
+ unsigned int dma_high_channel;
+ struct clk *clock;
+};
+
+/**
+ * struct mil - State for the MTD Interface Layer.
+ *
+ * @nand: The NAND Flash MTD data structure that represents
+ * the NAND Flash medium.
+ * @mtd: The MTD data structure that represents the NAND
+ * Flash medium.
+ * @oob_layout: A structure that describes how bytes are laid out
+ * in the OOB.
+ * @partitions: A pointer to a set of partitions.
+ * @partition_count: The number of partitions.
+ * @current_chip: The chip currently selected by the NAND Fash MTD
+ * code. A negative value indicates that no chip is
+ * selected.
+ * @command_length: The length of the command that appears in the
+ * command buffer (see cmd_virt, below).
+ * @ignore_bad_block_marks: Indicates we are ignoring bad block marks.
+ * @saved_bbt: A saved pointer to the in-memory NAND Flash MTD bad
+ * block table. See show_device_ignorebad() for more
+ * details.
+ * @marking_a_bad_block: Indicates the caller is marking a bad block. See
+ * mil_ecc_write_oob() for details.
+ * @hooked_block_markbad: A pointer to the block_markbad() function we
+ * we "hooked." See mil_ecc_write_oob() for details.
+ * @upper_buf: The buffer passed from upper layer.
+ * @upper_len: The buffer len passed from upper layer.
+ * @direct_dma_map_ok: Is the direct DMA map is good for the upper_buf?
+ * @cmd_sgl/cmd_buffer: For NAND command.
+ * @data_sgl/data_buffer_dma:For NAND DATA ops.
+ * @page_buffer_virt: A pointer to a DMA-coherent buffer we use for
+ * reading and writing pages. This buffer includes
+ * space for both the payload data and the auxiliary
+ * data (including status bytes, but not syndrome
+ * bytes).
+ * @page_buffer_phys: The physical address for the page_buffer_virt
+ * buffer.
+ * @page_buffer_size: The size of the page buffer.
+ * @payload_virt: A pointer to a location in the page buffer used
+ * for payload bytes. The size of this buffer is
+ * determined by struct nfc_geometry.
+ * @payload_phys: The physical address for payload_virt.
+ * @auxiliary_virt: A pointer to a location in the page buffer used
+ * for auxiliary bytes. The size of this buffer is
+ * determined by struct nfc_geometry.
+ * @auxiliary_phys: The physical address for auxiliary_virt.
+ */
+struct mil {
+ /* MTD Data Structures */
+ struct nand_chip nand;
+ struct mtd_info mtd;
+ struct nand_ecclayout oob_layout;
+
+ /* Partitions*/
+ struct mtd_partition *partitions;
+ unsigned int partition_count;
+
+ /* General-use Variables */
+ int current_chip;
+ unsigned int command_length;
+ int ignore_bad_block_marks;
+ void *saved_bbt;
+
+ /* MTD Function Pointer Hooks */
+ int marking_a_bad_block;
+ int (*hooked_block_markbad)(struct mtd_info *mtd,
+ loff_t ofs);
+
+ /* from upper layer */
+ uint8_t *upper_buf;
+ int upper_len;
+
+ /* DMA */
+ bool direct_dma_map_ok;
+
+ struct scatterlist cmd_sgl;
+ char *cmd_buffer;
+
+ struct scatterlist data_sgl;
+ char *data_buffer_dma;
+
+ void *page_buffer_virt;
+ dma_addr_t page_buffer_phys;
+ unsigned int page_buffer_size;
+
+ void *payload_virt;
+ dma_addr_t payload_phys;
+
+ void *auxiliary_virt;
+ dma_addr_t auxiliary_phys;
+};
+
+/**
+ * struct nfc_geometry - NFC geometry description.
+ *
+ * This structure describes the NFC's view of the medium geometry.
+ *
+ * @ecc_algorithm: The human-readable name of the ECC algorithm
+ * (e.g., "Reed-Solomon" or "BCH").
+ * @ecc_strength: A number that describes the strength of the ECC
+ * algorithm.
+ * @page_size_in_bytes: The size, in bytes, of a physical page, including
+ * both data and OOB.
+ * @metadata_size_in_bytes: The size, in bytes, of the metadata.
+ * @ecc_chunk_size_in_bytes: The size, in bytes, of a single ECC chunk. Note
+ * the first chunk in the page includes both data and
+ * metadata, so it's a bit larger than this value.
+ * @ecc_chunk_count: The number of ECC chunks in the page,
+ * @payload_size_in_bytes: The size, in bytes, of the payload buffer.
+ * @auxiliary_size_in_bytes: The size, in bytes, of the auxiliary buffer.
+ * @auxiliary_status_offset: The offset into the auxiliary buffer at which
+ * the ECC status appears.
+ * @block_mark_byte_offset: The byte offset in the ECC-based page view at
+ * which the underlying physical block mark appears.
+ * @block_mark_bit_offset: The bit offset into the ECC-based page view at
+ * which the underlying physical block mark appears.
+ */
+struct nfc_geometry {
+ char *ecc_algorithm;
+ unsigned int ecc_strength;
+ unsigned int page_size_in_bytes;
+ unsigned int metadata_size_in_bytes;
+ unsigned int ecc_chunk_size_in_bytes;
+ unsigned int ecc_chunk_count;
+ unsigned int payload_size_in_bytes;
+ unsigned int auxiliary_size_in_bytes;
+ unsigned int auxiliary_status_offset;
+ unsigned int block_mark_byte_offset;
+ unsigned int block_mark_bit_offset;
+};
+
+/**
+ * struct boot_rom_geometry - Boot ROM geometry description.
+ *
+ * @stride_size_in_pages: The size of a boot block stride, in pages.
+ * @search_area_stride_exponent: The logarithm to base 2 of the size of a
+ * search area in boot block strides.
+ */
+struct boot_rom_geometry {
+ unsigned int stride_size_in_pages;
+ unsigned int search_area_stride_exponent;
+};
+
+/* DMA operations types */
+enum dma_ops_type {
+ DMA_FOR_COMMAND = 1,
+ DMA_FOR_READ_DATA,
+ DMA_FOR_WRITE_DATA,
+ DMA_FOR_READ_ECC_PAGE,
+ DMA_FOR_WRITE_ECC_PAGE
+};
+
+/**
+ * This structure contains the fundamental timing attributes for NAND.
+ *
+ * @data_setup_in_ns: The data setup time, in nanoseconds. Usually the
+ * maximum of tDS and tWP. A negative value
+ * indicates this characteristic isn't known.
+ * @data_hold_in_ns: The data hold time, in nanoseconds. Usually the
+ * maximum of tDH, tWH and tREH. A negative value
+ * indicates this characteristic isn't known.
+ * @address_setup_in_ns: The address setup time, in nanoseconds. Usually
+ * the maximum of tCLS, tCS and tALS. A negative
+ * value indicates this characteristic isn't known.
+ * @gpmi_sample_delay_in_ns: A GPMI-specific timing parameter. A negative value
+ * indicates this characteristic isn't known.
+ * @tREA_in_ns: tREA, in nanoseconds, from the data sheet. A
+ * negative value indicates this characteristic isn't
+ * known.
+ * @tRLOH_in_ns: tRLOH, in nanoseconds, from the data sheet. A
+ * negative value indicates this characteristic isn't
+ * known.
+ * @tRHOH_in_ns: tRHOH, in nanoseconds, from the data sheet. A
+ * negative value indicates this characteristic isn't
+ * known.
+ */
+struct nand_timing {
+ int8_t data_setup_in_ns;
+ int8_t data_hold_in_ns;
+ int8_t address_setup_in_ns;
+ int8_t gpmi_sample_delay_in_ns;
+ int8_t tREA_in_ns;
+ int8_t tRLOH_in_ns;
+ int8_t tRHOH_in_ns;
+};
+
+/**
+ * struct gpmi_nfc_data - i.MX NFC per-device data.
+ *
+ * @dev: A pointer to the owning struct device.
+ * @pdev: A pointer to the owning struct platform_device.
+ * @pdata: A pointer to the device's platform data.
+ * @resources: Information about system resources used by this driver.
+ * @device_info: A structure that contains detailed information about
+ * the NAND Flash device.
+ * @nfc: A pointer to a structure that represents the underlying
+ * NFC hardware.
+ * @nfc_geometry: A description of the medium geometry as viewed by the
+ * NFC.
+ * @swap_block_mark: Does it support the swap-block-mark feature?
+ * Boot ROM.
+ * @rom_geometry: A description of the medium geometry as viewed by the
+ * Boot ROM.
+ * @mil: A collection of information used by the MTD Interface
+ * Layer.
+ */
+struct gpmi_nfc_data {
+ /* System Interface */
+ struct device *dev;
+ struct platform_device *pdev;
+ struct gpmi_nfc_platform_data *pdata;
+
+ /* Resources */
+ struct resources resources;
+
+ /* Flash Hardware */
+ struct nand_timing timing;
+
+ /* NFC HAL */
+ struct nfc_hal *nfc;
+ struct nfc_geometry nfc_geometry;
+
+ /* NAND Boot issue */
+ bool swap_block_mark;
+ struct boot_rom_geometry rom_geometry;
+
+ /* MTD Interface Layer */
+ struct mil mil;
+
+ /* DMA channels */
+#define DMA_CHANS 8
+ struct dma_chan *dma_chans[DMA_CHANS];
+ struct mxs_dma_data dma_data;
+ enum dma_ops_type dma_type;
+
+ /* private */
+ void *private;
+};
+
+/**
+ * struct gpmi_nfc_hardware_timing - GPMI NFC hardware timing parameters.
+ *
+ * This structure contains timing information expressed in a form directly
+ * usable by the GPMI NFC hardware.
+ *
+ * @data_setup_in_cycles: The data setup time, in cycles.
+ * @data_hold_in_cycles: The data hold time, in cycles.
+ * @address_setup_in_cycles: The address setup time, in cycles.
+ * @use_half_periods: Indicates the clock is running slowly, so the
+ * NFC DLL should use half-periods.
+ * @sample_delay_factor: The sample delay factor.
+ */
+struct gpmi_nfc_hardware_timing {
+ uint8_t data_setup_in_cycles;
+ uint8_t data_hold_in_cycles;
+ uint8_t address_setup_in_cycles;
+ bool use_half_periods;
+ uint8_t sample_delay_factor;
+};
+
+/**
+ * struct nfc_hal - GPMI NFC HAL
+ *
+ * @description: description.
+ * @max_chip_count: The maximum number of chips the NFC can
+ * possibly support (this value is a constant for
+ * each NFC version). This may *not* be the actual
+ * number of chips connected.
+ * @max_data_setup_cycles: The maximum number of data setup cycles that
+ * can be expressed in the hardware.
+ * @internal_data_setup_in_ns: The time, in ns, that the NFC hardware requires
+ * for data read internal setup. In the Reference
+ * Manual, see the chapter "High-Speed NAND
+ * Timing" for more details.
+ * @max_sample_delay_factor: The maximum sample delay factor that can be
+ * expressed in the hardware.
+ * @max_dll_clock_period_in_ns: The maximum period of the GPMI clock that the
+ * sample delay DLL hardware can possibly work
+ * with (the DLL is unusable with longer periods).
+ * If the full-cycle period is greater than HALF
+ * this value, the DLL must be configured to use
+ * half-periods.
+ * @max_dll_delay_in_ns: The maximum amount of delay, in ns, that the
+ * DLL can implement.
+ * @dma_descriptors: A pool of DMA descriptors.
+ * @isr_dma_channel: The DMA channel with which the NFC HAL is
+ * working. We record this here so the ISR knows
+ * which DMA channel to acknowledge.
+ * @dma_done: The completion structure used for DMA
+ * interrupts.
+ * @bch_done: The completion structure used for BCH
+ * interrupts.
+ * @timing: The current timing configuration.
+ * @clock_frequency_in_hz: The clock frequency, in Hz, during the current
+ * I/O transaction. If no I/O transaction is in
+ * progress, this is the clock frequency during
+ * the most recent I/O transaction.
+ * @hardware_timing: The hardware timing configuration in effect
+ * during the current I/O transaction. If no I/O
+ * transaction is in progress, this is the
+ * hardware timing configuration during the most
+ * recent I/O transaction.
+ * @init: Initializes the NFC hardware and data
+ * structures. This function will be called after
+ * everything has been set up for communication
+ * with the NFC itself, but before the platform
+ * has set up off-chip communication. Thus, this
+ * function must not attempt to communicate with
+ * the NAND Flash hardware.
+ * @set_geometry: Configures the NFC hardware and data structures
+ * to match the physical NAND Flash geometry.
+ * @set_timing: Configures the NFC hardware and data structures
+ * to match the given NAND Flash bus timing.
+ * @get_timing: Returns the the clock frequency, in Hz, and
+ * the hardware timing configuration during the
+ * current I/O transaction. If no I/O transaction
+ * is in progress, this is the timing state during
+ * the most recent I/O transaction.
+ * @exit: Shuts down the NFC hardware and data
+ * structures. This function will be called after
+ * the platform has shut down off-chip
+ * communication but while communication with the
+ * NFC itself still works.
+ * @clear_bch: Clears a BCH interrupt (intended to be called
+ * by a more general interrupt handler to do
+ * device-specific clearing).
+ * @is_ready: Returns true if the given chip is ready.
+ * @begin: Begins an interaction with the NFC. This
+ * function must be called before *any* of the
+ * following functions so the NFC can prepare
+ * itself.
+ * @end: Ends interaction with the NFC. This function
+ * should be called to give the NFC a chance to,
+ * among other things, enter a lower-power state.
+ * @send_command: Sends the given buffer of command bytes.
+ * @send_data: Sends the given buffer of data bytes.
+ * @read_data: Reads data bytes into the given buffer.
+ * @send_page: Sends the given given data and OOB bytes,
+ * using the ECC engine.
+ * @read_page: Reads a page through the ECC engine and
+ * delivers the data and OOB bytes to the given
+ * buffers.
