* [PATCH v2 01/79] docs: core-api: fix broken references for div64.c and gcd.c
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
@ 2019-04-22 13:26 ` Mauro Carvalho Chehab
2019-04-22 13:26 ` [PATCH v2 02/79] docs: trace: fix some Sphinx warnings Mauro Carvalho Chehab
` (72 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:26 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet
Those files were moved to lib/math.
Fixes: 9635bad21596 ("lib: Move mathematic helpers to separate folder")
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/core-api/kernel-api.rst | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
diff --git a/Documentation/core-api/kernel-api.rst b/Documentation/core-api/kernel-api.rst
index 71f5d2fe39b7..a29c99d13331 100644
--- a/Documentation/core-api/kernel-api.rst
+++ b/Documentation/core-api/kernel-api.rst
@@ -147,10 +147,10 @@ Division Functions
.. kernel-doc:: include/linux/math64.h
:internal:
-.. kernel-doc:: lib/div64.c
+.. kernel-doc:: lib/math/div64.c
:functions: div_s64_rem div64_u64_rem div64_u64 div64_s64
-.. kernel-doc:: lib/gcd.c
+.. kernel-doc:: lib/math/gcd.c
:export:
UUID/GUID
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 02/79] docs: trace: fix some Sphinx warnings
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
2019-04-22 13:26 ` [PATCH v2 01/79] docs: core-api: fix broken references for div64.c and gcd.c Mauro Carvalho Chehab
@ 2019-04-22 13:26 ` Mauro Carvalho Chehab
2019-04-24 15:10 ` Steven Rostedt
2019-04-22 13:26 ` [PATCH v2 03/79] scripts/documentation-file-ref-check: don't parse Next/ dir Mauro Carvalho Chehab
` (71 subsequent siblings)
73 siblings, 1 reply; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:26 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Steven Rostedt, Ingo Molnar
There are some warnings produced when building trace. Fix them.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/trace/ftrace.rst | 1 +
Documentation/trace/histogram.rst | 86 ++++++++++++++++---------------
2 files changed, 45 insertions(+), 42 deletions(-)
diff --git a/Documentation/trace/ftrace.rst b/Documentation/trace/ftrace.rst
index 809b39d066ee..f60079259669 100644
--- a/Documentation/trace/ftrace.rst
+++ b/Documentation/trace/ftrace.rst
@@ -1435,6 +1435,7 @@ trace has provided some very helpful debugging information.
If we prefer function graph output instead of function, we can set
display-graph option::
+
with echo 1 > options/display-graph
# tracer: irqsoff
diff --git a/Documentation/trace/histogram.rst b/Documentation/trace/histogram.rst
index 7612c7ad5715..2a6b23f779bb 100644
--- a/Documentation/trace/histogram.rst
+++ b/Documentation/trace/histogram.rst
@@ -2121,33 +2121,33 @@ The following commonly-used handler.action pairs are available:
the end the event that triggered the snapshot (in this case you
can verify the timestamps between the sched_waking and
sched_switch events, which should match the time displayed in the
- global maximum):
+ global maximum)::
- # cat /sys/kernel/debug/tracing/snapshot
+ # cat /sys/kernel/debug/tracing/snapshot
- <...>-2103 [005] d..3 309.873125: sched_switch: prev_comm=cyclictest prev_pid=2103 prev_prio=19 prev_state=D ==> next_comm=swapper/5 next_pid=0 next_prio=120
- <idle>-0 [005] d.h3 309.873611: sched_waking: comm=cyclictest pid=2102 prio=19 target_cpu=005
- <idle>-0 [005] dNh4 309.873613: sched_wakeup: comm=cyclictest pid=2102 prio=19 target_cpu=005
- <idle>-0 [005] d..3 309.873616: sched_switch: prev_comm=swapper/5 prev_pid=0 prev_prio=120 prev_state=S ==> next_comm=cyclictest next_pid=2102 next_prio=19
- <...>-2102 [005] d..3 309.873625: sched_switch: prev_comm=cyclictest prev_pid=2102 prev_prio=19 prev_state=D ==> next_comm=swapper/5 next_pid=0 next_prio=120
- <idle>-0 [005] d.h3 309.874624: sched_waking: comm=cyclictest pid=2102 prio=19 target_cpu=005
- <idle>-0 [005] dNh4 309.874626: sched_wakeup: comm=cyclictest pid=2102 prio=19 target_cpu=005
- <idle>-0 [005] dNh3 309.874628: sched_waking: comm=cyclictest pid=2103 prio=19 target_cpu=005
- <idle>-0 [005] dNh4 309.874630: sched_wakeup: comm=cyclictest pid=2103 prio=19 target_cpu=005
- <idle>-0 [005] d..3 309.874633: sched_switch: prev_comm=swapper/5 prev_pid=0 prev_prio=120 prev_state=S ==> next_comm=cyclictest next_pid=2102 next_prio=19
- <idle>-0 [004] d.h3 309.874757: sched_waking: comm=gnome-terminal- pid=1699 prio=120 target_cpu=004
- <idle>-0 [004] dNh4 309.874762: sched_wakeup: comm=gnome-terminal- pid=1699 prio=120 target_cpu=004
- <idle>-0 [004] d..3 309.874766: sched_switch: prev_comm=swapper/4 prev_pid=0 prev_prio=120 prev_state=S ==> next_comm=gnome-terminal- next_pid=1699 next_prio=120
- gnome-terminal--1699 [004] d.h2 309.874941: sched_stat_runtime: comm=gnome-terminal- pid=1699 runtime=180706 [ns] vruntime=1126870572 [ns]
- <idle>-0 [003] d.s4 309.874956: sched_waking: comm=rcu_sched pid=9 prio=120 target_cpu=007
- <idle>-0 [003] d.s5 309.874960: sched_wake_idle_without_ipi: cpu=7
- <idle>-0 [003] d.s5 309.874961: sched_wakeup: comm=rcu_sched pid=9 prio=120 target_cpu=007
- <idle>-0 [007] d..3 309.874963: sched_switch: prev_comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=S ==> next_comm=rcu_sched next_pid=9 next_prio=120
- rcu_sched-9 [007] d..3 309.874973: sched_stat_runtime: comm=rcu_sched pid=9 runtime=13646 [ns] vruntime=22531430286 [ns]
- rcu_sched-9 [007] d..3 309.874978: sched_switch: prev_comm=rcu_sched prev_pid=9 prev_prio=120 prev_state=R+ ==> next_comm=swapper/7 next_pid=0 next_prio=120
- <...>-2102 [005] d..4 309.874994: sched_migrate_task: comm=cyclictest pid=2103 prio=19 orig_cpu=5 dest_cpu=1
- <...>-2102 [005] d..4 309.875185: sched_wake_idle_without_ipi: cpu=1
- <idle>-0 [001] d..3 309.875200: sched_switch: prev_comm=swapper/1 prev_pid=0 prev_prio=120 prev_state=S ==> next_comm=cyclictest next_pid=2103 next_prio=19
+ <...>-2103 [005] d..3 309.873125: sched_switch: prev_comm=cyclictest prev_pid=2103 prev_prio=19 prev_state=D ==> next_comm=swapper/5 next_pid=0 next_prio=120
+ <idle>-0 [005] d.h3 309.873611: sched_waking: comm=cyclictest pid=2102 prio=19 target_cpu=005
+ <idle>-0 [005] dNh4 309.873613: sched_wakeup: comm=cyclictest pid=2102 prio=19 target_cpu=005
+ <idle>-0 [005] d..3 309.873616: sched_switch: prev_comm=swapper/5 prev_pid=0 prev_prio=120 prev_state=S ==> next_comm=cyclictest next_pid=2102 next_prio=19
+ <...>-2102 [005] d..3 309.873625: sched_switch: prev_comm=cyclictest prev_pid=2102 prev_prio=19 prev_state=D ==> next_comm=swapper/5 next_pid=0 next_prio=120
+ <idle>-0 [005] d.h3 309.874624: sched_waking: comm=cyclictest pid=2102 prio=19 target_cpu=005
+ <idle>-0 [005] dNh4 309.874626: sched_wakeup: comm=cyclictest pid=2102 prio=19 target_cpu=005
+ <idle>-0 [005] dNh3 309.874628: sched_waking: comm=cyclictest pid=2103 prio=19 target_cpu=005
+ <idle>-0 [005] dNh4 309.874630: sched_wakeup: comm=cyclictest pid=2103 prio=19 target_cpu=005
+ <idle>-0 [005] d..3 309.874633: sched_switch: prev_comm=swapper/5 prev_pid=0 prev_prio=120 prev_state=S ==> next_comm=cyclictest next_pid=2102 next_prio=19
+ <idle>-0 [004] d.h3 309.874757: sched_waking: comm=gnome-terminal- pid=1699 prio=120 target_cpu=004
+ <idle>-0 [004] dNh4 309.874762: sched_wakeup: comm=gnome-terminal- pid=1699 prio=120 target_cpu=004
+ <idle>-0 [004] d..3 309.874766: sched_switch: prev_comm=swapper/4 prev_pid=0 prev_prio=120 prev_state=S ==> next_comm=gnome-terminal- next_pid=1699 next_prio=120
+ gnome-terminal--1699 [004] d.h2 309.874941: sched_stat_runtime: comm=gnome-terminal- pid=1699 runtime=180706 [ns] vruntime=1126870572 [ns]
+ <idle>-0 [003] d.s4 309.874956: sched_waking: comm=rcu_sched pid=9 prio=120 target_cpu=007
+ <idle>-0 [003] d.s5 309.874960: sched_wake_idle_without_ipi: cpu=7
+ <idle>-0 [003] d.s5 309.874961: sched_wakeup: comm=rcu_sched pid=9 prio=120 target_cpu=007
+ <idle>-0 [007] d..3 309.874963: sched_switch: prev_comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=S ==> next_comm=rcu_sched next_pid=9 next_prio=120
+ rcu_sched-9 [007] d..3 309.874973: sched_stat_runtime: comm=rcu_sched pid=9 runtime=13646 [ns] vruntime=22531430286 [ns]
+ rcu_sched-9 [007] d..3 309.874978: sched_switch: prev_comm=rcu_sched prev_pid=9 prev_prio=120 prev_state=R+ ==> next_comm=swapper/7 next_pid=0 next_prio=120
+ <...>-2102 [005] d..4 309.874994: sched_migrate_task: comm=cyclictest pid=2103 prio=19 orig_cpu=5 dest_cpu=1
+ <...>-2102 [005] d..4 309.875185: sched_wake_idle_without_ipi: cpu=1
+ <idle>-0 [001] d..3 309.875200: sched_switch: prev_comm=swapper/1 prev_pid=0 prev_prio=120 prev_state=S ==> next_comm=cyclictest next_pid=2103 next_prio=19
- onchange(var).save(field,.. .)
@@ -2201,9 +2201,10 @@ The following commonly-used handler.action pairs are available:
following the rest of the fields.
If a snaphot was taken, there is also a message indicating that,
- along with the value and event that triggered the snapshot:
+ along with the value and event that triggered the snapshot::
+
+ # cat /sys/kernel/debug/tracing/events/tcp/tcp_probe/hist
- # cat /sys/kernel/debug/tracing/events/tcp/tcp_probe/hist
{ dport: 1521 } hitcount: 8
changed: 10 snd_wnd: 35456 srtt: 154262 rcv_wnd: 42112
@@ -2216,14 +2217,15 @@ The following commonly-used handler.action pairs are available:
{ dport: 443 } hitcount: 211
changed: 10 snd_wnd: 26960 srtt: 17379 rcv_wnd: 28800
- Snapshot taken (see tracing/snapshot). Details:
+ Snapshot taken (see tracing/snapshot). Details::
+
triggering value { onchange($cwnd) }: 10
triggered by event with key: { dport: 80 }
- Totals:
- Hits: 414
- Entries: 4
- Dropped: 0
+ Totals:
+ Hits: 414
+ Entries: 4
+ Dropped: 0
In the above case, the event that triggered the snapshot has the
key with dport == 80. If you look at the bucket that has 80 as
@@ -2233,18 +2235,18 @@ The following commonly-used handler.action pairs are available:
the global snapshot).
And finally, looking at the snapshot data should show at or near
- the end the event that triggered the snapshot:
+ the end the event that triggered the snapshot::
- # cat /sys/kernel/debug/tracing/snapshot
+ # cat /sys/kernel/debug/tracing/snapshot
- gnome-shell-1261 [006] dN.3 49.823113: sched_stat_runtime: comm=gnome-shell pid=1261 runtime=49347 [ns] vruntime=1835730389 [ns]
- kworker/u16:4-773 [003] d..3 49.823114: sched_switch: prev_comm=kworker/u16:4 prev_pid=773 prev_prio=120 prev_state=R+ ==> next_comm=kworker/3:2 next_pid=135 next_prio=120
- gnome-shell-1261 [006] d..3 49.823114: sched_switch: prev_comm=gnome-shell prev_pid=1261 prev_prio=120 prev_state=R+ ==> next_comm=kworker/6:2 next_pid=387 next_prio=120
- kworker/3:2-135 [003] d..3 49.823118: sched_stat_runtime: comm=kworker/3:2 pid=135 runtime=5339 [ns] vruntime=17815800388 [ns]
- kworker/6:2-387 [006] d..3 49.823120: sched_stat_runtime: comm=kworker/6:2 pid=387 runtime=9594 [ns] vruntime=14589605367 [ns]
- kworker/6:2-387 [006] d..3 49.823122: sched_switch: prev_comm=kworker/6:2 prev_pid=387 prev_prio=120 prev_state=R+ ==> next_comm=gnome-shell next_pid=1261 next_prio=120
- kworker/3:2-135 [003] d..3 49.823123: sched_switch: prev_comm=kworker/3:2 prev_pid=135 prev_prio=120 prev_state=T ==> next_comm=swapper/3 next_pid=0 next_prio=120
- <idle>-0 [004] ..s7 49.823798: tcp_probe: src=10.0.0.10:54326 dest=23.215.104.193:80 mark=0x0 length=32 snd_nxt=0xe3ae2ff5 snd_una=0xe3ae2ecd snd_cwnd=10 ssthresh=2147483647 snd_wnd=28960 srtt=19604 rcv_wnd=29312
+ gnome-shell-1261 [006] dN.3 49.823113: sched_stat_runtime: comm=gnome-shell pid=1261 runtime=49347 [ns] vruntime=1835730389 [ns]
+ kworker/u16:4-773 [003] d..3 49.823114: sched_switch: prev_comm=kworker/u16:4 prev_pid=773 prev_prio=120 prev_state=R+ ==> next_comm=kworker/3:2 next_pid=135 next_prio=120
+ gnome-shell-1261 [006] d..3 49.823114: sched_switch: prev_comm=gnome-shell prev_pid=1261 prev_prio=120 prev_state=R+ ==> next_comm=kworker/6:2 next_pid=387 next_prio=120
+ kworker/3:2-135 [003] d..3 49.823118: sched_stat_runtime: comm=kworker/3:2 pid=135 runtime=5339 [ns] vruntime=17815800388 [ns]
+ kworker/6:2-387 [006] d..3 49.823120: sched_stat_runtime: comm=kworker/6:2 pid=387 runtime=9594 [ns] vruntime=14589605367 [ns]
+ kworker/6:2-387 [006] d..3 49.823122: sched_switch: prev_comm=kworker/6:2 prev_pid=387 prev_prio=120 prev_state=R+ ==> next_comm=gnome-shell next_pid=1261 next_prio=120
+ kworker/3:2-135 [003] d..3 49.823123: sched_switch: prev_comm=kworker/3:2 prev_pid=135 prev_prio=120 prev_state=T ==> next_comm=swapper/3 next_pid=0 next_prio=120
+ <idle>-0 [004] ..s7 49.823798: tcp_probe: src=10.0.0.10:54326 dest=23.215.104.193:80 mark=0x0 length=32 snd_nxt=0xe3ae2ff5 snd_una=0xe3ae2ecd snd_cwnd=10 ssthresh=2147483647 snd_wnd=28960 srtt=19604 rcv_wnd=29312
3. User space creating a trigger
--------------------------------
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* Re: [PATCH v2 02/79] docs: trace: fix some Sphinx warnings
2019-04-22 13:26 ` [PATCH v2 02/79] docs: trace: fix some Sphinx warnings Mauro Carvalho Chehab
@ 2019-04-24 15:10 ` Steven Rostedt
0 siblings, 0 replies; 115+ messages in thread
From: Steven Rostedt @ 2019-04-24 15:10 UTC (permalink / raw)
To: Mauro Carvalho Chehab
Cc: Linux Doc Mailing List, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Ingo Molnar
On Mon, 22 Apr 2019 10:26:51 -0300
Mauro Carvalho Chehab <mchehab+samsung@kernel.org> wrote:
> There are some warnings produced when building trace. Fix them.
>
I guess I'm fine with this (I just read the text file as is).
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
-- Steve
> Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
> ---
> Documentation/trace/ftrace.rst | 1 +
> Documentation/trace/histogram.rst | 86 ++++++++++++++++---------------
> 2 files changed, 45 insertions(+), 42 deletions(-)
>
^ permalink raw reply [flat|nested] 115+ messages in thread
* [PATCH v2 03/79] scripts/documentation-file-ref-check: don't parse Next/ dir
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
2019-04-22 13:26 ` [PATCH v2 01/79] docs: core-api: fix broken references for div64.c and gcd.c Mauro Carvalho Chehab
2019-04-22 13:26 ` [PATCH v2 02/79] docs: trace: fix some Sphinx warnings Mauro Carvalho Chehab
@ 2019-04-22 13:26 ` Mauro Carvalho Chehab
2019-04-22 13:26 ` [PATCH v2 04/79] docs: aoe: convert docs to ReST and rename to *.rst Mauro Carvalho Chehab
` (70 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:26 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet
If one tries to run this script under linux-next, it would
hit lots of false-positives, due to the tree merges that
are stored under the Next/ directory.
So, add a logic to ignore it.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
scripts/documentation-file-ref-check | 3 +++
1 file changed, 3 insertions(+)
diff --git a/scripts/documentation-file-ref-check b/scripts/documentation-file-ref-check
index ad9db6821824..bd7d9ab63941 100755
--- a/scripts/documentation-file-ref-check
+++ b/scripts/documentation-file-ref-check
@@ -38,6 +38,9 @@ while (<IN>) {
my $f = $1;
my $ln = $2;
+ # On linux-next, discard the Next/ directory
+ next if ($f =~ m,^Next/,);
+
# Makefiles and scripts contain nasty expressions to parse docs
next if ($f =~ m/Makefile/ || $f =~ m/\.sh$/);
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 04/79] docs: aoe: convert docs to ReST and rename to *.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (2 preceding siblings ...)
2019-04-22 13:26 ` [PATCH v2 03/79] scripts/documentation-file-ref-check: don't parse Next/ dir Mauro Carvalho Chehab
@ 2019-04-22 13:26 ` Mauro Carvalho Chehab
2019-04-22 13:26 ` [PATCH v2 05/79] docs: arm64: convert docs to ReST and rename to .rst Mauro Carvalho Chehab
` (69 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:26 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet
There are only two files within Documentation/aoe dir that are
documentation. The remaining ones are examples and shell
scripts.
Convert the two AoE files to ReST format, and add the others
as literal, as they're part of the documentation.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/aoe/{aoe.txt => aoe.rst} | 63 +++++++++++++-----------
Documentation/aoe/examples.rst | 23 +++++++++
Documentation/aoe/index.rst | 19 +++++++
Documentation/aoe/{todo.txt => todo.rst} | 3 ++
Documentation/aoe/udev.txt | 2 +-
5 files changed, 81 insertions(+), 29 deletions(-)
rename Documentation/aoe/{aoe.txt => aoe.rst} (79%)
create mode 100644 Documentation/aoe/examples.rst
create mode 100644 Documentation/aoe/index.rst
rename Documentation/aoe/{todo.txt => todo.rst} (98%)
diff --git a/Documentation/aoe/aoe.txt b/Documentation/aoe/aoe.rst
similarity index 79%
rename from Documentation/aoe/aoe.txt
rename to Documentation/aoe/aoe.rst
index c71487d399d1..58747ecec71d 100644
--- a/Documentation/aoe/aoe.txt
+++ b/Documentation/aoe/aoe.rst
@@ -1,3 +1,6 @@
+Introduction
+============
+
ATA over Ethernet is a network protocol that provides simple access to
block storage on the LAN.
@@ -22,7 +25,8 @@ document the use of the driver and are not necessary if you install
the aoetools.
-CREATING DEVICE NODES
+Creating Device Nodes
+=====================
Users of udev should find the block device nodes created
automatically, but to create all the necessary device nodes, use the
@@ -38,7 +42,8 @@ CREATING DEVICE NODES
confusing when an AoE device is not present the first time the a
command is run but appears a second later.
-USING DEVICE NODES
+Using Device Nodes
+==================
"cat /dev/etherd/err" blocks, waiting for error diagnostic output,
like any retransmitted packets.
@@ -55,7 +60,7 @@ USING DEVICE NODES
by sysfs counterparts. Using the commands in aoetools insulates
users from these implementation details.
- The block devices are named like this:
+ The block devices are named like this::
e{shelf}.{slot}
e{shelf}.{slot}p{part}
@@ -64,7 +69,8 @@ USING DEVICE NODES
first shelf (shelf address zero). That's the whole disk. The first
partition on that disk would be "e0.2p1".
-USING SYSFS
+Using sysfs
+===========
Each aoe block device in /sys/block has the extra attributes of
state, mac, and netif. The state attribute is "up" when the device
@@ -78,29 +84,29 @@ USING SYSFS
There is a script in this directory that formats this information in
a convenient way. Users with aoetools should use the aoe-stat
- command.
+ command::
- root@makki root# sh Documentation/aoe/status.sh
- e10.0 eth3 up
- e10.1 eth3 up
- e10.2 eth3 up
- e10.3 eth3 up
- e10.4 eth3 up
- e10.5 eth3 up
- e10.6 eth3 up
- e10.7 eth3 up
- e10.8 eth3 up
- e10.9 eth3 up
- e4.0 eth1 up
- e4.1 eth1 up
- e4.2 eth1 up
- e4.3 eth1 up
- e4.4 eth1 up
- e4.5 eth1 up
- e4.6 eth1 up
- e4.7 eth1 up
- e4.8 eth1 up
- e4.9 eth1 up
+ root@makki root# sh Documentation/aoe/status.sh
+ e10.0 eth3 up
+ e10.1 eth3 up
+ e10.2 eth3 up
+ e10.3 eth3 up
+ e10.4 eth3 up
+ e10.5 eth3 up
+ e10.6 eth3 up
+ e10.7 eth3 up
+ e10.8 eth3 up
+ e10.9 eth3 up
+ e4.0 eth1 up
+ e4.1 eth1 up
+ e4.2 eth1 up
+ e4.3 eth1 up
+ e4.4 eth1 up
+ e4.5 eth1 up
+ e4.6 eth1 up
+ e4.7 eth1 up
+ e4.8 eth1 up
+ e4.9 eth1 up
Use /sys/module/aoe/parameters/aoe_iflist (or better, the driver
option discussed below) instead of /dev/etherd/interfaces to limit
@@ -113,12 +119,13 @@ USING SYSFS
for this purpose. You can also directly use the
/dev/etherd/discover special file described above.
-DRIVER OPTIONS
+Driver Options
+==============
There is a boot option for the built-in aoe driver and a
corresponding module parameter, aoe_iflist. Without this option,
all network interfaces may be used for ATA over Ethernet. Here is a
- usage example for the module parameter.
+ usage example for the module parameter::
modprobe aoe_iflist="eth1 eth3"
diff --git a/Documentation/aoe/examples.rst b/Documentation/aoe/examples.rst
new file mode 100644
index 000000000000..91f3198e52c1
--- /dev/null
+++ b/Documentation/aoe/examples.rst
@@ -0,0 +1,23 @@
+Example of udev rules
+---------------------
+
+ .. include:: udev.txt
+ :literal:
+
+Example of udev install rules script
+------------------------------------
+
+ .. literalinclude:: udev-install.sh
+ :language: shell
+
+Example script to get status
+----------------------------
+
+ .. literalinclude:: status.sh
+ :language: shell
+
+Example of AoE autoload script
+------------------------------
+
+ .. literalinclude:: autoload.sh
+ :language: shell
diff --git a/Documentation/aoe/index.rst b/Documentation/aoe/index.rst
new file mode 100644
index 000000000000..4394b9b7913c
--- /dev/null
+++ b/Documentation/aoe/index.rst
@@ -0,0 +1,19 @@
+:orphan:
+
+=======================
+ATA over Ethernet (AoE)
+=======================
+
+.. toctree::
+ :maxdepth: 1
+
+ aoe
+ todo
+ examples
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/aoe/todo.txt b/Documentation/aoe/todo.rst
similarity index 98%
rename from Documentation/aoe/todo.txt
rename to Documentation/aoe/todo.rst
index c09dfad4aed8..dea8db5a33e1 100644
--- a/Documentation/aoe/todo.txt
+++ b/Documentation/aoe/todo.rst
@@ -1,3 +1,6 @@
+TODO
+====
+
There is a potential for deadlock when allocating a struct sk_buff for
data that needs to be written out to aoe storage. If the data is
being written from a dirty page in order to free that page, and if
diff --git a/Documentation/aoe/udev.txt b/Documentation/aoe/udev.txt
index 1f06daf03f5b..54feda5a0772 100644
--- a/Documentation/aoe/udev.txt
+++ b/Documentation/aoe/udev.txt
@@ -11,7 +11,7 @@
# udev_rules="/etc/udev/rules.d/"
# bash# ls /etc/udev/rules.d/
# 10-wacom.rules 50-udev.rules
-# bash# cp /path/to/linux-2.6.xx/Documentation/aoe/udev.txt \
+# bash# cp /path/to/linux/Documentation/aoe/udev.txt \
# /etc/udev/rules.d/60-aoe.rules
#
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 05/79] docs: arm64: convert docs to ReST and rename to .rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (3 preceding siblings ...)
2019-04-22 13:26 ` [PATCH v2 04/79] docs: aoe: convert docs to ReST and rename to *.rst Mauro Carvalho Chehab
@ 2019-04-22 13:26 ` Mauro Carvalho Chehab
2019-04-22 13:26 ` [PATCH v2 07/79] docs: cdrom: convert docs to ReST and rename to *.rst Mauro Carvalho Chehab
` (68 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:26 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Catalin Marinas, Will Deacon, Harry Wei,
Alex Shi, Paolo Bonzini, Radim Krčmář,
Ard Biesheuvel, linux-arm-kernel, kvm, linux-efi
The documentation is in a format that is very close to ReST format.
The conversion is actually:
- add blank lines in order to identify paragraphs;
- fixing tables markups;
- adding some lists markups;
- marking literal blocks;
- adjust some title markups.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
...object_usage.txt => acpi_object_usage.rst} | 288 ++++++++++++------
.../arm64/{arm-acpi.txt => arm-acpi.rst} | 155 +++++-----
.../arm64/{booting.txt => booting.rst} | 91 ++++--
...egisters.txt => cpu-feature-registers.rst} | 190 ++++++------
.../arm64/{elf_hwcaps.txt => elf_hwcaps.rst} | 56 +---
.../{hugetlbpage.txt => hugetlbpage.rst} | 7 +-
Documentation/arm64/index.rst | 28 ++
...structions.txt => legacy_instructions.rst} | 43 ++-
Documentation/arm64/memory.rst | 98 ++++++
Documentation/arm64/memory.txt | 97 ------
...ication.txt => pointer-authentication.rst} | 2 +
...{silicon-errata.txt => silicon-errata.rst} | 63 +++-
Documentation/arm64/{sve.txt => sve.rst} | 12 +-
...agged-pointers.txt => tagged-pointers.rst} | 6 +-
.../translations/zh_CN/arm64/booting.txt | 4 +-
.../zh_CN/arm64/legacy_instructions.txt | 4 +-
.../translations/zh_CN/arm64/memory.txt | 4 +-
.../zh_CN/arm64/silicon-errata.txt | 4 +-
.../zh_CN/arm64/tagged-pointers.txt | 4 +-
Documentation/virtual/kvm/api.txt | 2 +-
arch/arm64/include/asm/efi.h | 2 +-
arch/arm64/include/asm/image.h | 2 +-
arch/arm64/include/uapi/asm/sigcontext.h | 2 +-
arch/arm64/kernel/kexec_image.c | 2 +-
24 files changed, 694 insertions(+), 472 deletions(-)
rename Documentation/arm64/{acpi_object_usage.txt => acpi_object_usage.rst} (84%)
rename Documentation/arm64/{arm-acpi.txt => arm-acpi.rst} (86%)
rename Documentation/arm64/{booting.txt => booting.rst} (86%)
rename Documentation/arm64/{cpu-feature-registers.txt => cpu-feature-registers.rst} (66%)
rename Documentation/arm64/{elf_hwcaps.txt => elf_hwcaps.rst} (92%)
rename Documentation/arm64/{hugetlbpage.txt => hugetlbpage.rst} (86%)
create mode 100644 Documentation/arm64/index.rst
rename Documentation/arm64/{legacy_instructions.txt => legacy_instructions.rst} (73%)
create mode 100644 Documentation/arm64/memory.rst
delete mode 100644 Documentation/arm64/memory.txt
rename Documentation/arm64/{pointer-authentication.txt => pointer-authentication.rst} (98%)
rename Documentation/arm64/{silicon-errata.txt => silicon-errata.rst} (55%)
rename Documentation/arm64/{sve.txt => sve.rst} (98%)
rename Documentation/arm64/{tagged-pointers.txt => tagged-pointers.rst} (94%)
diff --git a/Documentation/arm64/acpi_object_usage.txt b/Documentation/arm64/acpi_object_usage.rst
similarity index 84%
rename from Documentation/arm64/acpi_object_usage.txt
rename to Documentation/arm64/acpi_object_usage.rst
index c77010c5c1f0..d51b69dc624d 100644
--- a/Documentation/arm64/acpi_object_usage.txt
+++ b/Documentation/arm64/acpi_object_usage.rst
@@ -1,5 +1,7 @@
+===========
ACPI Tables
------------
+===========
+
The expectations of individual ACPI tables are discussed in the list that
follows.
@@ -11,54 +13,71 @@ outside of the UEFI Forum (see Section 5.2.6 of the specification).
For ACPI on arm64, tables also fall into the following categories:
- -- Required: DSDT, FADT, GTDT, MADT, MCFG, RSDP, SPCR, XSDT
+ - Required: DSDT, FADT, GTDT, MADT, MCFG, RSDP, SPCR, XSDT
- -- Recommended: BERT, EINJ, ERST, HEST, PCCT, SSDT
+ - Recommended: BERT, EINJ, ERST, HEST, PCCT, SSDT
- -- Optional: BGRT, CPEP, CSRT, DBG2, DRTM, ECDT, FACS, FPDT, IORT,
+ - Optional: BGRT, CPEP, CSRT, DBG2, DRTM, ECDT, FACS, FPDT, IORT,
MCHI, MPST, MSCT, NFIT, PMTT, RASF, SBST, SLIT, SPMI, SRAT, STAO,
TCPA, TPM2, UEFI, XENV
- -- Not supported: BOOT, DBGP, DMAR, ETDT, HPET, IBFT, IVRS, LPIT,
+ - Not supported: BOOT, DBGP, DMAR, ETDT, HPET, IBFT, IVRS, LPIT,
MSDM, OEMx, PSDT, RSDT, SLIC, WAET, WDAT, WDRT, WPBT
+====== ========================================================================
Table Usage for ARMv8 Linux
------ ----------------------------------------------------------------
+====== ========================================================================
BERT Section 18.3 (signature == "BERT")
- == Boot Error Record Table ==
+
+ **Boot Error Record Table**
+
Must be supplied if RAS support is provided by the platform. It
is recommended this table be supplied.
BOOT Signature Reserved (signature == "BOOT")
- == simple BOOT flag table ==
+
+ **simple BOOT flag table**
+
Microsoft only table, will not be supported.
BGRT Section 5.2.22 (signature == "BGRT")
- == Boot Graphics Resource Table ==
+
+ **Boot Graphics Resource Table**
+
Optional, not currently supported, with no real use-case for an
ARM server.
CPEP Section 5.2.18 (signature == "CPEP")
- == Corrected Platform Error Polling table ==
+
+ **Corrected Platform Error Polling table**
+
Optional, not currently supported, and not recommended until such
time as ARM-compatible hardware is available, and the specification
suitably modified.
CSRT Signature Reserved (signature == "CSRT")
- == Core System Resources Table ==
+
+ **Core System Resources Table**
+
Optional, not currently supported.
DBG2 Signature Reserved (signature == "DBG2")
- == DeBuG port table 2 ==
+
+ **DeBuG port table 2**
+
License has changed and should be usable. Optional if used instead
of earlycon=<device> on the command line.
DBGP Signature Reserved (signature == "DBGP")
- == DeBuG Port table ==
+
+ **DeBuG Port table**
+
Microsoft only table, will not be supported.
DSDT Section 5.2.11.1 (signature == "DSDT")
- == Differentiated System Description Table ==
+
+ **Differentiated System Description Table**
+
A DSDT is required; see also SSDT.
ACPI tables contain only one DSDT but can contain one or more SSDTs,
@@ -66,22 +85,30 @@ DSDT Section 5.2.11.1 (signature == "DSDT")
but cannot modify or replace anything in the DSDT.
DMAR Signature Reserved (signature == "DMAR")
- == DMA Remapping table ==
+
+ **DMA Remapping table**
+
x86 only table, will not be supported.
DRTM Signature Reserved (signature == "DRTM")
- == Dynamic Root of Trust for Measurement table ==
+
+ **Dynamic Root of Trust for Measurement table**
+
Optional, not currently supported.
ECDT Section 5.2.16 (signature == "ECDT")
- == Embedded Controller Description Table ==
+
+ **Embedded Controller Description Table**
+
Optional, not currently supported, but could be used on ARM if and
only if one uses the GPE_BIT field to represent an IRQ number, since
there are no GPE blocks defined in hardware reduced mode. This would
need to be modified in the ACPI specification.
EINJ Section 18.6 (signature == "EINJ")
- == Error Injection table ==
+
+ **Error Injection table**
+
This table is very useful for testing platform response to error
conditions; it allows one to inject an error into the system as
if it had actually occurred. However, this table should not be
@@ -89,27 +116,35 @@ EINJ Section 18.6 (signature == "EINJ")
and executed with the ACPICA tools only during testing.
ERST Section 18.5 (signature == "ERST")
- == Error Record Serialization Table ==
+
+ **Error Record Serialization Table**
+
On a platform supports RAS, this table must be supplied if it is not
UEFI-based; if it is UEFI-based, this table may be supplied. When this
table is not present, UEFI run time service will be utilized to save
and retrieve hardware error information to and from a persistent store.
ETDT Signature Reserved (signature == "ETDT")
- == Event Timer Description Table ==
+
+ **Event Timer Description Table**
+
Obsolete table, will not be supported.
FACS Section 5.2.10 (signature == "FACS")
- == Firmware ACPI Control Structure ==
+
+ **Firmware ACPI Control Structure**
+
It is unlikely that this table will be terribly useful. If it is
provided, the Global Lock will NOT be used since it is not part of
the hardware reduced profile, and only 64-bit address fields will
be considered valid.
FADT Section 5.2.9 (signature == "FACP")
- == Fixed ACPI Description Table ==
+
+ **Fixed ACPI Description Table**
Required for arm64.
+
The HW_REDUCED_ACPI flag must be set. All of the fields that are
to be ignored when HW_REDUCED_ACPI is set are expected to be set to
zero.
@@ -118,22 +153,28 @@ FADT Section 5.2.9 (signature == "FACP")
used, not FIRMWARE_CTRL.
If PSCI is used (as is recommended), make sure that ARM_BOOT_ARCH is
- filled in properly -- that the PSCI_COMPLIANT flag is set and that
+ filled in properly - that the PSCI_COMPLIANT flag is set and that
PSCI_USE_HVC is set or unset as needed (see table 5-37).
For the DSDT that is also required, the X_DSDT field is to be used,
not the DSDT field.
FPDT Section 5.2.23 (signature == "FPDT")
- == Firmware Performance Data Table ==
+
+ **Firmware Performance Data Table**
+
Optional, not currently supported.
GTDT Section 5.2.24 (signature == "GTDT")
- == Generic Timer Description Table ==
+
+ **Generic Timer Description Table**
+
Required for arm64.
HEST Section 18.3.2 (signature == "HEST")
- == Hardware Error Source Table ==
+
+ **Hardware Error Source Table**
+
ARM-specific error sources have been defined; please use those or the
PCI types such as type 6 (AER Root Port), 7 (AER Endpoint), or 8 (AER
Bridge), or use type 9 (Generic Hardware Error Source). Firmware first
@@ -144,122 +185,174 @@ HEST Section 18.3.2 (signature == "HEST")
is recommended this table be supplied.
HPET Signature Reserved (signature == "HPET")
- == High Precision Event timer Table ==
+
+ **High Precision Event timer Table**
+
x86 only table, will not be supported.
IBFT Signature Reserved (signature == "IBFT")
- == iSCSI Boot Firmware Table ==
+
+ **iSCSI Boot Firmware Table**
+
Microsoft defined table, support TBD.
IORT Signature Reserved (signature == "IORT")
- == Input Output Remapping Table ==
+
+ **Input Output Remapping Table**
+
arm64 only table, required in order to describe IO topology, SMMUs,
and GIC ITSs, and how those various components are connected together,
such as identifying which components are behind which SMMUs/ITSs.
This table will only be required on certain SBSA platforms (e.g.,
- when using GICv3-ITS and an SMMU); on SBSA Level 0 platforms, it
+ when using GICv3-ITS and an SMMU); on SBSA Level 0 platforms, it
remains optional.
IVRS Signature Reserved (signature == "IVRS")
- == I/O Virtualization Reporting Structure ==
+
+ **I/O Virtualization Reporting Structure**
+
x86_64 (AMD) only table, will not be supported.
LPIT Signature Reserved (signature == "LPIT")
- == Low Power Idle Table ==
+
+ **Low Power Idle Table**
+
x86 only table as of ACPI 5.1; starting with ACPI 6.0, processor
descriptions and power states on ARM platforms should use the DSDT
and define processor container devices (_HID ACPI0010, Section 8.4,
and more specifically 8.4.3 and and 8.4.4).
MADT Section 5.2.12 (signature == "APIC")
- == Multiple APIC Description Table ==
+
+ **Multiple APIC Description Table**
+
Required for arm64. Only the GIC interrupt controller structures
should be used (types 0xA - 0xF).
MCFG Signature Reserved (signature == "MCFG")
- == Memory-mapped ConFiGuration space ==
+
+ **Memory-mapped ConFiGuration space**
+
If the platform supports PCI/PCIe, an MCFG table is required.
MCHI Signature Reserved (signature == "MCHI")
- == Management Controller Host Interface table ==
+
+ **Management Controller Host Interface table**
+
Optional, not currently supported.
MPST Section 5.2.21 (signature == "MPST")
- == Memory Power State Table ==
+
+ **Memory Power State Table**
+
Optional, not currently supported.
MSCT Section 5.2.19 (signature == "MSCT")
- == Maximum System Characteristic Table ==
+
+ **Maximum System Characteristic Table**
+
Optional, not currently supported.
MSDM Signature Reserved (signature == "MSDM")
- == Microsoft Data Management table ==
+
+ **Microsoft Data Management table**
+
Microsoft only table, will not be supported.
NFIT Section 5.2.25 (signature == "NFIT")
- == NVDIMM Firmware Interface Table ==
+
+ **NVDIMM Firmware Interface Table**
+
Optional, not currently supported.
OEMx Signature of "OEMx" only
- == OEM Specific Tables ==
+
+ **OEM Specific Tables**
+
All tables starting with a signature of "OEM" are reserved for OEM
use. Since these are not meant to be of general use but are limited
to very specific end users, they are not recommended for use and are
not supported by the kernel for arm64.
PCCT Section 14.1 (signature == "PCCT)
- == Platform Communications Channel Table ==
+
+ **Platform Communications Channel Table**
+
Recommend for use on arm64; use of PCC is recommended when using CPPC
to control performance and power for platform processors.
PMTT Section 5.2.21.12 (signature == "PMTT")
- == Platform Memory Topology Table ==
+
+ **Platform Memory Topology Table**
+
Optional, not currently supported.
PSDT Section 5.2.11.3 (signature == "PSDT")
- == Persistent System Description Table ==
+
+ **Persistent System Description Table**
+
Obsolete table, will not be supported.
RASF Section 5.2.20 (signature == "RASF")
- == RAS Feature table ==
+
+ **RAS Feature table**
+
Optional, not currently supported.
RSDP Section 5.2.5 (signature == "RSD PTR")
- == Root System Description PoinTeR ==
+
+ **Root System Description PoinTeR**
+
Required for arm64.
RSDT Section 5.2.7 (signature == "RSDT")
- == Root System Description Table ==
+
+ **Root System Description Table**
+
Since this table can only provide 32-bit addresses, it is deprecated
on arm64, and will not be used. If provided, it will be ignored.
SBST Section 5.2.14 (signature == "SBST")
- == Smart Battery Subsystem Table ==
+
+ **Smart Battery Subsystem Table**
+
Optional, not currently supported.
SLIC Signature Reserved (signature == "SLIC")
- == Software LIcensing table ==
+
+ **Software LIcensing table**
+
Microsoft only table, will not be supported.
SLIT Section 5.2.17 (signature == "SLIT")
- == System Locality distance Information Table ==
+
+ **System Locality distance Information Table**
+
Optional in general, but required for NUMA systems.
SPCR Signature Reserved (signature == "SPCR")
- == Serial Port Console Redirection table ==
+
+ **Serial Port Console Redirection table**
+
Required for arm64.
SPMI Signature Reserved (signature == "SPMI")
- == Server Platform Management Interface table ==
+
+ **Server Platform Management Interface table**
+
Optional, not currently supported.
SRAT Section 5.2.16 (signature == "SRAT")
- == System Resource Affinity Table ==
+
+ **System Resource Affinity Table**
+
Optional, but if used, only the GICC Affinity structures are read.
To support arm64 NUMA, this table is required.
SSDT Section 5.2.11.2 (signature == "SSDT")
- == Secondary System Description Table ==
+
+ **Secondary System Description Table**
+
These tables are a continuation of the DSDT; these are recommended
for use with devices that can be added to a running system, but can
also serve the purpose of dividing up device descriptions into more
@@ -272,49 +365,69 @@ SSDT Section 5.2.11.2 (signature == "SSDT")
one DSDT but can contain many SSDTs.
STAO Signature Reserved (signature == "STAO")
- == _STA Override table ==
+
+ **_STA Override table**
+
Optional, but only necessary in virtualized environments in order to
hide devices from guest OSs.
TCPA Signature Reserved (signature == "TCPA")
- == Trusted Computing Platform Alliance table ==
+
+ **Trusted Computing Platform Alliance table**
+
Optional, not currently supported, and may need changes to fully
interoperate with arm64.
TPM2 Signature Reserved (signature == "TPM2")
- == Trusted Platform Module 2 table ==
+
+ **Trusted Platform Module 2 table**
+
Optional, not currently supported, and may need changes to fully
interoperate with arm64.
UEFI Signature Reserved (signature == "UEFI")
- == UEFI ACPI data table ==
+
+ **UEFI ACPI data table**
+
Optional, not currently supported. No known use case for arm64,
at present.
WAET Signature Reserved (signature == "WAET")
- == Windows ACPI Emulated devices Table ==
+
+ **Windows ACPI Emulated devices Table**
+
Microsoft only table, will not be supported.
WDAT Signature Reserved (signature == "WDAT")
- == Watch Dog Action Table ==
+
+ **Watch Dog Action Table**
+
Microsoft only table, will not be supported.
WDRT Signature Reserved (signature == "WDRT")
- == Watch Dog Resource Table ==
+
+ **Watch Dog Resource Table**
+
Microsoft only table, will not be supported.
WPBT Signature Reserved (signature == "WPBT")
- == Windows Platform Binary Table ==
+
+ **Windows Platform Binary Table**
+
Microsoft only table, will not be supported.
XENV Signature Reserved (signature == "XENV")
- == Xen project table ==
+
+ **Xen project table**
+
Optional, used only by Xen at present.
XSDT Section 5.2.8 (signature == "XSDT")
- == eXtended System Description Table ==
+
+ **eXtended System Description Table**
+
Required for arm64.
-
+====== ========================================================================
ACPI Objects
------------
@@ -323,10 +436,11 @@ shown in the list that follows; any object not explicitly mentioned below
should be used as needed for a particular platform or particular subsystem,
such as power management or PCI.
+===== ================ ========================================================
Name Section Usage for ARMv8 Linux
----- ------------ -------------------------------------------------
+===== ================ ========================================================
_CCA 6.2.17 This method must be defined for all bus masters
- on arm64 -- there are no assumptions made about
+ on arm64 - there are no assumptions made about
whether such devices are cache coherent or not.
The _CCA value is inherited by all descendants of
these devices so it does not need to be repeated.
@@ -422,8 +536,8 @@ _OSC 6.2.11 This method can be a global method in ACPI (i.e.,
by the kernel community, then register it with the
UEFI Forum.
-\_OSI 5.7.2 Deprecated on ARM64. As far as ACPI firmware is
- concerned, _OSI is not to be used to determine what
+\_OSI 5.7.2 Deprecated on ARM64. As far as ACPI firmware is
+ concerned, _OSI is not to be used to determine what
sort of system is being used or what functionality
is provided. The _OSC method is to be used instead.
@@ -447,7 +561,7 @@ _PSx 7.3.2-5 Use as needed; power management specific. If _PS0 is
usage, change them in these methods.
_RDI 8.4.4.4 Recommended for use with processor definitions (_HID
- ACPI0010) on arm64. This should only be used in
+ ACPI0010) on arm64. This should only be used in
conjunction with _LPI.
\_REV 5.7.4 Always returns the latest version of ACPI supported.
@@ -476,6 +590,7 @@ _SWS 7.4.3 Use as needed; power management specific; this may
_UID 6.1.12 Recommended for distinguishing devices of the same
class; define it if at all possible.
+===== ================ ========================================================
@@ -488,7 +603,7 @@ platforms, ACPI events must be signaled differently.
There are two options: GPIO-signaled interrupts (Section 5.6.5), and
interrupt-signaled events (Section 5.6.9). Interrupt-signaled events are a
-new feature in the ACPI 6.1 specification. Either -- or both -- can be used
+new feature in the ACPI 6.1 specification. Either - or both - can be used
on a given platform, and which to use may be dependent of limitations in any
given SoC. If possible, interrupt-signaled events are recommended.
@@ -564,39 +679,40 @@ supported.
The following classes of objects are not supported:
- -- Section 9.2: ambient light sensor devices
+ - Section 9.2: ambient light sensor devices
- -- Section 9.3: battery devices
+ - Section 9.3: battery devices
- -- Section 9.4: lids (e.g., laptop lids)
+ - Section 9.4: lids (e.g., laptop lids)
- -- Section 9.8.2: IDE controllers
+ - Section 9.8.2: IDE controllers
- -- Section 9.9: floppy controllers
+ - Section 9.9: floppy controllers
- -- Section 9.10: GPE block devices
+ - Section 9.10: GPE block devices
- -- Section 9.15: PC/AT RTC/CMOS devices
+ - Section 9.15: PC/AT RTC/CMOS devices
- -- Section 9.16: user presence detection devices
+ - Section 9.16: user presence detection devices
- -- Section 9.17: I/O APIC devices; all GICs must be enumerable via MADT
+ - Section 9.17: I/O APIC devices; all GICs must be enumerable via MADT
- -- Section 9.18: time and alarm devices (see 9.15)
+ - Section 9.18: time and alarm devices (see 9.15)
- -- Section 10: power source and power meter devices
+ - Section 10: power source and power meter devices
- -- Section 11: thermal management
+ - Section 11: thermal management
- -- Section 12: embedded controllers interface
+ - Section 12: embedded controllers interface
- -- Section 13: SMBus interfaces
+ - Section 13: SMBus interfaces
This also means that there is no support for the following objects:
+==== =========================== ==== ==========
Name Section Name Section
----- ------------ ---- ------------
+==== =========================== ==== ==========
_ALC 9.3.4 _FDM 9.10.3
_ALI 9.3.2 _FIX 6.2.7
_ALP 9.3.6 _GAI 10.4.5
@@ -619,4 +735,4 @@ _DCK 6.5.2 _UPD 9.16.1
_EC 12.12 _UPP 9.16.2
_FDE 9.10.1 _WPC 10.5.2
_FDI 9.10.2 _WPP 10.5.3
-
+==== =========================== ==== ==========
diff --git a/Documentation/arm64/arm-acpi.txt b/Documentation/arm64/arm-acpi.rst
similarity index 86%
rename from Documentation/arm64/arm-acpi.txt
rename to Documentation/arm64/arm-acpi.rst
index 1a74a041a443..872dbbc73d4a 100644
--- a/Documentation/arm64/arm-acpi.txt
+++ b/Documentation/arm64/arm-acpi.rst
@@ -1,5 +1,7 @@
+=====================
ACPI on ARMv8 Servers
----------------------
+=====================
+
ACPI can be used for ARMv8 general purpose servers designed to follow
the ARM SBSA (Server Base System Architecture) [0] and SBBR (Server
Base Boot Requirements) [1] specifications. Please note that the SBBR
@@ -34,28 +36,28 @@ of the summary text almost directly, to be honest.
The short form of the rationale for ACPI on ARM is:
--- ACPI’s byte code (AML) allows the platform to encode hardware behavior,
+- ACPI’s byte code (AML) allows the platform to encode hardware behavior,
while DT explicitly does not support this. For hardware vendors, being
able to encode behavior is a key tool used in supporting operating
system releases on new hardware.
--- ACPI’s OSPM defines a power management model that constrains what the
+- ACPI’s OSPM defines a power management model that constrains what the
platform is allowed to do into a specific model, while still providing
flexibility in hardware design.
--- In the enterprise server environment, ACPI has established bindings (such
+- In the enterprise server environment, ACPI has established bindings (such
as for RAS) which are currently used in production systems. DT does not.
Such bindings could be defined in DT at some point, but doing so means ARM
and x86 would end up using completely different code paths in both firmware
and the kernel.
--- Choosing a single interface to describe the abstraction between a platform
+- Choosing a single interface to describe the abstraction between a platform
and an OS is important. Hardware vendors would not be required to implement
both DT and ACPI if they want to support multiple operating systems. And,
agreeing on a single interface instead of being fragmented into per OS
interfaces makes for better interoperability overall.
--- The new ACPI governance process works well and Linux is now at the same
+- The new ACPI governance process works well and Linux is now at the same
table as hardware vendors and other OS vendors. In fact, there is no
longer any reason to feel that ACPI only belongs to Windows or that
Linux is in any way secondary to Microsoft in this arena. The move of
@@ -169,31 +171,31 @@ For the ACPI core to operate properly, and in turn provide the information
the kernel needs to configure devices, it expects to find the following
tables (all section numbers refer to the ACPI 6.1 specification):
- -- RSDP (Root System Description Pointer), section 5.2.5
+ - RSDP (Root System Description Pointer), section 5.2.5
- -- XSDT (eXtended System Description Table), section 5.2.8
+ - XSDT (eXtended System Description Table), section 5.2.8
- -- FADT (Fixed ACPI Description Table), section 5.2.9
+ - FADT (Fixed ACPI Description Table), section 5.2.9
- -- DSDT (Differentiated System Description Table), section
+ - DSDT (Differentiated System Description Table), section
5.2.11.1
- -- MADT (Multiple APIC Description Table), section 5.2.12
+ - MADT (Multiple APIC Description Table), section 5.2.12
- -- GTDT (Generic Timer Description Table), section 5.2.24
+ - GTDT (Generic Timer Description Table), section 5.2.24
- -- If PCI is supported, the MCFG (Memory mapped ConFiGuration
+ - If PCI is supported, the MCFG (Memory mapped ConFiGuration
Table), section 5.2.6, specifically Table 5-31.
- -- If booting without a console=<device> kernel parameter is
+ - If booting without a console=<device> kernel parameter is
supported, the SPCR (Serial Port Console Redirection table),
section 5.2.6, specifically Table 5-31.
- -- If necessary to describe the I/O topology, SMMUs and GIC ITSs,
+ - If necessary to describe the I/O topology, SMMUs and GIC ITSs,
the IORT (Input Output Remapping Table, section 5.2.6, specifically
Table 5-31).
- -- If NUMA is supported, the SRAT (System Resource Affinity Table)
+ - If NUMA is supported, the SRAT (System Resource Affinity Table)
and SLIT (System Locality distance Information Table), sections
5.2.16 and 5.2.17, respectively.
@@ -269,9 +271,9 @@ describes how to define the structure of an object returned via _DSD, and
how specific data structures are defined by specific UUIDs. Linux should
only use the _DSD Device Properties UUID [5]:
- -- UUID: daffd814-6eba-4d8c-8a91-bc9bbf4aa301
+ - UUID: daffd814-6eba-4d8c-8a91-bc9bbf4aa301
- -- http://www.uefi.org/sites/default/files/resources/_DSD-device-properties-UUID.pdf
+ - http://www.uefi.org/sites/default/files/resources/_DSD-device-properties-UUID.pdf
The UEFI Forum provides a mechanism for registering device properties [4]
so that they may be used across all operating systems supporting ACPI.
@@ -327,10 +329,10 @@ turning a device full off.
There are two options for using those Power Resources. They can:
- -- be managed in a _PSx method which gets called on entry to power
+ - be managed in a _PSx method which gets called on entry to power
state Dx.
- -- be declared separately as power resources with their own _ON and _OFF
+ - be declared separately as power resources with their own _ON and _OFF
methods. They are then tied back to D-states for a particular device
via _PRx which specifies which power resources a device needs to be on
while in Dx. Kernel then tracks number of devices using a power resource
@@ -339,16 +341,16 @@ There are two options for using those Power Resources. They can:
The kernel ACPI code will also assume that the _PSx methods follow the normal
ACPI rules for such methods:
- -- If either _PS0 or _PS3 is implemented, then the other method must also
+ - If either _PS0 or _PS3 is implemented, then the other method must also
be implemented.
- -- If a device requires usage or setup of a power resource when on, the ASL
+ - If a device requires usage or setup of a power resource when on, the ASL
should organize that it is allocated/enabled using the _PS0 method.
- -- Resources allocated or enabled in the _PS0 method should be disabled
+ - Resources allocated or enabled in the _PS0 method should be disabled
or de-allocated in the _PS3 method.
- -- Firmware will leave the resources in a reasonable state before handing
+ - Firmware will leave the resources in a reasonable state before handing
over control to the kernel.
Such code in _PSx methods will of course be very platform specific. But,
@@ -394,52 +396,52 @@ else must be discovered by the driver probe function. Then, have the rest
of the driver operate off of the contents of that struct. Doing so should
allow most divergence between ACPI and DT functionality to be kept local to
the probe function instead of being scattered throughout the driver. For
-example:
+example::
-static int device_probe_dt(struct platform_device *pdev)
-{
- /* DT specific functionality */
- ...
-}
+ static int device_probe_dt(struct platform_device *pdev)
+ {
+ /* DT specific functionality */
+ ...
+ }
-static int device_probe_acpi(struct platform_device *pdev)
-{
- /* ACPI specific functionality */
- ...
-}
+ static int device_probe_acpi(struct platform_device *pdev)
+ {
+ /* ACPI specific functionality */
+ ...
+ }
-static int device_probe(struct platform_device *pdev)
-{
- ...
- struct device_node node = pdev->dev.of_node;
- ...
+ static int device_probe(struct platform_device *pdev)
+ {
+ ...
+ struct device_node node = pdev->dev.of_node;
+ ...
- if (node)
- ret = device_probe_dt(pdev);
- else if (ACPI_HANDLE(&pdev->dev))
- ret = device_probe_acpi(pdev);
- else
- /* other initialization */
- ...
- /* Continue with any generic probe operations */
- ...
-}
+ if (node)
+ ret = device_probe_dt(pdev);
+ else if (ACPI_HANDLE(&pdev->dev))
+ ret = device_probe_acpi(pdev);
+ else
+ /* other initialization */
+ ...
+ /* Continue with any generic probe operations */
+ ...
+ }
DO keep the MODULE_DEVICE_TABLE entries together in the driver to make it
clear the different names the driver is probed for, both from DT and from
-ACPI:
+ACPI::
-static struct of_device_id virtio_mmio_match[] = {
- { .compatible = "virtio,mmio", },
- { }
-};
-MODULE_DEVICE_TABLE(of, virtio_mmio_match);
+ static struct of_device_id virtio_mmio_match[] = {
+ { .compatible = "virtio,mmio", },
+ { }
+ };
+ MODULE_DEVICE_TABLE(of, virtio_mmio_match);
-static const struct acpi_device_id virtio_mmio_acpi_match[] = {
- { "LNRO0005", },
- { }
-};
-MODULE_DEVICE_TABLE(acpi, virtio_mmio_acpi_match);
+ static const struct acpi_device_id virtio_mmio_acpi_match[] = {
+ { "LNRO0005", },
+ { }
+ };
+ MODULE_DEVICE_TABLE(acpi, virtio_mmio_acpi_match);
ASWG
@@ -471,7 +473,8 @@ Linux Code
Individual items specific to Linux on ARM, contained in the the Linux
source code, are in the list that follows:
-ACPI_OS_NAME This macro defines the string to be returned when
+ACPI_OS_NAME
+ This macro defines the string to be returned when
an ACPI method invokes the _OS method. On ARM64
systems, this macro will be "Linux" by default.
The command line parameter acpi_os=<string>
@@ -482,38 +485,44 @@ ACPI_OS_NAME This macro defines the string to be returned when
ACPI Objects
------------
Detailed expectations for ACPI tables and object are listed in the file
-Documentation/arm64/acpi_object_usage.txt.
+Documentation/arm64/acpi_object_usage.rst.
References
----------
-[0] http://silver.arm.com -- document ARM-DEN-0029, or newer
+[0] http://silver.arm.com
+ document ARM-DEN-0029, or newer:
"Server Base System Architecture", version 2.3, dated 27 Mar 2014
[1] http://infocenter.arm.com/help/topic/com.arm.doc.den0044a/Server_Base_Boot_Requirements.pdf
Document ARM-DEN-0044A, or newer: "Server Base Boot Requirements, System
Software on ARM Platforms", dated 16 Aug 2014
-[2] http://www.secretlab.ca/archives/151, 10 Jan 2015, Copyright (c) 2015,
+[2] http://www.secretlab.ca/archives/151,
+ 10 Jan 2015, Copyright (c) 2015,
Linaro Ltd., written by Grant Likely.
-[3] AMD ACPI for Seattle platform documentation:
+[3] AMD ACPI for Seattle platform documentation
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/Seattle_ACPI_Guide.pdf
-[4] http://www.uefi.org/acpi -- please see the link for the "ACPI _DSD Device
+
+[4] http://www.uefi.org/acpi
+ please see the link for the "ACPI _DSD Device
Property Registry Instructions"
-[5] http://www.uefi.org/acpi -- please see the link for the "_DSD (Device
+[5] http://www.uefi.org/acpi
+ please see the link for the "_DSD (Device
Specific Data) Implementation Guide"
-[6] Kernel code for the unified device property interface can be found in
+[6] Kernel code for the unified device
+ property interface can be found in
include/linux/property.h and drivers/base/property.c.
Authors
-------
-Al Stone <al.stone@linaro.org>
-Graeme Gregory <graeme.gregory@linaro.org>
-Hanjun Guo <hanjun.guo@linaro.org>
+- Al Stone <al.stone@linaro.org>
+- Graeme Gregory <graeme.gregory@linaro.org>
+- Hanjun Guo <hanjun.guo@linaro.org>
-Grant Likely <grant.likely@linaro.org>, for the "Why ACPI on ARM?" section
+- Grant Likely <grant.likely@linaro.org>, for the "Why ACPI on ARM?" section
diff --git a/Documentation/arm64/booting.txt b/Documentation/arm64/booting.rst
similarity index 86%
rename from Documentation/arm64/booting.txt
rename to Documentation/arm64/booting.rst
index fbab7e21d116..3d041d0d16e8 100644
--- a/Documentation/arm64/booting.txt
+++ b/Documentation/arm64/booting.rst
@@ -1,7 +1,9 @@
- Booting AArch64 Linux
- =====================
+=====================
+Booting AArch64 Linux
+=====================
Author: Will Deacon <will.deacon@arm.com>
+
Date : 07 September 2012
This document is based on the ARM booting document by Russell King and
@@ -12,7 +14,7 @@ The AArch64 exception model is made up of a number of exception levels
counterpart. EL2 is the hypervisor level and exists only in non-secure
mode. EL3 is the highest priority level and exists only in secure mode.
-For the purposes of this document, we will use the term `boot loader'
+For the purposes of this document, we will use the term `boot loader`
simply to define all software that executes on the CPU(s) before control
is passed to the Linux kernel. This may include secure monitor and
hypervisor code, or it may just be a handful of instructions for
@@ -70,7 +72,7 @@ Image target is available instead.
Requirement: MANDATORY
-The decompressed kernel image contains a 64-byte header as follows:
+The decompressed kernel image contains a 64-byte header as follows::
u32 code0; /* Executable code */
u32 code1; /* Executable code */
@@ -103,19 +105,26 @@ Header notes:
- The flags field (introduced in v3.17) is a little-endian 64-bit field
composed as follows:
- Bit 0: Kernel endianness. 1 if BE, 0 if LE.
- Bit 1-2: Kernel Page size.
- 0 - Unspecified.
- 1 - 4K
- 2 - 16K
- 3 - 64K
- Bit 3: Kernel physical placement
- 0 - 2MB aligned base should be as close as possible
- to the base of DRAM, since memory below it is not
- accessible via the linear mapping
- 1 - 2MB aligned base may be anywhere in physical
- memory
- Bits 4-63: Reserved.
+
+ ============= ===============================================================
+ Bit 0 Kernel endianness. 1 if BE, 0 if LE.
+ Bit 1-2 Kernel Page size.
+
+ * 0 - Unspecified.
+ * 1 - 4K
+ * 2 - 16K
+ * 3 - 64K
+ Bit 3 Kernel physical placement
+
+ 0
+ 2MB aligned base should be as close as possible
+ to the base of DRAM, since memory below it is not
+ accessible via the linear mapping
+ 1
+ 2MB aligned base may be anywhere in physical
+ memory
+ Bits 4-63 Reserved.
+ ============= ===============================================================
- When image_size is zero, a bootloader should attempt to keep as much
memory as possible free for use by the kernel immediately after the
@@ -147,19 +156,22 @@ Before jumping into the kernel, the following conditions must be met:
corrupted by bogus network packets or disk data. This will save
you many hours of debug.
-- Primary CPU general-purpose register settings
- x0 = physical address of device tree blob (dtb) in system RAM.
- x1 = 0 (reserved for future use)
- x2 = 0 (reserved for future use)
- x3 = 0 (reserved for future use)
+- Primary CPU general-purpose register settings:
+
+ - x0 = physical address of device tree blob (dtb) in system RAM.
+ - x1 = 0 (reserved for future use)
+ - x2 = 0 (reserved for future use)
+ - x3 = 0 (reserved for future use)
- CPU mode
+
All forms of interrupts must be masked in PSTATE.DAIF (Debug, SError,
IRQ and FIQ).
The CPU must be in either EL2 (RECOMMENDED in order to have access to
the virtualisation extensions) or non-secure EL1.
- Caches, MMUs
+
The MMU must be off.
Instruction cache may be on or off.
The address range corresponding to the loaded kernel image must be
@@ -172,18 +184,21 @@ Before jumping into the kernel, the following conditions must be met:
operations (not recommended) must be configured and disabled.
- Architected timers
+
CNTFRQ must be programmed with the timer frequency and CNTVOFF must
be programmed with a consistent value on all CPUs. If entering the
kernel at EL1, CNTHCTL_EL2 must have EL1PCTEN (bit 0) set where
available.
- Coherency
+
All CPUs to be booted by the kernel must be part of the same coherency
domain on entry to the kernel. This may require IMPLEMENTATION DEFINED
initialisation to enable the receiving of maintenance operations on
each CPU.
- System registers
+
All writable architected system registers at the exception level where
the kernel image will be entered must be initialised by software at a
higher exception level to prevent execution in an UNKNOWN state.
@@ -195,28 +210,40 @@ Before jumping into the kernel, the following conditions must be met:
For systems with a GICv3 interrupt controller to be used in v3 mode:
- If EL3 is present:
- ICC_SRE_EL3.Enable (bit 3) must be initialiased to 0b1.
- ICC_SRE_EL3.SRE (bit 0) must be initialised to 0b1.
+
+ - ICC_SRE_EL3.Enable (bit 3) must be initialiased to 0b1.
+ - ICC_SRE_EL3.SRE (bit 0) must be initialised to 0b1.
+
- If the kernel is entered at EL1:
- ICC.SRE_EL2.Enable (bit 3) must be initialised to 0b1
- ICC_SRE_EL2.SRE (bit 0) must be initialised to 0b1.
+
+ - ICC.SRE_EL2.Enable (bit 3) must be initialised to 0b1
+ - ICC_SRE_EL2.SRE (bit 0) must be initialised to 0b1.
+
- The DT or ACPI tables must describe a GICv3 interrupt controller.
For systems with a GICv3 interrupt controller to be used in
compatibility (v2) mode:
+
- If EL3 is present:
- ICC_SRE_EL3.SRE (bit 0) must be initialised to 0b0.
+
+ ICC_SRE_EL3.SRE (bit 0) must be initialised to 0b0.
+
- If the kernel is entered at EL1:
- ICC_SRE_EL2.SRE (bit 0) must be initialised to 0b0.
+
+ ICC_SRE_EL2.SRE (bit 0) must be initialised to 0b0.
+
- The DT or ACPI tables must describe a GICv2 interrupt controller.
For CPUs with pointer authentication functionality:
- If EL3 is present:
- SCR_EL3.APK (bit 16) must be initialised to 0b1
- SCR_EL3.API (bit 17) must be initialised to 0b1
+
+ - SCR_EL3.APK (bit 16) must be initialised to 0b1
+ - SCR_EL3.API (bit 17) must be initialised to 0b1
+
- If the kernel is entered at EL1:
- HCR_EL2.APK (bit 40) must be initialised to 0b1
- HCR_EL2.API (bit 41) must be initialised to 0b1
+
+ - HCR_EL2.APK (bit 40) must be initialised to 0b1
+ - HCR_EL2.API (bit 41) must be initialised to 0b1
The requirements described above for CPU mode, caches, MMUs, architected
timers, coherency and system registers apply to all CPUs. All CPUs must
diff --git a/Documentation/arm64/cpu-feature-registers.txt b/Documentation/arm64/cpu-feature-registers.rst
similarity index 66%
rename from Documentation/arm64/cpu-feature-registers.txt
rename to Documentation/arm64/cpu-feature-registers.rst
index d4b4dd1fe786..251174aaa8ea 100644
--- a/Documentation/arm64/cpu-feature-registers.txt
+++ b/Documentation/arm64/cpu-feature-registers.rst
@@ -1,5 +1,6 @@
- ARM64 CPU Feature Registers
- ===========================
+===========================
+ARM64 CPU Feature Registers
+===========================
Author: Suzuki K Poulose <suzuki.poulose@arm.com>
@@ -9,7 +10,7 @@ registers to userspace. The availability of this ABI is advertised
via the HWCAP_CPUID in HWCAPs.
1. Motivation
----------------
+-------------
The ARM architecture defines a set of feature registers, which describe
the capabilities of the CPU/system. Access to these system registers is
@@ -33,9 +34,10 @@ there are some issues with their usage.
2. Requirements
------------------
+---------------
+
+ a) Safety:
- a) Safety :
Applications should be able to use the information provided by the
infrastructure to run safely across the system. This has greater
implications on a system with heterogeneous CPUs.
@@ -47,7 +49,8 @@ there are some issues with their usage.
Otherwise an application could crash when scheduled on the CPU
which doesn't support CRC32.
- b) Security :
+ b) Security:
+
Applications should only be able to receive information that is
relevant to the normal operation in userspace. Hence, some of the
fields are masked out(i.e, made invisible) and their values are set to
@@ -58,10 +61,12 @@ there are some issues with their usage.
(even when the CPU provides it).
c) Implementation Defined Features
+
The infrastructure doesn't expose any register which is
IMPLEMENTATION DEFINED as per ARMv8-A Architecture.
- d) CPU Identification :
+ d) CPU Identification:
+
MIDR_EL1 is exposed to help identify the processor. On a
heterogeneous system, this could be racy (just like getcpu()). The
process could be migrated to another CPU by the time it uses the
@@ -70,7 +75,7 @@ there are some issues with their usage.
currently executing on. The REVIDR is not exposed due to this
constraint, as REVIDR makes sense only in conjunction with the
MIDR. Alternately, MIDR_EL1 and REVIDR_EL1 are exposed via sysfs
- at:
+ at::
/sys/devices/system/cpu/cpu$ID/regs/identification/
\- midr
@@ -85,7 +90,8 @@ exception and ends up in SIGILL being delivered to the process.
The infrastructure hooks into the exception handler and emulates the
operation if the source belongs to the supported system register space.
-The infrastructure emulates only the following system register space:
+The infrastructure emulates only the following system register space::
+
Op0=3, Op1=0, CRn=0, CRm=0,4,5,6,7
(See Table C5-6 'System instruction encodings for non-Debug System
@@ -107,73 +113,76 @@ infrastructure:
-------------------------------------------
1) ID_AA64ISAR0_EL1 - Instruction Set Attribute Register 0
- x--------------------------------------------------x
+
+ +------------------------------+---------+---------+
| Name | bits | visible |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| TS | [55-52] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| FHM | [51-48] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| DP | [47-44] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| SM4 | [43-40] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| SM3 | [39-36] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| SHA3 | [35-32] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| RDM | [31-28] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| ATOMICS | [23-20] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| CRC32 | [19-16] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| SHA2 | [15-12] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| SHA1 | [11-8] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| AES | [7-4] | y |
- x--------------------------------------------------x
+ +------------------------------+---------+---------+
2) ID_AA64PFR0_EL1 - Processor Feature Register 0
- x--------------------------------------------------x
+
+ +------------------------------+---------+---------+
| Name | bits | visible |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| DIT | [51-48] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| SVE | [35-32] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| GIC | [27-24] | n |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| AdvSIMD | [23-20] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| FP | [19-16] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| EL3 | [15-12] | n |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| EL2 | [11-8] | n |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| EL1 | [7-4] | n |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| EL0 | [3-0] | n |
- x--------------------------------------------------x
+ +------------------------------+---------+---------+
3) MIDR_EL1 - Main ID Register
- x--------------------------------------------------x
+
+ +------------------------------+---------+---------+
| Name | bits | visible |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| Implementer | [31-24] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| Variant | [23-20] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| Architecture | [19-16] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| PartNum | [15-4] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| Revision | [3-0] | y |
- x--------------------------------------------------x
+ +------------------------------+---------+---------+
NOTE: The 'visible' fields of MIDR_EL1 will contain the value
as available on the CPU where it is fetched and is not a system
@@ -181,74 +190,76 @@ infrastructure:
4) ID_AA64ISAR1_EL1 - Instruction set attribute register 1
- x--------------------------------------------------x
+ +------------------------------+---------+---------+
| Name | bits | visible |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| GPI | [31-28] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| GPA | [27-24] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| LRCPC | [23-20] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| FCMA | [19-16] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| JSCVT | [15-12] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| API | [11-8] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| APA | [7-4] | y |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| DPB | [3-0] | y |
- x--------------------------------------------------x
+ +------------------------------+---------+---------+
5) ID_AA64MMFR2_EL1 - Memory model feature register 2
- x--------------------------------------------------x
+ +------------------------------+---------+---------+
| Name | bits | visible |
- |--------------------------------------------------|
+ +------------------------------+---------+---------+
| AT | [35-32] | y |
- x--------------------------------------------------x
+ +------------------------------+---------+---------+
Appendix I: Example
----------------------------
+-------------------
-/*
- * Sample program to demonstrate the MRS emulation ABI.
- *
- * Copyright (C) 2015-2016, ARM Ltd
- *
- * Author: Suzuki K Poulose <suzuki.poulose@arm.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- */
+::
-#include <asm/hwcap.h>
-#include <stdio.h>
-#include <sys/auxv.h>
+ /*
+ * Sample program to demonstrate the MRS emulation ABI.
+ *
+ * Copyright (C) 2015-2016, ARM Ltd
+ *
+ * Author: Suzuki K Poulose <suzuki.poulose@arm.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
-#define get_cpu_ftr(id) ({ \
+ #include <asm/hwcap.h>
+ #include <stdio.h>
+ #include <sys/auxv.h>
+
+ #define get_cpu_ftr(id) ({ \
unsigned long __val; \
asm("mrs %0, "#id : "=r" (__val)); \
printf("%-20s: 0x%016lx\n", #id, __val); \
})
-int main(void)
-{
+ int main(void)
+ {
if (!(getauxval(AT_HWCAP) & HWCAP_CPUID)) {
fputs("CPUID registers unavailable\n", stderr);
@@ -268,13 +279,10 @@ int main(void)
get_cpu_ftr(MPIDR_EL1);
get_cpu_ftr(REVIDR_EL1);
-#if 0
+ #if 0
/* Unexposed register access causes SIGILL */
get_cpu_ftr(ID_MMFR0_EL1);
-#endif
+ #endif
return 0;
-}
-
-
-
+ }
diff --git a/Documentation/arm64/elf_hwcaps.txt b/Documentation/arm64/elf_hwcaps.rst
similarity index 92%
rename from Documentation/arm64/elf_hwcaps.txt
rename to Documentation/arm64/elf_hwcaps.rst
index 55431fd2a67a..d4e06a5564dc 100644
--- a/Documentation/arm64/elf_hwcaps.txt
+++ b/Documentation/arm64/elf_hwcaps.rst
@@ -1,3 +1,4 @@
+================
ARM64 ELF hwcaps
================
@@ -15,16 +16,16 @@ of flags called hwcaps, exposed in the auxilliary vector.
Userspace software can test for features by acquiring the AT_HWCAP or
AT_HWCAP2 entry of the auxiliary vector, and testing whether the relevant
-flags are set, e.g.
+flags are set, e.g.::
-bool floating_point_is_present(void)
-{
- unsigned long hwcaps = getauxval(AT_HWCAP);
- if (hwcaps & HWCAP_FP)
- return true;
+ bool floating_point_is_present(void)
+ {
+ unsigned long hwcaps = getauxval(AT_HWCAP);
+ if (hwcaps & HWCAP_FP)
+ return true;
- return false;
-}
+ return false;
+ }
Where software relies on a feature described by a hwcap, it should check
the relevant hwcap flag to verify that the feature is present before
@@ -45,7 +46,7 @@ userspace code at EL0. These hwcaps are defined in terms of ID register
fields, and should be interpreted with reference to the definition of
these fields in the ARM Architecture Reference Manual (ARM ARM).
-Such hwcaps are described below in the form:
+Such hwcaps are described below in the form::
Functionality implied by idreg.field == val.
@@ -64,75 +65,58 @@ reference to ID registers, and may refer to other documentation.
---------------------------------
HWCAP_FP
-
Functionality implied by ID_AA64PFR0_EL1.FP == 0b0000.
HWCAP_ASIMD
-
Functionality implied by ID_AA64PFR0_EL1.AdvSIMD == 0b0000.
HWCAP_EVTSTRM
-
The generic timer is configured to generate events at a frequency of
approximately 100KHz.
HWCAP_AES
-
Functionality implied by ID_AA64ISAR0_EL1.AES == 0b0001.
HWCAP_PMULL
-
Functionality implied by ID_AA64ISAR0_EL1.AES == 0b0010.
HWCAP_SHA1
-
Functionality implied by ID_AA64ISAR0_EL1.SHA1 == 0b0001.
HWCAP_SHA2
-
Functionality implied by ID_AA64ISAR0_EL1.SHA2 == 0b0001.
HWCAP_CRC32
-
Functionality implied by ID_AA64ISAR0_EL1.CRC32 == 0b0001.
HWCAP_ATOMICS
-
Functionality implied by ID_AA64ISAR0_EL1.Atomic == 0b0010.
HWCAP_FPHP
-
Functionality implied by ID_AA64PFR0_EL1.FP == 0b0001.
HWCAP_ASIMDHP
-
Functionality implied by ID_AA64PFR0_EL1.AdvSIMD == 0b0001.
HWCAP_CPUID
-
EL0 access to certain ID registers is available, to the extent
- described by Documentation/arm64/cpu-feature-registers.txt.
+ described by Documentation/arm64/cpu-feature-registers.rst.
These ID registers may imply the availability of features.
HWCAP_ASIMDRDM
-
Functionality implied by ID_AA64ISAR0_EL1.RDM == 0b0001.
HWCAP_JSCVT
-
Functionality implied by ID_AA64ISAR1_EL1.JSCVT == 0b0001.
HWCAP_FCMA
-
Functionality implied by ID_AA64ISAR1_EL1.FCMA == 0b0001.
HWCAP_LRCPC
-
Functionality implied by ID_AA64ISAR1_EL1.LRCPC == 0b0001.
HWCAP_DCPOP
-
Functionality implied by ID_AA64ISAR1_EL1.DPB == 0b0001.
HWCAP2_DCPODP
@@ -140,64 +124,50 @@ HWCAP2_DCPODP
Functionality implied by ID_AA64ISAR1_EL1.DPB == 0b0010.
HWCAP_SHA3
-
Functionality implied by ID_AA64ISAR0_EL1.SHA3 == 0b0001.
HWCAP_SM3
-
Functionality implied by ID_AA64ISAR0_EL1.SM3 == 0b0001.
HWCAP_SM4
-
Functionality implied by ID_AA64ISAR0_EL1.SM4 == 0b0001.
HWCAP_ASIMDDP
-
Functionality implied by ID_AA64ISAR0_EL1.DP == 0b0001.
HWCAP_SHA512
-
Functionality implied by ID_AA64ISAR0_EL1.SHA2 == 0b0010.
HWCAP_SVE
-
Functionality implied by ID_AA64PFR0_EL1.SVE == 0b0001.
HWCAP_ASIMDFHM
-
Functionality implied by ID_AA64ISAR0_EL1.FHM == 0b0001.
HWCAP_DIT
-
Functionality implied by ID_AA64PFR0_EL1.DIT == 0b0001.
HWCAP_USCAT
-
Functionality implied by ID_AA64MMFR2_EL1.AT == 0b0001.
HWCAP_ILRCPC
-
Functionality implied by ID_AA64ISAR1_EL1.LRCPC == 0b0010.
HWCAP_FLAGM
-
Functionality implied by ID_AA64ISAR0_EL1.TS == 0b0001.
HWCAP_SSBS
-
Functionality implied by ID_AA64PFR1_EL1.SSBS == 0b0010.
HWCAP_PACA
-
Functionality implied by ID_AA64ISAR1_EL1.APA == 0b0001 or
ID_AA64ISAR1_EL1.API == 0b0001, as described by
- Documentation/arm64/pointer-authentication.txt.
+ Documentation/arm64/pointer-authentication.rst.
HWCAP_PACG
-
Functionality implied by ID_AA64ISAR1_EL1.GPA == 0b0001 or
ID_AA64ISAR1_EL1.GPI == 0b0001, as described by
- Documentation/arm64/pointer-authentication.txt.
+ Documentation/arm64/pointer-authentication.rst.
4. Unused AT_HWCAP bits
diff --git a/Documentation/arm64/hugetlbpage.txt b/Documentation/arm64/hugetlbpage.rst
similarity index 86%
rename from Documentation/arm64/hugetlbpage.txt
rename to Documentation/arm64/hugetlbpage.rst
index cfae87dc653b..b44f939e5210 100644
--- a/Documentation/arm64/hugetlbpage.txt
+++ b/Documentation/arm64/hugetlbpage.rst
@@ -1,3 +1,4 @@
+====================
HugeTLBpage on ARM64
====================
@@ -31,8 +32,10 @@ and level of the page table.
The following hugepage sizes are supported -
- CONT PTE PMD CONT PMD PUD
- -------- --- -------- ---
+ ====== ======== ==== ======== ===
+ - CONT PTE PMD CONT PMD PUD
+ ====== ======== ==== ======== ===
4K: 64K 2M 32M 1G
16K: 2M 32M 1G
64K: 2M 512M 16G
+ ====== ======== ==== ======== ===
diff --git a/Documentation/arm64/index.rst b/Documentation/arm64/index.rst
new file mode 100644
index 000000000000..018b7836ecb7
--- /dev/null
+++ b/Documentation/arm64/index.rst
@@ -0,0 +1,28 @@
+:orphan:
+
+==================
+ARM64 Architecture
+==================
+
+.. toctree::
+ :maxdepth: 1
+
+ acpi_object_usage
+ arm-acpi
+ booting
+ cpu-feature-registers
+ elf_hwcaps
+ hugetlbpage
+ legacy_instructions
+ memory
+ pointer-authentication
+ silicon-errata
+ sve
+ tagged-pointers
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/arm64/legacy_instructions.txt b/Documentation/arm64/legacy_instructions.rst
similarity index 73%
rename from Documentation/arm64/legacy_instructions.txt
rename to Documentation/arm64/legacy_instructions.rst
index 01bf3d9fac85..54401b22cb8f 100644
--- a/Documentation/arm64/legacy_instructions.txt
+++ b/Documentation/arm64/legacy_instructions.rst
@@ -1,3 +1,7 @@
+===================
+Legacy instructions
+===================
+
The arm64 port of the Linux kernel provides infrastructure to support
emulation of instructions which have been deprecated, or obsoleted in
the architecture. The infrastructure code uses undefined instruction
@@ -9,19 +13,22 @@ The emulation mode can be controlled by writing to sysctl nodes
behaviours and the corresponding values of the sysctl nodes -
* Undef
- Value: 0
+ Value: 0
+
Generates undefined instruction abort. Default for instructions that
have been obsoleted in the architecture, e.g., SWP
* Emulate
- Value: 1
+ Value: 1
+
Uses software emulation. To aid migration of software, in this mode
usage of emulated instruction is traced as well as rate limited
warnings are issued. This is the default for deprecated
instructions, .e.g., CP15 barriers
* Hardware Execution
- Value: 2
+ Value: 2
+
Although marked as deprecated, some implementations may support the
enabling/disabling of hardware support for the execution of these
instructions. Using hardware execution generally provides better
@@ -38,20 +45,24 @@ individual instruction notes for further information.
Supported legacy instructions
-----------------------------
* SWP{B}
-Node: /proc/sys/abi/swp
-Status: Obsolete
-Default: Undef (0)
+
+:Node: /proc/sys/abi/swp
+:Status: Obsolete
+:Default: Undef (0)
* CP15 Barriers
-Node: /proc/sys/abi/cp15_barrier
-Status: Deprecated
-Default: Emulate (1)
+
+:Node: /proc/sys/abi/cp15_barrier
+:Status: Deprecated
+:Default: Emulate (1)
* SETEND
-Node: /proc/sys/abi/setend
-Status: Deprecated
-Default: Emulate (1)*
-Note: All the cpus on the system must have mixed endian support at EL0
-for this feature to be enabled. If a new CPU - which doesn't support mixed
-endian - is hotplugged in after this feature has been enabled, there could
-be unexpected results in the application.
+
+:Node: /proc/sys/abi/setend
+:Status: Deprecated
+:Default: Emulate (1)*
+
+ Note: All the cpus on the system must have mixed endian support at EL0
+ for this feature to be enabled. If a new CPU - which doesn't support mixed
+ endian - is hotplugged in after this feature has been enabled, there could
+ be unexpected results in the application.
diff --git a/Documentation/arm64/memory.rst b/Documentation/arm64/memory.rst
new file mode 100644
index 000000000000..464b880fc4b7
--- /dev/null
+++ b/Documentation/arm64/memory.rst
@@ -0,0 +1,98 @@
+==============================
+Memory Layout on AArch64 Linux
+==============================
+
+Author: Catalin Marinas <catalin.marinas@arm.com>
+
+This document describes the virtual memory layout used by the AArch64
+Linux kernel. The architecture allows up to 4 levels of translation
+tables with a 4KB page size and up to 3 levels with a 64KB page size.
