* [PATCH v13 00/13] Intel SGX1 support
@ 2018-08-27 18:53 Jarkko Sakkinen
2018-08-27 18:53 ` [PATCH v13 13/13] x86/sgx: Driver documentation Jarkko Sakkinen
0 siblings, 1 reply; 5+ messages in thread
From: Jarkko Sakkinen @ 2018-08-27 18:53 UTC (permalink / raw)
To: x86, platform-driver-x86
Cc: dave.hansen, sean.j.christopherson, nhorman, npmccallum,
linux-sgx, Jarkko Sakkinen, Alexei Starovoitov, Andi Kleen,
Andrew Morton, Andy Lutomirski, Arnd Bergmann, Borislav Petkov,
David S. Miller, David Woodhouse, Eric Biggers,
Greg Kroah-Hartman, Herbert Xu, H. Peter Anvin, Ingo Molnar,
Janakarajan Natarajan, Kirill A. Shutemov, Konrad Rzeszutek Wilk,
open list:KERNEL VIRTUAL MACHINE FOR X86 (KVM/x86),
open list:DOCUMENTATION, open list, Matt Turner,
Mauro Carvalho Chehab, Paolo Bonzini, Peter Zijlstra,
Rafael J. Wysocki, Reinette Chatre, Ricardo Neri, Serge Ayoun,
Shay Katz-zamir, Suresh Siddha, Thomas Gleixner, Tom Lendacky
[-- Warning: decoded text below may be mangled, UTF-8 assumed --]
[-- Attachment #1: Type: text/plain; charset=y, Size: 12824 bytes --]
Intel(R) SGX is a set of CPU instructions that can be used by applications
to set aside private regions of code and data. The code outside the enclave
is disallowed to access the memory inside the enclave by the CPU access
control. In a way you can think that SGX provides inverted sandbox. It
protects the application from a malicious host.
There is a new hardware unit in the processor called Memory Encryption
Engine (MEE) starting from the Skylake microacrhitecture. BIOS can define
one or many MEE regions that can hold enclave data by configuring them with
PRMRR registers.
The MEE automatically encrypts the data leaving the processor package to
the MEE regions. The data is encrypted using a random key whose life-time
is exactly one power cycle.
The current implementation requires that the firmware sets
IA32_SGXLEPUBKEYHASH* MSRs as writable so that ultimately the kernel can
decide what enclaves it wants run. The implementation does not create
any bottlenecks to support read-only MSRs later on.
You can tell if your CPU supports SGX by looking into /proc/cpuinfo:
cat /proc/cpuinfo | grep sgx
v13:
* Always use SGX_CPUID constant instead of a hardcoded value.
* Simplified and documented the macros and functions for ENCLS leaves.
* Enable sgx_free_page() to free active enclave pages on demand
in order to allow sgx_invalidate() to delete enclave pages.
It no longer performs EREMOVE if a page is in the process of
being reclaimed.
* Use PM notifier per enclave so that we don't have to traverse
the global list of active EPC pages to find enclaves.
* Removed unused SGX_LE_ROLLBACK constant from uapi/asm/sgx.h
* Always use ioremap() to map EPC banks as we only support 64-bit kernel.
* Invalidate IA32_SGXLEPUBKEYHASH cache used by sgx_einit() when going
to sleep.
v12:
* Split to more narrow scoped commits in order to ease the review process and
use co-developed-by tag for co-authors of commits instead of listing them in
the source files.
* Removed cruft EXPORT_SYMBOL() declarations and converted to static variables.
* Removed in-kernel LE i.e. this version of the SGX software stack only
supports unlocked IA32_SGXLEPUBKEYHASHx MSRs.
* Refined documentation on launching enclaves, swapping and enclave
construction.
* Refined sgx_arch.h to include alignment information for every struct that
requires it and removed structs that are not needed without an LE.
* Got rid of SGX_CPUID.
* SGX detection now prints log messages about firmware configuration issues.
v11:
* Polished ENCLS wrappers with refined exception handling.
* ksgxswapd was not stopped (regression in v5) in
sgx_page_cache_teardown(), which causes a leaked kthread after driver
deinitialization.
* Shutdown sgx_le_proxy when going to suspend because its EPC pages will be
invalidated when resuming, which will cause it not function properly
anymore.
* Set EINITTOKEN.VALID to zero for a token that is passed when
SGXLEPUBKEYHASH matches MRSIGNER as alloc_page() does not give a zero
page.
* Fixed the check in sgx_edbgrd() for a TCS page. Allowed to read offsets
around the flags field, which causes a #GP. Only flags read is readable.
* On read access memcpy() call inside sgx_vma_access() had src and dest
parameters in wrong order.
* The build issue with CONFIG_KASAN is now fixed. Added undefined symbols
to LE even if “KASAN_SANITIZE := false” was set in the makefile.
* Fixed a regression in the #PF handler. If a page has
SGX_ENCL_PAGE_RESERVED flag the #PF handler should unconditionally fail.
It did not, which caused weird races when trying to change other parts of
swapping code.
* EPC management has been refactored to a flat LRU cache and moved to
arch/x86. The swapper thread reads a cluster of EPC pages and swaps all
of them. It can now swap from multiple enclaves in the same round.
* For the sake of consistency with SGX_IOC_ENCLAVE_ADD_PAGE, return -EINVAL
when an enclave is already initialized or dead instead of zero.
v10:
* Cleaned up anon inode based IPC between the ring-0 and ring-3 parts
of the driver.
* Unset the reserved flag from an enclave page if EDBGRD/WR fails
(regression in v6).
* Close the anon inode when LE is stopped (regression in v9).
* Update the documentation with a more detailed description of SGX.
v9:
* Replaced kernel-LE IPC based on pipes with an anonymous inode.
The driver does not require anymore new exports.
v8:
* Check that public key MSRs match the LE public key hash in the
driver initialization when the MSRs are read-only.
* Fix the race in VA slot allocation by checking the fullness
immediately after succeesful allocation.
* Fix the race in hash mrsigner calculation between the launch
enclave and user enclaves by having a separate lock for hash
calculation.
v7:
* Fixed offset calculation in sgx_edbgr/wr(). Address was masked with PAGE_MASK
when it should have been masked with ~PAGE_MASK.