+ */
+struct nfc_hal {
+ /* Hardware attributes. */
+ const char *description;
+ const unsigned int max_chip_count;
+ const unsigned int max_data_setup_cycles;
+ const unsigned int internal_data_setup_in_ns;
+ const unsigned int max_sample_delay_factor;
+ const unsigned int max_dll_clock_period_in_ns;
+ const unsigned int max_dll_delay_in_ns;
+
+ int isr_dma_channel;
+ struct completion dma_done;
+ struct completion bch_done;
+ struct nand_timing timing;
+ unsigned long clock_frequency_in_hz;
+
+ /* Configuration functions. */
+ int (*init) (struct gpmi_nfc_data *);
+ int (*extra_init) (struct gpmi_nfc_data *);
+ int (*set_geometry)(struct gpmi_nfc_data *);
+ int (*set_timing) (struct gpmi_nfc_data *,
+ const struct nand_timing *);
+ void (*get_timing) (struct gpmi_nfc_data *,
+ unsigned long *clock_frequency_in_hz,
+ struct gpmi_nfc_hardware_timing *);
+ void (*exit) (struct gpmi_nfc_data *);
+
+ /* Call these functions to begin and end I/O. */
+ void (*begin) (struct gpmi_nfc_data *);
+ void (*end) (struct gpmi_nfc_data *);
+
+ /* Call these I/O functions only between begin() and end(). */
+ void (*clear_bch) (struct gpmi_nfc_data *);
+ int (*is_ready) (struct gpmi_nfc_data *, unsigned chip);
+ int (*send_command)(struct gpmi_nfc_data *);
+ int (*send_data) (struct gpmi_nfc_data *);
+ int (*read_data) (struct gpmi_nfc_data *);
+ int (*send_page) (struct gpmi_nfc_data *,
+ dma_addr_t payload, dma_addr_t auxiliary);
+ int (*read_page) (struct gpmi_nfc_data *,
+ dma_addr_t payload, dma_addr_t auxiliary);
+};
+
+/* NFC HAL Common Services */
+extern int common_nfc_set_geometry(struct gpmi_nfc_data *this);
+extern int gpmi_nfc_compute_hardware_timing(struct gpmi_nfc_data *this,
+ struct gpmi_nfc_hardware_timing *hw);
+extern struct dma_chan *get_dma_chan(struct gpmi_nfc_data *this);
+extern void prepare_data_dma(struct gpmi_nfc_data *this,
+ enum dma_data_direction dr);
+extern int start_dma_without_bch_irq(struct gpmi_nfc_data *this,
+ struct dma_async_tx_descriptor *desc);
+extern int start_dma_with_bch_irq(struct gpmi_nfc_data *this,
+ struct dma_async_tx_descriptor *desc);
+/* NFC HAL Structures */
+extern struct nfc_hal gpmi_nfc_hal_imx23_imx28;
+
+/* for log */
+extern int gpmi_debug;
+#define GPMI_DEBUG_INIT 0x0001
+#define GPMI_DEBUG_READ 0x0002
+#define GPMI_DEBUG_WRITE 0x0004
+#define GPMI_DEBUG_ECC_READ 0x0008
+#define GPMI_DEBUG_ECC_WRITE 0x0010
+
+#define log(a, ...) printk(KERN_INFO "[ %s : %.3d ] "a"\n", \
+ __func__, __LINE__, ## __VA_ARGS__)
+#define logio(level) \
+ do { \
+ if (gpmi_debug & level) \
+ log(); \
+ } while (0)
+
+/* BCH : Status Block Completion Codes */
+#define STATUS_GOOD 0x00
+#define STATUS_ERASED 0xff
+#define STATUS_UNCORRECTABLE 0xfe
+
+/* Use the platform_id to distinguish different Archs. */
+#define IS_MX23 0x1
+#define IS_MX28 0x2
+#define GPMI_IS_MX23(x) ((x)->pdev->id_entry->driver_data == IS_MX23)
+#define GPMI_IS_MX28(x) ((x)->pdev->id_entry->driver_data == IS_MX28)
+#endif
--
1.7.0.4
^ permalink raw reply related [flat|nested] 10+ messages in thread
* [PATCH v6 2/3] MTD : add support for imx23 and imx28
2011-04-20 2:45 [PATCH v6 0/3] add the GPMI controller driver for IMX23/IMX28 Huang Shijie
2011-04-20 2:45 ` [PATCH v6 1/3] MTD : add the common code for GPMI controller driver Huang Shijie
@ 2011-04-20 2:45 ` Huang Shijie
2011-04-20 2:45 ` [PATCH v6 3/3] MTD : add GPMI driver in the config and Makefile Huang Shijie
2 siblings, 0 replies; 10+ messages in thread
From: Huang Shijie @ 2011-04-20 2:45 UTC (permalink / raw)
To: linux-arm-kernel
Add the implementation code for imx23 and imx28.
The imx23 and imx28 share most of the same code.
Signed-off-by: Huang Shijie <b32955@freescale.com>
---
drivers/mtd/nand/gpmi-nfc/bch-regs.h | 88 ++++++
drivers/mtd/nand/gpmi-nfc/gpmi-regs.h | 163 ++++++++++
drivers/mtd/nand/gpmi-nfc/hal-mxs.c | 554 +++++++++++++++++++++++++++++++++
3 files changed, 805 insertions(+), 0 deletions(-)
create mode 100644 drivers/mtd/nand/gpmi-nfc/bch-regs.h
create mode 100644 drivers/mtd/nand/gpmi-nfc/gpmi-regs.h
create mode 100644 drivers/mtd/nand/gpmi-nfc/hal-mxs.c
diff --git a/drivers/mtd/nand/gpmi-nfc/bch-regs.h b/drivers/mtd/nand/gpmi-nfc/bch-regs.h
new file mode 100644
index 0000000..90af8cf
--- /dev/null
+++ b/drivers/mtd/nand/gpmi-nfc/bch-regs.h
@@ -0,0 +1,88 @@
+/*
+ * Freescale GPMI NFC NAND Flash Driver
+ *
+ * Copyright 2008-2011 Freescale Semiconductor, Inc.
+ * Copyright 2008 Embedded Alley Solutions, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+#ifndef __GPMI_NFC_BCH_REGS_H
+#define __GPMI_NFC_BCH_REGS_H
+
+/*============================================================================*/
+#define HW_BCH_CTRL 0x00000000
+#define HW_BCH_CTRL_SET 0x00000004
+#define HW_BCH_CTRL_CLR 0x00000008
+#define HW_BCH_CTRL_TOG 0x0000000c
+
+#define BM_BCH_CTRL_COMPLETE_IRQ_EN (1 << 8)
+#define BM_BCH_CTRL_COMPLETE_IRQ (1 << 0)
+
+/*============================================================================*/
+#define HW_BCH_STATUS0 0x00000010
+#define HW_BCH_MODE 0x00000020
+#define HW_BCH_ENCODEPTR 0x00000030
+#define HW_BCH_DATAPTR 0x00000040
+#define HW_BCH_METAPTR 0x00000050
+#define HW_BCH_LAYOUTSELECT 0x00000070
+
+/*============================================================================*/
+#define HW_BCH_FLASH0LAYOUT0 0x00000080
+
+#define BP_BCH_FLASH0LAYOUT0_NBLOCKS 24
+#define BM_BCH_FLASH0LAYOUT0_NBLOCKS (0xff << BP_BCH_FLASH0LAYOUT0_NBLOCKS)
+#define BF_BCH_FLASH0LAYOUT0_NBLOCKS(v) \
+ (((v) << BP_BCH_FLASH0LAYOUT0_NBLOCKS) & BM_BCH_FLASH0LAYOUT0_NBLOCKS)
+
+#define BP_BCH_FLASH0LAYOUT0_META_SIZE 16
+#define BM_BCH_FLASH0LAYOUT0_META_SIZE (0xff << BP_BCH_FLASH0LAYOUT0_META_SIZE)
+#define BF_BCH_FLASH0LAYOUT0_META_SIZE(v) \
+ (((v) << BP_BCH_FLASH0LAYOUT0_META_SIZE)\
+ & BM_BCH_FLASH0LAYOUT0_META_SIZE)
+
+#define BP_BCH_FLASH0LAYOUT0_ECC0 12
+#define BM_BCH_FLASH0LAYOUT0_ECC0 (0xf << BP_BCH_FLASH0LAYOUT0_ECC0)
+#define BF_BCH_FLASH0LAYOUT0_ECC0(v) \
+ (((v) << BP_BCH_FLASH0LAYOUT0_ECC0) & BM_BCH_FLASH0LAYOUT0_ECC0)
+
+#define BP_BCH_FLASH0LAYOUT0_DATA0_SIZE 0
+#define BM_BCH_FLASH0LAYOUT0_DATA0_SIZE \
+ (0xfff << BP_BCH_FLASH0LAYOUT0_DATA0_SIZE)
+#define BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(v) \
+ (((v) << BP_BCH_FLASH0LAYOUT0_DATA0_SIZE)\
+ & BM_BCH_FLASH0LAYOUT0_DATA0_SIZE)
+
+/*============================================================================*/
+#define HW_BCH_FLASH0LAYOUT1 0x00000090
+
+#define BP_BCH_FLASH0LAYOUT1_PAGE_SIZE 16
+#define BM_BCH_FLASH0LAYOUT1_PAGE_SIZE \
+ (0xffff << BP_BCH_FLASH0LAYOUT1_PAGE_SIZE)
+#define BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(v) \
+ (((v) << BP_BCH_FLASH0LAYOUT1_PAGE_SIZE) \
+ & BM_BCH_FLASH0LAYOUT1_PAGE_SIZE)
+
+#define BP_BCH_FLASH0LAYOUT1_ECCN 12
+#define BM_BCH_FLASH0LAYOUT1_ECCN (0xf << BP_BCH_FLASH0LAYOUT1_ECCN)
+#define BF_BCH_FLASH0LAYOUT1_ECCN(v) \
+ (((v) << BP_BCH_FLASH0LAYOUT1_ECCN) & BM_BCH_FLASH0LAYOUT1_ECCN)
+
+#define BP_BCH_FLASH0LAYOUT1_DATAN_SIZE 0
+#define BM_BCH_FLASH0LAYOUT1_DATAN_SIZE \
+ (0xfff << BP_BCH_FLASH0LAYOUT1_DATAN_SIZE)
+#define BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(v) \
+ (((v) << BP_BCH_FLASH0LAYOUT1_DATAN_SIZE) \
+ & BM_BCH_FLASH0LAYOUT1_DATAN_SIZE)
+#endif
diff --git a/drivers/mtd/nand/gpmi-nfc/gpmi-regs.h b/drivers/mtd/nand/gpmi-nfc/gpmi-regs.h
new file mode 100644
index 0000000..d012c76
--- /dev/null
+++ b/drivers/mtd/nand/gpmi-nfc/gpmi-regs.h
@@ -0,0 +1,163 @@
+/*
+ * Freescale GPMI NFC NAND Flash Driver
+ *
+ * Copyright 2008-2011 Freescale Semiconductor, Inc.
+ * Copyright 2008 Embedded Alley Solutions, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+#ifndef __GPMI_NFC_GPMI_REGS_H
+#define __GPMI_NFC_GPMI_REGS_H
+
+/*============================================================================*/
+#define HW_GPMI_CTRL0 0x00000000
+#define HW_GPMI_CTRL0_SET 0x00000004
+#define HW_GPMI_CTRL0_CLR 0x00000008
+#define HW_GPMI_CTRL0_TOG 0x0000000c
+
+#define BP_GPMI_CTRL0_COMMAND_MODE 24
+#define BM_GPMI_CTRL0_COMMAND_MODE (3 << BP_GPMI_CTRL0_COMMAND_MODE)
+#define BF_GPMI_CTRL0_COMMAND_MODE(v) \
+ (((v) << BP_GPMI_CTRL0_COMMAND_MODE) & BM_GPMI_CTRL0_COMMAND_MODE)
+#define BV_GPMI_CTRL0_COMMAND_MODE__WRITE 0x0
+#define BV_GPMI_CTRL0_COMMAND_MODE__READ 0x1
+#define BV_GPMI_CTRL0_COMMAND_MODE__READ_AND_COMPARE 0x2
+#define BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY 0x3
+
+#define BM_GPMI_CTRL0_WORD_LENGTH (1 << 23)
+#define BV_GPMI_CTRL0_WORD_LENGTH__16_BIT 0x0
+#define BV_GPMI_CTRL0_WORD_LENGTH__8_BIT 0x1
+
+/* different in CS between imx23 and imx28 */
+#define BP_GPMI_CTRL0_CS 20
+#define MX23_BM_GPMI_CTRL0_CS (3 << BP_GPMI_CTRL0_CS)
+#define MX28_BM_GPMI_CTRL0_CS (7 << BP_GPMI_CTRL0_CS)
+#define BF_GPMI_CTRL0_CS(v, x) (((v) << 20) & (GPMI_IS_MX23((x)) \
+ ? MX23_BM_GPMI_CTRL0_CS \
+ : MX28_BM_GPMI_CTRL0_CS))
+
+#define BP_GPMI_CTRL0_ADDRESS 17
+#define BM_GPMI_CTRL0_ADDRESS (3 << BP_GPMI_CTRL0_ADDRESS)
+#define BF_GPMI_CTRL0_ADDRESS(v) \
+ (((v) << BP_GPMI_CTRL0_ADDRESS) & BM_GPMI_CTRL0_ADDRESS)
+#define BV_GPMI_CTRL0_ADDRESS__NAND_DATA 0x0
+#define BV_GPMI_CTRL0_ADDRESS__NAND_CLE 0x1
+#define BV_GPMI_CTRL0_ADDRESS__NAND_ALE 0x2
+
+#define BM_GPMI_CTRL0_ADDRESS_INCREMENT (1 << 16)
+#define BV_GPMI_CTRL0_ADDRESS_INCREMENT__DISABLED 0x0
+#define BV_GPMI_CTRL0_ADDRESS_INCREMENT__ENABLED 0x1
+
+#define BP_GPMI_CTRL0_XFER_COUNT 0
+#define BM_GPMI_CTRL0_XFER_COUNT (0xffff << BP_GPMI_CTRL0_XFER_COUNT)
+#define BF_GPMI_CTRL0_XFER_COUNT(v) \
+ (((v) << BP_GPMI_CTRL0_XFER_COUNT) & BM_GPMI_CTRL0_XFER_COUNT)
+
+/*============================================================================*/
+#define HW_GPMI_COMPARE 0x00000010
+/*============================================================================*/
+#define HW_GPMI_ECCCTRL 0x00000020
+#define HW_GPMI_ECCCTRL_SET 0x00000024
+#define HW_GPMI_ECCCTRL_CLR 0x00000028
+#define HW_GPMI_ECCCTRL_TOG 0x0000002c
+
+#define BP_GPMI_ECCCTRL_ECC_CMD 13
+#define BM_GPMI_ECCCTRL_ECC_CMD (3 << BP_GPMI_ECCCTRL_ECC_CMD)
+#define BF_GPMI_ECCCTRL_ECC_CMD(v) \
+ (((v) << BP_GPMI_ECCCTRL_ECC_CMD) & BM_GPMI_ECCCTRL_ECC_CMD)
+#define BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE 0x0
+#define BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE 0x1
+
+#define BM_GPMI_ECCCTRL_ENABLE_ECC (1 << 12)
+#define BV_GPMI_ECCCTRL_ENABLE_ECC__ENABLE 0x1
+#define BV_GPMI_ECCCTRL_ENABLE_ECC__DISABLE 0x0
+
+#define BP_GPMI_ECCCTRL_BUFFER_MASK 0
+#define BM_GPMI_ECCCTRL_BUFFER_MASK (0x1ff << BP_GPMI_ECCCTRL_BUFFER_MASK)
+#define BF_GPMI_ECCCTRL_BUFFER_MASK(v) \