+
+AArch64 Linux uses either 3 levels or 4 levels of translation tables
+with the 4KB page configuration, allowing 39-bit (512GB) or 48-bit
+(256TB) virtual addresses, respectively, for both user and kernel. With
+64KB pages, only 2 levels of translation tables, allowing 42-bit (4TB)
+virtual address, are used but the memory layout is the same.
+
+User addresses have bits 63:48 set to 0 while the kernel addresses have
+the same bits set to 1. TTBRx selection is given by bit 63 of the
+virtual address. The swapper_pg_dir contains only kernel (global)
+mappings while the user pgd contains only user (non-global) mappings.
+The swapper_pg_dir address is written to TTBR1 and never written to
+TTBR0.
+
+
+AArch64 Linux memory layout with 4KB pages + 3 levels::
+
+ Start End Size Use
+ -----------------------------------------------------------------------
+ 0000000000000000 0000007fffffffff 512GB user
+ ffffff8000000000 ffffffffffffffff 512GB kernel
+
+
+AArch64 Linux memory layout with 4KB pages + 4 levels::
+
+ Start End Size Use
+ -----------------------------------------------------------------------
+ 0000000000000000 0000ffffffffffff 256TB user
+ ffff000000000000 ffffffffffffffff 256TB kernel
+
+
+AArch64 Linux memory layout with 64KB pages + 2 levels::
+
+ Start End Size Use
+ -----------------------------------------------------------------------
+ 0000000000000000 000003ffffffffff 4TB user
+ fffffc0000000000 ffffffffffffffff 4TB kernel
+
+
+AArch64 Linux memory layout with 64KB pages + 3 levels::
+
+ Start End Size Use
+ -----------------------------------------------------------------------
+ 0000000000000000 0000ffffffffffff 256TB user
+ ffff000000000000 ffffffffffffffff 256TB kernel
+
+
+For details of the virtual kernel memory layout please see the kernel
+booting log.
+
+
+Translation table lookup with 4KB pages::
+
+ +--------+--------+--------+--------+--------+--------+--------+--------+
+ |63 56|55 48|47 40|39 32|31 24|23 16|15 8|7 0|
+ +--------+--------+--------+--------+--------+--------+--------+--------+
+ | | | | | |
+ | | | | | v
+ | | | | | [11:0] in-page offset
+ | | | | +-> [20:12] L3 index
+ | | | +-----------> [29:21] L2 index
+ | | +---------------------> [38:30] L1 index
+ | +-------------------------------> [47:39] L0 index
+ +-------------------------------------------------> [63] TTBR0/1
+
+
+Translation table lookup with 64KB pages::
+
+ +--------+--------+--------+--------+--------+--------+--------+--------+
+ |63 56|55 48|47 40|39 32|31 24|23 16|15 8|7 0|
+ +--------+--------+--------+--------+--------+--------+--------+--------+
+ | | | | |
+ | | | | v
+ | | | | [15:0] in-page offset
+ | | | +----------> [28:16] L3 index
+ | | +--------------------------> [41:29] L2 index
+ | +-------------------------------> [47:42] L1 index
+ +-------------------------------------------------> [63] TTBR0/1
+
+
+When using KVM without the Virtualization Host Extensions, the
+hypervisor maps kernel pages in EL2 at a fixed (and potentially
+random) offset from the linear mapping. See the kern_hyp_va macro and
+kvm_update_va_mask function for more details. MMIO devices such as
+GICv2 gets mapped next to the HYP idmap page, as do vectors when
+ARM64_HARDEN_EL2_VECTORS is selected for particular CPUs.
+
+When using KVM with the Virtualization Host Extensions, no additional
+mappings are created, since the host kernel runs directly in EL2.
diff --git a/Documentation/arm64/memory.txt b/Documentation/arm64/memory.txt
deleted file mode 100644
index c5dab30d3389..000000000000
--- a/Documentation/arm64/memory.txt
+++ /dev/null
@@ -1,97 +0,0 @@
- Memory Layout on AArch64 Linux
- ==============================
-
-Author: Catalin Marinas <catalin.marinas@arm.com>
-
-This document describes the virtual memory layout used by the AArch64
-Linux kernel. The architecture allows up to 4 levels of translation
-tables with a 4KB page size and up to 3 levels with a 64KB page size.
-
-AArch64 Linux uses either 3 levels or 4 levels of translation tables
-with the 4KB page configuration, allowing 39-bit (512GB) or 48-bit
-(256TB) virtual addresses, respectively, for both user and kernel. With
-64KB pages, only 2 levels of translation tables, allowing 42-bit (4TB)
-virtual address, are used but the memory layout is the same.
-
-User addresses have bits 63:48 set to 0 while the kernel addresses have
-the same bits set to 1. TTBRx selection is given by bit 63 of the
-virtual address. The swapper_pg_dir contains only kernel (global)
-mappings while the user pgd contains only user (non-global) mappings.
-The swapper_pg_dir address is written to TTBR1 and never written to
-TTBR0.
-
-
-AArch64 Linux memory layout with 4KB pages + 3 levels:
-
-Start End Size Use
------------------------------------------------------------------------
-0000000000000000 0000007fffffffff 512GB user
-ffffff8000000000 ffffffffffffffff 512GB kernel
-
-
-AArch64 Linux memory layout with 4KB pages + 4 levels:
-
-Start End Size Use
------------------------------------------------------------------------
-0000000000000000 0000ffffffffffff 256TB user
-ffff000000000000 ffffffffffffffff 256TB kernel
-
-
-AArch64 Linux memory layout with 64KB pages + 2 levels:
-
-Start End Size Use
------------------------------------------------------------------------
-0000000000000000 000003ffffffffff 4TB user
-fffffc0000000000 ffffffffffffffff 4TB kernel
-
-
-AArch64 Linux memory layout with 64KB pages + 3 levels:
-
-Start End Size Use
------------------------------------------------------------------------
-0000000000000000 0000ffffffffffff 256TB user
-ffff000000000000 ffffffffffffffff 256TB kernel
-
-
-For details of the virtual kernel memory layout please see the kernel
-booting log.
-
-
-Translation table lookup with 4KB pages:
-
-+--------+--------+--------+--------+--------+--------+--------+--------+
-|63 56|55 48|47 40|39 32|31 24|23 16|15 8|7 0|
-+--------+--------+--------+--------+--------+--------+--------+--------+
- | | | | | |
- | | | | | v
- | | | | | [11:0] in-page offset
- | | | | +-> [20:12] L3 index
- | | | +-----------> [29:21] L2 index
- | | +---------------------> [38:30] L1 index
- | +-------------------------------> [47:39] L0 index
- +-------------------------------------------------> [63] TTBR0/1
-
-
-Translation table lookup with 64KB pages:
-
-+--------+--------+--------+--------+--------+--------+--------+--------+
-|63 56|55 48|47 40|39 32|31 24|23 16|15 8|7 0|
-+--------+--------+--------+--------+--------+--------+--------+--------+
- | | | | |
- | | | | v
- | | | | [15:0] in-page offset
- | | | +----------> [28:16] L3 index
- | | +--------------------------> [41:29] L2 index
- | +-------------------------------> [47:42] L1 index
- +-------------------------------------------------> [63] TTBR0/1
-
-
-When using KVM without the Virtualization Host Extensions, the
-hypervisor maps kernel pages in EL2 at a fixed (and potentially
-random) offset from the linear mapping. See the kern_hyp_va macro and
-kvm_update_va_mask function for more details. MMIO devices such as
-GICv2 gets mapped next to the HYP idmap page, as do vectors when
-ARM64_HARDEN_EL2_VECTORS is selected for particular CPUs.
-
-When using KVM with the Virtualization Host Extensions, no additional
-mappings are created, since the host kernel runs directly in EL2.
diff --git a/Documentation/arm64/pointer-authentication.txt b/Documentation/arm64/pointer-authentication.rst
similarity index 98%
rename from Documentation/arm64/pointer-authentication.txt
rename to Documentation/arm64/pointer-authentication.rst
index 5baca42ba146..f8b9af8b6490 100644
--- a/Documentation/arm64/pointer-authentication.txt
+++ b/Documentation/arm64/pointer-authentication.rst
@@ -1,7 +1,9 @@
+=======================================
Pointer authentication in AArch64 Linux
=======================================
Author: Mark Rutland <mark.rutland@arm.com>
+
Date: 2017-07-19
This document briefly describes the provision of pointer authentication
diff --git a/Documentation/arm64/silicon-errata.txt b/Documentation/arm64/silicon-errata.rst
similarity index 55%
rename from Documentation/arm64/silicon-errata.txt
rename to Documentation/arm64/silicon-errata.rst
index c00efb639e46..926b2ef62cd2 100644
--- a/Documentation/arm64/silicon-errata.txt
+++ b/Documentation/arm64/silicon-errata.rst
@@ -1,7 +1,9 @@
- Silicon Errata and Software Workarounds
- =======================================
+=======================================
+Silicon Errata and Software Workarounds
+=======================================
Author: Will Deacon <will.deacon@arm.com>
+
Date : 27 November 2015
It is an unfortunate fact of life that hardware is often produced with
@@ -9,11 +11,13 @@ so-called "errata", which can cause it to deviate from the architecture
under specific circumstances. For hardware produced by ARM, these
errata are broadly classified into the following categories:
- Category A: A critical error without a viable workaround.
- Category B: A significant or critical error with an acceptable
+ ========== ========================================================
+ Category A A critical error without a viable workaround.
+ Category B A significant or critical error with an acceptable
workaround.
- Category C: A minor error that is not expected to occur under normal
+ Category C A minor error that is not expected to occur under normal
operation.
+ ========== ========================================================
For more information, consult one of the "Software Developers Errata
Notice" documents available on infocenter.arm.com (registration
@@ -42,45 +46,82 @@ file acts as a registry of software workarounds in the Linux Kernel and
will be updated when new workarounds are committed and backported to
stable kernels.
++----------------+-----------------+-----------------+-----------------------------+
| Implementor | Component | Erratum ID | Kconfig |
-+----------------+-----------------+-----------------+-----------------------------+
++================+=================+=================+=============================+
| Allwinner | A64/R18 | UNKNOWN1 | SUN50I_ERRATUM_UNKNOWN1 |
-| | | | |
++----------------+-----------------+-----------------+-----------------------------+
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A53 | #826319 | ARM64_ERRATUM_826319 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A53 | #827319 | ARM64_ERRATUM_827319 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A53 | #824069 | ARM64_ERRATUM_824069 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A53 | #819472 | ARM64_ERRATUM_819472 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A53 | #845719 | ARM64_ERRATUM_845719 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A53 | #843419 | ARM64_ERRATUM_843419 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A57 | #832075 | ARM64_ERRATUM_832075 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A57 | #852523 | N/A |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A57 | #834220 | ARM64_ERRATUM_834220 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A72 | #853709 | N/A |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A73 | #858921 | ARM64_ERRATUM_858921 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A55 | #1024718 | ARM64_ERRATUM_1024718 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A76 | #1188873 | ARM64_ERRATUM_1188873 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A76 | #1165522 | ARM64_ERRATUM_1165522 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A76 | #1286807 | ARM64_ERRATUM_1286807 |
++----------------+-----------------+-----------------+-----------------------------+
| ARM | MMU-500 | #841119,#826419 | N/A |
-| | | | |
++----------------+-----------------+-----------------+-----------------------------+
++----------------+-----------------+-----------------+-----------------------------+
| Cavium | ThunderX ITS | #22375, #24313 | CAVIUM_ERRATUM_22375 |
++----------------+-----------------+-----------------+-----------------------------+
| Cavium | ThunderX ITS | #23144 | CAVIUM_ERRATUM_23144 |
++----------------+-----------------+-----------------+-----------------------------+
| Cavium | ThunderX GICv3 | #23154 | CAVIUM_ERRATUM_23154 |
++----------------+-----------------+-----------------+-----------------------------+
| Cavium | ThunderX Core | #27456 | CAVIUM_ERRATUM_27456 |
++----------------+-----------------+-----------------+-----------------------------+
| Cavium | ThunderX Core | #30115 | CAVIUM_ERRATUM_30115 |
++----------------+-----------------+-----------------+-----------------------------+
| Cavium | ThunderX SMMUv2 | #27704 | N/A |
++----------------+-----------------+-----------------+-----------------------------+
| Cavium | ThunderX2 SMMUv3| #74 | N/A |
++----------------+-----------------+-----------------+-----------------------------+
| Cavium | ThunderX2 SMMUv3| #126 | N/A |
-| | | | |
++----------------+-----------------+-----------------+-----------------------------+
++----------------+-----------------+-----------------+-----------------------------+
| Freescale/NXP | LS2080A/LS1043A | A-008585 | FSL_ERRATUM_A008585 |
-| | | | |
++----------------+-----------------+-----------------+-----------------------------+
++----------------+-----------------+-----------------+-----------------------------+
| Hisilicon | Hip0{5,6,7} | #161010101 | HISILICON_ERRATUM_161010101 |
++----------------+-----------------+-----------------+-----------------------------+
| Hisilicon | Hip0{6,7} | #161010701 | N/A |
++----------------+-----------------+-----------------+-----------------------------+
| Hisilicon | Hip07 | #161600802 | HISILICON_ERRATUM_161600802 |
++----------------+-----------------+-----------------+-----------------------------+
| Hisilicon | Hip08 SMMU PMCG | #162001800 | N/A |
-| | | | |
++----------------+-----------------+-----------------+-----------------------------+
++----------------+-----------------+-----------------+-----------------------------+
| Qualcomm Tech. | Kryo/Falkor v1 | E1003 | QCOM_FALKOR_ERRATUM_1003 |
++----------------+-----------------+-----------------+-----------------------------+
| Qualcomm Tech. | Falkor v1 | E1009 | QCOM_FALKOR_ERRATUM_1009 |
++----------------+-----------------+-----------------+-----------------------------+
| Qualcomm Tech. | QDF2400 ITS | E0065 | QCOM_QDF2400_ERRATUM_0065 |
++----------------+-----------------+-----------------+-----------------------------+
| Qualcomm Tech. | Falkor v{1,2} | E1041 | QCOM_FALKOR_ERRATUM_1041 |
++----------------+-----------------+-----------------+-----------------------------+
++----------------+-----------------+-----------------+-----------------------------+
| Fujitsu | A64FX | E#010001 | FUJITSU_ERRATUM_010001 |
++----------------+-----------------+-----------------+-----------------------------+
diff --git a/Documentation/arm64/sve.txt b/Documentation/arm64/sve.rst
similarity index 98%
rename from Documentation/arm64/sve.txt
rename to Documentation/arm64/sve.rst
index 7169a0ec41d8..2d11877214c6 100644
--- a/Documentation/arm64/sve.txt
+++ b/Documentation/arm64/sve.rst
@@ -1,7 +1,9 @@
- Scalable Vector Extension support for AArch64 Linux
- ===================================================
+===================================================
+Scalable Vector Extension support for AArch64 Linux
+===================================================
Author: Dave Martin <Dave.Martin@arm.com>
+
Date: 4 August 2017
This document outlines briefly the interface provided to userspace by Linux in
@@ -409,7 +411,7 @@ In A64 state, SVE adds the following:
* FPSR and FPCR are retained from ARMv8-A, and interact with SVE floating-point
operations in a similar way to the way in which they interact with ARMv8
- floating-point operations.
+ floating-point operations::
8VL-1 128 0 bit index
+---- //// -----------------+
@@ -466,6 +468,8 @@ ARMv8-A defines the following floating-point / SIMD register state:
* 32 128-bit vector registers V0..V31
* 2 32-bit status/control registers FPSR, FPCR
+::
+
127 0 bit index
+---------------+
V0 | |
@@ -500,7 +504,7 @@ References
[2] arch/arm64/include/uapi/asm/ptrace.h
AArch64 Linux ptrace ABI definitions
-[3] Documentation/arm64/cpu-feature-registers.txt
+[3] Documentation/arm64/cpu-feature-registers.rst
[4] ARM IHI0055C
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055c/IHI0055C_beta_aapcs64.pdf
diff --git a/Documentation/arm64/tagged-pointers.txt b/Documentation/arm64/tagged-pointers.rst
similarity index 94%
rename from Documentation/arm64/tagged-pointers.txt
rename to Documentation/arm64/tagged-pointers.rst
index a25a99e82bb1..2acdec3ebbeb 100644
--- a/Documentation/arm64/tagged-pointers.txt
+++ b/Documentation/arm64/tagged-pointers.rst
@@ -1,7 +1,9 @@
- Tagged virtual addresses in AArch64 Linux
- =========================================
+=========================================
+Tagged virtual addresses in AArch64 Linux
+=========================================
Author: Will Deacon <will.deacon@arm.com>
+
Date : 12 June 2013
This document briefly describes the provision of tagged virtual
diff --git a/Documentation/translations/zh_CN/arm64/booting.txt b/Documentation/translations/zh_CN/arm64/booting.txt
index c1dd968c5ee9..3bfbf66e5a5e 100644
--- a/Documentation/translations/zh_CN/arm64/booting.txt
+++ b/Documentation/translations/zh_CN/arm64/booting.txt
@@ -1,4 +1,4 @@
-Chinese translated version of Documentation/arm64/booting.txt
+Chinese translated version of Documentation/arm64/booting.rst
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
@@ -10,7 +10,7 @@ M: Will Deacon <will.deacon@arm.com>
zh_CN: Fu Wei <wefu@redhat.com>
C: 55f058e7574c3615dea4615573a19bdb258696c6
---------------------------------------------------------------------
-Documentation/arm64/booting.txt 的中文翻译
+Documentation/arm64/booting.rst 的中文翻译
如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文
交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻
diff --git a/Documentation/translations/zh_CN/arm64/legacy_instructions.txt b/Documentation/translations/zh_CN/arm64/legacy_instructions.txt
index 68362a1ab717..e295cf75f606 100644
--- a/Documentation/translations/zh_CN/arm64/legacy_instructions.txt
+++ b/Documentation/translations/zh_CN/arm64/legacy_instructions.txt
@@ -1,4 +1,4 @@
-Chinese translated version of Documentation/arm64/legacy_instructions.txt
+Chinese translated version of Documentation/arm64/legacy_instructions.rst
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
@@ -10,7 +10,7 @@ Maintainer: Punit Agrawal <punit.agrawal@arm.com>
Suzuki K. Poulose <suzuki.poulose@arm.com>
Chinese maintainer: Fu Wei <wefu@redhat.com>
---------------------------------------------------------------------
-Documentation/arm64/legacy_instructions.txt 的中文翻译
+Documentation/arm64/legacy_instructions.rst 的中文翻译
如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文
交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻
diff --git a/Documentation/translations/zh_CN/arm64/memory.txt b/Documentation/translations/zh_CN/arm64/memory.txt
index 19b3a52d5d94..be20f8228b91 100644
--- a/Documentation/translations/zh_CN/arm64/memory.txt
+++ b/Documentation/translations/zh_CN/arm64/memory.txt
@@ -1,4 +1,4 @@
-Chinese translated version of Documentation/arm64/memory.txt
+Chinese translated version of Documentation/arm64/memory.rst
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
@@ -9,7 +9,7 @@ or if there is a problem with the translation.
Maintainer: Catalin Marinas <catalin.marinas@arm.com>
Chinese maintainer: Fu Wei <wefu@redhat.com>
---------------------------------------------------------------------
-Documentation/arm64/memory.txt 的中文翻译
+Documentation/arm64/memory.rst 的中文翻译
如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文
交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻
diff --git a/Documentation/translations/zh_CN/arm64/silicon-errata.txt b/Documentation/translations/zh_CN/arm64/silicon-errata.txt
index 39477c75c4a4..440c59ac7dce 100644
--- a/Documentation/translations/zh_CN/arm64/silicon-errata.txt
+++ b/Documentation/translations/zh_CN/arm64/silicon-errata.txt
@@ -1,4 +1,4 @@
-Chinese translated version of Documentation/arm64/silicon-errata.txt
+Chinese translated version of Documentation/arm64/silicon-errata.rst
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
@@ -10,7 +10,7 @@ M: Will Deacon <will.deacon@arm.com>
zh_CN: Fu Wei <wefu@redhat.com>
C: 1926e54f115725a9248d0c4c65c22acaf94de4c4
---------------------------------------------------------------------
-Documentation/arm64/silicon-errata.txt 的中文翻译
+Documentation/arm64/silicon-errata.rst 的中文翻译
如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文
交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻
diff --git a/Documentation/translations/zh_CN/arm64/tagged-pointers.txt b/Documentation/translations/zh_CN/arm64/tagged-pointers.txt
index 2664d1bd5a1c..77ac3548a16d 100644
--- a/Documentation/translations/zh_CN/arm64/tagged-pointers.txt
+++ b/Documentation/translations/zh_CN/arm64/tagged-pointers.txt
@@ -1,4 +1,4 @@
-Chinese translated version of Documentation/arm64/tagged-pointers.txt
+Chinese translated version of Documentation/arm64/tagged-pointers.rst
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
@@ -9,7 +9,7 @@ or if there is a problem with the translation.
Maintainer: Will Deacon <will.deacon@arm.com>
Chinese maintainer: Fu Wei <wefu@redhat.com>
---------------------------------------------------------------------
-Documentation/arm64/tagged-pointers.txt 的中文翻译
+Documentation/arm64/tagged-pointers.rst 的中文翻译
如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文
交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻
diff --git a/Documentation/virtual/kvm/api.txt b/Documentation/virtual/kvm/api.txt
index e26e470d8566..1abd4919ff4c 100644
--- a/Documentation/virtual/kvm/api.txt
+++ b/Documentation/virtual/kvm/api.txt
@@ -2216,7 +2216,7 @@ max_vq. This is the maximum vector length available to the guest on
this vcpu, and determines which register slices are visible through
this ioctl interface.
-(See Documentation/arm64/sve.txt for an explanation of the "vq"
+(See Documentation/arm64/sve.rst for an explanation of the "vq"
nomenclature.)
KVM_REG_ARM64_SVE_VLS is only accessible after KVM_ARM_VCPU_INIT.
diff --git a/arch/arm64/include/asm/efi.h b/arch/arm64/include/asm/efi.h
index c9e9a6978e73..8e79ce9c3f5c 100644
--- a/arch/arm64/include/asm/efi.h
+++ b/arch/arm64/include/asm/efi.h
@@ -83,7 +83,7 @@ static inline unsigned long efi_get_max_fdt_addr(unsigned long dram_base)
* guaranteed to cover the kernel Image.
*
* Since the EFI stub is part of the kernel Image, we can relax the
- * usual requirements in Documentation/arm64/booting.txt, which still
+ * usual requirements in Documentation/arm64/booting.rst, which still
* apply to other bootloaders, and are required for some kernel
* configurations.
*/
diff --git a/arch/arm64/include/asm/image.h b/arch/arm64/include/asm/image.h
index e2c27a2278e9..c2b13213c720 100644
--- a/arch/arm64/include/asm/image.h
+++ b/arch/arm64/include/asm/image.h
@@ -27,7 +27,7 @@
/*
* struct arm64_image_header - arm64 kernel image header
- * See Documentation/arm64/booting.txt for details
+ * See Documentation/arm64/booting.rst for details
*
* @code0: Executable code, or
* @mz_header alternatively used for part of MZ header
diff --git a/arch/arm64/include/uapi/asm/sigcontext.h b/arch/arm64/include/uapi/asm/sigcontext.h
index 5f3c0cec5af9..a61f89ddbf34 100644
--- a/arch/arm64/include/uapi/asm/sigcontext.h
+++ b/arch/arm64/include/uapi/asm/sigcontext.h
@@ -137,7 +137,7 @@ struct sve_context {
* vector length beyond its initial architectural limit of 2048 bits
* (16 quadwords).
*
- * See linux/Documentation/arm64/sve.txt for a description of the VL/VQ
+ * See linux/Documentation/arm64/sve.rst for a description of the VL/VQ
* terminology.
*/
#define SVE_VQ_BYTES __SVE_VQ_BYTES /* bytes per quadword */
diff --git a/arch/arm64/kernel/kexec_image.c b/arch/arm64/kernel/kexec_image.c
index 07bf740bea91..2514fd6f12cb 100644
--- a/arch/arm64/kernel/kexec_image.c
+++ b/arch/arm64/kernel/kexec_image.c
@@ -53,7 +53,7 @@ static void *image_load(struct kimage *image,
/*
* We require a kernel with an unambiguous Image header. Per
- * Documentation/booting.txt, this is the case when image_size
+ * Documentation/arm64/booting.rst, this is the case when image_size
* is non-zero (practically speaking, since v3.17).
*/
h = (struct arm64_image_header *)kernel;
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 07/79] docs: cdrom: convert docs to ReST and rename to *.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (4 preceding siblings ...)
2019-04-22 13:26 ` [PATCH v2 05/79] docs: arm64: convert docs to ReST and rename to .rst Mauro Carvalho Chehab
@ 2019-04-22 13:26 ` Mauro Carvalho Chehab
2019-04-22 13:26 ` [PATCH v2 09/79] docs: cgroup-v1/blkio-controller.rst: add a note about CFQ scheduler Mauro Carvalho Chehab
` (67 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:26 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Jens Axboe, Borislav Petkov, David S. Miller,
linux-ide, linux-block
The stuff there is almost already at ReST format. A
conversion for them is trivial: just add a missing titles
and fix some scape codes for them to match ReST syntax.
While here, rename the cdrom-standard.txt, with was converted
from LaTeX to ReST on the previous patch, and add it to the
index file.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
...{cdrom-standard.txt => cdrom-standard.rst} | 0
Documentation/cdrom/{ide-cd => ide-cd.rst} | 178 +++++++++---------
Documentation/cdrom/index.rst | 19 ++
...{packet-writing.txt => packet-writing.rst} | 27 ++-
MAINTAINERS | 2 +-
drivers/block/Kconfig | 2 +-
drivers/cdrom/cdrom.c | 2 +-
drivers/ide/ide-cd.c | 2 +-
8 files changed, 131 insertions(+), 101 deletions(-)
rename Documentation/cdrom/{cdrom-standard.txt => cdrom-standard.rst} (100%)
rename Documentation/cdrom/{ide-cd => ide-cd.rst} (84%)
create mode 100644 Documentation/cdrom/index.rst
rename Documentation/cdrom/{packet-writing.txt => packet-writing.rst} (91%)
diff --git a/Documentation/cdrom/cdrom-standard.txt b/Documentation/cdrom/cdrom-standard.rst
similarity index 100%
rename from Documentation/cdrom/cdrom-standard.txt
rename to Documentation/cdrom/cdrom-standard.rst
diff --git a/Documentation/cdrom/ide-cd b/Documentation/cdrom/ide-cd.rst
similarity index 84%
rename from Documentation/cdrom/ide-cd
rename to Documentation/cdrom/ide-cd.rst
index a5f2a7f1ff46..dadc94ef6b6c 100644
--- a/Documentation/cdrom/ide-cd
+++ b/Documentation/cdrom/ide-cd.rst
@@ -1,18 +1,20 @@
IDE-CD driver documentation
-Originally by scott snyder <snyder@fnald0.fnal.gov> (19 May 1996)
-Carrying on the torch is: Erik Andersen <andersee@debian.org>
-New maintainers (19 Oct 1998): Jens Axboe <axboe@image.dk>
+===========================
+
+:Originally by: scott snyder <snyder@fnald0.fnal.gov> (19 May 1996)
+:Carrying on the torch is: Erik Andersen <andersee@debian.org>
+:New maintainers (19 Oct 1998): Jens Axboe <axboe@image.dk>
1. Introduction
---------------
-The ide-cd driver should work with all ATAPI ver 1.2 to ATAPI 2.6 compliant
+The ide-cd driver should work with all ATAPI ver 1.2 to ATAPI 2.6 compliant
CDROM drives which attach to an IDE interface. Note that some CDROM vendors
(including Mitsumi, Sony, Creative, Aztech, and Goldstar) have made
both ATAPI-compliant drives and drives which use a proprietary
interface. If your drive uses one of those proprietary interfaces,
this driver will not work with it (but one of the other CDROM drivers
-probably will). This driver will not work with `ATAPI' drives which
+probably will). This driver will not work with `ATAPI` drives which
attach to the parallel port. In addition, there is at least one drive
(CyCDROM CR520ie) which attaches to the IDE port but is not ATAPI;
this driver will not work with drives like that either (but see the
@@ -31,7 +33,7 @@ This driver provides the following features:
from audio tracks. The program cdda2wav can be used for this.
Note, however, that only some drives actually support this.
- - There is now support for CDROM changers which comply with the
+ - There is now support for CDROM changers which comply with the
ATAPI 2.6 draft standard (such as the NEC CDR-251). This additional
functionality includes a function call to query which slot is the
currently selected slot, a function call to query which slots contain
@@ -49,11 +51,11 @@ This driver provides the following features:
driver.
1. Make sure that the ide and ide-cd drivers are compiled into the
- kernel you're using. When configuring the kernel, in the section
- entitled "Floppy, IDE, and other block devices", say either `Y'
- (which will compile the support directly into the kernel) or `M'
+ kernel you're using. When configuring the kernel, in the section
+ entitled "Floppy, IDE, and other block devices", say either `Y`
+ (which will compile the support directly into the kernel) or `M`
(to compile support as a module which can be loaded and unloaded)
- to the options:
+ to the options::
ATA/ATAPI/MFM/RLL support
Include IDE/ATAPI CDROM support
@@ -72,35 +74,35 @@ This driver provides the following features:
address and an IRQ number, the standard assignments being
0x1f0 and 14 for the primary interface and 0x170 and 15 for the
secondary interface. Each interface can control up to two devices,
- where each device can be a hard drive, a CDROM drive, a floppy drive,
- or a tape drive. The two devices on an interface are called `master'
- and `slave'; this is usually selectable via a jumper on the drive.
+ where each device can be a hard drive, a CDROM drive, a floppy drive,
+ or a tape drive. The two devices on an interface are called `master`
+ and `slave`; this is usually selectable via a jumper on the drive.
Linux names these devices as follows. The master and slave devices
- on the primary IDE interface are called `hda' and `hdb',
+ on the primary IDE interface are called `hda` and `hdb`,
respectively. The drives on the secondary interface are called
- `hdc' and `hdd'. (Interfaces at other locations get other letters
+ `hdc` and `hdd`. (Interfaces at other locations get other letters
in the third position; see Documentation/ide/ide.txt.)
If you want your CDROM drive to be found automatically by the
driver, you should make sure your IDE interface uses either the
primary or secondary addresses mentioned above. In addition, if
the CDROM drive is the only device on the IDE interface, it should
- be jumpered as `master'. (If for some reason you cannot configure
+ be jumpered as `master`. (If for some reason you cannot configure
your system in this manner, you can probably still use the driver.
You may have to pass extra configuration information to the kernel
when you boot, however. See Documentation/ide/ide.txt for more
information.)
4. Boot the system. If the drive is recognized, you should see a
- message which looks like
+ message which looks like::
hdb: NEC CD-ROM DRIVE:260, ATAPI CDROM drive
If you do not see this, see section 5 below.
5. You may want to create a symbolic link /dev/cdrom pointing to the
- actual device. You can do this with the command
+ actual device. You can do this with the command::
ln -s /dev/hdX /dev/cdrom
@@ -108,14 +110,14 @@ This driver provides the following features:
drive is installed.
6. You should be able to see any error messages from the driver with
- the `dmesg' command.
+ the `dmesg` command.
3. Basic usage
--------------
-An ISO 9660 CDROM can be mounted by putting the disc in the drive and
-typing (as root)
+An ISO 9660 CDROM can be mounted by putting the disc in the drive and
+typing (as root)::
mount -t iso9660 /dev/cdrom /mnt/cdrom
@@ -123,7 +125,7 @@ where it is assumed that /dev/cdrom is a link pointing to the actual
device (as described in step 5 of the last section) and /mnt/cdrom is
an empty directory. You should now be able to see the contents of the
CDROM under the /mnt/cdrom directory. If you want to eject the CDROM,
-you must first dismount it with a command like
+you must first dismount it with a command like::
umount /mnt/cdrom
@@ -148,7 +150,7 @@ such as cdda2wav. The only types of drive which I've heard support
this are Sony and Toshiba drives. You will get errors if you try to
use this function on a drive which does not support it.
-For supported changers, you can use the `cdchange' program (appended to
+For supported changers, you can use the `cdchange` program (appended to
the end of this file) to switch between changer slots. Note that the
drive should be unmounted before attempting this. The program takes
two arguments: the CDROM device, and the slot number to which you wish
@@ -165,7 +167,7 @@ Documentation/ide/ide.txt for current information about the underlying
IDE support code. Some of these items apply only to earlier versions
of the driver, but are mentioned here for completeness.
-In most cases, you should probably check with `dmesg' for any errors
+In most cases, you should probably check with `dmesg` for any errors
from the driver.
a. Drive is not detected during booting.
@@ -184,9 +186,9 @@ a. Drive is not detected during booting.
- If the autoprobing is not finding your drive, you can tell the
driver to assume that one exists by using a lilo option of the
- form `hdX=cdrom', where X is the drive letter corresponding to
- where your drive is installed. Note that if you do this and you
- see a boot message like
+ form `hdX=cdrom`, where X is the drive letter corresponding to
+ where your drive is installed. Note that if you do this and you
+ see a boot message like::
hdX: ATAPI cdrom (?)
@@ -220,7 +222,7 @@ b. Timeout/IRQ errors.
probably not making it to the host.
- IRQ problems may also be indicated by the message
- `IRQ probe failed (<n>)' while booting. If <n> is zero, that
+ `IRQ probe failed (<n>)` while booting. If <n> is zero, that
means that the system did not see an interrupt from the drive when
it was expecting one (on any feasible IRQ). If <n> is negative,
that means the system saw interrupts on multiple IRQ lines, when
@@ -240,27 +242,27 @@ b. Timeout/IRQ errors.
there are hardware problems with the interrupt setup; they
apparently don't use interrupts.
- - If you own a Pioneer DR-A24X, you _will_ get nasty error messages
+ - If you own a Pioneer DR-A24X, you _will_ get nasty error messages
on boot such as "irq timeout: status=0x50 { DriveReady SeekComplete }"
The Pioneer DR-A24X CDROM drives are fairly popular these days.
Unfortunately, these drives seem to become very confused when we perform
the standard Linux ATA disk drive probe. If you own one of these drives,
- you can bypass the ATA probing which confuses these CDROM drives, by
- adding `append="hdX=noprobe hdX=cdrom"' to your lilo.conf file and running
- lilo (again where X is the drive letter corresponding to where your drive
+ you can bypass the ATA probing which confuses these CDROM drives, by
+ adding `append="hdX=noprobe hdX=cdrom"` to your lilo.conf file and running
+ lilo (again where X is the drive letter corresponding to where your drive
is installed.)
-
+
c. System hangups.
- If the system locks up when you try to access the CDROM, the most
likely cause is that you have a buggy IDE adapter which doesn't
properly handle simultaneous transactions on multiple interfaces.
The most notorious of these is the CMD640B chip. This problem can
- be worked around by specifying the `serialize' option when
+ be worked around by specifying the `serialize` option when
booting. Recent kernels should be able to detect the need for
this automatically in most cases, but the detection is not
foolproof. See Documentation/ide/ide.txt for more information
- about the `serialize' option and the CMD640B.
+ about the `serialize` option and the CMD640B.
- Note that many MS-DOS CDROM drivers will work with such buggy
hardware, apparently because they never attempt to overlap CDROM
@@ -269,14 +271,14 @@ c. System hangups.
d. Can't mount a CDROM.
- - If you get errors from mount, it may help to check `dmesg' to see
+ - If you get errors from mount, it may help to check `dmesg` to see
if there are any more specific errors from the driver or from the
filesystem.
- Make sure there's a CDROM loaded in the drive, and that's it's an
ISO 9660 disc. You can't mount an audio CD.
- - With the CDROM in the drive and unmounted, try something like
+ - With the CDROM in the drive and unmounted, try something like::
cat /dev/cdrom | od | more
@@ -284,9 +286,9 @@ d. Can't mount a CDROM.
OK, and the problem is at the filesystem level (i.e., the CDROM is
not ISO 9660 or has errors in the filesystem structure).
- - If you see `not a block device' errors, check that the definitions
+ - If you see `not a block device` errors, check that the definitions
of the device special files are correct. They should be as
- follows:
+ follows::
brw-rw---- 1 root disk 3, 0 Nov 11 18:48 /dev/hda
brw-rw---- 1 root disk 3, 64 Nov 11 18:48 /dev/hdb
@@ -301,7 +303,7 @@ d. Can't mount a CDROM.
If you have a /dev/cdrom symbolic link, check that it is pointing
to the correct device file.
- If you hear people talking of the devices `hd1a' and `hd1b', these
+ If you hear people talking of the devices `hd1a` and `hd1b`, these
were old names for what are now called hdc and hdd. Those names
should be considered obsolete.
@@ -311,8 +313,8 @@ d. Can't mount a CDROM.
always give meaningful error messages.
-e. Directory listings are unpredictably truncated, and `dmesg' shows
- `buffer botch' error messages from the driver.
+e. Directory listings are unpredictably truncated, and `dmesg` shows
+ `buffer botch` error messages from the driver.
- There was a bug in the version of the driver in 1.2.x kernels
which could cause this. It was fixed in 1.3.0. If you can't
@@ -335,34 +337,36 @@ f. Data corruption.
5. cdchange.c
-------------
-/*
- * cdchange.c [-v] <device> [<slot>]
- *
- * This loads a CDROM from a specified slot in a changer, and displays
- * information about the changer status. The drive should be unmounted before
- * using this program.
- *
- * Changer information is displayed if either the -v flag is specified
- * or no slot was specified.
- *
- * Based on code originally from Gerhard Zuber <zuber@berlin.snafu.de>.
- * Changer status information, and rewrite for the new Uniform CDROM driver
- * interface by Erik Andersen <andersee@debian.org>.
- */
+::
-#include <stdio.h>
-#include <stdlib.h>
-#include <errno.h>
-#include <string.h>
-#include <unistd.h>
-#include <fcntl.h>
-#include <sys/ioctl.h>
-#include <linux/cdrom.h>
+ /*
+ * cdchange.c [-v] <device> [<slot>]
+ *
+ * This loads a CDROM from a specified slot in a changer, and displays
+ * information about the changer status. The drive should be unmounted before
+ * using this program.
+ *
+ * Changer information is displayed if either the -v flag is specified
+ * or no slot was specified.
+ *
+ * Based on code originally from Gerhard Zuber <zuber@berlin.snafu.de>.
+ * Changer status information, and rewrite for the new Uniform CDROM driver
+ * interface by Erik Andersen <andersee@debian.org>.
+ */
+ #include <stdio.h>
+ #include <stdlib.h>
+ #include <errno.h>
+ #include <string.h>
+ #include <unistd.h>
+ #include <fcntl.h>
+ #include <sys/ioctl.h>
+ #include <linux/cdrom.h>
-int
-main (int argc, char **argv)
-{
+
+ int
+ main (int argc, char **argv)
+ {
char *program;
char *device;
int fd; /* file descriptor for CD-ROM device */
@@ -382,30 +386,30 @@ main (int argc, char **argv)
fprintf (stderr, " Slots are numbered 1 -- n.\n");
exit (1);
}
-
+
if (strcmp (argv[0], "-v") == 0) {
verbose = 1;
++argv;
--argc;
}
-
+
device = argv[0];
-
+
if (argc == 2)
slot = atoi (argv[1]) - 1;
- /* open device */
+ /* open device */
fd = open(device, O_RDONLY | O_NONBLOCK);
if (fd < 0) {
- fprintf (stderr, "%s: open failed for `%s': %s\n",
+ fprintf (stderr, "%s: open failed for `%s`: %s\n",
program, device, strerror (errno));
exit (1);
}
- /* Check CD player status */
+ /* Check CD player status */
total_slots_available = ioctl (fd, CDROM_CHANGER_NSLOTS);
if (total_slots_available <= 1 ) {
- fprintf (stderr, "%s: Device `%s' is not an ATAPI "
+ fprintf (stderr, "%s: Device `%s` is not an ATAPI "
"compliant CD changer.\n", program, device);
exit (1);
}
@@ -418,7 +422,7 @@ main (int argc, char **argv)
exit (1);
}
- /* load */
+ /* load */
slot=ioctl (fd, CDROM_SELECT_DISC, slot);
if (slot<0) {
fflush(stdout);
@@ -462,14 +466,14 @@ main (int argc, char **argv)
for (x_slot=0; x_slot<total_slots_available; x_slot++) {
printf ("Slot %2d: ", x_slot+1);
- status = ioctl (fd, CDROM_DRIVE_STATUS, x_slot);
- if (status<0) {
- perror(" CDROM_DRIVE_STATUS");
- } else switch(status) {
+ status = ioctl (fd, CDROM_DRIVE_STATUS, x_slot);
+ if (status<0) {
+ perror(" CDROM_DRIVE_STATUS");
+ } else switch(status) {
case CDS_DISC_OK:
printf ("Disc present.");
break;
- case CDS_NO_DISC:
+ case CDS_NO_DISC:
printf ("Empty slot.");
break;
case CDS_TRAY_OPEN:
@@ -507,11 +511,11 @@ main (int argc, char **argv)
break;
}
}
- status = ioctl (fd, CDROM_MEDIA_CHANGED, x_slot);
- if (status<0) {
+ status = ioctl (fd, CDROM_MEDIA_CHANGED, x_slot);
+ if (status<0) {
perror(" CDROM_MEDIA_CHANGED");
- }
- switch (status) {
+ }
+ switch (status) {
case 1:
printf ("Changed.\n");
break;
@@ -525,10 +529,10 @@ main (int argc, char **argv)
/* close device */
status = close (fd);
if (status != 0) {
- fprintf (stderr, "%s: close failed for `%s': %s\n",
+ fprintf (stderr, "%s: close failed for `%s`: %s\n",
program, device, strerror (errno));
exit (1);
}
-
+
exit (0);
-}
+ }
diff --git a/Documentation/cdrom/index.rst b/Documentation/cdrom/index.rst
new file mode 100644
index 000000000000..efbd5d111825
--- /dev/null
+++ b/Documentation/cdrom/index.rst
@@ -0,0 +1,19 @@
+:orphan:
+
+=====
+cdrom
+=====
+
+.. toctree::
+ :maxdepth: 1
+
+ cdrom-standard
+ ide-cd
+ packet-writing
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/cdrom/packet-writing.txt b/Documentation/cdrom/packet-writing.rst
similarity index 91%
rename from Documentation/cdrom/packet-writing.txt
rename to Documentation/cdrom/packet-writing.rst
index 2834170d821e..c5c957195a5a 100644
--- a/Documentation/cdrom/packet-writing.txt
+++ b/Documentation/cdrom/packet-writing.rst
@@ -1,3 +1,7 @@
+==============
+Packet writing
+==============
+
Getting started quick
---------------------
@@ -10,13 +14,16 @@ Getting started quick
Download from http://sourceforge.net/projects/linux-udf/
- Grab a new CD-RW disc and format it (assuming CD-RW is hdc, substitute
- as appropriate):
+ as appropriate)::
+
# cdrwtool -d /dev/hdc -q
-- Setup your writer
+- Setup your writer::
+
# pktsetup dev_name /dev/hdc
-- Now you can mount /dev/pktcdvd/dev_name and copy files to it. Enjoy!
+- Now you can mount /dev/pktcdvd/dev_name and copy files to it. Enjoy::
+
# mount /dev/pktcdvd/dev_name /cdrom -t udf -o rw,noatime
@@ -25,11 +32,11 @@ Packet writing for DVD-RW media
DVD-RW discs can be written to much like CD-RW discs if they are in
the so called "restricted overwrite" mode. To put a disc in restricted
-overwrite mode, run:
+overwrite mode, run::
# dvd+rw-format /dev/hdc
-You can then use the disc the same way you would use a CD-RW disc:
+You can then use the disc the same way you would use a CD-RW disc::
# pktsetup dev_name /dev/hdc
# mount /dev/pktcdvd/dev_name /cdrom -t udf -o rw,noatime
@@ -41,7 +48,7 @@ Packet writing for DVD+RW media
According to the DVD+RW specification, a drive supporting DVD+RW discs
shall implement "true random writes with 2KB granularity", which means
that it should be possible to put any filesystem with a block size >=
-2KB on such a disc. For example, it should be possible to do:
+2KB on such a disc. For example, it should be possible to do::
# dvd+rw-format /dev/hdc (only needed if the disc has never
been formatted)
@@ -54,7 +61,7 @@ follow the specification, but suffer bad performance problems if the
writes are not 32KB aligned.
Both problems can be solved by using the pktcdvd driver, which always
-generates aligned writes.
+generates aligned writes::
# dvd+rw-format /dev/hdc
# pktsetup dev_name /dev/hdc
@@ -83,7 +90,7 @@ Notes
- Since the pktcdvd driver makes the disc appear as a regular block
device with a 2KB block size, you can put any filesystem you like on
- the disc. For example, run:
+ the disc. For example, run::
# /sbin/mke2fs /dev/pktcdvd/dev_name
@@ -97,7 +104,7 @@ Since Linux 2.6.20, the pktcdvd module has a sysfs interface
and can be controlled by it. For example the "pktcdvd" tool uses
this interface. (see http://tom.ist-im-web.de/download/pktcdvd )
-"pktcdvd" works similar to "pktsetup", e.g.:
+"pktcdvd" works similar to "pktsetup", e.g.::
# pktcdvd -a dev_name /dev/hdc
# mkudffs /dev/pktcdvd/dev_name
@@ -115,7 +122,7 @@ For a description of the sysfs interface look into the file:
Using the pktcdvd debugfs interface
-----------------------------------
-To read pktcdvd device infos in human readable form, do:
+To read pktcdvd device infos in human readable form, do::
# cat /sys/kernel/debug/pktcdvd/pktcdvd[0-7]/info
diff --git a/MAINTAINERS b/MAINTAINERS
index 285c2eee36d1..c8eebc8da565 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -7545,7 +7545,7 @@ IDE/ATAPI DRIVERS
M: Borislav Petkov <bp@alien8.de>
L: linux-ide@vger.kernel.org
S: Maintained
-F: Documentation/cdrom/ide-cd
+F: Documentation/cdrom/ide-cd.rst
F: drivers/ide/ide-cd*
IDEAPAD LAPTOP EXTRAS DRIVER
diff --git a/drivers/block/Kconfig b/drivers/block/Kconfig
index 20bb4bfa4be6..96ec7e0fc1ea 100644
--- a/drivers/block/Kconfig
+++ b/drivers/block/Kconfig
@@ -347,7 +347,7 @@ config CDROM_PKTCDVD
is possible.
DVD-RW disks must be in restricted overwrite mode.
- See the file <file:Documentation/cdrom/packet-writing.txt>
+ See the file <file:Documentation/cdrom/packet-writing.rst>
for further information on the use of this driver.
To compile this driver as a module, choose M here: the
diff --git a/drivers/cdrom/cdrom.c b/drivers/cdrom/cdrom.c
index 5d1e0a4a7d84..ac42ae4651ce 100644
--- a/drivers/cdrom/cdrom.c
+++ b/drivers/cdrom/cdrom.c
@@ -7,7 +7,7 @@
License. See linux/COPYING for more information.
Uniform CD-ROM driver for Linux.
- See Documentation/cdrom/cdrom-standard.txt for usage information.
+ See Documentation/cdrom/cdrom-standard.rst for usage information.
The routines in the file provide a uniform interface between the
software that uses CD-ROMs and the various low-level drivers that
diff --git a/drivers/ide/ide-cd.c b/drivers/ide/ide-cd.c
index 3b15adc6ce98..9d117936bee1 100644
--- a/drivers/ide/ide-cd.c
+++ b/drivers/ide/ide-cd.c
@@ -9,7 +9,7 @@
* May be copied or modified under the terms of the GNU General Public
* License. See linux/COPYING for more information.
*
- * See Documentation/cdrom/ide-cd for usage information.
+ * See Documentation/cdrom/ide-cd.rst for usage information.
*
* Suggestions are welcome. Patches that work are more welcome though. ;-)
*
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 09/79] docs: cgroup-v1/blkio-controller.rst: add a note about CFQ scheduler
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (5 preceding siblings ...)
2019-04-22 13:26 ` [PATCH v2 07/79] docs: cdrom: convert docs to ReST and rename to *.rst Mauro Carvalho Chehab
@ 2019-04-22 13:26 ` Mauro Carvalho Chehab
2019-04-22 13:26 ` [PATCH v2 10/79] docs: cpu-freq: convert docs to ReST and rename to *.rst Mauro Carvalho Chehab
` (66 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:26 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet
The CFQ scheduler was removed on this changeset:
commit f382fb0bcef4c37dc049e9f6963e3baf204d815c
Author: Jens Axboe <axboe@kernel.dk>
Date: Fri Oct 12 10:14:46 2018 -0600
block: remove legacy IO schedulers
Retain the deadline documentation, as that carries over to mq-deadline
as well.
Tested-by: Ming Lei <ming.lei@redhat.com>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
However, the cgroups-v1 documentation still mentions it and points
to a removed file that used to belong to such scheduler.
Add a note about that, as someone needs to fix the document pointing
to another scheduler, if cgroups-v1 blockio is not dependent of
CFQ scheduler.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/cgroup-v1/blkio-controller.rst | 7 +++++++
1 file changed, 7 insertions(+)
diff --git a/Documentation/cgroup-v1/blkio-controller.rst b/Documentation/cgroup-v1/blkio-controller.rst
index 2c1b907afc14..2836c2c31e63 100644
--- a/Documentation/cgroup-v1/blkio-controller.rst
+++ b/Documentation/cgroup-v1/blkio-controller.rst
@@ -17,6 +17,13 @@ one is throttling policy which can be used to specify upper IO rate limits
on devices. This policy is implemented in generic block layer and can be
used on leaf nodes as well as higher level logical devices like device mapper.
+.. note::
+
+ While this document mentions the CFQ scheduler, it got removed at
+ Kernel 4.20, as there are other schedulers that are more efficient.
+
+ Someone needs to update this file in order to reflect such change.
+
HOWTO
=====
Proportional Weight division of bandwidth
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 10/79] docs: cpu-freq: convert docs to ReST and rename to *.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (6 preceding siblings ...)
2019-04-22 13:26 ` [PATCH v2 09/79] docs: cgroup-v1/blkio-controller.rst: add a note about CFQ scheduler Mauro Carvalho Chehab
@ 2019-04-22 13:26 ` Mauro Carvalho Chehab
2019-04-23 8:21 ` Rafael J. Wysocki
2019-04-22 13:27 ` [PATCH v2 12/79] docs: fault-injection: " Mauro Carvalho Chehab
` (65 subsequent siblings)
73 siblings, 1 reply; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:26 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Rafael J. Wysocki, Viresh Kumar, linux-pm
The conversion is actually:
- add blank lines and identation in order to identify paragraphs;
- fix tables markups;
- add some lists markups;
- mark literal blocks;
- adjust title markups.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
.../{amd-powernow.txt => amd-powernow.rst} | 11 +-
Documentation/cpu-freq/{core.txt => core.rst} | 66 +++---
.../{cpu-drivers.txt => cpu-drivers.rst} | 217 +++++++++---------
...pufreq-nforce2.txt => cpufreq-nforce2.rst} | 12 +-
Documentation/cpu-freq/cpufreq-stats.rst | 128 +++++++++++
Documentation/cpu-freq/cpufreq-stats.txt | 127 ----------
Documentation/cpu-freq/index.rst | 52 +++++
Documentation/cpu-freq/index.txt | 56 -----
.../{pcc-cpufreq.txt => pcc-cpufreq.rst} | 102 ++++----
drivers/cpufreq/Kconfig.x86 | 2 +-
10 files changed, 391 insertions(+), 382 deletions(-)
rename Documentation/cpu-freq/{amd-powernow.txt => amd-powernow.rst} (91%)
rename Documentation/cpu-freq/{core.txt => core.rst} (67%)
rename Documentation/cpu-freq/{cpu-drivers.txt => cpu-drivers.rst} (57%)
rename Documentation/cpu-freq/{cpufreq-nforce2.txt => cpufreq-nforce2.rst} (65%)
create mode 100644 Documentation/cpu-freq/cpufreq-stats.rst
delete mode 100644 Documentation/cpu-freq/cpufreq-stats.txt
create mode 100644 Documentation/cpu-freq/index.rst
delete mode 100644 Documentation/cpu-freq/index.txt
rename Documentation/cpu-freq/{pcc-cpufreq.txt => pcc-cpufreq.rst} (80%)
diff --git a/Documentation/cpu-freq/amd-powernow.txt b/Documentation/cpu-freq/amd-powernow.rst
similarity index 91%
rename from Documentation/cpu-freq/amd-powernow.txt
rename to Documentation/cpu-freq/amd-powernow.rst
index 254da155fa47..50b2c45c3a2c 100644
--- a/Documentation/cpu-freq/amd-powernow.txt
+++ b/Documentation/cpu-freq/amd-powernow.rst
@@ -1,3 +1,7 @@
+=============================
+AMD powernow driver specifics
+=============================
+
PowerNow! and Cool'n'Quiet are AMD names for frequency
management capabilities in AMD processors. As the hardware
@@ -23,16 +27,19 @@ not supply these tables.
7th Generation: powernow-k7: Athlon, Duron, Geode.
8th Generation: powernow-k8: Athlon, Athlon 64, Opteron, Sempron.
+
Documentation on this functionality in 8th generation processors
is available in the "BIOS and Kernel Developer's Guide", publication
-26094, in chapter 9, available for download from www.amd.com.
+26094, in chapter 9, available for download from www.amd.com.
BIOS supplied data, for powernow-k7 and for powernow-k8, may be
from either the PSB table or from ACPI objects. The ACPI support
is only available if the kernel config sets CONFIG_ACPI_PROCESSOR.
+
The powernow-k8 driver will attempt to use ACPI if so configured,
and fall back to PST if that fails.
+
The powernow-k7 driver will try to use the PSB support first, and
fall back to ACPI if the PSB support fails. A module parameter,
-acpi_force, is provided to force ACPI support to be used instead
+acpi_force, is provided to force ACPI support to be used instead
of PSB support.
diff --git a/Documentation/cpu-freq/core.txt b/Documentation/cpu-freq/core.rst
similarity index 67%
rename from Documentation/cpu-freq/core.txt
rename to Documentation/cpu-freq/core.rst
index 073f128af5a7..c719e3cb700c 100644
--- a/Documentation/cpu-freq/core.txt
+++ b/Documentation/cpu-freq/core.rst
@@ -1,31 +1,22 @@
- CPU frequency and voltage scaling code in the Linux(TM) kernel
+================================================================
+General description of the CPUFreq core and of CPUFreq notifiers
+================================================================
+Authors:
+ - Dominik Brodowski <linux@brodo.de>
+ - David Kimdon <dwhedon@debian.org>
+ - Rafael J. Wysocki <rafael.j.wysocki@intel.com>
+ - Viresh Kumar <viresh.kumar@linaro.org>
- L i n u x C P U F r e q
- C P U F r e q C o r e
+.. Contents:
-
- Dominik Brodowski <linux@brodo.de>
- David Kimdon <dwhedon@debian.org>
- Rafael J. Wysocki <rafael.j.wysocki@intel.com>
- Viresh Kumar <viresh.kumar@linaro.org>
-
-
-
- Clock scaling allows you to change the clock speed of the CPUs on the
- fly. This is a nice method to save battery power, because the lower
- the clock speed, the less power the CPU consumes.
-
-
-Contents:
----------
-1. CPUFreq core and interfaces
-2. CPUFreq notifiers
-3. CPUFreq Table Generation with Operating Performance Point (OPP)
+ 1. CPUFreq core and interfaces
+ 2. CPUFreq notifiers
+ 3. CPUFreq Table Generation with Operating Performance Point (OPP)
1. General Information
-=======================
+======================
The CPUFreq core code is located in drivers/cpufreq/cpufreq.c. This
cpufreq code offers a standardized interface for the CPUFreq
@@ -60,18 +51,18 @@ transition notifiers.
These are notified when a new policy is intended to be set. Each
CPUFreq policy notifier is called twice for a policy transition:
-1.) During CPUFREQ_ADJUST all CPUFreq notifiers may change the limit if
- they see a need for this - may it be thermal considerations or
- hardware limitations.
+1) During CPUFREQ_ADJUST all CPUFreq notifiers may change the limit if
+ they see a need for this - may it be thermal considerations or
+ hardware limitations.
-2.) And during CPUFREQ_NOTIFY all notifiers are informed of the new policy
- - if two hardware drivers failed to agree on a new policy before this
+2) And during CPUFREQ_NOTIFY all notifiers are informed of the new policy -
+ if two hardware drivers failed to agree on a new policy before this
stage, the incompatible hardware shall be shut down, and the user
informed of this.
The phase is specified in the second argument to the notifier.
-The third argument, a void *pointer, points to a struct cpufreq_policy
+The third argument, a `void *` pointer, points to a struct cpufreq_policy
consisting of several values, including min, max (the lower and upper
frequencies (in kHz) of the new policy).
@@ -88,23 +79,27 @@ CPUFREQ_POSTCHANGE.
The third argument is a struct cpufreq_freqs with the following
values:
-cpu - number of the affected CPU
-old - old frequency
-new - new frequency
-flags - flags of the cpufreq driver
+
+======= ===========================
+cpu number of the affected CPU
+old old frequency
+new new frequency
+flags flags of the cpufreq driver
+======= ===========================
3. CPUFreq Table Generation with Operating Performance Point (OPP)
==================================================================
For details about OPP, see Documentation/power/opp.txt
-dev_pm_opp_init_cpufreq_table -
+dev_pm_opp_init_cpufreq_table
This function provides a ready to use conversion routine to translate
the OPP layer's internal information about the available frequencies
into a format readily providable to cpufreq.
WARNING: Do not use this function in interrupt context.
- Example:
+ Example::
+
soc_pm_init()
{
/* Do things */
@@ -117,4 +112,5 @@ dev_pm_opp_init_cpufreq_table -
NOTE: This function is available only if CONFIG_CPU_FREQ is enabled in
addition to CONFIG_PM_OPP.
-dev_pm_opp_free_cpufreq_table - Free up the table allocated by dev_pm_opp_init_cpufreq_table
+dev_pm_opp_free_cpufreq_table
+ Free up the table allocated by dev_pm_opp_init_cpufreq_table
diff --git a/Documentation/cpu-freq/cpu-drivers.txt b/Documentation/cpu-freq/cpu-drivers.rst
similarity index 57%
rename from Documentation/cpu-freq/cpu-drivers.txt
rename to Documentation/cpu-freq/cpu-drivers.rst
index 6e353d00cdc6..9cc2559bc34b 100644
--- a/Documentation/cpu-freq/cpu-drivers.txt
+++ b/Documentation/cpu-freq/cpu-drivers.rst
@@ -1,35 +1,25 @@
- CPU frequency and voltage scaling code in the Linux(TM) kernel
-
-
- L i n u x C P U F r e q
-
- C P U D r i v e r s
-
- - information for developers -
-
-
- Dominik Brodowski <linux@brodo.de>
- Rafael J. Wysocki <rafael.j.wysocki@intel.com>
- Viresh Kumar <viresh.kumar@linaro.org>
-
-
-
- Clock scaling allows you to change the clock speed of the CPUs on the
- fly. This is a nice method to save battery power, because the lower
- the clock speed, the less power the CPU consumes.
-
-
-Contents:
----------
-1. What To Do?
-1.1 Initialization
-1.2 Per-CPU Initialization
-1.3 verify
-1.4 target/target_index or setpolicy?
-1.5 target/target_index
-1.6 setpolicy
-1.7 get_intermediate and target_intermediate
-2. Frequency Table Helpers
+===============================================
+How to implement a new cpufreq processor driver
+===============================================
+
+.. information for developers
+
+Authors:
+ - Dominik Brodowski <linux@brodo.de>
+ - Rafael J. Wysocki <rafael.j.wysocki@intel.com>
+ - Viresh Kumar <viresh.kumar@linaro.org>
+
+.. Contents:
+
+ 1. What To Do?
+ 1.1 Initialization
+ 1.2 Per-CPU Initialization
+ 1.3 verify
+ 1.4 target/target_index or setpolicy?
+ 1.5 target/target_index
+ 1.6 setpolicy
+ 1.7 get_intermediate and target_intermediate
+ 2. Frequency Table Helpers
@@ -46,59 +36,73 @@ on what is necessary:
First of all, in an __initcall level 7 (module_init()) or later
function check whether this kernel runs on the right CPU and the right
-chipset. If so, register a struct cpufreq_driver with the CPUfreq core
-using cpufreq_register_driver()
+chipset. If so, register a `struct cpufreq_driver` with the CPUfreq core
+using `cpufreq_register_driver()`
-What shall this struct cpufreq_driver contain?
+What shall this `struct cpufreq_driver` contain?
- .name - The name of this driver.
+.name
+ The name of this driver.
- .init - A pointer to the per-policy initialization function.
+.init
+ A pointer to the per-policy initialization function.
- .verify - A pointer to a "verification" function.
+.verify
+ A pointer to a "verification" function.
- .setpolicy _or_ .fast_switch _or_ .target _or_ .target_index - See
- below on the differences.
+.setpolicy **or** .fast_switch **or** .target **or** .target_index
+ See below on the differences.
And optionally
- .flags - Hints for the cpufreq core.
+.flags
+ Hints for the cpufreq core.
- .driver_data - cpufreq driver specific data.
+.driver_data
+ cpufreq driver specific data.
- .resolve_freq - Returns the most appropriate frequency for a target
- frequency. Doesn't change the frequency though.
+.resolve_freq
+ Returns the most appropriate frequency for a target
+ frequency. Doesn't change the frequency though.
- .get_intermediate and target_intermediate - Used to switch to stable
- frequency while changing CPU frequency.
+.get_intermediate and target_intermediate
+ Used to switch to stable frequency while changing CPU frequency.
- .get - Returns current frequency of the CPU.
+.get
+ Returns current frequency of the CPU.
- .bios_limit - Returns HW/BIOS max frequency limitations for the CPU.
+.bios_limit
+ Returns HW/BIOS max frequency limitations for the CPU.
- .exit - A pointer to a per-policy cleanup function called during
- CPU_POST_DEAD phase of cpu hotplug process.
+.exit
+ A pointer to a per-policy cleanup function called during
+ CPU_POST_DEAD phase of cpu hotplug process.
- .stop_cpu - A pointer to a per-policy stop function called during
- CPU_DOWN_PREPARE phase of cpu hotplug process.
+.stop_cpu
+ A pointer to a per-policy stop function called during
+ CPU_DOWN_PREPARE phase of cpu hotplug process.
- .suspend - A pointer to a per-policy suspend function which is called
- with interrupts disabled and _after_ the governor is stopped for the
- policy.
+.suspend
+ A pointer to a per-policy suspend function which is called with
+ interrupts disabled and **after** the governor is stopped for the policy.
- .resume - A pointer to a per-policy resume function which is called
- with interrupts disabled and _before_ the governor is started again.
+.resume
+ A pointer to a per-policy resume function which is called
+ with interrupts disabled and **before** the governor is started again.
- .ready - A pointer to a per-policy ready function which is called after
- the policy is fully initialized.
+.ready
+ A pointer to a per-policy ready function which is called after
+ the policy is fully initialized.
- .attr - A pointer to a NULL-terminated list of "struct freq_attr" which
- allow to export values to sysfs.
+.attr
+ A pointer to a NULL-terminated list of `struct freq_attr` which
+ allow to export values to sysfs.
- .boost_enabled - If set, boost frequencies are enabled.
+.boost_enabled
+ If set, boost frequencies are enabled.
- .set_boost - A pointer to a per-policy function to enable/disable boost
- frequencies.
+.set_boost
+ A pointer to a per-policy function to enable/disable boost frequencies.
1.2 Per-CPU Initialization
@@ -108,37 +112,42 @@ Whenever a new CPU is registered with the device model, or after the
cpufreq driver registers itself, the per-policy initialization function
cpufreq_driver.init is called if no cpufreq policy existed for the CPU.
Note that the .init() and .exit() routines are called only once for the
-policy and not for each CPU managed by the policy. It takes a struct
-cpufreq_policy *policy as argument. What to do now?
+policy and not for each CPU managed by the policy. It takes a `struct
+cpufreq_policy *policy` as argument. What to do now?
If necessary, activate the CPUfreq support on your CPU.
Then, the driver must fill in the following values:
-policy->cpuinfo.min_freq _and_
-policy->cpuinfo.max_freq - the minimum and maximum frequency
- (in kHz) which is supported by
- this CPU
-policy->cpuinfo.transition_latency the time it takes on this CPU to
- switch between two frequencies in
- nanoseconds (if appropriate, else
- specify CPUFREQ_ETERNAL)
-
-policy->cur The current operating frequency of
- this CPU (if appropriate)
-policy->min,
-policy->max,
-policy->policy and, if necessary,
-policy->governor must contain the "default policy" for
- this CPU. A few moments later,
- cpufreq_driver.verify and either
- cpufreq_driver.setpolicy or
- cpufreq_driver.target/target_index is called
- with these values.
-policy->cpus Update this with the masks of the
- (online + offline) CPUs that do DVFS
- along with this CPU (i.e. that share
- clock/voltage rails with it).
++---------------------------------------+--------------------------------------+
+| policy->cpuinfo.min_freq **and** | |
+| policy->cpuinfo.max_freq | the minimum and maximum frequency |
+| | (in kHz) which is supported by |
+| | this CPU |
++---------------------------------------+--------------------------------------+
+| policy->cpuinfo.transition_latency | the time it takes on this CPU to |
+| | switch between two frequencies in |
+| | nanoseconds (if appropriate, else |
+| | specify CPUFREQ_ETERNAL) |
++---------------------------------------+--------------------------------------+
+| policy->cur | The current operating frequency of |
+| | this CPU (if appropriate) |
++---------------------------------------+--------------------------------------+
+| policy->min, | |
+| policy->max, | |
+| policy->policy and, if necessary, | |
+| policy->governor | must contain the "default policy" |
+| | for this CPU. A few moments later, |
+| | cpufreq_driver.verify and either |
+| | cpufreq_driver.setpolicy or |
+| | cpufreq_driver.target/target_index |
+| | is called with these values. |
++---------------------------------------+--------------------------------------+
+| policy->cpus | Update this with the masks of the |
+| | (online + offline) CPUs that do DVFS |
+| | along with this CPU (i.e. that share |
+| | clock/voltage rails with it). |
++---------------------------------------+--------------------------------------+
For setting some of these values (cpuinfo.min[max]_freq, policy->min[max]), the
frequency table helpers might be helpful. See the section 2 for more information
@@ -151,8 +160,8 @@ on them.
When the user decides a new policy (consisting of
"policy,governor,min,max") shall be set, this policy must be validated
so that incompatible values can be corrected. For verifying these
-values cpufreq_verify_within_limits(struct cpufreq_policy *policy,
-unsigned int min_freq, unsigned int max_freq) function might be helpful.
+values `cpufreq_verify_within_limits(struct cpufreq_policy *policy,
+unsigned int min_freq, unsigned int max_freq)` function might be helpful.
See section 2 for details on frequency table helpers.
You need to make sure that at least one valid frequency (or operating
@@ -163,7 +172,7 @@ policy->max first, and only if this is no solution, decrease policy->min.
1.4 target or target_index or setpolicy or fast_switch?
-------------------------------------------------------
-Most cpufreq drivers or even most cpu frequency scaling algorithms
+Most cpufreq drivers or even most cpu frequency scaling algorithms
only allow the CPU frequency to be set to predefined fixed values. For
these, you use the ->target(), ->target_index() or ->fast_switch()
callbacks.
@@ -175,8 +184,8 @@ limits on their own. These shall use the ->setpolicy() callback.
1.5. target/target_index
------------------------
-The target_index call has two arguments: struct cpufreq_policy *policy,
-and unsigned int index (into the exposed frequency table).
+The target_index call has two arguments: `struct cpufreq_policy *policy`,
+and `unsigned int index` (into the exposed frequency table).
The CPUfreq driver must set the new frequency when called here. The
actual frequency must be determined by freq_table[index].frequency.
@@ -184,10 +193,10 @@ actual frequency must be determined by freq_table[index].frequency.
It should always restore to earlier frequency (i.e. policy->restore_freq) in
case of errors, even if we switched to intermediate frequency earlier.
-Deprecated:
+Deprecated
----------
-The target call has three arguments: struct cpufreq_policy *policy,
-unsigned int target_frequency, unsigned int relation.
+The target call has three arguments: `struct cpufreq_policy *policy`,
+`unsigned int target_frequency`, `unsigned int relation`.
The CPUfreq driver must set the new frequency when called here. The
actual frequency must be determined using the following rules:
@@ -210,14 +219,14 @@ Not all drivers are expected to implement it, as sleeping from within
this callback isn't allowed. This callback must be highly optimized to
do switching as fast as possible.
-This function has two arguments: struct cpufreq_policy *policy and
-unsigned int target_frequency.
+This function has two arguments: `struct cpufreq_policy *policy` and
+`unsigned int target_frequency`.
1.7 setpolicy
-------------
-The setpolicy call only takes a struct cpufreq_policy *policy as
+The setpolicy call only takes a `struct cpufreq_policy *policy` as
argument. You need to set the lower limit of the in-processor or
in-chipset dynamic frequency switching to policy->min, the upper limit
to policy->max, and -if supported- select a performance-oriented
@@ -278,10 +287,10 @@ table.
cpufreq_for_each_valid_entry(pos, table) - iterates over all entries,
excluding CPUFREQ_ENTRY_INVALID frequencies.
-Use arguments "pos" - a cpufreq_frequency_table * as a loop cursor and
-"table" - the cpufreq_frequency_table * you want to iterate over.
+Use arguments "pos" - a `cpufreq_frequency_table *` as a loop cursor and
+"table" - the `cpufreq_frequency_table *` you want to iterate over.
-For example:
+For example::
struct cpufreq_frequency_table *pos, *driver_freq_table;
diff --git a/Documentation/cpu-freq/cpufreq-nforce2.txt b/Documentation/cpu-freq/cpufreq-nforce2.rst
similarity index 65%
rename from Documentation/cpu-freq/cpufreq-nforce2.txt
rename to Documentation/cpu-freq/cpufreq-nforce2.rst
index babce1315026..d40700bd5083 100644
--- a/Documentation/cpu-freq/cpufreq-nforce2.txt
+++ b/Documentation/cpu-freq/cpufreq-nforce2.rst
@@ -1,3 +1,6 @@
+=================================
+nVidia nForce2 platform specifics
+=================================
The cpufreq-nforce2 driver changes the FSB on nVidia nForce2 platforms.
@@ -6,14 +9,15 @@ can be controlled independently from the PCI/AGP clock.
The module has two options:
+ ======== ======================================
fid: multiplier * 10 (for example 8.5 = 85)
min_fsb: minimum FSB
+ ======== ======================================
If not set, fid is calculated from the current CPU speed and the FSB.
min_fsb defaults to FSB at boot time - 50 MHz.
-IMPORTANT: The available range is limited downwards!
- Also the minimum available FSB can differ, for systems
+IMPORTANT:
+ The available range is limited downwards!
+ Also the minimum available FSB can differ, for systems
booting with 200 MHz, 150 should always work.
-
-
diff --git a/Documentation/cpu-freq/cpufreq-stats.rst b/Documentation/cpu-freq/cpufreq-stats.rst
new file mode 100644
index 000000000000..3e33712b496e
--- /dev/null
+++ b/Documentation/cpu-freq/cpufreq-stats.rst
@@ -0,0 +1,128 @@
+==========================================
+General description of sysfs cpufreq stats
+==========================================
+
+.. information for users
+
+
+Author: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
+
+.. Contents
+ 1. Introduction
+ 2. Statistics Provided (with example)
+ 3. Configuring cpufreq-stats
+
+
+1. Introduction
+===============
+
+cpufreq-stats is a driver that provides CPU frequency statistics for each CPU.
+These statistics are provided in /sysfs as a bunch of read_only interfaces. This
+interface (when configured) will appear in a separate directory under cpufreq
+in /sysfs (<sysfs root>/devices/system/cpu/cpuX/cpufreq/stats/) for each CPU.
+Various statistics will form read_only files under this directory.
+
+This driver is designed to be independent of any particular cpufreq_driver
+that may be running on your CPU. So, it will work with any cpufreq_driver.
+
+
+2. Statistics Provided (with example)
+=====================================
+
+cpufreq stats provides following statistics (explained in detail below).
+- time_in_state
+- total_trans
+- trans_table
+
+All the statistics will be from the time the stats driver has been inserted
+(or the time the stats were reset) to the time when a read of a particular
+statistic is done. Obviously, stats driver will not have any information
+about the frequency transitions before the stats driver insertion.
+
+::
+
+ <mysystem>:/sys/devices/system/cpu/cpu0/cpufreq/stats # ls -l
+ total 0
+ drwxr-xr-x 2 root root 0 May 14 16:06 .
+ drwxr-xr-x 3 root root 0 May 14 15:58 ..
+ --w------- 1 root root 4096 May 14 16:06 reset
+ -r--r--r-- 1 root root 4096 May 14 16:06 time_in_state
+ -r--r--r-- 1 root root 4096 May 14 16:06 total_trans
+ -r--r--r-- 1 root root 4096 May 14 16:06 trans_table
+
+reset
+ Write-only attribute that can be used to reset the stat counters. This can be
+ useful for evaluating system behaviour under different governors without the
+ need for a reboot.
+
+time_in_state
+ This gives the amount of time spent in each of the frequencies supported by
+ this CPU. The cat output will have "<frequency> <time>" pair in each line,
+ which will mean this CPU spent <time> usertime units of time at <frequency>.
+ Output will have one line for each of the supported frequencies. usertime
+ units here is 10mS (similar to other time exported in /proc).
+
+::
+
+ <mysystem>:/sys/devices/system/cpu/cpu0/cpufreq/stats # cat time_in_state
+ 3600000 2089
+ 3400000 136
+ 3200000 34
+ 3000000 67
+ 2800000 172488
+
+
+total_trans
+ This gives the total number of frequency transitions on this CPU. The cat
+ output will have a single count which is the total number of frequency
+ transitions.
+
+::
+
+ <mysystem>:/sys/devices/system/cpu/cpu0/cpufreq/stats # cat total_trans
+ 20
+
+trans_table
+ This will give a fine grained information about all the CPU frequency
+ transitions. The cat output here is a two dimensional matrix, where an entry
+ <i,j> (row i, column j) represents the count of number of transitions from
+ Freq_i to Freq_j. Freq_i rows and Freq_j columns follow the sorting order in
+ which the driver has provided the frequency table initially to the cpufreq
+ core and so can be sorted (ascending or descending) or unsorted. The output
+ here also contains the actual freq values for each row and column for better
+ readability.
+
+ If the transition table is bigger than PAGE_SIZE, reading this will
+ return an -EFBIG error.
+
+::
+
+ <mysystem>:/sys/devices/system/cpu/cpu0/cpufreq/stats # cat trans_table
+ From : To
+ : 3600000 3400000 3200000 3000000 2800000
+ 3600000: 0 5 0 0 0
+ 3400000: 4 0 2 0 0
+ 3200000: 0 1 0 2 0
+ 3000000: 0 0 1 0 3
+ 2800000: 0 0 0 2 0
+
+3. Configuring cpufreq-stats
+============================
+
+To configure cpufreq-stats in your kernel::
+
+ Config Main Menu
+ Power management options (ACPI, APM) --->
+ CPU Frequency scaling --->
+ [*] CPU Frequency scaling
+ [*] CPU frequency translation statistics
+
+
+"CPU Frequency scaling" (CONFIG_CPU_FREQ) should be enabled to configure
+cpufreq-stats.
+
+"CPU frequency translation statistics" (CONFIG_CPU_FREQ_STAT) provides the
+statistics which includes time_in_state, total_trans and trans_table.
+
+Once this option is enabled and your CPU supports cpufrequency, you
+will be able to see the CPU frequency statistics in /sysfs.
diff --git a/Documentation/cpu-freq/cpufreq-stats.txt b/Documentation/cpu-freq/cpufreq-stats.txt
deleted file mode 100644
index 14378cecb172..000000000000
--- a/Documentation/cpu-freq/cpufreq-stats.txt
+++ /dev/null
@@ -1,127 +0,0 @@
-
- CPU frequency and voltage scaling statistics in the Linux(TM) kernel
-
-
- L i n u x c p u f r e q - s t a t s d r i v e r
-
- - information for users -
-
-
- Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
-
-Contents
-1. Introduction
-2. Statistics Provided (with example)
-3. Configuring cpufreq-stats
-
-
-1. Introduction
-
-cpufreq-stats is a driver that provides CPU frequency statistics for each CPU.
-These statistics are provided in /sysfs as a bunch of read_only interfaces. This
-interface (when configured) will appear in a separate directory under cpufreq
-in /sysfs (<sysfs root>/devices/system/cpu/cpuX/cpufreq/stats/) for each CPU.
-Various statistics will form read_only files under this directory.
-
-This driver is designed to be independent of any particular cpufreq_driver
-that may be running on your CPU. So, it will work with any cpufreq_driver.
-
-
-2. Statistics Provided (with example)
-
-cpufreq stats provides following statistics (explained in detail below).
-- time_in_state
-- total_trans
-- trans_table
-
-All the statistics will be from the time the stats driver has been inserted
-(or the time the stats were reset) to the time when a read of a particular
-statistic is done. Obviously, stats driver will not have any information
-about the frequency transitions before the stats driver insertion.
-
---------------------------------------------------------------------------------
-<mysystem>:/sys/devices/system/cpu/cpu0/cpufreq/stats # ls -l
-total 0
-drwxr-xr-x 2 root root 0 May 14 16:06 .
-drwxr-xr-x 3 root root 0 May 14 15:58 ..
---w------- 1 root root 4096 May 14 16:06 reset
--r--r--r-- 1 root root 4096 May 14 16:06 time_in_state
--r--r--r-- 1 root root 4096 May 14 16:06 total_trans
--r--r--r-- 1 root root 4096 May 14 16:06 trans_table
---------------------------------------------------------------------------------
-
-- reset
-Write-only attribute that can be used to reset the stat counters. This can be
-useful for evaluating system behaviour under different governors without the
-need for a reboot.
-
-- time_in_state
-This gives the amount of time spent in each of the frequencies supported by
-this CPU. The cat output will have "<frequency> <time>" pair in each line, which
-will mean this CPU spent <time> usertime units of time at <frequency>. Output
-will have one line for each of the supported frequencies. usertime units here
-is 10mS (similar to other time exported in /proc).
-
---------------------------------------------------------------------------------
-<mysystem>:/sys/devices/system/cpu/cpu0/cpufreq/stats # cat time_in_state
-3600000 2089
-3400000 136
-3200000 34
-3000000 67
-2800000 172488
---------------------------------------------------------------------------------
-
-
-- total_trans
-This gives the total number of frequency transitions on this CPU. The cat
-output will have a single count which is the total number of frequency
-transitions.
-
---------------------------------------------------------------------------------
-<mysystem>:/sys/devices/system/cpu/cpu0/cpufreq/stats # cat total_trans
-20
---------------------------------------------------------------------------------
-
-- trans_table
-This will give a fine grained information about all the CPU frequency
-transitions. The cat output here is a two dimensional matrix, where an entry
-<i,j> (row i, column j) represents the count of number of transitions from
-Freq_i to Freq_j. Freq_i rows and Freq_j columns follow the sorting order in
-which the driver has provided the frequency table initially to the cpufreq core
-and so can be sorted (ascending or descending) or unsorted. The output here
-also contains the actual freq values for each row and column for better
-readability.
-
-If the transition table is bigger than PAGE_SIZE, reading this will
-return an -EFBIG error.
-
---------------------------------------------------------------------------------
-<mysystem>:/sys/devices/system/cpu/cpu0/cpufreq/stats # cat trans_table
- From : To
- : 3600000 3400000 3200000 3000000 2800000
- 3600000: 0 5 0 0 0
- 3400000: 4 0 2 0 0
- 3200000: 0 1 0 2 0
- 3000000: 0 0 1 0 3
- 2800000: 0 0 0 2 0
---------------------------------------------------------------------------------
-
-
-3. Configuring cpufreq-stats
-
-To configure cpufreq-stats in your kernel
-Config Main Menu
- Power management options (ACPI, APM) --->
- CPU Frequency scaling --->
- [*] CPU Frequency scaling
- [*] CPU frequency translation statistics
-
-
-"CPU Frequency scaling" (CONFIG_CPU_FREQ) should be enabled to configure
-cpufreq-stats.
-
-"CPU frequency translation statistics" (CONFIG_CPU_FREQ_STAT) provides the
-statistics which includes time_in_state, total_trans and trans_table.
-
-Once this option is enabled and your CPU supports cpufrequency, you
-will be able to see the CPU frequency statistics in /sysfs.
diff --git a/Documentation/cpu-freq/index.rst b/Documentation/cpu-freq/index.rst
new file mode 100644
index 000000000000..10e6c05f60f6
--- /dev/null
+++ b/Documentation/cpu-freq/index.rst
@@ -0,0 +1,52 @@
+:orphan:
+
+==============================================================
+CPU frequency and voltage scaling code in the Linux(TM) kernel
+==============================================================
+
+
+Author: Dominik Brodowski <linux@brodo.de>
+
+
+Clock scaling allows you to change the clock speed of the CPUs on the
+fly. This is a nice method to save battery power, because the lower
+the clock speed, the less power the CPU consumes.
+
+
+.. toctree::
+ :maxdepth: 1
+
+ core
+ cpufreq-stats
+ cpu-drivers
+
+ amd-powernow
+ cpufreq-nforce2
+ pcc-cpufreq
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
+
+Mailing List
+------------
+There is a CPU frequency changing CVS commit and general list where
+you can report bugs, problems or submit patches. To post a message,
+send an email to linux-pm@vger.kernel.org.
+
+Links
+-----
+the FTP archives:
+* ftp://ftp.linux.org.uk/pub/linux/cpufreq/
+
+how to access the CVS repository:
+* http://cvs.arm.linux.org.uk/
+
+the CPUFreq Mailing list:
+* http://vger.kernel.org/vger-lists.html#linux-pm
+
+Clock and voltage scaling for the SA-1100:
+* http://www.lartmaker.nl/projects/scaling
diff --git a/Documentation/cpu-freq/index.txt b/Documentation/cpu-freq/index.txt
deleted file mode 100644
index c15e75386a05..000000000000
--- a/Documentation/cpu-freq/index.txt
+++ /dev/null
@@ -1,56 +0,0 @@
- CPU frequency and voltage scaling code in the Linux(TM) kernel
-
-
- L i n u x C P U F r e q
-
-
-
-
- Dominik Brodowski <linux@brodo.de>
-
-
-
- Clock scaling allows you to change the clock speed of the CPUs on the
- fly. This is a nice method to save battery power, because the lower
- the clock speed, the less power the CPU consumes.
-
-
-
-Documents in this directory:
-----------------------------
-
-amd-powernow.txt - AMD powernow driver specific file.
-
-core.txt - General description of the CPUFreq core and
- of CPUFreq notifiers.
-
-cpu-drivers.txt - How to implement a new cpufreq processor driver.
-
-cpufreq-nforce2.txt - nVidia nForce2 platform specific file.
-
-cpufreq-stats.txt - General description of sysfs cpufreq stats.
-
-index.txt - File index, Mailing list and Links (this document)
-
-pcc-cpufreq.txt - PCC cpufreq driver specific file.
-
-
-Mailing List
-------------
-There is a CPU frequency changing CVS commit and general list where
-you can report bugs, problems or submit patches. To post a message,
-send an email to linux-pm@vger.kernel.org.