* Fixed a memory leak in sgx_ioc_enclave_create().
* Simplified swapping code by using a pointer array for a cluster
instead of a linked list.
* Squeezed struct sgx_encl_page to 32 bytes.
* Fixed deferencing of an RSA key on OpenSSL 1.1.0.
* Modified TC's CMAC to use kernel AES-NI. Restructured the code
a bit in order to better align with kernel conventions.
v6:
* Fixed semaphore underrun when accessing /dev/sgx from the launch enclave.
* In sgx_encl_create() s/IS_ERR(secs)/IS_ERR(encl)/.
* Removed virtualization chapter from the documentation.
* Changed the default filename for the signing key as signing_key.pem.
* Reworked EPC management in a way that instead of a linked list of
struct sgx_epc_page instances there is an array of integers that
encodes address and bank of an EPC page (the same data as 'pa' field
earlier). The locking has been moved to the EPC bank level instead
of a global lock.
* Relaxed locking requirements for EPC management. EPC pages can be
released back to the EPC bank concurrently.
* Cleaned up ptrace() code.
* Refined commit messages for new architectural constants.
* Sorted includes in every source file.
* Sorted local variable declarations according to the line length in
every function.
* Style fixes based on Darren's comments to sgx_le.c.
v5:
* Described IPC between the Launch Enclave and kernel in the commit messages.
* Fixed all relevant checkpatch.pl issues that I have forgot fix in earlier
versions except those that exist in the imported TinyCrypt code.
* Fixed spelling mistakes in the documentation.
* Forgot to check the return value of sgx_drv_subsys_init().
* Encapsulated properly page cache init and teardown.
* Collect epc pages to a temp list in sgx_add_epc_bank
* Removed SGX_ENCLAVE_INIT_ARCH constant.
v4:
* Tied life-cycle of the sgx_le_proxy process to /dev/sgx.
* Removed __exit annotation from sgx_drv_subsys_exit().
* Fixed a leak of a backing page in sgx_process_add_page_req() in the
case when vm_insert_pfn() fails.
* Removed unused symbol exports for sgx_page_cache.c.
* Updated sgx_alloc_page() to require encl parameter and documented the
behavior (Sean Christopherson).
* Refactored a more lean API for sgx_encl_find() and documented the behavior.
* Moved #PF handler to sgx_fault.c.
* Replaced subsys_system_register() with plain bus_register().
* Retry EINIT 2nd time only if MSRs are not locked.
v3:
* Check that FEATURE_CONTROL_LOCKED and FEATURE_CONTROL_SGX_ENABLE are set.
* Return -ERESTARTSYS in __sgx_encl_add_page() when sgx_alloc_page() fails.
* Use unused bits in epc_page->pa to store the bank number.
* Removed #ifdef for WQ_NONREENTRANT.
* If mmu_notifier_register() fails with -EINTR, return -ERESTARTSYS.
* Added --remove-section=.got.plt to objcopy flags in order to prevent a
dummy .got.plt, which will cause an inconsistent size for the LE.
* Documented sgx_encl_* functions.
* Added remark about AES implementation used inside the LE.
* Removed redundant sgx_sys_exit() from le/main.c.
* Fixed struct sgx_secinfo alignment from 128 to 64 bytes.
* Validate miscselect in sgx_encl_create().
* Fixed SSA frame size calculation to take the misc region into account.
* Implemented consistent exception handling to __encls() and __encls_ret().
* Implemented a proper device model in order to allow sysfs attributes
and in-kernel API.
* Cleaned up various "find enclave" implementations to the unified
sgx_encl_find().
* Validate that vm_pgoff is zero.
* Discard backing pages with shmem_truncate_range() after EADD.
* Added missing EEXTEND operations to LE signing and launch.
* Fixed SSA size for GPRS region from 168 to 184 bytes.
* Fixed the checks for TCS flags. Now DBGOPTIN is allowed.
* Check that TCS addresses are in ELRANGE and not just page aligned.
* Require kernel to be compiled with X64_64 and CPU_SUP_INTEL.
* Fixed an incorrect value for SGX_ATTR_DEBUG from 0x01 to 0x02.
v2:
* get_rand_uint32() changed the value of the pointer instead of value
where it is pointing at.
* Launch enclave incorrectly used sigstruct attributes-field instead of
enclave attributes-field.
* Removed unused struct sgx_add_page_req from sgx_ioctl.c
* Removed unused sgx_has_sgx2.
* Updated arch/x86/include/asm/sgx.h so that it provides stub
implementations when sgx in not enabled.
* Removed cruft rdmsr-calls from sgx_set_pubkeyhash_msrs().