+ (((v) << BP_GPMI_ECCCTRL_BUFFER_MASK) & BM_GPMI_ECCCTRL_BUFFER_MASK)
+#define BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY 0x100
+#define BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE 0x1FF
+
+/*============================================================================*/
+#define HW_GPMI_ECCCOUNT 0x00000030
+#define HW_GPMI_PAYLOAD 0x00000040
+#define HW_GPMI_AUXILIARY 0x00000050
+/*============================================================================*/
+#define HW_GPMI_CTRL1 0x00000060
+#define HW_GPMI_CTRL1_SET 0x00000064
+#define HW_GPMI_CTRL1_CLR 0x00000068
+#define HW_GPMI_CTRL1_TOG 0x0000006c
+
+#define BM_GPMI_CTRL1_BCH_MODE (1 << 18)
+
+#define BP_GPMI_CTRL1_DLL_ENABLE 17
+#define BM_GPMI_CTRL1_DLL_ENABLE (1 << BP_GPMI_CTRL1_DLL_ENABLE)
+
+#define BP_GPMI_CTRL1_HALF_PERIOD 16
+#define BM_GPMI_CTRL1_HALF_PERIOD (1 << BP_GPMI_CTRL1_HALF_PERIOD)
+
+#define BP_GPMI_CTRL1_RDN_DELAY 12
+#define BM_GPMI_CTRL1_RDN_DELAY (0xf << BP_GPMI_CTRL1_RDN_DELAY)
+#define BF_GPMI_CTRL1_RDN_DELAY(v) \
+ (((v) << BP_GPMI_CTRL1_RDN_DELAY) & BM_GPMI_CTRL1_RDN_DELAY)
+
+#define BM_GPMI_CTRL1_DEV_RESET (1 << 3)
+#define BV_GPMI_CTRL1_DEV_RESET__ENABLED 0x0
+#define BV_GPMI_CTRL1_DEV_RESET__DISABLED 0x1
+
+#define BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY (1 << 2)
+#define BV_GPMI_CTRL1_ATA_IRQRDY_POLARITY__ACTIVELOW 0x0
+#define BV_GPMI_CTRL1_ATA_IRQRDY_POLARITY__ACTIVEHIGH 0x1
+
+#define BM_GPMI_CTRL1_CAMERA_MODE (1 << 1)
+#define BV_GPMI_CTRL1_GPMI_MODE__NAND 0x0
+#define BV_GPMI_CTRL1_GPMI_MODE__ATA 0x1
+
+#define BM_GPMI_CTRL1_GPMI_MODE (1 << 0)
+
+/*============================================================================*/
+#define HW_GPMI_TIMING0 0x00000070
+
+#define BP_GPMI_TIMING0_ADDRESS_SETUP 16
+#define BM_GPMI_TIMING0_ADDRESS_SETUP (0xff << BP_GPMI_TIMING0_ADDRESS_SETUP)
+#define BF_GPMI_TIMING0_ADDRESS_SETUP(v) \
+ (((v) << BP_GPMI_TIMING0_ADDRESS_SETUP) & BM_GPMI_TIMING0_ADDRESS_SETUP)
+
+#define BP_GPMI_TIMING0_DATA_HOLD 8
+#define BM_GPMI_TIMING0_DATA_HOLD (0xff << BP_GPMI_TIMING0_DATA_HOLD)
+#define BF_GPMI_TIMING0_DATA_HOLD(v) \
+ (((v) << BP_GPMI_TIMING0_DATA_HOLD) & BM_GPMI_TIMING0_DATA_HOLD)
+
+#define BP_GPMI_TIMING0_DATA_SETUP 0
+#define BM_GPMI_TIMING0_DATA_SETUP (0xff << BP_GPMI_TIMING0_DATA_SETUP)
+#define BF_GPMI_TIMING0_DATA_SETUP(v) \
+ (((v) << BP_GPMI_TIMING0_DATA_SETUP) & BM_GPMI_TIMING0_DATA_SETUP)
+
+/*============================================================================*/
+#define HW_GPMI_TIMING1 0x00000080
+#define HW_GPMI_TIMING2 0x00000090
+#define HW_GPMI_DATA 0x000000a0
+/*============================ MX28 uses this to detect READY ================*/
+#define HW_GPMI_STAT 0x000000b0
+#define MX28_BP_GPMI_STAT_READY_BUSY 24
+#define MX28_BM_GPMI_STAT_READY_BUSY (0xff << MX28_BP_GPMI_STAT_READY_BUSY)
+#define MX28_BF_GPMI_STAT_READY_BUSY(v) \
+ (((v) << MX28_BP_GPMI_STAT_READY_BUSY) & MX28_BM_GPMI_STAT_READY_BUSY)
+/*============================ MX23 uses this to detect READY ================*/
+#define HW_GPMI_DEBUG 0x000000c0
+#define MX23_BP_GPMI_DEBUG_READY0 28
+#define MX23_BM_GPMI_DEBUG_READY0 (1 << MX23_BP_GPMI_DEBUG_READY0)
+#endif
diff --git a/drivers/mtd/nand/gpmi-nfc/hal-mxs.c b/drivers/mtd/nand/gpmi-nfc/hal-mxs.c
new file mode 100644
index 0000000..8b0181e
--- /dev/null
+++ b/drivers/mtd/nand/gpmi-nfc/hal-mxs.c
@@ -0,0 +1,554 @@
+/*
+ * Freescale GPMI NFC NAND Flash Driver
+ *
+ * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
+ * Copyright (C) 2008 Embedded Alley Solutions, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+#include "gpmi-nfc.h"
+#include "gpmi-regs.h"
+#include "bch-regs.h"
+
+static int init_hal(struct gpmi_nfc_data *this)
+{
+ struct resources *resources = &this->resources;
+
+ /* Enable the clock */
+ clk_enable(resources->clock);
+
+ /* Reset the GPMI block. */
+ mxs_reset_block(resources->gpmi_regs);
+
+ /* Choose NAND mode. */
+ __raw_writel(BM_GPMI_CTRL1_GPMI_MODE,
+ resources->gpmi_regs + HW_GPMI_CTRL1_CLR);
+
+ /* Set the IRQ polarity. */
+ __raw_writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
+ resources->gpmi_regs + HW_GPMI_CTRL1_SET);
+
+ /* Disable write protection. */
+ __raw_writel(BM_GPMI_CTRL1_DEV_RESET,
+ resources->gpmi_regs + HW_GPMI_CTRL1_SET);
+
+ /* Select BCH ECC. */
+ __raw_writel(BM_GPMI_CTRL1_BCH_MODE,
+ resources->gpmi_regs + HW_GPMI_CTRL1_SET);
+
+ /* Disable the clock. */
+ clk_disable(resources->clock);
+ return 0;
+}
+
+/* Configures the NFC geometry for BCH. */
+static int set_geometry(struct gpmi_nfc_data *this)
+{
+ struct resources *resources = &this->resources;
+ struct nfc_geometry *nfc = &this->nfc_geometry;
+ unsigned int block_count;
+ unsigned int block_size;
+ unsigned int metadata_size;
+ unsigned int ecc_strength;
+ unsigned int page_size;
+
+ if (common_nfc_set_geometry(this))
+ return !0;
+
+ block_count = nfc->ecc_chunk_count - 1;
+ block_size = nfc->ecc_chunk_size_in_bytes;
+ metadata_size = nfc->metadata_size_in_bytes;
+ ecc_strength = nfc->ecc_strength >> 1;
+ page_size = nfc->page_size_in_bytes;
+
+ clk_enable(resources->clock);
+
+ /*
+ * Reset the BCH block. Notice that we pass in true for the just_enable
+ * flag. This is because the soft reset for the version 0 BCH block
+ * doesn't work. If you try to soft reset the BCH block, it becomes
+ * unusable until the next hard reset.
+ */
+ mxs_reset_block(resources->bch_regs);
+
+ /* Configure layout 0. */
+ __raw_writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count)
+ | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size)
+ | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength)
+ | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size),
+ resources->bch_regs + HW_BCH_FLASH0LAYOUT0);
+
+ __raw_writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size)
+ | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength)
+ | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size),
+ resources->bch_regs + HW_BCH_FLASH0LAYOUT1);
+
+ /* Set *all* chip selects to use layout 0. */
+ __raw_writel(0, resources->bch_regs + HW_BCH_LAYOUTSELECT);
+
+ /* Enable interrupts. */
+ __raw_writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
+ resources->bch_regs + HW_BCH_CTRL_SET);
+
+ clk_disable(resources->clock);
+ return 0;
+}
+
+static int set_timing(struct gpmi_nfc_data *this,
+ const struct nand_timing *timing)
+{
+ struct nfc_hal *nfc = this->nfc;
+
+ nfc->timing = *timing;
+ return 0;
+}
+
+/**
+ * get_timing() - Retrieves the NFC hardware timing.
+ *
+ * @this: Per-device data.
+ * @clock_frequency_in_hz: The clock frequency, in Hz, during the current
+ * I/O transaction. If no I/O transaction is in
+ * progress, this is the clock frequency during the
+ * most recent I/O transaction.
+ * @hardware_timing: The hardware timing configuration in effect during
+ * the current I/O transaction. If no I/O transaction
+ * is in progress, this is the hardware timing
+ * configuration during the most recent I/O
+ * transaction.
+ */
+static void get_timing(struct gpmi_nfc_data *this,
+ unsigned long *clock_frequency_in_hz,
+ struct gpmi_nfc_hardware_timing *hardware_timing)
+{
+ struct resources *resources = &this->resources;
+ struct nfc_hal *nfc = this->nfc;
+ unsigned char *gpmi_regs = resources->gpmi_regs;
+ uint32_t register_image;
+
+ /* Return the clock frequency. */
+ *clock_frequency_in_hz = nfc->clock_frequency_in_hz;
+
+ /* We'll be reading the hardware, so let's enable the clock. */
+ clk_enable(resources->clock);
+
+ /* Retrieve the hardware timing. */
+ register_image = __raw_readl(gpmi_regs + HW_GPMI_TIMING0);
+
+ hardware_timing->data_setup_in_cycles =
+ (register_image & BM_GPMI_TIMING0_DATA_SETUP) >>
+ BP_GPMI_TIMING0_DATA_SETUP;
+
+ hardware_timing->data_hold_in_cycles =
+ (register_image & BM_GPMI_TIMING0_DATA_HOLD) >>
+ BP_GPMI_TIMING0_DATA_HOLD;
+
+ hardware_timing->address_setup_in_cycles =
+ (register_image & BM_GPMI_TIMING0_ADDRESS_SETUP) >>
+ BP_GPMI_TIMING0_ADDRESS_SETUP;
+
+ register_image = __raw_readl(gpmi_regs + HW_GPMI_CTRL1);
+
+ hardware_timing->use_half_periods =
+ (register_image & BM_GPMI_CTRL1_HALF_PERIOD) >>
+ BP_GPMI_CTRL1_HALF_PERIOD;
+
+ hardware_timing->sample_delay_factor =
+ (register_image & BM_GPMI_CTRL1_RDN_DELAY) >>
+ BP_GPMI_CTRL1_RDN_DELAY;
+
+ /* We're done reading the hardware, so disable the clock. */
+ clk_disable(resources->clock);
+}
+
+static void exit(struct gpmi_nfc_data *this)
+{
+}
+
+/* Begin the I/O */
+static void begin(struct gpmi_nfc_data *this)
+{
+ struct resources *resources = &this->resources;
+ struct nfc_hal *nfc = this->nfc;
+ unsigned char *gpmi_regs = resources->gpmi_regs;
+ unsigned int clock_period_in_ns;
+ uint32_t register_image;
+ unsigned int dll_wait_time_in_us;
+ struct gpmi_nfc_hardware_timing hw;
+
+ /* Enable the clock. */
+ clk_enable(resources->clock);
+
+ /* set the timing for imx23 */
+ if (!GPMI_IS_MX23(this))
+ return;
+
+ /* Get the timing information we need. */
+ nfc->clock_frequency_in_hz = clk_get_rate(resources->clock);
+ clock_period_in_ns = 1000000000 / nfc->clock_frequency_in_hz;
+
+ gpmi_nfc_compute_hardware_timing(this, &hw);
+
+ /* Set up all the simple timing parameters. */
+ register_image =
+ BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) |
+ BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles) |
+ BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles) ;
+
+ __raw_writel(register_image, gpmi_regs + HW_GPMI_TIMING0);
+
+ /*
+ * HEY - PAY ATTENTION!
+ *
+ * DLL_ENABLE must be set to zero when setting RDN_DELAY or HALF_PERIOD.
+ */
+ __raw_writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR);
+
+ /* Clear out the DLL control fields. */
+ __raw_writel(BM_GPMI_CTRL1_RDN_DELAY, gpmi_regs + HW_GPMI_CTRL1_CLR);
+ __raw_writel(BM_GPMI_CTRL1_HALF_PERIOD, gpmi_regs + HW_GPMI_CTRL1_CLR);
+
+ /* If no sample delay is called for, return immediately. */
+ if (!hw.sample_delay_factor)
+ return;
+
+ /* Configure the HALF_PERIOD flag. */
+ if (hw.use_half_periods)
+ __raw_writel(BM_GPMI_CTRL1_HALF_PERIOD,
+ gpmi_regs + HW_GPMI_CTRL1_SET);
+
+ /* Set the delay factor. */
+ __raw_writel(BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor),
+ gpmi_regs + HW_GPMI_CTRL1_SET);
+
+ /* Enable the DLL. */
+ __raw_writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET);
+
+ /*
+ * After we enable the GPMI DLL, we have to wait 64 clock cycles before
+ * we can use the GPMI.
+ *
+ * Calculate the amount of time we need to wait, in microseconds.