-
-Links
------
-the FTP archives:
-* ftp://ftp.linux.org.uk/pub/linux/cpufreq/
-
-how to access the CVS repository:
-* http://cvs.arm.linux.org.uk/
-
-the CPUFreq Mailing list:
-* http://vger.kernel.org/vger-lists.html#linux-pm
-
-Clock and voltage scaling for the SA-1100:
-* http://www.lartmaker.nl/projects/scaling
diff --git a/Documentation/cpu-freq/pcc-cpufreq.txt b/Documentation/cpu-freq/pcc-cpufreq.rst
similarity index 80%
rename from Documentation/cpu-freq/pcc-cpufreq.txt
rename to Documentation/cpu-freq/pcc-cpufreq.rst
index 9e3c3b33514c..d846a36536e4 100644
--- a/Documentation/cpu-freq/pcc-cpufreq.txt
+++ b/Documentation/cpu-freq/pcc-cpufreq.rst
@@ -1,45 +1,38 @@
-/*
- * pcc-cpufreq.txt - PCC interface documentation
- *
- * Copyright (C) 2009 Red Hat, Matthew Garrett <mjg@redhat.com>
- * Copyright (C) 2009 Hewlett-Packard Development Company, L.P.
- * Nagananda Chumbalkar <nagananda.chumbalkar@hp.com>
- *
- * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; version 2 of the License.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or NON
- * INFRINGEMENT. See the GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License along
- * with this program; if not, write to the Free Software Foundation, Inc.,
- * 675 Mass Ave, Cambridge, MA 02139, USA.
- *
- * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- */
-
-
- Processor Clocking Control Driver
- ---------------------------------
-
-Contents:
----------
-1. Introduction
-1.1 PCC interface
-1.1.1 Get Average Frequency
-1.1.2 Set Desired Frequency
-1.2 Platforms affected
-2. Driver and /sys details
-2.1 scaling_available_frequencies
-2.2 cpuinfo_transition_latency
-2.3 cpuinfo_cur_freq
-2.4 related_cpus
-3. Caveats
+==========================================================
+Processor Clocking Control Driver cpufreq driver specifics
+==========================================================
+
+
+.. pcc-cpufreq.txt - PCC interface documentation
+
+ Copyright (C) 2009 Red Hat, Matthew Garrett <mjg@redhat.com>
+ Copyright (C) 2009 Hewlett-Packard Development Company, L.P.
+ Nagananda Chumbalkar <nagananda.chumbalkar@hp.com>
+
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; version 2 of the License.
+
+ This program is distributed in the hope that it will be useful, but
+ WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or NON
+ INFRINGEMENT. See the GNU General Public License for more details.
+
+
+.. Contents:
+ 1. Introduction
+ 1.1 PCC interface
+ 1.1.1 Get Average Frequency
+ 1.1.2 Set Desired Frequency
+ 1.2 Platforms affected
+ 2. Driver and /sys details
+ 2.1 scaling_available_frequencies
+ 2.2 cpuinfo_transition_latency
+ 2.3 cpuinfo_cur_freq
+ 2.4 related_cpus
+ 3. Caveats
1. Introduction:
----------------
@@ -72,6 +65,7 @@ memory region. The shared memory region header contains the "command" and
doorbell.
The following commands are supported by the PCC interface:
+
* Get Average Frequency
* Set Desired Frequency
@@ -140,7 +134,9 @@ Internally, there is no need for the driver to convert the "target" frequency
to a corresponding P-state.
The VERSION number for the driver will be of the format v.xy.ab.
-eg: 1.00.02
+eg::
+
+ 1.00.02
----- --
| |
| -- this will increase with bug fixes/enhancements to the driver
@@ -168,21 +164,21 @@ A) Often cpuinfo_cur_freq will show a value different than what is declared
in the scaling_available_frequencies or scaling_cur_freq, or scaling_max_freq.
This is due to "turbo boost" available on recent Intel processors. If certain
conditions are met the BIOS can achieve a slightly higher speed than requested
-by OSPM. An example:
+by OSPM. An example::
-scaling_cur_freq : 2933000
-cpuinfo_cur_freq : 3196000
+ scaling_cur_freq : 2933000
+ cpuinfo_cur_freq : 3196000
B) There is a round-off error associated with the cpuinfo_cur_freq value.
Since the driver obtains the current frequency as a "percentage" (%) of the
nominal frequency from the BIOS, sometimes, the values displayed by
-scaling_cur_freq and cpuinfo_cur_freq may not match. An example:
+scaling_cur_freq and cpuinfo_cur_freq may not match. An example::
-scaling_cur_freq : 1600000
-cpuinfo_cur_freq : 1583000
+ scaling_cur_freq : 1600000
+ cpuinfo_cur_freq : 1583000
In this example, the nominal frequency is 2933 MHz. The driver obtains the
-current frequency, cpuinfo_cur_freq, as 54% of the nominal frequency:
+current frequency, cpuinfo_cur_freq, as 54% of the nominal frequency::
54% of 2933 MHz = 1583 MHz
@@ -191,10 +187,10 @@ corresponds to the frequency of the P0 P-state.
2.4 related_cpus:
-----------------
-The related_cpus field is identical to affected_cpus.
+The related_cpus field is identical to affected_cpus:
-affected_cpus : 4
-related_cpus : 4
+ affected_cpus : 4
+ related_cpus : 4
Currently, the PCC driver does not evaluate _PSD. The platforms that support
PCC do not implement SW_ALL. So OSPM doesn't need to perform any coordination
diff --git a/drivers/cpufreq/Kconfig.x86 b/drivers/cpufreq/Kconfig.x86
index 35f71825b7f3..c0c61edb8d93 100644
--- a/drivers/cpufreq/Kconfig.x86
+++ b/drivers/cpufreq/Kconfig.x86
@@ -24,7 +24,7 @@ config X86_PCC_CPUFREQ
This driver adds support for the PCC interface.
For details, take a look at:
- <file:Documentation/cpu-freq/pcc-cpufreq.txt>.
+ <file:Documentation/cpu-freq/pcc-cpufreq.rst>.
To compile this driver as a module, choose M here: the
module will be called pcc-cpufreq.
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* Re: [PATCH v2 10/79] docs: cpu-freq: convert docs to ReST and rename to *.rst
2019-04-22 13:26 ` [PATCH v2 10/79] docs: cpu-freq: convert docs to ReST and rename to *.rst Mauro Carvalho Chehab
@ 2019-04-23 8:21 ` Rafael J. Wysocki
0 siblings, 0 replies; 115+ messages in thread
From: Rafael J. Wysocki @ 2019-04-23 8:21 UTC (permalink / raw)
To: Mauro Carvalho Chehab
Cc: Linux Doc Mailing List, Mauro Carvalho Chehab,
Linux Kernel Mailing List, Jonathan Corbet, Rafael J. Wysocki,
Viresh Kumar, Linux PM
On Mon, Apr 22, 2019 at 3:36 PM Mauro Carvalho Chehab
<mchehab+samsung@kernel.org> wrote:
>
> The conversion is actually:
> - add blank lines and identation in order to identify paragraphs;
> - fix tables markups;
> - add some lists markups;
> - mark literal blocks;
> - adjust title markups.
>
> At its new index.rst, let's add a :orphan: while this is not linked to
> the main index.rst file, in order to avoid build warnings.
Well, as stated before, please drop this one too.
There is a plan to convert the remaining cpufreq documentation into
.rst (and which has already been done for the admin-guide part) and
the resulting files should go into driver-api.
Thanks,
Rafael
^ permalink raw reply [flat|nested] 115+ messages in thread
* [PATCH v2 12/79] docs: fault-injection: convert docs to ReST and rename to *.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (7 preceding siblings ...)
2019-04-22 13:26 ` [PATCH v2 10/79] docs: cpu-freq: convert docs to ReST and rename to *.rst Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 14/79] docs: fpga: " Mauro Carvalho Chehab
` (64 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Akinobu Mita, Federico Vaga, Harry Wei, Alex Shi,
Kees Cook, Arnd Bergmann, Greg Kroah-Hartman
The conversion is actually:
- add blank lines and identation in order to identify paragraphs;
- fix tables markups;
- add some lists markups;
- mark literal blocks;
- adjust title markups.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
...ault-injection.txt => fault-injection.rst} | 265 +++++++++---------
Documentation/fault-injection/index.rst | 20 ++
...r-inject.txt => notifier-error-inject.rst} | 18 +-
.../fault-injection/nvme-fault-injection.rst | 120 ++++++++
.../fault-injection/nvme-fault-injection.txt | 116 --------
.../fault-injection/provoke-crashes.rst | 48 ++++
.../fault-injection/provoke-crashes.txt | 38 ---
Documentation/process/4.Coding.rst | 2 +-
.../translations/it_IT/process/4.Coding.rst | 2 +-
.../translations/zh_CN/process/4.Coding.rst | 2 +-
drivers/misc/lkdtm/core.c | 2 +-
include/linux/fault-inject.h | 2 +-
lib/Kconfig.debug | 2 +-
tools/testing/fault-injection/failcmd.sh | 2 +-
14 files changed, 344 insertions(+), 295 deletions(-)
rename Documentation/fault-injection/{fault-injection.txt => fault-injection.rst} (68%)
create mode 100644 Documentation/fault-injection/index.rst
rename Documentation/fault-injection/{notifier-error-inject.txt => notifier-error-inject.rst} (83%)
create mode 100644 Documentation/fault-injection/nvme-fault-injection.rst
delete mode 100644 Documentation/fault-injection/nvme-fault-injection.txt
create mode 100644 Documentation/fault-injection/provoke-crashes.rst
delete mode 100644 Documentation/fault-injection/provoke-crashes.txt
diff --git a/Documentation/fault-injection/fault-injection.txt b/Documentation/fault-injection/fault-injection.rst
similarity index 68%
rename from Documentation/fault-injection/fault-injection.txt
rename to Documentation/fault-injection/fault-injection.rst
index a17517a083c3..f51bb21d20e4 100644
--- a/Documentation/fault-injection/fault-injection.txt
+++ b/Documentation/fault-injection/fault-injection.rst
@@ -1,3 +1,4 @@
+===========================================
Fault injection capabilities infrastructure
===========================================
@@ -7,36 +8,36 @@ See also drivers/md/md-faulty.c and "every_nth" module option for scsi_debug.
Available fault injection capabilities
--------------------------------------
-o failslab
+- failslab
injects slab allocation failures. (kmalloc(), kmem_cache_alloc(), ...)
-o fail_page_alloc
+- fail_page_alloc
injects page allocation failures. (alloc_pages(), get_free_pages(), ...)
-o fail_futex
+- fail_futex
injects futex deadlock and uaddr fault errors.
-o fail_make_request
+- fail_make_request
injects disk IO errors on devices permitted by setting
/sys/block/<device>/make-it-fail or
/sys/block/<device>/<partition>/make-it-fail. (generic_make_request())
-o fail_mmc_request
+- fail_mmc_request
injects MMC data errors on devices permitted by setting
debugfs entries under /sys/kernel/debug/mmc0/fail_mmc_request
-o fail_function
+- fail_function
injects error return on specific functions, which are marked by
ALLOW_ERROR_INJECTION() macro, by setting debugfs entries
under /sys/kernel/debug/fail_function. No boot option supported.
-o NVMe fault injection
+- NVMe fault injection
inject NVMe status code and retry flag on devices permitted by setting
debugfs entries under /sys/kernel/debug/nvme*/fault_inject. The default
@@ -47,7 +48,8 @@ o NVMe fault injection
Configure fault-injection capabilities behavior
-----------------------------------------------
-o debugfs entries
+debugfs entries
+^^^^^^^^^^^^^^^
fault-inject-debugfs kernel module provides some debugfs entries for runtime
configuration of fault-injection capabilities.
@@ -55,6 +57,7 @@ configuration of fault-injection capabilities.
- /sys/kernel/debug/fail*/probability:
likelihood of failure injection, in percent.
+
Format: <percent>
Note that one-failure-per-hundred is a very high error rate
@@ -83,6 +86,7 @@ configuration of fault-injection capabilities.
- /sys/kernel/debug/fail*/verbose
Format: { 0 | 1 | 2 }
+
specifies the verbosity of the messages when failure is
injected. '0' means no messages; '1' will print only a single
log line per failure; '2' will print a call trace too -- useful
@@ -91,14 +95,15 @@ configuration of fault-injection capabilities.
- /sys/kernel/debug/fail*/task-filter:
Format: { 'Y' | 'N' }
+
A value of 'N' disables filtering by process (default).
Any positive value limits failures to only processes indicated by
/proc/<pid>/make-it-fail==1.
-- /sys/kernel/debug/fail*/require-start:
-- /sys/kernel/debug/fail*/require-end:
-- /sys/kernel/debug/fail*/reject-start:
-- /sys/kernel/debug/fail*/reject-end:
+- /sys/kernel/debug/fail*/require-start,
+ /sys/kernel/debug/fail*/require-end,
+ /sys/kernel/debug/fail*/reject-start,
+ /sys/kernel/debug/fail*/reject-end:
specifies the range of virtual addresses tested during
stacktrace walking. Failure is injected only if some caller
@@ -116,6 +121,7 @@ configuration of fault-injection capabilities.
- /sys/kernel/debug/fail_page_alloc/ignore-gfp-highmem:
Format: { 'Y' | 'N' }
+
default is 'N', setting it to 'Y' won't inject failures into
highmem/user allocations.
@@ -123,6 +129,7 @@ configuration of fault-injection capabilities.
- /sys/kernel/debug/fail_page_alloc/ignore-gfp-wait:
Format: { 'Y' | 'N' }
+
default is 'N', setting it to 'Y' will inject failures
only into non-sleep allocations (GFP_ATOMIC allocations).
@@ -134,12 +141,14 @@ configuration of fault-injection capabilities.
- /sys/kernel/debug/fail_futex/ignore-private:
Format: { 'Y' | 'N' }
+
default is 'N', setting it to 'Y' will disable failure injections
when dealing with private (address space) futexes.
- /sys/kernel/debug/fail_function/inject:
Format: { 'function-name' | '!function-name' | '' }
+
specifies the target function of error injection by name.
If the function name leads '!' prefix, given function is
removed from injection list. If nothing specified ('')
@@ -160,10 +169,11 @@ configuration of fault-injection capabilities.
function for given function. This will be created when
user specifies new injection entry.
-o Boot option
+Boot option
+^^^^^^^^^^^
In order to inject faults while debugfs is not available (early boot time),
-use the boot option:
+use the boot option::
failslab=
fail_page_alloc=
@@ -171,10 +181,11 @@ use the boot option:
fail_futex=
mmc_core.fail_request=<interval>,<probability>,<space>,<times>
-o proc entries
+proc entries
+^^^^^^^^^^^^
-- /proc/<pid>/fail-nth:
-- /proc/self/task/<tid>/fail-nth:
+- /proc/<pid>/fail-nth,
+ /proc/self/task/<tid>/fail-nth:
Write to this file of integer N makes N-th call in the task fail.
Read from this file returns a integer value. A value of '0' indicates
@@ -191,16 +202,16 @@ o proc entries
How to add new fault injection capability
-----------------------------------------
-o #include <linux/fault-inject.h>
+- #include <linux/fault-inject.h>
-o define the fault attributes
+- define the fault attributes
DECLARE_FAULT_ATTR(name);
Please see the definition of struct fault_attr in fault-inject.h
for details.
-o provide a way to configure fault attributes
+- provide a way to configure fault attributes
- boot option
@@ -222,126 +233,126 @@ o provide a way to configure fault attributes
single kernel module, it is better to provide module parameters to
configure the fault attributes.
-o add a hook to insert failures
+- add a hook to insert failures
- Upon should_fail() returning true, client code should inject a failure.
+ Upon should_fail() returning true, client code should inject a failure:
should_fail(attr, size);
Application Examples
--------------------
-o Inject slab allocation failures into module init/exit code
+- Inject slab allocation failures into module init/exit code::
-#!/bin/bash
+ #!/bin/bash
-FAILTYPE=failslab
-echo Y > /sys/kernel/debug/$FAILTYPE/task-filter
-echo 10 > /sys/kernel/debug/$FAILTYPE/probability
-echo 100 > /sys/kernel/debug/$FAILTYPE/interval
-echo -1 > /sys/kernel/debug/$FAILTYPE/times
-echo 0 > /sys/kernel/debug/$FAILTYPE/space
-echo 2 > /sys/kernel/debug/$FAILTYPE/verbose
-echo 1 > /sys/kernel/debug/$FAILTYPE/ignore-gfp-wait
+ FAILTYPE=failslab
+ echo Y > /sys/kernel/debug/$FAILTYPE/task-filter
+ echo 10 > /sys/kernel/debug/$FAILTYPE/probability
+ echo 100 > /sys/kernel/debug/$FAILTYPE/interval
+ echo -1 > /sys/kernel/debug/$FAILTYPE/times
+ echo 0 > /sys/kernel/debug/$FAILTYPE/space
+ echo 2 > /sys/kernel/debug/$FAILTYPE/verbose
+ echo 1 > /sys/kernel/debug/$FAILTYPE/ignore-gfp-wait
-faulty_system()
-{
+ faulty_system()
+ {
bash -c "echo 1 > /proc/self/make-it-fail && exec $*"
-}
+ }
-if [ $# -eq 0 ]
-then
+ if [ $# -eq 0 ]
+ then
echo "Usage: $0 modulename [ modulename ... ]"
exit 1
-fi
+ fi
-for m in $*
-do
+ for m in $*
+ do
echo inserting $m...
faulty_system modprobe $m
echo removing $m...
faulty_system modprobe -r $m
-done
+ done
------------------------------------------------------------------------------
-o Inject page allocation failures only for a specific module
+- Inject page allocation failures only for a specific module::
-#!/bin/bash
+ #!/bin/bash
-FAILTYPE=fail_page_alloc
-module=$1
+ FAILTYPE=fail_page_alloc
+ module=$1
-if [ -z $module ]
-then
+ if [ -z $module ]
+ then
echo "Usage: $0 <modulename>"
exit 1
-fi
+ fi
-modprobe $module
+ modprobe $module
-if [ ! -d /sys/module/$module/sections ]
-then
+ if [ ! -d /sys/module/$module/sections ]
+ then
echo Module $module is not loaded
exit 1
-fi
+ fi
-cat /sys/module/$module/sections/.text > /sys/kernel/debug/$FAILTYPE/require-start
-cat /sys/module/$module/sections/.data > /sys/kernel/debug/$FAILTYPE/require-end
+ cat /sys/module/$module/sections/.text > /sys/kernel/debug/$FAILTYPE/require-start
+ cat /sys/module/$module/sections/.data > /sys/kernel/debug/$FAILTYPE/require-end
-echo N > /sys/kernel/debug/$FAILTYPE/task-filter
-echo 10 > /sys/kernel/debug/$FAILTYPE/probability
-echo 100 > /sys/kernel/debug/$FAILTYPE/interval
-echo -1 > /sys/kernel/debug/$FAILTYPE/times
-echo 0 > /sys/kernel/debug/$FAILTYPE/space
-echo 2 > /sys/kernel/debug/$FAILTYPE/verbose
-echo 1 > /sys/kernel/debug/$FAILTYPE/ignore-gfp-wait
-echo 1 > /sys/kernel/debug/$FAILTYPE/ignore-gfp-highmem
-echo 10 > /sys/kernel/debug/$FAILTYPE/stacktrace-depth
+ echo N > /sys/kernel/debug/$FAILTYPE/task-filter
+ echo 10 > /sys/kernel/debug/$FAILTYPE/probability
+ echo 100 > /sys/kernel/debug/$FAILTYPE/interval
+ echo -1 > /sys/kernel/debug/$FAILTYPE/times
+ echo 0 > /sys/kernel/debug/$FAILTYPE/space
+ echo 2 > /sys/kernel/debug/$FAILTYPE/verbose
+ echo 1 > /sys/kernel/debug/$FAILTYPE/ignore-gfp-wait
+ echo 1 > /sys/kernel/debug/$FAILTYPE/ignore-gfp-highmem
+ echo 10 > /sys/kernel/debug/$FAILTYPE/stacktrace-depth
-trap "echo 0 > /sys/kernel/debug/$FAILTYPE/probability" SIGINT SIGTERM EXIT
+ trap "echo 0 > /sys/kernel/debug/$FAILTYPE/probability" SIGINT SIGTERM EXIT
-echo "Injecting errors into the module $module... (interrupt to stop)"
-sleep 1000000
+ echo "Injecting errors into the module $module... (interrupt to stop)"
+ sleep 1000000
------------------------------------------------------------------------------
-o Inject open_ctree error while btrfs mount
+- Inject open_ctree error while btrfs mount::
-#!/bin/bash
+ #!/bin/bash
-rm -f testfile.img
-dd if=/dev/zero of=testfile.img bs=1M seek=1000 count=1
-DEVICE=$(losetup --show -f testfile.img)
-mkfs.btrfs -f $DEVICE
-mkdir -p tmpmnt
+ rm -f testfile.img
+ dd if=/dev/zero of=testfile.img bs=1M seek=1000 count=1
+ DEVICE=$(losetup --show -f testfile.img)
+ mkfs.btrfs -f $DEVICE
+ mkdir -p tmpmnt
-FAILTYPE=fail_function
-FAILFUNC=open_ctree
-echo $FAILFUNC > /sys/kernel/debug/$FAILTYPE/inject
-echo -12 > /sys/kernel/debug/$FAILTYPE/$FAILFUNC/retval
-echo N > /sys/kernel/debug/$FAILTYPE/task-filter
-echo 100 > /sys/kernel/debug/$FAILTYPE/probability
-echo 0 > /sys/kernel/debug/$FAILTYPE/interval
-echo -1 > /sys/kernel/debug/$FAILTYPE/times
-echo 0 > /sys/kernel/debug/$FAILTYPE/space
-echo 1 > /sys/kernel/debug/$FAILTYPE/verbose
+ FAILTYPE=fail_function
+ FAILFUNC=open_ctree
+ echo $FAILFUNC > /sys/kernel/debug/$FAILTYPE/inject
+ echo -12 > /sys/kernel/debug/$FAILTYPE/$FAILFUNC/retval
+ echo N > /sys/kernel/debug/$FAILTYPE/task-filter
+ echo 100 > /sys/kernel/debug/$FAILTYPE/probability
+ echo 0 > /sys/kernel/debug/$FAILTYPE/interval
+ echo -1 > /sys/kernel/debug/$FAILTYPE/times
+ echo 0 > /sys/kernel/debug/$FAILTYPE/space
+ echo 1 > /sys/kernel/debug/$FAILTYPE/verbose
-mount -t btrfs $DEVICE tmpmnt
-if [ $? -ne 0 ]
-then
+ mount -t btrfs $DEVICE tmpmnt
+ if [ $? -ne 0 ]
+ then
echo "SUCCESS!"
-else
+ else
echo "FAILED!"
umount tmpmnt
-fi
+ fi
-echo > /sys/kernel/debug/$FAILTYPE/inject
+ echo > /sys/kernel/debug/$FAILTYPE/inject
-rmdir tmpmnt
-losetup -d $DEVICE
-rm testfile.img
+ rmdir tmpmnt
+ losetup -d $DEVICE
+ rm testfile.img
Tool to run command with failslab or fail_page_alloc
@@ -354,43 +365,43 @@ see the following examples.
Examples:
Run a command "make -C tools/testing/selftests/ run_tests" with injecting slab
-allocation failure.
+allocation failure::
# ./tools/testing/fault-injection/failcmd.sh \
-- make -C tools/testing/selftests/ run_tests
Same as above except to specify 100 times failures at most instead of one time
-at most by default.
+at most by default::
# ./tools/testing/fault-injection/failcmd.sh --times=100 \
-- make -C tools/testing/selftests/ run_tests
Same as above except to inject page allocation failure instead of slab
-allocation failure.
+allocation failure::
# env FAILCMD_TYPE=fail_page_alloc \
./tools/testing/fault-injection/failcmd.sh --times=100 \
- -- make -C tools/testing/selftests/ run_tests
+ -- make -C tools/testing/selftests/ run_tests
Systematic faults using fail-nth
---------------------------------
The following code systematically faults 0-th, 1-st, 2-nd and so on
-capabilities in the socketpair() system call.
+capabilities in the socketpair() system call::
-#include <sys/types.h>
-#include <sys/stat.h>
-#include <sys/socket.h>
-#include <sys/syscall.h>
-#include <fcntl.h>
-#include <unistd.h>
-#include <string.h>
-#include <stdlib.h>
-#include <stdio.h>
-#include <errno.h>
+ #include <sys/types.h>
+ #include <sys/stat.h>
+ #include <sys/socket.h>
+ #include <sys/syscall.h>
+ #include <fcntl.h>
+ #include <unistd.h>
+ #include <string.h>
+ #include <stdlib.h>
+ #include <stdio.h>
+ #include <errno.h>
-int main()
-{
+ int main()
+ {
int i, err, res, fail_nth, fds[2];
char buf[128];
@@ -413,23 +424,23 @@ int main()
break;
}
return 0;
-}
+ }
-An example output:
+An example output::
-1-th fault Y: res=-1/23
-2-th fault Y: res=-1/23
-3-th fault Y: res=-1/12
-4-th fault Y: res=-1/12
-5-th fault Y: res=-1/23
-6-th fault Y: res=-1/23
-7-th fault Y: res=-1/23
-8-th fault Y: res=-1/12
-9-th fault Y: res=-1/12
-10-th fault Y: res=-1/12
-11-th fault Y: res=-1/12
-12-th fault Y: res=-1/12
-13-th fault Y: res=-1/12
-14-th fault Y: res=-1/12
-15-th fault Y: res=-1/12
-16-th fault N: res=0/12
+ 1-th fault Y: res=-1/23
+ 2-th fault Y: res=-1/23
+ 3-th fault Y: res=-1/12
+ 4-th fault Y: res=-1/12
+ 5-th fault Y: res=-1/23
+ 6-th fault Y: res=-1/23
+ 7-th fault Y: res=-1/23
+ 8-th fault Y: res=-1/12
+ 9-th fault Y: res=-1/12
+ 10-th fault Y: res=-1/12
+ 11-th fault Y: res=-1/12
+ 12-th fault Y: res=-1/12
+ 13-th fault Y: res=-1/12
+ 14-th fault Y: res=-1/12
+ 15-th fault Y: res=-1/12
+ 16-th fault N: res=0/12
diff --git a/Documentation/fault-injection/index.rst b/Documentation/fault-injection/index.rst
new file mode 100644
index 000000000000..92b5639ed07a
--- /dev/null
+++ b/Documentation/fault-injection/index.rst
@@ -0,0 +1,20 @@
+:orphan:
+
+===============
+fault-injection
+===============
+
+.. toctree::
+ :maxdepth: 1
+
+ fault-injection
+ notifier-error-inject
+ nvme-fault-injection
+ provoke-crashes
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/fault-injection/notifier-error-inject.txt b/Documentation/fault-injection/notifier-error-inject.rst
similarity index 83%
rename from Documentation/fault-injection/notifier-error-inject.txt
rename to Documentation/fault-injection/notifier-error-inject.rst
index e861d761de24..1668b6e48d3a 100644
--- a/Documentation/fault-injection/notifier-error-inject.txt
+++ b/Documentation/fault-injection/notifier-error-inject.rst
@@ -14,7 +14,8 @@ modules that can be used to test the following notifiers.
PM notifier error injection module
----------------------------------
This feature is controlled through debugfs interface
-/sys/kernel/debug/notifier-error-inject/pm/actions/<notifier event>/error
+
+ /sys/kernel/debug/notifier-error-inject/pm/actions/<notifier event>/error
Possible PM notifier events to be failed are:
@@ -22,7 +23,7 @@ Possible PM notifier events to be failed are:
* PM_SUSPEND_PREPARE
* PM_RESTORE_PREPARE
-Example: Inject PM suspend error (-12 = -ENOMEM)
+Example: Inject PM suspend error (-12 = -ENOMEM)::
# cd /sys/kernel/debug/notifier-error-inject/pm/
# echo -12 > actions/PM_SUSPEND_PREPARE/error
@@ -32,14 +33,15 @@ Example: Inject PM suspend error (-12 = -ENOMEM)
Memory hotplug notifier error injection module
----------------------------------------------
This feature is controlled through debugfs interface
-/sys/kernel/debug/notifier-error-inject/memory/actions/<notifier event>/error
+
+ /sys/kernel/debug/notifier-error-inject/memory/actions/<notifier event>/error
Possible memory notifier events to be failed are:
* MEM_GOING_ONLINE
* MEM_GOING_OFFLINE
-Example: Inject memory hotplug offline error (-12 == -ENOMEM)
+Example: Inject memory hotplug offline error (-12 == -ENOMEM)::
# cd /sys/kernel/debug/notifier-error-inject/memory
# echo -12 > actions/MEM_GOING_OFFLINE/error
@@ -49,7 +51,8 @@ Example: Inject memory hotplug offline error (-12 == -ENOMEM)
powerpc pSeries reconfig notifier error injection module
--------------------------------------------------------
This feature is controlled through debugfs interface
-/sys/kernel/debug/notifier-error-inject/pSeries-reconfig/actions/<notifier event>/error
+
+ /sys/kernel/debug/notifier-error-inject/pSeries-reconfig/actions/<notifier event>/error
Possible pSeries reconfig notifier events to be failed are:
@@ -61,7 +64,8 @@ Possible pSeries reconfig notifier events to be failed are:
Netdevice notifier error injection module
----------------------------------------------
This feature is controlled through debugfs interface
-/sys/kernel/debug/notifier-error-inject/netdev/actions/<notifier event>/error
+
+ /sys/kernel/debug/notifier-error-inject/netdev/actions/<notifier event>/error
Netdevice notifier events which can be failed are:
@@ -75,7 +79,7 @@ Netdevice notifier events which can be failed are:
* NETDEV_PRECHANGEUPPER
* NETDEV_CHANGEUPPER
-Example: Inject netdevice mtu change error (-22 == -EINVAL)
+Example: Inject netdevice mtu change error (-22 == -EINVAL)::
# cd /sys/kernel/debug/notifier-error-inject/netdev
# echo -22 > actions/NETDEV_CHANGEMTU/error
diff --git a/Documentation/fault-injection/nvme-fault-injection.rst b/Documentation/fault-injection/nvme-fault-injection.rst
new file mode 100644
index 000000000000..bbb1bf3e8650
--- /dev/null
+++ b/Documentation/fault-injection/nvme-fault-injection.rst
@@ -0,0 +1,120 @@
+NVMe Fault Injection
+====================
+Linux's fault injection framework provides a systematic way to support
+error injection via debugfs in the /sys/kernel/debug directory. When
+enabled, the default NVME_SC_INVALID_OPCODE with no retry will be
+injected into the nvme_end_request. Users can change the default status
+code and no retry flag via the debugfs. The list of Generic Command
+Status can be found in include/linux/nvme.h
+
+Following examples show how to inject an error into the nvme.
+
+First, enable CONFIG_FAULT_INJECTION_DEBUG_FS kernel config,
+recompile the kernel. After booting up the kernel, do the
+following.
+
+Example 1: Inject default status code with no retry
+---------------------------------------------------
+
+::
+
+ mount /dev/nvme0n1 /mnt
+ echo 1 > /sys/kernel/debug/nvme0n1/fault_inject/times
+ echo 100 > /sys/kernel/debug/nvme0n1/fault_inject/probability
+ cp a.file /mnt
+
+Expected Result::
+
+ cp: cannot stat ‘/mnt/a.file’: Input/output error
+
+Message from dmesg::
+
+ FAULT_INJECTION: forcing a failure.
+ name fault_inject, interval 1, probability 100, space 0, times 1
+ CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.15.0-rc8+ #2
+ Hardware name: innotek GmbH VirtualBox/VirtualBox,
+ BIOS VirtualBox 12/01/2006
+ Call Trace:
+ <IRQ>
+ dump_stack+0x5c/0x7d
+ should_fail+0x148/0x170
+ nvme_should_fail+0x2f/0x50 [nvme_core]
+ nvme_process_cq+0xe7/0x1d0 [nvme]
+ nvme_irq+0x1e/0x40 [nvme]
+ __handle_irq_event_percpu+0x3a/0x190
+ handle_irq_event_percpu+0x30/0x70
+ handle_irq_event+0x36/0x60
+ handle_fasteoi_irq+0x78/0x120
+ handle_irq+0xa7/0x130
+ ? tick_irq_enter+0xa8/0xc0
+ do_IRQ+0x43/0xc0
+ common_interrupt+0xa2/0xa2
+ </IRQ>
+ RIP: 0010:native_safe_halt+0x2/0x10
+ RSP: 0018:ffffffff82003e90 EFLAGS: 00000246 ORIG_RAX: ffffffffffffffdd
+ RAX: ffffffff817a10c0 RBX: ffffffff82012480 RCX: 0000000000000000
+ RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
+ RBP: 0000000000000000 R08: 000000008e38ce64 R09: 0000000000000000
+ R10: 0000000000000000 R11: 0000000000000000 R12: ffffffff82012480
+ R13: ffffffff82012480 R14: 0000000000000000 R15: 0000000000000000
+ ? __sched_text_end+0x4/0x4
+ default_idle+0x18/0xf0
+ do_idle+0x150/0x1d0
+ cpu_startup_entry+0x6f/0x80
+ start_kernel+0x4c4/0x4e4
+ ? set_init_arg+0x55/0x55
+ secondary_startup_64+0xa5/0xb0
+ print_req_error: I/O error, dev nvme0n1, sector 9240
+ EXT4-fs error (device nvme0n1): ext4_find_entry:1436:
+ inode #2: comm cp: reading directory lblock 0
+
+Example 2: Inject default status code with retry
+------------------------------------------------
+
+::
+
+ mount /dev/nvme0n1 /mnt
+ echo 1 > /sys/kernel/debug/nvme0n1/fault_inject/times
+ echo 100 > /sys/kernel/debug/nvme0n1/fault_inject/probability
+ echo 1 > /sys/kernel/debug/nvme0n1/fault_inject/status
+ echo 0 > /sys/kernel/debug/nvme0n1/fault_inject/dont_retry
+
+ cp a.file /mnt
+
+Expected Result::
+
+ command success without error
+
+Message from dmesg::
+
+ FAULT_INJECTION: forcing a failure.
+ name fault_inject, interval 1, probability 100, space 0, times 1
+ CPU: 1 PID: 0 Comm: swapper/1 Not tainted 4.15.0-rc8+ #4
+ Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006
+ Call Trace:
+ <IRQ>
+ dump_stack+0x5c/0x7d
+ should_fail+0x148/0x170
+ nvme_should_fail+0x30/0x60 [nvme_core]
+ nvme_loop_queue_response+0x84/0x110 [nvme_loop]
+ nvmet_req_complete+0x11/0x40 [nvmet]
+ nvmet_bio_done+0x28/0x40 [nvmet]
+ blk_update_request+0xb0/0x310
+ blk_mq_end_request+0x18/0x60
+ flush_smp_call_function_queue+0x3d/0xf0
+ smp_call_function_single_interrupt+0x2c/0xc0
+ call_function_single_interrupt+0xa2/0xb0
+ </IRQ>
+ RIP: 0010:native_safe_halt+0x2/0x10
+ RSP: 0018:ffffc9000068bec0 EFLAGS: 00000246 ORIG_RAX: ffffffffffffff04
+ RAX: ffffffff817a10c0 RBX: ffff88011a3c9680 RCX: 0000000000000000
+ RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
+ RBP: 0000000000000001 R08: 000000008e38c131 R09: 0000000000000000
+ R10: 0000000000000000 R11: 0000000000000000 R12: ffff88011a3c9680
+ R13: ffff88011a3c9680 R14: 0000000000000000 R15: 0000000000000000
+ ? __sched_text_end+0x4/0x4
+ default_idle+0x18/0xf0
+ do_idle+0x150/0x1d0
+ cpu_startup_entry+0x6f/0x80
+ start_secondary+0x187/0x1e0
+ secondary_startup_64+0xa5/0xb0
diff --git a/Documentation/fault-injection/nvme-fault-injection.txt b/Documentation/fault-injection/nvme-fault-injection.txt
deleted file mode 100644
index 8fbf3bf60b62..000000000000
--- a/Documentation/fault-injection/nvme-fault-injection.txt
+++ /dev/null
@@ -1,116 +0,0 @@
-NVMe Fault Injection
-====================
-Linux's fault injection framework provides a systematic way to support
-error injection via debugfs in the /sys/kernel/debug directory. When
-enabled, the default NVME_SC_INVALID_OPCODE with no retry will be
-injected into the nvme_end_request. Users can change the default status
-code and no retry flag via the debugfs. The list of Generic Command
-Status can be found in include/linux/nvme.h
-
-Following examples show how to inject an error into the nvme.
-
-First, enable CONFIG_FAULT_INJECTION_DEBUG_FS kernel config,
-recompile the kernel. After booting up the kernel, do the
-following.
-
-Example 1: Inject default status code with no retry
----------------------------------------------------
-
-mount /dev/nvme0n1 /mnt
-echo 1 > /sys/kernel/debug/nvme0n1/fault_inject/times
-echo 100 > /sys/kernel/debug/nvme0n1/fault_inject/probability
-cp a.file /mnt
-
-Expected Result:
-
-cp: cannot stat ‘/mnt/a.file’: Input/output error
-
-Message from dmesg:
-
-FAULT_INJECTION: forcing a failure.
-name fault_inject, interval 1, probability 100, space 0, times 1
-CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.15.0-rc8+ #2
-Hardware name: innotek GmbH VirtualBox/VirtualBox,
-BIOS VirtualBox 12/01/2006
-Call Trace:
- <IRQ>
- dump_stack+0x5c/0x7d
- should_fail+0x148/0x170
- nvme_should_fail+0x2f/0x50 [nvme_core]
- nvme_process_cq+0xe7/0x1d0 [nvme]
- nvme_irq+0x1e/0x40 [nvme]
- __handle_irq_event_percpu+0x3a/0x190
- handle_irq_event_percpu+0x30/0x70
- handle_irq_event+0x36/0x60
- handle_fasteoi_irq+0x78/0x120
- handle_irq+0xa7/0x130
- ? tick_irq_enter+0xa8/0xc0
- do_IRQ+0x43/0xc0
- common_interrupt+0xa2/0xa2
- </IRQ>
-RIP: 0010:native_safe_halt+0x2/0x10
-RSP: 0018:ffffffff82003e90 EFLAGS: 00000246 ORIG_RAX: ffffffffffffffdd
-RAX: ffffffff817a10c0 RBX: ffffffff82012480 RCX: 0000000000000000
-RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
-RBP: 0000000000000000 R08: 000000008e38ce64 R09: 0000000000000000
-R10: 0000000000000000 R11: 0000000000000000 R12: ffffffff82012480
-R13: ffffffff82012480 R14: 0000000000000000 R15: 0000000000000000
- ? __sched_text_end+0x4/0x4
- default_idle+0x18/0xf0
- do_idle+0x150/0x1d0
- cpu_startup_entry+0x6f/0x80
- start_kernel+0x4c4/0x4e4
- ? set_init_arg+0x55/0x55
- secondary_startup_64+0xa5/0xb0
- print_req_error: I/O error, dev nvme0n1, sector 9240
-EXT4-fs error (device nvme0n1): ext4_find_entry:1436:
-inode #2: comm cp: reading directory lblock 0
-
-Example 2: Inject default status code with retry
-------------------------------------------------
-
-mount /dev/nvme0n1 /mnt
-echo 1 > /sys/kernel/debug/nvme0n1/fault_inject/times
-echo 100 > /sys/kernel/debug/nvme0n1/fault_inject/probability
-echo 1 > /sys/kernel/debug/nvme0n1/fault_inject/status
-echo 0 > /sys/kernel/debug/nvme0n1/fault_inject/dont_retry
-
-cp a.file /mnt
-
-Expected Result:
-
-command success without error
-
-Message from dmesg:
-
-FAULT_INJECTION: forcing a failure.
-name fault_inject, interval 1, probability 100, space 0, times 1
-CPU: 1 PID: 0 Comm: swapper/1 Not tainted 4.15.0-rc8+ #4
-Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006
-Call Trace:
- <IRQ>
- dump_stack+0x5c/0x7d
- should_fail+0x148/0x170
- nvme_should_fail+0x30/0x60 [nvme_core]
- nvme_loop_queue_response+0x84/0x110 [nvme_loop]
- nvmet_req_complete+0x11/0x40 [nvmet]
- nvmet_bio_done+0x28/0x40 [nvmet]
- blk_update_request+0xb0/0x310
- blk_mq_end_request+0x18/0x60
- flush_smp_call_function_queue+0x3d/0xf0
- smp_call_function_single_interrupt+0x2c/0xc0
- call_function_single_interrupt+0xa2/0xb0
- </IRQ>
-RIP: 0010:native_safe_halt+0x2/0x10
-RSP: 0018:ffffc9000068bec0 EFLAGS: 00000246 ORIG_RAX: ffffffffffffff04
-RAX: ffffffff817a10c0 RBX: ffff88011a3c9680 RCX: 0000000000000000
-RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
-RBP: 0000000000000001 R08: 000000008e38c131 R09: 0000000000000000
-R10: 0000000000000000 R11: 0000000000000000 R12: ffff88011a3c9680
-R13: ffff88011a3c9680 R14: 0000000000000000 R15: 0000000000000000
- ? __sched_text_end+0x4/0x4
- default_idle+0x18/0xf0
- do_idle+0x150/0x1d0
- cpu_startup_entry+0x6f/0x80
- start_secondary+0x187/0x1e0
- secondary_startup_64+0xa5/0xb0
diff --git a/Documentation/fault-injection/provoke-crashes.rst b/Documentation/fault-injection/provoke-crashes.rst
new file mode 100644
index 000000000000..9279a3e12278
--- /dev/null
+++ b/Documentation/fault-injection/provoke-crashes.rst
@@ -0,0 +1,48 @@
+===============
+Provoke crashes
+===============
+
+The lkdtm module provides an interface to crash or injure the kernel at
+predefined crashpoints to evaluate the reliability of crash dumps obtained
+using different dumping solutions. The module uses KPROBEs to instrument
+crashing points, but can also crash the kernel directly without KRPOBE
+support.
+
+
+You can provide the way either through module arguments when inserting
+the module, or through a debugfs interface.
+
+Usage::
+
+ insmod lkdtm.ko [recur_count={>0}] cpoint_name=<> cpoint_type=<>
+ [cpoint_count={>0}]
+
+recur_count
+ Recursion level for the stack overflow test. Default is 10.
+
+cpoint_name
+ Crash point where the kernel is to be crashed. It can be
+ one of INT_HARDWARE_ENTRY, INT_HW_IRQ_EN, INT_TASKLET_ENTRY,
+ FS_DEVRW, MEM_SWAPOUT, TIMERADD, SCSI_DISPATCH_CMD,
+ IDE_CORE_CP, DIRECT
+
+cpoint_type
+ Indicates the action to be taken on hitting the crash point.
+ It can be one of PANIC, BUG, EXCEPTION, LOOP, OVERFLOW,
+ CORRUPT_STACK, UNALIGNED_LOAD_STORE_WRITE, OVERWRITE_ALLOCATION,
+ WRITE_AFTER_FREE,
+
+cpoint_count
+ Indicates the number of times the crash point is to be hit
+ to trigger an action. The default is 10.
+
+You can also induce failures by mounting debugfs and writing the type to
+<mountpoint>/provoke-crash/<crashpoint>. E.g.::
+
+ mount -t debugfs debugfs /mnt
+ echo EXCEPTION > /mnt/provoke-crash/INT_HARDWARE_ENTRY
+
+
+A special file is `DIRECT` which will induce the crash directly without
+KPROBE instrumentation. This mode is the only one available when the module
+is built on a kernel without KPROBEs support.
diff --git a/Documentation/fault-injection/provoke-crashes.txt b/Documentation/fault-injection/provoke-crashes.txt
deleted file mode 100644
index 7a9d3d81525b..000000000000
--- a/Documentation/fault-injection/provoke-crashes.txt
+++ /dev/null
@@ -1,38 +0,0 @@
-The lkdtm module provides an interface to crash or injure the kernel at
-predefined crashpoints to evaluate the reliability of crash dumps obtained
-using different dumping solutions. The module uses KPROBEs to instrument
-crashing points, but can also crash the kernel directly without KRPOBE
-support.
-
-
-You can provide the way either through module arguments when inserting
-the module, or through a debugfs interface.
-
-Usage: insmod lkdtm.ko [recur_count={>0}] cpoint_name=<> cpoint_type=<>
- [cpoint_count={>0}]
-
- recur_count : Recursion level for the stack overflow test. Default is 10.
-
- cpoint_name : Crash point where the kernel is to be crashed. It can be
- one of INT_HARDWARE_ENTRY, INT_HW_IRQ_EN, INT_TASKLET_ENTRY,
- FS_DEVRW, MEM_SWAPOUT, TIMERADD, SCSI_DISPATCH_CMD,
- IDE_CORE_CP, DIRECT
-
- cpoint_type : Indicates the action to be taken on hitting the crash point.
- It can be one of PANIC, BUG, EXCEPTION, LOOP, OVERFLOW,
- CORRUPT_STACK, UNALIGNED_LOAD_STORE_WRITE, OVERWRITE_ALLOCATION,
- WRITE_AFTER_FREE,
-
- cpoint_count : Indicates the number of times the crash point is to be hit
- to trigger an action. The default is 10.
-
-You can also induce failures by mounting debugfs and writing the type to
-<mountpoint>/provoke-crash/<crashpoint>. E.g.,
-
- mount -t debugfs debugfs /mnt
- echo EXCEPTION > /mnt/provoke-crash/INT_HARDWARE_ENTRY
-
-
-A special file is `DIRECT' which will induce the crash directly without
-KPROBE instrumentation. This mode is the only one available when the module
-is built on a kernel without KPROBEs support.
diff --git a/Documentation/process/4.Coding.rst b/Documentation/process/4.Coding.rst
index 4b7a5ab3cec1..13dd893c9f88 100644
--- a/Documentation/process/4.Coding.rst
+++ b/Documentation/process/4.Coding.rst
@@ -298,7 +298,7 @@ enabled, a configurable percentage of memory allocations will be made to
fail; these failures can be restricted to a specific range of code.
Running with fault injection enabled allows the programmer to see how the
code responds when things go badly. See
-Documentation/fault-injection/fault-injection.txt for more information on
+Documentation/fault-injection/fault-injection.rst for more information on
how to use this facility.
Other kinds of errors can be found with the "sparse" static analysis tool.
diff --git a/Documentation/translations/it_IT/process/4.Coding.rst b/Documentation/translations/it_IT/process/4.Coding.rst
index c05b89e616dd..a5e36aa60448 100644
--- a/Documentation/translations/it_IT/process/4.Coding.rst
+++ b/Documentation/translations/it_IT/process/4.Coding.rst
@@ -314,7 +314,7 @@ di allocazione di memoria sarà destinata al fallimento; questi fallimenti
possono essere ridotti ad uno specifico pezzo di codice. Procedere con
l'inserimento dei fallimenti attivo permette al programmatore di verificare
come il codice risponde quando le cose vanno male. Consultate:
-Documentation/fault-injection/fault-injection.txt per avere maggiori
+Documentation/fault-injection/fault-injection.rst per avere maggiori
informazioni su come utilizzare questo strumento.
Altre tipologie di errori possono essere riscontrati con lo strumento di
diff --git a/Documentation/translations/zh_CN/process/4.Coding.rst b/Documentation/translations/zh_CN/process/4.Coding.rst
index 5301e9d55255..b8b6d4c8ef3c 100644
--- a/Documentation/translations/zh_CN/process/4.Coding.rst
+++ b/Documentation/translations/zh_CN/process/4.Coding.rst
@@ -205,7 +205,7 @@ Linus对这个问题给出了最佳答案:
启用故障注入后,内存分配的可配置百分比将失败;这些失败可以限制在特定的代码
范围内。在启用了故障注入的情况下运行,程序员可以看到当情况恶化时代码如何响
应。有关如何使用此工具的详细信息,请参阅
-Documentation/fault-injection/fault-injection.txt。
+Documentation/fault-injection/fault-injection.rst。
使用“sparse”静态分析工具可以发现其他类型的错误。对于sparse,可以警告程序员
用户空间和内核空间地址之间的混淆、big endian和small endian数量的混合、在需
diff --git a/drivers/misc/lkdtm/core.c b/drivers/misc/lkdtm/core.c
index b51cf182b031..9c2f335b7023 100644
--- a/drivers/misc/lkdtm/core.c
+++ b/drivers/misc/lkdtm/core.c
@@ -28,7 +28,7 @@
*
* Debugfs support added by Simon Kagstrom <simon.kagstrom@netinsight.net>
*
- * See Documentation/fault-injection/provoke-crashes.txt for instructions
+ * See Documentation/fault-injection/provoke-crashes.rst for instructions
*/
#include "lkdtm.h"
#include <linux/fs.h>
diff --git a/include/linux/fault-inject.h b/include/linux/fault-inject.h
index 7e6c77740413..e525f6957c49 100644
--- a/include/linux/fault-inject.h
+++ b/include/linux/fault-inject.h
@@ -11,7 +11,7 @@
/*
* For explanation of the elements of this struct, see
- * Documentation/fault-injection/fault-injection.txt
+ * Documentation/fault-injection/fault-injection.rst
*/
struct fault_attr {
unsigned long probability;
diff --git a/lib/Kconfig.debug b/lib/Kconfig.debug
index 3a9d41bd4d45..1b0129196e70 100644
--- a/lib/Kconfig.debug
+++ b/lib/Kconfig.debug
@@ -1681,7 +1681,7 @@ config LKDTM
called lkdtm.
Documentation on how to use the module can be found in
- Documentation/fault-injection/provoke-crashes.txt
+ Documentation/fault-injection/provoke-crashes.rst
config TEST_LIST_SORT
tristate "Linked list sorting test"
diff --git a/tools/testing/fault-injection/failcmd.sh b/tools/testing/fault-injection/failcmd.sh
index 29a6c63c5a15..78dac34264be 100644
--- a/tools/testing/fault-injection/failcmd.sh
+++ b/tools/testing/fault-injection/failcmd.sh
@@ -42,7 +42,7 @@ OPTIONS
--interval=value, --space=value, --verbose=value, --task-filter=value,
--stacktrace-depth=value, --require-start=value, --require-end=value,
--reject-start=value, --reject-end=value, --ignore-gfp-wait=value
- See Documentation/fault-injection/fault-injection.txt for more
+ See Documentation/fault-injection/fault-injection.rst for more
information
failslab options:
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 14/79] docs: fpga: convert docs to ReST and rename to *.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (8 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 12/79] docs: fault-injection: " Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 15/79] docs: gpio: " Mauro Carvalho Chehab
` (63 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Wu Hao, Alan Tull, Moritz Fischer, linux-fpga
The dfl.txt file is almost there. It needs just a few
adjustments to be properly parsed.
The conversion is actually:
- add blank lines and identation in order to identify paragraphs;
- fix tables markups;
- add some lists markups;
- mark literal blocks;
- adjust title markups.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/fpga/{dfl.txt => dfl.rst} | 58 ++++++++++++++-----------
Documentation/fpga/index.rst | 17 ++++++++
MAINTAINERS | 2 +-
3 files changed, 50 insertions(+), 27 deletions(-)
rename Documentation/fpga/{dfl.txt => dfl.rst} (89%)
create mode 100644 Documentation/fpga/index.rst
diff --git a/Documentation/fpga/dfl.txt b/Documentation/fpga/dfl.rst
similarity index 89%
rename from Documentation/fpga/dfl.txt
rename to Documentation/fpga/dfl.rst
index 6df4621c3f2a..2f125abd777f 100644
--- a/Documentation/fpga/dfl.txt
+++ b/Documentation/fpga/dfl.rst
@@ -1,9 +1,12 @@
-===============================================================================
- FPGA Device Feature List (DFL) Framework Overview
--------------------------------------------------------------------------------
- Enno Luebbers <enno.luebbers@intel.com>
- Xiao Guangrong <guangrong.xiao@linux.intel.com>
- Wu Hao <hao.wu@intel.com>
+=================================================
+FPGA Device Feature List (DFL) Framework Overview
+=================================================
+
+Authors:
+
+- Enno Luebbers <enno.luebbers@intel.com>
+- Xiao Guangrong <guangrong.xiao@linux.intel.com>
+- Wu Hao <hao.wu@intel.com>
The Device Feature List (DFL) FPGA framework (and drivers according to this
this framework) hides the very details of low layer hardwares and provides
@@ -19,7 +22,7 @@ Device Feature List (DFL) defines a linked list of feature headers within the
device MMIO space to provide an extensible way of adding features. Software can
walk through these predefined data structures to enumerate FPGA features:
FPGA Interface Unit (FIU), Accelerated Function Unit (AFU) and Private Features,
-as illustrated below:
+as illustrated below::
Header Header Header Header
+----------+ +-->+----------+ +-->+----------+ +-->+----------+
@@ -81,9 +84,9 @@ and release it using close().
The following functions are exposed through ioctls:
- Get driver API version (DFL_FPGA_GET_API_VERSION)
- Check for extensions (DFL_FPGA_CHECK_EXTENSION)
- Program bitstream (DFL_FPGA_FME_PORT_PR)
+- Get driver API version (DFL_FPGA_GET_API_VERSION)
+- Check for extensions (DFL_FPGA_CHECK_EXTENSION)
+- Program bitstream (DFL_FPGA_FME_PORT_PR)
More functions are exposed through sysfs
(/sys/class/fpga_region/regionX/dfl-fme.n/):
@@ -118,18 +121,19 @@ port by using open() on the port device node and release it using close().
The following functions are exposed through ioctls:
- Get driver API version (DFL_FPGA_GET_API_VERSION)
- Check for extensions (DFL_FPGA_CHECK_EXTENSION)
- Get port info (DFL_FPGA_PORT_GET_INFO)
- Get MMIO region info (DFL_FPGA_PORT_GET_REGION_INFO)
- Map DMA buffer (DFL_FPGA_PORT_DMA_MAP)
- Unmap DMA buffer (DFL_FPGA_PORT_DMA_UNMAP)
- Reset AFU (*DFL_FPGA_PORT_RESET)
+- Get driver API version (DFL_FPGA_GET_API_VERSION)
+- Check for extensions (DFL_FPGA_CHECK_EXTENSION)
+- Get port info (DFL_FPGA_PORT_GET_INFO)
+- Get MMIO region info (DFL_FPGA_PORT_GET_REGION_INFO)
+- Map DMA buffer (DFL_FPGA_PORT_DMA_MAP)
+- Unmap DMA buffer (DFL_FPGA_PORT_DMA_UNMAP)
+- Reset AFU (DFL_FPGA_PORT_RESET)
-*DFL_FPGA_PORT_RESET: reset the FPGA Port and its AFU. Userspace can do Port
-reset at any time, e.g. during DMA or Partial Reconfiguration. But it should
-never cause any system level issue, only functional failure (e.g. DMA or PR
-operation failure) and be recoverable from the failure.
+DFL_FPGA_PORT_RESET:
+ reset the FPGA Port and its AFU. Userspace can do Port
+ reset at any time, e.g. during DMA or Partial Reconfiguration. But it should
+ never cause any system level issue, only functional failure (e.g. DMA or PR
+ operation failure) and be recoverable from the failure.
User-space applications can also mmap() accelerator MMIO regions.
@@ -143,6 +147,8 @@ More functions are exposed through sysfs:
DFL Framework Overview
======================
+::
+
+----------+ +--------+ +--------+ +--------+
| FME | | AFU | | AFU | | AFU |
| Module | | Module | | Module | | Module |
@@ -151,7 +157,7 @@ DFL Framework Overview
| FPGA Container Device | Device Feature List
| (FPGA Base Region) | Framework
+-----------------------+
---------------------------------------------------------------------
+ ------------------------------------------------------------------
+----------------------------+
| FPGA DFL Device Module |
| (e.g. PCIE/Platform Device)|
@@ -220,7 +226,7 @@ the sysfs hierarchy under /sys/class/fpga_region.
In the example below, two DFL based FPGA devices are installed in the host. Each
fpga device has one FME and two ports (AFUs).
-FPGA regions are created under /sys/class/fpga_region/
+FPGA regions are created under /sys/class/fpga_region/::
/sys/class/fpga_region/region0
/sys/class/fpga_region/region1
@@ -231,7 +237,7 @@ Application needs to search each regionX folder, if feature device is found,
(e.g. "dfl-port.n" or "dfl-fme.m" is found), then it's the base
fpga region which represents the FPGA device.
-Each base region has one FME and two ports (AFUs) as child devices:
+Each base region has one FME and two ports (AFUs) as child devices::
/sys/class/fpga_region/region0/dfl-fme.0
/sys/class/fpga_region/region0/dfl-port.0
@@ -243,7 +249,7 @@ Each base region has one FME and two ports (AFUs) as child devices:
/sys/class/fpga_region/region3/dfl-port.3
...
-In general, the FME/AFU sysfs interfaces are named as follows:
+In general, the FME/AFU sysfs interfaces are named as follows::
/sys/class/fpga_region/<regionX>/<dfl-fme.n>/
/sys/class/fpga_region/<regionX>/<dfl-port.m>/
@@ -251,7 +257,7 @@ In general, the FME/AFU sysfs interfaces are named as follows:
with 'n' consecutively numbering all FMEs and 'm' consecutively numbering all
ports.
-The device nodes used for ioctl() or mmap() can be referenced through:
+The device nodes used for ioctl() or mmap() can be referenced through::
/sys/class/fpga_region/<regionX>/<dfl-fme.n>/dev
/sys/class/fpga_region/<regionX>/<dfl-port.n>/dev
diff --git a/Documentation/fpga/index.rst b/Documentation/fpga/index.rst
new file mode 100644
index 000000000000..2c87d1ea084f
--- /dev/null
+++ b/Documentation/fpga/index.rst
@@ -0,0 +1,17 @@
+:orphan:
+
+====
+fpga
+====
+
+.. toctree::
+ :maxdepth: 1
+
+ dfl
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/MAINTAINERS b/MAINTAINERS
index fac4490d2a00..3dd988519a11 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -6186,7 +6186,7 @@ FPGA DFL DRIVERS
M: Wu Hao <hao.wu@intel.com>
L: linux-fpga@vger.kernel.org
S: Maintained
-F: Documentation/fpga/dfl.txt
+F: Documentation/fpga/dfl.rst
F: include/uapi/linux/fpga-dfl.h
F: drivers/fpga/dfl*
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 15/79] docs: gpio: convert docs to ReST and rename to *.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (9 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 14/79] docs: fpga: " Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-23 11:23 ` Linus Walleij
2019-04-23 21:30 ` Linus Walleij
2019-04-22 13:27 ` [PATCH v2 16/79] docs: ide: " Mauro Carvalho Chehab
` (62 subsequent siblings)
73 siblings, 2 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Linus Walleij, Bartosz Golaszewski, linux-gpio
The API described at sysfs.txt is deprecated.
Still, as it is still part of the Kernel (and will likely be
there for some time, as we don't simply remove APIs). So,
it makes sense to keep it there.
The conversion of this file is trivial:
- add blank lines and identation in order to identify paragraphs;
- mark a literal block as such.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/gpio/index.rst | 17 +++++++++
Documentation/gpio/{sysfs.txt => sysfs.rst} | 39 +++++++++++++--------
2 files changed, 42 insertions(+), 14 deletions(-)
create mode 100644 Documentation/gpio/index.rst
rename Documentation/gpio/{sysfs.txt => sysfs.rst} (86%)
diff --git a/Documentation/gpio/index.rst b/Documentation/gpio/index.rst
new file mode 100644
index 000000000000..09a4a553f434
--- /dev/null
+++ b/Documentation/gpio/index.rst
@@ -0,0 +1,17 @@
+:orphan:
+
+====
+gpio
+====
+
+.. toctree::
+ :maxdepth: 1
+
+ sysfs
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/gpio/sysfs.txt b/Documentation/gpio/sysfs.rst
similarity index 86%
rename from Documentation/gpio/sysfs.txt
rename to Documentation/gpio/sysfs.rst
index 58eeab81f349..ec09ffd983e7 100644
--- a/Documentation/gpio/sysfs.txt
+++ b/Documentation/gpio/sysfs.rst
@@ -1,10 +1,12 @@
GPIO Sysfs Interface for Userspace
==================================
-THIS ABI IS DEPRECATED, THE ABI DOCUMENTATION HAS BEEN MOVED TO
-Documentation/ABI/obsolete/sysfs-gpio AND NEW USERSPACE CONSUMERS
-ARE SUPPOSED TO USE THE CHARACTER DEVICE ABI. THIS OLD SYSFS ABI WILL
-NOT BE DEVELOPED (NO NEW FEATURES), IT WILL JUST BE MAINTAINED.
+.. warning::
+
+ THIS ABI IS DEPRECATED, THE ABI DOCUMENTATION HAS BEEN MOVED TO
+ Documentation/ABI/obsolete/sysfs-gpio AND NEW USERSPACE CONSUMERS
+ ARE SUPPOSED TO USE THE CHARACTER DEVICE ABI. THIS OLD SYSFS ABI WILL
+ NOT BE DEVELOPED (NO NEW FEATURES), IT WILL JUST BE MAINTAINED.
Refer to the examples in tools/gpio/* for an introduction to the new
character device ABI. Also see the userspace header in
@@ -51,13 +53,15 @@ The control interfaces are write-only:
/sys/class/gpio/
- "export" ... Userspace may ask the kernel to export control of
+ "export" ...
+ Userspace may ask the kernel to export control of
a GPIO to userspace by writing its number to this file.
Example: "echo 19 > export" will create a "gpio19" node
for GPIO #19, if that's not requested by kernel code.
- "unexport" ... Reverses the effect of exporting to userspace.
+ "unexport" ...
+ Reverses the effect of exporting to userspace.
Example: "echo 19 > unexport" will remove a "gpio19"
node exported using the "export" file.
@@ -67,7 +71,8 @@ and have the following read/write attributes:
/sys/class/gpio/gpioN/
- "direction" ... reads as either "in" or "out". This value may
+ "direction" ...
+ reads as either "in" or "out". This value may
normally be written. Writing as "out" defaults to
initializing the value as low. To ensure glitch free
operation, values "low" and "high" may be written to
@@ -78,7 +83,8 @@ and have the following read/write attributes:
it was exported by kernel code that didn't explicitly
allow userspace to reconfigure this GPIO's direction.
- "value" ... reads as either 0 (low) or 1 (high). If the GPIO
+ "value" ...
+ reads as either 0 (low) or 1 (high). If the GPIO
is configured as an output, this value may be written;
any nonzero value is treated as high.
@@ -92,14 +98,16 @@ and have the following read/write attributes:
file and read the new value or close the file and re-open it
to read the value.
- "edge" ... reads as either "none", "rising", "falling", or
+ "edge" ...
+ reads as either "none", "rising", "falling", or
"both". Write these strings to select the signal edge(s)
that will make poll(2) on the "value" file return.
This file exists only if the pin can be configured as an
interrupt generating input pin.
- "active_low" ... reads as either 0 (false) or 1 (true). Write
+ "active_low" ...
+ reads as either 0 (false) or 1 (true). Write
any nonzero value to invert the value attribute both
for reading and writing. Existing and subsequent
poll(2) support configuration via the edge attribute
@@ -112,11 +120,14 @@ read-only attributes:
/sys/class/gpio/gpiochipN/
- "base" ... same as N, the first GPIO managed by this chip
+ "base" ...
+ same as N, the first GPIO managed by this chip
- "label" ... provided for diagnostics (not always unique)
+ "label" ...
+ provided for diagnostics (not always unique)
- "ngpio" ... how many GPIOs this manages (N to N + ngpio - 1)
+ "ngpio" ...
+ how many GPIOs this manages (N to N + ngpio - 1)
Board documentation should in most cases cover what GPIOs are used for
what purposes. However, those numbers are not always stable; GPIOs on
@@ -129,7 +140,7 @@ the correct GPIO number to use for a given signal.
Exporting from Kernel code
--------------------------
Kernel code can explicitly manage exports of GPIOs which have already been
-requested using gpio_request():
+requested using gpio_request()::
/* export the GPIO to userspace */
int gpiod_export(struct gpio_desc *desc, bool direction_may_change);
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* Re: [PATCH v2 15/79] docs: gpio: convert docs to ReST and rename to *.rst
2019-04-22 13:27 ` [PATCH v2 15/79] docs: gpio: " Mauro Carvalho Chehab
@ 2019-04-23 11:23 ` Linus Walleij
2019-04-23 12:36 ` Mauro Carvalho Chehab
2019-04-23 21:30 ` Linus Walleij
1 sibling, 1 reply; 115+ messages in thread
From: Linus Walleij @ 2019-04-23 11:23 UTC (permalink / raw)
To: Mauro Carvalho Chehab
Cc: Linux Doc Mailing List, Mauro Carvalho Chehab,
linux-kernel@vger.kernel.org, Jonathan Corbet,
Bartosz Golaszewski, open list:GPIO SUBSYSTEM
On Mon, Apr 22, 2019 at 3:28 PM Mauro Carvalho Chehab
<mchehab+samsung@kernel.org> wrote:
> The API described at sysfs.txt is deprecated.
>
> Still, as it is still part of the Kernel (and will likely be
> there for some time, as we don't simply remove APIs). So,
> it makes sense to keep it there.
>
> The conversion of this file is trivial:
> - add blank lines and identation in order to identify paragraphs;
> - mark a literal block as such.
>
> At its new index.rst, let's add a :orphan: while this is not linked to
> the main index.rst file, in order to avoid build warnings.
>
> Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Same question as the v1: should I apply it or will you :)
Yours,
Linus Walleij
^ permalink raw reply [flat|nested] 115+ messages in thread
* Re: [PATCH v2 15/79] docs: gpio: convert docs to ReST and rename to *.rst
2019-04-23 11:23 ` Linus Walleij
@ 2019-04-23 12:36 ` Mauro Carvalho Chehab
0 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-23 12:36 UTC (permalink / raw)
To: Linus Walleij
Cc: Linux Doc Mailing List, Mauro Carvalho Chehab,
linux-kernel@vger.kernel.org, Jonathan Corbet,
Bartosz Golaszewski, open list:GPIO SUBSYSTEM
Em Tue, 23 Apr 2019 13:23:50 +0200
Linus Walleij <linus.walleij@linaro.org> escreveu:
> On Mon, Apr 22, 2019 at 3:28 PM Mauro Carvalho Chehab
> <mchehab+samsung@kernel.org> wrote:
>
> > The API described at sysfs.txt is deprecated.
> >
> > Still, as it is still part of the Kernel (and will likely be
> > there for some time, as we don't simply remove APIs). So,
> > it makes sense to keep it there.
> >
> > The conversion of this file is trivial:
> > - add blank lines and identation in order to identify paragraphs;
> > - mark a literal block as such.
> >
> > At its new index.rst, let's add a :orphan: while this is not linked to
> > the main index.rst file, in order to avoid build warnings.
> >
> > Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
>
> Acked-by: Linus Walleij <linus.walleij@linaro.org>
>
> Same question as the v1: should I apply it or will you :)
I suspect that it would be better if it gets applied via
the GPIO tree, in order to reduce potential merge conflicts.
Regards,
Mauro
^ permalink raw reply [flat|nested] 115+ messages in thread
* Re: [PATCH v2 15/79] docs: gpio: convert docs to ReST and rename to *.rst
2019-04-22 13:27 ` [PATCH v2 15/79] docs: gpio: " Mauro Carvalho Chehab
2019-04-23 11:23 ` Linus Walleij
@ 2019-04-23 21:30 ` Linus Walleij
1 sibling, 0 replies; 115+ messages in thread
From: Linus Walleij @ 2019-04-23 21:30 UTC (permalink / raw)
To: Mauro Carvalho Chehab
Cc: Linux Doc Mailing List, Mauro Carvalho Chehab,
linux-kernel@vger.kernel.org, Jonathan Corbet,
Bartosz Golaszewski, open list:GPIO SUBSYSTEM
On Mon, Apr 22, 2019 at 3:28 PM Mauro Carvalho Chehab
<mchehab+samsung@kernel.org> wrote:
> The API described at sysfs.txt is deprecated.
>
> Still, as it is still part of the Kernel (and will likely be
> there for some time, as we don't simply remove APIs). So,
> it makes sense to keep it there.
>
> The conversion of this file is trivial:
> - add blank lines and identation in order to identify paragraphs;
> - mark a literal block as such.
>
> At its new index.rst, let's add a :orphan: while this is not linked to
> the main index.rst file, in order to avoid build warnings.
>
> Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Patch applied to the GPIO tree.
Yours,
Linus Walleij
^ permalink raw reply [flat|nested] 115+ messages in thread
* [PATCH v2 16/79] docs: ide: convert docs to ReST and rename to *.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (10 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 15/79] docs: gpio: " Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 17/79] docs: infiniband: " Mauro Carvalho Chehab
` (61 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Borislav Petkov, Jens Axboe, David S. Miller,
Geert Uytterhoeven, linux-ide, linux-m68k
The conversion is actually:
- add blank lines and identation in order to identify paragraphs;
- fix tables markups;
- add some lists markups;
- mark literal blocks;
- adjust title markups.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
.../admin-guide/kernel-parameters.txt | 2 +-
Documentation/cdrom/ide-cd.rst | 18 +--
Documentation/ide/changelogs.rst | 17 ++
.../ide/{ide-tape.txt => ide-tape.rst} | 23 +--
Documentation/ide/{ide.txt => ide.rst} | 147 ++++++++++--------
Documentation/ide/index.rst | 21 +++
...arm-plug-howto.txt => warm-plug-howto.rst} | 10 +-
arch/m68k/q40/README | 2 +-
drivers/ide/Kconfig | 20 +--
9 files changed, 155 insertions(+), 105 deletions(-)
create mode 100644 Documentation/ide/changelogs.rst
rename Documentation/ide/{ide-tape.txt => ide-tape.rst} (83%)
rename Documentation/ide/{ide.txt => ide.rst} (72%)
create mode 100644 Documentation/ide/index.rst
rename Documentation/ide/{warm-plug-howto.txt => warm-plug-howto.rst} (61%)
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index fce382aebf60..bfe926a7b15f 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -1504,7 +1504,7 @@
Format: =0.0 to prevent dma on hda, =0.1 hdb =1.0 hdc
.vlb_clock .pci_clock .noflush .nohpa .noprobe .nowerr
.cdrom .chs .ignore_cable are additional options
- See Documentation/ide/ide.txt.
+ See Documentation/ide/ide.rst.
ide-generic.probe-mask= [HW] (E)IDE subsystem
Format: <int>
diff --git a/Documentation/cdrom/ide-cd.rst b/Documentation/cdrom/ide-cd.rst
index dadc94ef6b6c..bdccb74fc92d 100644
--- a/Documentation/cdrom/ide-cd.rst
+++ b/Documentation/cdrom/ide-cd.rst
@@ -47,7 +47,7 @@ This driver provides the following features:
---------------
0. The ide-cd relies on the ide disk driver. See
- Documentation/ide/ide.txt for up-to-date information on the ide
+ Documentation/ide/ide.rst for up-to-date information on the ide
driver.
1. Make sure that the ide and ide-cd drivers are compiled into the
@@ -62,7 +62,7 @@ This driver provides the following features:
Depending on what type of IDE interface you have, you may need to
specify additional configuration options. See
- Documentation/ide/ide.txt.
+ Documentation/ide/ide.rst.
2. You should also ensure that the iso9660 filesystem is either
compiled into the kernel or available as a loadable module. You
@@ -82,7 +82,7 @@ This driver provides the following features:
on the primary IDE interface are called `hda` and `hdb`,
respectively. The drives on the secondary interface are called
`hdc` and `hdd`. (Interfaces at other locations get other letters
- in the third position; see Documentation/ide/ide.txt.)
+ in the third position; see Documentation/ide/ide.rst.)
If you want your CDROM drive to be found automatically by the
driver, you should make sure your IDE interface uses either the
@@ -91,7 +91,7 @@ This driver provides the following features:
be jumpered as `master`. (If for some reason you cannot configure
your system in this manner, you can probably still use the driver.
You may have to pass extra configuration information to the kernel
- when you boot, however. See Documentation/ide/ide.txt for more
+ when you boot, however. See Documentation/ide/ide.rst for more
information.)
4. Boot the system. If the drive is recognized, you should see a
@@ -163,7 +163,7 @@ to change. If the slot number is -1, the drive is unloaded.
This section discusses some common problems encountered when trying to
use the driver, and some possible solutions. Note that if you are
experiencing problems, you should probably also review
-Documentation/ide/ide.txt for current information about the underlying
+Documentation/ide/ide.rst for current information about the underlying
IDE support code. Some of these items apply only to earlier versions
of the driver, but are mentioned here for completeness.
@@ -173,7 +173,7 @@ from the driver.
a. Drive is not detected during booting.
- Review the configuration instructions above and in
- Documentation/ide/ide.txt, and check how your hardware is
+ Documentation/ide/ide.rst, and check how your hardware is
configured.
- If your drive is the only device on an IDE interface, it should
@@ -181,7 +181,7 @@ a. Drive is not detected during booting.
- If your IDE interface is not at the standard addresses of 0x170
or 0x1f0, you'll need to explicitly inform the driver using a
- lilo option. See Documentation/ide/ide.txt. (This feature was
+ lilo option. See Documentation/ide/ide.rst. (This feature was
added around kernel version 1.3.30.)
- If the autoprobing is not finding your drive, you can tell the
@@ -207,7 +207,7 @@ a. Drive is not detected during booting.
Support for some interfaces needing extra initialization is
provided in later 1.3.x kernels. You may need to turn on
additional kernel configuration options to get them to work;
- see Documentation/ide/ide.txt.
+ see Documentation/ide/ide.rst.
Even if support is not available for your interface, you may be
able to get it to work with the following procedure. First boot
@@ -261,7 +261,7 @@ c. System hangups.
be worked around by specifying the `serialize` option when
booting. Recent kernels should be able to detect the need for
this automatically in most cases, but the detection is not
- foolproof. See Documentation/ide/ide.txt for more information
+ foolproof. See Documentation/ide/ide.rst for more information
about the `serialize` option and the CMD640B.
- Note that many MS-DOS CDROM drivers will work with such buggy
diff --git a/Documentation/ide/changelogs.rst b/Documentation/ide/changelogs.rst
new file mode 100644
index 000000000000..fdf9d0fb8027
--- /dev/null
+++ b/Documentation/ide/changelogs.rst
@@ -0,0 +1,17 @@
+Changelog for ide cd
+--------------------
+
+ .. include:: ChangeLog.ide-cd.1994-2004
+ :literal:
+
+Changelog for ide floppy
+------------------------
+
+ .. include:: ChangeLog.ide-floppy.1996-2002
+ :literal:
+
+Changelog for ide tape
+----------------------
+
+ .. include:: ChangeLog.ide-tape.1995-2002
+ :literal:
diff --git a/Documentation/ide/ide-tape.txt b/Documentation/ide/ide-tape.rst
similarity index 83%
rename from Documentation/ide/ide-tape.txt
rename to Documentation/ide/ide-tape.rst
index 3f348a0b21d8..3e061d9c0e38 100644
--- a/Documentation/ide/ide-tape.txt
+++ b/Documentation/ide/ide-tape.rst
@@ -1,4 +1,6 @@
-IDE ATAPI streaming tape driver.
+===============================
+IDE ATAPI streaming tape driver
+===============================
This driver is a part of the Linux ide driver.
@@ -10,14 +12,14 @@ to the request-list of the block device, and waits for their completion.
The block device major and minor numbers are determined from the
tape's relative position in the ide interfaces, as explained in ide.c.
-The character device interface consists of the following devices:
+The character device interface consists of the following devices::
-ht0 major 37, minor 0 first IDE tape, rewind on close.
-ht1 major 37, minor 1 second IDE tape, rewind on close.
-...
-nht0 major 37, minor 128 first IDE tape, no rewind on close.
-nht1 major 37, minor 129 second IDE tape, no rewind on close.
-...
+ ht0 major 37, minor 0 first IDE tape, rewind on close.
+ ht1 major 37, minor 1 second IDE tape, rewind on close.
+ ...
+ nht0 major 37, minor 128 first IDE tape, no rewind on close.
+ nht1 major 37, minor 129 second IDE tape, no rewind on close.
+ ...
The general magnetic tape commands compatible interface, as defined by
include/linux/mtio.h, is accessible through the character device.
@@ -40,9 +42,10 @@ Testing was done with a 2 GB CONNER CTMA 4000 IDE ATAPI Streaming Tape Drive.
Here are some words from the first releases of hd.c, which are quoted
in ide.c and apply here as well:
-| Special care is recommended. Have Fun!
+* Special care is recommended. Have Fun!
-Possible improvements:
+Possible improvements
+=====================
1. Support for the ATAPI overlap protocol.
diff --git a/Documentation/ide/ide.txt b/Documentation/ide/ide.rst
similarity index 72%
rename from Documentation/ide/ide.txt
rename to Documentation/ide/ide.rst
index 7aca987c23d9..88bdcba92f7d 100644
--- a/Documentation/ide/ide.txt
+++ b/Documentation/ide/ide.rst
@@ -1,41 +1,43 @@
-
- Information regarding the Enhanced IDE drive in Linux 2.6
-
-==============================================================================
-
+============================================
+Information regarding the Enhanced IDE drive
+============================================
The hdparm utility can be used to control various IDE features on a
running system. It is packaged separately. Please Look for it on popular
linux FTP sites.
+-------------------------------------------------------------------------------
+.. important::
-*** IMPORTANT NOTICES: BUGGY IDE CHIPSETS CAN CORRUPT DATA!!
-*** =================
-*** PCI versions of the CMD640 and RZ1000 interfaces are now detected
-*** automatically at startup when PCI BIOS support is configured.
-***
-*** Linux disables the "prefetch" ("readahead") mode of the RZ1000
-*** to prevent data corruption possible due to hardware design flaws.
-***
-*** For the CMD640, linux disables "IRQ unmasking" (hdparm -u1) on any
-*** drive for which the "prefetch" mode of the CMD640 is turned on.
-*** If "prefetch" is disabled (hdparm -p8), then "IRQ unmasking" can be
-*** used again.
-***
-*** For the CMD640, linux disables "32bit I/O" (hdparm -c1) on any drive
-*** for which the "prefetch" mode of the CMD640 is turned off.
-*** If "prefetch" is enabled (hdparm -p9), then "32bit I/O" can be
-*** used again.
-***
-*** The CMD640 is also used on some Vesa Local Bus (VLB) cards, and is *NOT*
-*** automatically detected by Linux. For safe, reliable operation with such
-*** interfaces, one *MUST* use the "cmd640.probe_vlb" kernel option.
-***
-*** Use of the "serialize" option is no longer necessary.
-
-================================================================================
-Common pitfalls:
+ BUGGY IDE CHIPSETS CAN CORRUPT DATA!!
+
+ PCI versions of the CMD640 and RZ1000 interfaces are now detected
+ automatically at startup when PCI BIOS support is configured.
+
+ Linux disables the "prefetch" ("readahead") mode of the RZ1000
+ to prevent data corruption possible due to hardware design flaws.
+
+ For the CMD640, linux disables "IRQ unmasking" (hdparm -u1) on any
+ drive for which the "prefetch" mode of the CMD640 is turned on.
+ If "prefetch" is disabled (hdparm -p8), then "IRQ unmasking" can be
+ used again.
+
+ For the CMD640, linux disables "32bit I/O" (hdparm -c1) on any drive
+ for which the "prefetch" mode of the CMD640 is turned off.
+ If "prefetch" is enabled (hdparm -p9), then "32bit I/O" can be
+ used again.
+
+ The CMD640 is also used on some Vesa Local Bus (VLB) cards, and is *NOT*
+ automatically detected by Linux. For safe, reliable operation with such
+ interfaces, one *MUST* use the "cmd640.probe_vlb" kernel option.
+
+ Use of the "serialize" option is no longer necessary.
+
+-------------------------------------------------------------------------------
+
+Common pitfalls
+===============
- 40-conductor IDE cables are capable of transferring data in DMA modes up to
udma2, but no faster.
@@ -49,19 +51,18 @@ Common pitfalls:
- Even better try to stick to the same vendor and device type on the same
cable.
-================================================================================
-
-This is the multiple IDE interface driver, as evolved from hd.c.
+This is the multiple IDE interface driver, as evolved from hd.c
+===============================================================
It supports up to 9 IDE interfaces per default, on one or more IRQs (usually
-14 & 15). There can be up to two drives per interface, as per the ATA-6 spec.
+14 & 15). There can be up to two drives per interface, as per the ATA-6 spec.::
-Primary: ide0, port 0x1f0; major=3; hda is minor=0; hdb is minor=64
-Secondary: ide1, port 0x170; major=22; hdc is minor=0; hdd is minor=64
-Tertiary: ide2, port 0x1e8; major=33; hde is minor=0; hdf is minor=64
-Quaternary: ide3, port 0x168; major=34; hdg is minor=0; hdh is minor=64
-fifth.. ide4, usually PCI, probed
-sixth.. ide5, usually PCI, probed
+ Primary: ide0, port 0x1f0; major=3; hda is minor=0; hdb is minor=64
+ Secondary: ide1, port 0x170; major=22; hdc is minor=0; hdd is minor=64
+ Tertiary: ide2, port 0x1e8; major=33; hde is minor=0; hdf is minor=64
+ Quaternary: ide3, port 0x168; major=34; hdg is minor=0; hdh is minor=64
+ fifth.. ide4, usually PCI, probed
+ sixth.. ide5, usually PCI, probed
To access devices on interfaces > ide0, device entries please make sure that
device files for them are present in /dev. If not, please create such
@@ -80,12 +81,15 @@ seldom occurs. Be careful, and if in doubt, don't do it!
Drives are normally found by auto-probing and/or examining the CMOS/BIOS data.
For really weird situations, the apparent (fdisk) geometry can also be specified
-on the kernel "command line" using LILO. The format of such lines is:
+on the kernel "command line" using LILO. The format of such lines is::
ide_core.chs=[interface_number.device_number]:cyls,heads,sects
-or ide_core.cdrom=[interface_number.device_number]
-For example:
+or::
+
+ ide_core.cdrom=[interface_number.device_number]
+
+For example::
ide_core.chs=1.0:1050,32,64 ide_core.cdrom=1.1
@@ -96,10 +100,12 @@ geometry for partitioning purposes (fdisk).
If the auto-probing during boot time confuses a drive (ie. the drive works
with hd.c but not with ide.c), then an command line option may be specified
for each drive for which you'd like the drive to skip the hardware
-probe/identification sequence. For example:
+probe/identification sequence. For example::
ide_core.noprobe=0.1
-or
+
+or::
+
ide_core.chs=1.0:768,16,32
ide_core.noprobe=1.0
@@ -115,22 +121,24 @@ Such drives will be identified at boot time, just like a hard disk.
If for some reason your cdrom drive is *not* found at boot time, you can force
the probe to look harder by supplying a kernel command line parameter
-via LILO, such as:
+via LILO, such as:::
ide_core.cdrom=1.0 /* "master" on second interface (hdc) */
-or
+
+or::
+
ide_core.cdrom=1.1 /* "slave" on second interface (hdd) */
For example, a GW2000 system might have a hard drive on the primary
interface (/dev/hda) and an IDE cdrom drive on the secondary interface
-(/dev/hdc). To mount a CD in the cdrom drive, one would use something like:
+(/dev/hdc). To mount a CD in the cdrom drive, one would use something like::
ln -sf /dev/hdc /dev/cdrom
mkdir /mnt/cdrom
mount /dev/cdrom /mnt/cdrom -t iso9660 -o ro
If, after doing all of the above, mount doesn't work and you see
-errors from the driver (with dmesg) complaining about `status=0xff',
+errors from the driver (with dmesg) complaining about `status=0xff`,
this means that the hardware is not responding to the driver's attempts
to read it. One of the following is probably the problem:
@@ -165,7 +173,7 @@ drivers can always be compiled as loadable modules, the chipset drivers
can only be compiled into the kernel, and the core code (ide.c) can be
compiled as a loadable module provided no chipset support is needed.