* return -ENOMEM in sgx_alloc_page() when VA pages consume too much space
* removed unused global sgx_nr_pids
* moved sgx_encl_release to sgx_encl.c
* return -ERESTARTSYS instead of -EINTR in sgx_encl_init()
Jarkko Sakkinen (8):
x86/sgx: Update MAINTAINERS
x86/sgx: Architectural structures
x86/sgx: Add data structures for tracking the EPC pages
x86/sgx: Add wrappers for ENCLS leaf functions
x86/sgx: Enclave Page Cache (EPC) memory manager
platform/x86: Intel SGX driver
platform/x86: ptrace() support for the SGX driver
x86/sgx: Driver documentation
Kai Huang (1):
x86/cpufeature: Add SGX and SGX_LC CPU features
Sean Christopherson (4):
x86/cpufeatures: Add Intel-defined SGX leaf CPUID_12_EAX
x86/msr: Add SGX definitions to msr-index.h
x86/sgx: Detect Intel SGX
x86/sgx: Add sgx_einit() for initializing enclaves
Documentation/index.rst | 1 +
Documentation/x86/intel_sgx.rst | 185 +++
MAINTAINERS | 7 +
arch/x86/Kconfig | 19 +
arch/x86/include/asm/cpufeature.h | 7 +-
arch/x86/include/asm/cpufeatures.h | 10 +-
arch/x86/include/asm/disabled-features.h | 3 +-
arch/x86/include/asm/msr-index.h | 8 +
arch/x86/include/asm/required-features.h | 3 +-
arch/x86/include/asm/sgx.h | 359 ++++++
arch/x86/include/asm/sgx_arch.h | 379 ++++++
arch/x86/include/asm/sgx_pr.h | 13 +
arch/x86/include/uapi/asm/sgx.h | 112 ++
arch/x86/include/uapi/asm/sgx_errno.h | 91 ++
arch/x86/kernel/cpu/Makefile | 1 +
arch/x86/kernel/cpu/common.c | 7 +
arch/x86/kernel/cpu/intel_sgx.c | 551 +++++++++
arch/x86/kvm/cpuid.h | 1 +
drivers/platform/x86/Kconfig | 2 +
drivers/platform/x86/Makefile | 1 +
drivers/platform/x86/intel_sgx/Kconfig | 22 +
drivers/platform/x86/intel_sgx/Makefile | 13 +
drivers/platform/x86/intel_sgx/sgx.h | 211 ++++
drivers/platform/x86/intel_sgx/sgx_encl.c | 1016 +++++++++++++++++
.../platform/x86/intel_sgx/sgx_encl_page.c | 288 +++++
drivers/platform/x86/intel_sgx/sgx_fault.c | 157 +++
drivers/platform/x86/intel_sgx/sgx_ioctl.c | 234 ++++
drivers/platform/x86/intel_sgx/sgx_main.c | 257 +++++
drivers/platform/x86/intel_sgx/sgx_vma.c | 167 +++
29 files changed, 4120 insertions(+), 5 deletions(-)
create mode 100644 Documentation/x86/intel_sgx.rst
create mode 100644 arch/x86/include/asm/sgx.h
create mode 100644 arch/x86/include/asm/sgx_arch.h
create mode 100644 arch/x86/include/asm/sgx_pr.h
create mode 100644 arch/x86/include/uapi/asm/sgx.h
create mode 100644 arch/x86/include/uapi/asm/sgx_errno.h
create mode 100644 arch/x86/kernel/cpu/intel_sgx.c
create mode 100644 drivers/platform/x86/intel_sgx/Kconfig
create mode 100644 drivers/platform/x86/intel_sgx/Makefile
create mode 100644 drivers/platform/x86/intel_sgx/sgx.h
create mode 100644 drivers/platform/x86/intel_sgx/sgx_encl.c
create mode 100644 drivers/platform/x86/intel_sgx/sgx_encl_page.c
create mode 100644 drivers/platform/x86/intel_sgx/sgx_fault.c
create mode 100644 drivers/platform/x86/intel_sgx/sgx_ioctl.c
create mode 100644 drivers/platform/x86/intel_sgx/sgx_main.c
create mode 100644 drivers/platform/x86/intel_sgx/sgx_vma.c
--
2.17.1
^ permalink raw reply [flat|nested] 5+ messages in thread
* [PATCH v13 13/13] x86/sgx: Driver documentation
2018-08-27 18:53 [PATCH v13 00/13] Intel SGX1 support Jarkko Sakkinen
@ 2018-08-27 18:53 ` Jarkko Sakkinen
2018-08-27 19:40 ` Randy Dunlap
2018-08-28 8:03 ` Jarkko Sakkinen
0 siblings, 2 replies; 5+ messages in thread
From: Jarkko Sakkinen @ 2018-08-27 18:53 UTC (permalink / raw)
To: x86, platform-driver-x86
Cc: dave.hansen, sean.j.christopherson, nhorman, npmccallum,
linux-sgx, Jarkko Sakkinen, Jonathan Corbet, Thomas Gleixner,
Ingo Molnar, H. Peter Anvin, open list:DOCUMENTATION, open list
[-- Warning: decoded text below may be mangled, UTF-8 assumed --]
[-- Attachment #1: Type: text/plain; charset=y, Size: 9145 bytes --]
Documentation of the features of the Software Guard eXtensions used
by the Linux kernel and basic design choices for the core and driver
and functionality.
Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
---
Documentation/index.rst | 1 +
Documentation/x86/intel_sgx.rst | 185 ++++++++++++++++++++++++++++++++
2 files changed, 186 insertions(+)
create mode 100644 Documentation/x86/intel_sgx.rst
diff --git a/Documentation/index.rst b/Documentation/index.rst
index 5db7e87c7cb1..1cdc139adb40 100644
--- a/Documentation/index.rst
+++ b/Documentation/index.rst
@@ -104,6 +104,7 @@ implementation.
:maxdepth: 2
sh/index
+ x86/index
Filesystem Documentation
------------------------
diff --git a/Documentation/x86/intel_sgx.rst b/Documentation/x86/intel_sgx.rst
new file mode 100644
index 000000000000..f6b7979c41f2
--- /dev/null
+++ b/Documentation/x86/intel_sgx.rst
@@ -0,0 +1,185 @@
+===================
+Intel(R) SGX driver
+===================
+
+Introduction
+============
+
+Intel(R) SGX is a set of CPU instructions that can be used by applications to
+set aside private regions of code and data. The code outside the enclave is
+disallowed to access the memory inside the enclave by the CPU access control.
+In a way you can think that SGX provides inverted sandbox. It protects the
+application from a malicious host.
+
+You can tell if your CPU supports SGX by looking into ``/proc/cpuinfo``:
+
+ ``cat /proc/cpuinfo | grep sgx``
+
+Overview of SGX
+===============
+
+SGX has a set of data structures to maintain information about the enclaves and
+their security properties. BIOS reserves a fixed size region of physical memory
+for these structures by setting Processor Reserved Memory Range Registers
+(PRMRR).
+
+This memory range is protected from outside access by the CPU and all the data
+coming in and out of the CPU package is encrypted by a key that is generated for
+each boot cycle.
+
+Enclaves execute in ring-3 in a special enclave submode using pages from the
+reserved memory range. A fixed logical address range for the enclave is reserved
+by ENCLS(ECREATE), a leaf instruction used to create enclaves. It is referred in
+the documentation commonly as the ELRANGE.
+
+Every memory access to the ELRANGE is asserted by the CPU. If the CPU is not
+executing in the enclave mode inside the enclave, #GP is raised. On the other
+hand enclave code can make memory accesses both inside and outside of the
+ELRANGE.
+
+Enclave can only execute code inside the ELRANGE. Instructions that may cause
+VMEXIT, IO instructions and instructions that require a privilege change are
+prohibited inside the enclave. Interrupts and exceptions always cause enclave
+to exit and jump to an address outside the enclave given when the enclave is
+entered by using the leaf instruction ENCLS(EENTER).