+ */
+ dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000;
+
+ if (!dll_wait_time_in_us)
+ dll_wait_time_in_us = 1;
+
+ /* Wait for the DLL to settle. */
+ udelay(dll_wait_time_in_us);
+}
+
+static void end(struct gpmi_nfc_data *this)
+{
+ struct resources *r = &this->resources;
+ clk_disable(r->clock);
+}
+
+/* Clears a BCH interrupt. */
+static void clear_bch(struct gpmi_nfc_data *this)
+{
+ struct resources *r = &this->resources;
+ __raw_writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
+}
+
+/* Returns the Ready/Busy status of the given chip. */
+static int is_ready(struct gpmi_nfc_data *this, unsigned chip)
+{
+ struct resources *r = &this->resources;
+ uint32_t mask;
+ uint32_t reg;
+
+ if (GPMI_IS_MX23(this)) {
+ mask = MX23_BM_GPMI_DEBUG_READY0 << chip;
+ reg = __raw_readl(r->gpmi_regs + HW_GPMI_DEBUG);
+ } else if (GPMI_IS_MX28(this)) {
+ mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip);
+ reg = __raw_readl(r->gpmi_regs + HW_GPMI_STAT);
+ } else
+ BUG();
+ return !!(reg & mask);
+}
+
+static int send_command(struct gpmi_nfc_data *this)
+{
+ struct dma_chan *channel = get_dma_chan(this);
+ struct mil *mil = &this->mil;
+ struct dma_async_tx_descriptor *desc;
+ struct scatterlist *sgl;
+ u32 pio[3];
+
+ /* [1] send out the PIO words */
+ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
+ | BM_GPMI_CTRL0_WORD_LENGTH
+ | BF_GPMI_CTRL0_CS(mil->current_chip, this)
+ | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
+ | BM_GPMI_CTRL0_ADDRESS_INCREMENT
+ | BF_GPMI_CTRL0_XFER_COUNT(mil->command_length);
+ pio[1] = pio[2] = 0;
+ desc = channel->device->device_prep_slave_sg(channel,
+ (struct scatterlist *)pio,
+ ARRAY_SIZE(pio), DMA_NONE, 0);
+ if (!desc) {
+ log("step 1 error");
+ return -1;
+ }
+
+ /* [2] send out the COMMAND + ADDRESS string stored in @buffer */
+ sgl = &mil->cmd_sgl;
+
+ sg_init_one(sgl, mil->cmd_buffer, mil->command_length);
+ dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
+ desc = channel->device->device_prep_slave_sg(channel,
+ sgl, 1, DMA_TO_DEVICE, 1);
+ if (!desc) {
+ log("error");
+ return -1;
+ }
+
+ /* [3] submit the DMA */
+ this->dma_type = DMA_FOR_COMMAND;
+ start_dma_without_bch_irq(this, desc);
+ return 0;
+}
+
+static int send_data(struct gpmi_nfc_data *this)
+{
+ struct dma_async_tx_descriptor *desc;
+ struct dma_chan *channel = get_dma_chan(this);
+ struct mil *mil = &this->mil;
+ uint32_t command_mode;
+ uint32_t address;
+ u32 pio[2];
+
+ /* [1] PIO */
+ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
+ address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
+
+ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
+ | BM_GPMI_CTRL0_WORD_LENGTH
+ | BF_GPMI_CTRL0_CS(mil->current_chip, this)
+ | BF_GPMI_CTRL0_ADDRESS(address)
+ | BF_GPMI_CTRL0_XFER_COUNT(mil->upper_len);
+ pio[1] = 0;
+ desc = channel->device->device_prep_slave_sg(channel,
+ (struct scatterlist *)pio,
+ ARRAY_SIZE(pio), DMA_NONE, 0);
+ if (!desc) {
+ log("step 1 error");
+ return -1;
+ }
+
+ /* [2] send DMA request */
+ prepare_data_dma(this, DMA_TO_DEVICE);
+ desc = channel->device->device_prep_slave_sg(channel, &mil->data_sgl,
+ 1, DMA_TO_DEVICE, 1);
+ if (!desc) {
+ log("step 2 error");
+ return -1;
+ }
+ /* [3] submit the DMA */
+ this->dma_type = DMA_FOR_WRITE_DATA;
+ start_dma_without_bch_irq(this, desc);
+ return 0;
+}
+
+static int read_data(struct gpmi_nfc_data *this)
+{
+ struct dma_async_tx_descriptor *desc;
+ struct dma_chan *channel = get_dma_chan(this);
+ struct mil *mil = &this->mil;
+ u32 pio[2];
+
+ /* [1] : send PIO */
+ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
+ | BM_GPMI_CTRL0_WORD_LENGTH
+ | BF_GPMI_CTRL0_CS(mil->current_chip, this)
+ | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
+ | BF_GPMI_CTRL0_XFER_COUNT(mil->upper_len);
+ pio[1] = 0;
+ desc = channel->device->device_prep_slave_sg(channel,
+ (struct scatterlist *)pio,
+ ARRAY_SIZE(pio), DMA_NONE, 0);
+ if (!desc) {
+ log("step 1 error");
+ return -1;
+ }
+
+ /* [2] : send DMA request */
+ prepare_data_dma(this, DMA_FROM_DEVICE);
+ desc = channel->device->device_prep_slave_sg(channel, &mil->data_sgl,
+ 1, DMA_FROM_DEVICE, 1);
+ if (!desc) {
+ log("step 2 error");
+ return -1;
+ }
+
+ /* [3] : submit the DMA */
+ this->dma_type = DMA_FOR_READ_DATA;
+ start_dma_without_bch_irq(this, desc);
+ return 0;
+}
+
+static int send_page(struct gpmi_nfc_data *this,
+ dma_addr_t payload, dma_addr_t auxiliary)
+{
+ struct nfc_geometry *geo = &this->nfc_geometry;
+ uint32_t command_mode;
+ uint32_t address;
+ uint32_t ecc_command;
+ uint32_t buffer_mask;
+ struct dma_async_tx_descriptor *desc;
+ struct dma_chan *channel = get_dma_chan(this);
+ struct mil *mil = &this->mil;
+ int chip = mil->current_chip;
+ u32 pio[6];
+
+ /* A DMA descriptor that does an ECC page read. */
+ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
+ address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
+ ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE;
+ buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
+ BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
+
+ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
+ | BM_GPMI_CTRL0_WORD_LENGTH
+ | BF_GPMI_CTRL0_CS(chip, this)
+ | BF_GPMI_CTRL0_ADDRESS(address)
+ | BF_GPMI_CTRL0_XFER_COUNT(0);
+ pio[1] = 0;
+ pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
+ | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
+ | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
+ pio[3] = geo->page_size_in_bytes;
+ pio[4] = payload;
+ pio[5] = auxiliary;
+
+ desc = channel->device->device_prep_slave_sg(channel,
+ (struct scatterlist *)pio,
+ ARRAY_SIZE(pio), DMA_NONE, 0);
+ if (!desc) {
+ log("step 2 error");
+ return -1;
+ }
+ this->dma_type = DMA_FOR_WRITE_ECC_PAGE;
+ return start_dma_with_bch_irq(this, desc);
+}
+
+static int read_page(struct gpmi_nfc_data *this,
+ dma_addr_t payload, dma_addr_t auxiliary)
+{
+ struct nfc_geometry *geo = &this->nfc_geometry;
+ uint32_t command_mode;
+ uint32_t address;
+ uint32_t ecc_command;
+ uint32_t buffer_mask;
+ struct dma_async_tx_descriptor *desc;
+ struct dma_chan *channel = get_dma_chan(this);
+ struct mil *mil = &this->mil;
+ int chip = mil->current_chip;
+ u32 pio[6];
+
+ /* [1] Wait for the chip to report ready. */
+ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
+ address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
+
+ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
+ | BM_GPMI_CTRL0_WORD_LENGTH
+ | BF_GPMI_CTRL0_CS(chip, this)
+ | BF_GPMI_CTRL0_ADDRESS(address)
+ | BF_GPMI_CTRL0_XFER_COUNT(0);
+ pio[1] = 0;
+ desc = channel->device->device_prep_slave_sg(channel,
+ (struct scatterlist *)pio, 2, DMA_NONE, 0);
+ if (!desc) {
+ log("step 1 error");
+ return -1;
+ }
+
+ /* [2] Enable the BCH block and read. */
+ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
+ address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
+ ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE;
+ buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
+ | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
+
+ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
+ | BM_GPMI_CTRL0_WORD_LENGTH
+ | BF_GPMI_CTRL0_CS(chip, this)
+ | BF_GPMI_CTRL0_ADDRESS(address)
+ | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size_in_bytes);
+
+ pio[1] = 0;
+ pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
+ | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
+ | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
+ pio[3] = geo->page_size_in_bytes;
+ pio[4] = payload;
+ pio[5] = auxiliary;
+ desc = channel->device->device_prep_slave_sg(channel,
+ (struct scatterlist *)pio,
+ ARRAY_SIZE(pio), DMA_NONE, 1);
+ if (!desc) {
+ log("step 2 error");
+ return -1;
+ }
+
+ /* [3] Disable the BCH block */
+ command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
+ address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
+
+ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
+ | BM_GPMI_CTRL0_WORD_LENGTH
+ | BF_GPMI_CTRL0_CS(chip, this)
+ | BF_GPMI_CTRL0_ADDRESS(address)
+ | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size_in_bytes);
+ pio[1] = 0;
+ desc = channel->device->device_prep_slave_sg(channel,
+ (struct scatterlist *)pio, 2, DMA_NONE, 1);
+ if (!desc) {
+ log("step 3 error");
+ return -1;
+ }
+
+ /* [4] submit the DMA */
+ this->dma_type = DMA_FOR_READ_ECC_PAGE;
+ return start_dma_with_bch_irq(this, desc);
+}
+
+struct nfc_hal gpmi_nfc_hal_imx23_imx28 = {
+ .description = "GPMI and BCH for IMX23/IMX28",
+ .max_data_setup_cycles = (BM_GPMI_TIMING0_DATA_SETUP >>
+ BP_GPMI_TIMING0_DATA_SETUP),
+ .internal_data_setup_in_ns = 0,
+ .max_sample_delay_factor = (BM_GPMI_CTRL1_RDN_DELAY >>
+ BP_GPMI_CTRL1_RDN_DELAY),
+ .max_dll_clock_period_in_ns = 32,
+ .max_dll_delay_in_ns = 16,
+ .init = init_hal,
+ .set_geometry = set_geometry,
+ .set_timing = set_timing,
+ .get_timing = get_timing,
+ .exit = exit,
+ .begin = begin,
+ .end = end,
+ .clear_bch = clear_bch,
+ .is_ready = is_ready,
+ .send_command = send_command,
+ .read_data = read_data,
+ .send_data = send_data,
+ .read_page = read_page,
+ .send_page = send_page,
+};
--
1.7.0.4
^ permalink raw reply related [flat|nested] 10+ messages in thread
* [PATCH v6 3/3] MTD : add GPMI driver in the config and Makefile
2011-04-20 2:45 [PATCH v6 0/3] add the GPMI controller driver for IMX23/IMX28 Huang Shijie
2011-04-20 2:45 ` [PATCH v6 1/3] MTD : add the common code for GPMI controller driver Huang Shijie
2011-04-20 2:45 ` [PATCH v6 2/3] MTD : add support for imx23 and imx28 Huang Shijie
@ 2011-04-20 2:45 ` Huang Shijie
2 siblings, 0 replies; 10+ messages in thread
From: Huang Shijie @ 2011-04-20 2:45 UTC (permalink / raw)
To: linux-arm-kernel
add the GPMI driver in the relevant Kconfig and Makefile in the MTD.
Signed-off-by: Huang Shijie <b32955@freescale.com>
---
drivers/mtd/nand/Kconfig | 11 +++++++++++
drivers/mtd/nand/Makefile | 1 +
drivers/mtd/nand/gpmi-nfc/Makefile | 3 +++
3 files changed, 15 insertions(+), 0 deletions(-)
create mode 100644 drivers/mtd/nand/gpmi-nfc/Makefile
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index 450afc5..25a1493 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -426,6 +426,17 @@ config MTD_NAND_NANDSIM
The simulator may simulate various NAND flash chips for the
MTD nand layer.
+config MTD_NAND_GPMI_NFC
+ bool "GPMI NAND Flash Controller driver"
+ depends on MTD_NAND && (SOC_IMX23 || SOC_IMX28)
+ select MTD_PARTITIONS
+ select MTD_CMDLINE_PARTS
+ help
+ Enables NAND Flash support for IMX23 or IMX28.
+ The GPMI controller is very powerful, with the help of BCH
+ module, it can do the hardware ECC. The GPMI supports several
+ NAND flashs at the same time.
+
config MTD_NAND_PLATFORM
tristate "Support for generic platform NAND driver"
help
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index 8ad6fae..80d1f08 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -48,5 +48,6 @@ obj-$(CONFIG_MTD_NAND_BCM_UMI) += bcm_umi_nand.o nand_bcm_umi.o
obj-$(CONFIG_MTD_NAND_MPC5121_NFC) += mpc5121_nfc.o
obj-$(CONFIG_MTD_NAND_RICOH) += r852.o
obj-$(CONFIG_MTD_NAND_JZ4740) += jz4740_nand.o
+obj-$(CONFIG_MTD_NAND_GPMI_NFC) += gpmi-nfc/
nand-objs := nand_base.o nand_bbt.o
diff --git a/drivers/mtd/nand/gpmi-nfc/Makefile b/drivers/mtd/nand/gpmi-nfc/Makefile
new file mode 100644
index 0000000..918fb52
--- /dev/null
+++ b/drivers/mtd/nand/gpmi-nfc/Makefile
@@ -0,0 +1,3 @@
+obj-$(CONFIG_MTD_NAND_GPMI_NFC) += gpmi_nfc.o
+gpmi_nfc-objs += gpmi-nfc.o
+gpmi_nfc-objs += hal-mxs.o
--
1.7.0.4
^ permalink raw reply related [flat|nested] 10+ messages in thread
* [PATCH v6 1/3] MTD : add the common code for GPMI controller driver
2011-04-20 2:45 ` [PATCH v6 1/3] MTD : add the common code for GPMI controller driver Huang Shijie
@ 2011-04-21 7:49 ` Lothar Waßmann
2011-04-22 9:39 ` Huang Shijie
2011-04-26 2:52 ` Huang Shijie
2011-04-28 19:20 ` Russell King - ARM Linux
1 sibling, 2 replies; 10+ messages in thread
From: Lothar Waßmann @ 2011-04-21 7:49 UTC (permalink / raw)
To: linux-arm-kernel
Huang Shijie writes:
> These files contain the common code for the GPMI driver.
>
> Signed-off-by: Huang Shijie <b32955@freescale.com>
> ---
> drivers/mtd/nand/gpmi-nfc/gpmi-nfc.c | 2501 ++++++++++++++++++++++++++++++++++
> drivers/mtd/nand/gpmi-nfc/gpmi-nfc.h | 488 +++++++
> 2 files changed, 2989 insertions(+), 0 deletions(-)
> create mode 100644 drivers/mtd/nand/gpmi-nfc/gpmi-nfc.c
> create mode 100644 drivers/mtd/nand/gpmi-nfc/gpmi-nfc.h
>
> diff --git a/drivers/mtd/nand/gpmi-nfc/gpmi-nfc.c b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc.c
> new file mode 100644
> index 0000000..53d6915
> --- /dev/null
> +++ b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc.c
> @@ -0,0 +1,2501 @@
> +/*
> + * Freescale GPMI NFC NAND Flash Driver
> + *
> + * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
> + * Copyright (C) 2008 Embedded Alley Solutions, Inc.