-When using ide.c as a module in combination with kmod, add:
+When using ide.c as a module in combination with kmod, add::
alias block-major-3 ide-probe
@@ -176,10 +184,8 @@ driver using the "options=" keyword to insmod, while replacing any ',' with
';'.
-================================================================================
-
Summary of ide driver parameters for kernel command line
---------------------------------------------------------
+========================================================
For legacy IDE VLB host drivers (ali14xx/dtc2278/ht6560b/qd65xx/umc8672)
you need to explicitly enable probing by using "probe" kernel parameter,
@@ -226,28 +232,31 @@ Other kernel parameters for ide_core are:
* "chs=[interface_number.device_number]" to force device as a disk (using CHS)
-================================================================================
Some Terminology
-----------------
-IDE = Integrated Drive Electronics, meaning that each drive has a built-in
-controller, which is why an "IDE interface card" is not a "controller card".
+================
-ATA = AT (the old IBM 286 computer) Attachment Interface, a draft American
-National Standard for connecting hard drives to PCs. This is the official
-name for "IDE".
+IDE
+ Integrated Drive Electronics, meaning that each drive has a built-in
+ controller, which is why an "IDE interface card" is not a "controller card".
-The latest standards define some enhancements, known as the ATA-6 spec,
-which grew out of vendor-specific "Enhanced IDE" (EIDE) implementations.
+ATA
+ AT (the old IBM 286 computer) Attachment Interface, a draft American
+ National Standard for connecting hard drives to PCs. This is the official
+ name for "IDE".
-ATAPI = ATA Packet Interface, a new protocol for controlling the drives,
-similar to SCSI protocols, created at the same time as the ATA2 standard.
-ATAPI is currently used for controlling CDROM, TAPE and FLOPPY (ZIP or
-LS120/240) devices, removable R/W cartridges, and for high capacity hard disk
-drives.
+ The latest standards define some enhancements, known as the ATA-6 spec,
+ which grew out of vendor-specific "Enhanced IDE" (EIDE) implementations.
+
+ATAPI
+ ATA Packet Interface, a new protocol for controlling the drives,
+ similar to SCSI protocols, created at the same time as the ATA2 standard.
+ ATAPI is currently used for controlling CDROM, TAPE and FLOPPY (ZIP or
+ LS120/240) devices, removable R/W cartridges, and for high capacity hard disk
+ drives.
mlord@pobox.com
---
+
Wed Apr 17 22:52:44 CEST 2002 edited by Marcin Dalecki, the current
maintainer.
diff --git a/Documentation/ide/index.rst b/Documentation/ide/index.rst
new file mode 100644
index 000000000000..45bc12d3957f
--- /dev/null
+++ b/Documentation/ide/index.rst
@@ -0,0 +1,21 @@
+:orphan:
+
+==================================
+Integrated Drive Electronics (IDE)
+==================================
+
+.. toctree::
+ :maxdepth: 1
+
+ ide
+ ide-tape
+ warm-plug-howto
+
+ changelogs
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/ide/warm-plug-howto.txt b/Documentation/ide/warm-plug-howto.rst
similarity index 61%
rename from Documentation/ide/warm-plug-howto.txt
rename to Documentation/ide/warm-plug-howto.rst
index 98152bcd515a..c245242ef2f1 100644
--- a/Documentation/ide/warm-plug-howto.txt
+++ b/Documentation/ide/warm-plug-howto.rst
@@ -1,14 +1,14 @@
-
+===================
IDE warm-plug HOWTO
===================
-To warm-plug devices on a port 'idex':
+To warm-plug devices on a port 'idex'::
-# echo -n "1" > /sys/class/ide_port/idex/delete_devices
+ # echo -n "1" > /sys/class/ide_port/idex/delete_devices
-unplug old device(s) and plug new device(s)
+unplug old device(s) and plug new device(s)::
-# echo -n "1" > /sys/class/ide_port/idex/scan
+ # echo -n "1" > /sys/class/ide_port/idex/scan
done
diff --git a/arch/m68k/q40/README b/arch/m68k/q40/README
index 93f4c4cd3c45..a4991d2d8af6 100644
--- a/arch/m68k/q40/README
+++ b/arch/m68k/q40/README
@@ -31,7 +31,7 @@ drivers used by the Q40, apart from the very obvious (console etc.):
char/joystick/* # most of this should work, not
# in default config.in
block/q40ide.c # startup for ide
- ide* # see Documentation/ide/ide.txt
+ ide* # see Documentation/ide/ide.rst
floppy.c # normal PC driver, DMA emu in asm/floppy.h
# and arch/m68k/kernel/entry.S
# see drivers/block/README.fd
diff --git a/drivers/ide/Kconfig b/drivers/ide/Kconfig
index 19fcd0756f46..6683010b59cb 100644
--- a/drivers/ide/Kconfig
+++ b/drivers/ide/Kconfig
@@ -24,13 +24,13 @@ menuconfig IDE
To compile this driver as a module, choose M here: the
module will be called ide-core.
- For further information, please read <file:Documentation/ide/ide.txt>.
+ For further information, please read <file:Documentation/ide/ide.rst>.
If unsure, say N.
if IDE
-comment "Please see Documentation/ide/ide.txt for help/info on IDE drives"
+comment "Please see Documentation/ide/ide.rst for help/info on IDE drives"
config IDE_XFER_MODE
bool
@@ -162,7 +162,7 @@ config BLK_DEV_IDETAPE
along with other IDE devices, as "hdb" or "hdc", or something
similar, and will be mapped to a character device such as "ht0"
(check the boot messages with dmesg). Be sure to consult the
- <file:drivers/ide/ide-tape.c> and <file:Documentation/ide/ide.txt>
+ <file:drivers/ide/ide-tape.c> and <file:Documentation/ide/ide.rst>
files for usage information.
To compile this driver as a module, choose M here: the
@@ -250,7 +250,7 @@ config BLK_DEV_CMD640
The CMD640 chip is also used on add-in cards by Acculogic, and on
the "CSA-6400E PCI to IDE controller" that some people have. For
- details, read <file:Documentation/ide/ide.txt>.
+ details, read <file:Documentation/ide/ide.rst>.
config BLK_DEV_CMD640_ENHANCED
bool "CMD640 enhanced support"
@@ -258,7 +258,7 @@ config BLK_DEV_CMD640_ENHANCED
help
This option includes support for setting/autotuning PIO modes and
prefetch on CMD640 IDE interfaces. For details, read
- <file:Documentation/ide/ide.txt>. If you have a CMD640 IDE interface
+ <file:Documentation/ide/ide.rst>. If you have a CMD640 IDE interface
and your BIOS does not already do this for you, then say Y here.
Otherwise say N.
@@ -818,7 +818,7 @@ config BLK_DEV_ALI14XX
boot parameter. It enables support for the secondary IDE interface
of the ALI M1439/1443/1445/1487/1489 chipsets, and permits faster
I/O speeds to be set as well.
- See the files <file:Documentation/ide/ide.txt> and
+ See the files <file:Documentation/ide/ide.rst> and
<file:drivers/ide/ali14xx.c> for more info.
config BLK_DEV_DTC2278
@@ -829,7 +829,7 @@ config BLK_DEV_DTC2278
This driver is enabled at runtime using the "dtc2278.probe" kernel
boot parameter. It enables support for the secondary IDE interface
of the DTC-2278 card, and permits faster I/O speeds to be set as
- well. See the <file:Documentation/ide/ide.txt> and
+ well. See the <file:Documentation/ide/ide.rst> and
<file:drivers/ide/dtc2278.c> files for more info.
config BLK_DEV_HT6560B
@@ -840,7 +840,7 @@ config BLK_DEV_HT6560B
This driver is enabled at runtime using the "ht6560b.probe" kernel
boot parameter. It enables support for the secondary IDE interface
of the Holtek card, and permits faster I/O speeds to be set as well.
- See the <file:Documentation/ide/ide.txt> and
+ See the <file:Documentation/ide/ide.rst> and
<file:drivers/ide/ht6560b.c> files for more info.
config BLK_DEV_QD65XX
@@ -850,7 +850,7 @@ config BLK_DEV_QD65XX
help
This driver is enabled at runtime using the "qd65xx.probe" kernel
boot parameter. It permits faster I/O speeds to be set. See the
- <file:Documentation/ide/ide.txt> and <file:drivers/ide/qd65xx.c>
+ <file:Documentation/ide/ide.rst> and <file:drivers/ide/qd65xx.c>
for more info.
config BLK_DEV_UMC8672
@@ -861,7 +861,7 @@ config BLK_DEV_UMC8672
This driver is enabled at runtime using the "umc8672.probe" kernel
boot parameter. It enables support for the secondary IDE interface
of the UMC-8672, and permits faster I/O speeds to be set as well.
- See the files <file:Documentation/ide/ide.txt> and
+ See the files <file:Documentation/ide/ide.rst> and
<file:drivers/ide/umc8672.c> for more info.
endif
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 17/79] docs: infiniband: convert docs to ReST and rename to *.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (11 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 16/79] docs: ide: " Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 19/79] docs: kdump: " Mauro Carvalho Chehab
` (60 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Doug Ledford, Jason Gunthorpe, linux-rdma
The InfiniBand docs are plain text with no markups.
So, all we needed to do were to add the title markups and
some markup sequences in order to properly parse tables,
lists and literal blocks.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
.../{core_locking.txt => core_locking.rst} | 64 ++++++-----
Documentation/infiniband/index.rst | 23 ++++
.../infiniband/{ipoib.txt => ipoib.rst} | 24 ++--
.../infiniband/{opa_vnic.txt => opa_vnic.rst} | 108 +++++++++---------
.../infiniband/{sysfs.txt => sysfs.rst} | 4 +-
.../{tag_matching.txt => tag_matching.rst} | 5 +
.../infiniband/{user_mad.txt => user_mad.rst} | 33 ++++--
.../{user_verbs.txt => user_verbs.rst} | 12 +-
drivers/infiniband/core/user_mad.c | 2 +-
drivers/infiniband/ulp/ipoib/Kconfig | 2 +-
10 files changed, 174 insertions(+), 103 deletions(-)
rename Documentation/infiniband/{core_locking.txt => core_locking.rst} (78%)
create mode 100644 Documentation/infiniband/index.rst
rename Documentation/infiniband/{ipoib.txt => ipoib.rst} (90%)
rename Documentation/infiniband/{opa_vnic.txt => opa_vnic.rst} (63%)
rename Documentation/infiniband/{sysfs.txt => sysfs.rst} (69%)
rename Documentation/infiniband/{tag_matching.txt => tag_matching.rst} (98%)
rename Documentation/infiniband/{user_mad.txt => user_mad.rst} (90%)
rename Documentation/infiniband/{user_verbs.txt => user_verbs.rst} (93%)
diff --git a/Documentation/infiniband/core_locking.txt b/Documentation/infiniband/core_locking.rst
similarity index 78%
rename from Documentation/infiniband/core_locking.txt
rename to Documentation/infiniband/core_locking.rst
index 4b1f36b6ada0..f34669beb4fe 100644
--- a/Documentation/infiniband/core_locking.txt
+++ b/Documentation/infiniband/core_locking.rst
@@ -1,4 +1,6 @@
-INFINIBAND MIDLAYER LOCKING
+===========================
+InfiniBand Midlayer Locking
+===========================
This guide is an attempt to make explicit the locking assumptions
made by the InfiniBand midlayer. It describes the requirements on
@@ -6,45 +8,47 @@ INFINIBAND MIDLAYER LOCKING
protocols that use the midlayer.
Sleeping and interrupt context
+==============================
With the following exceptions, a low-level driver implementation of
all of the methods in struct ib_device may sleep. The exceptions
are any methods from the list:
- create_ah
- modify_ah
- query_ah
- destroy_ah
- post_send
- post_recv
- poll_cq
- req_notify_cq
- map_phys_fmr
+ - create_ah
+ - modify_ah
+ - query_ah
+ - destroy_ah
+ - post_send
+ - post_recv
+ - poll_cq
+ - req_notify_cq
+ - map_phys_fmr
which may not sleep and must be callable from any context.
The corresponding functions exported to upper level protocol
consumers:
- ib_create_ah
- ib_modify_ah
- ib_query_ah
- ib_destroy_ah
- ib_post_send
- ib_post_recv
- ib_req_notify_cq
- ib_map_phys_fmr
+ - ib_create_ah
+ - ib_modify_ah
+ - ib_query_ah
+ - ib_destroy_ah
+ - ib_post_send
+ - ib_post_recv
+ - ib_req_notify_cq
+ - ib_map_phys_fmr
are therefore safe to call from any context.
In addition, the function
- ib_dispatch_event
+ - ib_dispatch_event
used by low-level drivers to dispatch asynchronous events through
the midlayer is also safe to call from any context.
Reentrancy
+----------
All of the methods in struct ib_device exported by a low-level
driver must be fully reentrant. The low-level driver is required to
@@ -62,6 +66,7 @@ Reentrancy
information between different calls of ib_poll_cq() is not defined.
Callbacks
+---------
A low-level driver must not perform a callback directly from the
same callchain as an ib_device method call. For example, it is not
@@ -74,18 +79,18 @@ Callbacks
completion event handlers for the same CQ are not called
simultaneously. The driver must guarantee that only one CQ event
handler for a given CQ is running at a time. In other words, the
- following situation is not allowed:
+ following situation is not allowed::
- CPU1 CPU2
+ CPU1 CPU2
- low-level driver ->
- consumer CQ event callback:
- /* ... */
- ib_req_notify_cq(cq, ...);
- low-level driver ->
- /* ... */ consumer CQ event callback:
- /* ... */
- return from CQ event handler
+ low-level driver ->
+ consumer CQ event callback:
+ /* ... */
+ ib_req_notify_cq(cq, ...);
+ low-level driver ->
+ /* ... */ consumer CQ event callback:
+ /* ... */
+ return from CQ event handler
The context in which completion event and asynchronous event
callbacks run is not defined. Depending on the low-level driver, it
@@ -93,6 +98,7 @@ Callbacks
Upper level protocol consumers may not sleep in a callback.
Hot-plug
+--------
A low-level driver announces that a device is ready for use by
consumers when it calls ib_register_device(), all initialization
diff --git a/Documentation/infiniband/index.rst b/Documentation/infiniband/index.rst
new file mode 100644
index 000000000000..22eea64de722
--- /dev/null
+++ b/Documentation/infiniband/index.rst
@@ -0,0 +1,23 @@
+:orphan:
+
+==========
+InfiniBand
+==========
+
+.. toctree::
+ :maxdepth: 1
+
+ core_locking
+ ipoib
+ opa_vnic
+ sysfs
+ tag_matching
+ user_mad
+ user_verbs
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/infiniband/ipoib.txt b/Documentation/infiniband/ipoib.rst
similarity index 90%
rename from Documentation/infiniband/ipoib.txt
rename to Documentation/infiniband/ipoib.rst
index 47c1dd9818f2..0dd36154c0c9 100644
--- a/Documentation/infiniband/ipoib.txt
+++ b/Documentation/infiniband/ipoib.rst
@@ -1,4 +1,6 @@
-IP OVER INFINIBAND
+==================
+IP over InfiniBand
+==================
The ib_ipoib driver is an implementation of the IP over InfiniBand
protocol as specified by RFC 4391 and 4392, issued by the IETF ipoib
@@ -8,16 +10,17 @@ IP OVER INFINIBAND
masqueraded to the kernel as ethernet interfaces).
Partitions and P_Keys
+=====================
When the IPoIB driver is loaded, it creates one interface for each
port using the P_Key at index 0. To create an interface with a
different P_Key, write the desired P_Key into the main interface's
- /sys/class/net/<intf name>/create_child file. For example:
+ /sys/class/net/<intf name>/create_child file. For example::
echo 0x8001 > /sys/class/net/ib0/create_child
This will create an interface named ib0.8001 with P_Key 0x8001. To
- remove a subinterface, use the "delete_child" file:
+ remove a subinterface, use the "delete_child" file::
echo 0x8001 > /sys/class/net/ib0/delete_child
@@ -28,6 +31,7 @@ Partitions and P_Keys
rtnl_link_ops, where children created using either way behave the same.
Datagram vs Connected modes
+===========================
The IPoIB driver supports two modes of operation: datagram and
connected. The mode is set and read through an interface's
@@ -51,6 +55,7 @@ Datagram vs Connected modes
networking stack to use the smaller UD MTU for these neighbours.
Stateless offloads
+==================
If the IB HW supports IPoIB stateless offloads, IPoIB advertises
TCP/IP checksum and/or Large Send (LSO) offloading capability to the
@@ -60,9 +65,10 @@ Stateless offloads
on/off using ethtool calls. Currently LRO is supported only for
checksum offload capable devices.
- Stateless offloads are supported only in datagram mode.
+ Stateless offloads are supported only in datagram mode.
Interrupt moderation
+====================
If the underlying IB device supports CQ event moderation, one can
use ethtool to set interrupt mitigation parameters and thus reduce
@@ -71,6 +77,7 @@ Interrupt moderation
moderation is supported.
Debugging Information
+=====================
By compiling the IPoIB driver with CONFIG_INFINIBAND_IPOIB_DEBUG set
to 'y', tracing messages are compiled into the driver. They are
@@ -79,7 +86,7 @@ Debugging Information
runtime through files in /sys/module/ib_ipoib/.
CONFIG_INFINIBAND_IPOIB_DEBUG also enables files in the debugfs
- virtual filesystem. By mounting this filesystem, for example with
+ virtual filesystem. By mounting this filesystem, for example with::
mount -t debugfs none /sys/kernel/debug
@@ -96,10 +103,13 @@ Debugging Information
performance, because it adds tests to the fast path.
References
+==========
Transmission of IP over InfiniBand (IPoIB) (RFC 4391)
- http://ietf.org/rfc/rfc4391.txt
+ http://ietf.org/rfc/rfc4391.txt
+
IP over InfiniBand (IPoIB) Architecture (RFC 4392)
- http://ietf.org/rfc/rfc4392.txt
+ http://ietf.org/rfc/rfc4392.txt
+
IP over InfiniBand: Connected Mode (RFC 4755)
http://ietf.org/rfc/rfc4755.txt
diff --git a/Documentation/infiniband/opa_vnic.txt b/Documentation/infiniband/opa_vnic.rst
similarity index 63%
rename from Documentation/infiniband/opa_vnic.txt
rename to Documentation/infiniband/opa_vnic.rst
index 282e17be798a..2f888d9ffec0 100644
--- a/Documentation/infiniband/opa_vnic.txt
+++ b/Documentation/infiniband/opa_vnic.rst
@@ -1,3 +1,7 @@
+=================================================================
+Intel Omni-Path (OPA) Virtual Network Interface Controller (VNIC)
+=================================================================
+
Intel Omni-Path (OPA) Virtual Network Interface Controller (VNIC) feature
supports Ethernet functionality over Omni-Path fabric by encapsulating
the Ethernet packets between HFI nodes.
@@ -17,70 +21,72 @@ an independent Ethernet network. The configuration is performed by an
Ethernet Manager (EM) which is part of the trusted Fabric Manager (FM)
application. HFI nodes can have multiple VNICs each connected to a
different virtual Ethernet switch. The below diagram presents a case
-of two virtual Ethernet switches with two HFI nodes.
+of two virtual Ethernet switches with two HFI nodes::
- +-------------------+
- | Subnet/ |
- | Ethernet |
- | Manager |
- +-------------------+
- / /
- / /
- / /
- / /
-+-----------------------------+ +------------------------------+
-| Virtual Ethernet Switch | | Virtual Ethernet Switch |
-| +---------+ +---------+ | | +---------+ +---------+ |
-| | VPORT | | VPORT | | | | VPORT | | VPORT | |
-+--+---------+----+---------+-+ +-+---------+----+---------+---+
- | \ / |
- | \ / |
- | \/ |
- | / \ |
- | / \ |
- +-----------+------------+ +-----------+------------+
- | VNIC | VNIC | | VNIC | VNIC |
- +-----------+------------+ +-----------+------------+
- | HFI | | HFI |
- +------------------------+ +------------------------+
+ +-------------------+
+ | Subnet/ |
+ | Ethernet |
+ | Manager |
+ +-------------------+
+ / /
+ / /
+ / /
+ / /
+ +-----------------------------+ +------------------------------+
+ | Virtual Ethernet Switch | | Virtual Ethernet Switch |
+ | +---------+ +---------+ | | +---------+ +---------+ |
+ | | VPORT | | VPORT | | | | VPORT | | VPORT | |
+ +--+---------+----+---------+-+ +-+---------+----+---------+---+
+ | \ / |
+ | \ / |
+ | \/ |
+ | / \ |
+ | / \ |
+ +-----------+------------+ +-----------+------------+
+ | VNIC | VNIC | | VNIC | VNIC |
+ +-----------+------------+ +-----------+------------+
+ | HFI | | HFI |
+ +------------------------+ +------------------------+
The Omni-Path encapsulated Ethernet packet format is as described below.
-Bits Field
-------------------------------------
+==================== ================================
+Bits Field
+==================== ================================
Quad Word 0:
-0-19 SLID (lower 20 bits)
-20-30 Length (in Quad Words)
-31 BECN bit
-32-51 DLID (lower 20 bits)
-52-56 SC (Service Class)
-57-59 RC (Routing Control)
-60 FECN bit
-61-62 L2 (=10, 16B format)
-63 LT (=1, Link Transfer Head Flit)
+0-19 SLID (lower 20 bits)
+20-30 Length (in Quad Words)
+31 BECN bit
+32-51 DLID (lower 20 bits)
+52-56 SC (Service Class)
+57-59 RC (Routing Control)
+60 FECN bit
+61-62 L2 (=10, 16B format)
+63 LT (=1, Link Transfer Head Flit)
Quad Word 1:
-0-7 L4 type (=0x78 ETHERNET)
-8-11 SLID[23:20]
-12-15 DLID[23:20]
-16-31 PKEY
-32-47 Entropy
-48-63 Reserved
+0-7 L4 type (=0x78 ETHERNET)
+8-11 SLID[23:20]
+12-15 DLID[23:20]
+16-31 PKEY
+32-47 Entropy
+48-63 Reserved
Quad Word 2:
-0-15 Reserved
-16-31 L4 header
-32-63 Ethernet Packet
+0-15 Reserved
+16-31 L4 header
+32-63 Ethernet Packet
Quad Words 3 to N-1:
-0-63 Ethernet packet (pad extended)
+0-63 Ethernet packet (pad extended)
Quad Word N (last):
-0-23 Ethernet packet (pad extended)
-24-55 ICRC
-56-61 Tail
-62-63 LT (=01, Link Transfer Tail Flit)
+0-23 Ethernet packet (pad extended)
+24-55 ICRC
+56-61 Tail
+62-63 LT (=01, Link Transfer Tail Flit)
+==================== ================================
Ethernet packet is padded on the transmit side to ensure that the VNIC OPA
packet is quad word aligned. The 'Tail' field contains the number of bytes
@@ -123,7 +129,7 @@ operation. It also handles the encapsulation of Ethernet packets with an
Omni-Path header in the transmit path. For each VNIC interface, the
information required for encapsulation is configured by the EM via VEMA MAD
interface. It also passes any control information to the HW dependent driver
-by invoking the RDMA netdev control operations.
+by invoking the RDMA netdev control operations::
+-------------------+ +----------------------+
| | | Linux |
diff --git a/Documentation/infiniband/sysfs.txt b/Documentation/infiniband/sysfs.rst
similarity index 69%
rename from Documentation/infiniband/sysfs.txt
rename to Documentation/infiniband/sysfs.rst
index 9fab5062f84b..f0abd6fa48f4 100644
--- a/Documentation/infiniband/sysfs.txt
+++ b/Documentation/infiniband/sysfs.rst
@@ -1,4 +1,6 @@
-SYSFS FILES
+===========
+Sysfs files
+===========
The sysfs interface has moved to
Documentation/ABI/stable/sysfs-class-infiniband.
diff --git a/Documentation/infiniband/tag_matching.txt b/Documentation/infiniband/tag_matching.rst
similarity index 98%
rename from Documentation/infiniband/tag_matching.txt
rename to Documentation/infiniband/tag_matching.rst
index d2a3bf819226..ef56ea585f92 100644
--- a/Documentation/infiniband/tag_matching.txt
+++ b/Documentation/infiniband/tag_matching.rst
@@ -1,12 +1,16 @@
+==================
Tag matching logic
+==================
The MPI standard defines a set of rules, known as tag-matching, for matching
source send operations to destination receives. The following parameters must
match the following source and destination parameters:
+
* Communicator
* User tag - wild card may be specified by the receiver
* Source rank – wild car may be specified by the receiver
* Destination rank – wild
+
The ordering rules require that when more than one pair of send and receive
message envelopes may match, the pair that includes the earliest posted-send
and the earliest posted-receive is the pair that must be used to satisfy the
@@ -35,6 +39,7 @@ the header to initiate an RDMA READ operation directly to the matching buffer.
A fin message needs to be received in order for the buffer to be reused.
Tag matching implementation
+===========================
There are two types of matching objects used, the posted receive list and the
unexpected message list. The application posts receive buffers through calls
diff --git a/Documentation/infiniband/user_mad.txt b/Documentation/infiniband/user_mad.rst
similarity index 90%
rename from Documentation/infiniband/user_mad.txt
rename to Documentation/infiniband/user_mad.rst
index 7aca13a54a3a..d88abfc0e370 100644
--- a/Documentation/infiniband/user_mad.txt
+++ b/Documentation/infiniband/user_mad.rst
@@ -1,6 +1,9 @@
-USERSPACE MAD ACCESS
+====================
+Userspace MAD access
+====================
Device files
+============
Each port of each InfiniBand device has a "umad" device and an
"issm" device attached. For example, a two-port HCA will have two
@@ -8,12 +11,13 @@ Device files
device of each type (for switch port 0).
Creating MAD agents
+===================
A MAD agent can be created by filling in a struct ib_user_mad_reg_req
and then calling the IB_USER_MAD_REGISTER_AGENT ioctl on a file
descriptor for the appropriate device file. If the registration
request succeeds, a 32-bit id will be returned in the structure.
- For example:
+ For example::
struct ib_user_mad_reg_req req = { /* ... */ };
ret = ioctl(fd, IB_USER_MAD_REGISTER_AGENT, (char *) &req);
@@ -26,12 +30,14 @@ Creating MAD agents
ioctl. Also, all agents registered through a file descriptor will
be unregistered when the descriptor is closed.
- 2014 -- a new registration ioctl is now provided which allows additional
+ 2014
+ a new registration ioctl is now provided which allows additional
fields to be provided during registration.
Users of this registration call are implicitly setting the use of
pkey_index (see below).
Receiving MADs
+==============
MADs are received using read(). The receive side now supports
RMPP. The buffer passed to read() must be at least one
@@ -41,7 +47,8 @@ Receiving MADs
MAD (RMPP), the errno is set to ENOSPC and the length of the
buffer needed is set in mad.length.
- Example for normal MAD (non RMPP) reads:
+ Example for normal MAD (non RMPP) reads::
+
struct ib_user_mad *mad;
mad = malloc(sizeof *mad + 256);
ret = read(fd, mad, sizeof *mad + 256);
@@ -50,7 +57,8 @@ Receiving MADs
free(mad);
}
- Example for RMPP reads:
+ Example for RMPP reads::
+
struct ib_user_mad *mad;
mad = malloc(sizeof *mad + 256);
ret = read(fd, mad, sizeof *mad + 256);
@@ -76,11 +84,12 @@ Receiving MADs
poll()/select() may be used to wait until a MAD can be read.
Sending MADs
+============
MADs are sent using write(). The agent ID for sending should be
filled into the id field of the MAD, the destination LID should be
filled into the lid field, and so on. The send side does support
- RMPP so arbitrary length MAD can be sent. For example:
+ RMPP so arbitrary length MAD can be sent. For example::
struct ib_user_mad *mad;
@@ -97,6 +106,7 @@ Sending MADs
perror("write");
Transaction IDs
+===============
Users of the umad devices can use the lower 32 bits of the
transaction ID field (that is, the least significant half of the
@@ -105,6 +115,7 @@ Transaction IDs
the kernel and will be overwritten before a MAD is sent.
P_Key Index Handling
+====================
The old ib_umad interface did not allow setting the P_Key index for
MADs that are sent and did not provide a way for obtaining the P_Key
@@ -119,6 +130,7 @@ P_Key Index Handling
default, and the IB_USER_MAD_ENABLE_PKEY ioctl will be removed.
Setting IsSM Capability Bit
+===========================
To set the IsSM capability bit for a port, simply open the
corresponding issm device file. If the IsSM bit is already set,
@@ -129,25 +141,26 @@ Setting IsSM Capability Bit
the issm file.
/dev files
+==========
To create the appropriate character device files automatically with
- udev, a rule like
+ udev, a rule like::
KERNEL=="umad*", NAME="infiniband/%k"
KERNEL=="issm*", NAME="infiniband/%k"
- can be used. This will create device nodes named
+ can be used. This will create device nodes named::
/dev/infiniband/umad0
/dev/infiniband/issm0
for the first port, and so on. The InfiniBand device and port
- associated with these devices can be determined from the files
+ associated with these devices can be determined from the files::
/sys/class/infiniband_mad/umad0/ibdev
/sys/class/infiniband_mad/umad0/port
- and
+ and::
/sys/class/infiniband_mad/issm0/ibdev
/sys/class/infiniband_mad/issm0/port
diff --git a/Documentation/infiniband/user_verbs.txt b/Documentation/infiniband/user_verbs.rst
similarity index 93%
rename from Documentation/infiniband/user_verbs.txt
rename to Documentation/infiniband/user_verbs.rst
index 47ebf2f80b2b..8ddc4b1cfef2 100644
--- a/Documentation/infiniband/user_verbs.txt
+++ b/Documentation/infiniband/user_verbs.rst
@@ -1,4 +1,6 @@
-USERSPACE VERBS ACCESS
+======================
+Userspace verbs access
+======================
The ib_uverbs module, built by enabling CONFIG_INFINIBAND_USER_VERBS,
enables direct userspace access to IB hardware via "verbs," as
@@ -13,6 +15,7 @@ USERSPACE VERBS ACCESS
libmthca userspace driver be installed.
User-kernel communication
+=========================
Userspace communicates with the kernel for slow path, resource
management operations via the /dev/infiniband/uverbsN character
@@ -28,6 +31,7 @@ User-kernel communication
system call.
Resource management
+===================
Since creation and destruction of all IB resources is done by
commands passed through a file descriptor, the kernel can keep track
@@ -41,6 +45,7 @@ Resource management
prevent one process from touching another process's resources.
Memory pinning
+==============
Direct userspace I/O requires that memory regions that are potential
I/O targets be kept resident at the same physical address. The
@@ -54,13 +59,14 @@ Memory pinning
number of pages pinned by a process.
/dev files
+==========
To create the appropriate character device files automatically with
- udev, a rule like
+ udev, a rule like::
KERNEL=="uverbs*", NAME="infiniband/%k"
- can be used. This will create device nodes named
+ can be used. This will create device nodes named::
/dev/infiniband/uverbs0
diff --git a/drivers/infiniband/core/user_mad.c b/drivers/infiniband/core/user_mad.c
index 56aa34206110..478018f74d35 100644
--- a/drivers/infiniband/core/user_mad.c
+++ b/drivers/infiniband/core/user_mad.c
@@ -744,7 +744,7 @@ static int ib_umad_reg_agent(struct ib_umad_file *file, void __user *arg,
"process %s did not enable P_Key index support.\n",
current->comm);
dev_warn(&file->port->dev,
- " Documentation/infiniband/user_mad.txt has info on the new ABI.\n");
+ " Documentation/infiniband/user_mad.rst has info on the new ABI.\n");
}
}
diff --git a/drivers/infiniband/ulp/ipoib/Kconfig b/drivers/infiniband/ulp/ipoib/Kconfig
index cda8eac55fff..569d614d0c41 100644
--- a/drivers/infiniband/ulp/ipoib/Kconfig
+++ b/drivers/infiniband/ulp/ipoib/Kconfig
@@ -6,7 +6,7 @@ config INFINIBAND_IPOIB
transports IP packets over InfiniBand so you can use your IB
device as a fancy NIC.
- See Documentation/infiniband/ipoib.txt for more information
+ See Documentation/infiniband/ipoib.rst for more information
config INFINIBAND_IPOIB_CM
bool "IP-over-InfiniBand Connected Mode support"
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 19/79] docs: kdump: convert docs to ReST and rename to *.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (12 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 17/79] docs: infiniband: " Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 20/79] docs: livepatch: " Mauro Carvalho Chehab
` (59 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Dave Young, Baoquan He, Vivek Goyal,
Benjamin Herrenschmidt, Paul Mackerras, Michael Ellerman,
Harry Wei, Alex Shi, Wim Van Sebroeck, Guenter Roeck,
Russell King, Catalin Marinas, Will Deacon, Yoshinori Sato,
Rich Felker, Thomas Gleixner, Ingo Molnar, Borislav Petkov,
H. Peter Anvin, x86, kexec, linuxppc-dev, linux-watchdog,
linux-arm-kernel, linux-sh
Convert kdump documentation to ReST and add it to the
user faced manual, as the documents are mainly focused on
sysadmins that would be enabling kdump.
Note: the vmcoreinfo.rst has one very long title on one of its
sub-sections:
PG_lru|PG_private|PG_swapcache|PG_swapbacked|PG_slab|PG_hwpoision|PG_head_mask|PAGE_BUDDY_MAPCOUNT_VALUE(~PG_buddy)|PAGE_OFFLINE_MAPCOUNT_VALUE(~PG_offline)
I opted to break this one, into two entries with the same content,
in order to make it easier to display after being parsed in html and PDF.
The conversion is actually:
- add blank lines and identation in order to identify paragraphs;
- fix tables markups;
- add some lists markups;
- mark literal blocks;
- adjust title markups.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/admin-guide/bug-hunting.rst | 2 +-
.../admin-guide/kernel-parameters.txt | 6 +-
Documentation/kdump/index.rst | 21 +++
Documentation/kdump/{kdump.txt => kdump.rst} | 131 +++++++++++-------
.../kdump/{vmcoreinfo.txt => vmcoreinfo.rst} | 59 ++++----
.../powerpc/firmware-assisted-dump.txt | 2 +-
.../translations/zh_CN/oops-tracing.txt | 2 +-
Documentation/watchdog/hpwdt.txt | 2 +-
arch/arm/Kconfig | 2 +-
arch/arm64/Kconfig | 2 +-
arch/sh/Kconfig | 2 +-
arch/x86/Kconfig | 4 +-
12 files changed, 137 insertions(+), 98 deletions(-)
create mode 100644 Documentation/kdump/index.rst
rename Documentation/kdump/{kdump.txt => kdump.rst} (91%)
rename Documentation/kdump/{vmcoreinfo.txt => vmcoreinfo.rst} (95%)
diff --git a/Documentation/admin-guide/bug-hunting.rst b/Documentation/admin-guide/bug-hunting.rst
index f278b289e260..b761aa2a51d2 100644
--- a/Documentation/admin-guide/bug-hunting.rst
+++ b/Documentation/admin-guide/bug-hunting.rst
@@ -90,7 +90,7 @@ the disk is not available then you have three options:
run a null modem to a second machine and capture the output there
using your favourite communication program. Minicom works well.
-(3) Use Kdump (see Documentation/kdump/kdump.txt),
+(3) Use Kdump (see Documentation/kdump/kdump.rst),
extract the kernel ring buffer from old memory with using dmesg
gdbmacro in Documentation/kdump/gdbmacros.txt.
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index bfe926a7b15f..a4e8e6435fff 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -705,14 +705,14 @@
memory region [offset, offset + size] for that kernel
image. If '@offset' is omitted, then a suitable offset
is selected automatically. Check
- Documentation/kdump/kdump.txt for further details.
+ Documentation/kdump/kdump.rst for further details.
crashkernel=range1:size1[,range2:size2,...][@offset]
[KNL] Same as above, but depends on the memory
in the running system. The syntax of range is
start-[end] where start and end are both
a memory unit (amount[KMG]). See also
- Documentation/kdump/kdump.txt for an example.
+ Documentation/kdump/kdump.rst for an example.
crashkernel=size[KMG],high
[KNL, x86_64] range could be above 4G. Allow kernel
@@ -1206,7 +1206,7 @@
Specifies physical address of start of kernel core
image elf header and optionally the size. Generally
kexec loader will pass this option to capture kernel.
- See Documentation/kdump/kdump.txt for details.
+ See Documentation/kdump/kdump.rst for details.
enable_mtrr_cleanup [X86]
The kernel tries to adjust MTRR layout from continuous
diff --git a/Documentation/kdump/index.rst b/Documentation/kdump/index.rst
new file mode 100644
index 000000000000..2b17fcf6867a
--- /dev/null
+++ b/Documentation/kdump/index.rst
@@ -0,0 +1,21 @@
+:orphan:
+
+================================================================
+Documentation for Kdump - The kexec-based Crash Dumping Solution
+================================================================
+
+This document includes overview, setup and installation, and analysis
+information.
+
+.. toctree::
+ :maxdepth: 1
+
+ kdump
+ vmcoreinfo
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/kdump/kdump.txt b/Documentation/kdump/kdump.rst
similarity index 91%
rename from Documentation/kdump/kdump.txt
rename to Documentation/kdump/kdump.rst
index 51814450a7f8..1da2d7b765f6 100644
--- a/Documentation/kdump/kdump.txt
+++ b/Documentation/kdump/kdump.rst
@@ -71,9 +71,8 @@ This is a symlink to the latest version.
The latest kexec-tools git tree is available at:
-git://git.kernel.org/pub/scm/utils/kernel/kexec/kexec-tools.git
-and
-http://www.kernel.org/pub/scm/utils/kernel/kexec/kexec-tools.git
+- git://git.kernel.org/pub/scm/utils/kernel/kexec/kexec-tools.git
+- http://www.kernel.org/pub/scm/utils/kernel/kexec/kexec-tools.git
There is also a gitweb interface available at
http://www.kernel.org/git/?p=utils/kernel/kexec/kexec-tools.git
@@ -81,25 +80,25 @@ http://www.kernel.org/git/?p=utils/kernel/kexec/kexec-tools.git
More information about kexec-tools can be found at
http://horms.net/projects/kexec/
-3) Unpack the tarball with the tar command, as follows:
+3) Unpack the tarball with the tar command, as follows::
- tar xvpzf kexec-tools.tar.gz
+ tar xvpzf kexec-tools.tar.gz
-4) Change to the kexec-tools directory, as follows:
+4) Change to the kexec-tools directory, as follows::
- cd kexec-tools-VERSION
+ cd kexec-tools-VERSION
-5) Configure the package, as follows:
+5) Configure the package, as follows::
- ./configure
+ ./configure
-6) Compile the package, as follows:
+6) Compile the package, as follows::
- make
+ make
-7) Install the package, as follows:
+7) Install the package, as follows::
- make install
+ make install
Build the system and dump-capture kernels
@@ -126,25 +125,25 @@ dump-capture kernels for enabling kdump support.
System kernel config options
----------------------------
-1) Enable "kexec system call" in "Processor type and features."
+1) Enable "kexec system call" in "Processor type and features."::
- CONFIG_KEXEC=y
+ CONFIG_KEXEC=y
2) Enable "sysfs file system support" in "Filesystem" -> "Pseudo
- filesystems." This is usually enabled by default.
+ filesystems." This is usually enabled by default::
- CONFIG_SYSFS=y
+ CONFIG_SYSFS=y
Note that "sysfs file system support" might not appear in the "Pseudo
filesystems" menu if "Configure standard kernel features (for small
systems)" is not enabled in "General Setup." In this case, check the
- .config file itself to ensure that sysfs is turned on, as follows:
+ .config file itself to ensure that sysfs is turned on, as follows::
- grep 'CONFIG_SYSFS' .config
+ grep 'CONFIG_SYSFS' .config
-3) Enable "Compile the kernel with debug info" in "Kernel hacking."
+3) Enable "Compile the kernel with debug info" in "Kernel hacking."::
- CONFIG_DEBUG_INFO=Y
+ CONFIG_DEBUG_INFO=Y
This causes the kernel to be built with debug symbols. The dump
analysis tools require a vmlinux with debug symbols in order to read
@@ -154,29 +153,32 @@ Dump-capture kernel config options (Arch Independent)
-----------------------------------------------------
1) Enable "kernel crash dumps" support under "Processor type and
- features":
+ features"::
- CONFIG_CRASH_DUMP=y
+ CONFIG_CRASH_DUMP=y
-2) Enable "/proc/vmcore support" under "Filesystems" -> "Pseudo filesystems".
+2) Enable "/proc/vmcore support" under "Filesystems" -> "Pseudo filesystems"::
+
+ CONFIG_PROC_VMCORE=y
- CONFIG_PROC_VMCORE=y
(CONFIG_PROC_VMCORE is set by default when CONFIG_CRASH_DUMP is selected.)
Dump-capture kernel config options (Arch Dependent, i386 and x86_64)
--------------------------------------------------------------------
1) On i386, enable high memory support under "Processor type and
- features":
+ features"::
- CONFIG_HIGHMEM64G=y
- or
- CONFIG_HIGHMEM4G
+ CONFIG_HIGHMEM64G=y
+
+ or::
+
+ CONFIG_HIGHMEM4G
2) On i386 and x86_64, disable symmetric multi-processing support
- under "Processor type and features":
+ under "Processor type and features"::
- CONFIG_SMP=n
+ CONFIG_SMP=n
(If CONFIG_SMP=y, then specify maxcpus=1 on the kernel command line
when loading the dump-capture kernel, see section "Load the Dump-capture
@@ -184,9 +186,9 @@ Dump-capture kernel config options (Arch Dependent, i386 and x86_64)
3) If one wants to build and use a relocatable kernel,
Enable "Build a relocatable kernel" support under "Processor type and
- features"
+ features"::
- CONFIG_RELOCATABLE=y
+ CONFIG_RELOCATABLE=y
4) Use a suitable value for "Physical address where the kernel is
loaded" (under "Processor type and features"). This only appears when
@@ -211,13 +213,13 @@ Dump-capture kernel config options (Arch Dependent, i386 and x86_64)
Dump-capture kernel config options (Arch Dependent, ppc64)
----------------------------------------------------------
-1) Enable "Build a kdump crash kernel" support under "Kernel" options:
+1) Enable "Build a kdump crash kernel" support under "Kernel" options::
- CONFIG_CRASH_DUMP=y
+ CONFIG_CRASH_DUMP=y
-2) Enable "Build a relocatable kernel" support
+2) Enable "Build a relocatable kernel" support::
- CONFIG_RELOCATABLE=y
+ CONFIG_RELOCATABLE=y
Make and install the kernel and its modules.
@@ -231,11 +233,13 @@ Dump-capture kernel config options (Arch Dependent, ia64)
The crashkernel region can be automatically placed by the system
kernel at run time. This is done by specifying the base address as 0,
- or omitting it all together.
+ or omitting it all together::
- crashkernel=256M@0
- or
- crashkernel=256M
+ crashkernel=256M@0
+
+ or::
+
+ crashkernel=256M
If the start address is specified, note that the start address of the
kernel will be aligned to 64Mb, so if the start address is not then
@@ -245,9 +249,9 @@ Dump-capture kernel config options (Arch Dependent, arm)
----------------------------------------------------------
- To use a relocatable kernel,
- Enable "AUTO_ZRELADDR" support under "Boot" options:
+ Enable "AUTO_ZRELADDR" support under "Boot" options::
- AUTO_ZRELADDR=y
+ AUTO_ZRELADDR=y
Dump-capture kernel config options (Arch Dependent, arm64)
----------------------------------------------------------
@@ -265,12 +269,12 @@ on the value of System RAM -- that's mostly for distributors that pre-setup
the kernel command line to avoid a unbootable system after some memory has
been removed from the machine.
-The syntax is:
+The syntax is::
crashkernel=<range1>:<size1>[,<range2>:<size2>,...][@offset]
range=start-[end]
-For example:
+For example::
crashkernel=512M-2G:64M,2G-:128M
@@ -326,35 +330,46 @@ can choose to load the uncompressed vmlinux or compressed bzImage/vmlinuz
of dump-capture kernel. Following is the summary.
For i386 and x86_64:
+
- Use vmlinux if kernel is not relocatable.
- Use bzImage/vmlinuz if kernel is relocatable.
+
For ppc64:
+
- Use vmlinux
+
For ia64:
+
- Use vmlinux or vmlinuz.gz
+
For s390x:
+
- Use image or bzImage
+
For arm:
+
- Use zImage
+
For arm64:
+
- Use vmlinux or Image
If you are using an uncompressed vmlinux image then use following command
-to load dump-capture kernel.
+to load dump-capture kernel::
kexec -p <dump-capture-kernel-vmlinux-image> \
--initrd=<initrd-for-dump-capture-kernel> --args-linux \
--append="root=<root-dev> <arch-specific-options>"
If you are using a compressed bzImage/vmlinuz, then use following command
-to load dump-capture kernel.
+to load dump-capture kernel::
kexec -p <dump-capture-kernel-bzImage> \
--initrd=<initrd-for-dump-capture-kernel> \
--append="root=<root-dev> <arch-specific-options>"
If you are using a compressed zImage, then use following command
-to load dump-capture kernel.
+to load dump-capture kernel::
kexec --type zImage -p <dump-capture-kernel-bzImage> \
--initrd=<initrd-for-dump-capture-kernel> \
@@ -362,7 +377,7 @@ to load dump-capture kernel.
--append="root=<root-dev> <arch-specific-options>"
If you are using an uncompressed Image, then use following command
-to load dump-capture kernel.
+to load dump-capture kernel::
kexec -p <dump-capture-kernel-Image> \
--initrd=<initrd-for-dump-capture-kernel> \
@@ -376,18 +391,23 @@ Following are the arch specific command line options to be used while
loading dump-capture kernel.
For i386, x86_64 and ia64:
+
"1 irqpoll maxcpus=1 reset_devices"
For ppc64:
+
"1 maxcpus=1 noirqdistrib reset_devices"
For s390x:
+
"1 maxcpus=1 cgroup_disable=memory"
For arm:
+
"1 maxcpus=1 reset_devices"
For arm64:
+
"1 maxcpus=1 reset_devices"
Notes on loading the dump-capture kernel:
@@ -464,7 +484,7 @@ Write Out the Dump File
=======================
After the dump-capture kernel is booted, write out the dump file with
-the following command:
+the following command::
cp /proc/vmcore <dump-file>
@@ -476,7 +496,7 @@ Before analyzing the dump image, you should reboot into a stable kernel.
You can do limited analysis using GDB on the dump file copied out of
/proc/vmcore. Use the debug vmlinux built with -g and run the following
-command:
+command::
gdb vmlinux <dump-file>
@@ -504,6 +524,11 @@ to achieve the same behaviour.
Contact
=======
-Vivek Goyal (vgoyal@redhat.com)
-Maneesh Soni (maneesh@in.ibm.com)
+- Vivek Goyal (vgoyal@redhat.com)
+- Maneesh Soni (maneesh@in.ibm.com)
+GDB macros
+==========
+
+.. include:: gdbmacros.txt
+ :literal:
diff --git a/Documentation/kdump/vmcoreinfo.txt b/Documentation/kdump/vmcoreinfo.rst
similarity index 95%
rename from Documentation/kdump/vmcoreinfo.txt
rename to Documentation/kdump/vmcoreinfo.rst
index bb94a4bd597a..007a6b86e0ee 100644
--- a/Documentation/kdump/vmcoreinfo.txt
+++ b/Documentation/kdump/vmcoreinfo.rst
@@ -1,8 +1,7 @@
-================================================================
- VMCOREINFO
-================================================================
+==========
+VMCOREINFO
+==========
-===========
What is it?
===========
@@ -12,7 +11,6 @@ values, field offsets, etc. These data are packed into an ELF note
section and used by user-space tools like crash and makedumpfile to
analyze a kernel's memory layout.
-================
Common variables
================
@@ -49,7 +47,7 @@ in a system, one bit position per node number. Used to keep track of
which nodes are in the system and online.
swapper_pg_dir
--------------
+--------------
The global page directory pointer of the kernel. Used to translate
virtual to physical addresses.
@@ -132,16 +130,14 @@ nodemask_t
The size of a nodemask_t type. Used to compute the number of online
nodes.
-(page, flags|_refcount|mapping|lru|_mapcount|private|compound_dtor|
- compound_order|compound_head)
--------------------------------------------------------------------
+(page, flags|_refcount|mapping|lru|_mapcount|private|compound_dtor|compound_order|compound_head)
+-------------------------------------------------------------------------------------------------
User-space tools compute their values based on the offset of these
variables. The variables are used when excluding unnecessary pages.
-(pglist_data, node_zones|nr_zones|node_mem_map|node_start_pfn|node_
- spanned_pages|node_id)
--------------------------------------------------------------------
+(pglist_data, node_zones|nr_zones|node_mem_map|node_start_pfn|node_spanned_pages|node_id)
+-----------------------------------------------------------------------------------------
On NUMA machines, each NUMA node has a pg_data_t to describe its memory
layout. On UMA machines there is a single pglist_data which describes the
@@ -245,21 +241,25 @@ NR_FREE_PAGES
On linux-2.6.21 or later, the number of free pages is in
vm_stat[NR_FREE_PAGES]. Used to get the number of free pages.
-PG_lru|PG_private|PG_swapcache|PG_swapbacked|PG_slab|PG_hwpoision
-|PG_head_mask|PAGE_BUDDY_MAPCOUNT_VALUE(~PG_buddy)
-|PAGE_OFFLINE_MAPCOUNT_VALUE(~PG_offline)
------------------------------------------------------------------
+PG_lru|PG_private|PG_swapcache|PG_swapbacked|PG_slab|PG_hwpoision|PG_head_mask
+------------------------------------------------------------------------------
Page attributes. These flags are used to filter various unnecessary for
dumping pages.
+PAGE_BUDDY_MAPCOUNT_VALUE(~PG_buddy)|PAGE_OFFLINE_MAPCOUNT_VALUE(~PG_offline)
+-----------------------------------------------------------------------------
+
+More page attributes. These flags are used to filter various unnecessary for
+dumping pages.
+
+
HUGETLB_PAGE_DTOR
-----------------
The HUGETLB_PAGE_DTOR flag denotes hugetlbfs pages. Makedumpfile
excludes these pages.
-======
x86_64
======
@@ -318,12 +318,12 @@ address.
Currently, sme_mask stores the value of the C-bit position. If needed,
additional SME-relevant info can be placed in that variable.
-For example:
-[ misc ][ enc bit ][ other misc SME info ]
-0000_0000_0000_0000_1000_0000_0000_0000_0000_0000_..._0000
-63 59 55 51 47 43 39 35 31 27 ... 3
+For example::
+
+ [ misc ][ enc bit ][ other misc SME info ]
+ 0000_0000_0000_0000_1000_0000_0000_0000_0000_0000_..._0000
+ 63 59 55 51 47 43 39 35 31 27 ... 3
-======
x86_32
======
@@ -335,7 +335,6 @@ of a higher page table lookup overhead, and also consumes more page
table space per process. Used to check whether PAE was enabled in the
crash kernel when converting virtual addresses to physical addresses.
-====
ia64
====
@@ -366,7 +365,6 @@ PGTABLE_3|PGTABLE_4
User-space tools need to know whether the crash kernel was in 3-level or
4-level paging mode. Used to distinguish the page table.
-=====
ARM64
=====
@@ -395,9 +393,8 @@ KERNELOFFSET
The kernel randomization offset. Used to compute the page offset. If
KASLR is disabled, this value is zero.
-====
arm
-====
+===
ARM_LPAE
--------
@@ -405,12 +402,11 @@ ARM_LPAE
It indicates whether the crash kernel supports large physical address
extensions. Used to translate virtual to physical addresses.
-====
s390
====
lowcore_ptr
-----------
+-----------
An array with a pointer to the lowcore of every CPU. Used to print the
psw and all registers information.
@@ -425,7 +421,6 @@ Used to get the vmalloc_start address from the high_memory symbol.
The maximum number of CPUs.
-=======
powerpc
=======
@@ -460,9 +455,8 @@ Page size definitions, i.e. 4k, 64k, or 16M.
Used to make vtop translations.
-vmemmap_backing|(vmemmap_backing, list)|(vmemmap_backing, phys)|
-(vmemmap_backing, virt_addr)
-----------------------------------------------------------------
+vmemmap_backing|(vmemmap_backing, list)|(vmemmap_backing, phys)|(vmemmap_backing, virt_addr)
+--------------------------------------------------------------------------------------------
The vmemmap virtual address space management does not have a traditional
page table to track which virtual struct pages are backed by a physical
@@ -480,7 +474,6 @@ member.
Used in vtop translations.
-==
sh
==
diff --git a/Documentation/powerpc/firmware-assisted-dump.txt b/Documentation/powerpc/firmware-assisted-dump.txt
index 18c5feef2577..0c41d6d463f3 100644
--- a/Documentation/powerpc/firmware-assisted-dump.txt
+++ b/Documentation/powerpc/firmware-assisted-dump.txt
@@ -59,7 +59,7 @@ as follows:
the default calculated size. Use this option if default
boot memory size is not sufficient for second kernel to
boot successfully. For syntax of crashkernel= parameter,
- refer to Documentation/kdump/kdump.txt. If any offset is
+ refer to Documentation/kdump/kdump.rst. If any offset is
provided in crashkernel= parameter, it will be ignored
as fadump uses a predefined offset to reserve memory
for boot memory dump preservation in case of a crash.
diff --git a/Documentation/translations/zh_CN/oops-tracing.txt b/Documentation/translations/zh_CN/oops-tracing.txt
index 93fa061cf9e4..368ddd05b304 100644
--- a/Documentation/translations/zh_CN/oops-tracing.txt
+++ b/Documentation/translations/zh_CN/oops-tracing.txt
@@ -53,7 +53,7 @@ cat /proc/kmsg > file, 然而你必须介入中止传输, kmsg是一个“
(2)用串口终端启动(请参看Documentation/admin-guide/serial-console.rst),运行一个null
modem到另一台机器并用你喜欢的通讯工具获取输出。Minicom工作地很好。
-(3)使用Kdump(请参看Documentation/kdump/kdump.txt),
+(3)使用Kdump(请参看Documentation/kdump/kdump.rst),
使用在Documentation/kdump/gdbmacros.txt中定义的dmesg gdb宏,从旧的内存中提取内核
环形缓冲区。
diff --git a/Documentation/watchdog/hpwdt.txt b/Documentation/watchdog/hpwdt.txt
index 55df692c5595..aaa9e4b4bdcd 100644
--- a/Documentation/watchdog/hpwdt.txt
+++ b/Documentation/watchdog/hpwdt.txt
@@ -51,7 +51,7 @@ Last reviewed: 08/20/2018
and loop forever. This is generally not what a watchdog user wants.
For those wishing to learn more please see:
- Documentation/kdump/kdump.txt
+ Documentation/kdump/kdump.rst
Documentation/admin-guide/kernel-parameters.txt (panic=)
Your Linux Distribution specific documentation.
diff --git a/arch/arm/Kconfig b/arch/arm/Kconfig
index b509cd338219..c81ee94e8256 100644
--- a/arch/arm/Kconfig
+++ b/arch/arm/Kconfig
@@ -2007,7 +2007,7 @@ config CRASH_DUMP
kdump/kexec. The crash dump kernel must be compiled to a
memory address not used by the main kernel
- For more details see Documentation/kdump/kdump.txt
+ For more details see Documentation/kdump/kdump.rst
config AUTO_ZRELADDR
bool "Auto calculation of the decompressed kernel image address"
diff --git a/arch/arm64/Kconfig b/arch/arm64/Kconfig
index 8e33203e3583..e67ad4dad1cf 100644
--- a/arch/arm64/Kconfig
+++ b/arch/arm64/Kconfig
@@ -974,7 +974,7 @@ config CRASH_DUMP
reserved region and then later executed after a crash by
kdump/kexec.
- For more details see Documentation/kdump/kdump.txt
+ For more details see Documentation/kdump/kdump.rst
config XEN_DOM0
def_bool y
diff --git a/arch/sh/Kconfig b/arch/sh/Kconfig
index 2a77033e1e7c..9883516e682c 100644
--- a/arch/sh/Kconfig
+++ b/arch/sh/Kconfig
@@ -624,7 +624,7 @@ config CRASH_DUMP
to a memory address not used by the main kernel using
PHYSICAL_START.
- For more details see Documentation/kdump/kdump.txt
+ For more details see Documentation/kdump/kdump.rst
config KEXEC_JUMP
bool "kexec jump (EXPERIMENTAL)"
diff --git a/arch/x86/Kconfig b/arch/x86/Kconfig
index 17f01a0800b3..bd8dea466b04 100644
--- a/arch/x86/Kconfig
+++ b/arch/x86/Kconfig
@@ -2038,7 +2038,7 @@ config CRASH_DUMP
to a memory address not used by the main kernel or BIOS using
PHYSICAL_START, or it must be built as a relocatable image
(CONFIG_RELOCATABLE=y).
- For more details see Documentation/kdump/kdump.txt
+ For more details see Documentation/kdump/kdump.rst
config KEXEC_JUMP
bool "kexec jump"
@@ -2075,7 +2075,7 @@ config PHYSICAL_START
the reserved region. In other words, it can be set based on
the "X" value as specified in the "crashkernel=YM@XM"
command line boot parameter passed to the panic-ed
- kernel. Please take a look at Documentation/kdump/kdump.txt
+ kernel. Please take a look at Documentation/kdump/kdump.rst
for more details about crash dumps.
Usage of bzImage for capturing the crash dump is recommended as
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 20/79] docs: livepatch: convert docs to ReST and rename to *.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (13 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 19/79] docs: kdump: " Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-26 8:10 ` Petr Mladek
2019-04-22 13:27 ` [PATCH v2 21/79] docs: locking: " Mauro Carvalho Chehab
` (58 subsequent siblings)
73 siblings, 1 reply; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Josh Poimboeuf, Jiri Kosina, Miroslav Benes,
Petr Mladek, Joe Lawrence, Peter Zijlstra, live-patching
Convert livepatch documentation to ReST format. The changes
are mostly trivial, as the documents are already on a good
shape. Just a few markup changes are needed for Sphinx to
properly parse the docs.
The conversion is actually:
- add blank lines and identation in order to identify paragraphs;
- fix tables markups;
- add some lists markups;
- mark literal blocks;
- The in-file TOC becomes a comment, in order to skip it from the
output, as Sphinx already generates an index there.
- adjust title markups.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
.../ABI/testing/sysfs-kernel-livepatch | 2 +-
.../{callbacks.txt => callbacks.rst} | 12 +-
...ive-patches.txt => cumulative-patches.rst} | 14 +-
Documentation/livepatch/index.rst | 21 ++
.../{livepatch.txt => livepatch.rst} | 60 ++---
...e-elf-format.txt => module-elf-format.rst} | 211 ++++++++++--------
.../{shadow-vars.txt => shadow-vars.rst} | 65 ++++--
.../Documentation/stack-validation.txt | 2 +-
8 files changed, 224 insertions(+), 163 deletions(-)
rename Documentation/livepatch/{callbacks.txt => callbacks.rst} (94%)
rename Documentation/livepatch/{cumulative-patches.txt => cumulative-patches.rst} (89%)
create mode 100644 Documentation/livepatch/index.rst
rename Documentation/livepatch/{livepatch.txt => livepatch.rst} (93%)
rename Documentation/livepatch/{module-elf-format.txt => module-elf-format.rst} (68%)
rename Documentation/livepatch/{shadow-vars.txt => shadow-vars.rst} (87%)
diff --git a/Documentation/ABI/testing/sysfs-kernel-livepatch b/Documentation/ABI/testing/sysfs-kernel-livepatch
index 85db352f68f9..bea7bd5a1d5f 100644
--- a/Documentation/ABI/testing/sysfs-kernel-livepatch
+++ b/Documentation/ABI/testing/sysfs-kernel-livepatch
@@ -45,7 +45,7 @@ Description:
use this feature without a clearance from a patch
distributor. Removal (rmmod) of patch modules is permanently
disabled when the feature is used. See
- Documentation/livepatch/livepatch.txt for more information.
+ Documentation/livepatch/livepatch.rst for more information.
What: /sys/kernel/livepatch/<patch>/<object>
Date: Nov 2014
diff --git a/Documentation/livepatch/callbacks.txt b/Documentation/livepatch/callbacks.rst
similarity index 94%
rename from Documentation/livepatch/callbacks.txt
rename to Documentation/livepatch/callbacks.rst
index 182e31d4abce..d76d1f0d9fcf 100644
--- a/Documentation/livepatch/callbacks.txt
+++ b/Documentation/livepatch/callbacks.rst
@@ -30,16 +30,20 @@ be patched, irrespective of the target klp_object's current state.
Callbacks can be registered for the following livepatch actions:
- * Pre-patch - before a klp_object is patched
+ * Pre-patch
+ - before a klp_object is patched
- * Post-patch - after a klp_object has been patched and is active
+ * Post-patch
+ - after a klp_object has been patched and is active
across all tasks
- * Pre-unpatch - before a klp_object is unpatched (ie, patched code is
+ * Pre-unpatch
+ - before a klp_object is unpatched (ie, patched code is
active), used to clean up post-patch callback
resources
- * Post-unpatch - after a klp_object has been patched, all code has
+ * Post-unpatch
+ - after a klp_object has been patched, all code has
been restored and no tasks are running patched code,
used to cleanup pre-patch callback resources
diff --git a/Documentation/livepatch/cumulative-patches.txt b/Documentation/livepatch/cumulative-patches.rst
similarity index 89%
rename from Documentation/livepatch/cumulative-patches.txt
rename to Documentation/livepatch/cumulative-patches.rst
index 0012808e8d44..1931f318976a 100644
--- a/Documentation/livepatch/cumulative-patches.txt
+++ b/Documentation/livepatch/cumulative-patches.rst
@@ -18,7 +18,7 @@ Usage
-----
The atomic replace can be enabled by setting "replace" flag in struct klp_patch,
-for example:
+for example::
static struct klp_patch patch = {
.mod = THIS_MODULE,
@@ -49,19 +49,19 @@ Features
The atomic replace allows:
- + Atomically revert some functions in a previous patch while
+ - Atomically revert some functions in a previous patch while
upgrading other functions.
- + Remove eventual performance impact caused by core redirection
+ - Remove eventual performance impact caused by core redirection
for functions that are no longer patched.
- + Decrease user confusion about dependencies between livepatches.
+ - Decrease user confusion about dependencies between livepatches.
Limitations:
------------
- + Once the operation finishes, there is no straightforward way
+ - Once the operation finishes, there is no straightforward way
to reverse it and restore the replaced patches atomically.
A good practice is to set .replace flag in any released livepatch.
@@ -74,7 +74,7 @@ Limitations:
only when the transition was not forced.
- + Only the (un)patching callbacks from the _new_ cumulative livepatch are
+ - Only the (un)patching callbacks from the _new_ cumulative livepatch are
executed. Any callbacks from the replaced patches are ignored.
In other words, the cumulative patch is responsible for doing any actions
@@ -93,7 +93,7 @@ Limitations:
enabled patches were called.
- + There is no special handling of shadow variables. Livepatch authors
+ - There is no special handling of shadow variables. Livepatch authors
must create their own rules how to pass them from one cumulative
patch to the other. Especially that they should not blindly remove
them in module_exit() functions.
diff --git a/Documentation/livepatch/index.rst b/Documentation/livepatch/index.rst
new file mode 100644
index 000000000000..edd291d51847
--- /dev/null
+++ b/Documentation/livepatch/index.rst
@@ -0,0 +1,21 @@
+:orphan:
+
+===================
+Kernel Livepatching
+===================
+
+.. toctree::
+ :maxdepth: 1
+
+ livepatch
+ callbacks
+ cumulative-patches
+ module-elf-format
+ shadow-vars
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/livepatch/livepatch.txt b/Documentation/livepatch/livepatch.rst
similarity index 93%
rename from Documentation/livepatch/livepatch.txt
rename to Documentation/livepatch/livepatch.rst
index 4627b41ff02e..c2c598c4ead8 100644
--- a/Documentation/livepatch/livepatch.txt
+++ b/Documentation/livepatch/livepatch.rst
@@ -4,22 +4,22 @@ Livepatch
This document outlines basic information about kernel livepatching.
-Table of Contents:
+.. Table of Contents:
-1. Motivation
-2. Kprobes, Ftrace, Livepatching
-3. Consistency model
-4. Livepatch module
- 4.1. New functions
- 4.2. Metadata
-5. Livepatch life-cycle
- 5.1. Loading
- 5.2. Enabling
- 5.3. Replacing
- 5.4. Disabling
- 5.5. Removing
-6. Sysfs
-7. Limitations
+ 1. Motivation
+ 2. Kprobes, Ftrace, Livepatching
+ 3. Consistency model
+ 4. Livepatch module
+ 4.1. New functions
+ 4.2. Metadata
+ 5. Livepatch life-cycle
+ 5.1. Loading
+ 5.2. Enabling
+ 5.3. Replacing
+ 5.4. Disabling
+ 5.5. Removing
+ 6. Sysfs
+ 7. Limitations
1. Motivation
@@ -40,14 +40,14 @@ There are multiple mechanisms in the Linux kernel that are directly related
to redirection of code execution; namely: kernel probes, function tracing,
and livepatching:
- + The kernel probes are the most generic. The code can be redirected by
+ - The kernel probes are the most generic. The code can be redirected by
putting a breakpoint instruction instead of any instruction.
- + The function tracer calls the code from a predefined location that is
+ - The function tracer calls the code from a predefined location that is
close to the function entry point. This location is generated by the
compiler using the '-pg' gcc option.
- + Livepatching typically needs to redirect the code at the very beginning
+ - Livepatching typically needs to redirect the code at the very beginning
of the function entry before the function parameters or the stack
are in any way modified.
@@ -249,7 +249,7 @@ The patch contains only functions that are really modified. But they
might want to access functions or data from the original source file
that may only be locally accessible. This can be solved by a special
relocation section in the generated livepatch module, see
-Documentation/livepatch/module-elf-format.txt for more details.
+Documentation/livepatch/module-elf-format.rst for more details.
4.2. Metadata
@@ -258,7 +258,7 @@ Documentation/livepatch/module-elf-format.txt for more details.
The patch is described by several structures that split the information
into three levels:
- + struct klp_func is defined for each patched function. It describes
+ - struct klp_func is defined for each patched function. It describes
the relation between the original and the new implementation of a
particular function.
@@ -275,7 +275,7 @@ into three levels:
only for a particular object ( vmlinux or a kernel module ). Note that
kallsyms allows for searching symbols according to the object name.
- + struct klp_object defines an array of patched functions (struct
+ - struct klp_object defines an array of patched functions (struct
klp_func) in the same object. Where the object is either vmlinux
(NULL) or a module name.
@@ -285,7 +285,7 @@ into three levels:
only when they are available.
- + struct klp_patch defines an array of patched objects (struct
+ - struct klp_patch defines an array of patched objects (struct
klp_object).
This structure handles all patched functions consistently and eventually,
@@ -337,14 +337,16 @@ operation fails.
Second, livepatch enters into a transition state where tasks are converging
to the patched state. If an original function is patched for the first
time, a function specific struct klp_ops is created and an universal
-ftrace handler is registered[*]. This stage is indicated by a value of '1'
+ftrace handler is registered\ [#]_. This stage is indicated by a value of '1'
in /sys/kernel/livepatch/<name>/transition. For more information about
this process, see the "Consistency model" section.
Finally, once all tasks have been patched, the 'transition' value changes
to '0'.
-[*] Note that functions might be patched multiple times. The ftrace handler
+.. [#]
+
+ Note that functions might be patched multiple times. The ftrace handler
is registered only once for a given function. Further patches just add
an entry to the list (see field `func_stack`) of the struct klp_ops.
The right implementation is selected by the ftrace handler, see
@@ -368,7 +370,7 @@ the ftrace handler is unregistered and the struct klp_ops is
freed when the related function is not modified by the new patch
and func_stack list becomes empty.
-See Documentation/livepatch/cumulative-patches.txt for more details.
+See Documentation/livepatch/cumulative-patches.rst for more details.
5.4. Disabling
@@ -421,7 +423,7 @@ See Documentation/ABI/testing/sysfs-kernel-livepatch for more details.
The current Livepatch implementation has several limitations:
- + Only functions that can be traced could be patched.
+ - Only functions that can be traced could be patched.
Livepatch is based on the dynamic ftrace. In particular, functions
implementing ftrace or the livepatch ftrace handler could not be
@@ -431,7 +433,7 @@ The current Livepatch implementation has several limitations:
- + Livepatch works reliably only when the dynamic ftrace is located at
+ - Livepatch works reliably only when the dynamic ftrace is located at
the very beginning of the function.
The function need to be redirected before the stack or the function
@@ -445,7 +447,7 @@ The current Livepatch implementation has several limitations:
this is handled on the ftrace level.
- + Kretprobes using the ftrace framework conflict with the patched
+ - Kretprobes using the ftrace framework conflict with the patched
functions.
Both kretprobes and livepatches use a ftrace handler that modifies
@@ -453,7 +455,7 @@ The current Livepatch implementation has several limitations:
is rejected when the handler is already in use by the other.
- + Kprobes in the original function are ignored when the code is
+ - Kprobes in the original function are ignored when the code is
redirected to the new implementation.
There is a work in progress to add warnings about this situation.
diff --git a/Documentation/livepatch/module-elf-format.txt b/Documentation/livepatch/module-elf-format.rst
similarity index 68%
rename from Documentation/livepatch/module-elf-format.txt
rename to Documentation/livepatch/module-elf-format.rst
index f21a5289a09c..7f557c6f6deb 100644
--- a/Documentation/livepatch/module-elf-format.txt
+++ b/Documentation/livepatch/module-elf-format.rst
@@ -4,29 +4,29 @@ Livepatch module Elf format
This document outlines the Elf format requirements that livepatch modules must follow.
------------------
-Table of Contents
------------------
-0. Background and motivation
-1. Livepatch modinfo field
-2. Livepatch relocation sections
- 2.1 What are livepatch relocation sections?
- 2.2 Livepatch relocation section format
- 2.2.1 Required flags
- 2.2.2 Required name format
- 2.2.3 Example livepatch relocation section names
- 2.2.4 Example `readelf --sections` output
- 2.2.5 Example `readelf --relocs` output
-3. Livepatch symbols
- 3.1 What are livepatch symbols?
- 3.2 A livepatch module's symbol table
- 3.3 Livepatch symbol format
- 3.3.1 Required flags
- 3.3.2 Required name format
- 3.3.3 Example livepatch symbol names
- 3.3.4 Example `readelf --symbols` output
-4. Architecture-specific sections
-5. Symbol table and Elf section access
+
+.. Table of Contents
+
+ 0. Background and motivation
+ 1. Livepatch modinfo field
+ 2. Livepatch relocation sections
+ 2.1 What are livepatch relocation sections?
+ 2.2 Livepatch relocation section format
+ 2.2.1 Required flags
+ 2.2.2 Required name format
+ 2.2.3 Example livepatch relocation section names
+ 2.2.4 Example `readelf --sections` output
+ 2.2.5 Example `readelf --relocs` output
+ 3. Livepatch symbols
+ 3.1 What are livepatch symbols?
+ 3.2 A livepatch module's symbol table
+ 3.3 Livepatch symbol format
+ 3.3.1 Required flags
+ 3.3.2 Required name format
+ 3.3.3 Example livepatch symbol names
+ 3.3.4 Example `readelf --symbols` output
+ 4. Architecture-specific sections
+ 5. Symbol table and Elf section access
----------------------------
0. Background and motivation
@@ -89,12 +89,15 @@ used by the kernel module loader to identify livepatch modules.
Example modinfo output:
-----------------------
-% modinfo livepatch-meminfo.ko
-filename: livepatch-meminfo.ko
-livepatch: Y
-license: GPL
-depends:
-vermagic: 4.3.0+ SMP mod_unload
+
+::
+
+ % modinfo livepatch-meminfo.ko
+ filename: livepatch-meminfo.ko
+ livepatch: Y
+ license: GPL
+ depends:
+ vermagic: 4.3.0+ SMP mod_unload
--------------------------------
2. Livepatch relocation sections
@@ -142,17 +145,18 @@ be copied into memory along with the other SHF_ALLOC sections).
2.2.2 Required name format
--------------------------
-The name of a livepatch relocation section must conform to the following format:
+The name of a livepatch relocation section must conform to the following
+format::
-.klp.rela.objname.section_name
-^ ^^ ^ ^ ^
-|________||_____| |__________|
- [A] [B] [C]
+ .klp.rela.objname.section_name
+ ^ ^^ ^ ^ ^
+ |________||_____| |__________|
+ [A] [B] [C]
-[A] The relocation section name is prefixed with the string ".klp.rela."
-[B] The name of the object (i.e. "vmlinux" or name of module) to
- which the relocation section belongs follows immediately after the prefix.
-[C] The actual name of the section to which this relocation section applies.
+ [A] The relocation section name is prefixed with the string ".klp.rela."
+ [B] The name of the object (i.e. "vmlinux" or name of module) to
+ which the relocation section belongs follows immediately after the prefix.
+ [C] The actual name of the section to which this relocation section applies.
2.2.3 Example livepatch relocation section names:
-------------------------------------------------
@@ -162,6 +166,9 @@ The name of a livepatch relocation section must conform to the following format:
2.2.4 Example `readelf --sections` output for a patch
module that patches vmlinux and modules 9p, btrfs, ext4:
--------------------------------------------------------
+
+::
+
Section Headers:
[Nr] Name Type Address Off Size ES Flg Lk Inf Al
[ snip ]
@@ -175,23 +182,26 @@ module that patches vmlinux and modules 9p, btrfs, ext4:
[ snip ] ^ ^
| |
[*] [*]
-[*] Livepatch relocation sections are SHT_RELA sections but with a few special
-characteristics. Notice that they are marked SHF_ALLOC ("A") so that they will
-not be discarded when the module is loaded into memory, as well as with the
-SHF_RELA_LIVEPATCH flag ("o" - for OS-specific).
+ [*] Livepatch relocation sections are SHT_RELA sections but with a few special
+ characteristics. Notice that they are marked SHF_ALLOC ("A") so that they will
+ not be discarded when the module is loaded into memory, as well as with the
+ SHF_RELA_LIVEPATCH flag ("o" - for OS-specific).
2.2.5 Example `readelf --relocs` output for a patch module:
-----------------------------------------------------------
-Relocation section '.klp.rela.btrfs.text.btrfs_feature_attr_show' at offset 0x2ba0 contains 4 entries:
- Offset Info Type Symbol's Value Symbol's Name + Addend
-000000000000001f 0000005e00000002 R_X86_64_PC32 0000000000000000 .klp.sym.vmlinux.printk,0 - 4
-0000000000000028 0000003d0000000b R_X86_64_32S 0000000000000000 .klp.sym.btrfs.btrfs_ktype,0 + 0
-0000000000000036 0000003b00000002 R_X86_64_PC32 0000000000000000 .klp.sym.btrfs.can_modify_feature.isra.3,0 - 4
-000000000000004c 0000004900000002 R_X86_64_PC32 0000000000000000 .klp.sym.vmlinux.snprintf,0 - 4
-[ snip ] ^
- |
+
+::
+
+ Relocation section '.klp.rela.btrfs.text.btrfs_feature_attr_show' at offset 0x2ba0 contains 4 entries:
+ Offset Info Type Symbol's Value Symbol's Name + Addend
+ 000000000000001f 0000005e00000002 R_X86_64_PC32 0000000000000000 .klp.sym.vmlinux.printk,0 - 4
+ 0000000000000028 0000003d0000000b R_X86_64_32S 0000000000000000 .klp.sym.btrfs.btrfs_ktype,0 + 0
+ 0000000000000036 0000003b00000002 R_X86_64_PC32 0000000000000000 .klp.sym.btrfs.can_modify_feature.isra.3,0 - 4
+ 000000000000004c 0000004900000002 R_X86_64_PC32 0000000000000000 .klp.sym.vmlinux.snprintf,0 - 4
+ [ snip ] ^
+ |
[*]
-[*] Every symbol referenced by a relocation is a livepatch symbol.
+ [*] Every symbol referenced by a relocation is a livepatch symbol.
--------------------
3. Livepatch symbols
@@ -231,18 +241,19 @@ relocation section refer to their respective symbols with their symbol indices,
and the original symbol indices (and thus the symtab ordering) must be
preserved in order for apply_relocate_add() to find the right symbol.
-For example, take this particular rela from a livepatch module:
-Relocation section '.klp.rela.btrfs.text.btrfs_feature_attr_show' at offset 0x2ba0 contains 4 entries:
- Offset Info Type Symbol's Value Symbol's Name + Addend
-000000000000001f 0000005e00000002 R_X86_64_PC32 0000000000000000 .klp.sym.vmlinux.printk,0 - 4
+For example, take this particular rela from a livepatch module:::
-This rela refers to the symbol '.klp.sym.vmlinux.printk,0', and the symbol index is encoded
-in 'Info'. Here its symbol index is 0x5e, which is 94 in decimal, which refers to the
-symbol index 94.
-And in this patch module's corresponding symbol table, symbol index 94 refers to that very symbol:
-[ snip ]
-94: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.printk,0
-[ snip ]
+ Relocation section '.klp.rela.btrfs.text.btrfs_feature_attr_show' at offset 0x2ba0 contains 4 entries:
+ Offset Info Type Symbol's Value Symbol's Name + Addend
+ 000000000000001f 0000005e00000002 R_X86_64_PC32 0000000000000000 .klp.sym.vmlinux.printk,0 - 4
+
+ This rela refers to the symbol '.klp.sym.vmlinux.printk,0', and the symbol index is encoded
+ in 'Info'. Here its symbol index is 0x5e, which is 94 in decimal, which refers to the
+ symbol index 94.
+ And in this patch module's corresponding symbol table, symbol index 94 refers to that very symbol:
+ [ snip ]
+ 94: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.printk,0
+ [ snip ]
---------------------------
3.3 Livepatch symbol format
@@ -256,42 +267,48 @@ See include/uapi/linux/elf.h for the actual definitions.
3.3.2 Required name format
--------------------------
-Livepatch symbol names must conform to the following format:
+Livepatch symbol names must conform to the following format::
-.klp.sym.objname.symbol_name,sympos
-^ ^^ ^ ^ ^ ^
-|_______||_____| |_________| |
- [A] [B] [C] [D]
+ .klp.sym.objname.symbol_name,sympos
+ ^ ^^ ^ ^ ^ ^
+ |_______||_____| |_________| |
+ [A] [B] [C] [D]
-[A] The symbol name is prefixed with the string ".klp.sym."
-[B] The name of the object (i.e. "vmlinux" or name of module) to
- which the symbol belongs follows immediately after the prefix.
-[C] The actual name of the symbol.
-[D] The position of the symbol in the object (as according to kallsyms)
- This is used to differentiate duplicate symbols within the same
- object. The symbol position is expressed numerically (0, 1, 2...).
- The symbol position of a unique symbol is 0.
+ [A] The symbol name is prefixed with the string ".klp.sym."
+ [B] The name of the object (i.e. "vmlinux" or name of module) to
+ which the symbol belongs follows immediately after the prefix.
+ [C] The actual name of the symbol.
+ [D] The position of the symbol in the object (as according to kallsyms)
+ This is used to differentiate duplicate symbols within the same
+ object. The symbol position is expressed numerically (0, 1, 2...).
+ The symbol position of a unique symbol is 0.
3.3.3 Example livepatch symbol names:
-------------------------------------
-.klp.sym.vmlinux.snprintf,0
-.klp.sym.vmlinux.printk,0
-.klp.sym.btrfs.btrfs_ktype,0
+
+::
+
+ .klp.sym.vmlinux.snprintf,0
+ .klp.sym.vmlinux.printk,0
+ .klp.sym.btrfs.btrfs_ktype,0
3.3.4 Example `readelf --symbols` output for a patch module:
------------------------------------------------------------
-Symbol table '.symtab' contains 127 entries:
- Num: Value Size Type Bind Vis Ndx Name
- [ snip ]
- 73: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.snprintf,0
- 74: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.capable,0
- 75: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.find_next_bit,0
- 76: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.si_swapinfo,0
- [ snip ] ^
- |
- [*]
-[*] Note that the 'Ndx' (Section index) for these symbols is SHN_LIVEPATCH (0xff20).
- "OS" means OS-specific.
+
+::
+
+ Symbol table '.symtab' contains 127 entries:
+ Num: Value Size Type Bind Vis Ndx Name
+ [ snip ]
+ 73: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.snprintf,0
+ 74: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.capable,0
+ 75: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.find_next_bit,0
+ 76: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.si_swapinfo,0
+ [ snip ] ^
+ |
+ [*]
+ [*] Note that the 'Ndx' (Section index) for these symbols is SHN_LIVEPATCH (0xff20).
+ "OS" means OS-specific.
---------------------------------
4. Architecture-specific sections
@@ -313,11 +330,11 @@ Since apply_relocate_add() requires access to a module's section headers,
symbol table, and relocation section indices, Elf information is preserved for
livepatch modules and is made accessible by the module loader through
module->klp_info, which is a klp_modinfo struct. When a livepatch module loads,
-this struct is filled in by the module loader. Its fields are documented below:
+this struct is filled in by the module loader. Its fields are documented below::
-struct klp_modinfo {
- Elf_Ehdr hdr; /* Elf header */
- Elf_Shdr *sechdrs; /* Section header table */
- char *secstrings; /* String table for the section headers */
- unsigned int symndx; /* The symbol table section index */
-};
+ struct klp_modinfo {
+ Elf_Ehdr hdr; /* Elf header */
+ Elf_Shdr *sechdrs; /* Section header table */
+ char *secstrings; /* String table for the section headers */
+ unsigned int symndx; /* The symbol table section index */
+ };
diff --git a/Documentation/livepatch/shadow-vars.txt b/Documentation/livepatch/shadow-vars.rst
similarity index 87%
rename from Documentation/livepatch/shadow-vars.txt
rename to Documentation/livepatch/shadow-vars.rst
index ecc09a7be5dd..c05715aeafa4 100644
--- a/Documentation/livepatch/shadow-vars.txt
+++ b/Documentation/livepatch/shadow-vars.rst
@@ -27,10 +27,13 @@ A hashtable references all shadow variables. These references are
stored and retrieved through a <obj, id> pair.
* The klp_shadow variable data structure encapsulates both tracking
-meta-data and shadow-data:
+ meta-data and shadow-data:
+
- meta-data
+
- obj - pointer to parent object
- id - data identifier
+
- data[] - storage for shadow data
It is important to note that the klp_shadow_alloc() and
@@ -47,31 +50,43 @@ to do actions that can be done only once when a new variable is allocated.
* klp_shadow_alloc() - allocate and add a new shadow variable
- search hashtable for <obj, id> pair
+
- if exists
+
- WARN and return NULL
+
- if <obj, id> doesn't already exist
+
- allocate a new shadow variable
- initialize the variable using a custom constructor and data when provided
- add <obj, id> to the global hashtable
* klp_shadow_get_or_alloc() - get existing or alloc a new shadow variable
- search hashtable for <obj, id> pair
+
- if exists
+
- return existing shadow variable
+
- if <obj, id> doesn't already exist
+
- allocate a new shadow variable
- initialize the variable using a custom constructor and data when provided
- add <obj, id> pair to the global hashtable
* klp_shadow_free() - detach and free a <obj, id> shadow variable
- find and remove a <obj, id> reference from global hashtable
+
- if found
+
- call destructor function if defined
- free shadow variable
* klp_shadow_free_all() - detach and free all <*, id> shadow variables
- find and remove any <*, id> references from global hashtable
+
- if found
+
- call destructor function if defined
- free shadow variable
@@ -102,12 +117,12 @@ parent "goes live" (ie, any shadow variable get-API requests are made
for this <obj, id> pair.)
For commit 1d147bfa6429, when a parent sta_info structure is allocated,
-allocate a shadow copy of the ps_lock pointer, then initialize it:
+allocate a shadow copy of the ps_lock pointer, then initialize it::
-#define PS_LOCK 1
-struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
- const u8 *addr, gfp_t gfp)
-{
+ #define PS_LOCK 1
+ struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
+ const u8 *addr, gfp_t gfp)
+ {
struct sta_info *sta;
spinlock_t *ps_lock;
@@ -123,10 +138,10 @@ struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
...