+
+Data types
+----------
+
+The protected memory range contains the following data:
+
+* **Enclave Page Cache (EPC):** protected pages
+* **Enclave Page Cache Map (EPCM):** a database that describes the state of the
+ pages and link them to an enclave.
+
+EPC has a number of different types of pages:
+
+* **SGX Enclave Control Structure (SECS)**: describes the global
+ properties of an enclave.
+* **Regular (REG):** code and data pages in the ELRANGE.
+* **Thread Control Structure (TCS):** pages that define entry points inside an
+ enclave. The enclave can only be entered through these entry points and each
+ can host a single hardware thread at a time.
+* **Version Array (VA)**: 64-bit version numbers for pages that have been
+ swapped outside the enclave. Each page contains 512 version numbers.
+
+Launch control
+--------------
+
+To launch an enclave, two structures must be provided for ENCLS(EINIT):
+
+1. **SIGSTRUCT:** signed measurement of the enclave binary.
+2. **EINITTOKEN:** a cryptographic token CMAC-signed with a AES256-key called
+ *launch key*, which is re-generated for each boot cycle.
+
+The CPU holds a SHA256 hash of a 3072-bit RSA public key inside
+IA32_SGXLEPUBKEYHASHn MSRs. Enclaves with a SIGSTRUCT that is signed with this
+key do not require a valid EINITTOKEN and can be authorized with special
+privileges. One of those privileges is ability to acquire the launch key with
+ENCLS(EGETKEY).
+
+**IA32_FEATURE_CONTROL[17]** is used by the BIOS configure whether
+IA32_SGXLEPUBKEYHASH MSRs are read-only or read-write before locking the
+feature control register and handing over control to the operating system.
+
+Enclave construction
+--------------------
+
+The construction is started by filling out the SECS that contains enclave
+address range, privileged attributes and measurement of TCS and REG pages (pages
+that will be mapped to the address range) among the other things. This structure
+is passed out to the ENCLS(ECREATE) together with a physical address of a page
+in EPC that will hold the SECS.
+
+The pages are added with ENCLS(EADD) and measured with ENCLS(EEXTEND) i.e.
+SHA256 hash MRENCLAVE residing in the SECS is extended with the page data.
+
+After all of the pages have been added, the enclave is initialized with
+ENCLS(EINIT). ENCLS(INIT) checks that the SIGSTRUCT is signed with the contained
+public key. If the given EINITTOKEN has the valid bit set, the CPU checks that
+the token is valid (CMAC'd with the launch key). If the token is not valid,
+the CPU will check whether the enclave is signed with a key matching to the
+IA32_SGXLEPUBKEYHASHn MSRs.
+
+Swapping pages
+--------------
+
+Enclave pages can be swapped out with ENCLS(EWB) to the unprotected memory. In
+addition to the EPC page, ENCLS(EWB) takes in a VA page and address for PCMD
+structure (Page Crypto MetaData) as input. The VA page will seal a version
+number for the page. PCMD is 128 byte structure that contains tracking
+information for the page, most importantly its MAC. With these structures the
+enclave is sealed and rollback protected while it resides in the unprotected
+memory.
+
+Before the page can be swapped out it must not have any active TLB references.
+ENCLS(EBLOCK) instruction moves a page to the *blocked* state, which means
+that no new TLB entries can be created to it by the hardware threads.
+
+After this a shootdown sequence is started with ENCLS(ETRACK), which sets an
+increased counter value to the entering hardware threads. ENCLS(EWB) will
+return SGX_NOT_TRACKED error while there are still threads with the earlier
+couner value because that means that there might be hardware thread inside
+the enclave with TLB entries to pages that are to be swapped.
+
+Kernel internals
+================
+
+Requirements
+------------
+
+Because SGX has an ever evolving and expanding feature set, it's possible for
+a BIOS or VMM to configure a system in such a way that not all CPUs are equal,
+e.g. where Launch Control is only enabled on a subset of CPUs. Linux does
+*not* support such a heterogeneous system configuration, nor does it even
+attempt to play nice in the face of a misconfigured system. With the exception
+of Launch Control's hash MSRs, which can vary per CPU, Linux assumes that all
+CPUs have a configuration that is identical to the boot CPU.
+
+
+Roles and responsibilities
+--------------------------
+
+SGX introduces system resources, e.g. EPC memory, that must be accessible to
+multiple entities, e.g. the native kernel driver (to expose SGX to userspace)
+and KVM (to expose SGX to VMs), ideally without introducing any dependencies
+between each SGX entity. To that end, the kernel owns and manages the shared
+system resources, i.e. the EPC and Launch Control MSRs, and defines functions
+that provide appropriate access to the shared resources. SGX support for
+user space and VMs is left to the SGX platform driver and KVM respectively.
+
+Launching enclaves
+------------------
+
+The current kernel implementation supports only unlocked MSRs i.e.
+FEATURE_CONTROL_SGX_LE_WR must be set. The launch is performed by setting the
+MSRs to the hash of the public key modulus of the enclave signer, which is one
+f the fields in the SIGSTRUCT.
+
+EPC management
+--------------
+
+Due to the unique requirements for swapping EPC pages, and because EPC pages
+(currently) do not have associated page structures, management of the EPC is
+not handled by the standard Linux swapper. SGX directly handles swapping
+of EPC pages, including a kthread to initiate reclaim and a rudimentary LRU
+mechanism. The consumers of EPC pages, e.g. the SGX driver, are required to
+implement function callbacks that can be invoked by the kernel to age,
+swap, and/or forcefully reclaim a target EPC page. In effect, the kernel
+controls what happens and when, while the consumers (driver, KVM, etc..) do
+the actual work.