> + *
> + * This program is free software; you can redistribute it and/or modify
> + * it under the terms of the GNU General Public License as published by
> + * the Free Software Foundation; either version 2 of the License, or
> + * (at your option) any later version.
> + *
> + * This program is distributed in the hope that it will be useful,
> + * but WITHOUT ANY WARRANTY; without even the implied warranty of
> + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
> + * GNU General Public License for more details.
> + *
> + * You should have received a copy of the GNU General Public License along
> + * with this program; if not, write to the Free Software Foundation, Inc.,
> + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
> + */
> +#include <linux/slab.h>
> +#include "gpmi-nfc.h"
> +
> +/* add our owner bbt descriptor */
> +static uint8_t scan_ff_pattern[] = { 0xff };
> +static struct nand_bbt_descr gpmi_bbt_descr = {
> + .options = 0,
> + .offs = 0,
> + .len = 1,
> + .pattern = scan_ff_pattern
> +};
> +
> +/* debug control */
> +int gpmi_debug;
> +
This could be a module_param.
> +static ssize_t show_gpmi_debug(struct device *dev,
> + struct device_attribute *attr, char *buf)
> +{
> + return sprintf(buf, "%d\n", gpmi_debug);
> +}
> +
> +static ssize_t
> +store_gpmi_debug(struct device *dev, struct device_attribute *attr,
> + const char *buf, size_t size)
> +{
> + const char *p = buf;
> + unsigned long v;
> +
> + if (strict_strtoul(p, 0, &v) < 0)
> + return size;
> +
> + gpmi_debug = v;
> + return size;
> +}
> +
> +static ssize_t show_ignorebad(struct device *dev,
> + struct device_attribute *attr, char *buf)
> +{
> + struct gpmi_nfc_data *this = dev_get_drvdata(dev);
> + struct mil *mil = &this->mil;
> +
> + return sprintf(buf, "%d\n", mil->ignore_bad_block_marks);
> +}
> +
> +static ssize_t
> +store_ignorebad(struct device *dev, struct device_attribute *attr,
> + const char *buf, size_t size)
> +{
> + struct gpmi_nfc_data *this = dev_get_drvdata(dev);
> + struct mil *mil = &this->mil;
> + const char *p = buf;
> + unsigned long v;
> +
> + if (strict_strtoul(p, 0, &v) < 0)
> + return size;
>
return -EINVAL would be more appropriate here.
> +
> + if (v > 0)
> + v = 1;
> +
> + if (v != mil->ignore_bad_block_marks) {
>
These lines could be reduced to:
if (!v == mil->ignore_bad_block_marks) {
> + if (v) {
> + /*
> + * This will cause the NAND Flash MTD code to believe
> + * that it never created a BBT and force it to call our
> + * block_bad function.
> + *
> + * See mil_block_bad for more details.
> + */
> + mil->saved_bbt = mil->nand.bbt;
> + mil->nand.bbt = NULL;
> + } else {
> + /*
> + * Restore the NAND Flash MTD's pointer
> + * to its in-memory BBT.
> + */
> + mil->nand.bbt = mil->saved_bbt;
> + }
> + mil->ignore_bad_block_marks = v;
> + }
> + return size;
> +}
> +
[...]
> +/* This will be called after the DMA operation is finished. */
> +static void dma_irq_callback(void *param)
> +{
> + struct gpmi_nfc_data *this = param;
> + struct nfc_hal *nfc = this->nfc;
> + struct mil *mil = &this->mil;
> +
> + complete(&nfc->dma_done);
> +
> + switch (this->dma_type) {
> + case DMA_FOR_COMMAND:
> + dma_unmap_sg(this->dev, &mil->cmd_sgl, 1, DMA_TO_DEVICE);
> + break;
> +
> + case DMA_FOR_READ_DATA:
> + dma_unmap_sg(this->dev, &mil->data_sgl, 1, DMA_FROM_DEVICE);
> + if (mil->direct_dma_map_ok == false)
> + memcpy(mil->upper_buf, (char *)mil->data_buffer_dma,
>
pointless cast.
[...]
> +static int acquire_dma_channels(struct gpmi_nfc_data *this,
> + const char *resource_name,
> + unsigned *low_channel, unsigned *high_channel)
> +{
> + struct platform_device *pdev = this->pdev;
struct gpmi_nfc_platform_data *pdata = pdev->dev.platform_data;
see below.
> + struct resource *r, *r_dma;
> + unsigned int i;
> +
> + r = platform_get_resource_byname(pdev, IORESOURCE_DMA, resource_name);
> + r_dma = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
> + GPMI_NFC_DMA_INTERRUPT_RES_NAME);
> + if (!r || !r_dma) {
> + log("Can't get resource for DMA");
> + return -ENXIO;
> + }
> +
> + /* used in gpmi_dma_filter() */
> + this->private = r;
> +
> + for (i = r->start; i <= r->end; i++) {
> + dma_cap_mask_t mask;
> + struct dma_chan *dma_chan;
> +
if (i - r->start >= pdata->max_chip_count)
break;
> + dma_cap_zero(mask);
> + dma_cap_set(DMA_SLAVE, mask);
> +
> + /* get the DMA interrupt */
> + this->dma_data.chan_irq = r_dma->start +
> + ((r_dma->start != r_dma->end) ? (i - r->start) : 0);
> +
> + dma_chan = dma_request_channel(mask, gpmi_dma_filter, this);
> + if (!dma_chan)
> + goto acquire_err;
> + /* fill the first empty item */
> + this->dma_chans[i - r->start] = dma_chan;
> + }
> +
> + *low_channel = r->start;
> + *high_channel = r->end;
*high_channel = i;
This will acquire only those DMA channels that are actually needed.
[...]
> +static int read_page_prepare(struct gpmi_nfc_data *this,
> + void *destination, unsigned length,
> + void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
> + void **use_virt, dma_addr_t *use_phys)
> +{
> + struct device *dev = this->dev;
> + dma_addr_t destination_phys = ~0;
> +
> + if (virt_addr_valid(destination))
> + destination_phys = dma_map_single(dev, (void *)destination,
>
pointless cast.
[...]
> +static int mil_alloc_dma_buffer(struct gpmi_nfc_data *this)
> +{
> + struct nfc_geometry *geo = &this->nfc_geometry;
> + struct device *dev = this->dev;
> + struct mil *mil = &this->mil;
> +
> + /* [1] Allocate a command buffer. PAGE_SIZE is enough. */
> + mil->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA);
> + if (mil->cmd_buffer == NULL)
> + goto error_alloc;
> +
> + /* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */
> + mil->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA);
> + if (mil->data_buffer_dma == NULL)
> + goto error_alloc;
> +
> + /*
> + * [3] Allocate the page buffer.
> + *
> + * Both the payload buffer and the auxiliary buffer must appear on
> + * 32-bit boundaries. We presume the size of the payload buffer is a
> + * power of two and is much larger than four, which guarantees the
> + * auxiliary buffer will appear on a 32-bit boundary.
> + */
> + mil->page_buffer_size = geo->payload_size_in_bytes +
> + geo->auxiliary_size_in_bytes;
> +
> + mil->page_buffer_virt = dma_alloc_coherent(dev, mil->page_buffer_size,
> + &mil->page_buffer_phys, GFP_DMA);
> + if (!mil->page_buffer_virt)
> + goto error_alloc;
> +
> +
> + /* Slice up the page buffer. */
> + mil->payload_virt = mil->page_buffer_virt;
> + mil->payload_phys = mil->page_buffer_phys;
> + mil->auxiliary_virt = ((char *) mil->payload_virt) +
>
unnecessary cast.
[...]
The functions from here thru gpmi_nfc_probe could be marked __devinit,
so they can be discarded after boot.
> +static int nand_boot_set_geometry(struct gpmi_nfc_data *this)
> +{
> + struct boot_rom_geometry *geometry = &this->rom_geometry;
> +
> + /*
> + * Set the boot block stride size.
> + *
> + * In principle, we should be reading this from the OTP bits, since
> + * that's where the ROM is going to get it. In fact, we don't have any
> + * way to read the OTP bits, so we go with the default and hope for the
> + * best.
> + */
> + geometry->stride_size_in_pages = 64;
> +
> + /*
> + * Set the search area stride exponent.
> + *
> + * In principle, we should be reading this from the OTP bits, since
> + * that's where the ROM is going to get it. In fact, we don't have any
> + * way to read the OTP bits, so we go with the default and hope for the
> + * best.
> + */
> + geometry->search_area_stride_exponent = 2;
> +
> + if (gpmi_debug & GPMI_DEBUG_INIT)
> + log("stride size in page : %d, search areas : %d",
> + geometry->stride_size_in_pages,
> + geometry->search_area_stride_exponent);
> + return 0;
> +}
> +
> +static const char *fingerprint = "STMP";
> +static int mx23_check_transcription_stamp(struct gpmi_nfc_data *this)
> +{
> + struct boot_rom_geometry *rom_geo = &this->rom_geometry;
> + struct mil *mil = &this->mil;
> + struct mtd_info *mtd = &mil->mtd;
> + struct nand_chip *nand = &mil->nand;
> + unsigned int search_area_size_in_strides;
> + unsigned int stride;
> + unsigned int page;
> + loff_t byte;
> + uint8_t *buffer = nand->buffers->databuf;
> + int saved_chip_number;
> + int found_an_ncb_fingerprint = false;
> +
> + /* Compute the number of strides in a search area. */
> + search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
> +
> + /* Select chip 0. */
> + saved_chip_number = mil->current_chip;
> + nand->select_chip(mtd, 0);
> +
> + /*
> + * Loop through the first search area, looking for the NCB fingerprint.
> + */
> + pr_info("Scanning for an NCB fingerprint...\n");
> +
> + for (stride = 0; stride < search_area_size_in_strides; stride++) {
> + /* Compute the page and byte addresses. */
> + page = stride * rom_geo->stride_size_in_pages;
> + byte = page * mtd->writesize;
> +
> + pr_info(" Looking for a fingerprint in page 0x%x\n", page);
> +
> + /*
> + * Read the NCB fingerprint. The fingerprint is four bytes long
> + * and starts in the 12th byte of the page.
> + */
> + nand->cmdfunc(mtd, NAND_CMD_READ0, 12, page);
> + nand->read_buf(mtd, buffer, strlen(fingerprint));
> +
> + /* Look for the fingerprint. */
> + if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
> + found_an_ncb_fingerprint = true;
> + break;
> + }
> +
> + }
> +
> + /* Deselect chip 0. */
> + nand->select_chip(mtd, saved_chip_number);
> +
> + if (found_an_ncb_fingerprint)
> + pr_info(" Found a fingerprint\n");
> + else
> + pr_info(" No fingerprint found\n");
> + return found_an_ncb_fingerprint;
> +}
> +
> +/* Writes a transcription stamp. */
> +static int mx23_write_transcription_stamp(struct gpmi_nfc_data *this)
> +{
> + struct device *dev = this->dev;
> + struct boot_rom_geometry *rom_geo = &this->rom_geometry;
> + struct mil *mil = &this->mil;
> + struct mtd_info *mtd = &mil->mtd;
> + struct nand_chip *nand = &mil->nand;
> + unsigned int block_size_in_pages;
> + unsigned int search_area_size_in_strides;
> + unsigned int search_area_size_in_pages;
> + unsigned int search_area_size_in_blocks;
> + unsigned int block;
> + unsigned int stride;
> + unsigned int page;
> + loff_t byte;
> + uint8_t *buffer = nand->buffers->databuf;
> + int saved_chip_number;
> + int status;
> +
> + /* Compute the search area geometry. */
> + block_size_in_pages = mtd->erasesize / mtd->writesize;
> + search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
> + search_area_size_in_pages = search_area_size_in_strides *
> + rom_geo->stride_size_in_pages;
> + search_area_size_in_blocks =
> + (search_area_size_in_pages + (block_size_in_pages - 1)) /
> + block_size_in_pages;
> +
> + pr_info("-------------------------------------------\n");
> + pr_info("Search Area Geometry\n");
> + pr_info("-------------------------------------------\n");
> + pr_info("Search Area Size in Blocks : %u", search_area_size_in_blocks);
> + pr_info("Search Area Size in Strides: %u", search_area_size_in_strides);
> + pr_info("Search Area Size in Pages : %u", search_area_size_in_pages);
> +
> + /* Select chip 0. */
> + saved_chip_number = mil->current_chip;
> + nand->select_chip(mtd, 0);
> +
> + /* Loop over blocks in the first search area, erasing them. */
> + pr_info("Erasing the search area...\n");
> +
> + for (block = 0; block < search_area_size_in_blocks; block++) {
> + /* Compute the page address. */
> + page = block * block_size_in_pages;
> +
> + /* Erase this block. */
> + pr_info(" Erasing block 0x%x\n", block);
> + nand->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
> + nand->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
> +
> + /* Wait for the erase to finish. */
> + status = nand->waitfunc(mtd, nand);
> + if (status & NAND_STATUS_FAIL)
> + dev_err(dev, "[%s] Erase failed.\n", __func__);
> + }
> +
> + /* Write the NCB fingerprint into the page buffer. */
> + memset(buffer, ~0, mtd->writesize);
> + memset(nand->oob_poi, ~0, mtd->oobsize);
> + memcpy(buffer + 12, fingerprint, strlen(fingerprint));
> +
> + /* Loop through the first search area, writing NCB fingerprints. */
> + pr_info("Writing NCB fingerprints...\n");
> + for (stride = 0; stride < search_area_size_in_strides; stride++) {
> + /* Compute the page and byte addresses. */
> + page = stride * rom_geo->stride_size_in_pages;
> + byte = page * mtd->writesize;
> +
> + /* Write the first page of the current stride. */
> + pr_info(" Writing an NCB fingerprint in page 0x%x\n", page);
> + nand->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
> + nand->ecc.write_page_raw(mtd, nand, buffer);
> + nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
> +
> + /* Wait for the write to finish. */
> + status = nand->waitfunc(mtd, nand);
> + if (status & NAND_STATUS_FAIL)
> + dev_err(dev, "[%s] Write failed.\n", __func__);
> + }
> +
> + /* Deselect chip 0. */
> + nand->select_chip(mtd, saved_chip_number);
> + return 0;
> +}
> +
> +int mx23_boot_init(struct gpmi_nfc_data *this)
> +{
> + struct device *dev = this->dev;
> + struct mil *mil = &this->mil;
> + struct nand_chip *nand = &mil->nand;
> + struct mtd_info *mtd = &mil->mtd;
> + unsigned int block_count;
> + unsigned int block;
> + int chip;
> + int page;
> + loff_t byte;
> + uint8_t block_mark;
> + int error = 0;
> +
> + /*
> + * If control arrives here, we can't use block mark swapping, which
> + * means we're forced to use transcription. First, scan for the
> + * transcription stamp. If we find it, then we don't have to do
> + * anything -- the block marks are already transcribed.