When requiring a ps_lock, query the shadow variable API to retrieve one
-for a specific struct sta_info:
+for a specific struct sta_info:::
-void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
-{
+ void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
+ {
spinlock_t *ps_lock;
/* sync with ieee80211_tx_h_unicast_ps_buf */
@@ -136,10 +151,10 @@ void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
...
When the parent sta_info structure is freed, first free the shadow
-variable:
+variable::
-void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
-{
+ void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
+ {
klp_shadow_free(sta, PS_LOCK, NULL);
kfree(sta);
...
@@ -155,19 +170,19 @@ these cases, the klp_shadow_get_or_alloc() call can be used to attach
shadow variables to parents already in-flight.
For commit 1d147bfa6429, a good spot to allocate a shadow spinlock is
-inside ieee80211_sta_ps_deliver_wakeup():
+inside ieee80211_sta_ps_deliver_wakeup()::
-int ps_lock_shadow_ctor(void *obj, void *shadow_data, void *ctor_data)
-{
+ int ps_lock_shadow_ctor(void *obj, void *shadow_data, void *ctor_data)
+ {
spinlock_t *lock = shadow_data;
spin_lock_init(lock);
return 0;
-}
+ }
-#define PS_LOCK 1
-void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
-{
+ #define PS_LOCK 1
+ void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
+ {
spinlock_t *ps_lock;
/* sync with ieee80211_tx_h_unicast_ps_buf */
@@ -200,10 +215,12 @@ suggests how to handle the parent object.
=============
* https://github.com/dynup/kpatch
-The livepatch implementation is based on the kpatch version of shadow
-variables.
+
+ The livepatch implementation is based on the kpatch version of shadow
+ variables.
* http://files.mkgnu.net/files/dynamos/doc/papers/dynamos_eurosys_07.pdf
-Dynamic and Adaptive Updates of Non-Quiescent Subsystems in Commodity
-Operating System Kernels (Kritis Makris, Kyung Dong Ryu 2007) presented
-a datatype update technique called "shadow data structures".
+
+ Dynamic and Adaptive Updates of Non-Quiescent Subsystems in Commodity
+ Operating System Kernels (Kritis Makris, Kyung Dong Ryu 2007) presented
+ a datatype update technique called "shadow data structures".
diff --git a/tools/objtool/Documentation/stack-validation.txt b/tools/objtool/Documentation/stack-validation.txt
index 3995735a878f..8df526c80b65 100644
--- a/tools/objtool/Documentation/stack-validation.txt
+++ b/tools/objtool/Documentation/stack-validation.txt
@@ -111,7 +111,7 @@ c) Higher live patching compatibility rate
be detectable). Objtool makes that possible.
For more details, see the livepatch documentation in the Linux kernel
- source tree at Documentation/livepatch/livepatch.txt.
+ source tree at Documentation/livepatch/livepatch.rst.
Rules
-----
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* Re: [PATCH v2 20/79] docs: livepatch: convert docs to ReST and rename to *.rst
2019-04-22 13:27 ` [PATCH v2 20/79] docs: livepatch: " Mauro Carvalho Chehab
@ 2019-04-26 8:10 ` Petr Mladek
2019-04-26 9:04 ` Mauro Carvalho Chehab
0 siblings, 1 reply; 115+ messages in thread
From: Petr Mladek @ 2019-04-26 8:10 UTC (permalink / raw)
To: Mauro Carvalho Chehab
Cc: Linux Doc Mailing List, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Josh Poimboeuf, Jiri Kosina, Miroslav Benes,
Joe Lawrence, Peter Zijlstra, live-patching
On Mon 2019-04-22 10:27:09, Mauro Carvalho Chehab wrote:
> Convert livepatch documentation to ReST format. The changes
> are mostly trivial, as the documents are already on a good
> shape. Just a few markup changes are needed for Sphinx to
> properly parse the docs.
>
> The conversion is actually:
> - add blank lines and identation in order to identify paragraphs;
> - fix tables markups;
> - add some lists markups;
> - mark literal blocks;
> - The in-file TOC becomes a comment, in order to skip it from the
> output, as Sphinx already generates an index there.
> - adjust title markups.
>
> At its new index.rst, let's add a :orphan: while this is not linked to
> the main index.rst file, in order to avoid build warnings.
Thanks a lot for the conversion.
It made me to review style of all documents. I would like add
the following changes to make them more consistent.
I can added as extra patch or merged with your one.
Whatewer works better for you or documentation people.
From 4cecbde44205ba4a9f777cac33ef3469cd46e7f2 Mon Sep 17 00:00:00 2001
From: Petr Mladek <pmladek@suse.com>
Date: Thu, 25 Apr 2019 16:58:21 +0200
Subject: [PATCH] docs/livepatch: Unify style of livepatch documentation in the
ReST format
Make the structure of "Livepatch module Elf format" document similar
to the main "Livepatch" document.
Also make the structure of "(Un)patching Callbacks" document similar
to the "Shadow Variables" document.
It fixes the most visible inconsistencies of the documentation
generated from the ReST format.
Signed-off-by: Petr Mladek <pmladek@suse.com>
---
Documentation/livepatch/callbacks.rst | 33 ++---
Documentation/livepatch/module-elf-format.rst | 186 ++++++++++++--------------
2 files changed, 104 insertions(+), 115 deletions(-)
diff --git a/Documentation/livepatch/callbacks.rst b/Documentation/livepatch/callbacks.rst
index d76d1f0d9fcf..470944aa8658 100644
--- a/Documentation/livepatch/callbacks.rst
+++ b/Documentation/livepatch/callbacks.rst
@@ -4,7 +4,7 @@
Livepatch (un)patch-callbacks provide a mechanism for livepatch modules
to execute callback functions when a kernel object is (un)patched. They
-can be considered a "power feature" that extends livepatching abilities
+can be considered a **power feature** that **extends livepatching abilities**
to include:
- Safe updates to global data
@@ -17,6 +17,9 @@ In most cases, (un)patch callbacks will need to be used in conjunction
with memory barriers and kernel synchronization primitives, like
mutexes/spinlocks, or even stop_machine(), to avoid concurrency issues.
+1. Motivation
+=============
+
Callbacks differ from existing kernel facilities:
- Module init/exit code doesn't run when disabling and re-enabling a
@@ -28,6 +31,9 @@ Callbacks are part of the klp_object structure and their implementation
is specific to that klp_object. Other livepatch objects may or may not
be patched, irrespective of the target klp_object's current state.
+2. Callback types
+=================
+
Callbacks can be registered for the following livepatch actions:
* Pre-patch
@@ -47,6 +53,9 @@ be patched, irrespective of the target klp_object's current state.
been restored and no tasks are running patched code,
used to cleanup pre-patch callback resources
+3. How it works
+===============
+
Each callback is optional, omitting one does not preclude specifying any
other. However, the livepatching core executes the handlers in
symmetry: pre-patch callbacks have a post-unpatch counterpart and
@@ -90,11 +99,14 @@ If the object did successfully patch, but the patch transition never
started for some reason (e.g., if another object failed to patch),
only the post-unpatch callback will be called.
+4. Use cases
+============
-Example Use-cases
-=================
+Sample livepatch modules demonstrating the callback API can be found in
+samples/livepatch/ directory. These samples were modified for use in
+kselftests and can be found in the lib/livepatch directory.
-Update global data
+Global data update
------------------
A pre-patch callback can be useful to update a global variable. For
@@ -107,24 +119,15 @@ patch the data *after* patching is complete with a post-patch callback,
so that tcp_send_challenge_ack() could first be changed to read
sysctl_tcp_challenge_ack_limit with READ_ONCE.
-
-Support __init and probe function patches
+__init and probe function patches support
-----------------------------------------
Although __init and probe functions are not directly livepatch-able, it
may be possible to implement similar updates via pre/post-patch
callbacks.
-48900cb6af42 ("virtio-net: drop NETIF_F_FRAGLIST") change the way that
+The commit ``48900cb6af42 ("virtio-net: drop NETIF_F_FRAGLIST")`` change the way that
virtnet_probe() initialized its driver's net_device features. A
pre/post-patch callback could iterate over all such devices, making a
similar change to their hw_features value. (Client functions of the
value may need to be updated accordingly.)
-
-
-Other Examples
-==============
-
-Sample livepatch modules demonstrating the callback API can be found in
-samples/livepatch/ directory. These samples were modified for use in
-kselftests and can be found in the lib/livepatch directory.
diff --git a/Documentation/livepatch/module-elf-format.rst b/Documentation/livepatch/module-elf-format.rst
index 7f557c6f6deb..2a591e6f8e6c 100644
--- a/Documentation/livepatch/module-elf-format.rst
+++ b/Documentation/livepatch/module-elf-format.rst
@@ -7,30 +7,18 @@ This document outlines the Elf format requirements that livepatch modules must f
.. Table of Contents
- 0. Background and motivation
- 1. Livepatch modinfo field
- 2. Livepatch relocation sections
- 2.1 What are livepatch relocation sections?
- 2.2 Livepatch relocation section format
- 2.2.1 Required flags
- 2.2.2 Required name format
- 2.2.3 Example livepatch relocation section names
- 2.2.4 Example `readelf --sections` output
- 2.2.5 Example `readelf --relocs` output
- 3. Livepatch symbols
- 3.1 What are livepatch symbols?
- 3.2 A livepatch module's symbol table
- 3.3 Livepatch symbol format
- 3.3.1 Required flags
- 3.3.2 Required name format
- 3.3.3 Example livepatch symbol names
- 3.3.4 Example `readelf --symbols` output
- 4. Architecture-specific sections
- 5. Symbol table and Elf section access
-
-----------------------------
-0. Background and motivation
-----------------------------
+ 1. Background and motivation
+ 2. Livepatch modinfo field
+ 3. Livepatch relocation sections
+ 3.1 Livepatch relocation section format
+ 4. Livepatch symbols
+ 4.1 A livepatch module's symbol table
+ 4.2 Livepatch symbol format
+ 5. Architecture-specific sections
+ 6. Symbol table and Elf section access
+
+1. Background and motivation
+============================
Formerly, livepatch required separate architecture-specific code to write
relocations. However, arch-specific code to write relocations already
@@ -52,8 +40,8 @@ relocation sections and symbols, which are described in this document. The
Elf constants used to mark livepatch symbols and relocation sections were
selected from OS-specific ranges according to the definitions from glibc.
-0.1 Why does livepatch need to write its own relocations?
----------------------------------------------------------
+Why does livepatch need to write its own relocations?
+-----------------------------------------------------
A typical livepatch module contains patched versions of functions that can
reference non-exported global symbols and non-included local symbols.
Relocations referencing these types of symbols cannot be left in as-is
@@ -72,13 +60,8 @@ relas reference are special livepatch symbols (see section 2 and 3). The
arch-specific livepatch relocation code is replaced by a call to
apply_relocate_add().
-================================
-PATCH MODULE FORMAT REQUIREMENTS
-================================
-
---------------------------
-1. Livepatch modinfo field
---------------------------
+2. Livepatch modinfo field
+==========================
Livepatch modules are required to have the "livepatch" modinfo attribute.
See the sample livepatch module in samples/livepatch/ for how this is done.
@@ -87,8 +70,10 @@ Livepatch modules can be identified by users by using the 'modinfo' command
and looking for the presence of the "livepatch" field. This field is also
used by the kernel module loader to identify livepatch modules.
-Example modinfo output:
------------------------
+Example:
+--------
+
+**Modinfo output:**
::
@@ -99,13 +84,9 @@ used by the kernel module loader to identify livepatch modules.
depends:
vermagic: 4.3.0+ SMP mod_unload
---------------------------------
-2. Livepatch relocation sections
---------------------------------
+3. Livepatch relocation sections
+================================
--------------------------------------------
-2.1 What are livepatch relocation sections?
--------------------------------------------
A livepatch module manages its own Elf relocation sections to apply
relocations to modules as well as to the kernel (vmlinux) at the
appropriate time. For example, if a patch module patches a driver that is
@@ -130,12 +111,9 @@ Every symbol referenced by a rela in a livepatch relocation section is a
livepatch symbol. These must be resolved before livepatch can call
apply_relocate_add(). See Section 3 for more information.
----------------------------------------
-2.2 Livepatch relocation section format
----------------------------------------
+3.1 Livepatch relocation section format
+=======================================
-2.2.1 Required flags
---------------------
Livepatch relocation sections must be marked with the SHF_RELA_LIVEPATCH
section flag. See include/uapi/linux/elf.h for the definition. The module
loader recognizes this flag and will avoid applying those relocation sections
@@ -143,8 +121,6 @@ at patch module load time. These sections must also be marked with SHF_ALLOC,
so that the module loader doesn't discard them on module load (i.e. they will
be copied into memory along with the other SHF_ALLOC sections).
-2.2.2 Required name format
---------------------------
The name of a livepatch relocation section must conform to the following
format::
@@ -153,19 +129,28 @@ The name of a livepatch relocation section must conform to the following
|________||_____| |__________|
[A] [B] [C]
- [A] The relocation section name is prefixed with the string ".klp.rela."
- [B] The name of the object (i.e. "vmlinux" or name of module) to
- which the relocation section belongs follows immediately after the prefix.
- [C] The actual name of the section to which this relocation section applies.
+[A]
+ The relocation section name is prefixed with the string ".klp.rela."
-2.2.3 Example livepatch relocation section names:
--------------------------------------------------
-.klp.rela.ext4.text.ext4_attr_store
-.klp.rela.vmlinux.text.cmdline_proc_show
+[B]
+ The name of the object (i.e. "vmlinux" or name of module) to
+ which the relocation section belongs follows immediately after the prefix.
-2.2.4 Example `readelf --sections` output for a patch
-module that patches vmlinux and modules 9p, btrfs, ext4:
---------------------------------------------------------
+[C]
+ The actual name of the section to which this relocation section applies.
+
+Examples:
+---------
+
+**Livepatch relocation section names:**
+
+::
+
+ .klp.rela.ext4.text.ext4_attr_store
+ .klp.rela.vmlinux.text.cmdline_proc_show
+
+**`readelf --sections` output for a patch
+module that patches vmlinux and modules 9p, btrfs, ext4:**
::
@@ -182,13 +167,14 @@ The name of a livepatch relocation section must conform to the following
[ snip ] ^ ^
| |
[*] [*]
- [*] Livepatch relocation sections are SHT_RELA sections but with a few special
+
+[*]
+ Livepatch relocation sections are SHT_RELA sections but with a few special
characteristics. Notice that they are marked SHF_ALLOC ("A") so that they will
not be discarded when the module is loaded into memory, as well as with the
SHF_RELA_LIVEPATCH flag ("o" - for OS-specific).
-2.2.5 Example `readelf --relocs` output for a patch module:
------------------------------------------------------------
+**`readelf --relocs` output for a patch module:**
::
@@ -200,16 +186,14 @@ The name of a livepatch relocation section must conform to the following
000000000000004c 0000004900000002 R_X86_64_PC32 0000000000000000 .klp.sym.vmlinux.snprintf,0 - 4
[ snip ] ^
|
- [*]
- [*] Every symbol referenced by a relocation is a livepatch symbol.
+ [*]
+
+[*]
+ Every symbol referenced by a relocation is a livepatch symbol.
---------------------
-3. Livepatch symbols
---------------------
+4. Livepatch symbols
+====================
--------------------------------
-3.1 What are livepatch symbols?
--------------------------------
Livepatch symbols are symbols referred to by livepatch relocation sections.
These are symbols accessed from new versions of functions for patched
objects, whose addresses cannot be resolved by the module loader (because
@@ -229,9 +213,8 @@ loader can identify and ignore them. Livepatch modules keep these symbols
in their symbol tables, and the symbol table is made accessible through
module->symtab.
--------------------------------------
-3.2 A livepatch module's symbol table
--------------------------------------
+4.1 A livepatch module's symbol table
+=====================================
Normally, a stripped down copy of a module's symbol table (containing only
"core" symbols) is made available through module->symtab (See layout_symtab()
in kernel/module.c). For livepatch modules, the symbol table copied into memory
@@ -255,18 +238,13 @@ preserved in order for apply_relocate_add() to find the right symbol.
94: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.printk,0
[ snip ]
----------------------------
-3.3 Livepatch symbol format
----------------------------
+4.2 Livepatch symbol format
+===========================
-3.3.1 Required flags
---------------------
Livepatch symbols must have their section index marked as SHN_LIVEPATCH, so
that the module loader can identify them and not attempt to resolve them.
See include/uapi/linux/elf.h for the actual definitions.
-3.3.2 Required name format
---------------------------
Livepatch symbol names must conform to the following format::
.klp.sym.objname.symbol_name,sympos
@@ -274,17 +252,26 @@ See include/uapi/linux/elf.h for the actual definitions.
|_______||_____| |_________| |
[A] [B] [C] [D]
- [A] The symbol name is prefixed with the string ".klp.sym."
- [B] The name of the object (i.e. "vmlinux" or name of module) to
- which the symbol belongs follows immediately after the prefix.
- [C] The actual name of the symbol.
- [D] The position of the symbol in the object (as according to kallsyms)
- This is used to differentiate duplicate symbols within the same
- object. The symbol position is expressed numerically (0, 1, 2...).
- The symbol position of a unique symbol is 0.
+[A]
+ The symbol name is prefixed with the string ".klp.sym."
+
+[B]
+ The name of the object (i.e. "vmlinux" or name of module) to
+ which the symbol belongs follows immediately after the prefix.
-3.3.3 Example livepatch symbol names:
--------------------------------------
+[C]
+ The actual name of the symbol.
+
+[D]
+ The position of the symbol in the object (as according to kallsyms)
+ This is used to differentiate duplicate symbols within the same
+ object. The symbol position is expressed numerically (0, 1, 2...).
+ The symbol position of a unique symbol is 0.
+
+Examples:
+---------
+
+**Livepatch symbol names:**
::
@@ -292,8 +279,7 @@ See include/uapi/linux/elf.h for the actual definitions.
.klp.sym.vmlinux.printk,0
.klp.sym.btrfs.btrfs_ktype,0
-3.3.4 Example `readelf --symbols` output for a patch module:
-------------------------------------------------------------
+**`readelf --symbols` output for a patch module:**
::
@@ -307,12 +293,13 @@ See include/uapi/linux/elf.h for the actual definitions.
[ snip ] ^
|
[*]
- [*] Note that the 'Ndx' (Section index) for these symbols is SHN_LIVEPATCH (0xff20).
- "OS" means OS-specific.
----------------------------------
-4. Architecture-specific sections
----------------------------------
+[*]
+ Note that the 'Ndx' (Section index) for these symbols is SHN_LIVEPATCH (0xff20).
+ "OS" means OS-specific.
+
+5. Architecture-specific sections
+=================================
Architectures may override arch_klp_init_object_loaded() to perform
additional arch-specific tasks when a target module loads, such as applying
arch-specific sections. On x86 for example, we must apply per-object
@@ -321,9 +308,8 @@ These sections must be prefixed with ".klp.arch.$objname." so that they can
be easily identified when iterating through a patch module's Elf sections
(See arch/x86/kernel/livepatch.c for a complete example).
---------------------------------------
-5. Symbol table and Elf section access
---------------------------------------
+6. Symbol table and Elf section access
+======================================
A livepatch module's symbol table is accessible through module->symtab.
Since apply_relocate_add() requires access to a module's section headers,
--
2.16.4
^ permalink raw reply related [flat|nested] 115+ messages in thread* Re: [PATCH v2 20/79] docs: livepatch: convert docs to ReST and rename to *.rst
2019-04-26 8:10 ` Petr Mladek
@ 2019-04-26 9:04 ` Mauro Carvalho Chehab
0 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-26 9:04 UTC (permalink / raw)
To: Petr Mladek
Cc: Linux Doc Mailing List, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Josh Poimboeuf, Jiri Kosina, Miroslav Benes,
Joe Lawrence, Peter Zijlstra, live-patching
Em Fri, 26 Apr 2019 10:10:56 +0200
Petr Mladek <pmladek@suse.com> escreveu:
> On Mon 2019-04-22 10:27:09, Mauro Carvalho Chehab wrote:
> > Convert livepatch documentation to ReST format. The changes
> > are mostly trivial, as the documents are already on a good
> > shape. Just a few markup changes are needed for Sphinx to
> > properly parse the docs.
> >
> > The conversion is actually:
> > - add blank lines and identation in order to identify paragraphs;
> > - fix tables markups;
> > - add some lists markups;
> > - mark literal blocks;
> > - The in-file TOC becomes a comment, in order to skip it from the
> > output, as Sphinx already generates an index there.
> > - adjust title markups.
> >
> > At its new index.rst, let's add a :orphan: while this is not linked to
> > the main index.rst file, in order to avoid build warnings.
>
> Thanks a lot for the conversion.
>
> It made me to review style of all documents. I would like add
> the following changes to make them more consistent.
>
> I can added as extra patch or merged with your one.
> Whatewer works better for you or documentation people.
If you prefer, feel free to merge it on your tree.
I don't mind if you fold your patche with my patch or apply
as a followup patch. Whatever works best for you.
>
>
> From 4cecbde44205ba4a9f777cac33ef3469cd46e7f2 Mon Sep 17 00:00:00 2001
> From: Petr Mladek <pmladek@suse.com>
> Date: Thu, 25 Apr 2019 16:58:21 +0200
> Subject: [PATCH] docs/livepatch: Unify style of livepatch documentation in the
> ReST format
>
> Make the structure of "Livepatch module Elf format" document similar
> to the main "Livepatch" document.
>
> Also make the structure of "(Un)patching Callbacks" document similar
> to the "Shadow Variables" document.
>
> It fixes the most visible inconsistencies of the documentation
> generated from the ReST format.
>
> Signed-off-by: Petr Mladek <pmladek@suse.com>
Patch looks good to me.
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
> ---
> Documentation/livepatch/callbacks.rst | 33 ++---
> Documentation/livepatch/module-elf-format.rst | 186 ++++++++++++--------------
> 2 files changed, 104 insertions(+), 115 deletions(-)
>
> diff --git a/Documentation/livepatch/callbacks.rst b/Documentation/livepatch/callbacks.rst
> index d76d1f0d9fcf..470944aa8658 100644
> --- a/Documentation/livepatch/callbacks.rst
> +++ b/Documentation/livepatch/callbacks.rst
> @@ -4,7 +4,7 @@
>
> Livepatch (un)patch-callbacks provide a mechanism for livepatch modules
> to execute callback functions when a kernel object is (un)patched. They
> -can be considered a "power feature" that extends livepatching abilities
> +can be considered a **power feature** that **extends livepatching abilities**
> to include:
>
> - Safe updates to global data
> @@ -17,6 +17,9 @@ In most cases, (un)patch callbacks will need to be used in conjunction
> with memory barriers and kernel synchronization primitives, like
> mutexes/spinlocks, or even stop_machine(), to avoid concurrency issues.
>
> +1. Motivation
> +=============
> +
> Callbacks differ from existing kernel facilities:
>
> - Module init/exit code doesn't run when disabling and re-enabling a
> @@ -28,6 +31,9 @@ Callbacks are part of the klp_object structure and their implementation
> is specific to that klp_object. Other livepatch objects may or may not
> be patched, irrespective of the target klp_object's current state.
>
> +2. Callback types
> +=================
> +
> Callbacks can be registered for the following livepatch actions:
>
> * Pre-patch
> @@ -47,6 +53,9 @@ be patched, irrespective of the target klp_object's current state.
> been restored and no tasks are running patched code,
> used to cleanup pre-patch callback resources
>
> +3. How it works
> +===============
> +
> Each callback is optional, omitting one does not preclude specifying any
> other. However, the livepatching core executes the handlers in
> symmetry: pre-patch callbacks have a post-unpatch counterpart and
> @@ -90,11 +99,14 @@ If the object did successfully patch, but the patch transition never
> started for some reason (e.g., if another object failed to patch),
> only the post-unpatch callback will be called.
>
> +4. Use cases
> +============
>
> -Example Use-cases
> -=================
> +Sample livepatch modules demonstrating the callback API can be found in
> +samples/livepatch/ directory. These samples were modified for use in
> +kselftests and can be found in the lib/livepatch directory.
>
> -Update global data
> +Global data update
> ------------------
>
> A pre-patch callback can be useful to update a global variable. For
> @@ -107,24 +119,15 @@ patch the data *after* patching is complete with a post-patch callback,
> so that tcp_send_challenge_ack() could first be changed to read
> sysctl_tcp_challenge_ack_limit with READ_ONCE.
>
> -
> -Support __init and probe function patches
> +__init and probe function patches support
> -----------------------------------------
>
> Although __init and probe functions are not directly livepatch-able, it
> may be possible to implement similar updates via pre/post-patch
> callbacks.
>
> -48900cb6af42 ("virtio-net: drop NETIF_F_FRAGLIST") change the way that
> +The commit ``48900cb6af42 ("virtio-net: drop NETIF_F_FRAGLIST")`` change the way that
> virtnet_probe() initialized its driver's net_device features. A
> pre/post-patch callback could iterate over all such devices, making a
> similar change to their hw_features value. (Client functions of the
> value may need to be updated accordingly.)
> -
> -
> -Other Examples
> -==============
> -
> -Sample livepatch modules demonstrating the callback API can be found in
> -samples/livepatch/ directory. These samples were modified for use in
> -kselftests and can be found in the lib/livepatch directory.
> diff --git a/Documentation/livepatch/module-elf-format.rst b/Documentation/livepatch/module-elf-format.rst
> index 7f557c6f6deb..2a591e6f8e6c 100644
> --- a/Documentation/livepatch/module-elf-format.rst
> +++ b/Documentation/livepatch/module-elf-format.rst
> @@ -7,30 +7,18 @@ This document outlines the Elf format requirements that livepatch modules must f
>
> .. Table of Contents
>
> - 0. Background and motivation
> - 1. Livepatch modinfo field
> - 2. Livepatch relocation sections
> - 2.1 What are livepatch relocation sections?
> - 2.2 Livepatch relocation section format
> - 2.2.1 Required flags
> - 2.2.2 Required name format
> - 2.2.3 Example livepatch relocation section names
> - 2.2.4 Example `readelf --sections` output
> - 2.2.5 Example `readelf --relocs` output
> - 3. Livepatch symbols
> - 3.1 What are livepatch symbols?
> - 3.2 A livepatch module's symbol table
> - 3.3 Livepatch symbol format
> - 3.3.1 Required flags
> - 3.3.2 Required name format
> - 3.3.3 Example livepatch symbol names
> - 3.3.4 Example `readelf --symbols` output
> - 4. Architecture-specific sections
> - 5. Symbol table and Elf section access
> -
> -----------------------------
> -0. Background and motivation
> -----------------------------
> + 1. Background and motivation
> + 2. Livepatch modinfo field
> + 3. Livepatch relocation sections
> + 3.1 Livepatch relocation section format
> + 4. Livepatch symbols
> + 4.1 A livepatch module's symbol table
> + 4.2 Livepatch symbol format
> + 5. Architecture-specific sections
> + 6. Symbol table and Elf section access
> +
> +1. Background and motivation
> +============================
>
> Formerly, livepatch required separate architecture-specific code to write
> relocations. However, arch-specific code to write relocations already
> @@ -52,8 +40,8 @@ relocation sections and symbols, which are described in this document. The
> Elf constants used to mark livepatch symbols and relocation sections were
> selected from OS-specific ranges according to the definitions from glibc.
>
> -0.1 Why does livepatch need to write its own relocations?
> ----------------------------------------------------------
> +Why does livepatch need to write its own relocations?
> +-----------------------------------------------------
> A typical livepatch module contains patched versions of functions that can
> reference non-exported global symbols and non-included local symbols.
> Relocations referencing these types of symbols cannot be left in as-is
> @@ -72,13 +60,8 @@ relas reference are special livepatch symbols (see section 2 and 3). The
> arch-specific livepatch relocation code is replaced by a call to
> apply_relocate_add().
>
> -================================
> -PATCH MODULE FORMAT REQUIREMENTS
> -================================
> -
> ---------------------------
> -1. Livepatch modinfo field
> ---------------------------
> +2. Livepatch modinfo field
> +==========================
>
> Livepatch modules are required to have the "livepatch" modinfo attribute.
> See the sample livepatch module in samples/livepatch/ for how this is done.
> @@ -87,8 +70,10 @@ Livepatch modules can be identified by users by using the 'modinfo' command
> and looking for the presence of the "livepatch" field. This field is also
> used by the kernel module loader to identify livepatch modules.
>
> -Example modinfo output:
> ------------------------
> +Example:
> +--------
> +
> +**Modinfo output:**
>
> ::
>
> @@ -99,13 +84,9 @@ used by the kernel module loader to identify livepatch modules.
> depends:
> vermagic: 4.3.0+ SMP mod_unload
>
> ---------------------------------
> -2. Livepatch relocation sections
> ---------------------------------
> +3. Livepatch relocation sections
> +================================
>
> --------------------------------------------
> -2.1 What are livepatch relocation sections?
> --------------------------------------------
> A livepatch module manages its own Elf relocation sections to apply
> relocations to modules as well as to the kernel (vmlinux) at the
> appropriate time. For example, if a patch module patches a driver that is
> @@ -130,12 +111,9 @@ Every symbol referenced by a rela in a livepatch relocation section is a
> livepatch symbol. These must be resolved before livepatch can call
> apply_relocate_add(). See Section 3 for more information.
>
> ----------------------------------------
> -2.2 Livepatch relocation section format
> ----------------------------------------
> +3.1 Livepatch relocation section format
> +=======================================
>
> -2.2.1 Required flags
> ---------------------
> Livepatch relocation sections must be marked with the SHF_RELA_LIVEPATCH
> section flag. See include/uapi/linux/elf.h for the definition. The module
> loader recognizes this flag and will avoid applying those relocation sections
> @@ -143,8 +121,6 @@ at patch module load time. These sections must also be marked with SHF_ALLOC,
> so that the module loader doesn't discard them on module load (i.e. they will
> be copied into memory along with the other SHF_ALLOC sections).
>
> -2.2.2 Required name format
> ---------------------------
> The name of a livepatch relocation section must conform to the following
> format::
>
> @@ -153,19 +129,28 @@ The name of a livepatch relocation section must conform to the following
> |________||_____| |__________|
> [A] [B] [C]
>
> - [A] The relocation section name is prefixed with the string ".klp.rela."
> - [B] The name of the object (i.e. "vmlinux" or name of module) to
> - which the relocation section belongs follows immediately after the prefix.
> - [C] The actual name of the section to which this relocation section applies.
> +[A]
> + The relocation section name is prefixed with the string ".klp.rela."
>
> -2.2.3 Example livepatch relocation section names:
> --------------------------------------------------
> -.klp.rela.ext4.text.ext4_attr_store
> -.klp.rela.vmlinux.text.cmdline_proc_show
> +[B]
> + The name of the object (i.e. "vmlinux" or name of module) to
> + which the relocation section belongs follows immediately after the prefix.
>
> -2.2.4 Example `readelf --sections` output for a patch
> -module that patches vmlinux and modules 9p, btrfs, ext4:
> ---------------------------------------------------------
> +[C]
> + The actual name of the section to which this relocation section applies.
> +
> +Examples:
> +---------
> +
> +**Livepatch relocation section names:**
> +
> +::
> +
> + .klp.rela.ext4.text.ext4_attr_store
> + .klp.rela.vmlinux.text.cmdline_proc_show
> +
> +**`readelf --sections` output for a patch
> +module that patches vmlinux and modules 9p, btrfs, ext4:**
>
> ::
>
> @@ -182,13 +167,14 @@ The name of a livepatch relocation section must conform to the following
> [ snip ] ^ ^
> | |
> [*] [*]
> - [*] Livepatch relocation sections are SHT_RELA sections but with a few special
> +
> +[*]
> + Livepatch relocation sections are SHT_RELA sections but with a few special
> characteristics. Notice that they are marked SHF_ALLOC ("A") so that they will
> not be discarded when the module is loaded into memory, as well as with the
> SHF_RELA_LIVEPATCH flag ("o" - for OS-specific).
>
> -2.2.5 Example `readelf --relocs` output for a patch module:
> ------------------------------------------------------------
> +**`readelf --relocs` output for a patch module:**
>
> ::
>
> @@ -200,16 +186,14 @@ The name of a livepatch relocation section must conform to the following
> 000000000000004c 0000004900000002 R_X86_64_PC32 0000000000000000 .klp.sym.vmlinux.snprintf,0 - 4
> [ snip ] ^
> |
> - [*]
> - [*] Every symbol referenced by a relocation is a livepatch symbol.
> + [*]
> +
> +[*]
> + Every symbol referenced by a relocation is a livepatch symbol.
>
> ---------------------
> -3. Livepatch symbols
> ---------------------
> +4. Livepatch symbols
> +====================
>
> --------------------------------
> -3.1 What are livepatch symbols?
> --------------------------------
> Livepatch symbols are symbols referred to by livepatch relocation sections.
> These are symbols accessed from new versions of functions for patched
> objects, whose addresses cannot be resolved by the module loader (because
> @@ -229,9 +213,8 @@ loader can identify and ignore them. Livepatch modules keep these symbols
> in their symbol tables, and the symbol table is made accessible through
> module->symtab.
>
> --------------------------------------
> -3.2 A livepatch module's symbol table
> --------------------------------------
> +4.1 A livepatch module's symbol table
> +=====================================
> Normally, a stripped down copy of a module's symbol table (containing only
> "core" symbols) is made available through module->symtab (See layout_symtab()
> in kernel/module.c). For livepatch modules, the symbol table copied into memory
> @@ -255,18 +238,13 @@ preserved in order for apply_relocate_add() to find the right symbol.
> 94: 0000000000000000 0 NOTYPE GLOBAL DEFAULT OS [0xff20] .klp.sym.vmlinux.printk,0
> [ snip ]
>
> ----------------------------
> -3.3 Livepatch symbol format
> ----------------------------
> +4.2 Livepatch symbol format
> +===========================
>
> -3.3.1 Required flags
> ---------------------
> Livepatch symbols must have their section index marked as SHN_LIVEPATCH, so
> that the module loader can identify them and not attempt to resolve them.
> See include/uapi/linux/elf.h for the actual definitions.
>
> -3.3.2 Required name format
> ---------------------------
> Livepatch symbol names must conform to the following format::
>
> .klp.sym.objname.symbol_name,sympos
> @@ -274,17 +252,26 @@ See include/uapi/linux/elf.h for the actual definitions.
> |_______||_____| |_________| |
> [A] [B] [C] [D]
>
> - [A] The symbol name is prefixed with the string ".klp.sym."
> - [B] The name of the object (i.e. "vmlinux" or name of module) to
> - which the symbol belongs follows immediately after the prefix.
> - [C] The actual name of the symbol.
> - [D] The position of the symbol in the object (as according to kallsyms)
> - This is used to differentiate duplicate symbols within the same
> - object. The symbol position is expressed numerically (0, 1, 2...).
> - The symbol position of a unique symbol is 0.
> +[A]
> + The symbol name is prefixed with the string ".klp.sym."
> +
> +[B]
> + The name of the object (i.e. "vmlinux" or name of module) to
> + which the symbol belongs follows immediately after the prefix.
>
> -3.3.3 Example livepatch symbol names:
> --------------------------------------
> +[C]
> + The actual name of the symbol.
> +
> +[D]
> + The position of the symbol in the object (as according to kallsyms)
> + This is used to differentiate duplicate symbols within the same
> + object. The symbol position is expressed numerically (0, 1, 2...).
> + The symbol position of a unique symbol is 0.
> +
> +Examples:
> +---------
> +
> +**Livepatch symbol names:**
>
> ::
>
> @@ -292,8 +279,7 @@ See include/uapi/linux/elf.h for the actual definitions.
> .klp.sym.vmlinux.printk,0
> .klp.sym.btrfs.btrfs_ktype,0
>
> -3.3.4 Example `readelf --symbols` output for a patch module:
> -------------------------------------------------------------
> +**`readelf --symbols` output for a patch module:**
>
> ::
>
> @@ -307,12 +293,13 @@ See include/uapi/linux/elf.h for the actual definitions.
> [ snip ] ^
> |
> [*]
> - [*] Note that the 'Ndx' (Section index) for these symbols is SHN_LIVEPATCH (0xff20).
> - "OS" means OS-specific.
>
> ----------------------------------
> -4. Architecture-specific sections
> ----------------------------------
> +[*]
> + Note that the 'Ndx' (Section index) for these symbols is SHN_LIVEPATCH (0xff20).
> + "OS" means OS-specific.
> +
> +5. Architecture-specific sections
> +=================================
> Architectures may override arch_klp_init_object_loaded() to perform
> additional arch-specific tasks when a target module loads, such as applying
> arch-specific sections. On x86 for example, we must apply per-object
> @@ -321,9 +308,8 @@ These sections must be prefixed with ".klp.arch.$objname." so that they can
> be easily identified when iterating through a patch module's Elf sections
> (See arch/x86/kernel/livepatch.c for a complete example).
>
> ---------------------------------------
> -5. Symbol table and Elf section access
> ---------------------------------------
> +6. Symbol table and Elf section access
> +======================================
> A livepatch module's symbol table is accessible through module->symtab.
>
> Since apply_relocate_add() requires access to a module's section headers,
Thanks,
Mauro
^ permalink raw reply [flat|nested] 115+ messages in thread
* [PATCH v2 21/79] docs: locking: convert docs to ReST and rename to *.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (14 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 20/79] docs: livepatch: " Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 22/79] docs: mic: " Mauro Carvalho Chehab
` (57 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Peter Zijlstra, Ingo Molnar, Will Deacon,
Federico Vaga, Maarten Lankhorst, Maxime Ripard, Sean Paul,
David Airlie, Daniel Vetter, dri-devel
Convert the locking documents to ReST and add them to the
kernel development book where it belongs.
Most of the stuff here is just to make Sphinx to properly
parse the text file, as they're already in good shape,
not requiring massive changes in order to be parsed.
The conversion is actually:
- add blank lines and identation in order to identify paragraphs;
- fix tables markups;
- add some lists markups;
- mark literal blocks;
- adjust title markups.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/kernel-hacking/locking.rst | 2 +-
Documentation/locking/index.rst | 24 +++
...{lockdep-design.txt => lockdep-design.rst} | 41 ++--
Documentation/locking/lockstat.rst | 204 ++++++++++++++++++
Documentation/locking/lockstat.txt | 183 ----------------
.../{locktorture.txt => locktorture.rst} | 105 +++++----
.../{mutex-design.txt => mutex-design.rst} | 26 ++-
...t-mutex-design.txt => rt-mutex-design.rst} | 139 ++++++------
.../locking/{rt-mutex.txt => rt-mutex.rst} | 30 +--
.../locking/{spinlocks.txt => spinlocks.rst} | 32 ++-
...w-mutex-design.txt => ww-mutex-design.rst} | 82 +++----
Documentation/pi-futex.txt | 2 +-
.../it_IT/kernel-hacking/locking.rst | 2 +-
drivers/gpu/drm/drm_modeset_lock.c | 2 +-
include/linux/lockdep.h | 2 +-
include/linux/mutex.h | 2 +-
include/linux/rwsem.h | 2 +-
kernel/locking/mutex.c | 2 +-
kernel/locking/rtmutex.c | 2 +-
lib/Kconfig.debug | 4 +-
20 files changed, 506 insertions(+), 382 deletions(-)
create mode 100644 Documentation/locking/index.rst
rename Documentation/locking/{lockdep-design.txt => lockdep-design.rst} (93%)
create mode 100644 Documentation/locking/lockstat.rst
delete mode 100644 Documentation/locking/lockstat.txt
rename Documentation/locking/{locktorture.txt => locktorture.rst} (57%)
rename Documentation/locking/{mutex-design.txt => mutex-design.rst} (94%)
rename Documentation/locking/{rt-mutex-design.txt => rt-mutex-design.rst} (91%)
rename Documentation/locking/{rt-mutex.txt => rt-mutex.rst} (71%)
rename Documentation/locking/{spinlocks.txt => spinlocks.rst} (89%)
rename Documentation/locking/{ww-mutex-design.txt => ww-mutex-design.rst} (93%)
diff --git a/Documentation/kernel-hacking/locking.rst b/Documentation/kernel-hacking/locking.rst
index 519673df0e82..71a843464ec2 100644
--- a/Documentation/kernel-hacking/locking.rst
+++ b/Documentation/kernel-hacking/locking.rst
@@ -1364,7 +1364,7 @@ Futex API reference
Further reading
===============
-- ``Documentation/locking/spinlocks.txt``: Linus Torvalds' spinlocking
+- ``Documentation/locking/spinlocks.rst``: Linus Torvalds' spinlocking
tutorial in the kernel sources.
- Unix Systems for Modern Architectures: Symmetric Multiprocessing and
diff --git a/Documentation/locking/index.rst b/Documentation/locking/index.rst
new file mode 100644
index 000000000000..ef5da7fe9aac
--- /dev/null
+++ b/Documentation/locking/index.rst
@@ -0,0 +1,24 @@
+:orphan:
+
+=======
+locking
+=======
+
+.. toctree::
+ :maxdepth: 1
+
+ lockdep-design
+ lockstat
+ locktorture
+ mutex-design
+ rt-mutex-design
+ rt-mutex
+ spinlocks
+ ww-mutex-design
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/locking/lockdep-design.txt b/Documentation/locking/lockdep-design.rst
similarity index 93%
rename from Documentation/locking/lockdep-design.txt
rename to Documentation/locking/lockdep-design.rst
index 39fae143c9cb..49707a5029c5 100644
--- a/Documentation/locking/lockdep-design.txt
+++ b/Documentation/locking/lockdep-design.rst
@@ -2,6 +2,7 @@ Runtime locking correctness validator
=====================================
started by Ingo Molnar <mingo@redhat.com>
+
additions by Arjan van de Ven <arjan@linux.intel.com>
Lock-class
@@ -42,7 +43,7 @@ Where STATE can be either one of (kernel/locking/lockdep_states.h)
- 'ever used' [ == !unused ]
When locking rules are violated, these state bits are presented in the
-locking error messages, inside curlies. A contrived example:
+locking error messages, inside curlies. A contrived example::
modprobe/2287 is trying to acquire lock:
(&sio_locks[i].lock){-.-.}, at: [<c02867fd>] mutex_lock+0x21/0x24
@@ -54,10 +55,12 @@ locking error messages, inside curlies. A contrived example:
The bit position indicates STATE, STATE-read, for each of the states listed
above, and the character displayed in each indicates:
+ === ===================================================
'.' acquired while irqs disabled and not in irq context
'-' acquired in irq context
'+' acquired with irqs enabled
'?' acquired in irq context with irqs enabled.
+ === ===================================================
Unused mutexes cannot be part of the cause of an error.
@@ -67,7 +70,7 @@ Single-lock state rules:
A softirq-unsafe lock-class is automatically hardirq-unsafe as well. The
following states are exclusive, and only one of them is allowed to be
-set for any lock-class:
+set for any lock-class::
<hardirq-safe> and <hardirq-unsafe>
<softirq-safe> and <softirq-unsafe>
@@ -81,7 +84,7 @@ Multi-lock dependency rules:
The same lock-class must not be acquired twice, because this could lead
to lock recursion deadlocks.
-Furthermore, two locks may not be taken in different order:
+Furthermore, two locks may not be taken in different order::
<L1> -> <L2>
<L2> -> <L1>
@@ -92,7 +95,7 @@ other locking sequence between the acquire-lock operations, the
validator will still track all dependencies between locks.)
Furthermore, the following usage based lock dependencies are not allowed
-between any two lock-classes:
+between any two lock-classes::
<hardirq-safe> -> <hardirq-unsafe>
<softirq-safe> -> <softirq-unsafe>
@@ -148,16 +151,16 @@ the ordering is not static.
In order to teach the validator about this correct usage model, new
versions of the various locking primitives were added that allow you to
specify a "nesting level". An example call, for the block device mutex,
-looks like this:
+looks like this::
-enum bdev_bd_mutex_lock_class
-{
+ enum bdev_bd_mutex_lock_class
+ {
BD_MUTEX_NORMAL,
BD_MUTEX_WHOLE,
BD_MUTEX_PARTITION
-};
+ };
- mutex_lock_nested(&bdev->bd_contains->bd_mutex, BD_MUTEX_PARTITION);
+mutex_lock_nested(&bdev->bd_contains->bd_mutex, BD_MUTEX_PARTITION);
In this case the locking is done on a bdev object that is known to be a
partition.
@@ -178,7 +181,7 @@ must be held: lockdep_assert_held*(&lock) and lockdep_*pin_lock(&lock).
As the name suggests, lockdep_assert_held* family of macros assert that a
particular lock is held at a certain time (and generate a WARN() otherwise).
This annotation is largely used all over the kernel, e.g. kernel/sched/
-core.c
+core.c::
void update_rq_clock(struct rq *rq)
{
@@ -197,7 +200,7 @@ out to be especially helpful to debug code with callbacks, where an upper
layer assumes a lock remains taken, but a lower layer thinks it can maybe drop
and reacquire the lock ("unwittingly" introducing races). lockdep_pin_lock()
returns a 'struct pin_cookie' that is then used by lockdep_unpin_lock() to check
-that nobody tampered with the lock, e.g. kernel/sched/sched.h
+that nobody tampered with the lock, e.g. kernel/sched/sched.h::
static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
{
@@ -224,7 +227,7 @@ correctness) in the sense that for every simple, standalone single-task
locking sequence that occurred at least once during the lifetime of the
kernel, the validator proves it with a 100% certainty that no
combination and timing of these locking sequences can cause any class of
-lock related deadlock. [*]
+lock related deadlock. [1]_
I.e. complex multi-CPU and multi-task locking scenarios do not have to
occur in practice to prove a deadlock: only the simple 'component'
@@ -243,7 +246,9 @@ possible combination of locking interaction between CPUs, combined with
every possible hardirq and softirq nesting scenario (which is impossible
to do in practice).
-[*] assuming that the validator itself is 100% correct, and no other
+.. [1]
+
+ assuming that the validator itself is 100% correct, and no other
part of the system corrupts the state of the validator in any way.
We also assume that all NMI/SMM paths [which could interrupt
even hardirq-disabled codepaths] are correct and do not interfere
@@ -254,7 +259,7 @@ to do in practice).
Performance:
------------
-The above rules require _massive_ amounts of runtime checking. If we did
+The above rules require **massive** amounts of runtime checking. If we did
that for every lock taken and for every irqs-enable event, it would
render the system practically unusably slow. The complexity of checking
is O(N^2), so even with just a few hundred lock-classes we'd have to do
@@ -313,17 +318,17 @@ be harder to do than to say.
Of course, if you do run out of lock classes, the next thing to do is
to find the offending lock classes. First, the following command gives
-you the number of lock classes currently in use along with the maximum:
+you the number of lock classes currently in use along with the maximum::
grep "lock-classes" /proc/lockdep_stats
-This command produces the following output on a modest system:
+This command produces the following output on a modest system::
- lock-classes: 748 [max: 8191]
+ lock-classes: 748 [max: 8191]
If the number allocated (748 above) increases continually over time,
then there is likely a leak. The following command can be used to
-identify the leaking lock classes:
+identify the leaking lock classes::
grep "BD" /proc/lockdep
diff --git a/Documentation/locking/lockstat.rst b/Documentation/locking/lockstat.rst
new file mode 100644
index 000000000000..536eab8dbd99
--- /dev/null
+++ b/Documentation/locking/lockstat.rst
@@ -0,0 +1,204 @@
+===============
+Lock Statistics
+===============
+
+What
+====
+
+As the name suggests, it provides statistics on locks.
+
+
+Why
+===
+
+Because things like lock contention can severely impact performance.
+
+How
+===
+
+Lockdep already has hooks in the lock functions and maps lock instances to
+lock classes. We build on that (see Documentation/locking/lockdep-design.rst).
+The graph below shows the relation between the lock functions and the various
+hooks therein::
+
+ __acquire
+ |
+ lock _____
+ | \
+ | __contended
+ | |
+ | <wait>
+ | _______/
+ |/
+ |
+ __acquired
+ |
+ .
+ <hold>
+ .
+ |
+ __release
+ |
+ unlock
+
+ lock, unlock - the regular lock functions
+ __* - the hooks
+ <> - states
+
+With these hooks we provide the following statistics:
+
+ con-bounces
+ - number of lock contention that involved x-cpu data
+ contentions
+ - number of lock acquisitions that had to wait
+ wait time
+ min
+ - shortest (non-0) time we ever had to wait for a lock
+ max
+ - longest time we ever had to wait for a lock
+ total
+ - total time we spend waiting on this lock
+ avg
+ - average time spent waiting on this lock
+ acq-bounces
+ - number of lock acquisitions that involved x-cpu data
+ acquisitions
+ - number of times we took the lock
+ hold time
+ min
+ - shortest (non-0) time we ever held the lock
+ max
+ - longest time we ever held the lock
+ total
+ - total time this lock was held
+ avg
+ - average time this lock was held
+
+These numbers are gathered per lock class, per read/write state (when
+applicable).
+
+It also tracks 4 contention points per class. A contention point is a call site
+that had to wait on lock acquisition.
+
+Configuration
+-------------
+
+Lock statistics are enabled via CONFIG_LOCK_STAT.
+
+Usage
+-----
+
+Enable collection of statistics::
+
+ # echo 1 >/proc/sys/kernel/lock_stat
+
+Disable collection of statistics::
+
+ # echo 0 >/proc/sys/kernel/lock_stat
+
+Look at the current lock statistics::
+
+ ( line numbers not part of actual output, done for clarity in the explanation
+ below )
+
+ # less /proc/lock_stat
+
+ 01 lock_stat version 0.4
+ 02-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
+ 03 class name con-bounces contentions waittime-min waittime-max waittime-total waittime-avg acq-bounces acquisitions holdtime-min holdtime-max holdtime-total holdtime-avg
+ 04-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
+ 05
+ 06 &mm->mmap_sem-W: 46 84 0.26 939.10 16371.53 194.90 47291 2922365 0.16 2220301.69 17464026916.32 5975.99
+ 07 &mm->mmap_sem-R: 37 100 1.31 299502.61 325629.52 3256.30 212344 34316685 0.10 7744.91 95016910.20 2.77
+ 08 ---------------
+ 09 &mm->mmap_sem 1 [<ffffffff811502a7>] khugepaged_scan_mm_slot+0x57/0x280
+ 10 &mm->mmap_sem 96 [<ffffffff815351c4>] __do_page_fault+0x1d4/0x510
+ 11 &mm->mmap_sem 34 [<ffffffff81113d77>] vm_mmap_pgoff+0x87/0xd0
+ 12 &mm->mmap_sem 17 [<ffffffff81127e71>] vm_munmap+0x41/0x80
+ 13 ---------------
+ 14 &mm->mmap_sem 1 [<ffffffff81046fda>] dup_mmap+0x2a/0x3f0
+ 15 &mm->mmap_sem 60 [<ffffffff81129e29>] SyS_mprotect+0xe9/0x250
+ 16 &mm->mmap_sem 41 [<ffffffff815351c4>] __do_page_fault+0x1d4/0x510
+ 17 &mm->mmap_sem 68 [<ffffffff81113d77>] vm_mmap_pgoff+0x87/0xd0
+ 18
+ 19.............................................................................................................................................................................................................................
+ 20
+ 21 unix_table_lock: 110 112 0.21 49.24 163.91 1.46 21094 66312 0.12 624.42 31589.81 0.48
+ 22 ---------------
+ 23 unix_table_lock 45 [<ffffffff8150ad8e>] unix_create1+0x16e/0x1b0
+ 24 unix_table_lock 47 [<ffffffff8150b111>] unix_release_sock+0x31/0x250
+ 25 unix_table_lock 15 [<ffffffff8150ca37>] unix_find_other+0x117/0x230
+ 26 unix_table_lock 5 [<ffffffff8150a09f>] unix_autobind+0x11f/0x1b0
+ 27 ---------------
+ 28 unix_table_lock 39 [<ffffffff8150b111>] unix_release_sock+0x31/0x250
+ 29 unix_table_lock 49 [<ffffffff8150ad8e>] unix_create1+0x16e/0x1b0
+ 30 unix_table_lock 20 [<ffffffff8150ca37>] unix_find_other+0x117/0x230
+ 31 unix_table_lock 4 [<ffffffff8150a09f>] unix_autobind+0x11f/0x1b0
+
+
+This excerpt shows the first two lock class statistics. Line 01 shows the
+output version - each time the format changes this will be updated. Line 02-04
+show the header with column descriptions. Lines 05-18 and 20-31 show the actual
+statistics. These statistics come in two parts; the actual stats separated by a
+short separator (line 08, 13) from the contention points.
+
+Lines 09-12 show the first 4 recorded contention points (the code
+which tries to get the lock) and lines 14-17 show the first 4 recorded
+contended points (the lock holder). It is possible that the max
+con-bounces point is missing in the statistics.
+
+The first lock (05-18) is a read/write lock, and shows two lines above the
+short separator. The contention points don't match the column descriptors,
+they have two: contentions and [<IP>] symbol. The second set of contention
+points are the points we're contending with.
+
+The integer part of the time values is in us.
+
+Dealing with nested locks, subclasses may appear::
+
+ 32...........................................................................................................................................................................................................................
+ 33
+ 34 &rq->lock: 13128 13128 0.43 190.53 103881.26 7.91 97454 3453404 0.00 401.11 13224683.11 3.82
+ 35 ---------
+ 36 &rq->lock 645 [<ffffffff8103bfc4>] task_rq_lock+0x43/0x75
+ 37 &rq->lock 297 [<ffffffff8104ba65>] try_to_wake_up+0x127/0x25a
+ 38 &rq->lock 360 [<ffffffff8103c4c5>] select_task_rq_fair+0x1f0/0x74a
+ 39 &rq->lock 428 [<ffffffff81045f98>] scheduler_tick+0x46/0x1fb
+ 40 ---------
+ 41 &rq->lock 77 [<ffffffff8103bfc4>] task_rq_lock+0x43/0x75
+ 42 &rq->lock 174 [<ffffffff8104ba65>] try_to_wake_up+0x127/0x25a
+ 43 &rq->lock 4715 [<ffffffff8103ed4b>] double_rq_lock+0x42/0x54
+ 44 &rq->lock 893 [<ffffffff81340524>] schedule+0x157/0x7b8
+ 45
+ 46...........................................................................................................................................................................................................................
+ 47
+ 48 &rq->lock/1: 1526 11488 0.33 388.73 136294.31 11.86 21461 38404 0.00 37.93 109388.53 2.84
+ 49 -----------
+ 50 &rq->lock/1 11526 [<ffffffff8103ed58>] double_rq_lock+0x4f/0x54
+ 51 -----------
+ 52 &rq->lock/1 5645 [<ffffffff8103ed4b>] double_rq_lock+0x42/0x54
+ 53 &rq->lock/1 1224 [<ffffffff81340524>] schedule+0x157/0x7b8
+ 54 &rq->lock/1 4336 [<ffffffff8103ed58>] double_rq_lock+0x4f/0x54
+ 55 &rq->lock/1 181 [<ffffffff8104ba65>] try_to_wake_up+0x127/0x25a
+
+Line 48 shows statistics for the second subclass (/1) of &rq->lock class
+(subclass starts from 0), since in this case, as line 50 suggests,
+double_rq_lock actually acquires a nested lock of two spinlocks.
+
+View the top contending locks::
+
+ # grep : /proc/lock_stat | head
+ clockevents_lock: 2926159 2947636 0.15 46882.81 1784540466.34 605.41 3381345 3879161 0.00 2260.97 53178395.68 13.71
+ tick_broadcast_lock: 346460 346717 0.18 2257.43 39364622.71 113.54 3642919 4242696 0.00 2263.79 49173646.60 11.59
+ &mapping->i_mmap_mutex: 203896 203899 3.36 645530.05 31767507988.39 155800.21 3361776 8893984 0.17 2254.15 14110121.02 1.59
+ &rq->lock: 135014 136909 0.18 606.09 842160.68 6.15 1540728 10436146 0.00 728.72 17606683.41 1.69
+ &(&zone->lru_lock)->rlock: 93000 94934 0.16 59.18 188253.78 1.98 1199912 3809894 0.15 391.40 3559518.81 0.93
+ tasklist_lock-W: 40667 41130 0.23 1189.42 428980.51 10.43 270278 510106 0.16 653.51 3939674.91 7.72
+ tasklist_lock-R: 21298 21305 0.20 1310.05 215511.12 10.12 186204 241258 0.14 1162.33 1179779.23 4.89
+ rcu_node_1: 47656 49022 0.16 635.41 193616.41 3.95 844888 1865423 0.00 764.26 1656226.96 0.89
+ &(&dentry->d_lockref.lock)->rlock: 39791 40179 0.15 1302.08 88851.96 2.21 2790851 12527025 0.10 1910.75 3379714.27 0.27
+ rcu_node_0: 29203 30064 0.16 786.55 1555573.00 51.74 88963 244254 0.00 398.87 428872.51 1.76
+
+Clear the statistics::
+
+ # echo 0 > /proc/lock_stat
diff --git a/Documentation/locking/lockstat.txt b/Documentation/locking/lockstat.txt
deleted file mode 100644
index fdbeb0c45ef3..000000000000
--- a/Documentation/locking/lockstat.txt
+++ /dev/null
@@ -1,183 +0,0 @@
-
-LOCK STATISTICS
-
-- WHAT
-
-As the name suggests, it provides statistics on locks.
-
-- WHY
-
-Because things like lock contention can severely impact performance.
-
-- HOW
-
-Lockdep already has hooks in the lock functions and maps lock instances to
-lock classes. We build on that (see Documentation/locking/lockdep-design.txt).
-The graph below shows the relation between the lock functions and the various
-hooks therein.
-
- __acquire
- |
- lock _____
- | \
- | __contended
- | |
- | <wait>
- | _______/
- |/
- |
- __acquired
- |
- .
- <hold>
- .
- |
- __release
- |
- unlock
-
-lock, unlock - the regular lock functions
-__* - the hooks
-<> - states
-
-With these hooks we provide the following statistics:
-
- con-bounces - number of lock contention that involved x-cpu data
- contentions - number of lock acquisitions that had to wait
- wait time min - shortest (non-0) time we ever had to wait for a lock
- max - longest time we ever had to wait for a lock
- total - total time we spend waiting on this lock
- avg - average time spent waiting on this lock
- acq-bounces - number of lock acquisitions that involved x-cpu data
- acquisitions - number of times we took the lock
- hold time min - shortest (non-0) time we ever held the lock
- max - longest time we ever held the lock
- total - total time this lock was held
- avg - average time this lock was held
-
-These numbers are gathered per lock class, per read/write state (when
-applicable).
-
-It also tracks 4 contention points per class. A contention point is a call site
-that had to wait on lock acquisition.
-
- - CONFIGURATION
-
-Lock statistics are enabled via CONFIG_LOCK_STAT.
-
- - USAGE
-
-Enable collection of statistics:
-
-# echo 1 >/proc/sys/kernel/lock_stat
-
-Disable collection of statistics:
-
-# echo 0 >/proc/sys/kernel/lock_stat
-
-Look at the current lock statistics:
-
-( line numbers not part of actual output, done for clarity in the explanation
- below )
-
-# less /proc/lock_stat
-
-01 lock_stat version 0.4
-02-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
-03 class name con-bounces contentions waittime-min waittime-max waittime-total waittime-avg acq-bounces acquisitions holdtime-min holdtime-max holdtime-total holdtime-avg
-04-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
-05
-06 &mm->mmap_sem-W: 46 84 0.26 939.10 16371.53 194.90 47291 2922365 0.16 2220301.69 17464026916.32 5975.99
-07 &mm->mmap_sem-R: 37 100 1.31 299502.61 325629.52 3256.30 212344 34316685 0.10 7744.91 95016910.20 2.77
-08 ---------------
-09 &mm->mmap_sem 1 [<ffffffff811502a7>] khugepaged_scan_mm_slot+0x57/0x280
-10 &mm->mmap_sem 96 [<ffffffff815351c4>] __do_page_fault+0x1d4/0x510
-11 &mm->mmap_sem 34 [<ffffffff81113d77>] vm_mmap_pgoff+0x87/0xd0
-12 &mm->mmap_sem 17 [<ffffffff81127e71>] vm_munmap+0x41/0x80
-13 ---------------
-14 &mm->mmap_sem 1 [<ffffffff81046fda>] dup_mmap+0x2a/0x3f0
-15 &mm->mmap_sem 60 [<ffffffff81129e29>] SyS_mprotect+0xe9/0x250
-16 &mm->mmap_sem 41 [<ffffffff815351c4>] __do_page_fault+0x1d4/0x510
-17 &mm->mmap_sem 68 [<ffffffff81113d77>] vm_mmap_pgoff+0x87/0xd0
-18
-19.............................................................................................................................................................................................................................
-20
-21 unix_table_lock: 110 112 0.21 49.24 163.91 1.46 21094 66312 0.12 624.42 31589.81 0.48
-22 ---------------
-23 unix_table_lock 45 [<ffffffff8150ad8e>] unix_create1+0x16e/0x1b0
-24 unix_table_lock 47 [<ffffffff8150b111>] unix_release_sock+0x31/0x250
-25 unix_table_lock 15 [<ffffffff8150ca37>] unix_find_other+0x117/0x230
-26 unix_table_lock 5 [<ffffffff8150a09f>] unix_autobind+0x11f/0x1b0
-27 ---------------
-28 unix_table_lock 39 [<ffffffff8150b111>] unix_release_sock+0x31/0x250
-29 unix_table_lock 49 [<ffffffff8150ad8e>] unix_create1+0x16e/0x1b0
-30 unix_table_lock 20 [<ffffffff8150ca37>] unix_find_other+0x117/0x230
-31 unix_table_lock 4 [<ffffffff8150a09f>] unix_autobind+0x11f/0x1b0
-
-
-This excerpt shows the first two lock class statistics. Line 01 shows the
-output version - each time the format changes this will be updated. Line 02-04
-show the header with column descriptions. Lines 05-18 and 20-31 show the actual
-statistics. These statistics come in two parts; the actual stats separated by a
-short separator (line 08, 13) from the contention points.
-
-Lines 09-12 show the first 4 recorded contention points (the code
-which tries to get the lock) and lines 14-17 show the first 4 recorded
-contended points (the lock holder). It is possible that the max
-con-bounces point is missing in the statistics.
-
-The first lock (05-18) is a read/write lock, and shows two lines above the
-short separator. The contention points don't match the column descriptors,
-they have two: contentions and [<IP>] symbol. The second set of contention
-points are the points we're contending with.
-
-The integer part of the time values is in us.
-
-Dealing with nested locks, subclasses may appear:
-
-32...........................................................................................................................................................................................................................
-33
-34 &rq->lock: 13128 13128 0.43 190.53 103881.26 7.91 97454 3453404 0.00 401.11 13224683.11 3.82
-35 ---------
-36 &rq->lock 645 [<ffffffff8103bfc4>] task_rq_lock+0x43/0x75
-37 &rq->lock 297 [<ffffffff8104ba65>] try_to_wake_up+0x127/0x25a
-38 &rq->lock 360 [<ffffffff8103c4c5>] select_task_rq_fair+0x1f0/0x74a
-39 &rq->lock 428 [<ffffffff81045f98>] scheduler_tick+0x46/0x1fb
-40 ---------
-41 &rq->lock 77 [<ffffffff8103bfc4>] task_rq_lock+0x43/0x75
-42 &rq->lock 174 [<ffffffff8104ba65>] try_to_wake_up+0x127/0x25a
-43 &rq->lock 4715 [<ffffffff8103ed4b>] double_rq_lock+0x42/0x54
-44 &rq->lock 893 [<ffffffff81340524>] schedule+0x157/0x7b8
-45
-46...........................................................................................................................................................................................................................
-47
-48 &rq->lock/1: 1526 11488 0.33 388.73 136294.31 11.86 21461 38404 0.00 37.93 109388.53 2.84
-49 -----------
-50 &rq->lock/1 11526 [<ffffffff8103ed58>] double_rq_lock+0x4f/0x54
-51 -----------
-52 &rq->lock/1 5645 [<ffffffff8103ed4b>] double_rq_lock+0x42/0x54
-53 &rq->lock/1 1224 [<ffffffff81340524>] schedule+0x157/0x7b8
-54 &rq->lock/1 4336 [<ffffffff8103ed58>] double_rq_lock+0x4f/0x54
-55 &rq->lock/1 181 [<ffffffff8104ba65>] try_to_wake_up+0x127/0x25a
-
-Line 48 shows statistics for the second subclass (/1) of &rq->lock class
-(subclass starts from 0), since in this case, as line 50 suggests,
-double_rq_lock actually acquires a nested lock of two spinlocks.
-
-View the top contending locks:
-
-# grep : /proc/lock_stat | head
- clockevents_lock: 2926159 2947636 0.15 46882.81 1784540466.34 605.41 3381345 3879161 0.00 2260.97 53178395.68 13.71
- tick_broadcast_lock: 346460 346717 0.18 2257.43 39364622.71 113.54 3642919 4242696 0.00 2263.79 49173646.60 11.59
- &mapping->i_mmap_mutex: 203896 203899 3.36 645530.05 31767507988.39 155800.21 3361776 8893984 0.17 2254.15 14110121.02 1.59
- &rq->lock: 135014 136909 0.18 606.09 842160.68 6.15 1540728 10436146 0.00 728.72 17606683.41 1.69
- &(&zone->lru_lock)->rlock: 93000 94934 0.16 59.18 188253.78 1.98 1199912 3809894 0.15 391.40 3559518.81 0.93
- tasklist_lock-W: 40667 41130 0.23 1189.42 428980.51 10.43 270278 510106 0.16 653.51 3939674.91 7.72
- tasklist_lock-R: 21298 21305 0.20 1310.05 215511.12 10.12 186204 241258 0.14 1162.33 1179779.23 4.89
- rcu_node_1: 47656 49022 0.16 635.41 193616.41 3.95 844888 1865423 0.00 764.26 1656226.96 0.89
- &(&dentry->d_lockref.lock)->rlock: 39791 40179 0.15 1302.08 88851.96 2.21 2790851 12527025 0.10 1910.75 3379714.27 0.27
- rcu_node_0: 29203 30064 0.16 786.55 1555573.00 51.74 88963 244254 0.00 398.87 428872.51 1.76
-
-Clear the statistics:
-
-# echo 0 > /proc/lock_stat
diff --git a/Documentation/locking/locktorture.txt b/Documentation/locking/locktorture.rst
similarity index 57%
rename from Documentation/locking/locktorture.txt
rename to Documentation/locking/locktorture.rst
index 6a8df4cd19bf..e79eeeca3ac6 100644
--- a/Documentation/locking/locktorture.txt
+++ b/Documentation/locking/locktorture.rst
@@ -1,6 +1,9 @@
+==================================
Kernel Lock Torture Test Operation
+==================================
CONFIG_LOCK_TORTURE_TEST
+========================
The CONFIG LOCK_TORTURE_TEST config option provides a kernel module
that runs torture tests on core kernel locking primitives. The kernel
@@ -18,61 +21,77 @@ can be simulated by either enlarging this critical region hold time and/or
creating more kthreads.
-MODULE PARAMETERS
+Module Parameters
+=================
This module has the following parameters:
- ** Locktorture-specific **
+Locktorture-specific
+--------------------
-nwriters_stress Number of kernel threads that will stress exclusive lock
+nwriters_stress
+ Number of kernel threads that will stress exclusive lock
ownership (writers). The default value is twice the number
of online CPUs.
-nreaders_stress Number of kernel threads that will stress shared lock
+nreaders_stress
+ Number of kernel threads that will stress shared lock
ownership (readers). The default is the same amount of writer
locks. If the user did not specify nwriters_stress, then
both readers and writers be the amount of online CPUs.
-torture_type Type of lock to torture. By default, only spinlocks will
+torture_type
+ Type of lock to torture. By default, only spinlocks will
be tortured. This module can torture the following locks,
with string values as follows:
- o "lock_busted": Simulates a buggy lock implementation.
+ - "lock_busted":
+ Simulates a buggy lock implementation.
- o "spin_lock": spin_lock() and spin_unlock() pairs.
+ - "spin_lock":
+ spin_lock() and spin_unlock() pairs.
- o "spin_lock_irq": spin_lock_irq() and spin_unlock_irq()
- pairs.
+ - "spin_lock_irq":
+ spin_lock_irq() and spin_unlock_irq() pairs.
- o "rw_lock": read/write lock() and unlock() rwlock pairs.
+ - "rw_lock":
+ read/write lock() and unlock() rwlock pairs.
- o "rw_lock_irq": read/write lock_irq() and unlock_irq()
- rwlock pairs.
+ - "rw_lock_irq":
+ read/write lock_irq() and unlock_irq()
+ rwlock pairs.
- o "mutex_lock": mutex_lock() and mutex_unlock() pairs.
+ - "mutex_lock":
+ mutex_lock() and mutex_unlock() pairs.
- o "rtmutex_lock": rtmutex_lock() and rtmutex_unlock()
- pairs. Kernel must have CONFIG_RT_MUTEX=y.
+ - "rtmutex_lock":
+ rtmutex_lock() and rtmutex_unlock() pairs.
+ Kernel must have CONFIG_RT_MUTEX=y.
- o "rwsem_lock": read/write down() and up() semaphore pairs.
+ - "rwsem_lock":
+ read/write down() and up() semaphore pairs.
- ** Torture-framework (RCU + locking) **
+Torture-framework (RCU + locking)
+---------------------------------
-shutdown_secs The number of seconds to run the test before terminating
+shutdown_secs
+ The number of seconds to run the test before terminating
the test and powering off the system. The default is
zero, which disables test termination and system shutdown.
This capability is useful for automated testing.
-onoff_interval The number of seconds between each attempt to execute a
+onoff_interval
+ The number of seconds between each attempt to execute a
randomly selected CPU-hotplug operation. Defaults
to zero, which disables CPU hotplugging. In
CONFIG_HOTPLUG_CPU=n kernels, locktorture will silently
refuse to do any CPU-hotplug operations regardless of
what value is specified for onoff_interval.
-onoff_holdoff The number of seconds to wait until starting CPU-hotplug
+onoff_holdoff
+ The number of seconds to wait until starting CPU-hotplug
operations. This would normally only be used when
locktorture was built into the kernel and started
automatically at boot time, in which case it is useful
@@ -80,53 +99,59 @@ onoff_holdoff The number of seconds to wait until starting CPU-hotplug
coming and going. This parameter is only useful if
CONFIG_HOTPLUG_CPU is enabled.
-stat_interval Number of seconds between statistics-related printk()s.
+stat_interval
+ Number of seconds between statistics-related printk()s.
By default, locktorture will report stats every 60 seconds.
Setting the interval to zero causes the statistics to
be printed -only- when the module is unloaded, and this
is the default.
-stutter The length of time to run the test before pausing for this
+stutter
+ The length of time to run the test before pausing for this
same period of time. Defaults to "stutter=5", so as
to run and pause for (roughly) five-second intervals.
Specifying "stutter=0" causes the test to run continuously
without pausing, which is the old default behavior.
-shuffle_interval The number of seconds to keep the test threads affinitied
+shuffle_interval
+ The number of seconds to keep the test threads affinitied
to a particular subset of the CPUs, defaults to 3 seconds.
Used in conjunction with test_no_idle_hz.
-verbose Enable verbose debugging printing, via printk(). Enabled
+verbose
+ Enable verbose debugging printing, via printk(). Enabled
by default. This extra information is mostly related to
high-level errors and reports from the main 'torture'
framework.
-STATISTICS
+Statistics
+==========
-Statistics are printed in the following format:
+Statistics are printed in the following format::
-spin_lock-torture: Writes: Total: 93746064 Max/Min: 0/0 Fail: 0
- (A) (B) (C) (D) (E)
+ spin_lock-torture: Writes: Total: 93746064 Max/Min: 0/0 Fail: 0
+ (A) (B) (C) (D) (E)
-(A): Lock type that is being tortured -- torture_type parameter.
+ (A): Lock type that is being tortured -- torture_type parameter.
-(B): Number of writer lock acquisitions. If dealing with a read/write primitive
- a second "Reads" statistics line is printed.
+ (B): Number of writer lock acquisitions. If dealing with a read/write
+ primitive a second "Reads" statistics line is printed.
-(C): Number of times the lock was acquired.
+ (C): Number of times the lock was acquired.
-(D): Min and max number of times threads failed to acquire the lock.
+ (D): Min and max number of times threads failed to acquire the lock.
-(E): true/false values if there were errors acquiring the lock. This should
- -only- be positive if there is a bug in the locking primitive's
- implementation. Otherwise a lock should never fail (i.e., spin_lock()).
- Of course, the same applies for (C), above. A dummy example of this is
- the "lock_busted" type.
+ (E): true/false values if there were errors acquiring the lock. This should
+ -only- be positive if there is a bug in the locking primitive's
+ implementation. Otherwise a lock should never fail (i.e., spin_lock()).
+ Of course, the same applies for (C), above. A dummy example of this is
+ the "lock_busted" type.
-USAGE
+Usage
+=====
-The following script may be used to torture locks:
+The following script may be used to torture locks::
#!/bin/sh
diff --git a/Documentation/locking/mutex-design.txt b/Documentation/locking/mutex-design.rst
similarity index 94%
rename from Documentation/locking/mutex-design.txt
rename to Documentation/locking/mutex-design.rst
index 818aca19612f..4d8236b81fa5 100644
--- a/Documentation/locking/mutex-design.txt
+++ b/Documentation/locking/mutex-design.rst
@@ -1,6 +1,9 @@
+=======================
Generic Mutex Subsystem
+=======================
started by Ingo Molnar <mingo@redhat.com>
+
updated by Davidlohr Bueso <davidlohr@hp.com>
What are mutexes?
@@ -23,7 +26,7 @@ Implementation
Mutexes are represented by 'struct mutex', defined in include/linux/mutex.h
and implemented in kernel/locking/mutex.c. These locks use an atomic variable
(->owner) to keep track of the lock state during its lifetime. Field owner
-actually contains 'struct task_struct *' to the current lock owner and it is
+actually contains `struct task_struct *` to the current lock owner and it is
therefore NULL if not currently owned. Since task_struct pointers are aligned
at at least L1_CACHE_BYTES, low bits (3) are used to store extra state (e.g.,
if waiter list is non-empty). In its most basic form it also includes a
@@ -101,29 +104,36 @@ features that make lock debugging easier and faster:
Interfaces
----------
-Statically define the mutex:
+Statically define the mutex::
+
DEFINE_MUTEX(name);
-Dynamically initialize the mutex:
+Dynamically initialize the mutex::
+
mutex_init(mutex);
-Acquire the mutex, uninterruptible:
+Acquire the mutex, uninterruptible::
+
void mutex_lock(struct mutex *lock);
void mutex_lock_nested(struct mutex *lock, unsigned int subclass);
int mutex_trylock(struct mutex *lock);
-Acquire the mutex, interruptible:
+Acquire the mutex, interruptible::
+
int mutex_lock_interruptible_nested(struct mutex *lock,
unsigned int subclass);
int mutex_lock_interruptible(struct mutex *lock);
-Acquire the mutex, interruptible, if dec to 0:
+Acquire the mutex, interruptible, if dec to 0::
+
int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock);
-Unlock the mutex:
+Unlock the mutex::
+
void mutex_unlock(struct mutex *lock);
-Test if the mutex is taken:
+Test if the mutex is taken::
+
int mutex_is_locked(struct mutex *lock);
Disadvantages
diff --git a/Documentation/locking/rt-mutex-design.txt b/Documentation/locking/rt-mutex-design.rst
similarity index 91%
rename from Documentation/locking/rt-mutex-design.txt
rename to Documentation/locking/rt-mutex-design.rst
index 3d7b865539cc..59c2a64efb21 100644
--- a/Documentation/locking/rt-mutex-design.txt
+++ b/Documentation/locking/rt-mutex-design.rst
@@ -1,14 +1,15 @@
-#
-# Copyright (c) 2006 Steven Rostedt
-# Licensed under the GNU Free Documentation License, Version 1.2
-#
-
+==============================
RT-mutex implementation design
-------------------------------
+==============================
+
+Copyright (c) 2006 Steven Rostedt
+
+Licensed under the GNU Free Documentation License, Version 1.2
+
This document tries to describe the design of the rtmutex.c implementation.
It doesn't describe the reasons why rtmutex.c exists. For that please see
-Documentation/locking/rt-mutex.txt. Although this document does explain problems
+Documentation/locking/rt-mutex.rst. Although this document does explain problems
that happen without this code, but that is in the concept to understand
what the code actually is doing.
@@ -41,17 +42,17 @@ to release the lock, because for all we know, B is a CPU hog and will
never give C a chance to release the lock. This is called unbounded priority
inversion.
-Here's a little ASCII art to show the problem.
+Here's a little ASCII art to show the problem::
- grab lock L1 (owned by C)
- |
-A ---+
- C preempted by B
- |
-C +----+
+ grab lock L1 (owned by C)
+ |
+ A ---+
+ C preempted by B
+ |
+ C +----+
-B +-------->
- B now keeps A from running.
+ B +-------->
+ B now keeps A from running.
Priority Inheritance (PI)
@@ -75,24 +76,29 @@ Terminology
Here I explain some terminology that is used in this document to help describe
the design that is used to implement PI.
-PI chain - The PI chain is an ordered series of locks and processes that cause
+PI chain
+ - The PI chain is an ordered series of locks and processes that cause
processes to inherit priorities from a previous process that is
blocked on one of its locks. This is described in more detail
later in this document.
-mutex - In this document, to differentiate from locks that implement
+mutex
+ - In this document, to differentiate from locks that implement
PI and spin locks that are used in the PI code, from now on
the PI locks will be called a mutex.
-lock - In this document from now on, I will use the term lock when
+lock
+ - In this document from now on, I will use the term lock when
referring to spin locks that are used to protect parts of the PI
algorithm. These locks disable preemption for UP (when
CONFIG_PREEMPT is enabled) and on SMP prevents multiple CPUs from
entering critical sections simultaneously.
-spin lock - Same as lock above.
+spin lock
+ - Same as lock above.
-waiter - A waiter is a struct that is stored on the stack of a blocked
+waiter
+ - A waiter is a struct that is stored on the stack of a blocked
process. Since the scope of the waiter is within the code for
a process being blocked on the mutex, it is fine to allocate
the waiter on the process's stack (local variable). This
@@ -104,14 +110,18 @@ waiter - A waiter is a struct that is stored on the stack of a blocked
waiter is sometimes used in reference to the task that is waiting
on a mutex. This is the same as waiter->task.
-waiters - A list of processes that are blocked on a mutex.
+waiters
+ - A list of processes that are blocked on a mutex.
-top waiter - The highest priority process waiting on a specific mutex.
+top waiter
+ - The highest priority process waiting on a specific mutex.
-top pi waiter - The highest priority process waiting on one of the mutexes
+top pi waiter
+ - The highest priority process waiting on one of the mutexes
that a specific process owns.
-Note: task and process are used interchangeably in this document, mostly to
+Note:
+ task and process are used interchangeably in this document, mostly to
differentiate between two processes that are being described together.
@@ -123,7 +133,7 @@ inheritance to take place. Multiple chains may converge, but a chain
would never diverge, since a process can't be blocked on more than one
mutex at a time.
-Example:
+Example::
Process: A, B, C, D, E
Mutexes: L1, L2, L3, L4
@@ -137,21 +147,21 @@ Example:
D owns L4
E blocked on L4
-The chain would be:
+The chain would be::
E->L4->D->L3->C->L2->B->L1->A
To show where two chains merge, we could add another process F and
another mutex L5 where B owns L5 and F is blocked on mutex L5.
-The chain for F would be:
+The chain for F would be::
F->L5->B->L1->A
Since a process may own more than one mutex, but never be blocked on more than
one, the chains merge.
-Here we show both chains:
+Here we show both chains::
E->L4->D->L3->C->L2-+
|
@@ -165,12 +175,12 @@ than the processes to the left or below in the chain.
Also since a mutex may have more than one process blocked on it, we can
have multiple chains merge at mutexes. If we add another process G that is
-blocked on mutex L2:
+blocked on mutex L2::
G->L2->B->L1->A
And once again, to show how this can grow I will show the merging chains
-again.
+again::
E->L4->D->L3->C-+
+->L2-+
@@ -184,7 +194,7 @@ the chain (A and B in this example), must have their priorities increased
to that of G.
Mutex Waiters Tree
------------------
+------------------
Every mutex keeps track of all the waiters that are blocked on itself. The
mutex has a rbtree to store these waiters by priority. This tree is protected
@@ -219,19 +229,19 @@ defined. But is very complex to figure it out, since it depends on all
the nesting of mutexes. Let's look at the example where we have 3 mutexes,
L1, L2, and L3, and four separate functions func1, func2, func3 and func4.
The following shows a locking order of L1->L2->L3, but may not actually
-be directly nested that way.
+be directly nested that way::
-void func1(void)
-{
+ void func1(void)
+ {
mutex_lock(L1);
/* do anything */
mutex_unlock(L1);
-}
+ }
-void func2(void)
-{
+ void func2(void)
+ {
mutex_lock(L1);
mutex_lock(L2);
@@ -239,10 +249,10 @@ void func2(void)
mutex_unlock(L2);
mutex_unlock(L1);
-}
+ }
-void func3(void)
-{
+ void func3(void)
+ {
mutex_lock(L2);
mutex_lock(L3);
@@ -250,30 +260,30 @@ void func3(void)
mutex_unlock(L3);
mutex_unlock(L2);
-}
+ }
-void func4(void)
-{
+ void func4(void)
+ {
mutex_lock(L3);
/* do something again */
mutex_unlock(L3);
-}
+ }
Now we add 4 processes that run each of these functions separately.
Processes A, B, C, and D which run functions func1, func2, func3 and func4
respectively, and such that D runs first and A last. With D being preempted
-in func4 in the "do something again" area, we have a locking that follows:
+in func4 in the "do something again" area, we have a locking that follows::
-D owns L3
- C blocked on L3
- C owns L2
- B blocked on L2
- B owns L1
- A blocked on L1
+ D owns L3
+ C blocked on L3
+ C owns L2
+ B blocked on L2
+ B owns L1
+ A blocked on L1
-And thus we have the chain A->L1->B->L2->C->L3->D.
+ And thus we have the chain A->L1->B->L2->C->L3->D.
This gives us a PI depth of 4 (four processes), but looking at any of the
functions individually, it seems as though they only have at most a locking
@@ -298,7 +308,7 @@ not true, the rtmutex.c code will be broken!), this allows for the least
significant bit to be used as a flag. Bit 0 is used as the "Has Waiters"
flag. It's set whenever there are waiters on a mutex.
-See Documentation/locking/rt-mutex.txt for further details.
+See Documentation/locking/rt-mutex.rst for further details.
cmpxchg Tricks
--------------
@@ -307,17 +317,17 @@ Some architectures implement an atomic cmpxchg (Compare and Exchange). This
is used (when applicable) to keep the fast path of grabbing and releasing
mutexes short.
-cmpxchg is basically the following function performed atomically:
+cmpxchg is basically the following function performed atomically::
-unsigned long _cmpxchg(unsigned long *A, unsigned long *B, unsigned long *C)
-{
+ unsigned long _cmpxchg(unsigned long *A, unsigned long *B, unsigned long *C)
+ {
unsigned long T = *A;
if (*A == *B) {
*A = *C;
}
return T;
-}
-#define cmpxchg(a,b,c) _cmpxchg(&a,&b,&c)
+ }
+ #define cmpxchg(a,b,c) _cmpxchg(&a,&b,&c)
This is really nice to have, since it allows you to only update a variable
if the variable is what you expect it to be. You know if it succeeded if
@@ -352,9 +362,10 @@ Then rt_mutex_setprio is called to adjust the priority of the task to the
new priority. Note that rt_mutex_setprio is defined in kernel/sched/core.c
to implement the actual change in priority.