+
+SGX uapi
+========
+
+.. kernel-doc:: drivers/platform/x86/intel_sgx/sgx_ioctl.c
+ :functions: sgx_ioc_enclave_create
+ sgx_ioc_enclave_add_page
+ sgx_ioc_enclave_init
+
+.. kernel-doc:: arch/x86/include/uapi/asm/sgx.h
+
+References
+==========
+
+* System Programming Manual: 39.1.4 Intel® SGX Launch Control Configuration
--
2.17.1
^ permalink raw reply related [flat|nested] 5+ messages in thread
* Re: [PATCH v13 13/13] x86/sgx: Driver documentation
2018-08-27 18:53 ` [PATCH v13 13/13] x86/sgx: Driver documentation Jarkko Sakkinen
@ 2018-08-27 19:40 ` Randy Dunlap
2018-08-28 7:58 ` Jarkko Sakkinen
2018-08-28 8:03 ` Jarkko Sakkinen
1 sibling, 1 reply; 5+ messages in thread
From: Randy Dunlap @ 2018-08-27 19:40 UTC (permalink / raw)
To: Jarkko Sakkinen, x86, platform-driver-x86
Cc: dave.hansen, sean.j.christopherson, nhorman, npmccallum,
linux-sgx, Jonathan Corbet, Thomas Gleixner, Ingo Molnar,
H. Peter Anvin, open list:DOCUMENTATION, open list
On 08/27/2018 11:53 AM, Jarkko Sakkinen wrote:
> Documentation of the features of the Software Guard eXtensions used
> by the Linux kernel and basic design choices for the core and driver
> and functionality.
>
> Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Hi,
Comments inline...
> ---
> Documentation/index.rst | 1 +
> Documentation/x86/intel_sgx.rst | 185 ++++++++++++++++++++++++++++++++
> 2 files changed, 186 insertions(+)
> create mode 100644 Documentation/x86/intel_sgx.rst
>
> diff --git a/Documentation/index.rst b/Documentation/index.rst
> index 5db7e87c7cb1..1cdc139adb40 100644
> --- a/Documentation/index.rst
> +++ b/Documentation/index.rst
> @@ -104,6 +104,7 @@ implementation.
> :maxdepth: 2
>
> sh/index
> + x86/index
>
> Filesystem Documentation
> ------------------------
> diff --git a/Documentation/x86/intel_sgx.rst b/Documentation/x86/intel_sgx.rst
> new file mode 100644
> index 000000000000..f6b7979c41f2
> --- /dev/null
> +++ b/Documentation/x86/intel_sgx.rst
> @@ -0,0 +1,185 @@
> +===================
> +Intel(R) SGX driver
> +===================
> +
> +Introduction
> +============
> +
> +Intel(R) SGX is a set of CPU instructions that can be used by applications to
> +set aside private regions of code and data. The code outside the enclave is
set aside private regions of code and data (which are called enclaves). The ...
> +disallowed to access the memory inside the enclave by the CPU access control.
> +In a way you can think that SGX provides inverted sandbox. It protects the
provides an inverted sandbox.
> +application from a malicious host.
> +
> +You can tell if your CPU supports SGX by looking into ``/proc/cpuinfo``:
> +
> + ``cat /proc/cpuinfo | grep sgx``
or ``grep sgx /proc/cpuinfo``
?
> +
> +Overview of SGX
> +===============
> +
> +SGX has a set of data structures to maintain information about the enclaves and
> +their security properties. BIOS reserves a fixed size region of physical memory
> +for these structures by setting Processor Reserved Memory Range Registers
> +(PRMRR).
> +
> +This memory range is protected from outside access by the CPU and all the data
> +coming in and out of the CPU package is encrypted by a key that is generated for
> +each boot cycle.
> +
> +Enclaves execute in ring-3 in a special enclave submode using pages from the
> +reserved memory range. A fixed logical address range for the enclave is reserved
> +by ENCLS(ECREATE), a leaf instruction used to create enclaves. It is referred in
It is referred to in
> +the documentation commonly as the ELRANGE.
> +
> +Every memory access to the ELRANGE is asserted by the CPU. If the CPU is not
> +executing in the enclave mode inside the enclave, #GP is raised. On the other
> +hand enclave code can make memory accesses both inside and outside of the
> +ELRANGE.
> +
> +Enclave can only execute code inside the ELRANGE. Instructions that may cause
An enclave can
or
Enclaves can
> +VMEXIT, IO instructions and instructions that require a privilege change are
> +prohibited inside the enclave. Interrupts and exceptions always cause enclave
cause the enclave
> +to exit and jump to an address outside the enclave given when the enclave is
> +entered by using the leaf instruction ENCLS(EENTER).
> +
> +Data types
> +----------
> +
> +The protected memory range contains the following data:
> +
> +* **Enclave Page Cache (EPC):** protected pages
> +* **Enclave Page Cache Map (EPCM):** a database that describes the state of the
> + pages and link them to an enclave.
> +
> +EPC has a number of different types of pages:
> +
> +* **SGX Enclave Control Structure (SECS)**: describes the global
> + properties of an enclave.
> +* **Regular (REG):** code and data pages in the ELRANGE.
> +* **Thread Control Structure (TCS):** pages that define entry points inside an
> + enclave. The enclave can only be entered through these entry points and each
> + can host a single hardware thread at a time.
> +* **Version Array (VA)**: 64-bit version numbers for pages that have been
> + swapped outside the enclave. Each page contains 512 version numbers.
> +
> +Launch control
> +--------------
> +
> +To launch an enclave, two structures must be provided for ENCLS(EINIT):
> +
> +1. **SIGSTRUCT:** signed measurement of the enclave binary.
what does "signed measurement" mean?
> +2. **EINITTOKEN:** a cryptographic token CMAC-signed with a AES256-key called
> + *launch key*, which is re-generated for each boot cycle.
> +
> +The CPU holds a SHA256 hash of a 3072-bit RSA public key inside
> +IA32_SGXLEPUBKEYHASHn MSRs. Enclaves with a SIGSTRUCT that is signed with this
> +key do not require a valid EINITTOKEN and can be authorized with special
> +privileges. One of those privileges is ability to acquire the launch key with
> +ENCLS(EGETKEY).
> +
> +**IA32_FEATURE_CONTROL[17]** is used by the BIOS configure whether
by the BIOS to configure whether
> +IA32_SGXLEPUBKEYHASH MSRs are read-only or read-write before locking the
> +feature control register and handing over control to the operating system.
> +
> +Enclave construction
> +--------------------
> +
> +The construction is started by filling out the SECS that contains enclave
> +address range, privileged attributes and measurement of TCS and REG pages (pages
what is this "measurement"? how is it done?