> + */
> + if (mx23_check_transcription_stamp(this))
> + return 0;
> +
> + /*
> + * If control arrives here, we couldn't find a transcription stamp, so
> + * so we presume the block marks are in the conventional location.
> + */
> + pr_info("Transcribing bad block marks...\n");
> +
> + /* Compute the number of blocks in the entire medium. */
> + block_count = nand->chipsize >> nand->phys_erase_shift;
> +
> + /*
> + * Loop over all the blocks in the medium, transcribing block marks as
> + * we go.
> + */
> + for (block = 0; block < block_count; block++) {
> + /*
> + * Compute the chip, page and byte addresses for this block's
> + * conventional mark.
> + */
> + chip = block >> (nand->chip_shift - nand->phys_erase_shift);
> + page = block << (nand->phys_erase_shift - nand->page_shift);
> + byte = block << nand->phys_erase_shift;
> +
> + /* Select the chip. */
> + nand->select_chip(mtd, chip);
> +
> + /* Send the command to read the conventional block mark. */
> + nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
> +
> + /* Read the conventional block mark. */
> + block_mark = nand->read_byte(mtd);
> +
> + /*
> + * Check if the block is marked bad. If so, we need to mark it
> + * again, but this time the result will be a mark in the
> + * location where we transcribe block marks.
> + *
> + * Notice that we have to explicitly set the marking_a_bad_block
> + * member before we call through the block_markbad function
> + * pointer in the owning struct nand_chip. If we could call
> + * though the block_markbad function pointer in the owning
> + * struct mtd_info, which we have hooked, then this would be
> + * taken care of for us. Unfortunately, we can't because that
> + * higher-level code path will do things like consulting the
> + * in-memory bad block table -- which doesn't even exist yet!
> + * So, we have to call at a lower level and handle some details
> + * ourselves.
> + */
> + if (block_mark != 0xff) {
> + pr_info("Transcribing mark in block %u\n", block);
> + mil->marking_a_bad_block = true;
> + error = nand->block_markbad(mtd, byte);
> + mil->marking_a_bad_block = false;
> + if (error)
> + dev_err(dev, "Failed to mark block bad with "
> + "error %d\n", error);
> + }
> +
> + /* Deselect the chip. */
> + nand->select_chip(mtd, -1);
> + }
> +
> + /* Write the stamp that indicates we've transcribed the block marks. */
> + mx23_write_transcription_stamp(this);
> + return 0;
> +}
> +
> +static int nand_boot_init(struct gpmi_nfc_data *this)
> +{
> + nand_boot_set_geometry(this);
> +
> + /* This is ROM arch-specific initilization before the BBT scanning. */
> + if (GPMI_IS_MX23(this))
> + return mx23_boot_init(this);
> + return 0;
> +}
> +
> +static void show_nfc_geometry(struct nfc_geometry *geo)
> +{
> + pr_info("---------------------------------------\n");
> + pr_info(" NFC Geometry (used by BCH)\n");
> + pr_info("---------------------------------------\n");
> + pr_info("ECC Algorithm : %s\n", geo->ecc_algorithm);
> + pr_info("ECC Strength : %u\n", geo->ecc_strength);
> + pr_info("Page Size in Bytes : %u\n", geo->page_size_in_bytes);
> + pr_info("Metadata Size in Bytes : %u\n", geo->metadata_size_in_bytes);
> + pr_info("ECC Chunk Size in Bytes: %u\n", geo->ecc_chunk_size_in_bytes);
> + pr_info("ECC Chunk Count : %u\n", geo->ecc_chunk_count);
> + pr_info("Payload Size in Bytes : %u\n", geo->payload_size_in_bytes);
> + pr_info("Auxiliary Size in Bytes: %u\n", geo->auxiliary_size_in_bytes);
> + pr_info("Auxiliary Status Offset: %u\n", geo->auxiliary_status_offset);
> + pr_info("Block Mark Byte Offset : %u\n", geo->block_mark_byte_offset);
> + pr_info("Block Mark Bit Offset : %u\n", geo->block_mark_bit_offset);
> +}
> +
> +static int mil_set_geometry(struct gpmi_nfc_data *this)
> +{
> + struct nfc_hal *nfc = this->nfc;
> + struct nfc_geometry *geo = &this->nfc_geometry;
> + int error;
> +
> + /* Free the temporary DMA memory for read ID case */
> + mil_free_dma_buffer(this);
> +
> + /* Set up the NFC geometry which is used by BCH. */
> + error = nfc->set_geometry(this);
> + if (error != 0) {
> + log("NFC set geometry error : %d", error);
> + return error;
> + }
> + if (gpmi_debug & GPMI_DEBUG_INIT)
> + show_nfc_geometry(geo);
> +
> + /* Alloc the new DMA buffers according to the pagesize and oobsize */
> + return mil_alloc_dma_buffer(this);
> +}
> +
> +static int mil_pre_bbt_scan(struct gpmi_nfc_data *this)
> +{
> + struct nand_chip *nand = &this->mil.nand;
> + struct mtd_info *mtd = &this->mil.mtd;
> + struct nand_ecclayout *layout = nand->ecc.layout;
> + struct nfc_hal *nfc = this->nfc;
> + int error;
> +
> + /* fix the ECC layout before the scanning */
> + layout->eccbytes = 0;
> + layout->oobavail = mtd->oobsize;
> + layout->oobfree[0].offset = 0;
> + layout->oobfree[0].length = mtd->oobsize;
> +
> + mtd->oobavail = nand->ecc.layout->oobavail;
> +
> + /* Set up swap block-mark, must be set before the mil_set_geometry() */
> + if (GPMI_IS_MX23(this))
> + this->swap_block_mark = false;
> + else
> + this->swap_block_mark = true;
> +
> + /* Set up the medium geometry */
> + error = mil_set_geometry(this);
> + if (error)
> + return error;
> +
> + /* extra init */
> + if (nfc->extra_init) {
> + error = nfc->extra_init(this);
> + if (error != 0)
> + return error;
> + }
> +
> + /* NAND boot init, depends on the mil_set_geometry(). */
> + return nand_boot_init(this);
> +}
> +
> +static int mil_scan_bbt(struct mtd_info *mtd)
> +{
> + struct nand_chip *nand = mtd->priv;
> + struct gpmi_nfc_data *this = nand->priv;
> + int error;
> +
> + /* Prepare for the BBT scan. */
> + error = mil_pre_bbt_scan(this);
> + if (error)
> + return error;
> +
> + /* use the default BBT implementation */
> + return nand_default_bbt(mtd);
> +}
> +
> +static const char *cmd_parse = "cmdlinepart";
>
This should be a NULL terminated list of strings:
static const char *cmd_parse[] = { "cmdlinepart", NULL };
> +static int mil_partitions_init(struct gpmi_nfc_data *this)
> +{
> + struct gpmi_nfc_platform_data *pdata = this->pdata;
> + struct mil *mil = &this->mil;
> + struct mtd_info *mtd = &mil->mtd;
> +
> + /* use the command line for simple partitions layout */
> + mil->partition_count = parse_mtd_partitions(mtd, &cmd_parse,
> + &mil->partitions, 0);
> + if (mil->partition_count)
> + return add_mtd_partitions(mtd, mil->partitions,
> + mil->partition_count);
> +
> + /* The complicated partitions layout uses this. */
> + if (pdata->partitions && pdata->partition_count > 0)
> + return add_mtd_partitions(mtd, pdata->partitions,
> + pdata->partition_count);
> + return 0;
How about:
return mtd_add_device(mtd);
so you will get the whole flash registered in case there are no
partitions defined.
> +#ifdef CONFIG_PM
> +static int gpmi_nfc_suspend(struct platform_device *pdev, pm_message_t state)
> +{
> + return 0;
> +}
> +static int gpmi_nfc_resume(struct platform_device *pdev)
> +{
> + return 0;
> +}
> +#else
> +#define gpmi_nfc_suspend NULL
> +#define gpmi_nfc_resume NULL
> +#endif
> +
There is no point in adding empty suspend/resume functions.
Furthermore you should use dev_pm_ops.
Lothar Wa?mann
--
___________________________________________________________
Ka-Ro electronics GmbH | Pascalstra?e 22 | D - 52076 Aachen
Phone: +49 2408 1402-0 | Fax: +49 2408 1402-10
Gesch?ftsf?hrer: Matthias Kaussen
Handelsregistereintrag: Amtsgericht Aachen, HRB 4996
www.karo-electronics.de | info at karo-electronics.de
___________________________________________________________
^ permalink raw reply [flat|nested] 10+ messages in thread
* [PATCH v6 1/3] MTD : add the common code for GPMI controller driver
2011-04-21 7:49 ` Lothar Waßmann
@ 2011-04-22 9:39 ` Huang Shijie
2011-04-26 2:52 ` Huang Shijie
1 sibling, 0 replies; 10+ messages in thread
From: Huang Shijie @ 2011-04-22 9:39 UTC (permalink / raw)
To: linux-arm-kernel
Hi:
> Huang Shijie writes:
>> These files contain the common code for the GPMI driver.
>>
>> Signed-off-by: Huang Shijie<b32955@freescale.com>
>> ---
>> drivers/mtd/nand/gpmi-nfc/gpmi-nfc.c | 2501 ++++++++++++++++++++++++++++++++++
>> drivers/mtd/nand/gpmi-nfc/gpmi-nfc.h | 488 +++++++
>> 2 files changed, 2989 insertions(+), 0 deletions(-)
>> create mode 100644 drivers/mtd/nand/gpmi-nfc/gpmi-nfc.c
>> create mode 100644 drivers/mtd/nand/gpmi-nfc/gpmi-nfc.h
>>
>> diff --git a/drivers/mtd/nand/gpmi-nfc/gpmi-nfc.c b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc.c
>> new file mode 100644
>> index 0000000..53d6915
>> --- /dev/null
>> +++ b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc.c
>> @@ -0,0 +1,2501 @@
>> +/*
>> + * Freescale GPMI NFC NAND Flash Driver
>> + *
>> + * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
>> + * Copyright (C) 2008 Embedded Alley Solutions, Inc.
>> + *
>> + * This program is free software; you can redistribute it and/or modify
>> + * it under the terms of the GNU General Public License as published by
>> + * the Free Software Foundation; either version 2 of the License, or
>> + * (at your option) any later version.
>> + *
>> + * This program is distributed in the hope that it will be useful,
>> + * but WITHOUT ANY WARRANTY; without even the implied warranty of
>> + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
>> + * GNU General Public License for more details.
>> + *
>> + * You should have received a copy of the GNU General Public License along
>> + * with this program; if not, write to the Free Software Foundation, Inc.,
>> + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
>> + */
>> +#include<linux/slab.h>
>> +#include "gpmi-nfc.h"
>> +
>> +/* add our owner bbt descriptor */
>> +static uint8_t scan_ff_pattern[] = { 0xff };
>> +static struct nand_bbt_descr gpmi_bbt_descr = {
>> + .options = 0,
>> + .offs = 0,
>> + .len = 1,
>> + .pattern = scan_ff_pattern
>> +};
>> +
>> +/* debug control */
>> +int gpmi_debug;
>> +
> This could be a module_param.
>
thanks.
>> +static ssize_t show_gpmi_debug(struct device *dev,
>> + struct device_attribute *attr, char *buf)
>> +{
>> + return sprintf(buf, "%d\n", gpmi_debug);
>> +}
>> +
>> +static ssize_t
>> +store_gpmi_debug(struct device *dev, struct device_attribute *attr,
>> + const char *buf, size_t size)
>> +{
>> + const char *p = buf;
>> + unsigned long v;
>> +
>> + if (strict_strtoul(p, 0,&v)< 0)
>> + return size;
>> +
>> + gpmi_debug = v;
>> + return size;
>> +}
>> +
>> +static ssize_t show_ignorebad(struct device *dev,
>> + struct device_attribute *attr, char *buf)
>> +{
>> + struct gpmi_nfc_data *this = dev_get_drvdata(dev);
>> + struct mil *mil =&this->mil;
>> +
>> + return sprintf(buf, "%d\n", mil->ignore_bad_block_marks);
>> +}
>> +
>> +static ssize_t
>> +store_ignorebad(struct device *dev, struct device_attribute *attr,
>> + const char *buf, size_t size)
>> +{
>> + struct gpmi_nfc_data *this = dev_get_drvdata(dev);
>> + struct mil *mil =&this->mil;
>> + const char *p = buf;
>> + unsigned long v;
>> +
>> + if (strict_strtoul(p, 0,&v)< 0)
>> + return size;
>>
> return -EINVAL would be more appropriate here.
>
>> +
>> + if (v> 0)
>> + v = 1;
>> +
>> + if (v != mil->ignore_bad_block_marks) {
>>
> These lines could be reduced to:
> if (!v == mil->ignore_bad_block_marks) {
>
:)
>> + if (v) {
>> + /*
>> + * This will cause the NAND Flash MTD code to believe
>> + * that it never created a BBT and force it to call our
>> + * block_bad function.
>> + *
>> + * See mil_block_bad for more details.
>> + */
>> + mil->saved_bbt = mil->nand.bbt;
>> + mil->nand.bbt = NULL;
>> + } else {
>> + /*
>> + * Restore the NAND Flash MTD's pointer
>> + * to its in-memory BBT.
>> + */
>> + mil->nand.bbt = mil->saved_bbt;
>> + }
>> + mil->ignore_bad_block_marks = v;
>> + }
>> + return size;
>> +}
>> +
> [...]
>> +/* This will be called after the DMA operation is finished. */
>> +static void dma_irq_callback(void *param)
>> +{
>> + struct gpmi_nfc_data *this = param;
>> + struct nfc_hal *nfc = this->nfc;
>> + struct mil *mil =&this->mil;
>> +
>> + complete(&nfc->dma_done);
>> +
>> + switch (this->dma_type) {
>> + case DMA_FOR_COMMAND:
>> + dma_unmap_sg(this->dev,&mil->cmd_sgl, 1, DMA_TO_DEVICE);
>> + break;
>> +
>> + case DMA_FOR_READ_DATA:
>> + dma_unmap_sg(this->dev,&mil->data_sgl, 1, DMA_FROM_DEVICE);
>> + if (mil->direct_dma_map_ok == false)
>> + memcpy(mil->upper_buf, (char *)mil->data_buffer_dma,
>>
> pointless cast.
thanks.