-(Note: For the "prio" field in task_struct, the lower the number, the
+Note:
+ For the "prio" field in task_struct, the lower the number, the
higher the priority. A "prio" of 5 is of higher priority than a
- "prio" of 10.)
+ "prio" of 10.
It is interesting to note that rt_mutex_adjust_prio can either increase
or decrease the priority of the task. In the case that a higher priority
@@ -439,6 +450,7 @@ wait_lock, which this code currently holds. So setting the "Has Waiters" flag
forces the current owner to synchronize with this code.
The lock is taken if the following are true:
+
1) The lock has no owner
2) The current task is the highest priority against all other
waiters of the lock
@@ -546,10 +558,13 @@ Credits
-------
Author: Steven Rostedt <rostedt@goodmis.org>
+
Updated: Alex Shi <alex.shi@linaro.org> - 7/6/2017
-Original Reviewers: Ingo Molnar, Thomas Gleixner, Thomas Duetsch, and
+Original Reviewers:
+ Ingo Molnar, Thomas Gleixner, Thomas Duetsch, and
Randy Dunlap
+
Update (7/6/2017) Reviewers: Steven Rostedt and Sebastian Siewior
Updates
diff --git a/Documentation/locking/rt-mutex.txt b/Documentation/locking/rt-mutex.rst
similarity index 71%
rename from Documentation/locking/rt-mutex.txt
rename to Documentation/locking/rt-mutex.rst
index 35793e003041..c365dc302081 100644
--- a/Documentation/locking/rt-mutex.txt
+++ b/Documentation/locking/rt-mutex.rst
@@ -1,5 +1,6 @@
+==================================
RT-mutex subsystem with PI support
-----------------------------------
+==================================
RT-mutexes with priority inheritance are used to support PI-futexes,
which enable pthread_mutex_t priority inheritance attributes
@@ -46,27 +47,30 @@ The state of the rt-mutex is tracked via the owner field of the rt-mutex
structure:
lock->owner holds the task_struct pointer of the owner. Bit 0 is used to
-keep track of the "lock has waiters" state.
+keep track of the "lock has waiters" state:
- owner bit0
+ ============ ======= ================================================
+ owner bit0 Notes
+ ============ ======= ================================================
NULL 0 lock is free (fast acquire possible)
NULL 1 lock is free and has waiters and the top waiter
- is going to take the lock*
+ is going to take the lock [1]_
taskpointer 0 lock is held (fast release possible)
- taskpointer 1 lock is held and has waiters**
+ taskpointer 1 lock is held and has waiters [2]_
+ ============ ======= ================================================
The fast atomic compare exchange based acquire and release is only
possible when bit 0 of lock->owner is 0.
-(*) It also can be a transitional state when grabbing the lock
-with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
-we need to set the bit0 before looking at the lock, and the owner may be
-NULL in this small time, hence this can be a transitional state.
+.. [1] It also can be a transitional state when grabbing the lock
+ with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
+ we need to set the bit0 before looking at the lock, and the owner may
+ be NULL in this small time, hence this can be a transitional state.
-(**) There is a small time when bit 0 is set but there are no
-waiters. This can happen when grabbing the lock in the slow path.
-To prevent a cmpxchg of the owner releasing the lock, we need to
-set this bit before looking at the lock.
+.. [2] There is a small time when bit 0 is set but there are no
+ waiters. This can happen when grabbing the lock in the slow path.
+ To prevent a cmpxchg of the owner releasing the lock, we need to
+ set this bit before looking at the lock.
BTW, there is still technically a "Pending Owner", it's just not called
that anymore. The pending owner happens to be the top_waiter of a lock
diff --git a/Documentation/locking/spinlocks.txt b/Documentation/locking/spinlocks.rst
similarity index 89%
rename from Documentation/locking/spinlocks.txt
rename to Documentation/locking/spinlocks.rst
index ff35e40bdf5b..098107fb7d86 100644
--- a/Documentation/locking/spinlocks.txt
+++ b/Documentation/locking/spinlocks.rst
@@ -1,8 +1,13 @@
+===============
+Locking lessons
+===============
+
Lesson 1: Spin locks
+====================
-The most basic primitive for locking is spinlock.
+The most basic primitive for locking is spinlock::
-static DEFINE_SPINLOCK(xxx_lock);
+ static DEFINE_SPINLOCK(xxx_lock);
unsigned long flags;
@@ -19,23 +24,25 @@ worry about UP vs SMP issues: the spinlocks work correctly under both.
NOTE! Implications of spin_locks for memory are further described in:
Documentation/memory-barriers.txt
+
(5) LOCK operations.
+
(6) UNLOCK operations.
The above is usually pretty simple (you usually need and want only one
spinlock for most things - using more than one spinlock can make things a
lot more complex and even slower and is usually worth it only for
-sequences that you _know_ need to be split up: avoid it at all cost if you
+sequences that you **know** need to be split up: avoid it at all cost if you
aren't sure).
This is really the only really hard part about spinlocks: once you start
using spinlocks they tend to expand to areas you might not have noticed
before, because you have to make sure the spinlocks correctly protect the
-shared data structures _everywhere_ they are used. The spinlocks are most
+shared data structures **everywhere** they are used. The spinlocks are most
easily added to places that are completely independent of other code (for
example, internal driver data structures that nobody else ever touches).
- NOTE! The spin-lock is safe only when you _also_ use the lock itself
+ NOTE! The spin-lock is safe only when you **also** use the lock itself
to do locking across CPU's, which implies that EVERYTHING that
touches a shared variable has to agree about the spinlock they want
to use.
@@ -43,6 +50,7 @@ example, internal driver data structures that nobody else ever touches).
----
Lesson 2: reader-writer spinlocks.
+==================================
If your data accesses have a very natural pattern where you usually tend
to mostly read from the shared variables, the reader-writer locks
@@ -54,7 +62,7 @@ to change the variables it has to get an exclusive write lock.
simple spinlocks. Unless the reader critical section is long, you
are better off just using spinlocks.
-The routines look the same as above:
+The routines look the same as above::
rwlock_t xxx_lock = __RW_LOCK_UNLOCKED(xxx_lock);
@@ -71,7 +79,7 @@ The routines look the same as above:
The above kind of lock may be useful for complex data structures like
linked lists, especially searching for entries without changing the list
itself. The read lock allows many concurrent readers. Anything that
-_changes_ the list will have to get the write lock.
+**changes** the list will have to get the write lock.
NOTE! RCU is better for list traversal, but requires careful
attention to design detail (see Documentation/RCU/listRCU.txt).
@@ -87,10 +95,11 @@ to get the write-lock at the very beginning.
----
Lesson 3: spinlocks revisited.
+==============================
The single spin-lock primitives above are by no means the only ones. They
are the most safe ones, and the ones that work under all circumstances,
-but partly _because_ they are safe they are also fairly slow. They are slower
+but partly **because** they are safe they are also fairly slow. They are slower
than they'd need to be, because they do have to disable interrupts
(which is just a single instruction on a x86, but it's an expensive one -
and on other architectures it can be worse).
@@ -98,7 +107,7 @@ and on other architectures it can be worse).
If you have a case where you have to protect a data structure across
several CPU's and you want to use spinlocks you can potentially use
cheaper versions of the spinlocks. IFF you know that the spinlocks are
-never used in interrupt handlers, you can use the non-irq versions:
+never used in interrupt handlers, you can use the non-irq versions::
spin_lock(&lock);
...
@@ -110,7 +119,7 @@ This is useful if you know that the data in question is only ever
manipulated from a "process context", ie no interrupts involved.
The reasons you mustn't use these versions if you have interrupts that
-play with the spinlock is that you can get deadlocks:
+play with the spinlock is that you can get deadlocks::
spin_lock(&lock);
...
@@ -147,9 +156,10 @@ indeed), while write-locks need to protect themselves against interrupts.
----
Reference information:
+======================
For dynamic initialization, use spin_lock_init() or rwlock_init() as
-appropriate:
+appropriate::
spinlock_t xxx_lock;
rwlock_t xxx_rw_lock;
diff --git a/Documentation/locking/ww-mutex-design.txt b/Documentation/locking/ww-mutex-design.rst
similarity index 93%
rename from Documentation/locking/ww-mutex-design.txt
rename to Documentation/locking/ww-mutex-design.rst
index f0ed7c30e695..1846c199da23 100644
--- a/Documentation/locking/ww-mutex-design.txt
+++ b/Documentation/locking/ww-mutex-design.rst
@@ -1,3 +1,4 @@
+======================================
Wound/Wait Deadlock-Proof Mutex Design
======================================
@@ -85,6 +86,7 @@ Furthermore there are three different class of w/w lock acquire functions:
no deadlock potential and hence the ww_mutex_lock call will block and not
prematurely return -EDEADLK. The advantage of the _slow functions is in
interface safety:
+
- ww_mutex_lock has a __must_check int return type, whereas ww_mutex_lock_slow
has a void return type. Note that since ww mutex code needs loops/retries
anyway the __must_check doesn't result in spurious warnings, even though the
@@ -115,36 +117,36 @@ expect the number of simultaneous competing transactions to be typically small,
and you want to reduce the number of rollbacks.
Three different ways to acquire locks within the same w/w class. Common
-definitions for methods #1 and #2:
+definitions for methods #1 and #2::
-static DEFINE_WW_CLASS(ww_class);
+ static DEFINE_WW_CLASS(ww_class);
-struct obj {
+ struct obj {
struct ww_mutex lock;
/* obj data */
-};
+ };
-struct obj_entry {
+ struct obj_entry {
struct list_head head;
struct obj *obj;
-};
+ };
Method 1, using a list in execbuf->buffers that's not allowed to be reordered.
This is useful if a list of required objects is already tracked somewhere.
Furthermore the lock helper can use propagate the -EALREADY return code back to
the caller as a signal that an object is twice on the list. This is useful if
the list is constructed from userspace input and the ABI requires userspace to
-not have duplicate entries (e.g. for a gpu commandbuffer submission ioctl).
+not have duplicate entries (e.g. for a gpu commandbuffer submission ioctl)::
-int lock_objs(struct list_head *list, struct ww_acquire_ctx *ctx)
-{
+ int lock_objs(struct list_head *list, struct ww_acquire_ctx *ctx)
+ {
struct obj *res_obj = NULL;
struct obj_entry *contended_entry = NULL;
struct obj_entry *entry;
ww_acquire_init(ctx, &ww_class);
-retry:
+ retry:
list_for_each_entry (entry, list, head) {
if (entry->obj == res_obj) {
res_obj = NULL;
@@ -160,7 +162,7 @@ retry:
ww_acquire_done(ctx);
return 0;
-err:
+ err:
list_for_each_entry_continue_reverse (entry, list, head)
ww_mutex_unlock(&entry->obj->lock);
@@ -176,14 +178,14 @@ err:
ww_acquire_fini(ctx);
return ret;
-}
+ }
Method 2, using a list in execbuf->buffers that can be reordered. Same semantics
of duplicate entry detection using -EALREADY as method 1 above. But the
-list-reordering allows for a bit more idiomatic code.
+list-reordering allows for a bit more idiomatic code::
-int lock_objs(struct list_head *list, struct ww_acquire_ctx *ctx)
-{
+ int lock_objs(struct list_head *list, struct ww_acquire_ctx *ctx)
+ {
struct obj_entry *entry, *entry2;
ww_acquire_init(ctx, &ww_class);
@@ -216,24 +218,25 @@ int lock_objs(struct list_head *list, struct ww_acquire_ctx *ctx)
ww_acquire_done(ctx);
return 0;
-}
+ }
-Unlocking works the same way for both methods #1 and #2:
+Unlocking works the same way for both methods #1 and #2::
-void unlock_objs(struct list_head *list, struct ww_acquire_ctx *ctx)
-{
+ void unlock_objs(struct list_head *list, struct ww_acquire_ctx *ctx)
+ {
struct obj_entry *entry;
list_for_each_entry (entry, list, head)
ww_mutex_unlock(&entry->obj->lock);
ww_acquire_fini(ctx);
-}
+ }
Method 3 is useful if the list of objects is constructed ad-hoc and not upfront,
e.g. when adjusting edges in a graph where each node has its own ww_mutex lock,
and edges can only be changed when holding the locks of all involved nodes. w/w
mutexes are a natural fit for such a case for two reasons:
+
- They can handle lock-acquisition in any order which allows us to start walking
a graph from a starting point and then iteratively discovering new edges and
locking down the nodes those edges connect to.
@@ -243,6 +246,7 @@ mutexes are a natural fit for such a case for two reasons:
as a starting point).
Note that this approach differs in two important ways from the above methods:
+
- Since the list of objects is dynamically constructed (and might very well be
different when retrying due to hitting the -EDEADLK die condition) there's
no need to keep any object on a persistent list when it's not locked. We can
@@ -260,17 +264,17 @@ any interface misuse for these cases.
Also, method 3 can't fail the lock acquisition step since it doesn't return
-EALREADY. Of course this would be different when using the _interruptible
-variants, but that's outside of the scope of these examples here.
+variants, but that's outside of the scope of these examples here::
-struct obj {
+ struct obj {
struct ww_mutex ww_mutex;
struct list_head locked_list;
-};
+ };
-static DEFINE_WW_CLASS(ww_class);
+ static DEFINE_WW_CLASS(ww_class);
-void __unlock_objs(struct list_head *list)
-{
+ void __unlock_objs(struct list_head *list)
+ {
struct obj *entry, *temp;
list_for_each_entry_safe (entry, temp, list, locked_list) {
@@ -279,15 +283,15 @@ void __unlock_objs(struct list_head *list)
list_del(&entry->locked_list);
ww_mutex_unlock(entry->ww_mutex)
}
-}
+ }
-void lock_objs(struct list_head *list, struct ww_acquire_ctx *ctx)
-{
+ void lock_objs(struct list_head *list, struct ww_acquire_ctx *ctx)
+ {
struct obj *obj;
ww_acquire_init(ctx, &ww_class);
-retry:
+ retry:
/* re-init loop start state */
loop {
/* magic code which walks over a graph and decides which objects
@@ -312,13 +316,13 @@ retry:
ww_acquire_done(ctx);
return 0;
-}
+ }
-void unlock_objs(struct list_head *list, struct ww_acquire_ctx *ctx)
-{
+ void unlock_objs(struct list_head *list, struct ww_acquire_ctx *ctx)
+ {
__unlock_objs(list);
ww_acquire_fini(ctx);
-}
+ }
Method 4: Only lock one single objects. In that case deadlock detection and
prevention is obviously overkill, since with grabbing just one lock you can't
@@ -329,11 +333,14 @@ Implementation Details
----------------------
Design:
+^^^^^^^
+
ww_mutex currently encapsulates a struct mutex, this means no extra overhead for
normal mutex locks, which are far more common. As such there is only a small
increase in code size if wait/wound mutexes are not used.
We maintain the following invariants for the wait list:
+
(1) Waiters with an acquire context are sorted by stamp order; waiters
without an acquire context are interspersed in FIFO order.
(2) For Wait-Die, among waiters with contexts, only the first one can have
@@ -355,6 +362,8 @@ Design:
therefore be directed towards the uncontended cases.
Lockdep:
+^^^^^^^^
+
Special care has been taken to warn for as many cases of api abuse
as possible. Some common api abuses will be caught with
CONFIG_DEBUG_MUTEXES, but CONFIG_PROVE_LOCKING is recommended.
@@ -379,5 +388,6 @@ Lockdep:
having called ww_acquire_fini on the first.
- 'normal' deadlocks that can occur.
-FIXME: Update this section once we have the TASK_DEADLOCK task state flag magic
-implemented.
+FIXME:
+ Update this section once we have the TASK_DEADLOCK task state flag magic
+ implemented.
diff --git a/Documentation/pi-futex.txt b/Documentation/pi-futex.txt
index b154f6c0c36e..c33ba2befbf8 100644
--- a/Documentation/pi-futex.txt
+++ b/Documentation/pi-futex.txt
@@ -119,4 +119,4 @@ properties of futexes, and all four combinations are possible: futex,
robust-futex, PI-futex, robust+PI-futex.
More details about priority inheritance can be found in
-Documentation/locking/rt-mutex.txt.
+Documentation/locking/rt-mutex.rst.
diff --git a/Documentation/translations/it_IT/kernel-hacking/locking.rst b/Documentation/translations/it_IT/kernel-hacking/locking.rst
index 0ef31666663b..75d9b86fcc50 100644
--- a/Documentation/translations/it_IT/kernel-hacking/locking.rst
+++ b/Documentation/translations/it_IT/kernel-hacking/locking.rst
@@ -1404,7 +1404,7 @@ Riferimento per l'API dei Futex
Approfondimenti
===============
-- ``Documentation/locking/spinlocks.txt``: la guida di Linus Torvalds agli
+- ``Documentation/locking/spinlocks.rst``: la guida di Linus Torvalds agli
spinlock del kernel.
- Unix Systems for Modern Architectures: Symmetric Multiprocessing and
diff --git a/drivers/gpu/drm/drm_modeset_lock.c b/drivers/gpu/drm/drm_modeset_lock.c
index 81dd11901ffd..cb5671d32ada 100644
--- a/drivers/gpu/drm/drm_modeset_lock.c
+++ b/drivers/gpu/drm/drm_modeset_lock.c
@@ -36,7 +36,7 @@
* of extra utility/tracking out of our acquire-ctx. This is provided
* by &struct drm_modeset_lock and &struct drm_modeset_acquire_ctx.
*
- * For basic principles of &ww_mutex, see: Documentation/locking/ww-mutex-design.txt
+ * For basic principles of &ww_mutex, see: Documentation/locking/ww-mutex-design.rst
*
* The basic usage pattern is to::
*
diff --git a/include/linux/lockdep.h b/include/linux/lockdep.h
index 79c3873d58ac..4c6296aaeefb 100644
--- a/include/linux/lockdep.h
+++ b/include/linux/lockdep.h
@@ -5,7 +5,7 @@
* Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
* Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
*
- * see Documentation/locking/lockdep-design.txt for more details.
+ * see Documentation/locking/lockdep-design.rst for more details.
*/
#ifndef __LINUX_LOCKDEP_H
#define __LINUX_LOCKDEP_H
diff --git a/include/linux/mutex.h b/include/linux/mutex.h
index 3093dd162424..dcd03fee6e01 100644
--- a/include/linux/mutex.h
+++ b/include/linux/mutex.h
@@ -151,7 +151,7 @@ static inline bool mutex_is_locked(struct mutex *lock)
/*
* See kernel/locking/mutex.c for detailed documentation of these APIs.
- * Also see Documentation/locking/mutex-design.txt.
+ * Also see Documentation/locking/mutex-design.rst.
*/
#ifdef CONFIG_DEBUG_LOCK_ALLOC
extern void mutex_lock_nested(struct mutex *lock, unsigned int subclass);
diff --git a/include/linux/rwsem.h b/include/linux/rwsem.h
index 2ea18a3def04..61a084ae17ac 100644
--- a/include/linux/rwsem.h
+++ b/include/linux/rwsem.h
@@ -158,7 +158,7 @@ extern void downgrade_write(struct rw_semaphore *sem);
* static then another method for expressing nested locking is
* the explicit definition of lock class keys and the use of
* lockdep_set_class() at lock initialization time.
- * See Documentation/locking/lockdep-design.txt for more details.)
+ * See Documentation/locking/lockdep-design.rst for more details.)
*/
extern void down_read_nested(struct rw_semaphore *sem, int subclass);
extern void down_write_nested(struct rw_semaphore *sem, int subclass);
diff --git a/kernel/locking/mutex.c b/kernel/locking/mutex.c
index db578783dd36..5ec20b3cdbe5 100644
--- a/kernel/locking/mutex.c
+++ b/kernel/locking/mutex.c
@@ -15,7 +15,7 @@
* by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
* and Sven Dietrich.
*
- * Also see Documentation/locking/mutex-design.txt.
+ * Also see Documentation/locking/mutex-design.rst.
*/
#include <linux/mutex.h>
#include <linux/ww_mutex.h>
diff --git a/kernel/locking/rtmutex.c b/kernel/locking/rtmutex.c
index 978d63a8261c..8630bb99eec7 100644
--- a/kernel/locking/rtmutex.c
+++ b/kernel/locking/rtmutex.c
@@ -8,7 +8,7 @@
* Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
* Copyright (C) 2006 Esben Nielsen
*
- * See Documentation/locking/rt-mutex-design.txt for details.
+ * See Documentation/locking/rt-mutex-design.rst for details.
*/
#include <linux/spinlock.h>
#include <linux/export.h>
diff --git a/lib/Kconfig.debug b/lib/Kconfig.debug
index 1b0129196e70..aa05f47f5762 100644
--- a/lib/Kconfig.debug
+++ b/lib/Kconfig.debug
@@ -1112,7 +1112,7 @@ config PROVE_LOCKING
the proof of observed correctness is also maintained for an
arbitrary combination of these separate locking variants.
- For more details, see Documentation/locking/lockdep-design.txt.
+ For more details, see Documentation/locking/lockdep-design.rst.
config LOCK_STAT
bool "Lock usage statistics"
@@ -1126,7 +1126,7 @@ config LOCK_STAT
help
This feature enables tracking lock contention points
- For more details, see Documentation/locking/lockstat.txt
+ For more details, see Documentation/locking/lockstat.rst
This also enables lock events required by "perf lock",
subcommand of perf.
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 22/79] docs: mic: convert docs to ReST and rename to *.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (15 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 21/79] docs: locking: " Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 23/79] docs: netlabel: " Mauro Carvalho Chehab
` (56 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Sudeep Dutt, Ashutosh Dixit
Convert Intel Many Integrated Core architecture docs to ReST.
The conversion is trivial: just add title and literal block
markups, and adjust some identation.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/mic/index.rst | 18 ++++++
.../{mic_overview.txt => mic_overview.rst} | 6 +-
.../{scif_overview.txt => scif_overview.rst} | 58 +++++++++++--------
3 files changed, 57 insertions(+), 25 deletions(-)
create mode 100644 Documentation/mic/index.rst
rename Documentation/mic/{mic_overview.txt => mic_overview.rst} (96%)
rename Documentation/mic/{scif_overview.txt => scif_overview.rst} (76%)
diff --git a/Documentation/mic/index.rst b/Documentation/mic/index.rst
new file mode 100644
index 000000000000..082fa8f6a260
--- /dev/null
+++ b/Documentation/mic/index.rst
@@ -0,0 +1,18 @@
+:orphan:
+
+=============================================
+Intel Many Integrated Core (MIC) architecture
+=============================================
+
+.. toctree::
+ :maxdepth: 1
+
+ mic_overview
+ scif_overview
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/mic/mic_overview.txt b/Documentation/mic/mic_overview.rst
similarity index 96%
rename from Documentation/mic/mic_overview.txt
rename to Documentation/mic/mic_overview.rst
index 074adbdf83a4..17d956bdaf7c 100644
--- a/Documentation/mic/mic_overview.txt
+++ b/Documentation/mic/mic_overview.rst
@@ -1,3 +1,7 @@
+======================================================
+Intel Many Integrated Core (MIC) architecture overview
+======================================================
+
An Intel MIC X100 device is a PCIe form factor add-in coprocessor
card based on the Intel Many Integrated Core (MIC) architecture
that runs a Linux OS. It is a PCIe endpoint in a platform and therefore
@@ -45,7 +49,7 @@ Here is a block diagram of the various components described above. The
virtio backends are situated on the host rather than the card given better
single threaded performance for the host compared to MIC, the ability of
the host to initiate DMA's to/from the card using the MIC DMA engine and
-the fact that the virtio block storage backend can only be on the host.
+the fact that the virtio block storage backend can only be on the host::
+----------+ | +----------+
| Card OS | | | Host OS |
diff --git a/Documentation/mic/scif_overview.txt b/Documentation/mic/scif_overview.rst
similarity index 76%
rename from Documentation/mic/scif_overview.txt
rename to Documentation/mic/scif_overview.rst
index 0a280d986731..4c8ad9e43706 100644
--- a/Documentation/mic/scif_overview.txt
+++ b/Documentation/mic/scif_overview.rst
@@ -1,3 +1,7 @@
+========================================
+Symmetric Communication Interface (SCIF)
+========================================
+
The Symmetric Communication Interface (SCIF (pronounced as skiff)) is a low
level communications API across PCIe currently implemented for MIC. Currently
SCIF provides inter-node communication within a single host platform, where a
@@ -8,8 +12,11 @@ is to deliver the maximum possible performance given the communication
abilities of the hardware. SCIF has been used to implement an offload compiler
runtime and OFED support for MPI implementations for MIC coprocessors.
-==== SCIF API Components ====
+SCIF API Components
+===================
+
The SCIF API has the following parts:
+
1. Connection establishment using a client server model
2. Byte stream messaging intended for short messages
3. Node enumeration to determine online nodes
@@ -28,9 +35,12 @@ can also register local memory which is followed by data transfer using either
DMA, CPU copies or remote memory mapping via mmap. SCIF supports both user and
kernel mode clients which are functionally equivalent.
-==== SCIF Performance for MIC ====
+SCIF Performance for MIC
+========================
+
DMA bandwidth comparison between the TCP (over ethernet over PCIe) stack versus
-SCIF shows the performance advantages of SCIF for HPC applications and runtimes.
+SCIF shows the performance advantages of SCIF for HPC applications and
+runtimes::
Comparison of TCP and SCIF based BW
@@ -66,33 +76,33 @@ space API similar to the kernel API in scif.h. The SCIF user space library
is distributed @ https://software.intel.com/en-us/mic-developer
Here is some pseudo code for an example of how two applications on two PCIe
-nodes would typically use the SCIF API:
+nodes would typically use the SCIF API::
-Process A (on node A) Process B (on node B)
+ Process A (on node A) Process B (on node B)
-/* get online node information */
-scif_get_node_ids(..) scif_get_node_ids(..)
-scif_open(..) scif_open(..)
-scif_bind(..) scif_bind(..)
-scif_listen(..)
-scif_accept(..) scif_connect(..)
-/* SCIF connection established */
+ /* get online node information */
+ scif_get_node_ids(..) scif_get_node_ids(..)
+ scif_open(..) scif_open(..)
+ scif_bind(..) scif_bind(..)
+ scif_listen(..)
+ scif_accept(..) scif_connect(..)
+ /* SCIF connection established */
-/* Send and receive short messages */
-scif_send(..)/scif_recv(..) scif_send(..)/scif_recv(..)
+ /* Send and receive short messages */
+ scif_send(..)/scif_recv(..) scif_send(..)/scif_recv(..)
-/* Register memory */
-scif_register(..) scif_register(..)
+ /* Register memory */
+ scif_register(..) scif_register(..)
-/* RDMA */
-scif_readfrom(..)/scif_writeto(..) scif_readfrom(..)/scif_writeto(..)
+ /* RDMA */
+ scif_readfrom(..)/scif_writeto(..) scif_readfrom(..)/scif_writeto(..)
-/* Fence DMAs */
-scif_fence_signal(..) scif_fence_signal(..)
+ /* Fence DMAs */
+ scif_fence_signal(..) scif_fence_signal(..)
-mmap(..) mmap(..)
+ mmap(..) mmap(..)
-/* Access remote registered memory */
+ /* Access remote registered memory */
-/* Close the endpoints */
-scif_close(..) scif_close(..)
+ /* Close the endpoints */
+ scif_close(..) scif_close(..)
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 23/79] docs: netlabel: convert docs to ReST and rename to *.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (16 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 22/79] docs: mic: " Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 18:10 ` Paul Moore
2019-04-22 13:27 ` [PATCH v2 24/79] docs: pcmcia: " Mauro Carvalho Chehab
` (55 subsequent siblings)
73 siblings, 1 reply; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Paul Moore, netdev, linux-security-module
Convert netlabel documentation to ReST.
This was trivial: just add proper title markups.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
.../{cipso_ipv4.txt => cipso_ipv4.rst} | 19 +++++++++++------
Documentation/netlabel/draft_ietf.rst | 5 +++++
Documentation/netlabel/index.rst | 21 +++++++++++++++++++
.../{introduction.txt => introduction.rst} | 16 +++++++++-----
.../{lsm_interface.txt => lsm_interface.rst} | 16 +++++++++-----
5 files changed, 61 insertions(+), 16 deletions(-)
rename Documentation/netlabel/{cipso_ipv4.txt => cipso_ipv4.rst} (87%)
create mode 100644 Documentation/netlabel/draft_ietf.rst
create mode 100644 Documentation/netlabel/index.rst
rename Documentation/netlabel/{introduction.txt => introduction.rst} (91%)
rename Documentation/netlabel/{lsm_interface.txt => lsm_interface.rst} (88%)
diff --git a/Documentation/netlabel/cipso_ipv4.txt b/Documentation/netlabel/cipso_ipv4.rst
similarity index 87%
rename from Documentation/netlabel/cipso_ipv4.txt
rename to Documentation/netlabel/cipso_ipv4.rst
index a6075481fd60..cbd3f3231221 100644
--- a/Documentation/netlabel/cipso_ipv4.txt
+++ b/Documentation/netlabel/cipso_ipv4.rst
@@ -1,10 +1,13 @@
+===================================
NetLabel CIPSO/IPv4 Protocol Engine
-==============================================================================
+===================================
+
Paul Moore, paul.moore@hp.com
May 17, 2006
- * Overview
+Overview
+========
The NetLabel CIPSO/IPv4 protocol engine is based on the IETF Commercial
IP Security Option (CIPSO) draft from July 16, 1992. A copy of this
@@ -13,7 +16,8 @@ draft can be found in this directory
it to an RFC standard it has become a de-facto standard for labeled
networking and is used in many trusted operating systems.
- * Outbound Packet Processing
+Outbound Packet Processing
+==========================
The CIPSO/IPv4 protocol engine applies the CIPSO IP option to packets by
adding the CIPSO label to the socket. This causes all packets leaving the
@@ -24,7 +28,8 @@ label by using the NetLabel security module API; if the NetLabel "domain" is
configured to use CIPSO for packet labeling then a CIPSO IP option will be
generated and attached to the socket.
- * Inbound Packet Processing
+Inbound Packet Processing
+=========================
The CIPSO/IPv4 protocol engine validates every CIPSO IP option it finds at the
IP layer without any special handling required by the LSM. However, in order
@@ -33,7 +38,8 @@ NetLabel security module API to extract the security attributes of the packet.
This is typically done at the socket layer using the 'socket_sock_rcv_skb()'
LSM hook.
- * Label Translation
+Label Translation
+=================
The CIPSO/IPv4 protocol engine contains a mechanism to translate CIPSO security
attributes such as sensitivity level and category to values which are
@@ -42,7 +48,8 @@ Domain Of Interpretation (DOI) definition and are configured through the
NetLabel user space communication layer. Each DOI definition can have a
different security attribute mapping table.
- * Label Translation Cache
+Label Translation Cache
+=======================
The NetLabel system provides a framework for caching security attribute
mappings from the network labels to the corresponding LSM identifiers. The
diff --git a/Documentation/netlabel/draft_ietf.rst b/Documentation/netlabel/draft_ietf.rst
new file mode 100644
index 000000000000..5ed39ab8234b
--- /dev/null
+++ b/Documentation/netlabel/draft_ietf.rst
@@ -0,0 +1,5 @@
+Draft IETF CIPSO IP Security
+----------------------------
+
+ .. include:: draft-ietf-cipso-ipsecurity-01.txt
+ :literal:
diff --git a/Documentation/netlabel/index.rst b/Documentation/netlabel/index.rst
new file mode 100644
index 000000000000..47f1e0e5acd1
--- /dev/null
+++ b/Documentation/netlabel/index.rst
@@ -0,0 +1,21 @@
+:orphan:
+
+========
+NetLabel
+========
+
+.. toctree::
+ :maxdepth: 1
+
+ introduction
+ cipso_ipv4
+ lsm_interface
+
+ draft_ietf
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/netlabel/introduction.txt b/Documentation/netlabel/introduction.rst
similarity index 91%
rename from Documentation/netlabel/introduction.txt
rename to Documentation/netlabel/introduction.rst
index 3caf77bcff0f..9333bbb0adc1 100644
--- a/Documentation/netlabel/introduction.txt
+++ b/Documentation/netlabel/introduction.rst
@@ -1,10 +1,13 @@
+=====================
NetLabel Introduction
-==============================================================================
+=====================
+
Paul Moore, paul.moore@hp.com
August 2, 2006
- * Overview
+Overview
+========
NetLabel is a mechanism which can be used by kernel security modules to attach
security attributes to outgoing network packets generated from user space
@@ -12,7 +15,8 @@ applications and read security attributes from incoming network packets. It
is composed of three main components, the protocol engines, the communication
layer, and the kernel security module API.
- * Protocol Engines
+Protocol Engines
+================
The protocol engines are responsible for both applying and retrieving the
network packet's security attributes. If any translation between the network
@@ -24,7 +28,8 @@ the NetLabel kernel security module API described below.
Detailed information about each NetLabel protocol engine can be found in this
directory.
- * Communication Layer
+Communication Layer
+===================
The communication layer exists to allow NetLabel configuration and monitoring
from user space. The NetLabel communication layer uses a message based
@@ -33,7 +38,8 @@ formatting of these NetLabel messages as well as the Generic NETLINK family
names can be found in the 'net/netlabel/' directory as comments in the
header files as well as in 'include/net/netlabel.h'.
- * Security Module API
+Security Module API
+===================
The purpose of the NetLabel security module API is to provide a protocol
independent interface to the underlying NetLabel protocol engines. In addition
diff --git a/Documentation/netlabel/lsm_interface.txt b/Documentation/netlabel/lsm_interface.rst
similarity index 88%
rename from Documentation/netlabel/lsm_interface.txt
rename to Documentation/netlabel/lsm_interface.rst
index 638c74f7de7f..026fc267f798 100644
--- a/Documentation/netlabel/lsm_interface.txt
+++ b/Documentation/netlabel/lsm_interface.rst
@@ -1,10 +1,13 @@
+========================================
NetLabel Linux Security Module Interface
-==============================================================================
+========================================
+
Paul Moore, paul.moore@hp.com
May 17, 2006
- * Overview
+Overview
+========
NetLabel is a mechanism which can set and retrieve security attributes from
network packets. It is intended to be used by LSM developers who want to make
@@ -12,7 +15,8 @@ use of a common code base for several different packet labeling protocols.
The NetLabel security module API is defined in 'include/net/netlabel.h' but a
brief overview is given below.
- * NetLabel Security Attributes
+NetLabel Security Attributes
+============================
Since NetLabel supports multiple different packet labeling protocols and LSMs
it uses the concept of security attributes to refer to the packet's security
@@ -24,7 +28,8 @@ configuration. It is up to the LSM developer to translate the NetLabel
security attributes into whatever security identifiers are in use for their
particular LSM.
- * NetLabel LSM Protocol Operations
+NetLabel LSM Protocol Operations
+================================
These are the functions which allow the LSM developer to manipulate the labels
on outgoing packets as well as read the labels on incoming packets. Functions
@@ -32,7 +37,8 @@ exist to operate both on sockets as well as the sk_buffs directly. These high
level functions are translated into low level protocol operations based on how
the administrator has configured the NetLabel subsystem.
- * NetLabel Label Mapping Cache Operations
+NetLabel Label Mapping Cache Operations
+=======================================
Depending on the exact configuration, translation between the network packet
label and the internal LSM security identifier can be time consuming. The
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* Re: [PATCH v2 23/79] docs: netlabel: convert docs to ReST and rename to *.rst
2019-04-22 13:27 ` [PATCH v2 23/79] docs: netlabel: " Mauro Carvalho Chehab
@ 2019-04-22 18:10 ` Paul Moore
0 siblings, 0 replies; 115+ messages in thread
From: Paul Moore @ 2019-04-22 18:10 UTC (permalink / raw)
To: Mauro Carvalho Chehab
Cc: Linux Doc Mailing List, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, netdev, linux-security-module
On Mon, Apr 22, 2019 at 9:28 AM Mauro Carvalho Chehab
<mchehab+samsung@kernel.org> wrote:
>
> Convert netlabel documentation to ReST.
>
> This was trivial: just add proper title markups.
>
> At its new index.rst, let's add a :orphan: while this is not linked to
> the main index.rst file, in order to avoid build warnings.
>
> Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
> ---
> .../{cipso_ipv4.txt => cipso_ipv4.rst} | 19 +++++++++++------
> Documentation/netlabel/draft_ietf.rst | 5 +++++
> Documentation/netlabel/index.rst | 21 +++++++++++++++++++
> .../{introduction.txt => introduction.rst} | 16 +++++++++-----
> .../{lsm_interface.txt => lsm_interface.rst} | 16 +++++++++-----
> 5 files changed, 61 insertions(+), 16 deletions(-)
> rename Documentation/netlabel/{cipso_ipv4.txt => cipso_ipv4.rst} (87%)
> create mode 100644 Documentation/netlabel/draft_ietf.rst
> create mode 100644 Documentation/netlabel/index.rst
> rename Documentation/netlabel/{introduction.txt => introduction.rst} (91%)
> rename Documentation/netlabel/{lsm_interface.txt => lsm_interface.rst} (88%)
Still looks fine to me. I should go through these docs again to make
sure they are current (the old email address definitely is a bad
sign).
Acked-by: Paul Moore <paul@paul-moore.com>
--
paul moore
www.paul-moore.com
^ permalink raw reply [flat|nested] 115+ messages in thread
* [PATCH v2 24/79] docs: pcmcia: convert docs to ReST and rename to *.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (17 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 23/79] docs: netlabel: " Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 26/79] docs: powerpc: " Mauro Carvalho Chehab
` (54 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Dominik Brodowski
Convert the pcmcia docs to ReST format. Most of the changes here
are trivial.
The conversion is actually:
- add blank lines and identation in order to identify paragraphs;
- fix tables markups;
- add some lists markups;
- mark literal blocks;
- adjust title markups.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
.../{devicetable.txt => devicetable.rst} | 4 ++
...{driver-changes.txt => driver-changes.rst} | 35 +++++++++++------
.../pcmcia/{driver.txt => driver.rst} | 18 ++++-----
Documentation/pcmcia/index.rst | 20 ++++++++++
.../pcmcia/{locking.txt => locking.rst} | 39 +++++++++++++------
drivers/pcmcia/ds.c | 2 +-
include/pcmcia/ds.h | 2 +-
include/pcmcia/ss.h | 2 +-
8 files changed, 86 insertions(+), 36 deletions(-)
rename Documentation/pcmcia/{devicetable.txt => devicetable.rst} (97%)
rename Documentation/pcmcia/{driver-changes.txt => driver-changes.rst} (90%)
rename Documentation/pcmcia/{driver.txt => driver.rst} (66%)
create mode 100644 Documentation/pcmcia/index.rst
rename Documentation/pcmcia/{locking.txt => locking.rst} (81%)
diff --git a/Documentation/pcmcia/devicetable.txt b/Documentation/pcmcia/devicetable.rst
similarity index 97%
rename from Documentation/pcmcia/devicetable.txt
rename to Documentation/pcmcia/devicetable.rst
index 5f3e00ab54c4..fd1d60d12ca1 100644
--- a/Documentation/pcmcia/devicetable.txt
+++ b/Documentation/pcmcia/devicetable.rst
@@ -1,3 +1,7 @@
+============
+Device table
+============
+
Matching of PCMCIA devices to drivers is done using one or more of the
following criteria:
diff --git a/Documentation/pcmcia/driver-changes.txt b/Documentation/pcmcia/driver-changes.rst
similarity index 90%
rename from Documentation/pcmcia/driver-changes.txt
rename to Documentation/pcmcia/driver-changes.rst
index 78355c4c268a..33fe9ebec049 100644
--- a/Documentation/pcmcia/driver-changes.txt
+++ b/Documentation/pcmcia/driver-changes.rst
@@ -1,15 +1,21 @@
+==============
+Driver changes
+==============
+
This file details changes in 2.6 which affect PCMCIA card driver authors:
+
* pcmcia_loop_config() and autoconfiguration (as of 2.6.36)
- If struct pcmcia_device *p_dev->config_flags is set accordingly,
+ If `struct pcmcia_device *p_dev->config_flags` is set accordingly,
pcmcia_loop_config() now sets up certain configuration values
automatically, though the driver may still override the settings
in the callback function. The following autoconfiguration options
are provided at the moment:
- CONF_AUTO_CHECK_VCC : check for matching Vcc
- CONF_AUTO_SET_VPP : set Vpp
- CONF_AUTO_AUDIO : auto-enable audio line, if required
- CONF_AUTO_SET_IO : set ioport resources (->resource[0,1])
- CONF_AUTO_SET_IOMEM : set first iomem resource (->resource[2])
+
+ - CONF_AUTO_CHECK_VCC : check for matching Vcc
+ - CONF_AUTO_SET_VPP : set Vpp
+ - CONF_AUTO_AUDIO : auto-enable audio line, if required
+ - CONF_AUTO_SET_IO : set ioport resources (->resource[0,1])
+ - CONF_AUTO_SET_IOMEM : set first iomem resource (->resource[2])
* pcmcia_request_configuration -> pcmcia_enable_device (as of 2.6.36)
pcmcia_request_configuration() got renamed to pcmcia_enable_device(),
@@ -19,14 +25,14 @@ This file details changes in 2.6 which affect PCMCIA card driver authors:
* pcmcia_request_window changes (as of 2.6.36)
Instead of win_req_t, drivers are now requested to fill out
- struct pcmcia_device *p_dev->resource[2,3,4,5] for up to four ioport
+ `struct pcmcia_device *p_dev->resource[2,3,4,5]` for up to four ioport
ranges. After a call to pcmcia_request_window(), the regions found there
are reserved and may be used immediately -- until pcmcia_release_window()
is called.
* pcmcia_request_io changes (as of 2.6.36)
Instead of io_req_t, drivers are now requested to fill out
- struct pcmcia_device *p_dev->resource[0,1] for up to two ioport
+ `struct pcmcia_device *p_dev->resource[0,1]` for up to two ioport
ranges. After a call to pcmcia_request_io(), the ports found there
are reserved, after calling pcmcia_request_configuration(), they may
be used.
@@ -42,7 +48,8 @@ This file details changes in 2.6 which affect PCMCIA card driver authors:
* New IRQ request rules (as of 2.6.35)
Instead of the old pcmcia_request_irq() interface, drivers may now
choose between:
- - calling request_irq/free_irq directly. Use the IRQ from *p_dev->irq.
+
+ - calling request_irq/free_irq directly. Use the IRQ from `*p_dev->irq`.
- use pcmcia_request_irq(p_dev, handler_t); the PCMCIA core will
clean up automatically on calls to pcmcia_disable_device() or
device ejection.
@@ -72,13 +79,16 @@ This file details changes in 2.6 which affect PCMCIA card driver authors:
exports for them were removed.
* Unify detach and REMOVAL event code, as well as attach and INSERTION
- code (as of 2.6.16)
+ code (as of 2.6.16)::
+
void (*remove) (struct pcmcia_device *dev);
int (*probe) (struct pcmcia_device *dev);
-* Move suspend, resume and reset out of event handler (as of 2.6.16)
+* Move suspend, resume and reset out of event handler (as of 2.6.16)::
+
int (*suspend) (struct pcmcia_device *dev);
int (*resume) (struct pcmcia_device *dev);
+
should be initialized in struct pcmcia_driver, and handle
(SUSPEND == RESET_PHYSICAL) and (RESUME == CARD_RESET) events
@@ -117,7 +127,8 @@ This file details changes in 2.6 which affect PCMCIA card driver authors:
* core functions no longer available (as of 2.6.11)
The following functions have been removed from the kernel source
because they are unused by all in-kernel drivers, and no external
- driver was reported to rely on them:
+ driver was reported to rely on them::
+
pcmcia_get_first_region()
pcmcia_get_next_region()
pcmcia_modify_window()
diff --git a/Documentation/pcmcia/driver.txt b/Documentation/pcmcia/driver.rst
similarity index 66%
rename from Documentation/pcmcia/driver.txt
rename to Documentation/pcmcia/driver.rst
index 0ac167920778..5c4fe84d51c1 100644
--- a/Documentation/pcmcia/driver.txt
+++ b/Documentation/pcmcia/driver.rst
@@ -1,16 +1,16 @@
+=============
PCMCIA Driver
--------------
-
+=============
sysfs
-----
New PCMCIA IDs may be added to a device driver pcmcia_device_id table at
-runtime as shown below:
+runtime as shown below::
-echo "match_flags manf_id card_id func_id function device_no \
-prod_id_hash[0] prod_id_hash[1] prod_id_hash[2] prod_id_hash[3]" > \
-/sys/bus/pcmcia/drivers/{driver}/new_id
+ echo "match_flags manf_id card_id func_id function device_no \
+ prod_id_hash[0] prod_id_hash[1] prod_id_hash[2] prod_id_hash[3]" > \
+ /sys/bus/pcmcia/drivers/{driver}/new_id
All fields are passed in as hexadecimal values (no leading 0x).
The meaning is described in the PCMCIA specification, the match_flags is
@@ -22,9 +22,9 @@ PCMCIA device listed in its (newly updated) pcmcia_device_id list.
A common use-case is to add a new device according to the manufacturer ID
and the card ID (form the manf_id and card_id file in the device tree).
-For this, just use:
+For this, just use::
-echo "0x3 manf_id card_id 0 0 0 0 0 0 0" > \
- /sys/bus/pcmcia/drivers/{driver}/new_id
+ echo "0x3 manf_id card_id 0 0 0 0 0 0 0" > \
+ /sys/bus/pcmcia/drivers/{driver}/new_id
after loading the driver.
diff --git a/Documentation/pcmcia/index.rst b/Documentation/pcmcia/index.rst
new file mode 100644
index 000000000000..779c8527109e
--- /dev/null
+++ b/Documentation/pcmcia/index.rst
@@ -0,0 +1,20 @@
+:orphan:
+
+======
+pcmcia
+======
+
+.. toctree::
+ :maxdepth: 1
+
+ driver
+ devicetable
+ locking
+ driver-changes
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/pcmcia/locking.txt b/Documentation/pcmcia/locking.rst
similarity index 81%
rename from Documentation/pcmcia/locking.txt
rename to Documentation/pcmcia/locking.rst
index b2c9b478906b..e35257139c89 100644
--- a/Documentation/pcmcia/locking.txt
+++ b/Documentation/pcmcia/locking.rst
@@ -1,3 +1,7 @@
+=======
+Locking
+=======
+
This file explains the locking and exclusion scheme used in the PCCARD
and PCMCIA subsystems.
@@ -5,16 +9,21 @@ and PCMCIA subsystems.
A) Overview, Locking Hierarchy:
===============================
-pcmcia_socket_list_rwsem - protects only the list of sockets
-- skt_mutex - serializes card insert / ejection
- - ops_mutex - serializes socket operation
+pcmcia_socket_list_rwsem
+ - protects only the list of sockets
+
+- skt_mutex
+ - serializes card insert / ejection
+
+ - ops_mutex
+ - serializes socket operation
B) Exclusion
============
The following functions and callbacks to struct pcmcia_socket must
-be called with "skt_mutex" held:
+be called with "skt_mutex" held::
socket_detect_change()
send_event()
@@ -31,7 +40,7 @@ be called with "skt_mutex" held:
struct pcmcia_callback *callback
The following functions and callbacks to struct pcmcia_socket must
-be called with "ops_mutex" held:
+be called with "ops_mutex" held::
socket_reset()
socket_setup()
@@ -39,7 +48,7 @@ be called with "ops_mutex" held:
struct pccard_operations *ops
struct pccard_resource_ops *resource_ops;
-Note that send_event() and struct pcmcia_callback *callback must not be
+Note that send_event() and `struct pcmcia_callback *callback` must not be
called with "ops_mutex" held.
@@ -60,19 +69,23 @@ The resource_ops and their data are protected by ops_mutex.
The "main" struct pcmcia_socket is protected as follows (read-only fields
or single-use fields not mentioned):
-- by pcmcia_socket_list_rwsem:
+- by pcmcia_socket_list_rwsem::
+
struct list_head socket_list;
-- by thread_lock:
+- by thread_lock::
+
unsigned int thread_events;
-- by skt_mutex:
+- by skt_mutex::
+
u_int suspended_state;
void (*tune_bridge);
struct pcmcia_callback *callback;
int resume_status;
-- by ops_mutex:
+- by ops_mutex::
+
socket_state_t socket;
u_int state;
u_short lock_count;
@@ -100,7 +113,8 @@ The "main" struct pcmcia_device is protected as follows (read-only fields
or single-use fields not mentioned):
-- by pcmcia_socket->ops_mutex:
+- by pcmcia_socket->ops_mutex::
+
struct list_head socket_device_list;
struct config_t *function_config;
u16 _irq:1;
@@ -111,7 +125,8 @@ or single-use fields not mentioned):
u16 suspended:1;
u16 _removed:1;
-- by the PCMCIA driver:
+- by the PCMCIA driver::
+
io_req_t io;
irq_req_t irq;
config_req_t conf;
diff --git a/drivers/pcmcia/ds.c b/drivers/pcmcia/ds.c
index a9258f641cee..5230e284bb20 100644
--- a/drivers/pcmcia/ds.c
+++ b/drivers/pcmcia/ds.c
@@ -67,7 +67,7 @@ static void pcmcia_check_driver(struct pcmcia_driver *p_drv)
"be 0x%x\n", p_drv->name, did->prod_id[i],
did->prod_id_hash[i], hash);
printk(KERN_DEBUG "pcmcia: see "
- "Documentation/pcmcia/devicetable.txt for "
+ "Documentation/pcmcia/devicetable.rst for "
"details\n");
}
did++;
diff --git a/include/pcmcia/ds.h b/include/pcmcia/ds.h
index 3037157855f0..4e58c20dabcb 100644
--- a/include/pcmcia/ds.h
+++ b/include/pcmcia/ds.h
@@ -39,7 +39,7 @@ struct config_t;
struct net_device;
/* dynamic device IDs for PCMCIA device drivers. See
- * Documentation/pcmcia/driver.txt for details.
+ * Documentation/pcmcia/driver.rst for details.
*/
struct pcmcia_dynids {
struct mutex lock;
diff --git a/include/pcmcia/ss.h b/include/pcmcia/ss.h
index 731cde010f42..89629ee57840 100644
--- a/include/pcmcia/ss.h
+++ b/include/pcmcia/ss.h
@@ -190,7 +190,7 @@ struct pcmcia_socket {
unsigned int sysfs_events;
/* For the non-trivial interaction between these locks,
- * see Documentation/pcmcia/locking.txt */
+ * see Documentation/pcmcia/locking.rst */
struct mutex skt_mutex;
struct mutex ops_mutex;
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 26/79] docs: powerpc: convert docs to ReST and rename to *.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (18 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 24/79] docs: pcmcia: " Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-24 1:15 ` Andrew Donnellan
2019-04-22 13:27 ` [PATCH v2 27/79] docs: pps.txt: convert to ReST and rename to pps.rst Mauro Carvalho Chehab
` (53 subsequent siblings)
73 siblings, 1 reply; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Bjorn Helgaas, Benjamin Herrenschmidt,
Paul Mackerras, Michael Ellerman, Frederic Barrat,
Andrew Donnellan, Manoj N. Kumar, Matthew R. Ochs, Uma Krishnan,
Russell Currey, Sam Bobroff, Oliver O'Halloran, Qiang Zhao,
Li Yang, Greg Kroah-Hartman, Jiri Slaby, linux-pci, linuxppc-dev,
linux-scsi, linux-arm-kernel
Convert docs to ReST and add them to the arch-specific
book.
The conversion here was trivial, as almost every file there
was already using an elegant format close to ReST standard.
The changes were mostly to mark literal blocks and add a few
missing section title identifiers.
One note with regards to "--": on Sphinx, this can't be used
to identify a list, as it will format it badly. This can be
used, however, to identify a long hyphen - and "---" is an
even longer one.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/PCI/pci-error-recovery.txt | 2 +-
.../{bootwrapper.txt => bootwrapper.rst} | 28 +++-
.../{cpu_families.txt => cpu_families.rst} | 23 +--
.../{cpu_features.txt => cpu_features.rst} | 6 +-
Documentation/powerpc/{cxl.txt => cxl.rst} | 46 ++++--
.../powerpc/{cxlflash.txt => cxlflash.rst} | 10 +-
.../{DAWR-POWER9.txt => dawr-power9.rst} | 10 +-
Documentation/powerpc/{dscr.txt => dscr.rst} | 18 +-
...ecovery.txt => eeh-pci-error-recovery.rst} | 108 ++++++------
...ed-dump.txt => firmware-assisted-dump.rst} | 117 +++++++------
Documentation/powerpc/{hvcs.txt => hvcs.rst} | 108 ++++++------
Documentation/powerpc/index.rst | 34 ++++
Documentation/powerpc/isa-versions.rst | 13 +-
.../powerpc/{mpc52xx.txt => mpc52xx.rst} | 12 +-
...nv.txt => pci_iov_resource_on_powernv.rst} | 15 +-
.../powerpc/{pmu-ebb.txt => pmu-ebb.rst} | 1 +
Documentation/powerpc/ptrace.rst | 156 ++++++++++++++++++
Documentation/powerpc/ptrace.txt | 151 -----------------
.../{qe_firmware.txt => qe_firmware.rst} | 37 +++--
.../{syscall64-abi.txt => syscall64-abi.rst} | 29 ++--
...al_memory.txt => transactional_memory.rst} | 45 ++---
MAINTAINERS | 6 +-
arch/powerpc/kernel/exceptions-64s.S | 2 +-
drivers/soc/fsl/qe/qe.c | 2 +-
drivers/tty/hvc/hvcs.c | 2 +-
include/soc/fsl/qe/qe.h | 2 +-
26 files changed, 559 insertions(+), 424 deletions(-)
rename Documentation/powerpc/{bootwrapper.txt => bootwrapper.rst} (93%)
rename Documentation/powerpc/{cpu_families.txt => cpu_families.rst} (95%)
rename Documentation/powerpc/{cpu_features.txt => cpu_features.rst} (97%)
rename Documentation/powerpc/{cxl.txt => cxl.rst} (95%)
rename Documentation/powerpc/{cxlflash.txt => cxlflash.rst} (98%)
rename Documentation/powerpc/{DAWR-POWER9.txt => dawr-power9.rst} (95%)
rename Documentation/powerpc/{dscr.txt => dscr.rst} (91%)
rename Documentation/powerpc/{eeh-pci-error-recovery.txt => eeh-pci-error-recovery.rst} (82%)
rename Documentation/powerpc/{firmware-assisted-dump.txt => firmware-assisted-dump.rst} (80%)
rename Documentation/powerpc/{hvcs.txt => hvcs.rst} (91%)
create mode 100644 Documentation/powerpc/index.rst
rename Documentation/powerpc/{mpc52xx.txt => mpc52xx.rst} (91%)
rename Documentation/powerpc/{pci_iov_resource_on_powernv.txt => pci_iov_resource_on_powernv.rst} (97%)
rename Documentation/powerpc/{pmu-ebb.txt => pmu-ebb.rst} (99%)
create mode 100644 Documentation/powerpc/ptrace.rst
delete mode 100644 Documentation/powerpc/ptrace.txt
rename Documentation/powerpc/{qe_firmware.txt => qe_firmware.rst} (95%)
rename Documentation/powerpc/{syscall64-abi.txt => syscall64-abi.rst} (82%)
rename Documentation/powerpc/{transactional_memory.txt => transactional_memory.rst} (93%)
diff --git a/Documentation/PCI/pci-error-recovery.txt b/Documentation/PCI/pci-error-recovery.txt
index 0b6bb3ef449e..1ba6a89cf92f 100644
--- a/Documentation/PCI/pci-error-recovery.txt
+++ b/Documentation/PCI/pci-error-recovery.txt
@@ -389,7 +389,7 @@ platforms aren't supposed to share interrupts between many devices
anyway :)
>>> Implementation details for the powerpc platform are discussed in
->>> the file Documentation/powerpc/eeh-pci-error-recovery.txt
+>>> the file Documentation/powerpc/eeh-pci-error-recovery.rst
>>> As of this writing, there is a growing list of device drivers with
>>> patches implementing error recovery. Not all of these patches are in
diff --git a/Documentation/powerpc/bootwrapper.txt b/Documentation/powerpc/bootwrapper.rst
similarity index 93%
rename from Documentation/powerpc/bootwrapper.txt
rename to Documentation/powerpc/bootwrapper.rst
index d60fced5e1cc..a6292afba573 100644
--- a/Documentation/powerpc/bootwrapper.txt
+++ b/Documentation/powerpc/bootwrapper.rst
@@ -1,5 +1,7 @@
+========================
The PowerPC boot wrapper
-------------------------
+========================
+
Copyright (C) Secret Lab Technologies Ltd.
PowerPC image targets compresses and wraps the kernel image (vmlinux) with
@@ -21,6 +23,7 @@ it uses the wrapper script (arch/powerpc/boot/wrapper) to generate target
image. The details of the build system is discussed in the next section.
Currently, the following image format targets exist:
+ ==================== ========================================================
cuImage.%: Backwards compatible uImage for older version of
U-Boot (for versions that don't understand the device
tree). This image embeds a device tree blob inside
@@ -29,31 +32,36 @@ Currently, the following image format targets exist:
with boot wrapper code that extracts data from the old
bd_info structure and loads the data into the device
tree before jumping into the kernel.
- Because of the series of #ifdefs found in the
+
+ Because of the series of #ifdefs found in the
bd_info structure used in the old U-Boot interfaces,
cuImages are platform specific. Each specific
U-Boot platform has a different platform init file
which populates the embedded device tree with data
from the platform specific bd_info file. The platform
specific cuImage platform init code can be found in
- arch/powerpc/boot/cuboot.*.c. Selection of the correct
+ `arch/powerpc/boot/cuboot.*.c`. Selection of the correct
cuImage init code for a specific board can be found in
the wrapper structure.
+
dtbImage.%: Similar to zImage, except device tree blob is embedded
inside the image instead of provided by firmware. The
output image file can be either an elf file or a flat
binary depending on the platform.
- dtbImages are used on systems which do not have an
+
+ dtbImages are used on systems which do not have an
interface for passing a device tree directly.
dtbImages are similar to simpleImages except that
dtbImages have platform specific code for extracting
data from the board firmware, but simpleImages do not
talk to the firmware at all.
- PlayStation 3 support uses dtbImage. So do Embedded
+
+ PlayStation 3 support uses dtbImage. So do Embedded
Planet boards using the PlanetCore firmware. Board
specific initialization code is typically found in a
file named arch/powerpc/boot/<platform>.c; but this
can be overridden by the wrapper script.
+
simpleImage.%: Firmware independent compressed image that does not
depend on any particular firmware interface and embeds
a device tree blob. This image is a flat binary that
@@ -61,14 +69,16 @@ Currently, the following image format targets exist:
Firmware cannot pass any configuration data to the
kernel with this image type and it depends entirely on
the embedded device tree for all information.
- The simpleImage is useful for booting systems with
+
+ The simpleImage is useful for booting systems with
an unknown firmware interface or for booting from
a debugger when no firmware is present (such as on
the Xilinx Virtex platform). The only assumption that
simpleImage makes is that RAM is correctly initialized
and that the MMU is either off or has RAM mapped to
base address 0.
- simpleImage also supports inserting special platform
+
+ simpleImage also supports inserting special platform
specific initialization code to the start of the bootup
sequence. The virtex405 platform uses this feature to
ensure that the cache is invalidated before caching
@@ -81,9 +91,11 @@ Currently, the following image format targets exist:
named (virtex405-<board>.dts). Search the wrapper
script for 'virtex405' and see the file
arch/powerpc/boot/virtex405-head.S for details.
+
treeImage.%; Image format for used with OpenBIOS firmware found
on some ppc4xx hardware. This image embeds a device
tree blob inside the image.
+
uImage: Native image format used by U-Boot. The uImage target
does not add any boot code. It just wraps a compressed
vmlinux in the uImage data structure. This image
@@ -91,12 +103,14 @@ Currently, the following image format targets exist:
a device tree to the kernel at boot. If using an older
version of U-Boot, then you need to use a cuImage
instead.
+
zImage.%: Image format which does not embed a device tree.
Used by OpenFirmware and other firmware interfaces
which are able to supply a device tree. This image
expects firmware to provide the device tree at boot.
Typically, if you have general purpose PowerPC
hardware then you want this image format.
+ ==================== ========================================================
Image types which embed a device tree blob (simpleImage, dtbImage, treeImage,
and cuImage) all generate the device tree blob from a file in the
diff --git a/Documentation/powerpc/cpu_families.txt b/Documentation/powerpc/cpu_families.rst
similarity index 95%
rename from Documentation/powerpc/cpu_families.txt
rename to Documentation/powerpc/cpu_families.rst
index fc08e22feb1a..1e063c5440c3 100644
--- a/Documentation/powerpc/cpu_families.txt
+++ b/Documentation/powerpc/cpu_families.rst
@@ -1,3 +1,4 @@
+============
CPU Families
============
@@ -8,8 +9,8 @@ and are supported by arch/powerpc.
Book3S (aka sPAPR)
------------------
- - Hash MMU
- - Mix of 32 & 64 bit
+- Hash MMU
+- Mix of 32 & 64 bit::
+--------------+ +----------------+
| Old POWER | --------------> | RS64 (threads) |
@@ -108,8 +109,8 @@ Book3S (aka sPAPR)
IBM BookE
---------
- - Software loaded TLB.
- - All 32 bit
+- Software loaded TLB.
+- All 32 bit::
+--------------+
| 401 |
@@ -155,8 +156,8 @@ IBM BookE
Motorola/Freescale 8xx
----------------------
- - Software loaded with hardware assist.
- - All 32 bit
+- Software loaded with hardware assist.
+- All 32 bit::
+-------------+
| MPC8xx Core |
@@ -166,9 +167,9 @@ Motorola/Freescale 8xx
Freescale BookE
---------------
- - Software loaded TLB.
- - e6500 adds HW loaded indirect TLB entries.
- - Mix of 32 & 64 bit
+- Software loaded TLB.
+- e6500 adds HW loaded indirect TLB entries.
+- Mix of 32 & 64 bit::
+--------------+
| e200 |
@@ -207,8 +208,8 @@ Freescale BookE
IBM A2 core
-----------
- - Book3E, software loaded TLB + HW loaded indirect TLB entries.
- - 64 bit
+- Book3E, software loaded TLB + HW loaded indirect TLB entries.
+- 64 bit::
+--------------+ +----------------+
| A2 core | --> | WSP |
diff --git a/Documentation/powerpc/cpu_features.txt b/Documentation/powerpc/cpu_features.rst
similarity index 97%
rename from Documentation/powerpc/cpu_features.txt
rename to Documentation/powerpc/cpu_features.rst
index ae09df8722c8..b7bcdd2f41bb 100644
--- a/Documentation/powerpc/cpu_features.txt
+++ b/Documentation/powerpc/cpu_features.rst
@@ -1,3 +1,7 @@
+============
+CPU Features
+============
+
Hollis Blanchard <hollis@austin.ibm.com>
5 Jun 2002
@@ -32,7 +36,7 @@ anyways).
After detecting the processor type, the kernel patches out sections of code
that shouldn't be used by writing nop's over it. Using cpufeatures requires
just 2 macros (found in arch/powerpc/include/asm/cputable.h), as seen in head.S
-transfer_to_handler:
+transfer_to_handler::
#ifdef CONFIG_ALTIVEC
BEGIN_FTR_SECTION
diff --git a/Documentation/powerpc/cxl.txt b/Documentation/powerpc/cxl.rst
similarity index 95%
rename from Documentation/powerpc/cxl.txt
rename to Documentation/powerpc/cxl.rst
index c5e8d5098ed3..99e704afb09d 100644
--- a/Documentation/powerpc/cxl.txt
+++ b/Documentation/powerpc/cxl.rst
@@ -1,3 +1,4 @@
+====================================
Coherent Accelerator Interface (CXL)
====================================
@@ -21,6 +22,8 @@ Introduction
Hardware overview
=================
+ ::
+
POWER8/9 FPGA
+----------+ +---------+
| | | |
@@ -59,14 +62,16 @@ Hardware overview
the fault. The context to which this fault is serviced is based on
who owns that acceleration function.
- POWER8 <-----> PSL Version 8 is compliant to the CAIA Version 1.0.
- POWER9 <-----> PSL Version 9 is compliant to the CAIA Version 2.0.
+ - POWER8 <------> PSL Version 8 is compliant to the CAIA Version 1.0.
+ - POWER9 <------> PSL Version 9 is compliant to the CAIA Version 2.0.
+
This PSL Version 9 provides new features such as:
+
* Interaction with the nest MMU on the P9 chip.
* Native DMA support.
* Supports sending ASB_Notify messages for host thread wakeup.
* Supports Atomic operations.
- * ....
+ * etc.
Cards with a PSL9 won't work on a POWER8 system and cards with a
PSL8 won't work on a POWER9 system.
@@ -147,7 +152,9 @@ User API
master devices.
A userspace library libcxl is available here:
+
https://github.com/ibm-capi/libcxl
+
This provides a C interface to this kernel API.
open
@@ -165,7 +172,8 @@ open
When all available contexts are allocated the open call will fail
and return -ENOSPC.
- Note: IRQs need to be allocated for each context, which may limit
+ Note:
+ IRQs need to be allocated for each context, which may limit
the number of contexts that can be created, and therefore
how many times the device can be opened. The POWER8 CAPP
supports 2040 IRQs and 3 are used by the kernel, so 2037 are
@@ -186,7 +194,9 @@ ioctl
updated as userspace allocates and frees memory. This ioctl
returns once the AFU context is started.
- Takes a pointer to a struct cxl_ioctl_start_work:
+ Takes a pointer to a struct cxl_ioctl_start_work
+
+ ::
struct cxl_ioctl_start_work {
__u64 flags;
@@ -269,7 +279,7 @@ read
The buffer passed to read() must be at least 4K bytes.
The result of the read will be a buffer of one or more events,
- each event is of type struct cxl_event, of varying size.
+ each event is of type struct cxl_event, of varying size::
struct cxl_event {
struct cxl_event_header header;
@@ -280,7 +290,9 @@ read
};
};
- The struct cxl_event_header is defined as:
+ The struct cxl_event_header is defined as
+
+ ::
struct cxl_event_header {
__u16 type;
@@ -307,7 +319,9 @@ read
For future extensions and padding.
If the event type is CXL_EVENT_AFU_INTERRUPT then the event
- structure is defined as:
+ structure is defined as
+
+ ::
struct cxl_event_afu_interrupt {
__u16 flags;
@@ -326,7 +340,9 @@ read
For future extensions and padding.
If the event type is CXL_EVENT_DATA_STORAGE then the event
- structure is defined as:
+ structure is defined as
+
+ ::
struct cxl_event_data_storage {
__u16 flags;
@@ -356,7 +372,9 @@ read
For future extensions
If the event type is CXL_EVENT_AFU_ERROR then the event structure
- is defined as:
+ is defined as
+
+ ::
struct cxl_event_afu_error {
__u16 flags;
@@ -393,15 +411,15 @@ open
ioctl
-----
-CXL_IOCTL_DOWNLOAD_IMAGE:
-CXL_IOCTL_VALIDATE_IMAGE:
+CXL_IOCTL_DOWNLOAD_IMAGE / CXL_IOCTL_VALIDATE_IMAGE:
Starts and controls flashing a new FPGA image. Partial
reconfiguration is not supported (yet), so the image must contain
a copy of the PSL and AFU(s). Since an image can be quite large,
the caller may have to iterate, splitting the image in smaller
chunks.
- Takes a pointer to a struct cxl_adapter_image:
+ Takes a pointer to a struct cxl_adapter_image::
+
struct cxl_adapter_image {
__u64 flags;
__u64 data;
@@ -442,7 +460,7 @@ Udev rules
The following udev rules could be used to create a symlink to the
most logical chardev to use in any programming mode (afuX.Yd for
dedicated, afuX.Ys for afu directed), since the API is virtually
- identical for each:
+ identical for each::
SUBSYSTEM=="cxl", ATTRS{mode}=="dedicated_process", SYMLINK="cxl/%b"
SUBSYSTEM=="cxl", ATTRS{mode}=="afu_directed", \
diff --git a/Documentation/powerpc/cxlflash.txt b/Documentation/powerpc/cxlflash.rst
similarity index 98%
rename from Documentation/powerpc/cxlflash.txt
rename to Documentation/powerpc/cxlflash.rst
index a64bdaa0a1cf..cea67931b3b9 100644
--- a/Documentation/powerpc/cxlflash.txt
+++ b/Documentation/powerpc/cxlflash.rst
@@ -1,3 +1,7 @@
+================================
+Coherent Accelerator (CXL) Flash
+================================
+
Introduction
============
@@ -28,7 +32,7 @@ Introduction
responsible for the initialization of the adapter, setting up the
special path for user space access, and performing error recovery. It
communicates directly the Flash Accelerator Functional Unit (AFU)
- as described in Documentation/powerpc/cxl.txt.
+ as described in Documentation/powerpc/cxl.rst.
The cxlflash driver supports two, mutually exclusive, modes of
operation at the device (LUN) level:
@@ -58,7 +62,7 @@ Overview
The CXL Flash Adapter Driver establishes a master context with the
AFU. It uses memory mapped I/O (MMIO) for this control and setup. The
- Adapter Problem Space Memory Map looks like this:
+ Adapter Problem Space Memory Map looks like this::
+-------------------------------+
| 512 * 64 KB User MMIO |
@@ -375,7 +379,7 @@ CXL Flash Driver Host IOCTLs
Each host adapter instance that is supported by the cxlflash driver
has a special character device associated with it to enable a set of
host management function. These character devices are hosted in a
- class dedicated for cxlflash and can be accessed via /dev/cxlflash/*.
+ class dedicated for cxlflash and can be accessed via `/dev/cxlflash/*`.
Applications can be written to perform various functions using the
host ioctl APIs below.
diff --git a/Documentation/powerpc/DAWR-POWER9.txt b/Documentation/powerpc/dawr-power9.rst
similarity index 95%
rename from Documentation/powerpc/DAWR-POWER9.txt
rename to Documentation/powerpc/dawr-power9.rst
index 2feaa6619658..882e5af02b9c 100644
--- a/Documentation/powerpc/DAWR-POWER9.txt
+++ b/Documentation/powerpc/dawr-power9.rst
@@ -1,10 +1,11 @@
+=====================
DAWR issues on POWER9
-============================
+=====================
On POWER9 the DAWR can cause a checkstop if it points to cache
inhibited (CI) memory. Currently Linux has no way to disinguish CI
memory when configuring the DAWR, so (for now) the DAWR is disabled by
-this commit:
+this commit::
commit 9654153158d3e0684a1bdb76dbababdb7111d5a0
Author: Michael Neuling <mikey@neuling.org>
@@ -12,7 +13,7 @@ this commit:
powerpc: Disable DAWR in the base POWER9 CPU features
Technical Details:
-============================
+==================
DAWR has 6 different ways of being set.
1) ptrace
@@ -37,7 +38,7 @@ DAWR on the migration.
For xmon, the 'bd' command will return an error on P9.
Consequences for users
-============================
+======================
For GDB watchpoints (ie 'watch' command) on POWER9 bare metal , GDB
will accept the command. Unfortunately since there is no hardware
@@ -55,4 +56,3 @@ guest is migrated to a POWER9 host, the watchpoint will be lost on the
POWER9. Loads and stores to the watchpoint locations will not be
trapped in GDB. The watchpoint is remembered, so if the guest is
migrated back to the POWER8 host, it will start working again.
-
diff --git a/Documentation/powerpc/dscr.txt b/Documentation/powerpc/dscr.rst
similarity index 91%
rename from Documentation/powerpc/dscr.txt
rename to Documentation/powerpc/dscr.rst
index ece300c64f76..2ab99006014c 100644
--- a/Documentation/powerpc/dscr.txt
+++ b/Documentation/powerpc/dscr.rst
@@ -1,5 +1,6 @@
- DSCR (Data Stream Control Register)
- ================================================
+===================================
+DSCR (Data Stream Control Register)
+===================================
DSCR register in powerpc allows user to have some control of prefetch of data
stream in the processor. Please refer to the ISA documents or related manual
@@ -10,14 +11,17 @@ user interface.
(A) Data Structures:
- (1) thread_struct:
+ (1) thread_struct::
+
dscr /* Thread DSCR value */
dscr_inherit /* Thread has changed default DSCR */
- (2) PACA:
+ (2) PACA::
+
dscr_default /* per-CPU DSCR default value */
- (3) sysfs.c:
+ (3) sysfs.c::
+
dscr_default /* System DSCR default value */
(B) Scheduler Changes:
@@ -35,8 +39,8 @@ user interface.
(C) SYSFS Interface:
- Global DSCR default: /sys/devices/system/cpu/dscr_default
- CPU specific DSCR default: /sys/devices/system/cpu/cpuN/dscr
+ - Global DSCR default: /sys/devices/system/cpu/dscr_default
+ - CPU specific DSCR default: /sys/devices/system/cpu/cpuN/dscr
Changing the global DSCR default in the sysfs will change all the CPU
specific DSCR defaults immediately in their PACA structures. Again if
diff --git a/Documentation/powerpc/eeh-pci-error-recovery.txt b/Documentation/powerpc/eeh-pci-error-recovery.rst
similarity index 82%
rename from Documentation/powerpc/eeh-pci-error-recovery.txt
rename to Documentation/powerpc/eeh-pci-error-recovery.rst
index 678189280bb4..438a87ebc095 100644
--- a/Documentation/powerpc/eeh-pci-error-recovery.txt
+++ b/Documentation/powerpc/eeh-pci-error-recovery.rst
@@ -1,10 +1,10 @@
+==========================
+PCI Bus EEH Error Recovery
+==========================
+Linas Vepstas <linas@austin.ibm.com>
- PCI Bus EEH Error Recovery
- --------------------------
- Linas Vepstas
- <linas@austin.ibm.com>
- 12 January 2005
+12 January 2005
Overview:
@@ -143,17 +143,17 @@ seen in /proc/ppc64/eeh (subject to change). Normally, almost
all of these occur during boot, when the PCI bus is scanned, where
a large number of 0xff reads are part of the bus scan procedure.
-If a frozen slot is detected, code in
-arch/powerpc/platforms/pseries/eeh.c will print a stack trace to
-syslog (/var/log/messages). This stack trace has proven to be very
-useful to device-driver authors for finding out at what point the EEH
-error was detected, as the error itself usually occurs slightly
+If a frozen slot is detected, code in
+arch/powerpc/platforms/pseries/eeh.c will print a stack trace to
+syslog (/var/log/messages). This stack trace has proven to be very
+useful to device-driver authors for finding out at what point the EEH
+error was detected, as the error itself usually occurs slightly
beforehand.
Next, it uses the Linux kernel notifier chain/work queue mechanism to
allow any interested parties to find out about the failure. Device
drivers, or other parts of the kernel, can use
-eeh_register_notifier(struct notifier_block *) to find out about EEH
+`eeh_register_notifier(struct notifier_block *)` to find out about EEH
events. The event will include a pointer to the pci device, the
device node and some state info. Receivers of the event can "do as
they wish"; the default handler will be described further in this
@@ -162,10 +162,13 @@ section.
To assist in the recovery of the device, eeh.c exports the
following functions:
-rtas_set_slot_reset() -- assert the PCI #RST line for 1/8th of a second
-rtas_configure_bridge() -- ask firmware to configure any PCI bridges
+rtas_set_slot_reset()
+ assert the PCI #RST line for 1/8th of a second
+rtas_configure_bridge()
+ ask firmware to configure any PCI bridges
located topologically under the pci slot.
-eeh_save_bars() and eeh_restore_bars(): save and restore the PCI
+eeh_save_bars() and eeh_restore_bars():
+ save and restore the PCI
config-space info for a device and any devices under it.
@@ -191,7 +194,7 @@ events get delivered to user-space scripts.
Following is an example sequence of events that cause a device driver
close function to be called during the first phase of an EEH reset.
-The following sequence is an example of the pcnet32 device driver.
+The following sequence is an example of the pcnet32 device driver::
rpa_php_unconfig_pci_adapter (struct slot *) // in rpaphp_pci.c
{
@@ -241,53 +244,54 @@ The following sequence is an example of the pcnet32 device driver.
}}}}}}
- in drivers/pci/pci_driver.c,
- struct device_driver->remove() is just pci_device_remove()
- which calls struct pci_driver->remove() which is pcnet32_remove_one()
- which calls unregister_netdev() (in net/core/dev.c)
- which calls dev_close() (in net/core/dev.c)
- which calls dev->stop() which is pcnet32_close()
- which then does the appropriate shutdown.
+in drivers/pci/pci_driver.c,
+struct device_driver->remove() is just pci_device_remove()
+which calls struct pci_driver->remove() which is pcnet32_remove_one()
+which calls unregister_netdev() (in net/core/dev.c)
+which calls dev_close() (in net/core/dev.c)
+which calls dev->stop() which is pcnet32_close()
+which then does the appropriate shutdown.
---
+
Following is the analogous stack trace for events sent to user-space
-when the pci device is unconfigured.
+when the pci device is unconfigured::
-rpa_php_unconfig_pci_adapter() { // in rpaphp_pci.c
- calls
- pci_remove_bus_device (struct pci_dev *) { // in /drivers/pci/remove.c
+ rpa_php_unconfig_pci_adapter() { // in rpaphp_pci.c
calls
- pci_destroy_dev (struct pci_dev *) {
+ pci_remove_bus_device (struct pci_dev *) { // in /drivers/pci/remove.c
calls
- device_unregister (&dev->dev) { // in /drivers/base/core.c
+ pci_destroy_dev (struct pci_dev *) {
calls
- device_del(struct device * dev) { // in /drivers/base/core.c
+ device_unregister (&dev->dev) { // in /drivers/base/core.c
calls
- kobject_del() { //in /libs/kobject.c
+ device_del(struct device * dev) { // in /drivers/base/core.c
calls
- kobject_uevent() { // in /libs/kobject.c
+ kobject_del() { //in /libs/kobject.c
calls
- kset_uevent() { // in /lib/kobject.c
+ kobject_uevent() { // in /libs/kobject.c
calls
- kset->uevent_ops->uevent() // which is really just
- a call to
- dev_uevent() { // in /drivers/base/core.c
+ kset_uevent() { // in /lib/kobject.c
calls
- dev->bus->uevent() which is really just a call to
- pci_uevent () { // in drivers/pci/hotplug.c
- which prints device name, etc....
+ kset->uevent_ops->uevent() // which is really just
+ a call to
+ dev_uevent() { // in /drivers/base/core.c
+ calls
+ dev->bus->uevent() which is really just a call to
+ pci_uevent () { // in drivers/pci/hotplug.c
+ which prints device name, etc....
+ }
}
- }
- then kobject_uevent() sends a netlink uevent to userspace
- --> userspace uevent
- (during early boot, nobody listens to netlink events and
- kobject_uevent() executes uevent_helper[], which runs the
- event process /sbin/hotplug)
+ then kobject_uevent() sends a netlink uevent to userspace
+ --> userspace uevent
+ (during early boot, nobody listens to netlink events and
+ kobject_uevent() executes uevent_helper[], which runs the
+ event process /sbin/hotplug)
+ }
}
- }
- kobject_del() then calls sysfs_remove_dir(), which would
- trigger any user-space daemon that was watching /sysfs,
- and notice the delete event.
+ kobject_del() then calls sysfs_remove_dir(), which would
+ trigger any user-space daemon that was watching /sysfs,
+ and notice the delete event.
Pro's and Con's of the Current Design
@@ -299,12 +303,12 @@ individual device drivers, so that the current design throws a wide net.
The biggest negative of the design is that it potentially disturbs
network daemons and file systems that didn't need to be disturbed.
--- A minor complaint is that resetting the network card causes
+- A minor complaint is that resetting the network card causes
user-space back-to-back ifdown/ifup burps that potentially disturb
network daemons, that didn't need to even know that the pci
card was being rebooted.
--- A more serious concern is that the same reset, for SCSI devices,
+- A more serious concern is that the same reset, for SCSI devices,
causes havoc to mounted file systems. Scripts cannot post-facto
unmount a file system without flushing pending buffers, but this
is impossible, because I/O has already been stopped. Thus,
@@ -322,7 +326,7 @@ network daemons and file systems that didn't need to be disturbed.
from the block layer. It would be very natural to add an EEH
reset into this chain of events.
--- If a SCSI error occurs for the root device, all is lost unless
+- If a SCSI error occurs for the root device, all is lost unless
the sysadmin had the foresight to run /bin, /sbin, /etc, /var
and so on, out of ramdisk/tmpfs.
@@ -330,5 +334,3 @@ network daemons and file systems that didn't need to be disturbed.
Conclusions
-----------
There's forward progress ...
-
-
diff --git a/Documentation/powerpc/firmware-assisted-dump.txt b/Documentation/powerpc/firmware-assisted-dump.rst
similarity index 80%
rename from Documentation/powerpc/firmware-assisted-dump.txt
rename to Documentation/powerpc/firmware-assisted-dump.rst
index 0c41d6d463f3..d7fa7c35dd12 100644
--- a/Documentation/powerpc/firmware-assisted-dump.txt
+++ b/Documentation/powerpc/firmware-assisted-dump.rst
@@ -1,7 +1,8 @@
+======================
+Firmware-Assisted Dump
+======================
- Firmware-Assisted Dump
- ------------------------
- July 2011
+July 2011
The goal of firmware-assisted dump is to enable the dump of
a crashed system, and to do so from a fully-reset system, and
@@ -27,11 +28,11 @@ in production use.
Comparing with kdump or other strategies, firmware-assisted
dump offers several strong, practical advantages:
--- Unlike kdump, the system has been reset, and loaded
+- Unlike kdump, the system has been reset, and loaded
with a fresh copy of the kernel. In particular,
PCI and I/O devices have been reinitialized and are
in a clean, consistent state.
--- Once the dump is copied out, the memory that held the dump
+- Once the dump is copied out, the memory that held the dump
is immediately available to the running kernel. And therefore,
unlike kdump, fadump doesn't need a 2nd reboot to get back
the system to the production configuration.
@@ -40,17 +41,18 @@ The above can only be accomplished by coordination with,
and assistance from the Power firmware. The procedure is
as follows:
--- The first kernel registers the sections of memory with the
+- The first kernel registers the sections of memory with the
Power firmware for dump preservation during OS initialization.
These registered sections of memory are reserved by the first
kernel during early boot.
--- When a system crashes, the Power firmware will save
+- When a system crashes, the Power firmware will save
the low memory (boot memory of size larger of 5% of system RAM
or 256MB) of RAM to the previous registered region. It will
also save system registers, and hardware PTE's.
- NOTE: The term 'boot memory' means size of the low memory chunk
+ NOTE:
+ The term 'boot memory' means size of the low memory chunk
that is required for a kernel to boot successfully when
booted with restricted memory. By default, the boot memory
size will be the larger of 5% of system RAM or 256MB.
@@ -64,12 +66,12 @@ as follows:
as fadump uses a predefined offset to reserve memory
for boot memory dump preservation in case of a crash.
--- After the low memory (boot memory) area has been saved, the
+- After the low memory (boot memory) area has been saved, the
firmware will reset PCI and other hardware state. It will
*not* clear the RAM. It will then launch the bootloader, as
normal.
--- The freshly booted kernel will notice that there is a new
+- The freshly booted kernel will notice that there is a new
node (ibm,dump-kernel) in the device tree, indicating that
there is crash data available from a previous boot. During
the early boot OS will reserve rest of the memory above
@@ -77,17 +79,18 @@ as follows:
size. This will make sure that the second kernel will not
touch any of the dump memory area.
--- User-space tools will read /proc/vmcore to obtain the contents
+- User-space tools will read /proc/vmcore to obtain the contents
of memory, which holds the previous crashed kernel dump in ELF
format. The userspace tools may copy this info to disk, or
network, nas, san, iscsi, etc. as desired.
--- Once the userspace tool is done saving dump, it will echo
+- Once the userspace tool is done saving dump, it will echo
'1' to /sys/kernel/fadump_release_mem to release the reserved
memory back to general use, except the memory required for
next firmware-assisted dump registration.