> +that will be mapped to the address range) among the other things. This structure
> +is passed out to the ENCLS(ECREATE) together with a physical address of a page
> +in EPC that will hold the SECS.
> +
> +The pages are added with ENCLS(EADD) and measured with ENCLS(EEXTEND) i.e.
> +SHA256 hash MRENCLAVE residing in the SECS is extended with the page data.
> +
> +After all of the pages have been added, the enclave is initialized with
> +ENCLS(EINIT). ENCLS(INIT) checks that the SIGSTRUCT is signed with the contained
> +public key. If the given EINITTOKEN has the valid bit set, the CPU checks that
> +the token is valid (CMAC'd with the launch key). If the token is not valid,
> +the CPU will check whether the enclave is signed with a key matching to the
> +IA32_SGXLEPUBKEYHASHn MSRs.
> +
> +Swapping pages
> +--------------
> +
> +Enclave pages can be swapped out with ENCLS(EWB) to the unprotected memory. In
> +addition to the EPC page, ENCLS(EWB) takes in a VA page and address for PCMD
> +structure (Page Crypto MetaData) as input. The VA page will seal a version
> +number for the page. PCMD is 128 byte structure that contains tracking
> +information for the page, most importantly its MAC. With these structures the
> +enclave is sealed and rollback protected while it resides in the unprotected
> +memory.
> +
> +Before the page can be swapped out it must not have any active TLB references.
> +ENCLS(EBLOCK) instruction moves a page to the *blocked* state, which means
> +that no new TLB entries can be created to it by the hardware threads.
> +
> +After this a shootdown sequence is started with ENCLS(ETRACK), which sets an
> +increased counter value to the entering hardware threads. ENCLS(EWB) will
> +return SGX_NOT_TRACKED error while there are still threads with the earlier
> +couner value because that means that there might be hardware thread inside
counter
> +the enclave with TLB entries to pages that are to be swapped.
> +
> +Kernel internals
> +================
> +
> +Requirements
> +------------
> +
> +Because SGX has an ever evolving and expanding feature set, it's possible for
> +a BIOS or VMM to configure a system in such a way that not all CPUs are equal,
> +e.g. where Launch Control is only enabled on a subset of CPUs. Linux does
> +*not* support such a heterogeneous system configuration, nor does it even
> +attempt to play nice in the face of a misconfigured system. With the exception
> +of Launch Control's hash MSRs, which can vary per CPU, Linux assumes that all
> +CPUs have a configuration that is identical to the boot CPU.
> +
> +
> +Roles and responsibilities
> +--------------------------
> +
> +SGX introduces system resources, e.g. EPC memory, that must be accessible to
> +multiple entities, e.g. the native kernel driver (to expose SGX to userspace)
> +and KVM (to expose SGX to VMs), ideally without introducing any dependencies
> +between each SGX entity. To that end, the kernel owns and manages the shared
> +system resources, i.e. the EPC and Launch Control MSRs, and defines functions
> +that provide appropriate access to the shared resources. SGX support for
> +user space and VMs is left to the SGX platform driver and KVM respectively.
userspace
(as on the second line of that same paragraph)
> +
> +Launching enclaves
> +------------------
> +
> +The current kernel implementation supports only unlocked MSRs i.e.
> +FEATURE_CONTROL_SGX_LE_WR must be set. The launch is performed by setting the
> +MSRs to the hash of the public key modulus of the enclave signer, which is one
> +f the fields in the SIGSTRUCT.
> +
> +EPC management
> +--------------
> +
> +Due to the unique requirements for swapping EPC pages, and because EPC pages
> +(currently) do not have associated page structures, management of the EPC is
> +not handled by the standard Linux swapper. SGX directly handles swapping
> +of EPC pages, including a kthread to initiate reclaim and a rudimentary LRU
> +mechanism. The consumers of EPC pages, e.g. the SGX driver, are required to
> +implement function callbacks that can be invoked by the kernel to age,
> +swap, and/or forcefully reclaim a target EPC page. In effect, the kernel
> +controls what happens and when, while the consumers (driver, KVM, etc..) do
> +the actual work.
> +
> +SGX uapi
> +========
> +
> +.. kernel-doc:: drivers/platform/x86/intel_sgx/sgx_ioctl.c
> + :functions: sgx_ioc_enclave_create
> + sgx_ioc_enclave_add_page
> + sgx_ioc_enclave_init
> +
> +.. kernel-doc:: arch/x86/include/uapi/asm/sgx.h
> +
> +References
> +==========
> +
> +* System Programming Manual: 39.1.4 Intel® SGX Launch Control Configuration
>
HTH.
--
~Randy
^ permalink raw reply [flat|nested] 5+ messages in thread
* Re: [PATCH v13 13/13] x86/sgx: Driver documentation
2018-08-27 19:40 ` Randy Dunlap
@ 2018-08-28 7:58 ` Jarkko Sakkinen
0 siblings, 0 replies; 5+ messages in thread
From: Jarkko Sakkinen @ 2018-08-28 7:58 UTC (permalink / raw)
To: Randy Dunlap
Cc: x86, platform-driver-x86, dave.hansen, sean.j.christopherson,
nhorman, npmccallum, linux-sgx, Jonathan Corbet, Thomas Gleixner,
Ingo Molnar, H. Peter Anvin, open list:DOCUMENTATION, open list
On Mon, Aug 27, 2018 at 12:40:50PM -0700, Randy Dunlap wrote:
> On 08/27/2018 11:53 AM, Jarkko Sakkinen wrote:
> > Documentation of the features of the Software Guard eXtensions used
> > by the Linux kernel and basic design choices for the core and driver
> > and functionality.
> >
> > Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
>
> Hi,
>
> Comments inline...
>
> > ---
> > Documentation/index.rst | 1 +
> > Documentation/x86/intel_sgx.rst | 185 ++++++++++++++++++++++++++++++++
> > 2 files changed, 186 insertions(+)
> > create mode 100644 Documentation/x86/intel_sgx.rst
> >
> > diff --git a/Documentation/index.rst b/Documentation/index.rst
> > index 5db7e87c7cb1..1cdc139adb40 100644
> > --- a/Documentation/index.rst
> > +++ b/Documentation/index.rst
> > @@ -104,6 +104,7 @@ implementation.