> [...]
>> +static int acquire_dma_channels(struct gpmi_nfc_data *this,
>> + const char *resource_name,
>> + unsigned *low_channel, unsigned *high_channel)
>> +{
>> + struct platform_device *pdev = this->pdev;
> struct gpmi_nfc_platform_data *pdata = pdev->dev.platform_data;
> see below.
>
>> + struct resource *r, *r_dma;
>> + unsigned int i;
>> +
>> + r = platform_get_resource_byname(pdev, IORESOURCE_DMA, resource_name);
>> + r_dma = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
>> + GPMI_NFC_DMA_INTERRUPT_RES_NAME);
>> + if (!r || !r_dma) {
>> + log("Can't get resource for DMA");
>> + return -ENXIO;
>> + }
>> +
>> + /* used in gpmi_dma_filter() */
>> + this->private = r;
>> +
>> + for (i = r->start; i<= r->end; i++) {
>> + dma_cap_mask_t mask;
>> + struct dma_chan *dma_chan;
>> +
> if (i - r->start>= pdata->max_chip_count)
> break;
>
This is a good idea. it can limits the real dma channels.
>> + dma_cap_zero(mask);
>> + dma_cap_set(DMA_SLAVE, mask);
>> +
>> + /* get the DMA interrupt */
>> + this->dma_data.chan_irq = r_dma->start +
>> + ((r_dma->start != r_dma->end) ? (i - r->start) : 0);
>> +
>> + dma_chan = dma_request_channel(mask, gpmi_dma_filter, this);
>> + if (!dma_chan)
>> + goto acquire_err;
>> + /* fill the first empty item */
>> + this->dma_chans[i - r->start] = dma_chan;
>> + }
>> +
>> + *low_channel = r->start;
>> + *high_channel = r->end;
> *high_channel = i;
>
> This will acquire only those DMA channels that are actually needed.
>
> [...]
>> +static int read_page_prepare(struct gpmi_nfc_data *this,
>> + void *destination, unsigned length,
>> + void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
>> + void **use_virt, dma_addr_t *use_phys)
>> +{
>> + struct device *dev = this->dev;
>> + dma_addr_t destination_phys = ~0;
>> +
>> + if (virt_addr_valid(destination))
>> + destination_phys = dma_map_single(dev, (void *)destination,
>>
> pointless cast.
>
> [...]
>> +static int mil_alloc_dma_buffer(struct gpmi_nfc_data *this)
>> +{
>> + struct nfc_geometry *geo =&this->nfc_geometry;
>> + struct device *dev = this->dev;
>> + struct mil *mil =&this->mil;
>> +
>> + /* [1] Allocate a command buffer. PAGE_SIZE is enough. */
>> + mil->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA);
>> + if (mil->cmd_buffer == NULL)
>> + goto error_alloc;
>> +
>> + /* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */
>> + mil->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA);
>> + if (mil->data_buffer_dma == NULL)
>> + goto error_alloc;
>> +
>> + /*
>> + * [3] Allocate the page buffer.
>> + *
>> + * Both the payload buffer and the auxiliary buffer must appear on
>> + * 32-bit boundaries. We presume the size of the payload buffer is a
>> + * power of two and is much larger than four, which guarantees the
>> + * auxiliary buffer will appear on a 32-bit boundary.
>> + */
>> + mil->page_buffer_size = geo->payload_size_in_bytes +
>> + geo->auxiliary_size_in_bytes;
>> +
>> + mil->page_buffer_virt = dma_alloc_coherent(dev, mil->page_buffer_size,
>> + &mil->page_buffer_phys, GFP_DMA);
>> + if (!mil->page_buffer_virt)
>> + goto error_alloc;
>> +
>> +
>> + /* Slice up the page buffer. */
>> + mil->payload_virt = mil->page_buffer_virt;
>> + mil->payload_phys = mil->page_buffer_phys;
>> + mil->auxiliary_virt = ((char *) mil->payload_virt) +
>>
> unnecessary cast.
>
> [...]
>
> The functions from here thru gpmi_nfc_probe could be marked __devinit,
> so they can be discarded after boot.
>> +static int nand_boot_set_geometry(struct gpmi_nfc_data *this)
>> +{
>> + struct boot_rom_geometry *geometry =&this->rom_geometry;
>> +
>> + /*
>> + * Set the boot block stride size.
>> + *
>> + * In principle, we should be reading this from the OTP bits, since
>> + * that's where the ROM is going to get it. In fact, we don't have any
>> + * way to read the OTP bits, so we go with the default and hope for the
>> + * best.
>> + */
>> + geometry->stride_size_in_pages = 64;
>> +
>> + /*
>> + * Set the search area stride exponent.
>> + *
>> + * In principle, we should be reading this from the OTP bits, since
>> + * that's where the ROM is going to get it. In fact, we don't have any
>> + * way to read the OTP bits, so we go with the default and hope for the
>> + * best.
>> + */
>> + geometry->search_area_stride_exponent = 2;
>> +
>> + if (gpmi_debug& GPMI_DEBUG_INIT)
>> + log("stride size in page : %d, search areas : %d",
>> + geometry->stride_size_in_pages,
>> + geometry->search_area_stride_exponent);
>> + return 0;
>> +}
>> +
>> +static const char *fingerprint = "STMP";
>> +static int mx23_check_transcription_stamp(struct gpmi_nfc_data *this)
>> +{
>> + struct boot_rom_geometry *rom_geo =&this->rom_geometry;
>> + struct mil *mil =&this->mil;
>> + struct mtd_info *mtd =&mil->mtd;
>> + struct nand_chip *nand =&mil->nand;
>> + unsigned int search_area_size_in_strides;
>> + unsigned int stride;
>> + unsigned int page;
>> + loff_t byte;
>> + uint8_t *buffer = nand->buffers->databuf;
>> + int saved_chip_number;
>> + int found_an_ncb_fingerprint = false;
>> +
>> + /* Compute the number of strides in a search area. */
>> + search_area_size_in_strides = 1<< rom_geo->search_area_stride_exponent;
>> +
>> + /* Select chip 0. */
>> + saved_chip_number = mil->current_chip;
>> + nand->select_chip(mtd, 0);
>> +
>> + /*
>> + * Loop through the first search area, looking for the NCB fingerprint.
>> + */
>> + pr_info("Scanning for an NCB fingerprint...\n");
>> +
>> + for (stride = 0; stride< search_area_size_in_strides; stride++) {
>> + /* Compute the page and byte addresses. */
>> + page = stride * rom_geo->stride_size_in_pages;
>> + byte = page * mtd->writesize;
>> +
>> + pr_info(" Looking for a fingerprint in page 0x%x\n", page);
>> +
>> + /*
>> + * Read the NCB fingerprint. The fingerprint is four bytes long
>> + * and starts in the 12th byte of the page.
>> + */
>> + nand->cmdfunc(mtd, NAND_CMD_READ0, 12, page);
>> + nand->read_buf(mtd, buffer, strlen(fingerprint));
>> +
>> + /* Look for the fingerprint. */
>> + if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
>> + found_an_ncb_fingerprint = true;
>> + break;
>> + }
>> +
>> + }
>> +
>> + /* Deselect chip 0. */
>> + nand->select_chip(mtd, saved_chip_number);
>> +
>> + if (found_an_ncb_fingerprint)
>> + pr_info(" Found a fingerprint\n");
>> + else
>> + pr_info(" No fingerprint found\n");
>> + return found_an_ncb_fingerprint;
>> +}
>> +
>> +/* Writes a transcription stamp. */
>> +static int mx23_write_transcription_stamp(struct gpmi_nfc_data *this)
>> +{
>> + struct device *dev = this->dev;
>> + struct boot_rom_geometry *rom_geo =&this->rom_geometry;
>> + struct mil *mil =&this->mil;
>> + struct mtd_info *mtd =&mil->mtd;
>> + struct nand_chip *nand =&mil->nand;
>> + unsigned int block_size_in_pages;
>> + unsigned int search_area_size_in_strides;
>> + unsigned int search_area_size_in_pages;
>> + unsigned int search_area_size_in_blocks;
>> + unsigned int block;
>> + unsigned int stride;
>> + unsigned int page;
>> + loff_t byte;
>> + uint8_t *buffer = nand->buffers->databuf;
>> + int saved_chip_number;
>> + int status;
>> +
>> + /* Compute the search area geometry. */
>> + block_size_in_pages = mtd->erasesize / mtd->writesize;
>> + search_area_size_in_strides = 1<< rom_geo->search_area_stride_exponent;
>> + search_area_size_in_pages = search_area_size_in_strides *
>> + rom_geo->stride_size_in_pages;
>> + search_area_size_in_blocks =
>> + (search_area_size_in_pages + (block_size_in_pages - 1)) /
>> + block_size_in_pages;
>> +
>> + pr_info("-------------------------------------------\n");
>> + pr_info("Search Area Geometry\n");
>> + pr_info("-------------------------------------------\n");
>> + pr_info("Search Area Size in Blocks : %u", search_area_size_in_blocks);
>> + pr_info("Search Area Size in Strides: %u", search_area_size_in_strides);
>> + pr_info("Search Area Size in Pages : %u", search_area_size_in_pages);
>> +
>> + /* Select chip 0. */
>> + saved_chip_number = mil->current_chip;
>> + nand->select_chip(mtd, 0);
>> +
>> + /* Loop over blocks in the first search area, erasing them. */
>> + pr_info("Erasing the search area...\n");
>> +
>> + for (block = 0; block< search_area_size_in_blocks; block++) {
>> + /* Compute the page address. */
>> + page = block * block_size_in_pages;
>> +
>> + /* Erase this block. */
>> + pr_info(" Erasing block 0x%x\n", block);
>> + nand->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
>> + nand->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
>> +
>> + /* Wait for the erase to finish. */
>> + status = nand->waitfunc(mtd, nand);
>> + if (status& NAND_STATUS_FAIL)
>> + dev_err(dev, "[%s] Erase failed.\n", __func__);
>> + }
>> +
>> + /* Write the NCB fingerprint into the page buffer. */
>> + memset(buffer, ~0, mtd->writesize);
>> + memset(nand->oob_poi, ~0, mtd->oobsize);
>> + memcpy(buffer + 12, fingerprint, strlen(fingerprint));
>> +
>> + /* Loop through the first search area, writing NCB fingerprints. */
>> + pr_info("Writing NCB fingerprints...\n");
>> + for (stride = 0; stride< search_area_size_in_strides; stride++) {
>> + /* Compute the page and byte addresses. */
>> + page = stride * rom_geo->stride_size_in_pages;
>> + byte = page * mtd->writesize;
>> +
>> + /* Write the first page of the current stride. */
>> + pr_info(" Writing an NCB fingerprint in page 0x%x\n", page);
>> + nand->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
>> + nand->ecc.write_page_raw(mtd, nand, buffer);
>> + nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
>> +
>> + /* Wait for the write to finish. */
>> + status = nand->waitfunc(mtd, nand);
>> + if (status& NAND_STATUS_FAIL)
>> + dev_err(dev, "[%s] Write failed.\n", __func__);
>> + }
>> +
>> + /* Deselect chip 0. */
>> + nand->select_chip(mtd, saved_chip_number);
>> + return 0;
>> +}
>> +
>> +int mx23_boot_init(struct gpmi_nfc_data *this)
>> +{
>> + struct device *dev = this->dev;
>> + struct mil *mil =&this->mil;
>> + struct nand_chip *nand =&mil->nand;
>> + struct mtd_info *mtd =&mil->mtd;
>> + unsigned int block_count;
>> + unsigned int block;
>> + int chip;
>> + int page;
>> + loff_t byte;
>> + uint8_t block_mark;
>> + int error = 0;
>> +
>> + /*
>> + * If control arrives here, we can't use block mark swapping, which
>> + * means we're forced to use transcription. First, scan for the
>> + * transcription stamp. If we find it, then we don't have to do
>> + * anything -- the block marks are already transcribed.
>> + */
>> + if (mx23_check_transcription_stamp(this))
>> + return 0;
>> +
>> + /*
>> + * If control arrives here, we couldn't find a transcription stamp, so
>> + * so we presume the block marks are in the conventional location.
>> + */
>> + pr_info("Transcribing bad block marks...\n");
>> +
>> + /* Compute the number of blocks in the entire medium. */
>> + block_count = nand->chipsize>> nand->phys_erase_shift;
>> +
>> + /*
>> + * Loop over all the blocks in the medium, transcribing block marks as
>> + * we go.
>> + */
>> + for (block = 0; block< block_count; block++) {
>> + /*
>> + * Compute the chip, page and byte addresses for this block's
>> + * conventional mark.
>> + */
>> + chip = block>> (nand->chip_shift - nand->phys_erase_shift);
>> + page = block<< (nand->phys_erase_shift - nand->page_shift);
>> + byte = block<< nand->phys_erase_shift;
>> +
>> + /* Select the chip. */
>> + nand->select_chip(mtd, chip);
>> +
>> + /* Send the command to read the conventional block mark. */
>> + nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
>> +
>> + /* Read the conventional block mark. */
>> + block_mark = nand->read_byte(mtd);
>> +
>> + /*
>> + * Check if the block is marked bad. If so, we need to mark it
>> + * again, but this time the result will be a mark in the
>> + * location where we transcribe block marks.
>> + *
>> + * Notice that we have to explicitly set the marking_a_bad_block
>> + * member before we call through the block_markbad function
>> + * pointer in the owning struct nand_chip. If we could call
>> + * though the block_markbad function pointer in the owning
>> + * struct mtd_info, which we have hooked, then this would be
>> + * taken care of for us. Unfortunately, we can't because that
>> + * higher-level code path will do things like consulting the
>> + * in-memory bad block table -- which doesn't even exist yet!
>> + * So, we have to call at a lower level and handle some details
>> + * ourselves.