- e.g.
+ e.g.::
+
# echo 1 > /sys/kernel/fadump_release_mem
Please note that the firmware-assisted dump feature
@@ -95,7 +98,7 @@ is only available on Power6 and above systems with recent
firmware versions.
Implementation details:
-----------------------
+-----------------------
During boot, a check is made to see if firmware supports
this feature on that particular machine. If it does, then
@@ -121,7 +124,7 @@ Allocator (CMA) for memory reservation if CMA is configured for kernel.
With CMA reservation this memory will be available for applications to
use it, while kernel is prevented from using it. With this fadump will
still be able to capture all of the kernel memory and most of the user
-space memory except the user pages that were present in CMA region.
+space memory except the user pages that were present in CMA region::
o Memory Reservation during first kernel
@@ -166,7 +169,7 @@ The tools to examine the dump will be same as the ones
used for kdump.
How to enable firmware-assisted dump (fadump):
--------------------------------------
+----------------------------------------------
1. Set config option CONFIG_FA_DUMP=y and build kernel.
2. Boot into linux kernel with 'fadump=on' kernel cmdline option.
@@ -177,19 +180,20 @@ How to enable firmware-assisted dump (fadump):
to specify size of the memory to reserve for boot memory dump
preservation.
-NOTE: 1. 'fadump_reserve_mem=' parameter has been deprecated. Instead
- use 'crashkernel=' to specify size of the memory to reserve
- for boot memory dump preservation.
- 2. If firmware-assisted dump fails to reserve memory then it
- will fallback to existing kdump mechanism if 'crashkernel='
- option is set at kernel cmdline.
- 3. if user wants to capture all of user space memory and ok with
- reserved memory not available to production system, then
- 'fadump=nocma' kernel parameter can be used to fallback to
- old behaviour.
+NOTE:
+ 1. 'fadump_reserve_mem=' parameter has been deprecated. Instead
+ use 'crashkernel=' to specify size of the memory to reserve
+ for boot memory dump preservation.
+ 2. If firmware-assisted dump fails to reserve memory then it
+ will fallback to existing kdump mechanism if 'crashkernel='
+ option is set at kernel cmdline.
+ 3. if user wants to capture all of user space memory and ok with
+ reserved memory not available to production system, then
+ 'fadump=nocma' kernel parameter can be used to fallback to
+ old behaviour.
Sysfs/debugfs files:
-------------
+--------------------
Firmware-assisted dump feature uses sysfs file system to hold
the control files and debugfs file to display memory reserved region.
@@ -197,20 +201,20 @@ the control files and debugfs file to display memory reserved region.
Here is the list of files under kernel sysfs:
/sys/kernel/fadump_enabled
-
This is used to display the fadump status.
- 0 = fadump is disabled
- 1 = fadump is enabled
+
+ - 0 = fadump is disabled
+ - 1 = fadump is enabled
This interface can be used by kdump init scripts to identify if
fadump is enabled in the kernel and act accordingly.
/sys/kernel/fadump_registered
-
This is used to display the fadump registration status as well
as to control (start/stop) the fadump registration.
- 0 = fadump is not registered.
- 1 = fadump is registered and ready to handle system crash.
+
+ - 0 = fadump is not registered.
+ - 1 = fadump is registered and ready to handle system crash.
To register fadump echo 1 > /sys/kernel/fadump_registered and
echo 0 > /sys/kernel/fadump_registered for un-register and stop the
@@ -219,13 +223,12 @@ Here is the list of files under kernel sysfs:
easily integrated with kdump service start/stop.
/sys/kernel/fadump_release_mem
-
This file is available only when fadump is active during
second kernel. This is used to release the reserved memory
region that are held for saving crash dump. To release the
- reserved memory echo 1 to it:
+ reserved memory echo 1 to it::
- echo 1 > /sys/kernel/fadump_release_mem
+ echo 1 > /sys/kernel/fadump_release_mem
After echo 1, the content of the /sys/kernel/debug/powerpc/fadump_region
file will change to reflect the new memory reservations.
@@ -238,38 +241,39 @@ Here is the list of files under powerpc debugfs:
(Assuming debugfs is mounted on /sys/kernel/debug directory.)
/sys/kernel/debug/powerpc/fadump_region
-
This file shows the reserved memory regions if fadump is
enabled otherwise this file is empty. The output format
- is:
- <region>: [<start>-<end>] <reserved-size> bytes, Dumped: <dump-size>
+ is::
+
+ <region>: [<start>-<end>] <reserved-size> bytes, Dumped: <dump-size>
e.g.
- Contents when fadump is registered during first kernel
+ Contents when fadump is registered during first kernel::
- # cat /sys/kernel/debug/powerpc/fadump_region
- CPU : [0x0000006ffb0000-0x0000006fff001f] 0x40020 bytes, Dumped: 0x0
- HPTE: [0x0000006fff0020-0x0000006fff101f] 0x1000 bytes, Dumped: 0x0
- DUMP: [0x0000006fff1020-0x0000007fff101f] 0x10000000 bytes, Dumped: 0x0
+ # cat /sys/kernel/debug/powerpc/fadump_region
+ CPU : [0x0000006ffb0000-0x0000006fff001f] 0x40020 bytes, Dumped: 0x0
+ HPTE: [0x0000006fff0020-0x0000006fff101f] 0x1000 bytes, Dumped: 0x0
+ DUMP: [0x0000006fff1020-0x0000007fff101f] 0x10000000 bytes, Dumped: 0x0
- Contents when fadump is active during second kernel
+ Contents when fadump is active during second kernel::
- # cat /sys/kernel/debug/powerpc/fadump_region
- CPU : [0x0000006ffb0000-0x0000006fff001f] 0x40020 bytes, Dumped: 0x40020
- HPTE: [0x0000006fff0020-0x0000006fff101f] 0x1000 bytes, Dumped: 0x1000
- DUMP: [0x0000006fff1020-0x0000007fff101f] 0x10000000 bytes, Dumped: 0x10000000
- : [0x00000010000000-0x0000006ffaffff] 0x5ffb0000 bytes, Dumped: 0x5ffb0000
+ # cat /sys/kernel/debug/powerpc/fadump_region
+ CPU : [0x0000006ffb0000-0x0000006fff001f] 0x40020 bytes, Dumped: 0x40020
+ HPTE: [0x0000006fff0020-0x0000006fff101f] 0x1000 bytes, Dumped: 0x1000
+ DUMP: [0x0000006fff1020-0x0000007fff101f] 0x10000000 bytes, Dumped: 0x10000000
+ : [0x00000010000000-0x0000006ffaffff] 0x5ffb0000 bytes, Dumped: 0x5ffb0000
-NOTE: Please refer to Documentation/filesystems/debugfs.txt on
+NOTE:
+ Please refer to Documentation/filesystems/debugfs.txt on
how to mount the debugfs filesystem.
TODO:
-----
- o Need to come up with the better approach to find out more
+ - Need to come up with the better approach to find out more
accurate boot memory size that is required for a kernel to
boot successfully when booted with restricted memory.
- o The fadump implementation introduces a fadump crash info structure
+ - The fadump implementation introduces a fadump crash info structure
in the scratch area before the ELF core header. The idea of introducing
this structure is to pass some important crash info data to the second
kernel which will help second kernel to populate ELF core header with
@@ -277,7 +281,9 @@ TODO:
design implementation does not address a possibility of introducing
additional fields (in future) to this structure without affecting
compatibility. Need to come up with the better approach to address this.
+
The possible approaches are:
+
1. Introduce version field for version tracking, bump up the version
whenever a new field is added to the structure in future. The version
field can be used to find out what fields are valid for the current
@@ -285,8 +291,11 @@ TODO:
2. Reserve the area of predefined size (say PAGE_SIZE) for this
structure and have unused area as reserved (initialized to zero)
for future field additions.
+
The advantage of approach 1 over 2 is we don't need to reserve extra space.
----
+
Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
+
This document is based on the original documentation written for phyp
+
assisted dump by Linas Vepstas and Manish Ahuja.
diff --git a/Documentation/powerpc/hvcs.txt b/Documentation/powerpc/hvcs.rst
similarity index 91%
rename from Documentation/powerpc/hvcs.txt
rename to Documentation/powerpc/hvcs.rst
index a730ca5a07f8..6808acde672f 100644
--- a/Documentation/powerpc/hvcs.txt
+++ b/Documentation/powerpc/hvcs.rst
@@ -1,19 +1,22 @@
-===========================================================================
- HVCS
- IBM "Hypervisor Virtual Console Server" Installation Guide
- for Linux Kernel 2.6.4+
- Copyright (C) 2004 IBM Corporation
+===============================================================
+HVCS IBM "Hypervisor Virtual Console Server" Installation Guide
+===============================================================
-===========================================================================
-NOTE:Eight space tabs are the optimum editor setting for reading this file.
-===========================================================================
+for Linux Kernel 2.6.4+
- Author(s) : Ryan S. Arnold <rsa@us.ibm.com>
- Date Created: March, 02, 2004
- Last Changed: August, 24, 2004
+Copyright (C) 2004 IBM Corporation
----------------------------------------------------------------------------
-Table of contents:
+.. ===========================================================================
+.. NOTE:Eight space tabs are the optimum editor setting for reading this file.
+.. ===========================================================================
+
+
+Author(s): Ryan S. Arnold <rsa@us.ibm.com>
+
+Date Created: March, 02, 2004
+Last Changed: August, 24, 2004
+
+.. Table of contents:
1. Driver Introduction:
2. System Requirements
@@ -27,8 +30,8 @@ Table of contents:
8. Questions & Answers:
9. Reporting Bugs:
----------------------------------------------------------------------------
1. Driver Introduction:
+=======================
This is the device driver for the IBM Hypervisor Virtual Console Server,
"hvcs". The IBM hvcs provides a tty driver interface to allow Linux user
@@ -38,8 +41,8 @@ ppc64 system. Physical hardware consoles per partition are not practical
on this hardware so system consoles are accessed by this driver using
firmware interfaces to virtual terminal devices.
----------------------------------------------------------------------------
2. System Requirements:
+=======================
This device driver was written using 2.6.4 Linux kernel APIs and will only
build and run on kernels of this version or later.
@@ -52,8 +55,8 @@ Sysfs must be mounted on the system so that the user can determine which
major and minor numbers are associated with each vty-server. Directions
for sysfs mounting are outside the scope of this document.
----------------------------------------------------------------------------
3. Build Options:
+=================
The hvcs driver registers itself as a tty driver. The tty layer
dynamically allocates a block of major and minor numbers in a quantity
@@ -65,11 +68,11 @@ If the default number of device entries is adequate then this driver can be
built into the kernel. If not, the default can be over-ridden by inserting
the driver as a module with insmod parameters.
----------------------------------------------------------------------------
3.1 Built-in:
+-------------
The following menuconfig example demonstrates selecting to build this
-driver into the kernel.
+driver into the kernel::
Device Drivers --->
Character devices --->
@@ -77,11 +80,11 @@ driver into the kernel.
Begin the kernel make process.
----------------------------------------------------------------------------
3.2 Module:
+-----------
The following menuconfig example demonstrates selecting to build this
-driver as a kernel module.
+driver as a kernel module::
Device Drivers --->
Character devices --->
@@ -89,11 +92,11 @@ driver as a kernel module.
The make process will build the following kernel modules:
- hvcs.ko
- hvcserver.ko
+ - hvcs.ko
+ - hvcserver.ko
To insert the module with the default allocation execute the following
-commands in the order they appear:
+commands in the order they appear::
insmod hvcserver.ko
insmod hvcs.ko
@@ -103,7 +106,7 @@ be inserted first, otherwise the hvcs module will not find some of the
symbols it expects.
To override the default use an insmod parameter as follows (requesting 4
-tty devices as an example):
+tty devices as an example)::
insmod hvcs.ko hvcs_parm_num_devs=4
@@ -115,31 +118,31 @@ source file before building.
NOTE: The length of time it takes to insmod the driver seems to be related
to the number of tty interfaces the registering driver requests.
-In order to remove the driver module execute the following command:
+In order to remove the driver module execute the following command::
rmmod hvcs.ko
The recommended method for installing hvcs as a module is to use depmod to
build a current modules.dep file in /lib/modules/`uname -r` and then
-execute:
+execute::
-modprobe hvcs hvcs_parm_num_devs=4
+ modprobe hvcs hvcs_parm_num_devs=4
The modules.dep file indicates that hvcserver.ko needs to be inserted
before hvcs.ko and modprobe uses this file to smartly insert the modules in
the proper order.
The following modprobe command is used to remove hvcs and hvcserver in the
-proper order:
+proper order::
-modprobe -r hvcs
+ modprobe -r hvcs
----------------------------------------------------------------------------
4. Installation:
+================
The tty layer creates sysfs entries which contain the major and minor
numbers allocated for the hvcs driver. The following snippet of "tree"
-output of the sysfs directory shows where these numbers are presented:
+output of the sysfs directory shows where these numbers are presented::
sys/
|-- *other sysfs base dirs*
@@ -164,7 +167,7 @@ output of the sysfs directory shows where these numbers are presented:
|-- *other sysfs base dirs*
For the above examples the following output is a result of cat'ing the
-"dev" entry in the hvcs directory:
+"dev" entry in the hvcs directory::
Pow5:/sys/class/tty/hvcs0/ # cat dev
254:0
@@ -184,7 +187,7 @@ systems running hvcs will already have the device entries created or udev
will do it automatically.
Given the example output above, to manually create a /dev/hvcs* node entry
-mknod can be used as follows:
+mknod can be used as follows::
mknod /dev/hvcs0 c 254 0
mknod /dev/hvcs1 c 254 1
@@ -195,15 +198,15 @@ Using mknod to manually create the device entries makes these device nodes
persistent. Once created they will exist prior to the driver insmod.
Attempting to connect an application to /dev/hvcs* prior to insertion of
-the hvcs module will result in an error message similar to the following:
+the hvcs module will result in an error message similar to the following::
"/dev/hvcs*: No such device".
NOTE: Just because there is a device node present doesn't mean that there
is a vty-server device configured for that node.
----------------------------------------------------------------------------
5. Connection
+=============
Since this driver controls devices that provide a tty interface a user can
interact with the device node entries using any standard tty-interactive
@@ -249,7 +252,7 @@ vty-server adapter is associated with which /dev/hvcs* node a special sysfs
attribute has been added to each vty-server sysfs entry. This entry is
called "index" and showing it reveals an integer that refers to the
/dev/hvcs* entry to use to connect to that device. For instance cating the
-index attribute of vty-server adapter 30000004 shows the following.
+index attribute of vty-server adapter 30000004 shows the following::
Pow5:/sys/bus/vio/drivers/hvcs/30000004 # cat index
2
@@ -262,8 +265,8 @@ system the /dev/hvcs* entry that interacts with a particular vty-server
adapter is not guaranteed to remain the same across system reboots. Look
in the Q & A section for more on this issue.
----------------------------------------------------------------------------
6. Disconnection
+================
As a security feature to prevent the delivery of stale data to an
unintended target the Power5 system firmware disables the fetching of data
@@ -305,7 +308,7 @@ connection between the vty-server and target vty ONLY if the vterm_state
previously read '1'. The write directive is ignored if the vterm_state
read '0' or if any value other than '0' was written to the vterm_state
attribute. The following example will show the method used for verifying
-the vty-server connection status and disconnecting a vty-server connection.
+the vty-server connection status and disconnecting a vty-server connection::
Pow5:/sys/bus/vio/drivers/hvcs/30000004 # cat vterm_state
1
@@ -318,12 +321,12 @@ the vty-server connection status and disconnecting a vty-server connection.
All vty-server connections are automatically terminated when the device is
hotplug removed and when the module is removed.
----------------------------------------------------------------------------
7. Configuration
+================
Each vty-server has a sysfs entry in the /sys/devices/vio directory, which
is symlinked in several other sysfs tree directories, notably under the
-hvcs driver entry, which looks like the following example:
+hvcs driver entry, which looks like the following example::
Pow5:/sys/bus/vio/drivers/hvcs # ls
. .. 30000003 30000004 rescan
@@ -344,7 +347,7 @@ completed or was never executed.
Vty-server entries in this directory are a 32 bit partition unique unit
address that is created by firmware. An example vty-server sysfs entry
-looks like the following:
+looks like the following::
Pow5:/sys/bus/vio/drivers/hvcs/30000004 # ls
. current_vty devspec name partner_vtys
@@ -352,21 +355,21 @@ looks like the following:
Each entry is provided, by default with a "name" attribute. Reading the
"name" attribute will reveal the device type as shown in the following
-example:
+example::
Pow5:/sys/bus/vio/drivers/hvcs/30000003 # cat name
vty-server
Each entry is also provided, by default, with a "devspec" attribute which
reveals the full device specification when read, as shown in the following
-example:
+example::
Pow5:/sys/bus/vio/drivers/hvcs/30000004 # cat devspec
/vdevice/vty-server@30000004
Each vty-server sysfs dir is provided with two read-only attributes that
provide lists of easily parsed partner vty data: "partner_vtys" and
-"partner_clcs".
+"partner_clcs"::
Pow5:/sys/bus/vio/drivers/hvcs/30000004 # cat partner_vtys
30000000
@@ -396,7 +399,7 @@ A vty-server can only be connected to a single vty at a time. The entry,
read.
The current_vty can be changed by writing a valid partner clc to the entry
-as in the following example:
+as in the following example::
Pow5:/sys/bus/vio/drivers/hvcs/30000004 # echo U5112.428.10304
8A-V4-C0 > current_vty
@@ -408,9 +411,9 @@ currently open connection is freed.
Information on the "vterm_state" attribute was covered earlier on the
chapter entitled "disconnection".
----------------------------------------------------------------------------
8. Questions & Answers:
-===========================================================================
+=======================
+
Q: What are the security concerns involving hvcs?
A: There are three main security concerns:
@@ -429,6 +432,7 @@ A: There are three main security concerns:
partition) will experience the previously logged in session.
---------------------------------------------------------------------------
+
Q: How do I multiplex a console that I grab through hvcs so that other
people can see it:
@@ -440,6 +444,7 @@ term type "screen" to others. This means that curses based programs may
not display properly in screen sessions.
---------------------------------------------------------------------------
+
Q: Why are the colors all messed up?
Q: Why are the control characters acting strange or not working?
Q: Why is the console output all strange and unintelligible?
@@ -455,6 +460,7 @@ disconnect from the console. This will ensure that the next user gets
their own TERM type set when they login.
---------------------------------------------------------------------------
+
Q: When I try to CONNECT kermit to an hvcs device I get:
"Sorry, can't open connection: /dev/hvcs*"What is happening?
@@ -490,6 +496,7 @@ A: There is not a corresponding vty-server device that maps to an existing
/dev/hvcs* entry.
---------------------------------------------------------------------------
+
Q: When I try to CONNECT kermit to an hvcs device I get:
"Sorry, write access to UUCP lockfile directory denied."
@@ -497,6 +504,7 @@ A: The /dev/hvcs* entry you have specified doesn't exist where you said it
does? Maybe you haven't inserted the module (on systems with udev).
---------------------------------------------------------------------------
+
Q: If I already have one Linux partition installed can I use hvcs on said
partition to provide the console for the install of a second Linux
partition?
@@ -505,6 +513,7 @@ A: Yes granted that your are connected to the /dev/hvcs* device using
kermit or cu or some other program that doesn't provide terminal emulation.
---------------------------------------------------------------------------
+
Q: Can I connect to more than one partition's console at a time using this
driver?
@@ -512,6 +521,7 @@ A: Yes. Of course this means that there must be more than one vty-server
configured for this partition and each must point to a disconnected vty.
---------------------------------------------------------------------------
+
Q: Does the hvcs driver support dynamic (hotplug) addition of devices?
A: Yes, if you have dlpar and hotplug enabled for your system and it has
@@ -519,6 +529,7 @@ been built into the kernel the hvcs drivers is configured to dynamically
handle additions of new devices and removals of unused devices.
---------------------------------------------------------------------------
+
Q: For some reason /dev/hvcs* doesn't map to the same vty-server adapter
after a reboot. What happened?
@@ -533,6 +544,7 @@ on how to determine which vty-server goes with which /dev/hvcs* node.
Hint; look at the sysfs "index" attribute for the vty-server.
---------------------------------------------------------------------------
+
Q: Can I use /dev/hvcs* as a conduit to another partition and use a tty
device on that partition as the other end of the pipe?
@@ -554,7 +566,9 @@ read or write to /dev/hvcs*. Now you have a tty conduit between two
partitions.
---------------------------------------------------------------------------
+
9. Reporting Bugs:
+==================
The proper channel for reporting bugs is either through the Linux OS
distribution company that provided your OS or by posting issues to the
diff --git a/Documentation/powerpc/index.rst b/Documentation/powerpc/index.rst
new file mode 100644
index 000000000000..1ff17268db46
--- /dev/null
+++ b/Documentation/powerpc/index.rst
@@ -0,0 +1,34 @@
+:orphan:
+
+=======
+powerpc
+=======
+
+.. toctree::
+ :maxdepth: 1
+
+ bootwrapper
+ cpu_families
+ cpu_features
+ cxl
+ cxlflash
+ dawr-power9
+ dscr
+ eeh-pci-error-recovery
+ firmware-assisted-dump
+ hvcs
+ isa-versions
+ mpc52xx
+ pci_iov_resource_on_powernv
+ pmu-ebb
+ ptrace
+ qe_firmware
+ syscall64-abi
+ transactional_memory
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/powerpc/isa-versions.rst b/Documentation/powerpc/isa-versions.rst
index 812e20cc898c..a363d8c1603c 100644
--- a/Documentation/powerpc/isa-versions.rst
+++ b/Documentation/powerpc/isa-versions.rst
@@ -1,11 +1,12 @@
+==========================
CPU to ISA Version Mapping
==========================
Mapping of some CPU versions to relevant ISA versions.
-========= ====================
+========= ====================================================================
CPU Architecture version
-========= ====================
+========= ====================================================================
Power9 Power ISA v3.0B
Power8 Power ISA v2.07
Power7 Power ISA v2.06
@@ -22,7 +23,7 @@ PPC970 - PowerPC User Instruction Set Architecture Book I v2.01
- PowerPC Virtual Environment Architecture Book II v2.01
- PowerPC Operating Environment Architecture Book III v2.01
- Plus Altivec/VMX ~= 2.03
-========= ====================
+========= ====================================================================
Key Features
@@ -58,9 +59,9 @@ Power5 No
PPC970 No
========== ====
-========== ====================
+========== ====================================
CPU Transactional Memory
-========== ====================
+========== ====================================
Power9 Yes (* see transactional_memory.txt)
Power8 Yes
Power7 No
@@ -71,4 +72,4 @@ Power5++ No
Power5+ No
Power5 No
PPC970 No
-========== ====================
+========== ====================================
diff --git a/Documentation/powerpc/mpc52xx.txt b/Documentation/powerpc/mpc52xx.rst
similarity index 91%
rename from Documentation/powerpc/mpc52xx.txt
rename to Documentation/powerpc/mpc52xx.rst
index 0d540a31ea1a..8676ac63e077 100644
--- a/Documentation/powerpc/mpc52xx.txt
+++ b/Documentation/powerpc/mpc52xx.rst
@@ -1,11 +1,13 @@
+=============================
Linux 2.6.x on MPC52xx family
------------------------------
+=============================
For the latest info, go to http://www.246tNt.com/mpc52xx/
To compile/use :
- - U-Boot:
+ - U-Boot::
+
# <edit Makefile to set ARCH=ppc & CROSS_COMPILE=... ( also EXTRAVERSION
if you wish to ).
# make lite5200_defconfig
@@ -16,7 +18,8 @@ To compile/use :
=> tftpboot 400000 pRamdisk
=> bootm 200000 400000
- - DBug:
+ - DBug::
+
# <edit Makefile to set ARCH=ppc & CROSS_COMPILE=... ( also EXTRAVERSION
if you wish to ).
# make lite5200_defconfig
@@ -28,7 +31,8 @@ To compile/use :
DBug> dn -i zImage.initrd.lite5200
-Some remarks :
+Some remarks:
+
- The port is named mpc52xxx, and config options are PPC_MPC52xx. The MGT5100
is not supported, and I'm not sure anyone is interesting in working on it
so. I didn't took 5xxx because there's apparently a lot of 5xxx that have
diff --git a/Documentation/powerpc/pci_iov_resource_on_powernv.txt b/Documentation/powerpc/pci_iov_resource_on_powernv.rst
similarity index 97%
rename from Documentation/powerpc/pci_iov_resource_on_powernv.txt
rename to Documentation/powerpc/pci_iov_resource_on_powernv.rst
index b55c5cd83f8d..f5a5793e1613 100644
--- a/Documentation/powerpc/pci_iov_resource_on_powernv.txt
+++ b/Documentation/powerpc/pci_iov_resource_on_powernv.rst
@@ -1,6 +1,13 @@
+===================================================
+PCI Express I/O Virtualization Resource on Powerenv
+===================================================
+
Wei Yang <weiyang@linux.vnet.ibm.com>
+
Benjamin Herrenschmidt <benh@au1.ibm.com>
+
Bjorn Helgaas <bhelgaas@google.com>
+
26 Aug 2014
This document describes the requirement from hardware for PCI MMIO resource
@@ -10,6 +17,7 @@ Endpoints and the implementation on P8 (IODA2). The next two sections talks
about considerations on enabling SRIOV on IODA2.
1. Introduction to Partitionable Endpoints
+==========================================
A Partitionable Endpoint (PE) is a way to group the various resources
associated with a device or a set of devices to provide isolation between
@@ -35,6 +43,7 @@ is a completely separate HW entity that replicates the entire logic, so has
its own set of PEs, etc.
2. Implementation of Partitionable Endpoints on P8 (IODA2)
+==========================================================
P8 supports up to 256 Partitionable Endpoints per PHB.
@@ -149,6 +158,7 @@ P8 supports up to 256 Partitionable Endpoints per PHB.
sense, but we haven't done it yet.
3. Considerations for SR-IOV on PowerKVM
+========================================
* SR-IOV Background
@@ -224,7 +234,7 @@ P8 supports up to 256 Partitionable Endpoints per PHB.
IODA supports 256 PEs, so segmented windows contain 256 segments, so if
total_VFs is less than 256, we have the situation in Figure 1.0, where
segments [total_VFs, 255] of the M64 window may map to some MMIO range on
- other devices:
+ other devices::
0 1 total_VFs - 1
+------+------+- -+------+------+
@@ -243,7 +253,7 @@ P8 supports up to 256 Partitionable Endpoints per PHB.
Figure 1.0 Direct map VF(n) BAR space
Our current solution is to allocate 256 segments even if the VF(n) BAR
- space doesn't need that much, as shown in Figure 1.1:
+ space doesn't need that much, as shown in Figure 1.1::
0 1 total_VFs - 1 255
+------+------+- -+------+------+- -+------+------+
@@ -269,6 +279,7 @@ P8 supports up to 256 Partitionable Endpoints per PHB.
responds to segments [total_VFs, 255].
4. Implications for the Generic PCI Code
+========================================
The PCIe SR-IOV spec requires that the base of the VF(n) BAR space be
aligned to the size of an individual VF BAR.
diff --git a/Documentation/powerpc/pmu-ebb.txt b/Documentation/powerpc/pmu-ebb.rst
similarity index 99%
rename from Documentation/powerpc/pmu-ebb.txt
rename to Documentation/powerpc/pmu-ebb.rst
index 73cd163dbfb8..4f474758eb55 100644
--- a/Documentation/powerpc/pmu-ebb.txt
+++ b/Documentation/powerpc/pmu-ebb.rst
@@ -1,3 +1,4 @@
+========================
PMU Event Based Branches
========================
diff --git a/Documentation/powerpc/ptrace.rst b/Documentation/powerpc/ptrace.rst
new file mode 100644
index 000000000000..864d4b6dddd1
--- /dev/null
+++ b/Documentation/powerpc/ptrace.rst
@@ -0,0 +1,156 @@
+======
+Ptrace
+======
+
+GDB intends to support the following hardware debug features of BookE
+processors:
+
+4 hardware breakpoints (IAC)
+2 hardware watchpoints (read, write and read-write) (DAC)
+2 value conditions for the hardware watchpoints (DVC)
+
+For that, we need to extend ptrace so that GDB can query and set these
+resources. Since we're extending, we're trying to create an interface
+that's extendable and that covers both BookE and server processors, so
+that GDB doesn't need to special-case each of them. We added the
+following 3 new ptrace requests.
+
+1. PTRACE_PPC_GETHWDEBUGINFO
+============================
+
+Query for GDB to discover the hardware debug features. The main info to
+be returned here is the minimum alignment for the hardware watchpoints.
+BookE processors don't have restrictions here, but server processors have
+an 8-byte alignment restriction for hardware watchpoints. We'd like to avoid
+adding special cases to GDB based on what it sees in AUXV.
+
+Since we're at it, we added other useful info that the kernel can return to
+GDB: this query will return the number of hardware breakpoints, hardware
+watchpoints and whether it supports a range of addresses and a condition.
+The query will fill the following structure provided by the requesting process::
+
+ struct ppc_debug_info {
+ unit32_t version;
+ unit32_t num_instruction_bps;
+ unit32_t num_data_bps;
+ unit32_t num_condition_regs;
+ unit32_t data_bp_alignment;
+ unit32_t sizeof_condition; /* size of the DVC register */
+ uint64_t features; /* bitmask of the individual flags */
+ };
+
+features will have bits indicating whether there is support for::
+
+ #define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
+ #define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
+ #define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
+ #define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
+ #define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10
+
+2. PTRACE_SETHWDEBUG
+
+Sets a hardware breakpoint or watchpoint, according to the provided structure::
+
+ struct ppc_hw_breakpoint {
+ uint32_t version;
+ #define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
+ #define PPC_BREAKPOINT_TRIGGER_READ 0x2
+ #define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
+ uint32_t trigger_type; /* only some combinations allowed */
+ #define PPC_BREAKPOINT_MODE_EXACT 0x0
+ #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
+ #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
+ #define PPC_BREAKPOINT_MODE_MASK 0x3
+ uint32_t addr_mode; /* address match mode */
+
+ #define PPC_BREAKPOINT_CONDITION_MODE 0x3
+ #define PPC_BREAKPOINT_CONDITION_NONE 0x0
+ #define PPC_BREAKPOINT_CONDITION_AND 0x1
+ #define PPC_BREAKPOINT_CONDITION_EXACT 0x1 /* different name for the same thing as above */
+ #define PPC_BREAKPOINT_CONDITION_OR 0x2
+ #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
+ #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000 /* byte enable bits */
+ #define PPC_BREAKPOINT_CONDITION_BE(n) (1<<((n)+16))
+ uint32_t condition_mode; /* break/watchpoint condition flags */
+
+ uint64_t addr;
+ uint64_t addr2;
+ uint64_t condition_value;
+ };
+
+A request specifies one event, not necessarily just one register to be set.
+For instance, if the request is for a watchpoint with a condition, both the
+DAC and DVC registers will be set in the same request.
+
+With this GDB can ask for all kinds of hardware breakpoints and watchpoints
+that the BookE supports. COMEFROM breakpoints available in server processors
+are not contemplated, but that is out of the scope of this work.
+
+ptrace will return an integer (handle) uniquely identifying the breakpoint or
+watchpoint just created. This integer will be used in the PTRACE_DELHWDEBUG
+request to ask for its removal. Return -ENOSPC if the requested breakpoint
+can't be allocated on the registers.
+
+Some examples of using the structure to:
+
+- set a breakpoint in the first breakpoint register::
+
+ p.version = PPC_DEBUG_CURRENT_VERSION;
+ p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
+ p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
+ p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
+ p.addr = (uint64_t) address;
+ p.addr2 = 0;
+ p.condition_value = 0;
+
+- set a watchpoint which triggers on reads in the second watchpoint register::
+
+ p.version = PPC_DEBUG_CURRENT_VERSION;
+ p.trigger_type = PPC_BREAKPOINT_TRIGGER_READ;
+ p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
+ p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
+ p.addr = (uint64_t) address;
+ p.addr2 = 0;
+ p.condition_value = 0;
+
+- set a watchpoint which triggers only with a specific value::
+
+ p.version = PPC_DEBUG_CURRENT_VERSION;
+ p.trigger_type = PPC_BREAKPOINT_TRIGGER_READ;
+ p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
+ p.condition_mode = PPC_BREAKPOINT_CONDITION_AND | PPC_BREAKPOINT_CONDITION_BE_ALL;
+ p.addr = (uint64_t) address;
+ p.addr2 = 0;
+ p.condition_value = (uint64_t) condition;
+
+- set a ranged hardware breakpoint::
+
+ p.version = PPC_DEBUG_CURRENT_VERSION;
+ p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
+ p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
+ p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
+ p.addr = (uint64_t) begin_range;
+ p.addr2 = (uint64_t) end_range;
+ p.condition_value = 0;
+
+- set a watchpoint in server processors (BookS)::
+
+ p.version = 1;
+ p.trigger_type = PPC_BREAKPOINT_TRIGGER_RW;
+ p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
+ or
+ p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
+
+ p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
+ p.addr = (uint64_t) begin_range;
+ /* For PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE addr2 needs to be specified, where
+ * addr2 - addr <= 8 Bytes.
+ */
+ p.addr2 = (uint64_t) end_range;
+ p.condition_value = 0;
+
+3. PTRACE_DELHWDEBUG
+
+Takes an integer which identifies an existing breakpoint or watchpoint
+(i.e., the value returned from PTRACE_SETHWDEBUG), and deletes the
+corresponding breakpoint or watchpoint..
diff --git a/Documentation/powerpc/ptrace.txt b/Documentation/powerpc/ptrace.txt
deleted file mode 100644
index 99c5ce88d0fe..000000000000
--- a/Documentation/powerpc/ptrace.txt
+++ /dev/null
@@ -1,151 +0,0 @@
-GDB intends to support the following hardware debug features of BookE
-processors:
-
-4 hardware breakpoints (IAC)
-2 hardware watchpoints (read, write and read-write) (DAC)
-2 value conditions for the hardware watchpoints (DVC)
-
-For that, we need to extend ptrace so that GDB can query and set these
-resources. Since we're extending, we're trying to create an interface
-that's extendable and that covers both BookE and server processors, so
-that GDB doesn't need to special-case each of them. We added the
-following 3 new ptrace requests.
-
-1. PTRACE_PPC_GETHWDEBUGINFO
-
-Query for GDB to discover the hardware debug features. The main info to
-be returned here is the minimum alignment for the hardware watchpoints.
-BookE processors don't have restrictions here, but server processors have
-an 8-byte alignment restriction for hardware watchpoints. We'd like to avoid
-adding special cases to GDB based on what it sees in AUXV.
-
-Since we're at it, we added other useful info that the kernel can return to
-GDB: this query will return the number of hardware breakpoints, hardware
-watchpoints and whether it supports a range of addresses and a condition.
-The query will fill the following structure provided by the requesting process:
-
-struct ppc_debug_info {
- unit32_t version;
- unit32_t num_instruction_bps;
- unit32_t num_data_bps;
- unit32_t num_condition_regs;
- unit32_t data_bp_alignment;
- unit32_t sizeof_condition; /* size of the DVC register */
- uint64_t features; /* bitmask of the individual flags */
-};
-
-features will have bits indicating whether there is support for:
-
-#define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
-#define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
-#define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
-#define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
-#define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10
-
-2. PTRACE_SETHWDEBUG
-
-Sets a hardware breakpoint or watchpoint, according to the provided structure:
-
-struct ppc_hw_breakpoint {
- uint32_t version;
-#define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
-#define PPC_BREAKPOINT_TRIGGER_READ 0x2
-#define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
- uint32_t trigger_type; /* only some combinations allowed */
-#define PPC_BREAKPOINT_MODE_EXACT 0x0
-#define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
-#define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
-#define PPC_BREAKPOINT_MODE_MASK 0x3
- uint32_t addr_mode; /* address match mode */
-
-#define PPC_BREAKPOINT_CONDITION_MODE 0x3
-#define PPC_BREAKPOINT_CONDITION_NONE 0x0
-#define PPC_BREAKPOINT_CONDITION_AND 0x1
-#define PPC_BREAKPOINT_CONDITION_EXACT 0x1 /* different name for the same thing as above */
-#define PPC_BREAKPOINT_CONDITION_OR 0x2
-#define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
-#define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000 /* byte enable bits */
-#define PPC_BREAKPOINT_CONDITION_BE(n) (1<<((n)+16))
- uint32_t condition_mode; /* break/watchpoint condition flags */
-
- uint64_t addr;
- uint64_t addr2;
- uint64_t condition_value;
-};
-
-A request specifies one event, not necessarily just one register to be set.
-For instance, if the request is for a watchpoint with a condition, both the
-DAC and DVC registers will be set in the same request.
-
-With this GDB can ask for all kinds of hardware breakpoints and watchpoints
-that the BookE supports. COMEFROM breakpoints available in server processors
-are not contemplated, but that is out of the scope of this work.
-
-ptrace will return an integer (handle) uniquely identifying the breakpoint or
-watchpoint just created. This integer will be used in the PTRACE_DELHWDEBUG
-request to ask for its removal. Return -ENOSPC if the requested breakpoint
-can't be allocated on the registers.
-
-Some examples of using the structure to:
-
-- set a breakpoint in the first breakpoint register
-
- p.version = PPC_DEBUG_CURRENT_VERSION;
- p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
- p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
- p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
- p.addr = (uint64_t) address;
- p.addr2 = 0;
- p.condition_value = 0;
-
-- set a watchpoint which triggers on reads in the second watchpoint register
-
- p.version = PPC_DEBUG_CURRENT_VERSION;
- p.trigger_type = PPC_BREAKPOINT_TRIGGER_READ;
- p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
- p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
- p.addr = (uint64_t) address;
- p.addr2 = 0;
- p.condition_value = 0;
-
-- set a watchpoint which triggers only with a specific value
-
- p.version = PPC_DEBUG_CURRENT_VERSION;
- p.trigger_type = PPC_BREAKPOINT_TRIGGER_READ;
- p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
- p.condition_mode = PPC_BREAKPOINT_CONDITION_AND | PPC_BREAKPOINT_CONDITION_BE_ALL;
- p.addr = (uint64_t) address;
- p.addr2 = 0;
- p.condition_value = (uint64_t) condition;
-
-- set a ranged hardware breakpoint
-
- p.version = PPC_DEBUG_CURRENT_VERSION;
- p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
- p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
- p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
- p.addr = (uint64_t) begin_range;
- p.addr2 = (uint64_t) end_range;
- p.condition_value = 0;
-
-- set a watchpoint in server processors (BookS)
-
- p.version = 1;
- p.trigger_type = PPC_BREAKPOINT_TRIGGER_RW;
- p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
- or
- p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
-
- p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
- p.addr = (uint64_t) begin_range;
- /* For PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE addr2 needs to be specified, where
- * addr2 - addr <= 8 Bytes.
- */
- p.addr2 = (uint64_t) end_range;
- p.condition_value = 0;
-
-3. PTRACE_DELHWDEBUG
-
-Takes an integer which identifies an existing breakpoint or watchpoint
-(i.e., the value returned from PTRACE_SETHWDEBUG), and deletes the
-corresponding breakpoint or watchpoint..
diff --git a/Documentation/powerpc/qe_firmware.txt b/Documentation/powerpc/qe_firmware.rst
similarity index 95%
rename from Documentation/powerpc/qe_firmware.txt
rename to Documentation/powerpc/qe_firmware.rst
index e7ac24aec4ff..42f5103140c9 100644
--- a/Documentation/powerpc/qe_firmware.txt
+++ b/Documentation/powerpc/qe_firmware.rst
@@ -1,23 +1,23 @@
- Freescale QUICC Engine Firmware Uploading
- -----------------------------------------
+=========================================
+Freescale QUICC Engine Firmware Uploading
+=========================================
(c) 2007 Timur Tabi <timur at freescale.com>,
Freescale Semiconductor
-Table of Contents
-=================
+.. Table of Contents
- I - Software License for Firmware
+ I - Software License for Firmware
- II - Microcode Availability
+ II - Microcode Availability
- III - Description and Terminology
+ III - Description and Terminology
- IV - Microcode Programming Details
+ IV - Microcode Programming Details
- V - Firmware Structure Layout
+ V - Firmware Structure Layout
- VI - Sample Code for Creating Firmware Files
+ VI - Sample Code for Creating Firmware Files
Revision Information
====================
@@ -39,7 +39,7 @@ http://opensource.freescale.com. For other firmware files, please contact
your Freescale representative or your operating system vendor.
III - Description and Terminology
-================================
+=================================
In this document, the term 'microcode' refers to the sequence of 32-bit
integers that compose the actual QE microcode.
@@ -89,7 +89,7 @@ being fixed in the RAM package utilizing they should be activated. This data
structure signals the microcode which of these virtual traps is active.
This structure contains 6 words that the application should copy to some
-specific been defined. This table describes the structure.
+specific been defined. This table describes the structure::
---------------------------------------------------------------
| Offset in | | Destination Offset | Size of |
@@ -119,7 +119,7 @@ Extended Modes
This is a double word bit array (64 bits) that defines special functionality
which has an impact on the software drivers. Each bit has its own impact
and has special instructions for the s/w associated with it. This structure is
-described in this table:
+described in this table::
-----------------------------------------------------------------------
| Bit # | Name | Description |
@@ -220,7 +220,8 @@ The 'model' field is a 16-bit number that matches the actual SOC. The
'major' and 'minor' fields are the major and minor revision numbers,
respectively, of the SOC.
-For example, to match the 8323, revision 1.0:
+For example, to match the 8323, revision 1.0::
+
soc.model = 8323
soc.major = 1
soc.minor = 0
@@ -273,10 +274,10 @@ library and available to any driver that calles qe_get_firmware_info().
'reserved'.
After the last microcode is a 32-bit CRC. It can be calculated using
-this algorithm:
+this algorithm::
-u32 crc32(const u8 *p, unsigned int len)
-{
+ u32 crc32(const u8 *p, unsigned int len)
+ {
unsigned int i;
u32 crc = 0;
@@ -286,7 +287,7 @@ u32 crc32(const u8 *p, unsigned int len)
crc = (crc >> 1) ^ ((crc & 1) ? 0xedb88320 : 0);
}
return crc;
-}
+ }
VI - Sample Code for Creating Firmware Files
============================================
diff --git a/Documentation/powerpc/syscall64-abi.txt b/Documentation/powerpc/syscall64-abi.rst
similarity index 82%
rename from Documentation/powerpc/syscall64-abi.txt
rename to Documentation/powerpc/syscall64-abi.rst
index fa716a0d88bd..e49f69f941b9 100644
--- a/Documentation/powerpc/syscall64-abi.txt
+++ b/Documentation/powerpc/syscall64-abi.rst
@@ -5,12 +5,12 @@ Power Architecture 64-bit Linux system call ABI
syscall
=======
-syscall calling sequence[*] matches the Power Architecture 64-bit ELF ABI
+syscall calling sequence\ [1]_ matches the Power Architecture 64-bit ELF ABI
specification C function calling sequence, including register preservation
rules, with the following differences.
-[*] Some syscalls (typically low-level management functions) may have
- different calling sequences (e.g., rt_sigreturn).
+.. [1] Some syscalls (typically low-level management functions) may have
+ different calling sequences (e.g., rt_sigreturn).
Parameters and return value
---------------------------
@@ -33,12 +33,14 @@ Register preservation rules
Register preservation rules match the ELF ABI calling sequence with the
following differences:
-r0: Volatile. (System call number.)
-r3: Volatile. (Parameter 1, and return value.)
-r4-r8: Volatile. (Parameters 2-6.)
-cr0: Volatile (cr0.SO is the return error condition)
-cr1, cr5-7: Nonvolatile.
-lr: Nonvolatile.
+=========== ============= ========================================
+r0 Volatile (System call number.)
+r3 Volatile (Parameter 1, and return value.)
+r4-r8 Volatile (Parameters 2-6.)
+cr0 Volatile (cr0.SO is the return error condition)
+cr1, cr5-7 Nonvolatile
+lr Nonvolatile
+=========== ============= ========================================
All floating point and vector data registers as well as control and status
registers are nonvolatile.
@@ -90,9 +92,12 @@ The vsyscall may or may not use the caller's stack frame save areas.
Register preservation rules
---------------------------
-r0: Volatile.
-cr1, cr5-7: Volatile.
-lr: Volatile.
+
+=========== ========
+r0 Volatile
+cr1, cr5-7 Volatile
+lr Volatile
+=========== ========
Invocation
----------
diff --git a/Documentation/powerpc/transactional_memory.txt b/Documentation/powerpc/transactional_memory.rst
similarity index 93%
rename from Documentation/powerpc/transactional_memory.txt
rename to Documentation/powerpc/transactional_memory.rst
index 52c023e14f26..09955103acb4 100644
--- a/Documentation/powerpc/transactional_memory.txt
+++ b/Documentation/powerpc/transactional_memory.rst
@@ -1,3 +1,4 @@
+============================
Transactional Memory support
============================
@@ -17,29 +18,29 @@ instructions are presented to delimit transactions; transactions are
guaranteed to either complete atomically or roll back and undo any partial
changes.
-A simple transaction looks like this:
+A simple transaction looks like this::
-begin_move_money:
- tbegin
- beq abort_handler
+ begin_move_money:
+ tbegin
+ beq abort_handler
- ld r4, SAVINGS_ACCT(r3)
- ld r5, CURRENT_ACCT(r3)
- subi r5, r5, 1
- addi r4, r4, 1
- std r4, SAVINGS_ACCT(r3)
- std r5, CURRENT_ACCT(r3)
+ ld r4, SAVINGS_ACCT(r3)
+ ld r5, CURRENT_ACCT(r3)
+ subi r5, r5, 1
+ addi r4, r4, 1
+ std r4, SAVINGS_ACCT(r3)
+ std r5, CURRENT_ACCT(r3)
- tend
+ tend
- b continue
+ b continue
-abort_handler:
- ... test for odd failures ...
+ abort_handler:
+ ... test for odd failures ...
- /* Retry the transaction if it failed because it conflicted with
- * someone else: */
- b begin_move_money
+ /* Retry the transaction if it failed because it conflicted with
+ * someone else: */
+ b begin_move_money
The 'tbegin' instruction denotes the start point, and 'tend' the end point.
@@ -123,7 +124,7 @@ Transaction-aware signal handlers can read the transactional register state
from the second ucontext. This will be necessary for crash handlers to
determine, for example, the address of the instruction causing the SIGSEGV.
-Example signal handler:
+Example signal handler::
void crash_handler(int sig, siginfo_t *si, void *uc)
{
@@ -133,9 +134,9 @@ Example signal handler:
if (ucp_link) {
u64 msr = ucp->uc_mcontext.regs->msr;
/* May have transactional ucontext! */
-#ifndef __powerpc64__
+ #ifndef __powerpc64__
msr |= ((u64)transactional_ucp->uc_mcontext.regs->msr) << 32;
-#endif
+ #endif
if (MSR_TM_ACTIVE(msr)) {
/* Yes, we crashed during a transaction. Oops. */
fprintf(stderr, "Transaction to be restarted at 0x%llx, but "
@@ -176,6 +177,7 @@ Failure cause codes used by kernel
These are defined in <asm/reg.h>, and distinguish different reasons why the
kernel aborted a transaction:
+ ====================== ================================
TM_CAUSE_RESCHED Thread was rescheduled.
TM_CAUSE_TLBI Software TLB invalid.
TM_CAUSE_FAC_UNAV FP/VEC/VSX unavailable trap.
@@ -184,6 +186,7 @@ kernel aborted a transaction:
TM_CAUSE_MISC Currently unused.
TM_CAUSE_ALIGNMENT Alignment fault.
TM_CAUSE_EMULATE Emulation that touched memory.
+ ====================== ================================
These can be checked by the user program's abort handler as TEXASR[0:7]. If
bit 7 is set, it indicates that the error is consider persistent. For example
@@ -203,7 +206,7 @@ POWER9
======
TM on POWER9 has issues with storing the complete register state. This
-is described in this commit:
+is described in this commit::
commit 4bb3c7a0208fc13ca70598efd109901a7cd45ae7
Author: Paul Mackerras <paulus@ozlabs.org>
diff --git a/MAINTAINERS b/MAINTAINERS
index 518b73924d7e..5badbf8fa37b 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -4326,7 +4326,7 @@ F: arch/powerpc/platforms/powernv/pci-cxl.c
F: drivers/misc/cxl/
F: include/misc/cxl*
F: include/uapi/misc/cxl.h
-F: Documentation/powerpc/cxl.txt
+F: Documentation/powerpc/cxl.rst
F: Documentation/ABI/testing/sysfs-class-cxl
CXLFLASH (IBM Coherent Accelerator Processor Interface CAPI Flash) SCSI DRIVER
@@ -4337,7 +4337,7 @@ L: linux-scsi@vger.kernel.org
S: Supported
F: drivers/scsi/cxlflash/
F: include/uapi/scsi/cxlflash_ioctl.h
-F: Documentation/powerpc/cxlflash.txt
+F: Documentation/powerpc/cxlflash.rst
CYBERPRO FB DRIVER
M: Russell King <linux@armlinux.org.uk>
@@ -12048,7 +12048,7 @@ F: Documentation/PCI/pci-error-recovery.txt
F: drivers/pci/pcie/aer.c
F: drivers/pci/pcie/dpc.c
F: drivers/pci/pcie/err.c
-F: Documentation/powerpc/eeh-pci-error-recovery.txt
+F: Documentation/powerpc/eeh-pci-error-recovery.rst
F: arch/powerpc/kernel/eeh*.c
F: arch/powerpc/platforms/*/eeh*.c
F: arch/powerpc/include/*/eeh*.h
diff --git a/arch/powerpc/kernel/exceptions-64s.S b/arch/powerpc/kernel/exceptions-64s.S
index 9481a117e242..9b9c463e55d1 100644
--- a/arch/powerpc/kernel/exceptions-64s.S
+++ b/arch/powerpc/kernel/exceptions-64s.S
@@ -903,7 +903,7 @@ EXC_COMMON(trap_0b_common, 0xb00, unknown_exception)
*
* Call convention:
*
- * syscall register convention is in Documentation/powerpc/syscall64-abi.txt
+ * syscall register convention is in Documentation/powerpc/syscall64-abi.rst
*
* For hypercalls, the register convention is as follows:
* r0 volatile
diff --git a/drivers/soc/fsl/qe/qe.c b/drivers/soc/fsl/qe/qe.c
index 612d9c551be5..53c6778518ac 100644
--- a/drivers/soc/fsl/qe/qe.c
+++ b/drivers/soc/fsl/qe/qe.c
@@ -423,7 +423,7 @@ static void qe_upload_microcode(const void *base,
/*
* Upload a microcode to the I-RAM at a specific address.
*
- * See Documentation/powerpc/qe_firmware.txt for information on QE microcode
+ * See Documentation/powerpc/qe_firmware.rst for information on QE microcode
* uploading.
*
* Currently, only version 1 is supported, so the 'version' field must be
diff --git a/drivers/tty/hvc/hvcs.c b/drivers/tty/hvc/hvcs.c
index cb4db1b3ca3c..5fb214e67d73 100644
--- a/drivers/tty/hvc/hvcs.c
+++ b/drivers/tty/hvc/hvcs.c
@@ -47,7 +47,7 @@
* using the 2.6 Linux kernel kref construct.
*
* For direction on installation and usage of this driver please reference
- * Documentation/powerpc/hvcs.txt.
+ * Documentation/powerpc/hvcs.rst.
*/
#include <linux/device.h>
diff --git a/include/soc/fsl/qe/qe.h b/include/soc/fsl/qe/qe.h
index b3d1aff5e8ad..7afc6b1df77a 100644
--- a/include/soc/fsl/qe/qe.h
+++ b/include/soc/fsl/qe/qe.h
@@ -263,7 +263,7 @@ static inline int qe_alive_during_sleep(void)
/* Structure that defines QE firmware binary files.
*
- * See Documentation/powerpc/qe_firmware.txt for a description of these
+ * See Documentation/powerpc/qe_firmware.rst for a description of these
* fields.
*/
struct qe_firmware {
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* Re: [PATCH v2 26/79] docs: powerpc: convert docs to ReST and rename to *.rst
2019-04-22 13:27 ` [PATCH v2 26/79] docs: powerpc: " Mauro Carvalho Chehab
@ 2019-04-24 1:15 ` Andrew Donnellan
0 siblings, 0 replies; 115+ messages in thread
From: Andrew Donnellan @ 2019-04-24 1:15 UTC (permalink / raw)
To: Mauro Carvalho Chehab, Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, linux-kernel, Jonathan Corbet,
Bjorn Helgaas, Benjamin Herrenschmidt, Paul Mackerras,
Michael Ellerman, Frederic Barrat, Manoj N. Kumar,
Matthew R. Ochs, Uma Krishnan, Russell Currey, Sam Bobroff,
Oliver O'Halloran, Qiang Zhao, Li Yang, Greg Kroah-Hartman,
Jiri Slaby, linux-pci, linuxppc-dev, linux-scsi, linux-arm-kernel
On 22/4/19 11:27 pm, Mauro Carvalho Chehab wrote:
> Convert docs to ReST and add them to the arch-specific
> book.
>
> The conversion here was trivial, as almost every file there
> was already using an elegant format close to ReST standard.
>
> The changes were mostly to mark literal blocks and add a few
> missing section title identifiers.
>
> One note with regards to "--": on Sphinx, this can't be used
> to identify a list, as it will format it badly. This can be
> used, however, to identify a long hyphen - and "---" is an
> even longer one.
>
> At its new index.rst, let's add a :orphan: while this is not linked to
> the main index.rst file, in order to avoid build warnings.
>
> Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Acked-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> # cxl
Minor possible improvement below, otherwise compiled output looks very nice.
> diff --git a/Documentation/powerpc/cxl.txt b/Documentation/powerpc/cxl.rst
> similarity index 95%
> rename from Documentation/powerpc/cxl.txt
> rename to Documentation/powerpc/cxl.rst
> index c5e8d5098ed3..99e704afb09d 100644
> --- a/Documentation/powerpc/cxl.txt
> +++ b/Documentation/powerpc/cxl.rst
> @@ -1,3 +1,4 @@
> +====================================
> Coherent Accelerator Interface (CXL)
> ====================================
>
> @@ -21,6 +22,8 @@ Introduction
> Hardware overview
> =================
>
> + ::
> +
> POWER8/9 FPGA
> +----------+ +---------+
> | | | |
> @@ -59,14 +62,16 @@ Hardware overview
> the fault. The context to which this fault is serviced is based on
> who owns that acceleration function.
>
> - POWER8 <-----> PSL Version 8 is compliant to the CAIA Version 1.0.
> - POWER9 <-----> PSL Version 9 is compliant to the CAIA Version 2.0.
> + - POWER8 <------> PSL Version 8 is compliant to the CAIA Version 1.0.
> + - POWER9 <------> PSL Version 9 is compliant to the CAIA Version 2.0.
> +
This could probably be changed to "POWER8 and PSL Version 8 are
compliant" or something like that to avoid the ASCII art arrows turning
into dashes. Happy to pick this up myself if I ever get around to
revising the rest of the documentation.
--
Andrew Donnellan OzLabs, ADL Canberra
andrew.donnellan@au1.ibm.com IBM Australia Limited
^ permalink raw reply [flat|nested] 115+ messages in thread
* [PATCH v2 27/79] docs: pps.txt: convert to ReST and rename to pps.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (19 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 26/79] docs: powerpc: " Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 16:19 ` Rodolfo Giometti
2019-04-22 13:27 ` [PATCH v2 28/79] docs: ptp.txt: convert to ReST and move to driver-api Mauro Carvalho Chehab
` (52 subsequent siblings)
73 siblings, 1 reply; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Rodolfo Giometti
This file is already in a good shape: just its title and
adding some literal block markups is needed for it to be
part of the document.
While it has a small chapter with sysfs stuff, most of
the document is focused on driver development.
As it describes a kernel API, move it to the driver-api
directory.
In order to avoid conflicts, let's add an :orphan: tag
to it, to be removed when added to the driver-api book.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
.../{pps/pps.txt => driver-api/pps.rst} | 67 ++++++++++---------
MAINTAINERS | 2 +-
2 files changed, 36 insertions(+), 33 deletions(-)
rename Documentation/{pps/pps.txt => driver-api/pps.rst} (89%)
diff --git a/Documentation/pps/pps.txt b/Documentation/driver-api/pps.rst
similarity index 89%
rename from Documentation/pps/pps.txt
rename to Documentation/driver-api/pps.rst
index 99f5d8c4c652..1456d2c32ebd 100644
--- a/Documentation/pps/pps.txt
+++ b/Documentation/driver-api/pps.rst
@@ -1,8 +1,10 @@
+:orphan:
- PPS - Pulse Per Second
- ----------------------
+======================
+PPS - Pulse Per Second
+======================
-(C) Copyright 2007 Rodolfo Giometti <giometti@enneenne.com>
+Copyright (C) 2007 Rodolfo Giometti <giometti@enneenne.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@@ -88,7 +90,7 @@ Coding example
--------------
To register a PPS source into the kernel you should define a struct
-pps_source_info as follows:
+pps_source_info as follows::
static struct pps_source_info pps_ktimer_info = {
.name = "ktimer",
@@ -101,12 +103,12 @@ pps_source_info as follows:
};
and then calling the function pps_register_source() in your
-initialization routine as follows:
+initialization routine as follows::
source = pps_register_source(&pps_ktimer_info,
PPS_CAPTUREASSERT | PPS_OFFSETASSERT);
-The pps_register_source() prototype is:
+The pps_register_source() prototype is::
int pps_register_source(struct pps_source_info *info, int default_params)
@@ -118,7 +120,7 @@ pps_source_info which describe the capabilities of the driver).
Once you have registered a new PPS source into the system you can
signal an assert event (for example in the interrupt handler routine)
-just using:
+just using::
pps_event(source, &ts, PPS_CAPTUREASSERT, ptr)
@@ -134,13 +136,13 @@ Please see the file drivers/pps/clients/pps-ktimer.c for example code.
SYSFS support
-------------
-If the SYSFS filesystem is enabled in the kernel it provides a new class:
+If the SYSFS filesystem is enabled in the kernel it provides a new class::
$ ls /sys/class/pps/
pps0/ pps1/ pps2/
Every directory is the ID of a PPS sources defined in the system and
-inside you find several files:
+inside you find several files::
$ ls -F /sys/class/pps/pps0/
assert dev mode path subsystem@
@@ -148,7 +150,7 @@ inside you find several files:
Inside each "assert" and "clear" file you can find the timestamp and a
-sequence number:
+sequence number::
$ cat /sys/class/pps/pps0/assert
1170026870.983207967#8
@@ -175,11 +177,11 @@ and the userland tools available in your distribution's pps-tools package,
http://linuxpps.org , or https://github.com/redlab-i/pps-tools.
Once you have enabled the compilation of pps-ktimer just modprobe it (if
-not statically compiled):
+not statically compiled)::
# modprobe pps-ktimer
-and the run ppstest as follow:
+and the run ppstest as follow::
$ ./ppstest /dev/pps1
trying PPS source "/dev/pps1"
@@ -204,26 +206,27 @@ nor affordable. The cheap way is to load a PPS generator on one of the
computers (master) and PPS clients on others (slaves), and use very simple
cables to deliver signals using parallel ports, for example.
-Parallel port cable pinout:
-pin name master slave
-1 STROBE *------ *
-2 D0 * | *
-3 D1 * | *
-4 D2 * | *
-5 D3 * | *
-6 D4 * | *
-7 D5 * | *
-8 D6 * | *
-9 D7 * | *
-10 ACK * ------*
-11 BUSY * *
-12 PE * *
-13 SEL * *
-14 AUTOFD * *
-15 ERROR * *
-16 INIT * *
-17 SELIN * *
-18-25 GND *-----------*
+Parallel port cable pinout::
+
+ pin name master slave
+ 1 STROBE *------ *
+ 2 D0 * | *
+ 3 D1 * | *
+ 4 D2 * | *
+ 5 D3 * | *
+ 6 D4 * | *
+ 7 D5 * | *
+ 8 D6 * | *
+ 9 D7 * | *
+ 10 ACK * ------*
+ 11 BUSY * *
+ 12 PE * *
+ 13 SEL * *
+ 14 AUTOFD * *
+ 15 ERROR * *
+ 16 INIT * *
+ 17 SELIN * *
+ 18-25 GND *-----------*
Please note that parallel port interrupt occurs only on high->low transition,
so it is used for PPS assert edge. PPS clear edge can be determined only
diff --git a/MAINTAINERS b/MAINTAINERS
index 5badbf8fa37b..be3d80397956 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -12543,7 +12543,7 @@ M: Rodolfo Giometti <giometti@enneenne.com>
W: http://wiki.enneenne.com/index.php/LinuxPPS_support
L: linuxpps@ml.enneenne.com (subscribers-only)
S: Maintained
-F: Documentation/pps/
+F: Documentation/driver-api/pps.rst
F: Documentation/devicetree/bindings/pps/pps-gpio.txt
F: Documentation/ABI/testing/sysfs-pps
F: drivers/pps/
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* Re: [PATCH v2 27/79] docs: pps.txt: convert to ReST and rename to pps.rst
2019-04-22 13:27 ` [PATCH v2 27/79] docs: pps.txt: convert to ReST and rename to pps.rst Mauro Carvalho Chehab
@ 2019-04-22 16:19 ` Rodolfo Giometti
0 siblings, 0 replies; 115+ messages in thread
From: Rodolfo Giometti @ 2019-04-22 16:19 UTC (permalink / raw)
To: Mauro Carvalho Chehab, Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, linux-kernel, Jonathan Corbet
On 22/04/2019 15:27, Mauro Carvalho Chehab wrote:
> This file is already in a good shape: just its title and
> adding some literal block markups is needed for it to be
> part of the document.
>
> While it has a small chapter with sysfs stuff, most of
> the document is focused on driver development.
>
> As it describes a kernel API, move it to the driver-api
> directory.
>
> In order to avoid conflicts, let's add an :orphan: tag
> to it, to be removed when added to the driver-api book.
>
> Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Acked-by: Rodolfo Giometti <giometti@enneenne.com>
--
GNU/Linux Solutions e-mail: giometti@enneenne.com
Linux Device Driver giometti@linux.it
Embedded Systems phone: +39 349 2432127
UNIX programming skype: rodolfo.giometti
^ permalink raw reply [flat|nested] 115+ messages in thread
* [PATCH v2 28/79] docs: ptp.txt: convert to ReST and move to driver-api
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (20 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 27/79] docs: pps.txt: convert to ReST and rename to pps.rst Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 15:40 ` Richard Cochran
2019-04-22 13:27 ` [PATCH v2 29/79] docs: riscv: convert docs to ReST and rename to *.rst Mauro Carvalho Chehab
` (51 subsequent siblings)
73 siblings, 1 reply; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Richard Cochran, David S. Miller, netdev
The conversion is trivial: just adjust title markups.
In order to avoid conflicts, let's add an :orphan: tag
to it, to be removed when this file gets added to the
driver-api book.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
.../{ptp/ptp.txt => driver-api/ptp.rst} | 26 +++++++++++++------
Documentation/networking/timestamping.txt | 2 +-
MAINTAINERS | 2 +-
3 files changed, 20 insertions(+), 10 deletions(-)
rename Documentation/{ptp/ptp.txt => driver-api/ptp.rst} (88%)
diff --git a/Documentation/ptp/ptp.txt b/Documentation/driver-api/ptp.rst
similarity index 88%
rename from Documentation/ptp/ptp.txt
rename to Documentation/driver-api/ptp.rst
index 11e904ee073f..b6e65d66d37a 100644
--- a/Documentation/ptp/ptp.txt
+++ b/Documentation/driver-api/ptp.rst
@@ -1,5 +1,8 @@
+:orphan:
-* PTP hardware clock infrastructure for Linux
+===========================================
+PTP hardware clock infrastructure for Linux
+===========================================
This patch set introduces support for IEEE 1588 PTP clocks in
Linux. Together with the SO_TIMESTAMPING socket options, this
@@ -22,7 +25,8 @@
- Period output signals configurable from user space
- Synchronization of the Linux system time via the PPS subsystem
-** PTP hardware clock kernel API
+PTP hardware clock kernel API
+=============================
A PTP clock driver registers itself with the class driver. The
class driver handles all of the dealings with user space. The
@@ -36,7 +40,8 @@
development, it can be useful to have more than one clock in a
single system, in order to allow performance comparisons.
-** PTP hardware clock user space API
+PTP hardware clock user space API
+=================================
The class driver also creates a character device for each
registered clock. User space can use an open file descriptor from
@@ -49,7 +54,8 @@
ancillary clock features. User space can receive time stamped
events via blocking read() and poll().
-** Writing clock drivers
+Writing clock drivers
+=====================
Clock drivers include include/linux/ptp_clock_kernel.h and register
themselves by presenting a 'struct ptp_clock_info' to the
@@ -66,14 +72,17 @@
class driver, since the lock may also be needed by the clock
driver's interrupt service routine.
-** Supported hardware
+Supported hardware
+==================
+
+ * Freescale eTSEC gianfar
- + Freescale eTSEC gianfar
- 2 Time stamp external triggers, programmable polarity (opt. interrupt)
- 2 Alarm registers (optional interrupt)
- 3 Periodic signals (optional interrupt)
- + National DP83640
+ * National DP83640
+
- 6 GPIOs programmable as inputs or outputs
- 6 GPIOs with dedicated functions (LED/JTAG/clock) can also be
used as general inputs or outputs
@@ -81,6 +90,7 @@
- GPIO outputs can produce periodic signals
- 1 interrupt pin
- + Intel IXP465
+ * Intel IXP465
+
- Auxiliary Slave/Master Mode Snapshot (optional interrupt)
- Target Time (optional interrupt)
diff --git a/Documentation/networking/timestamping.txt b/Documentation/networking/timestamping.txt
index bbdaf8990031..8dd6333c3270 100644
--- a/Documentation/networking/timestamping.txt
+++ b/Documentation/networking/timestamping.txt
@@ -368,7 +368,7 @@ ts[1] used to hold hardware timestamps converted to system time.
Instead, expose the hardware clock device on the NIC directly as
a HW PTP clock source, to allow time conversion in userspace and
optionally synchronize system time with a userspace PTP stack such
-as linuxptp. For the PTP clock API, see Documentation/ptp/ptp.txt.
+as linuxptp. For the PTP clock API, see Documentation/driver-api/ptp.rst.
Note that if the SO_TIMESTAMP or SO_TIMESTAMPNS option is enabled
together with SO_TIMESTAMPING using SOF_TIMESTAMPING_SOFTWARE, a false
diff --git a/MAINTAINERS b/MAINTAINERS
index be3d80397956..e4c26dc67668 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -12649,7 +12649,7 @@ L: netdev@vger.kernel.org
S: Maintained
W: http://linuxptp.sourceforge.net/
F: Documentation/ABI/testing/sysfs-ptp
-F: Documentation/ptp/*
+F: Documentation/driver-api/ptp.rst
F: drivers/net/phy/dp83640*
F: drivers/ptp/*
F: include/linux/ptp_cl*
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* Re: [PATCH v2 28/79] docs: ptp.txt: convert to ReST and move to driver-api
2019-04-22 13:27 ` [PATCH v2 28/79] docs: ptp.txt: convert to ReST and move to driver-api Mauro Carvalho Chehab
@ 2019-04-22 15:40 ` Richard Cochran
0 siblings, 0 replies; 115+ messages in thread
From: Richard Cochran @ 2019-04-22 15:40 UTC (permalink / raw)
To: Mauro Carvalho Chehab
Cc: Linux Doc Mailing List, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, David S. Miller, netdev
On Mon, Apr 22, 2019 at 10:27:17AM -0300, Mauro Carvalho Chehab wrote:
> The conversion is trivial: just adjust title markups.
>
> In order to avoid conflicts, let's add an :orphan: tag
> to it, to be removed when this file gets added to the
> driver-api book.
Acked-by: Richard Cochran <richardcochran@gmail.com>
^ permalink raw reply [flat|nested] 115+ messages in thread
* [PATCH v2 29/79] docs: riscv: convert docs to ReST and rename to *.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (21 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 28/79] docs: ptp.txt: convert to ReST and move to driver-api Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 30/79] docs: Debugging390.txt: convert table to ascii artwork Mauro Carvalho Chehab
` (50 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Palmer Dabbelt, Albert Ou, linux-riscv
The conversion here is trivial:
- Adjust the document title's markup
- Do some whitespace alignment;
- mark literal blocks;
- Use ReST way to markup indented lists.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/riscv/index.rst | 17 ++++
Documentation/riscv/{pmu.txt => pmu.rst} | 98 +++++++++++++-----------
2 files changed, 69 insertions(+), 46 deletions(-)
create mode 100644 Documentation/riscv/index.rst
rename Documentation/riscv/{pmu.txt => pmu.rst} (77%)
diff --git a/Documentation/riscv/index.rst b/Documentation/riscv/index.rst
new file mode 100644
index 000000000000..c4b906d9b5a7
--- /dev/null
+++ b/Documentation/riscv/index.rst
@@ -0,0 +1,17 @@
+:orphan:
+
+===================
+RISC-V architecture
+===================
+
+.. toctree::
+ :maxdepth: 1
+
+ pmu
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/riscv/pmu.txt b/Documentation/riscv/pmu.rst
similarity index 77%
rename from Documentation/riscv/pmu.txt
rename to Documentation/riscv/pmu.rst
index b29f03a6d82f..acb216b99c26 100644
--- a/Documentation/riscv/pmu.txt
+++ b/Documentation/riscv/pmu.rst
@@ -1,5 +1,7 @@
+===================================
Supporting PMUs on RISC-V platforms
-==========================================
+===================================
+
Alan Kao <alankao@andestech.com>, Mar 2018
Introduction
@@ -77,13 +79,13 @@ Note that some features can be done in this stage as well:
(2) privilege level setting (user space only, kernel space only, both);
(3) destructor setting. Normally it is sufficient to apply *riscv_destroy_event*;
(4) tweaks for non-sampling events, which will be utilized by functions such as
-*perf_adjust_period*, usually something like the follows:
+ *perf_adjust_period*, usually something like the follows::
-if (!is_sampling_event(event)) {
- hwc->sample_period = x86_pmu.max_period;
- hwc->last_period = hwc->sample_period;
- local64_set(&hwc->period_left, hwc->sample_period);
-}
+ if (!is_sampling_event(event)) {
+ hwc->sample_period = x86_pmu.max_period;
+ hwc->last_period = hwc->sample_period;
+ local64_set(&hwc->period_left, hwc->sample_period);
+ }
In the case of *riscv_base_pmu*, only (3) is provided for now.
@@ -94,10 +96,10 @@ In the case of *riscv_base_pmu*, only (3) is provided for now.
3.1. Interrupt Initialization
This often occurs at the beginning of the *event_init* method. In common
-practice, this should be a code segment like
+practice, this should be a code segment like::
-int x86_reserve_hardware(void)
-{
+ int x86_reserve_hardware(void)
+ {
int err = 0;
if (!atomic_inc_not_zero(&pmc_refcount)) {
@@ -114,7 +116,7 @@ int x86_reserve_hardware(void)
}
return err;
-}
+ }
And the magic is in *reserve_pmc_hardware*, which usually does atomic
operations to make implemented IRQ accessible from some global function pointer.
@@ -128,28 +130,28 @@ which will be introduced in the next section.)
3.2. IRQ Structure
-Basically, a IRQ runs the following pseudo code:
+Basically, a IRQ runs the following pseudo code::
-for each hardware counter that triggered this overflow
+ for each hardware counter that triggered this overflow
- get the event of this counter
+ get the event of this counter
- // following two steps are defined as *read()*,
- // check the section Reading/Writing Counters for details.
- count the delta value since previous interrupt
- update the event->count (# event occurs) by adding delta, and
- event->hw.period_left by subtracting delta
+ // following two steps are defined as *read()*,
+ // check the section Reading/Writing Counters for details.
+ count the delta value since previous interrupt
+ update the event->count (# event occurs) by adding delta, and
+ event->hw.period_left by subtracting delta
- if the event overflows
- sample data
- set the counter appropriately for the next overflow
+ if the event overflows
+ sample data
+ set the counter appropriately for the next overflow
- if the event overflows again
- too frequently, throttle this event
- fi
- fi
+ if the event overflows again
+ too frequently, throttle this event
+ fi
+ fi
-end for
+ end for
However as of this writing, none of the RISC-V implementations have designed an
interrupt for perf, so the details are to be completed in the future.
@@ -195,23 +197,26 @@ A normal flow of these state transitions are as follows:
At this stage, a general event is bound to a physical counter, if any.
The state changes to PERF_HES_STOPPED and PERF_HES_UPTODATE, because it is now
stopped, and the (software) event count does not need updating.
-** *start* is then called, and the counter is enabled.
- With flag PERF_EF_RELOAD, it writes an appropriate value to the counter (check
- previous section for detail).
- Nothing is written if the flag does not contain PERF_EF_RELOAD.
- The state now is reset to none, because it is neither stopped nor updated
- (the counting already started)
+
+ - *start* is then called, and the counter is enabled.
+ With flag PERF_EF_RELOAD, it writes an appropriate value to the counter (check
+ previous section for detail).
+ Nothing is written if the flag does not contain PERF_EF_RELOAD.
+ The state now is reset to none, because it is neither stopped nor updated
+ (the counting already started)
+
* When being context-switched out, *del* is called. It then checks out all the
events in the PMU and calls *stop* to update their counts.
-** *stop* is called by *del*
- and the perf core with flag PERF_EF_UPDATE, and it often shares the same
- subroutine as *read* with the same logic.
- The state changes to PERF_HES_STOPPED and PERF_HES_UPTODATE, again.
-** Life cycle of these two pairs: *add* and *del* are called repeatedly as
- tasks switch in-and-out; *start* and *stop* is also called when the perf core
- needs a quick stop-and-start, for instance, when the interrupt period is being
- adjusted.
+ - *stop* is called by *del*
+ and the perf core with flag PERF_EF_UPDATE, and it often shares the same
+ subroutine as *read* with the same logic.
+ The state changes to PERF_HES_STOPPED and PERF_HES_UPTODATE, again.
+
+ - Life cycle of these two pairs: *add* and *del* are called repeatedly as
+ tasks switch in-and-out; *start* and *stop* is also called when the perf core
+ needs a quick stop-and-start, for instance, when the interrupt period is being
+ adjusted.
Current implementation is sufficient for now and can be easily extended to
features in the future.
@@ -225,25 +230,26 @@ A. Related Structures
Both structures are designed to be read-only.
*struct pmu* defines some function pointer interfaces, and most of them take
-*struct perf_event* as a main argument, dealing with perf events according to
-perf's internal state machine (check kernel/events/core.c for details).
+ *struct perf_event* as a main argument, dealing with perf events according to
+ perf's internal state machine (check kernel/events/core.c for details).
*struct riscv_pmu* defines PMU-specific parameters. The naming follows the
-convention of all other architectures.
+ convention of all other architectures.
* struct perf_event: include/linux/perf_event.h
* struct hw_perf_event
The generic structure that represents perf events, and the hardware-related
-details.
+ details.
* struct riscv_hw_events: arch/riscv/include/asm/perf_event.h
The structure that holds the status of events, has two fixed members:
-the number of events and the array of the events.
+ the number of events and the array of the events.
References
----------
[1] https://github.com/riscv/riscv-linux/pull/124
+
[2] https://groups.google.com/a/groups.riscv.org/forum/#!topic/sw-dev/f19TmCNP6yA
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 30/79] docs: Debugging390.txt: convert table to ascii artwork
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (22 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 29/79] docs: riscv: convert docs to ReST and rename to *.rst Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 32/79] s390: include/asm/debug.h add kerneldoc markups Mauro Carvalho Chehab
` (49 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Martin Schwidefsky, Heiko Carstens, linux-s390
The first bit/value table inside the document is very
hard to read and won't fit ReST format. Also, some columns aren't
properly aligned.
Convert it to a nice ascii artwork table with makes it easier to
read as plain text and is compatible with ReST format parser
on Sphinx.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/s390/Debugging390.txt | 210 ++++++++++++++++------------
1 file changed, 120 insertions(+), 90 deletions(-)
diff --git a/Documentation/s390/Debugging390.txt b/Documentation/s390/Debugging390.txt
index 5ae7f868a007..c35804c238ad 100644
--- a/Documentation/s390/Debugging390.txt
+++ b/Documentation/s390/Debugging390.txt
@@ -78,96 +78,126 @@ e.g. switching address translation off requires that you
have a logical=physical mapping for the address you are
currently running at.
- Bit Value
-s/390 z/Architecture
-0 0 Reserved ( must be 0 ) otherwise specification exception occurs.
-
-1 1 Program Event Recording 1 PER enabled,
- PER is used to facilitate debugging e.g. single stepping.
-
-2-4 2-4 Reserved ( must be 0 ).
-
-5 5 Dynamic address translation 1=DAT on.
-
-6 6 Input/Output interrupt Mask
-
-7 7 External interrupt Mask used primarily for interprocessor
- signalling and clock interrupts.
-
-8-11 8-11 PSW Key used for complex memory protection mechanism
- (not used under linux)
-
-12 12 1 on s/390 0 on z/Architecture
-
-13 13 Machine Check Mask 1=enable machine check interrupts
-
-14 14 Wait State. Set this to 1 to stop the processor except for
- interrupts and give time to other LPARS. Used in CPU idle in
- the kernel to increase overall usage of processor resources.
-
-15 15 Problem state ( if set to 1 certain instructions are disabled )
- all linux user programs run with this bit 1
- ( useful info for debugging under VM ).
-
-16-17 16-17 Address Space Control
-
- 00 Primary Space Mode:
- The register CR1 contains the primary address-space control ele-
- ment (PASCE), which points to the primary space region/segment
- table origin.
-
- 01 Access register mode
-
- 10 Secondary Space Mode:
- The register CR7 contains the secondary address-space control
- element (SASCE), which points to the secondary space region or
- segment table origin.
-
- 11 Home Space Mode:
- The register CR13 contains the home space address-space control
- element (HASCE), which points to the home space region/segment
- table origin.
-
- See "Address Spaces on Linux for s/390 & z/Architecture" below
- for more information about address space usage in Linux.
-
-18-19 18-19 Condition codes (CC)
-
-20 20 Fixed point overflow mask if 1=FPU exceptions for this event
- occur ( normally 0 )
-
-21 21 Decimal overflow mask if 1=FPU exceptions for this event occur
- ( normally 0 )
-
-22 22 Exponent underflow mask if 1=FPU exceptions for this event occur
- ( normally 0 )
-
-23 23 Significance Mask if 1=FPU exceptions for this event occur
- ( normally 0 )
-
-24-31 24-30 Reserved Must be 0.
-
- 31 Extended Addressing Mode
- 32 Basic Addressing Mode
- Used to set addressing mode
- PSW 31 PSW 32
- 0 0 24 bit
- 0 1 31 bit
- 1 1 64 bit
-
-32 1=31 bit addressing mode 0=24 bit addressing mode (for backward
- compatibility), linux always runs with this bit set to 1
-
-33-64 Instruction address.
- 33-63 Reserved must be 0
- 64-127 Address
- In 24 bits mode bits 64-103=0 bits 104-127 Address
- In 31 bits mode bits 64-96=0 bits 97-127 Address
- Note: unlike 31 bit mode on s/390 bit 96 must be zero
- when loading the address with LPSWE otherwise a
- specification exception occurs, LPSW is fully backward
- compatible.
-
++-------------------------+-------------------------------------------------+
+| Bit | |
++--------+----------------+ Value |
+| s/390 | z/Architecture | |
++========+================+=================================================+
+| 0 | 0 | Reserved (must be 0) otherwise specification |
+| | | exception occurs. |
++--------+----------------+-------------------------------------------------+
+| 1 | 1 | Program Event Recording 1 PER enabled, |
+| | | PER is used to facilitate debugging e.g. |
+| | | single stepping. |
++--------+----------------+-------------------------------------------------+
+| 2-4 | 2-4 | Reserved (must be 0). |
++--------+----------------+-------------------------------------------------+
+| 5 | 5 | Dynamic address translation 1=DAT on. |
++--------+----------------+-------------------------------------------------+
+| 6 | 6 | Input/Output interrupt Mask |
++--------+----------------+-------------------------------------------------+
+| 7 | 7 | External interrupt Mask used primarily for |
+| | | interprocessor signalling and clock interrupts. |
++--------+----------------+-------------------------------------------------+
+| 8-11 | 8-11 | PSW Key used for complex memory protection |
+| | | mechanism (not used under linux) |
++--------+----------------+-------------------------------------------------+
+| 12 | 12 | 1 on s/390 0 on z/Architecture |
++--------+----------------+-------------------------------------------------+
+| 13 | 13 | Machine Check Mask 1=enable machine check |
+| | | interrupts |
++--------+----------------+-------------------------------------------------+
+| 14 | 14 | Wait State. Set this to 1 to stop the processor |
+| | | except for interrupts and give time to other |
+| | | LPARS. Used in CPU idle in the kernel to |
+| | | increase overall usage of processor resources. |
++--------+----------------+-------------------------------------------------+
+| 15 | 15 | Problem state (if set to 1 certain instructions |
+| | | are disabled). All linux user programs run with |
+| | | this bit 1 (useful info for debugging under VM).|
++--------+----------------+-------------------------------------------------+
+| 16-17 | 16-17 | Address Space Control |
+| | | |
+| | | 00 Primary Space Mode: |
+| | | |
+| | | The register CR1 contains the primary |
+| | | address-space control element (PASCE), which |
+| | | points to the primary space region/segment |
+| | | table origin. |
+| | | |
+| | | 01 Access register mode |
+| | | |
+| | | 10 Secondary Space Mode: |
+| | | |
+| | | The register CR7 contains the secondary |
+| | | address-space control element (SASCE), which |
+| | | points to the secondary space region or |
+| | | segment table origin. |
+| | | |
+| | | 11 Home Space Mode: |
+| | | |
+| | | The register CR13 contains the home space |
+| | | address-space control element (HASCE), which |
+| | | points to the home space region/segment |
+| | | table origin. |
+| | | |
+| | | See "Address Spaces on Linux for s/390 & |
+| | | z/Architecture" below for more information |
+| | | about address space usage in Linux. |
++--------+----------------+-------------------------------------------------+
+| 18-19 | 18-19 | Condition codes (CC) |
++--------+----------------+-------------------------------------------------+
+| 20 | 20 | Fixed point overflow mask if 1=FPU exceptions |
+| | | for this event occur (normally 0) |
++--------+----------------+-------------------------------------------------+
+| 21 | 21 | Decimal overflow mask if 1=FPU exceptions for |
+| | | this event occur (normally 0) |
++--------+----------------+-------------------------------------------------+
+| 22 | 22 | Exponent underflow mask if 1=FPU exceptions |
+| | | for this event occur (normally 0) |
++--------+----------------+-------------------------------------------------+
+| 23 | 23 | Significance Mask if 1=FPU exceptions for this |
+| | | event occur (normally 0) |
++--------+----------------+-------------------------------------------------+
+| 24-31 | 24-30 | Reserved Must be 0. |
+| +----------------+-------------------------------------------------+
+| | 31 | Extended Addressing Mode |
+| +----------------+-------------------------------------------------+
+| | 32 | Basic Addressing Mode |
+| | | |
+| | | Used to set addressing mode |
+| | | |
+| | | +---------+----------+----------+ |
+| | | | PSW 31 | PSW 32 | | |
+| | | +---------+----------+----------+ |
+| | | | 0 | 0 | 24 bit | |
+| | | +---------+----------+----------+ |
+| | | | 0 | 1 | 31 bit | |
+| | | +---------+----------+----------+ |
+| | | | 1 | 1 | 64 bit | |
+| | | +---------+----------+----------+ |
++--------+----------------+-------------------------------------------------+
+| 32 | | 1=31 bit addressing mode 0=24 bit addressing |
+| | | mode (for backward compatibility), linux |
+| | | always runs with this bit set to 1 |
++--------+----------------+-------------------------------------------------+
+| 33-64 | | Instruction address. |
+| +----------------+-------------------------------------------------+
+| | 33-63 | Reserved must be 0 |
+| +----------------+-------------------------------------------------+
+| | 64-127 | Address |
+| | | |
+| | | - In 24 bits mode bits 64-103=0 bits 104-127 |
+| | | Address |
+| | | - In 31 bits mode bits 64-96=0 bits 97-127 |
+| | | Address |
+| | | |
+| | | Note: |
+| | | unlike 31 bit mode on s/390 bit 96 must be |
+| | | zero when loading the address with LPSWE |
+| | | otherwise a specification exception occurs, |
+| | | LPSW is fully backward compatible. |
++--------+----------------+-------------------------------------------------+
Prefix Page(s)
--------------
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 32/79] s390: include/asm/debug.h add kerneldoc markups
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (23 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 30/79] docs: Debugging390.txt: convert table to ascii artwork Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 33/79] docs: serial: convert docs to ReST and rename to *.rst Mauro Carvalho Chehab
` (48 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Martin Schwidefsky, Heiko Carstens, linux-s390
Instead of keeping the documentation inside s390dbf.rst,
move them to arch/s390/include/asm/debug.h, using standard
kernel-doc markups.