> > :maxdepth: 2
> >
> > sh/index
> > + x86/index
> >
> > Filesystem Documentation
> > ------------------------
> > diff --git a/Documentation/x86/intel_sgx.rst b/Documentation/x86/intel_sgx.rst
> > new file mode 100644
> > index 000000000000..f6b7979c41f2
> > --- /dev/null
> > +++ b/Documentation/x86/intel_sgx.rst
> > @@ -0,0 +1,185 @@
> > +===================
> > +Intel(R) SGX driver
> > +===================
> > +
> > +Introduction
> > +============
> > +
> > +Intel(R) SGX is a set of CPU instructions that can be used by applications to
> > +set aside private regions of code and data. The code outside the enclave is
>
> set aside private regions of code and data (which are called enclaves). The ...
>
> > +disallowed to access the memory inside the enclave by the CPU access control.
> > +In a way you can think that SGX provides inverted sandbox. It protects the
>
> provides an inverted sandbox.
>
> > +application from a malicious host.
> > +
> > +You can tell if your CPU supports SGX by looking into ``/proc/cpuinfo``:
> > +
> > + ``cat /proc/cpuinfo | grep sgx``
>
> or ``grep sgx /proc/cpuinfo``
> ?
>
> > +
> > +Overview of SGX
> > +===============
> > +
> > +SGX has a set of data structures to maintain information about the enclaves and
> > +their security properties. BIOS reserves a fixed size region of physical memory
> > +for these structures by setting Processor Reserved Memory Range Registers
> > +(PRMRR).
> > +
> > +This memory range is protected from outside access by the CPU and all the data
> > +coming in and out of the CPU package is encrypted by a key that is generated for
> > +each boot cycle.
> > +
> > +Enclaves execute in ring-3 in a special enclave submode using pages from the
> > +reserved memory range. A fixed logical address range for the enclave is reserved
> > +by ENCLS(ECREATE), a leaf instruction used to create enclaves. It is referred in
>
> It is referred to in
>
> > +the documentation commonly as the ELRANGE.
> > +
> > +Every memory access to the ELRANGE is asserted by the CPU. If the CPU is not
> > +executing in the enclave mode inside the enclave, #GP is raised. On the other
> > +hand enclave code can make memory accesses both inside and outside of the
> > +ELRANGE.
> > +
> > +Enclave can only execute code inside the ELRANGE. Instructions that may cause
>
> An enclave can
> or
> Enclaves can
>
> > +VMEXIT, IO instructions and instructions that require a privilege change are
> > +prohibited inside the enclave. Interrupts and exceptions always cause enclave
>
> cause the enclave
>
> > +to exit and jump to an address outside the enclave given when the enclave is
> > +entered by using the leaf instruction ENCLS(EENTER).
> > +
> > +Data types
> > +----------
> > +
> > +The protected memory range contains the following data:
> > +
> > +* **Enclave Page Cache (EPC):** protected pages
> > +* **Enclave Page Cache Map (EPCM):** a database that describes the state of the
> > + pages and link them to an enclave.
> > +
> > +EPC has a number of different types of pages:
> > +
> > +* **SGX Enclave Control Structure (SECS)**: describes the global
> > + properties of an enclave.
> > +* **Regular (REG):** code and data pages in the ELRANGE.
> > +* **Thread Control Structure (TCS):** pages that define entry points inside an
> > + enclave. The enclave can only be entered through these entry points and each
> > + can host a single hardware thread at a time.
> > +* **Version Array (VA)**: 64-bit version numbers for pages that have been
> > + swapped outside the enclave. Each page contains 512 version numbers.
> > +
> > +Launch control
> > +--------------
> > +
> > +To launch an enclave, two structures must be provided for ENCLS(EINIT):
> > +
> > +1. **SIGSTRUCT:** signed measurement of the enclave binary.
>
> what does "signed measurement" mean?
Right, I admit that this looks complete nonsense.
It is SHA256 hash of the construction of the enclave signed with the
private RSA key of the enclave signer (the public key is part of the
SIGSTRUCT).
A measurement is constructed by hashing tags for ECREATE, EADD and
EEXTEND together with those parameters that either define ordinal and
cardinal properties of the enclave associated with the operation and for
each EADD the associated data page is also hashed.
> > +2. **EINITTOKEN:** a cryptographic token CMAC-signed with a AES256-key called
> > + *launch key*, which is re-generated for each boot cycle.
> > +
> > +The CPU holds a SHA256 hash of a 3072-bit RSA public key inside
> > +IA32_SGXLEPUBKEYHASHn MSRs. Enclaves with a SIGSTRUCT that is signed with this
> > +key do not require a valid EINITTOKEN and can be authorized with special
> > +privileges. One of those privileges is ability to acquire the launch key with
> > +ENCLS(EGETKEY).
> > +
> > +**IA32_FEATURE_CONTROL[17]** is used by the BIOS configure whether
>
> by the BIOS to configure whether
>
> > +IA32_SGXLEPUBKEYHASH MSRs are read-only or read-write before locking the
> > +feature control register and handing over control to the operating system.
> > +
> > +Enclave construction
> > +--------------------
> > +
> > +The construction is started by filling out the SECS that contains enclave
> > +address range, privileged attributes and measurement of TCS and REG pages (pages
>
> what is this "measurement"? how is it done?
I will update this according the above explanation probably adding
section just for explaining what measurement means as it is a concept
that is cuts through the whole stack.
The CPU calculates it to variable inside the SECS page of the enclave
while you construct the enclave and a signing tool calculates equivalent
value and signs it with the private key (i.e. the signed measurement).
> > +that will be mapped to the address range) among the other things. This structure
> > +is passed out to the ENCLS(ECREATE) together with a physical address of a page
> > +in EPC that will hold the SECS.
> > +
> > +The pages are added with ENCLS(EADD) and measured with ENCLS(EEXTEND) i.e.
> > +SHA256 hash MRENCLAVE residing in the SECS is extended with the page data.