>> + */
>> + if (block_mark != 0xff) {
>> + pr_info("Transcribing mark in block %u\n", block);
>> + mil->marking_a_bad_block = true;
>> + error = nand->block_markbad(mtd, byte);
>> + mil->marking_a_bad_block = false;
>> + if (error)
>> + dev_err(dev, "Failed to mark block bad with "
>> + "error %d\n", error);
>> + }
>> +
>> + /* Deselect the chip. */
>> + nand->select_chip(mtd, -1);
>> + }
>> +
>> + /* Write the stamp that indicates we've transcribed the block marks. */
>> + mx23_write_transcription_stamp(this);
>> + return 0;
>> +}
>> +
>> +static int nand_boot_init(struct gpmi_nfc_data *this)
>> +{
>> + nand_boot_set_geometry(this);
>> +
>> + /* This is ROM arch-specific initilization before the BBT scanning. */
>> + if (GPMI_IS_MX23(this))
>> + return mx23_boot_init(this);
>> + return 0;
>> +}
>> +
>> +static void show_nfc_geometry(struct nfc_geometry *geo)
>> +{
>> + pr_info("---------------------------------------\n");
>> + pr_info(" NFC Geometry (used by BCH)\n");
>> + pr_info("---------------------------------------\n");
>> + pr_info("ECC Algorithm : %s\n", geo->ecc_algorithm);
>> + pr_info("ECC Strength : %u\n", geo->ecc_strength);
>> + pr_info("Page Size in Bytes : %u\n", geo->page_size_in_bytes);
>> + pr_info("Metadata Size in Bytes : %u\n", geo->metadata_size_in_bytes);
>> + pr_info("ECC Chunk Size in Bytes: %u\n", geo->ecc_chunk_size_in_bytes);
>> + pr_info("ECC Chunk Count : %u\n", geo->ecc_chunk_count);
>> + pr_info("Payload Size in Bytes : %u\n", geo->payload_size_in_bytes);
>> + pr_info("Auxiliary Size in Bytes: %u\n", geo->auxiliary_size_in_bytes);
>> + pr_info("Auxiliary Status Offset: %u\n", geo->auxiliary_status_offset);
>> + pr_info("Block Mark Byte Offset : %u\n", geo->block_mark_byte_offset);
>> + pr_info("Block Mark Bit Offset : %u\n", geo->block_mark_bit_offset);
>> +}
>> +
>> +static int mil_set_geometry(struct gpmi_nfc_data *this)
>> +{
>> + struct nfc_hal *nfc = this->nfc;
>> + struct nfc_geometry *geo =&this->nfc_geometry;
>> + int error;
>> +
>> + /* Free the temporary DMA memory for read ID case */
>> + mil_free_dma_buffer(this);
>> +
>> + /* Set up the NFC geometry which is used by BCH. */
>> + error = nfc->set_geometry(this);
>> + if (error != 0) {
>> + log("NFC set geometry error : %d", error);
>> + return error;
>> + }
>> + if (gpmi_debug& GPMI_DEBUG_INIT)
>> + show_nfc_geometry(geo);
>> +
>> + /* Alloc the new DMA buffers according to the pagesize and oobsize */
>> + return mil_alloc_dma_buffer(this);
>> +}
>> +
>> +static int mil_pre_bbt_scan(struct gpmi_nfc_data *this)
>> +{
>> + struct nand_chip *nand =&this->mil.nand;
>> + struct mtd_info *mtd =&this->mil.mtd;
>> + struct nand_ecclayout *layout = nand->ecc.layout;
>> + struct nfc_hal *nfc = this->nfc;
>> + int error;
>> +
>> + /* fix the ECC layout before the scanning */
>> + layout->eccbytes = 0;
>> + layout->oobavail = mtd->oobsize;
>> + layout->oobfree[0].offset = 0;
>> + layout->oobfree[0].length = mtd->oobsize;
>> +
>> + mtd->oobavail = nand->ecc.layout->oobavail;
>> +
>> + /* Set up swap block-mark, must be set before the mil_set_geometry() */
>> + if (GPMI_IS_MX23(this))
>> + this->swap_block_mark = false;
>> + else
>> + this->swap_block_mark = true;
>> +
>> + /* Set up the medium geometry */
>> + error = mil_set_geometry(this);
>> + if (error)
>> + return error;
>> +
>> + /* extra init */
>> + if (nfc->extra_init) {
>> + error = nfc->extra_init(this);
>> + if (error != 0)
>> + return error;
>> + }
>> +
>> + /* NAND boot init, depends on the mil_set_geometry(). */
>> + return nand_boot_init(this);
>> +}
>> +
>> +static int mil_scan_bbt(struct mtd_info *mtd)
>> +{
>> + struct nand_chip *nand = mtd->priv;
>> + struct gpmi_nfc_data *this = nand->priv;
>> + int error;
>> +
>> + /* Prepare for the BBT scan. */
>> + error = mil_pre_bbt_scan(this);
>> + if (error)
>> + return error;
>> +
>> + /* use the default BBT implementation */
>> + return nand_default_bbt(mtd);
>> +}
>> +
>> +static const char *cmd_parse = "cmdlinepart";
>>
> This should be a NULL terminated list of strings:
> static const char *cmd_parse[] = { "cmdlinepart", NULL };
>
thanks a lot.
>> +static int mil_partitions_init(struct gpmi_nfc_data *this)
>> +{
>> + struct gpmi_nfc_platform_data *pdata = this->pdata;
>> + struct mil *mil =&this->mil;
>> + struct mtd_info *mtd =&mil->mtd;
>> +
>> + /* use the command line for simple partitions layout */
>> + mil->partition_count = parse_mtd_partitions(mtd,&cmd_parse,
>> + &mil->partitions, 0);
>> + if (mil->partition_count)
>> + return add_mtd_partitions(mtd, mil->partitions,
>> + mil->partition_count);
>> +
>> + /* The complicated partitions layout uses this. */
>> + if (pdata->partitions&& pdata->partition_count> 0)
>> + return add_mtd_partitions(mtd, pdata->partitions,
>> + pdata->partition_count);
>> + return 0;
> How about:
> return mtd_add_device(mtd);
> so you will get the whole flash registered in case there are no
> partitions defined.
>
no problem.
>> +#ifdef CONFIG_PM
>> +static int gpmi_nfc_suspend(struct platform_device *pdev, pm_message_t state)
>> +{
>> + return 0;
>> +}
>> +static int gpmi_nfc_resume(struct platform_device *pdev)
>> +{
>> + return 0;
>> +}
>> +#else
>> +#define gpmi_nfc_suspend NULL
>> +#define gpmi_nfc_resume NULL
>> +#endif
>> +
> There is no point in adding empty suspend/resume functions.
> Furthermore you should use dev_pm_ops.
>
Ok. I think the gpmi needs to do nothing when suspend.
Best Regards
Huang shijie
> Lothar Wa?mann
^ permalink raw reply [flat|nested] 10+ messages in thread
* [PATCH v6 1/3] MTD : add the common code for GPMI controller driver
2011-04-21 7:49 ` Lothar Waßmann
2011-04-22 9:39 ` Huang Shijie
@ 2011-04-26 2:52 ` Huang Shijie
2011-04-26 10:09 ` Lothar Waßmann
1 sibling, 1 reply; 10+ messages in thread
From: Huang Shijie @ 2011-04-26 2:52 UTC (permalink / raw)
To: linux-arm-kernel
Hi:
> Huang Shijie writes:
>> These files contain the common code for the GPMI driver.
>>
>> Signed-off-by: Huang Shijie<b32955@freescale.com>
>> ---
>> drivers/mtd/nand/gpmi-nfc/gpmi-nfc.c | 2501 ++++++++++++++++++++++++++++++++++
>> drivers/mtd/nand/gpmi-nfc/gpmi-nfc.h | 488 +++++++
>> 2 files changed, 2989 insertions(+), 0 deletions(-)
>> create mode 100644 drivers/mtd/nand/gpmi-nfc/gpmi-nfc.c
>> create mode 100644 drivers/mtd/nand/gpmi-nfc/gpmi-nfc.h
>>
>> diff --git a/drivers/mtd/nand/gpmi-nfc/gpmi-nfc.c b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc.c
>> new file mode 100644
>> index 0000000..53d6915
>> --- /dev/null
>> +++ b/drivers/mtd/nand/gpmi-nfc/gpmi-nfc.c
>> @@ -0,0 +1,2501 @@
>> +/*
>> + * Freescale GPMI NFC NAND Flash Driver
>> + *
>> + * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
>> + * Copyright (C) 2008 Embedded Alley Solutions, Inc.
>> + *
>> + * This program is free software; you can redistribute it and/or modify
>> + * it under the terms of the GNU General Public License as published by
>> + * the Free Software Foundation; either version 2 of the License, or
>> + * (at your option) any later version.
>> + *
>> + * This program is distributed in the hope that it will be useful,
>> + * but WITHOUT ANY WARRANTY; without even the implied warranty of
>> + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
>> + * GNU General Public License for more details.
>> + *
>> + * You should have received a copy of the GNU General Public License along
>> + * with this program; if not, write to the Free Software Foundation, Inc.,
>> + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
>> + */
>> +#include<linux/slab.h>
>> +#include "gpmi-nfc.h"
>> +
>> +/* add our owner bbt descriptor */
>> +static uint8_t scan_ff_pattern[] = { 0xff };
>> +static struct nand_bbt_descr gpmi_bbt_descr = {
>> + .options = 0,
>> + .offs = 0,
>> + .len = 1,
>> + .pattern = scan_ff_pattern
>> +};
>> +
>> +/* debug control */
>> +int gpmi_debug;
>> +
> This could be a module_param.
>
I think the module_param is not easy to use.
I want to know the log when the gpmi driver is running, and change the
log level as soon
as my need changs.
So I prefer to use the origin method.
Best Regards
Huang Shijie
^ permalink raw reply [flat|nested] 10+ messages in thread
* [PATCH v6 1/3] MTD : add the common code for GPMI controller driver
2011-04-26 2:52 ` Huang Shijie
@ 2011-04-26 10:09 ` Lothar Waßmann
0 siblings, 0 replies; 10+ messages in thread
From: Lothar Waßmann @ 2011-04-26 10:09 UTC (permalink / raw)
To: linux-arm-kernel
Hi,
Huang Shijie writes:
> Hi:
> > Huang Shijie writes:
> >> +/* debug control */
> >> +int gpmi_debug;
> >> +
> > This could be a module_param.
> >
> I think the module_param is not easy to use.
> I want to know the log when the gpmi driver is running, and change the
> log level as soon
> as my need changs.
>
> So I prefer to use the origin method.
>
>
|static int debug;
|module_param(debug, int, S_IRUGO | S_IWUSR);
is all you need to do exactly what you want.
You can write to /sys/module/imx28-gpmi-nfc/parameters/debug at any
time to change the debug level.
Lothar Wa?mann
--
___________________________________________________________
Ka-Ro electronics GmbH | Pascalstra?e 22 | D - 52076 Aachen
Phone: +49 2408 1402-0 | Fax: +49 2408 1402-10
Gesch?ftsf?hrer: Matthias Kaussen
Handelsregistereintrag: Amtsgericht Aachen, HRB 4996
www.karo-electronics.de | info at karo-electronics.de
___________________________________________________________
^ permalink raw reply [flat|nested] 10+ messages in thread
* [PATCH v6 1/3] MTD : add the common code for GPMI controller driver
2011-04-20 2:45 ` [PATCH v6 1/3] MTD : add the common code for GPMI controller driver Huang Shijie
2011-04-21 7:49 ` Lothar Waßmann
@ 2011-04-28 19:20 ` Russell King - ARM Linux
2011-04-29 1:42 ` Huang Shijie
1 sibling, 1 reply; 10+ messages in thread
From: Russell King - ARM Linux @ 2011-04-28 19:20 UTC (permalink / raw)
To: linux-arm-kernel
On Wed, Apr 20, 2011 at 10:45:47AM +0800, Huang Shijie wrote:
> +static inline int acquire_clock(struct gpmi_nfc_data *this, struct clk **clock)
> +{
> + struct clk *c;
> +
> + c = clk_get(&this->pdev->dev, NULL);
> + if (IS_ERR(c)) {
> + log("Can't own clock");
> + return PTR_ERR(c);
> + }
> + *clock = c;
> + return 0;
> +}
> +
> +static void release_clock(struct gpmi_nfc_data *this, struct clk *clock)
> +{
> + clk_put(clock);
> +}
Do you really need to abstract like this? It appears to just complicate
the code unnecessarily.
> +#define log(a, ...) printk(KERN_INFO "[ %s : %.3d ] "a"\n", \
> + __func__, __LINE__, ## __VA_ARGS__)
Also, I don't like this log() function. You can do the same with:
#define pr_fmt(fmt) "[ %s : %.3d ] " fmt, __func__, __LINE__
and use pr_info() instead. Note that it's generally frowned upon to
hide the \n inside the pr_fmt().
^ permalink raw reply [flat|nested] 10+ messages in thread
* [PATCH v6 1/3] MTD : add the common code for GPMI controller driver
2011-04-28 19:20 ` Russell King - ARM Linux
@ 2011-04-29 1:42 ` Huang Shijie
0 siblings, 0 replies; 10+ messages in thread
From: Huang Shijie @ 2011-04-29 1:42 UTC (permalink / raw)
To: linux-arm-kernel
hi:
> On Wed, Apr 20, 2011 at 10:45:47AM +0800, Huang Shijie wrote:
>> +static inline int acquire_clock(struct gpmi_nfc_data *this, struct clk **clock)
>> +{
>> + struct clk *c;
>> +
>> + c = clk_get(&this->pdev->dev, NULL);
>> + if (IS_ERR(c)) {
>> + log("Can't own clock");
>> + return PTR_ERR(c);
>> + }
>> + *clock = c;
>> + return 0;
>> +}
>> +
>> +static void release_clock(struct gpmi_nfc_data *this, struct clk *clock)
>> +{
>> + clk_put(clock);
>> +}
> Do you really need to abstract like this? It appears to just complicate
> the code unnecessarily.
>
ok, I can remove the two functions.
>> +#define log(a, ...) printk(KERN_INFO "[ %s : %.3d ] "a"\n", \
>> + __func__, __LINE__, ## __VA_ARGS__)
> Also, I don't like this log() function. You can do the same with:
>
> #define pr_fmt(fmt) "[ %s : %.3d ] " fmt, __func__, __LINE__
>
> and use pr_info() instead. Note that it's generally frowned upon to
> hide the \n inside the pr_fmt().
>
ok, I will change it.
Thanks .
Best Regards
Huang Shijie
^ permalink raw reply [flat|nested] 10+ messages in thread
end of thread, other threads:[~2011-04-29 1:42 UTC | newest]
Thread overview: 10+ messages (download: mbox.gz follow: Atom feed
-- links below jump to the message on this page --
2011-04-20 2:45 [PATCH v6 0/3] add the GPMI controller driver for IMX23/IMX28 Huang Shijie
2011-04-20 2:45 ` [PATCH v6 1/3] MTD : add the common code for GPMI controller driver Huang Shijie
2011-04-21 7:49 ` Lothar Waßmann
2011-04-22 9:39 ` Huang Shijie
2011-04-26 2:52 ` Huang Shijie
2011-04-26 10:09 ` Lothar Waßmann
2011-04-28 19:20 ` Russell King - ARM Linux
2011-04-29 1:42 ` Huang Shijie
2011-04-20 2:45 ` [PATCH v6 2/3] MTD : add support for imx23 and imx28 Huang Shijie
2011-04-20 2:45 ` [PATCH v6 3/3] MTD : add GPMI driver in the config and Makefile Huang Shijie
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).