> > +
> > +After all of the pages have been added, the enclave is initialized with
> > +ENCLS(EINIT). ENCLS(INIT) checks that the SIGSTRUCT is signed with the contained
> > +public key. If the given EINITTOKEN has the valid bit set, the CPU checks that
> > +the token is valid (CMAC'd with the launch key). If the token is not valid,
> > +the CPU will check whether the enclave is signed with a key matching to the
> > +IA32_SGXLEPUBKEYHASHn MSRs.
> > +
> > +Swapping pages
> > +--------------
> > +
> > +Enclave pages can be swapped out with ENCLS(EWB) to the unprotected memory. In
> > +addition to the EPC page, ENCLS(EWB) takes in a VA page and address for PCMD
> > +structure (Page Crypto MetaData) as input. The VA page will seal a version
> > +number for the page. PCMD is 128 byte structure that contains tracking
> > +information for the page, most importantly its MAC. With these structures the
> > +enclave is sealed and rollback protected while it resides in the unprotected
> > +memory.
> > +
> > +Before the page can be swapped out it must not have any active TLB references.
> > +ENCLS(EBLOCK) instruction moves a page to the *blocked* state, which means
> > +that no new TLB entries can be created to it by the hardware threads.
> > +
> > +After this a shootdown sequence is started with ENCLS(ETRACK), which sets an
> > +increased counter value to the entering hardware threads. ENCLS(EWB) will
> > +return SGX_NOT_TRACKED error while there are still threads with the earlier
> > +couner value because that means that there might be hardware thread inside
>
> counter
>
> > +the enclave with TLB entries to pages that are to be swapped.
> > +
> > +Kernel internals
> > +================
> > +
> > +Requirements
> > +------------
> > +
> > +Because SGX has an ever evolving and expanding feature set, it's possible for
> > +a BIOS or VMM to configure a system in such a way that not all CPUs are equal,
> > +e.g. where Launch Control is only enabled on a subset of CPUs. Linux does
> > +*not* support such a heterogeneous system configuration, nor does it even
> > +attempt to play nice in the face of a misconfigured system. With the exception
> > +of Launch Control's hash MSRs, which can vary per CPU, Linux assumes that all
> > +CPUs have a configuration that is identical to the boot CPU.
> > +
> > +
> > +Roles and responsibilities
> > +--------------------------
> > +
> > +SGX introduces system resources, e.g. EPC memory, that must be accessible to
> > +multiple entities, e.g. the native kernel driver (to expose SGX to userspace)
> > +and KVM (to expose SGX to VMs), ideally without introducing any dependencies
> > +between each SGX entity. To that end, the kernel owns and manages the shared
> > +system resources, i.e. the EPC and Launch Control MSRs, and defines functions
> > +that provide appropriate access to the shared resources. SGX support for
> > +user space and VMs is left to the SGX platform driver and KVM respectively.
>
> userspace
> (as on the second line of that same paragraph)
>
> > +
> > +Launching enclaves
> > +------------------
> > +
> > +The current kernel implementation supports only unlocked MSRs i.e.
> > +FEATURE_CONTROL_SGX_LE_WR must be set. The launch is performed by setting the
> > +MSRs to the hash of the public key modulus of the enclave signer, which is one
> > +f the fields in the SIGSTRUCT.
> > +
> > +EPC management
> > +--------------
> > +
> > +Due to the unique requirements for swapping EPC pages, and because EPC pages
> > +(currently) do not have associated page structures, management of the EPC is
> > +not handled by the standard Linux swapper. SGX directly handles swapping
> > +of EPC pages, including a kthread to initiate reclaim and a rudimentary LRU
> > +mechanism. The consumers of EPC pages, e.g. the SGX driver, are required to
> > +implement function callbacks that can be invoked by the kernel to age,
> > +swap, and/or forcefully reclaim a target EPC page. In effect, the kernel
> > +controls what happens and when, while the consumers (driver, KVM, etc..) do
> > +the actual work.
> > +
> > +SGX uapi
> > +========
> > +
> > +.. kernel-doc:: drivers/platform/x86/intel_sgx/sgx_ioctl.c
> > + :functions: sgx_ioc_enclave_create
> > + sgx_ioc_enclave_add_page
> > + sgx_ioc_enclave_init
> > +
> > +.. kernel-doc:: arch/x86/include/uapi/asm/sgx.h
> > +
> > +References
> > +==========
> > +
> > +* System Programming Manual: 39.1.4 Intel® SGX Launch Control Configuration
> >
>
> HTH.
> --
Thank this was really useful feedback.
I've been drowned in SGX long enough to become blind sometimes to what
is not obvious :-)
> ~Randy
/Jarkko
^ permalink raw reply [flat|nested] 5+ messages in thread
* Re: [PATCH v13 13/13] x86/sgx: Driver documentation
2018-08-27 18:53 ` [PATCH v13 13/13] x86/sgx: Driver documentation Jarkko Sakkinen
2018-08-27 19:40 ` Randy Dunlap
@ 2018-08-28 8:03 ` Jarkko Sakkinen
1 sibling, 0 replies; 5+ messages in thread
From: Jarkko Sakkinen @ 2018-08-28 8:03 UTC (permalink / raw)
To: x86, platform-driver-x86
Cc: dave.hansen, sean.j.christopherson, nhorman, npmccallum,
linux-sgx, Jonathan Corbet, Thomas Gleixner, Ingo Molnar,
H. Peter Anvin, open list:DOCUMENTATION, open list
On Mon, Aug 27, 2018 at 09:53:34PM +0300, Jarkko Sakkinen wrote:
> Documentation of the features of the Software Guard eXtensions used
> by the Linux kernel and basic design choices for the core and driver
> and functionality.
>
> Signed-off-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
The short summary should be changed as "SGX documentation".
/Jarkko
^ permalink raw reply [flat|nested] 5+ messages in thread
end of thread, other threads:[~2018-08-28 8:03 UTC | newest]
Thread overview: 5+ messages (download: mbox.gz follow: Atom feed
-- links below jump to the message on this page --
2018-08-27 18:53 [PATCH v13 00/13] Intel SGX1 support Jarkko Sakkinen
2018-08-27 18:53 ` [PATCH v13 13/13] x86/sgx: Driver documentation Jarkko Sakkinen
2018-08-27 19:40 ` Randy Dunlap
2018-08-28 7:58 ` Jarkko Sakkinen
2018-08-28 8:03 ` Jarkko Sakkinen
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).