Keeping the documentation close to the code helps to keep it
updated. It also makes easier to document other stuff inside
debug.h, as all it needs is to add kernel-doc markups inside
it, as the file will be already be included at the produced
documentation.
-
Those were converted to kerneldoc using this script specially
designed to parse ths file, and manually editted:
<script>
use strict;
my $mode = "";
my $parameter = "";
my $ret = "";
my $descr = "";
sub add_var($)
{
my $ln = shift;
$ln =~ s/^\s+//;
$ln =~ s/\s+$//;
return if ($ln eq "");
$ln =~ s/^(\S+)\s+/$1\t/;
print " * \@$ln\n";
}
sub add_return($)
{
my $ln = shift;
print " *\n * Return:\n" if ($mode ne "Return Value:");
$ln =~ s/^\s+//;
$ln =~ s/\s+$//;
return if ($ln eq "");
print " * - $ln\n";
}
sub add_description($)
{
my $ln = shift;
print " *\n * \n" if ($mode ne "Description:");
$ln =~ s/^\s+//;
$ln =~ s/\s+$//;
return if ($ln eq "");
print " * $ln\n";
}
sub flush_results()
{
print " */\n\n";
}
while (<>) {
if (m/^[\-]+$/) {
flush_results();
$mode = "";
$parameter = "";
$ret = "";
$descr = "";
next;
}
if (m/(Parameter:)(.*)/) {
print " *\n" if ($mode eq "func");
add_var($2);
$mode = $1;
next;
}
if (m/(Return Value:)(.*)/) {
add_return($2);
$mode = $1;
next;
}
if (m/(Description:)(.*)/) {
add_description($2);
$mode = $1;
next;
}
if ($mode eq "Parameter:") {
add_var($_);
next;
}
if ($mode eq "Return Value:") {
add_return($_);
next;
}
if ($mode eq "Description:") {
add_description($_);
next;
}
next if (m/^\s*$/);
if (m/^\S+.*\s\*?(\S+)\s*\(/) {
if ($mode eq "") {
print "/**\n * $1()\n";
} else {
print " * $1()\n";
}
$mode="func";
}
}
flush_results();
</script>
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/s390/s390dbf.rst | 672 +--------------------------------
arch/s390/include/asm/debug.h | 231 ++++++++++++
2 files changed, 232 insertions(+), 671 deletions(-)
diff --git a/Documentation/s390/s390dbf.rst b/Documentation/s390/s390dbf.rst
index ec2a1faa414b..d2595b548879 100644
--- a/Documentation/s390/s390dbf.rst
+++ b/Documentation/s390/s390dbf.rst
@@ -104,684 +104,14 @@ the "debug_stoppable" sysctl. If you set "debug_stoppable" to 0 the debug
feature cannot be stopped. If the debug feature is already stopped, it
will stay deactivated.
-----------------------------------------------------------------------------
-
Kernel Interfaces:
------------------
-::
-
- debug_info_t *debug_register(char *name, int pages, int nr_areas,
- int buf_size);
-
-Parameter:
- name:
- Name of debug log (e.g. used for debugfs entry)
- pages:
- Number of pages, which will be allocated per area
- nr_areas:
- Number of debug areas
- buf_size:
- Size of data area in each debug entry
-
-Return Value:
- Handle for generated debug area
-
- NULL if register failed
-
-Description: Allocates memory for a debug log
- Must not be called within an interrupt handler
-
-----------------------------------------------------------------------------
-
-::
-
- debug_info_t *debug_register_mode(char *name, int pages, int nr_areas,
- int buf_size, mode_t mode, uid_t uid,
- gid_t gid);
-
-Parameter:
- name:
- Name of debug log (e.g. used for debugfs entry)
- pages:
- Number of pages, which will be allocated per area
- nr_areas:
- Number of debug areas
- buf_size:
- Size of data area in each debug entry
- mode:
- File mode for debugfs files. E.g. S_IRWXUGO
- uid:
- User ID for debugfs files. Currently only 0 is
- supported.
- gid:
- Group ID for debugfs files. Currently only 0 is
- supported.
-
-Return Value:
- Handle for generated debug area
-
- NULL if register failed
-
-Description:
- Allocates memory for a debug log
- Must not be called within an interrupt handler
-
----------------------------------------------------------------------------
-
-::
-
- void debug_unregister (debug_info_t * id);
-
-Parameter:
- id:
- handle for debug log
-
-Return Value:
- none
-
-Description:
- frees memory for a debug log and removes all registered debug
- views.
-
- Must not be called within an interrupt handler
-
----------------------------------------------------------------------------
-
-::
-
- void debug_set_level (debug_info_t * id, int new_level);
-
-Parameter: id: handle for debug log
- new_level: new debug level
-
-Return Value:
- none
-
-Description:
- Sets new actual debug level if new_level is valid.
-
----------------------------------------------------------------------------
-
-::
-
- bool debug_level_enabled (debug_info_t * id, int level);
-
-Parameter:
- id:
- handle for debug log
- level:
- debug level
-
-Return Value:
- True if level is less or equal to the current debug level.
-
-Description:
- Returns true if debug events for the specified level would be
- logged. Otherwise returns false.
-
----------------------------------------------------------------------------
-
-::
-
- void debug_stop_all(void);
-
-Parameter:
- none
-
-Return Value:
- none
-
-Description:
- stops the debug feature if stopping is allowed. Currently
- used in case of a kernel oops.
-
----------------------------------------------------------------------------
-
-::
-
- debug_entry_t* debug_event (debug_info_t* id, int level, void* data,
- int length);
-
-Parameter:
- id:
- handle for debug log
- level:
- debug level
- data:
- pointer to data for debug entry
- length:
- length of data in bytes
-
-Return Value:
- Address of written debug entry
-
-Description:
- writes debug entry to active debug area (if level <= actual
- debug level)
-
----------------------------------------------------------------------------
-
-::
-
- debug_entry_t* debug_int_event (debug_info_t * id, int level,
- unsigned int data);
- debug_entry_t* debug_long_event(debug_info_t * id, int level,
- unsigned long data);
-
-Parameter:
- id:
- handle for debug log
- level:
- debug level
- data:
- integer value for debug entry
-
-Return Value:
- Address of written debug entry
-
-Description:
- writes debug entry to active debug area (if level <= actual
- debug level)
-
----------------------------------------------------------------------------
-
-::
-
- debug_entry_t* debug_text_event (debug_info_t * id, int level,
- const char* data);
-
-Parameter:
- id:
- handle for debug log
- level:
- debug level
- data:
- string for debug entry
-
-Return Value:
- Address of written debug entry
-
-Description:
- writes debug entry in ascii format to active debug area
- (if level <= actual debug level)
-
----------------------------------------------------------------------------
-
-::
-
- debug_entry_t* debug_sprintf_event (debug_info_t * id, int level,
- char* string,...);
-
-Parameter:
- id:
- handle for debug log
- level:
- debug level
- string:
- format string for debug entry
- ...:
- varargs used as in sprintf()
-
-Return Value: Address of written debug entry
-
-Description:
- writes debug entry with format string and varargs (longs) to
- active debug area (if level $<=$ actual debug level).
- floats and long long datatypes cannot be used as varargs.
-
----------------------------------------------------------------------------
-
-::
-
- debug_entry_t* debug_exception (debug_info_t* id, int level, void* data,
- int length);
-
-Parameter:
- id:
- handle for debug log
- level:
- debug level
- data:
- pointer to data for debug entry
- length:
- length of data in bytes
-
-Return Value:
- Address of written debug entry
-
-Description:
- writes debug entry to active debug area (if level <= actual
- debug level) and switches to next debug area
-
----------------------------------------------------------------------------
-
-::
-
- debug_entry_t* debug_int_exception (debug_info_t * id, int level,
- unsigned int data);
- debug_entry_t* debug_long_exception(debug_info_t * id, int level,
- unsigned long data);
-
-Parameter: id: handle for debug log
- level: debug level
- data: integer value for debug entry
-
-Return Value: Address of written debug entry
-
-Description: writes debug entry to active debug area (if level <= actual
- debug level) and switches to next debug area
-
----------------------------------------------------------------------------
-
-::
-
- debug_entry_t* debug_text_exception (debug_info_t * id, int level,
- const char* data);
-
-Parameter: id: handle for debug log
- level: debug level
- data: string for debug entry
-
-Return Value: Address of written debug entry
-
-Description: writes debug entry in ascii format to active debug area
- (if level <= actual debug level) and switches to next debug
- area
-
----------------------------------------------------------------------------
-
-::
-
- debug_entry_t* debug_sprintf_exception (debug_info_t * id, int level,
- char* string,...);
-
-Parameter: id: handle for debug log
- level: debug level
- string: format string for debug entry
- ...: varargs used as in sprintf()
-
-Return Value: Address of written debug entry
-
-Description: writes debug entry with format string and varargs (longs) to
- active debug area (if level $<=$ actual debug level) and
- switches to next debug area.
- floats and long long datatypes cannot be used as varargs.
-
----------------------------------------------------------------------------
-
-::
-
- int debug_register_view (debug_info_t * id, struct debug_view *view);
-
-Parameter: id: handle for debug log
- view: pointer to debug view struct
-
-Return Value: 0 : ok
- < 0: Error
-
-Description: registers new debug view and creates debugfs dir entry
-
----------------------------------------------------------------------------
-
-::
-
- int debug_unregister_view (debug_info_t * id, struct debug_view *view);
-
-Parameter: id: handle for debug log
- view: pointer to debug view struct
-
-Return Value: 0 : ok
- < 0: Error
-
-Description: unregisters debug view and removes debugfs dir entry
-
-
+.. kernel-doc:: arch/s390/include/asm/debug.h
Predefined views:
-----------------
-extern struct debug_view debug_hex_ascii_view;
-
-extern struct debug_view debug_raw_view;
-
-extern struct debug_view debug_sprintf_view;
-
-Examples
---------
-
-::
-
- /*
- * hex_ascii- + raw-view Example
- */
-
- #include <linux/init.h>
- #include <asm/debug.h>
-
- static debug_info_t* debug_info;
-
- static int init(void)
- {
- /* register 4 debug areas with one page each and 4 byte data field */
-
- debug_info = debug_register ("test", 1, 4, 4 );
- debug_register_view(debug_info,&debug_hex_ascii_view);
- debug_register_view(debug_info,&debug_raw_view);
-
- debug_text_event(debug_info, 4 , "one ");
- debug_int_exception(debug_info, 4, 4711);
- debug_event(debug_info, 3, &debug_info, 4);
-
- return 0;
- }
-
- static void cleanup(void)
- {
- debug_unregister (debug_info);
- }
-
- module_init(init);
- module_exit(cleanup);
-
----------------------------------------------------------------------------
-
-::
-
- /*
- * sprintf-view Example
- */
-
- #include <linux/init.h>
- #include <asm/debug.h>
-
- static debug_info_t* debug_info;
-
- static int init(void)
- {
- /* register 4 debug areas with one page each and data field for */
- /* format string pointer + 2 varargs (= 3 * sizeof(long)) */
-
- debug_info = debug_register ("test", 1, 4, sizeof(long) * 3);
- debug_register_view(debug_info,&debug_sprintf_view);
-
- debug_sprintf_event(debug_info, 2 , "first event in %s:%i\n",__FILE__,__LINE__);
- debug_sprintf_exception(debug_info, 1, "pointer to debug info: %p\n",&debug_info);
-
- return 0;
- }
-
- static void cleanup(void)
- {
- debug_unregister (debug_info);
- }
-
- module_init(init);
- module_exit(cleanup);
-
-Debugfs Interface
------------------
-Views to the debug logs can be investigated through reading the corresponding
-debugfs-files:
-
-Example::
-
- > ls /sys/kernel/debug/s390dbf/dasd
- flush hex_ascii level pages raw
- > cat /sys/kernel/debug/s390dbf/dasd/hex_ascii | sort -k2,2 -s
- 00 00974733272:680099 2 - 02 0006ad7e 07 ea 4a 90 | ....
- 00 00974733272:682210 2 - 02 0006ade6 46 52 45 45 | FREE
- 00 00974733272:682213 2 - 02 0006adf6 07 ea 4a 90 | ....
- 00 00974733272:682281 1 * 02 0006ab08 41 4c 4c 43 | EXCP
- 01 00974733272:682284 2 - 02 0006ab16 45 43 4b 44 | ECKD
- 01 00974733272:682287 2 - 02 0006ab28 00 00 00 04 | ....
- 01 00974733272:682289 2 - 02 0006ab3e 00 00 00 20 | ...
- 01 00974733272:682297 2 - 02 0006ad7e 07 ea 4a 90 | ....
- 01 00974733272:684384 2 - 00 0006ade6 46 52 45 45 | FREE
- 01 00974733272:684388 2 - 00 0006adf6 07 ea 4a 90 | ....
-
-See section about predefined views for explanation of the above output!
-
-Changing the debug level
-------------------------
-
-Example::
-
-
- > cat /sys/kernel/debug/s390dbf/dasd/level
- 3
- > echo "5" > /sys/kernel/debug/s390dbf/dasd/level
- > cat /sys/kernel/debug/s390dbf/dasd/level
- 5
-
-Flushing debug areas
---------------------
-Debug areas can be flushed with piping the number of the desired
-area (0...n) to the debugfs file "flush". When using "-" all debug areas
-are flushed.
-
-Examples:
-
-1. Flush debug area 0::
-
- > echo "0" > /sys/kernel/debug/s390dbf/dasd/flush
-
-2. Flush all debug areas::
-
- > echo "-" > /sys/kernel/debug/s390dbf/dasd/flush
-
-Changing the size of debug areas
-------------------------------------
-It is possible the change the size of debug areas through piping
-the number of pages to the debugfs file "pages". The resize request will
-also flush the debug areas.
-
-Example:
-
-Define 4 pages for the debug areas of debug feature "dasd"::
-
- > echo "4" > /sys/kernel/debug/s390dbf/dasd/pages
-
-Stooping the debug feature
---------------------------
-Example:
-
-1. Check if stopping is allowed::
-
- > cat /proc/sys/s390dbf/debug_stoppable
-
-2. Stop debug feature::
-
- > echo 0 > /proc/sys/s390dbf/debug_active
-
-lcrash Interface
-----------------
-It is planned that the dump analysis tool lcrash gets an additional command
-'s390dbf' to display all the debug logs. With this tool it will be possible
-to investigate the debug logs on a live system and with a memory dump after
-a system crash.
-
-Investigating raw memory
-------------------------
-One last possibility to investigate the debug logs at a live
-system and after a system crash is to look at the raw memory
-under VM or at the Service Element.
-It is possible to find the anker of the debug-logs through
-the 'debug_area_first' symbol in the System map. Then one has
-to follow the correct pointers of the data-structures defined
-in debug.h and find the debug-areas in memory.
-Normally modules which use the debug feature will also have
-a global variable with the pointer to the debug-logs. Following
-this pointer it will also be possible to find the debug logs in
-memory.
-
-For this method it is recommended to use '16 * x + 4' byte (x = 0..n)
-for the length of the data field in debug_register() in
-order to see the debug entries well formatted.
-
-
-Predefined Views
-----------------
-
-There are three predefined views: hex_ascii, raw and sprintf.
-The hex_ascii view shows the data field in hex and ascii representation
-(e.g. '45 43 4b 44 | ECKD').
-The raw view returns a bytestream as the debug areas are stored in memory.
-
-The sprintf view formats the debug entries in the same way as the sprintf
-function would do. The sprintf event/exception functions write to the
-debug entry a pointer to the format string (size = sizeof(long))
-and for each vararg a long value. So e.g. for a debug entry with a format
-string plus two varargs one would need to allocate a (3 * sizeof(long))
-byte data area in the debug_register() function.
-
-IMPORTANT:
- Using "%s" in sprintf event functions is dangerous. You can only
- use "%s" in the sprintf event functions, if the memory for the passed string
- is available as long as the debug feature exists. The reason behind this is
- that due to performance considerations only a pointer to the string is stored
- in the debug feature. If you log a string that is freed afterwards, you will
- get an OOPS when inspecting the debug feature, because then the debug feature
- will access the already freed memory.
-
-NOTE:
- If using the sprintf view do NOT use other event/exception functions
- than the sprintf-event and -exception functions.
-
-The format of the hex_ascii and sprintf view is as follows:
-
-- Number of area
-- Timestamp (formatted as seconds and microseconds since 00:00:00 Coordinated
- Universal Time (UTC), January 1, 1970)
-- level of debug entry
-- Exception flag (* = Exception)
-- Cpu-Number of calling task
-- Return Address to caller
-- data field
-
-The format of the raw view is:
-
-- Header as described in debug.h
-- datafield
-
-A typical line of the hex_ascii view will look like the following (first line
-is only for explanation and will not be displayed when 'cating' the view):
-
-area time level exception cpu caller data (hex + ascii)
---------------------------------------------------------------------------
-00 00964419409:440690 1 - 00 88023fe
-
-
-Defining views
---------------
-
-Views are specified with the 'debug_view' structure. There are defined
-callback functions which are used for reading and writing the debugfs files::
-
- struct debug_view {
- char name[DEBUG_MAX_PROCF_LEN];
- debug_prolog_proc_t* prolog_proc;
- debug_header_proc_t* header_proc;
- debug_format_proc_t* format_proc;
- debug_input_proc_t* input_proc;
- void* private_data;
- };
-
-where::
-
- typedef int (debug_header_proc_t) (debug_info_t* id,
- struct debug_view* view,
- int area,
- debug_entry_t* entry,
- char* out_buf);
-
- typedef int (debug_format_proc_t) (debug_info_t* id,
- struct debug_view* view, char* out_buf,
- const char* in_buf);
- typedef int (debug_prolog_proc_t) (debug_info_t* id,
- struct debug_view* view,
- char* out_buf);
- typedef int (debug_input_proc_t) (debug_info_t* id,
- struct debug_view* view,
- struct file* file, const char* user_buf,
- size_t in_buf_size, loff_t* offset);
-
-
-The "private_data" member can be used as pointer to view specific data.
-It is not used by the debug feature itself.
-
-The output when reading a debugfs file is structured like this::
-
- "prolog_proc output"
-
- "header_proc output 1" "format_proc output 1"
- "header_proc output 2" "format_proc output 2"
- "header_proc output 3" "format_proc output 3"
- ...
-
-When a view is read from the debugfs, the Debug Feature calls the
-'prolog_proc' once for writing the prolog.
-Then 'header_proc' and 'format_proc' are called for each
-existing debug entry.
-
-The input_proc can be used to implement functionality when it is written to
-the view (e.g. like with 'echo "0" > /sys/kernel/debug/s390dbf/dasd/level).
-
-For header_proc there can be used the default function
-debug_dflt_header_fn() which is defined in debug.h.
-and which produces the same header output as the predefined views.
-E.g::
-
- 00 00964419409:440761 2 - 00 88023ec
-
-In order to see how to use the callback functions check the implementation
-of the default views!
-
-Example::
-
- #include <asm/debug.h>
-
- #define UNKNOWNSTR "data: %08x"
-
- const char* messages[] =
- {"This error...........\n",
- "That error...........\n",
- "Problem..............\n",
- "Something went wrong.\n",
- "Everything ok........\n",
- NULL
- };
-
- static int debug_test_format_fn(
- debug_info_t * id, struct debug_view *view,
- char *out_buf, const char *in_buf
- )
- {
- int i, rc = 0;
-
- if(id->buf_size >= 4) {
- int msg_nr = *((int*)in_buf);
- if(msg_nr < sizeof(messages)/sizeof(char*) - 1)
- rc += sprintf(out_buf, "%s", messages[msg_nr]);
- else
- rc += sprintf(out_buf, UNKNOWNSTR, msg_nr);
- }
- out:
- return rc;
- }
-
- struct debug_view debug_test_view = {
- "myview", /* name of view */
- NULL, /* no prolog */
- &debug_dflt_header_fn, /* default header for each entry */
- &debug_test_format_fn, /* our own format function */
- NULL, /* no input function */
- NULL /* no private data */
- };
-
-test:
-=====
-
::
debug_info_t *debug_info;
diff --git a/arch/s390/include/asm/debug.h b/arch/s390/include/asm/debug.h
index b94783f71322..b55486f70deb 100644
--- a/arch/s390/include/asm/debug.h
+++ b/arch/s390/include/asm/debug.h
@@ -95,25 +95,106 @@ debug_entry_t *debug_exception_common(debug_info_t *id, int level,
/* Debug Feature API: */
+/**
+ * debug_register() - allocates memory for a debug log.
+ *
+ * @name: Name of debug log (e.g. used for debugfs entry)
+ * @pages: Number of pages, which will be allocated per area
+ * @nr_areas: Number of debug areas
+ * @buf_size: Size of data area in each debug entry
+ *
+ * Return:
+ * - Handler for generated debug area
+ * - %NULL if register failed
+ *
+ * Must not be called within an interrupt handler.
+ */
debug_info_t *debug_register(const char *name, int pages, int nr_areas,
int buf_size);
+/**
+ * debug_register_mode() - allocates memory for a debug log.
+ *
+ * @name: Name of debug log (e.g. used for debugfs entry)
+ * @pages: Number of pages, which will be allocated per area
+ * @nr_areas: Number of debug areas
+ * @buf_size: Size of data area in each debug entry
+ * @mode: File mode for debugfs files. E.g. S_IRWXUGO
+ * @uid: User ID for debugfs files. Currently only 0 is supported.
+ * @gid: Group ID for debugfs files. Currently only 0 is supported.
+ *
+ * Return:
+ * - Handler for generated debug area
+ * - %NULL if register failed
+ *
+ * Must not be called within an interrupt handler
+ */
debug_info_t *debug_register_mode(const char *name, int pages, int nr_areas,
int buf_size, umode_t mode, uid_t uid,
gid_t gid);
+/**
+ * debug_unregister() - frees memory for a debug log and removes all
+ * registered debug
+ * views.
+ *
+ * @id: handle for debug log
+ *
+ * Return:
+ * none
+ *
+ * Must not be called within an interrupt handler
+ */
void debug_unregister(debug_info_t *id);
+/**
+ * debug_set_level() - Sets new actual debug level if new_level is valid.
+ *
+ * @id: handle for debug log
+ * @new_level: new debug level
+ *
+ * Return:
+ * none
+ */
void debug_set_level(debug_info_t *id, int new_level);
void debug_set_critical(void);
+
+/**
+ * debug_stop_all() - stops the debug feature if stopping is allowed.
+ *
+ * Return:
+ * - none
+ */
void debug_stop_all(void);
+/**
+ * debug_level_enabled() - Returns true if debug events for the specified
+ * level would be logged. Otherwise returns false.
+ *
+ * @id: handle for debug log
+ * @level: debug level
+ *
+ * Return:
+ * - %true if level is less or equal to the current debug level.
+ */
static inline bool debug_level_enabled(debug_info_t *id, int level)
{
return level <= id->level;
}
+/**
+ * debug_event() - writes debug entry to active debug area
+ * (if level <= actual debug level)
+ *
+ * @id: handle for debug log
+ * @level: debug level
+ * @data: pointer to data for debug entry
+ * @length: length of data in bytes
+ *
+ * Return:
+ * - Address of written debug entry
+ */
static inline debug_entry_t *debug_event(debug_info_t *id, int level,
void *data, int length)
{
@@ -122,6 +203,18 @@ static inline debug_entry_t *debug_event(debug_info_t *id, int level,
return debug_event_common(id, level, data, length);
}
+/**
+ * debug_int_event() - writes debug entry to active debug area
+ * (if level <= actual debug level)
+ *
+ * @id: handle for debug log
+ * @level: debug level
+ * @tag: integer value for debug entry
+ *
+ * Return:
+ * - Address of written debug entry
+ * - %NULL if error
+ */
static inline debug_entry_t *debug_int_event(debug_info_t *id, int level,
unsigned int tag)
{
@@ -132,6 +225,18 @@ static inline debug_entry_t *debug_int_event(debug_info_t *id, int level,
return debug_event_common(id, level, &t, sizeof(unsigned int));
}
+/**
+ * debug_long_event() - writes debug entry to active debug area
+ * (if level <= actual debug level)
+ *
+ * @id: handle for debug log
+ * @level: debug level
+ * @tag: integer value for debug entry
+ *
+ * Return:
+ * - Address of written debug entry
+ * - %NULL if error
+ */
static inline debug_entry_t *debug_long_event(debug_info_t *id, int level,
unsigned long tag)
{
@@ -142,6 +247,18 @@ static inline debug_entry_t *debug_long_event(debug_info_t *id, int level,
return debug_event_common(id, level, &t, sizeof(unsigned long));
}
+/**
+ * debug_text_event() - writes debug entry in ascii format to active
+ * debug area (if level <= actual debug level)
+ *
+ * @id: handle for debug log
+ * @level: debug level
+ * @txt: string for debug entry
+ *
+ * Return:
+ * - Address of written debug entry
+ * - %NULL if error
+ */
static inline debug_entry_t *debug_text_event(debug_info_t *id, int level,
const char *txt)
{
@@ -158,6 +275,22 @@ extern debug_entry_t *
__debug_sprintf_event(debug_info_t *id, int level, char *string, ...)
__attribute__ ((format(printf, 3, 4)));
+/**
+ * debug_sprintf_event() - writes debug entry with format string
+ * and varargs (longs) to active debug area
+ * (if level $<=$ actual debug level).
+ *
+ * @_id: handle for debug log
+ * @_level: debug level
+ * @_fmt: format string for debug entry
+ * @...: varargs used as in sprintf()
+ *
+ * Return:
+ * - Address of written debug entry
+ * - %NULL if error
+ *
+ * floats and long long datatypes cannot be used as varargs.
+ */
#define debug_sprintf_event(_id, _level, _fmt, ...) \
({ \
debug_entry_t *__ret; \
@@ -172,6 +305,20 @@ __debug_sprintf_event(debug_info_t *id, int level, char *string, ...)
__ret; \
})
+/**
+ * debug_exception() - writes debug entry to active debug area
+ * (if level <= actual debug level) and switches
+ * to next debug area
+ *
+ * @id: handle for debug log
+ * @level: debug level
+ * @data: pointer to data for debug entry
+ * @length: length of data in bytes
+ *
+ * Return:
+ * - Address of written debug entry
+ * - %NULL if error
+ */
static inline debug_entry_t *debug_exception(debug_info_t *id, int level,
void *data, int length)
{
@@ -180,6 +327,19 @@ static inline debug_entry_t *debug_exception(debug_info_t *id, int level,
return debug_exception_common(id, level, data, length);
}
+/**
+ * debug_int_exception() - writes debug entry to active debug area
+ * (if level <= actual debug level)
+ * and switches to next debug area
+ *
+ * @id: handle for debug log
+ * @level: debug level
+ * @tag: integer value for debug entry
+ *
+ * Return:
+ * - Address of written debug entry
+ * - %NULL if error
+ */
static inline debug_entry_t *debug_int_exception(debug_info_t *id, int level,
unsigned int tag)
{
@@ -190,6 +350,19 @@ static inline debug_entry_t *debug_int_exception(debug_info_t *id, int level,
return debug_exception_common(id, level, &t, sizeof(unsigned int));
}
+/**
+ * debug_long_exception() - writes debug entry to active debug area
+ * (if level <= actual debug level)
+ * and switches to next debug area
+ *
+ * @id: handle for debug log
+ * @level: debug level
+ * @tag: integer value for debug entry
+ *
+ * Return:
+ * - Address of written debug entry
+ * - %NULL if error
+ */
static inline debug_entry_t *debug_long_exception (debug_info_t *id, int level,
unsigned long tag)
{
@@ -200,6 +373,20 @@ static inline debug_entry_t *debug_long_exception (debug_info_t *id, int level,
return debug_exception_common(id, level, &t, sizeof(unsigned long));
}
+/**
+ * debug_text_exception() - writes debug entry in ascii format to active
+ * debug area (if level <= actual debug level)
+ * and switches to next debug
+ * area
+ *
+ * @id: handle for debug log
+ * @level: debug level
+ * @txt: string for debug entry
+ *
+ * Return:
+ * - Address of written debug entry
+ * - %NULL if error
+ */
static inline debug_entry_t *debug_text_exception(debug_info_t *id, int level,
const char *txt)
{
@@ -216,6 +403,24 @@ extern debug_entry_t *
__debug_sprintf_exception(debug_info_t *id, int level, char *string, ...)
__attribute__ ((format(printf, 3, 4)));
+
+/**
+ * debug_sprintf_exception() - writes debug entry with format string and
+ * varargs (longs) to active debug area
+ * (if level $<=$ actual debug level)
+ * and switches to next debug area.
+ *
+ * @_id: handle for debug log
+ * @_level: debug level
+ * @_fmt: format string for debug entry
+ * @...: varargs used as in sprintf()
+ *
+ * Return:
+ * - Address of written debug entry
+ * - %NULL if error
+ *
+ * floats and long long datatypes cannot be used as varargs.
+ */
#define debug_sprintf_exception(_id, _level, _fmt, ...) \
({ \
debug_entry_t *__ret; \
@@ -230,7 +435,33 @@ __debug_sprintf_exception(debug_info_t *id, int level, char *string, ...)
__ret; \
})
+/**
+ * debug_register_view() - registers new debug view and creates debugfs
+ * dir entry
+ *
+ * @id: handle for debug log
+ * @view: pointer to debug view struct
+ *
+ * Return:
+ * - 0 : ok
+ * - < 0: Error
+ */
int debug_register_view(debug_info_t *id, struct debug_view *view);
+
+/**
+ * debug_unregister_view()
+ *
+ * @id: handle for debug log
+ * @view: pointer to debug view struct
+ *
+ * Return:
+ * - 0 : ok
+ * - < 0: Error
+ *
+ *
+ * unregisters debug view and removes debugfs dir entry
+ */
+
int debug_unregister_view(debug_info_t *id, struct debug_view *view);
/*
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 33/79] docs: serial: convert docs to ReST and rename to *.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (24 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 32/79] s390: include/asm/debug.h add kerneldoc markups Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 34/79] docs: target: " Mauro Carvalho Chehab
` (47 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Greg Kroah-Hartman, Jiri Slaby, Timur Tabi,
linuxppc-dev, linux-serial
The converted files are focused at the Kernel internal API,
so, this is a good candidate for the kernel API set of books.
The conversion is actually:
- add blank lines and identation in order to identify paragraphs;
- fix tables markups;
- add some lists markups;
- mark literal blocks;
- adjust title markups.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
.../{README.cycladesZ => cyclades_z.rst} | 5 +-
Documentation/serial/{driver => driver.rst} | 115 +++-
Documentation/serial/index.rst | 32 +
Documentation/serial/moxa-smartio | 523 ---------------
Documentation/serial/moxa-smartio.rst | 615 ++++++++++++++++++
Documentation/serial/n_gsm.rst | 103 +++
Documentation/serial/n_gsm.txt | 96 ---
.../serial/{rocket.txt => rocket.rst} | 144 ++--
...{serial-iso7816.txt => serial-iso7816.rst} | 21 +-
.../{serial-rs485.txt => serial-rs485.rst} | 22 +-
Documentation/serial/{tty.txt => tty.rst} | 111 ++--
MAINTAINERS | 4 +-
drivers/tty/Kconfig | 4 +-
drivers/tty/serial/ucc_uart.c | 2 +-
include/linux/serial_core.h | 2 +-
15 files changed, 1011 insertions(+), 788 deletions(-)
rename Documentation/serial/{README.cycladesZ => cyclades_z.rst} (85%)
rename Documentation/serial/{driver => driver.rst} (92%)
create mode 100644 Documentation/serial/index.rst
delete mode 100644 Documentation/serial/moxa-smartio
create mode 100644 Documentation/serial/moxa-smartio.rst
create mode 100644 Documentation/serial/n_gsm.rst
delete mode 100644 Documentation/serial/n_gsm.txt
rename Documentation/serial/{rocket.txt => rocket.rst} (68%)
rename Documentation/serial/{serial-iso7816.txt => serial-iso7816.rst} (85%)
rename Documentation/serial/{serial-rs485.txt => serial-rs485.rst} (89%)
rename Documentation/serial/{tty.txt => tty.rst} (74%)
diff --git a/Documentation/serial/README.cycladesZ b/Documentation/serial/cyclades_z.rst
similarity index 85%
rename from Documentation/serial/README.cycladesZ
rename to Documentation/serial/cyclades_z.rst
index 024a69443cc2..532ff67e2f1c 100644
--- a/Documentation/serial/README.cycladesZ
+++ b/Documentation/serial/cyclades_z.rst
@@ -1,8 +1,11 @@
+================
+Cyclades-Z notes
+================
The Cyclades-Z must have firmware loaded onto the card before it will
operate. This operation should be performed during system startup,
The firmware, loader program and the latest device driver code are
available from Cyclades at
+
ftp://ftp.cyclades.com/pub/cyclades/cyclades-z/linux/
-
diff --git a/Documentation/serial/driver b/Documentation/serial/driver.rst
similarity index 92%
rename from Documentation/serial/driver
rename to Documentation/serial/driver.rst
index 86e47c19a924..4537119bf624 100644
--- a/Documentation/serial/driver
+++ b/Documentation/serial/driver.rst
@@ -1,6 +1,6 @@
-
- Low Level Serial API
- --------------------
+====================
+Low Level Serial API
+====================
This document is meant as a brief overview of some aspects of the new serial
@@ -44,7 +44,7 @@ are described in the uart_ops listing below.)
There are two locks. A per-port spinlock, and an overall semaphore.
From the core driver perspective, the port->lock locks the following
-data:
+data::
port->mctrl
port->icount
@@ -75,41 +75,51 @@ hardware.
return TIOCSER_TEMT.
Locking: none.
+
Interrupts: caller dependent.
+
This call must not sleep
set_mctrl(port, mctrl)
This function sets the modem control lines for port described
by 'port' to the state described by mctrl. The relevant bits
of mctrl are:
+
- TIOCM_RTS RTS signal.
- TIOCM_DTR DTR signal.
- TIOCM_OUT1 OUT1 signal.
- TIOCM_OUT2 OUT2 signal.
- TIOCM_LOOP Set the port into loopback mode.
+
If the appropriate bit is set, the signal should be driven
active. If the bit is clear, the signal should be driven
inactive.
Locking: port->lock taken.
+
Interrupts: locally disabled.
+
This call must not sleep
get_mctrl(port)
Returns the current state of modem control inputs. The state
of the outputs should not be returned, since the core keeps
track of their state. The state information should include:
+
- TIOCM_CAR state of DCD signal
- TIOCM_CTS state of CTS signal
- TIOCM_DSR state of DSR signal
- TIOCM_RI state of RI signal
+
The bit is set if the signal is currently driven active. If
the port does not support CTS, DCD or DSR, the driver should
indicate that the signal is permanently active. If RI is
not available, the signal should not be indicated as active.
Locking: port->lock taken.
+
Interrupts: locally disabled.
+
This call must not sleep
stop_tx(port)
@@ -121,14 +131,18 @@ hardware.
possible.
Locking: port->lock taken.
+
Interrupts: locally disabled.
+
This call must not sleep
start_tx(port)
Start transmitting characters.
Locking: port->lock taken.
+
Interrupts: locally disabled.
+
This call must not sleep
throttle(port)
@@ -138,16 +152,17 @@ hardware.
This will be called only if hardware assisted flow control is enabled.
Locking: serialized with .unthrottle() and termios modification by the
- tty layer.
+ tty layer.
unthrottle(port)
Notify the serial driver that characters can now be sent to the serial
port without fear of overrunning the input buffers of the line
disciplines.
+
This will be called only if hardware assisted flow control is enabled.
Locking: serialized with .throttle() and termios modification by the
- tty layer.
+ tty layer.
send_xchar(port,ch)
Transmit a high priority character, even if the port is stopped.
@@ -159,6 +174,7 @@ hardware.
Do not transmit if ch == '\0' (__DISABLED_CHAR).
Locking: none.
+
Interrupts: caller dependent.
stop_rx(port)
@@ -166,7 +182,9 @@ hardware.
being closed.
Locking: port->lock taken.
+
Interrupts: locally disabled.
+
This call must not sleep
enable_ms(port)
@@ -177,7 +195,9 @@ hardware.
called.
Locking: port->lock taken.
+
Interrupts: locally disabled.
+
This call must not sleep
break_ctl(port,ctl)
@@ -196,6 +216,7 @@ hardware.
This method will only be called when the port is initially opened.
Locking: port_sem taken.
+
Interrupts: globally disabled.
shutdown(port)
@@ -210,6 +231,7 @@ hardware.
this port.
Locking: port_sem taken.
+
Interrupts: caller dependent.
flush_buffer(port)
@@ -220,7 +242,9 @@ hardware.
buffer is cleared.
Locking: port->lock taken.
+
Interrupts: locally disabled.
+
This call must not sleep
set_termios(port,termios,oldtermios)
@@ -228,29 +252,46 @@ hardware.
bits. Update read_status_mask and ignore_status_mask to indicate
the types of events we are interested in receiving. Relevant
termios->c_cflag bits are:
- CSIZE - word size
- CSTOPB - 2 stop bits
- PARENB - parity enable
- PARODD - odd parity (when PARENB is in force)
- CREAD - enable reception of characters (if not set,
+
+ CSIZE
+ - word size
+ CSTOPB
+ - 2 stop bits
+ PARENB
+ - parity enable
+ PARODD
+ - odd parity (when PARENB is in force)
+ CREAD
+ - enable reception of characters (if not set,
still receive characters from the port, but
throw them away.
- CRTSCTS - if set, enable CTS status change reporting
- CLOCAL - if not set, enable modem status change
+ CRTSCTS
+ - if set, enable CTS status change reporting
+ CLOCAL
+ - if not set, enable modem status change
reporting.
+
Relevant termios->c_iflag bits are:
- INPCK - enable frame and parity error events to be
+
+ INPCK
+ - enable frame and parity error events to be
passed to the TTY layer.
- BRKINT
- PARMRK - both of these enable break events to be
+ BRKINT / PARMRK
+ - both of these enable break events to be
passed to the TTY layer.
- IGNPAR - ignore parity and framing errors
- IGNBRK - ignore break errors, If IGNPAR is also
+ IGNPAR
+ - ignore parity and framing errors
+ IGNBRK
+ - ignore break errors, If IGNPAR is also
set, ignore overrun errors as well.
+
The interaction of the iflag bits is as follows (parity error
given as an example):
+
+ =============== ======= ====== =============================
Parity error INPCK IGNPAR
+ =============== ======= ====== =============================
n/a 0 n/a character received, marked as
TTY_NORMAL
None 1 n/a character received, marked as
@@ -258,16 +299,19 @@ hardware.
Yes 1 0 character received, marked as
TTY_PARITY
Yes 1 1 character discarded
+ =============== ======= ====== =============================
Other flags may be used (eg, xon/xoff characters) if your
hardware supports hardware "soft" flow control.
Locking: caller holds tty_port->mutex
+
Interrupts: caller dependent.
+
This call must not sleep
set_ldisc(port,termios)
- Notifier for discipline change. See Documentation/serial/tty.txt.
+ Notifier for discipline change. See Documentation/serial/tty.rst.
Locking: caller holds tty_port->mutex
@@ -283,6 +327,7 @@ hardware.
will occur even if CONFIG_PM is not set.
Locking: none.
+
Interrupts: caller dependent.
type(port)
@@ -291,6 +336,7 @@ hardware.
substituted.
Locking: none.
+
Interrupts: caller dependent.
release_port(port)
@@ -298,6 +344,7 @@ hardware.
the port.
Locking: none.
+
Interrupts: caller dependent.
request_port(port)
@@ -306,6 +353,7 @@ hardware.
returns, and it should return -EBUSY on failure.
Locking: none.
+
Interrupts: caller dependent.
config_port(port,type)
@@ -321,6 +369,7 @@ hardware.
internally hard wired (eg, system on a chip implementations).
Locking: none.
+
Interrupts: caller dependent.
verify_port(port,serinfo)
@@ -328,6 +377,7 @@ hardware.
suitable for this port type.
Locking: none.
+
Interrupts: caller dependent.
ioctl(port,cmd,arg)
@@ -335,6 +385,7 @@ hardware.
using the standard numbering system found in <asm/ioctl.h>
Locking: none.
+
Interrupts: caller dependent.
poll_init(port)
@@ -343,6 +394,7 @@ hardware.
this should not request interrupts.
Locking: tty_mutex and tty_port->mutex taken.
+
Interrupts: n/a.
poll_put_char(port,ch)
@@ -350,7 +402,9 @@ hardware.
port. It can and should block until there is space in the TX FIFO.
Locking: none.
+
Interrupts: caller dependent.
+
This call must not sleep
poll_get_char(port)
@@ -359,7 +413,9 @@ hardware.
the function should return NO_POLL_CHAR immediately.
Locking: none.
+
Interrupts: caller dependent.
+
This call must not sleep
Other functions
@@ -370,6 +426,7 @@ uart_update_timeout(port,cflag,baud)
number of bits, parity, stop bits and baud rate.
Locking: caller is expected to take port->lock
+
Interrupts: n/a
uart_get_baud_rate(port,termios,old,min,max)
@@ -385,6 +442,7 @@ uart_get_baud_rate(port,termios,old,min,max)
Note: min..max must always allow 9600 baud to be selected.
Locking: caller dependent.
+
Interrupts: n/a
uart_get_divisor(port,baud)
@@ -395,6 +453,7 @@ uart_get_divisor(port,baud)
custom divisor instead.
Locking: caller dependent.
+
Interrupts: n/a
uart_match_port(port1,port2)
@@ -402,6 +461,7 @@ uart_match_port(port1,port2)
uart_port structures describe the same port.
Locking: n/a
+
Interrupts: n/a
uart_write_wakeup(port)
@@ -409,6 +469,7 @@ uart_write_wakeup(port)
characters in the transmit buffer have dropped below a threshold.
Locking: port->lock should be held.
+
Interrupts: n/a
uart_register_driver(drv)
@@ -419,6 +480,7 @@ uart_register_driver(drv)
registered using uart_add_one_port after this call has succeeded.
Locking: none
+
Interrupts: enabled
uart_unregister_driver()
@@ -427,15 +489,16 @@ uart_unregister_driver()
uart_remove_one_port() if it registered them with uart_add_one_port().
Locking: none
+
Interrupts: enabled
-uart_suspend_port()
+**uart_suspend_port()**
-uart_resume_port()
+**uart_resume_port()**
-uart_add_one_port()
+**uart_add_one_port()**
-uart_remove_one_port()
+**uart_remove_one_port()**
Other notes
-----------
@@ -444,7 +507,7 @@ It is intended some day to drop the 'unused' entries from uart_port, and
allow low level drivers to register their own individual uart_port's with
the core. This will allow drivers to use uart_port as a pointer to a
structure containing both the uart_port entry with their own extensions,
-thus:
+thus::
struct my_port {
struct uart_port port;
@@ -459,14 +522,14 @@ Some helpers are provided in order to set/get modem control lines via GPIO.
mctrl_gpio_init(port, idx):
This will get the {cts,rts,...}-gpios from device tree if they are
present and request them, set direction etc, and return an
- allocated structure. devm_* functions are used, so there's no need
+ allocated structure. `devm_*` functions are used, so there's no need
to call mctrl_gpio_free().
As this sets up the irq handling make sure to not handle changes to the
gpio input lines in your driver, too.
mctrl_gpio_free(dev, gpios):
This will free the requested gpios in mctrl_gpio_init().
- As devm_* functions are used, there's generally no need to call
+ As `devm_*` functions are used, there's generally no need to call
this function.
mctrl_gpio_to_gpiod(gpios, gidx)
diff --git a/Documentation/serial/index.rst b/Documentation/serial/index.rst
new file mode 100644
index 000000000000..d0ba22ea23bf
--- /dev/null
+++ b/Documentation/serial/index.rst
@@ -0,0 +1,32 @@
+:orphan:
+
+==========================
+Support for Serial devices
+==========================
+
+.. toctree::
+ :maxdepth: 1
+
+
+ driver
+ tty
+
+Serial drivers
+==============
+
+.. toctree::
+ :maxdepth: 1
+
+ cyclades_z
+ moxa-smartio
+ n_gsm
+ rocket
+ serial-iso7816
+ serial-rs485
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/serial/moxa-smartio b/Documentation/serial/moxa-smartio
deleted file mode 100644
index 5d2a33be0bd8..000000000000
--- a/Documentation/serial/moxa-smartio
+++ /dev/null
@@ -1,523 +0,0 @@
-=============================================================================
- MOXA Smartio/Industio Family Device Driver Installation Guide
- for Linux Kernel 2.4.x, 2.6.x
- Copyright (C) 2008, Moxa Inc.
-=============================================================================
-Date: 01/21/2008
-
-Content
-
-1. Introduction
-2. System Requirement
-3. Installation
- 3.1 Hardware installation
- 3.2 Driver files
- 3.3 Device naming convention
- 3.4 Module driver configuration
- 3.5 Static driver configuration for Linux kernel 2.4.x and 2.6.x.
- 3.6 Custom configuration
- 3.7 Verify driver installation
-4. Utilities
-5. Setserial
-6. Troubleshooting
-
------------------------------------------------------------------------------
-1. Introduction
-
- The Smartio/Industio/UPCI family Linux driver supports following multiport
- boards.
-
- - 2 ports multiport board
- CP-102U, CP-102UL, CP-102UF
- CP-132U-I, CP-132UL,
- CP-132, CP-132I, CP132S, CP-132IS,
- CI-132, CI-132I, CI-132IS,
- (C102H, C102HI, C102HIS, C102P, CP-102, CP-102S)
-
- - 4 ports multiport board
- CP-104EL,
- CP-104UL, CP-104JU,
- CP-134U, CP-134U-I,
- C104H/PCI, C104HS/PCI,
- CP-114, CP-114I, CP-114S, CP-114IS, CP-114UL,
- C104H, C104HS,
- CI-104J, CI-104JS,
- CI-134, CI-134I, CI-134IS,
- (C114HI, CT-114I, C104P)
- POS-104UL,
- CB-114,
- CB-134I
-
- - 8 ports multiport board
- CP-118EL, CP-168EL,
- CP-118U, CP-168U,
- C168H/PCI,
- C168H, C168HS,
- (C168P),
- CB-108
-
- This driver and installation procedure have been developed upon Linux Kernel
- 2.4.x and 2.6.x. This driver supports Intel x86 hardware platform. In order
- to maintain compatibility, this version has also been properly tested with
- RedHat, Mandrake, Fedora and S.u.S.E Linux. However, if compatibility problem
- occurs, please contact Moxa at support@moxa.com.tw.
-
- In addition to device driver, useful utilities are also provided in this
- version. They are
- - msdiag Diagnostic program for displaying installed Moxa
- Smartio/Industio boards.
- - msmon Monitor program to observe data count and line status signals.
- - msterm A simple terminal program which is useful in testing serial
- ports.
- - io-irq.exe Configuration program to setup ISA boards. Please note that
- this program can only be executed under DOS.
-
- All the drivers and utilities are published in form of source code under
- GNU General Public License in this version. Please refer to GNU General
- Public License announcement in each source code file for more detail.
-
- In Moxa's Web sites, you may always find latest driver at http://www.moxa.com/.
-
- This version of driver can be installed as Loadable Module (Module driver)
- or built-in into kernel (Static driver). You may refer to following
- installation procedure for suitable one. Before you install the driver,
- please refer to hardware installation procedure in the User's Manual.
-
- We assume the user should be familiar with following documents.
- - Serial-HOWTO
- - Kernel-HOWTO
-
------------------------------------------------------------------------------
-2. System Requirement
- - Hardware platform: Intel x86 machine
- - Kernel version: 2.4.x or 2.6.x
- - gcc version 2.72 or later
- - Maximum 4 boards can be installed in combination
-
------------------------------------------------------------------------------
-3. Installation
-
- 3.1 Hardware installation
- 3.2 Driver files
- 3.3 Device naming convention
- 3.4 Module driver configuration
- 3.5 Static driver configuration for Linux kernel 2.4.x, 2.6.x.
- 3.6 Custom configuration
- 3.7 Verify driver installation
-
-
- 3.1 Hardware installation
-
- There are two types of buses, ISA and PCI, for Smartio/Industio
- family multiport board.
-
- ISA board
- ---------
- You'll have to configure CAP address, I/O address, Interrupt Vector
- as well as IRQ before installing this driver. Please refer to hardware
- installation procedure in User's Manual before proceed any further.
- Please make sure the JP1 is open after the ISA board is set properly.
-
- PCI/UPCI board
- --------------
- You may need to adjust IRQ usage in BIOS to avoid from IRQ conflict
- with other ISA devices. Please refer to hardware installation
- procedure in User's Manual in advance.
-
- PCI IRQ Sharing
- -----------
- Each port within the same multiport board shares the same IRQ. Up to
- 4 Moxa Smartio/Industio PCI Family multiport boards can be installed
- together on one system and they can share the same IRQ.
-
-
- 3.2 Driver files
-
- The driver file may be obtained from ftp, CD-ROM or floppy disk. The
- first step, anyway, is to copy driver file "mxser.tgz" into specified
- directory. e.g. /moxa. The execute commands as below.
-
- # cd /
- # mkdir moxa
- # cd /moxa
- # tar xvf /dev/fd0
-
- or
-
- # cd /
- # mkdir moxa
- # cd /moxa
- # cp /mnt/cdrom/<driver directory>/mxser.tgz .
- # tar xvfz mxser.tgz
-
-
- 3.3 Device naming convention
-
- You may find all the driver and utilities files in /moxa/mxser.
- Following installation procedure depends on the model you'd like to
- run the driver. If you prefer module driver, please refer to 3.4.
- If static driver is required, please refer to 3.5.
-
- Dialin and callout port
- -----------------------
- This driver remains traditional serial device properties. There are
- two special file name for each serial port. One is dial-in port
- which is named "ttyMxx". For callout port, the naming convention
- is "cumxx".
-
- Device naming when more than 2 boards installed
- -----------------------------------------------
- Naming convention for each Smartio/Industio multiport board is
- pre-defined as below.
-
- Board Num. Dial-in Port Callout port
- 1st board ttyM0 - ttyM7 cum0 - cum7
- 2nd board ttyM8 - ttyM15 cum8 - cum15
- 3rd board ttyM16 - ttyM23 cum16 - cum23
- 4th board ttyM24 - ttym31 cum24 - cum31
-
-
- !!!!!!!!!!!!!!!!!!!! NOTE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
- Under Kernel 2.6 the cum Device is Obsolete. So use ttyM*
- device instead.
- !!!!!!!!!!!!!!!!!!!! NOTE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
-
- Board sequence
- --------------
- This driver will activate ISA boards according to the parameter set
- in the driver. After all specified ISA board activated, PCI board
- will be installed in the system automatically driven.
- Therefore the board number is sorted by the CAP address of ISA boards.
- For PCI boards, their sequence will be after ISA boards and C168H/PCI
- has higher priority than C104H/PCI boards.
-
- 3.4 Module driver configuration
- Module driver is easiest way to install. If you prefer static driver
- installation, please skip this paragraph.
-
-
- ------------- Prepare to use the MOXA driver--------------------
- 3.4.1 Create tty device with correct major number
- Before using MOXA driver, your system must have the tty devices
- which are created with driver's major number. We offer one shell
- script "msmknod" to simplify the procedure.
- This step is only needed to be executed once. But you still
- need to do this procedure when:
- a. You change the driver's major number. Please refer the "3.7"
- section.
- b. Your total installed MOXA boards number is changed. Maybe you
- add/delete one MOXA board.
- c. You want to change the tty name. This needs to modify the
- shell script "msmknod"
-
- The procedure is:
- # cd /moxa/mxser/driver
- # ./msmknod
-
- This shell script will require the major number for dial-in
- device and callout device to create tty device. You also need
- to specify the total installed MOXA board number. Default major
- numbers for dial-in device and callout device are 30, 35. If
- you need to change to other number, please refer section "3.7"
- for more detailed procedure.
- Msmknod will delete any special files occupying the same device
- naming.
-
- 3.4.2 Build the MOXA driver and utilities
- Before using the MOXA driver and utilities, you need compile the
- all the source code. This step is only need to be executed once.
- But you still re-compile the source code if you modify the source
- code. For example, if you change the driver's major number (see
- "3.7" section), then you need to do this step again.
-
- Find "Makefile" in /moxa/mxser, then run
-
- # make clean; make install
-
- !!!!!!!!!! NOTE !!!!!!!!!!!!!!!!!
- For Red Hat 9, Red Hat Enterprise Linux AS3/ES3/WS3 & Fedora Core1:
- # make clean; make installsp1
-
- For Red Hat Enterprise Linux AS4/ES4/WS4:
- # make clean; make installsp2
- !!!!!!!!!! NOTE !!!!!!!!!!!!!!!!!
-
- The driver files "mxser.o" and utilities will be properly compiled
- and copied to system directories respectively.
-
- ------------- Load MOXA driver--------------------
- 3.4.3 Load the MOXA driver
-
- # modprobe mxser <argument>
-
- will activate the module driver. You may run "lsmod" to check
- if "mxser" is activated. If the MOXA board is ISA board, the
- <argument> is needed. Please refer to section "3.4.5" for more
- information.
-
-
- ------------- Load MOXA driver on boot --------------------
- 3.4.4 For the above description, you may manually execute
- "modprobe mxser" to activate this driver and run
- "rmmod mxser" to remove it.
- However, it's better to have a boot time configuration to
- eliminate manual operation. Boot time configuration can be
- achieved by rc file. We offer one "rc.mxser" file to simplify
- the procedure under "moxa/mxser/driver".
-
- But if you use ISA board, please modify the "modprobe ..." command
- to add the argument (see "3.4.5" section). After modifying the
- rc.mxser, please try to execute "/moxa/mxser/driver/rc.mxser"
- manually to make sure the modification is ok. If any error
- encountered, please try to modify again. If the modification is
- completed, follow the below step.
-
- Run following command for setting rc files.
-
- # cd /moxa/mxser/driver
- # cp ./rc.mxser /etc/rc.d
- # cd /etc/rc.d
-
- Check "rc.serial" is existed or not. If "rc.serial" doesn't exist,
- create it by vi, run "chmod 755 rc.serial" to change the permission.
- Add "/etc/rc.d/rc.mxser" in last line,
-
- Reboot and check if moxa.o activated by "lsmod" command.
-
- 3.4.5. If you'd like to drive Smartio/Industio ISA boards in the system,
- you'll have to add parameter to specify CAP address of given
- board while activating "mxser.o". The format for parameters are
- as follows.
-
- modprobe mxser ioaddr=0x???,0x???,0x???,0x???
- | | | |
- | | | +- 4th ISA board
- | | +------ 3rd ISA board
- | +------------ 2nd ISA board
- +------------------- 1st ISA board
-
- 3.5 Static driver configuration for Linux kernel 2.4.x and 2.6.x
-
- Note: To use static driver, you must install the linux kernel
- source package.
-
- 3.5.1 Backup the built-in driver in the kernel.
- # cd /usr/src/linux/drivers/char
- # mv mxser.c mxser.c.old
-
- For Red Hat 7.x user, you need to create link:
- # cd /usr/src
- # ln -s linux-2.4 linux
-
- 3.5.2 Create link
- # cd /usr/src/linux/drivers/char
- # ln -s /moxa/mxser/driver/mxser.c mxser.c
-
- 3.5.3 Add CAP address list for ISA boards. For PCI boards user,
- please skip this step.
-
- In module mode, the CAP address for ISA board is given by
- parameter. In static driver configuration, you'll have to
- assign it within driver's source code. If you will not
- install any ISA boards, you may skip to next portion.
- The instructions to modify driver source code are as
- below.
- a. # cd /moxa/mxser/driver
- # vi mxser.c
- b. Find the array mxserBoardCAP[] as below.
-
- static int mxserBoardCAP[]
- = {0x00, 0x00, 0x00, 0x00};
-
- c. Change the address within this array using vi. For
- example, to driver 2 ISA boards with CAP address
- 0x280 and 0x180 as 1st and 2nd board. Just to change
- the source code as follows.
-
- static int mxserBoardCAP[]
- = {0x280, 0x180, 0x00, 0x00};
-
- 3.5.4 Setup kernel configuration
-
- Configure the kernel:
-
- # cd /usr/src/linux
- # make menuconfig
-
- You will go into a menu-driven system. Please select [Character
- devices][Non-standard serial port support], enable the [Moxa
- SmartIO support] driver with "[*]" for built-in (not "[M]"), then
- select [Exit] to exit this program.
-
- 3.5.5 Rebuild kernel
- The following are for Linux kernel rebuilding, for your
- reference only.
- For appropriate details, please refer to the Linux document.
-
- a. cd /usr/src/linux
- b. make clean /* take a few minutes */
- c. make dep /* take a few minutes */
- d. make bzImage /* take probably 10-20 minutes */
- e. make install /* copy boot image to correct position */
- f. Please make sure the boot kernel (vmlinuz) is in the
- correct position.
- g. If you use 'lilo' utility, you should check /etc/lilo.conf
- 'image' item specified the path which is the 'vmlinuz' path,
- or you will load wrong (or old) boot kernel image (vmlinuz).
- After checking /etc/lilo.conf, please run "lilo".
-
- Note that if the result of "make bzImage" is ERROR, then you have to
- go back to Linux configuration Setup. Type "make menuconfig" in
- directory /usr/src/linux.
-
-
- 3.5.6 Make tty device and special file
- # cd /moxa/mxser/driver
- # ./msmknod
-
- 3.5.7 Make utility
- # cd /moxa/mxser/utility
- # make clean; make install
-
- 3.5.8 Reboot
-
-
-
- 3.6 Custom configuration
- Although this driver already provides you default configuration, you
- still can change the device name and major number. The instruction to
- change these parameters are shown as below.
-
- Change Device name
- ------------------
- If you'd like to use other device names instead of default naming
- convention, all you have to do is to modify the internal code
- within the shell script "msmknod". First, you have to open "msmknod"
- by vi. Locate each line contains "ttyM" and "cum" and change them
- to the device name you desired. "msmknod" creates the device names
- you need next time executed.
-
- Change Major number
- -------------------
- If major number 30 and 35 had been occupied, you may have to select
- 2 free major numbers for this driver. There are 3 steps to change
- major numbers.
-
- 3.6.1 Find free major numbers
- In /proc/devices, you may find all the major numbers occupied
- in the system. Please select 2 major numbers that are available.
- e.g. 40, 45.
- 3.6.2 Create special files
- Run /moxa/mxser/driver/msmknod to create special files with
- specified major numbers.
- 3.6.3 Modify driver with new major number
- Run vi to open /moxa/mxser/driver/mxser.c. Locate the line
- contains "MXSERMAJOR". Change the content as below.
- #define MXSERMAJOR 40
- #define MXSERCUMAJOR 45
- 3.6.4 Run "make clean; make install" in /moxa/mxser/driver.
-
- 3.7 Verify driver installation
- You may refer to /var/log/messages to check the latest status
- log reported by this driver whenever it's activated.
-
------------------------------------------------------------------------------
-4. Utilities
- There are 3 utilities contained in this driver. They are msdiag, msmon and
- msterm. These 3 utilities are released in form of source code. They should
- be compiled into executable file and copied into /usr/bin.
-
- Before using these utilities, please load driver (refer 3.4 & 3.5) and
- make sure you had run the "msmknod" utility.
-
- msdiag - Diagnostic
- --------------------
- This utility provides the function to display what Moxa Smartio/Industio
- board found by driver in the system.
-
- msmon - Port Monitoring
- -----------------------
- This utility gives the user a quick view about all the MOXA ports'
- activities. One can easily learn each port's total received/transmitted
- (Rx/Tx) character count since the time when the monitoring is started.
- Rx/Tx throughputs per second are also reported in interval basis (e.g.
- the last 5 seconds) and in average basis (since the time the monitoring
- is started). You can reset all ports' count by <HOME> key. <+> <->
- (plus/minus) keys to change the displaying time interval. Press <ENTER>
- on the port, that cursor stay, to view the port's communication
- parameters, signal status, and input/output queue.
-
- msterm - Terminal Emulation
- ---------------------------
- This utility provides data sending and receiving ability of all tty ports,
- especially for MOXA ports. It is quite useful for testing simple
- application, for example, sending AT command to a modem connected to the
- port or used as a terminal for login purpose. Note that this is only a
- dumb terminal emulation without handling full screen operation.
-
------------------------------------------------------------------------------
-5. Setserial
-
- Supported Setserial parameters are listed as below.
-
- uart set UART type(16450-->disable FIFO, 16550A-->enable FIFO)
- close_delay set the amount of time(in 1/100 of a second) that DTR
- should be kept low while being closed.
- closing_wait set the amount of time(in 1/100 of a second) that the
- serial port should wait for data to be drained while
- being closed, before the receiver is disable.
- spd_hi Use 57.6kb when the application requests 38.4kb.
- spd_vhi Use 115.2kb when the application requests 38.4kb.
- spd_shi Use 230.4kb when the application requests 38.4kb.
- spd_warp Use 460.8kb when the application requests 38.4kb.
- spd_normal Use 38.4kb when the application requests 38.4kb.
- spd_cust Use the custom divisor to set the speed when the
- application requests 38.4kb.
- divisor This option set the custom division.
- baud_base This option set the base baud rate.
-
------------------------------------------------------------------------------
-6. Troubleshooting
-
- The boot time error messages and solutions are stated as clearly as
- possible. If all the possible solutions fail, please contact our technical
- support team to get more help.
-
-
- Error msg: More than 4 Moxa Smartio/Industio family boards found. Fifth board
- and after are ignored.
- Solution:
- To avoid this problem, please unplug fifth and after board, because Moxa
- driver supports up to 4 boards.
-
- Error msg: Request_irq fail, IRQ(?) may be conflict with another device.
- Solution:
- Other PCI or ISA devices occupy the assigned IRQ. If you are not sure
- which device causes the situation, please check /proc/interrupts to find
- free IRQ and simply change another free IRQ for Moxa board.
-
- Error msg: Board #: C1xx Series(CAP=xxx) interrupt number invalid.
- Solution:
- Each port within the same multiport board shares the same IRQ. Please set
- one IRQ (IRQ doesn't equal to zero) for one Moxa board.
-
- Error msg: No interrupt vector be set for Moxa ISA board(CAP=xxx).
- Solution:
- Moxa ISA board needs an interrupt vector.Please refer to user's manual
- "Hardware Installation" chapter to set interrupt vector.
-
- Error msg: Couldn't install MOXA Smartio/Industio family driver!
- Solution:
- Load Moxa driver fail, the major number may conflict with other devices.
- Please refer to previous section 3.7 to change a free major number for
- Moxa driver.
-
- Error msg: Couldn't install MOXA Smartio/Industio family callout driver!
- Solution:
- Load Moxa callout driver fail, the callout device major number may
- conflict with other devices. Please refer to previous section 3.7 to
- change a free callout device major number for Moxa driver.
-
-
------------------------------------------------------------------------------
-
diff --git a/Documentation/serial/moxa-smartio.rst b/Documentation/serial/moxa-smartio.rst
new file mode 100644
index 000000000000..156100f17c3f
--- /dev/null
+++ b/Documentation/serial/moxa-smartio.rst
@@ -0,0 +1,615 @@
+=============================================================
+MOXA Smartio/Industio Family Device Driver Installation Guide
+=============================================================
+
+.. note::
+
+ This file is outdated. It needs some care in order to make it
+ updated to Kernel 5.0 and upper
+
+Copyright (C) 2008, Moxa Inc.
+
+Date: 01/21/2008
+
+.. Content
+
+ 1. Introduction
+ 2. System Requirement
+ 3. Installation
+ 3.1 Hardware installation
+ 3.2 Driver files
+ 3.3 Device naming convention
+ 3.4 Module driver configuration
+ 3.5 Static driver configuration for Linux kernel 2.4.x and 2.6.x.
+ 3.6 Custom configuration
+ 3.7 Verify driver installation
+ 4. Utilities
+ 5. Setserial
+ 6. Troubleshooting
+
+1. Introduction
+^^^^^^^^^^^^^^^
+
+ The Smartio/Industio/UPCI family Linux driver supports following multiport
+ boards.
+
+ - 2 ports multiport board
+ CP-102U, CP-102UL, CP-102UF
+ CP-132U-I, CP-132UL,
+ CP-132, CP-132I, CP132S, CP-132IS,
+ CI-132, CI-132I, CI-132IS,
+ (C102H, C102HI, C102HIS, C102P, CP-102, CP-102S)
+
+ - 4 ports multiport board
+ CP-104EL,
+ CP-104UL, CP-104JU,
+ CP-134U, CP-134U-I,
+ C104H/PCI, C104HS/PCI,
+ CP-114, CP-114I, CP-114S, CP-114IS, CP-114UL,
+ C104H, C104HS,
+ CI-104J, CI-104JS,
+ CI-134, CI-134I, CI-134IS,
+ (C114HI, CT-114I, C104P),
+ POS-104UL,
+ CB-114,
+ CB-134I
+
+ - 8 ports multiport board
+ CP-118EL, CP-168EL,
+ CP-118U, CP-168U,
+ C168H/PCI,
+ C168H, C168HS,
+ (C168P),
+ CB-108
+
+ This driver and installation procedure have been developed upon Linux Kernel
+ 2.4.x and 2.6.x. This driver supports Intel x86 hardware platform. In order
+ to maintain compatibility, this version has also been properly tested with
+ RedHat, Mandrake, Fedora and S.u.S.E Linux. However, if compatibility problem
+ occurs, please contact Moxa at support@moxa.com.tw.
+
+ In addition to device driver, useful utilities are also provided in this
+ version. They are:
+
+ - msdiag
+ Diagnostic program for displaying installed Moxa
+ Smartio/Industio boards.
+ - msmon
+ Monitor program to observe data count and line status signals.
+ - msterm A simple terminal program which is useful in testing serial
+ ports.
+ - io-irq.exe
+ Configuration program to setup ISA boards. Please note that
+ this program can only be executed under DOS.
+
+ All the drivers and utilities are published in form of source code under
+ GNU General Public License in this version. Please refer to GNU General
+ Public License announcement in each source code file for more detail.
+
+ In Moxa's Web sites, you may always find latest driver at http://www.moxa.com/.
+
+ This version of driver can be installed as Loadable Module (Module driver)
+ or built-in into kernel (Static driver). You may refer to following
+ installation procedure for suitable one. Before you install the driver,
+ please refer to hardware installation procedure in the User's Manual.
+
+ We assume the user should be familiar with following documents.
+
+ - Serial-HOWTO
+ - Kernel-HOWTO
+
+2. System Requirement
+^^^^^^^^^^^^^^^^^^^^^
+
+ - Hardware platform: Intel x86 machine
+ - Kernel version: 2.4.x or 2.6.x
+ - gcc version 2.72 or later
+ - Maximum 4 boards can be installed in combination
+
+3. Installation
+^^^^^^^^^^^^^^^
+
+3.1 Hardware installation
+=========================
+
+ There are two types of buses, ISA and PCI, for Smartio/Industio
+ family multiport board.
+
+ISA board
+---------
+
+ You'll have to configure CAP address, I/O address, Interrupt Vector
+ as well as IRQ before installing this driver. Please refer to hardware
+ installation procedure in User's Manual before proceed any further.
+ Please make sure the JP1 is open after the ISA board is set properly.
+
+PCI/UPCI board
+--------------
+
+ You may need to adjust IRQ usage in BIOS to avoid from IRQ conflict
+ with other ISA devices. Please refer to hardware installation
+ procedure in User's Manual in advance.
+
+PCI IRQ Sharing
+---------------
+
+ Each port within the same multiport board shares the same IRQ. Up to
+ 4 Moxa Smartio/Industio PCI Family multiport boards can be installed
+ together on one system and they can share the same IRQ.
+
+
+3.2 Driver files
+================
+
+ The driver file may be obtained from ftp, CD-ROM or floppy disk. The
+ first step, anyway, is to copy driver file "mxser.tgz" into specified
+ directory. e.g. /moxa. The execute commands as below::
+
+ # cd /
+ # mkdir moxa
+ # cd /moxa
+ # tar xvf /dev/fd0
+
+or::
+
+ # cd /
+ # mkdir moxa
+ # cd /moxa
+ # cp /mnt/cdrom/<driver directory>/mxser.tgz .
+ # tar xvfz mxser.tgz
+
+
+3.3 Device naming convention
+============================
+
+ You may find all the driver and utilities files in /moxa/mxser.
+ Following installation procedure depends on the model you'd like to
+ run the driver. If you prefer module driver, please refer to 3.4.
+ If static driver is required, please refer to 3.5.
+
+Dialin and callout port
+-----------------------
+
+ This driver remains traditional serial device properties. There are
+ two special file name for each serial port. One is dial-in port
+ which is named "ttyMxx". For callout port, the naming convention
+ is "cumxx".
+
+Device naming when more than 2 boards installed
+-----------------------------------------------
+
+ Naming convention for each Smartio/Industio multiport board is
+ pre-defined as below.
+
+ ============ =============== ==============
+ Board Num. Dial-in Port Callout port
+ 1st board ttyM0 - ttyM7 cum0 - cum7
+ 2nd board ttyM8 - ttyM15 cum8 - cum15
+ 3rd board ttyM16 - ttyM23 cum16 - cum23
+ 4th board ttyM24 - ttym31 cum24 - cum31
+ ============ =============== ==============
+
+.. note::
+
+ Under Kernel 2.6 and upper, the cum Device is Obsolete. So use ttyM*
+ device instead.
+
+Board sequence
+--------------
+
+ This driver will activate ISA boards according to the parameter set
+ in the driver. After all specified ISA board activated, PCI board
+ will be installed in the system automatically driven.
+ Therefore the board number is sorted by the CAP address of ISA boards.
+ For PCI boards, their sequence will be after ISA boards and C168H/PCI
+ has higher priority than C104H/PCI boards.
+
+3.4 Module driver configuration
+===============================
+
+ Module driver is easiest way to install. If you prefer static driver
+ installation, please skip this paragraph.
+
+
+ ------------- Prepare to use the MOXA driver --------------------
+
+3.4.1 Create tty device with correct major number
+-------------------------------------------------
+
+ Before using MOXA driver, your system must have the tty devices
+ which are created with driver's major number. We offer one shell
+ script "msmknod" to simplify the procedure.
+ This step is only needed to be executed once. But you still
+ need to do this procedure when:
+
+ a. You change the driver's major number. Please refer the "3.7"
+ section.
+ b. Your total installed MOXA boards number is changed. Maybe you
+ add/delete one MOXA board.
+ c. You want to change the tty name. This needs to modify the
+ shell script "msmknod"
+
+ The procedure is::
+
+ # cd /moxa/mxser/driver
+ # ./msmknod
+
+ This shell script will require the major number for dial-in
+ device and callout device to create tty device. You also need
+ to specify the total installed MOXA board number. Default major
+ numbers for dial-in device and callout device are 30, 35. If
+ you need to change to other number, please refer section "3.7"
+ for more detailed procedure.
+ Msmknod will delete any special files occupying the same device
+ naming.
+
+3.4.2 Build the MOXA driver and utilities
+-----------------------------------------
+
+ Before using the MOXA driver and utilities, you need compile the
+ all the source code. This step is only need to be executed once.
+ But you still re-compile the source code if you modify the source
+ code. For example, if you change the driver's major number (see
+ "3.7" section), then you need to do this step again.
+
+ Find "Makefile" in /moxa/mxser, then run
+
+ # make clean; make install
+
+ ..note::
+
+ For Red Hat 9, Red Hat Enterprise Linux AS3/ES3/WS3 & Fedora Core1:
+ # make clean; make installsp1
+
+ For Red Hat Enterprise Linux AS4/ES4/WS4:
+ # make clean; make installsp2
+
+ The driver files "mxser.o" and utilities will be properly compiled
+ and copied to system directories respectively.
+
+------------- Load MOXA driver--------------------
+
+3.4.3 Load the MOXA driver
+--------------------------
+
+ ::
+
+ # modprobe mxser <argument>
+
+ will activate the module driver. You may run "lsmod" to check
+ if "mxser" is activated. If the MOXA board is ISA board, the
+ <argument> is needed. Please refer to section "3.4.5" for more
+ information.
+
+------------- Load MOXA driver on boot --------------------
+
+3.4.4 Load the mxser driver
+---------------------------
+
+
+ For the above description, you may manually execute
+ "modprobe mxser" to activate this driver and run
+ "rmmod mxser" to remove it.
+
+ However, it's better to have a boot time configuration to
+ eliminate manual operation. Boot time configuration can be
+ achieved by rc file. We offer one "rc.mxser" file to simplify
+ the procedure under "moxa/mxser/driver".
+
+ But if you use ISA board, please modify the "modprobe ..." command
+ to add the argument (see "3.4.5" section). After modifying the
+ rc.mxser, please try to execute "/moxa/mxser/driver/rc.mxser"
+ manually to make sure the modification is ok. If any error
+ encountered, please try to modify again. If the modification is
+ completed, follow the below step.
+
+ Run following command for setting rc files::
+
+ # cd /moxa/mxser/driver
+ # cp ./rc.mxser /etc/rc.d
+ # cd /etc/rc.d
+
+ Check "rc.serial" is existed or not. If "rc.serial" doesn't exist,
+ create it by vi, run "chmod 755 rc.serial" to change the permission.
+
+ Add "/etc/rc.d/rc.mxser" in last line.
+
+ Reboot and check if moxa.o activated by "lsmod" command.
+
+3.4.5. specify CAP address
+--------------------------
+
+ If you'd like to drive Smartio/Industio ISA boards in the system,
+ you'll have to add parameter to specify CAP address of given
+ board while activating "mxser.o". The format for parameters are
+ as follows.::
+
+ modprobe mxser ioaddr=0x???,0x???,0x???,0x???
+ | | | |
+ | | | +- 4th ISA board
+ | | +------ 3rd ISA board
+ | +------------ 2nd ISA board
+ +-------------------1st ISA board
+
+3.5 Static driver configuration for Linux kernel 2.4.x and 2.6.x
+================================================================
+
+ Note:
+ To use static driver, you must install the linux kernel
+ source package.
+
+3.5.1 Backup the built-in driver in the kernel
+----------------------------------------------
+
+ ::
+
+ # cd /usr/src/linux/drivers/char
+ # mv mxser.c mxser.c.old
+
+ For Red Hat 7.x user, you need to create link:
+ # cd /usr/src
+ # ln -s linux-2.4 linux
+
+3.5.2 Create link
+-----------------
+ ::
+
+ # cd /usr/src/linux/drivers/char
+ # ln -s /moxa/mxser/driver/mxser.c mxser.c
+
+3.5.3 Add CAP address list for ISA boards.
+------------------------------------------
+
+ For PCI boards user, please skip this step.
+
+ In module mode, the CAP address for ISA board is given by
+ parameter. In static driver configuration, you'll have to
+ assign it within driver's source code. If you will not
+ install any ISA boards, you may skip to next portion.
+ The instructions to modify driver source code are as
+ below.
+
+ a. run::
+
+ # cd /moxa/mxser/driver
+ # vi mxser.c
+
+ b. Find the array mxserBoardCAP[] as below::
+
+ static int mxserBoardCAP[] = {0x00, 0x00, 0x00, 0x00};
+
+ c. Change the address within this array using vi. For
+ example, to driver 2 ISA boards with CAP address
+ 0x280 and 0x180 as 1st and 2nd board. Just to change
+ the source code as follows::
+
+ static int mxserBoardCAP[] = {0x280, 0x180, 0x00, 0x00};
+
+3.5.4 Setup kernel configuration
+--------------------------------
+
+ Configure the kernel::
+
+ # cd /usr/src/linux
+ # make menuconfig
+
+ You will go into a menu-driven system. Please select [Character
+ devices][Non-standard serial port support], enable the [Moxa
+ SmartIO support] driver with "[*]" for built-in (not "[M]"), then
+ select [Exit] to exit this program.
+
+3.5.5 Rebuild kernel
+--------------------
+
+ The following are for Linux kernel rebuilding, for your
+ reference only.
+
+ For appropriate details, please refer to the Linux document:
+
+ a. Run the following commands::
+
+ cd /usr/src/linux
+ make clean # take a few minutes
+ make dep # take a few minutes
+ make bzImage # take probably 10-20 minutes
+ make install # copy boot image to correct position
+
+ f. Please make sure the boot kernel (vmlinuz) is in the
+ correct position.
+ g. If you use 'lilo' utility, you should check /etc/lilo.conf
+ 'image' item specified the path which is the 'vmlinuz' path,
+ or you will load wrong (or old) boot kernel image (vmlinuz).
+ After checking /etc/lilo.conf, please run "lilo".
+
+ Note that if the result of "make bzImage" is ERROR, then you have to
+ go back to Linux configuration Setup. Type "make menuconfig" in
+ directory /usr/src/linux.
+
+
+3.5.6 Make tty device and special file
+--------------------------------------
+
+ ::
+ # cd /moxa/mxser/driver
+ # ./msmknod
+
+3.5.7 Make utility
+------------------
+
+ ::
+
+ # cd /moxa/mxser/utility
+ # make clean; make install
+
+3.5.8 Reboot
+------------
+
+
+
+3.6 Custom configuration
+========================
+
+ Although this driver already provides you default configuration, you
+ still can change the device name and major number. The instruction to
+ change these parameters are shown as below.
+
+a. Change Device name
+
+ If you'd like to use other device names instead of default naming
+ convention, all you have to do is to modify the internal code
+ within the shell script "msmknod". First, you have to open "msmknod"
+ by vi. Locate each line contains "ttyM" and "cum" and change them
+ to the device name you desired. "msmknod" creates the device names
+ you need next time executed.
+
+b. Change Major number
+
+ If major number 30 and 35 had been occupied, you may have to select
+ 2 free major numbers for this driver. There are 3 steps to change
+ major numbers.
+
+3.6.1 Find free major numbers
+-----------------------------
+
+ In /proc/devices, you may find all the major numbers occupied
+ in the system. Please select 2 major numbers that are available.
+ e.g. 40, 45.
+
+3.6.2 Create special files
+--------------------------
+
+ Run /moxa/mxser/driver/msmknod to create special files with
+ specified major numbers.
+
+3.6.3 Modify driver with new major number
+-----------------------------------------
+
+ Run vi to open /moxa/mxser/driver/mxser.c. Locate the line
+ contains "MXSERMAJOR". Change the content as below::
+
+ #define MXSERMAJOR 40
+ #define MXSERCUMAJOR 45
+
+ 3.6.4 Run "make clean; make install" in /moxa/mxser/driver.
+
+3.7 Verify driver installation
+==============================
+
+ You may refer to /var/log/messages to check the latest status
+ log reported by this driver whenever it's activated.
+
+4. Utilities
+^^^^^^^^^^^^
+
+ There are 3 utilities contained in this driver. They are msdiag, msmon and
+ msterm. These 3 utilities are released in form of source code. They should
+ be compiled into executable file and copied into /usr/bin.
+
+ Before using these utilities, please load driver (refer 3.4 & 3.5) and
+ make sure you had run the "msmknod" utility.
+
+msdiag - Diagnostic
+===================
+
+ This utility provides the function to display what Moxa Smartio/Industio
+ board found by driver in the system.
+
+msmon - Port Monitoring
+=======================
+
+ This utility gives the user a quick view about all the MOXA ports'
+ activities. One can easily learn each port's total received/transmitted
+ (Rx/Tx) character count since the time when the monitoring is started.
+
+ Rx/Tx throughputs per second are also reported in interval basis (e.g.
+ the last 5 seconds) and in average basis (since the time the monitoring
+ is started). You can reset all ports' count by <HOME> key. <+> <->
+ (plus/minus) keys to change the displaying time interval. Press <ENTER>
+ on the port, that cursor stay, to view the port's communication
+ parameters, signal status, and input/output queue.
+
+msterm - Terminal Emulation
+===========================
+
+ This utility provides data sending and receiving ability of all tty ports,
+ especially for MOXA ports. It is quite useful for testing simple
+ application, for example, sending AT command to a modem connected to the
+ port or used as a terminal for login purpose. Note that this is only a
+ dumb terminal emulation without handling full screen operation.
+
+5. Setserial
+^^^^^^^^^^^^
+
+ Supported Setserial parameters are listed as below.
+
+ ============== =========================================================
+ uart set UART type(16450-->disable FIFO, 16550A-->enable FIFO)
+ close_delay set the amount of time(in 1/100 of a second) that DTR
+ should be kept low while being closed.
+ closing_wait set the amount of time(in 1/100 of a second) that the
+ serial port should wait for data to be drained while
+ being closed, before the receiver is disable.
+ spd_hi Use 57.6kb when the application requests 38.4kb.
+ spd_vhi Use 115.2kb when the application requests 38.4kb.
+ spd_shi Use 230.4kb when the application requests 38.4kb.
+ spd_warp Use 460.8kb when the application requests 38.4kb.
+ spd_normal Use 38.4kb when the application requests 38.4kb.
+ spd_cust Use the custom divisor to set the speed when the
+ application requests 38.4kb.
+ divisor This option set the custom division.
+ baud_base This option set the base baud rate.
+ ============== =========================================================
+
+6. Troubleshooting
+^^^^^^^^^^^^^^^^^^
+
+ The boot time error messages and solutions are stated as clearly as
+ possible. If all the possible solutions fail, please contact our technical
+ support team to get more help.
+
+
+ Error msg:
+ More than 4 Moxa Smartio/Industio family boards found. Fifth board
+ and after are ignored.
+
+ Solution:
+ To avoid this problem, please unplug fifth and after board, because Moxa
+ driver supports up to 4 boards.
+
+ Error msg:
+ Request_irq fail, IRQ(?) may be conflict with another device.
+
+ Solution:
+ Other PCI or ISA devices occupy the assigned IRQ. If you are not sure
+ which device causes the situation, please check /proc/interrupts to find
+ free IRQ and simply change another free IRQ for Moxa board.
+
+ Error msg:
+ Board #: C1xx Series(CAP=xxx) interrupt number invalid.
+
+ Solution:
+ Each port within the same multiport board shares the same IRQ. Please set
+ one IRQ (IRQ doesn't equal to zero) for one Moxa board.
+
+ Error msg:
+ No interrupt vector be set for Moxa ISA board(CAP=xxx).
+
+ Solution:
+ Moxa ISA board needs an interrupt vector.Please refer to user's manual
+ "Hardware Installation" chapter to set interrupt vector.
+
+ Error msg:
+ Couldn't install MOXA Smartio/Industio family driver!
+
+ Solution:
+ Load Moxa driver fail, the major number may conflict with other devices.
+ Please refer to previous section 3.7 to change a free major number for
+ Moxa driver.
+
+ Error msg:
+ Couldn't install MOXA Smartio/Industio family callout driver!
+
+ Solution:
+ Load Moxa callout driver fail, the callout device major number may
+ conflict with other devices. Please refer to previous section 3.7 to
+ change a free callout device major number for Moxa driver.
diff --git a/Documentation/serial/n_gsm.rst b/Documentation/serial/n_gsm.rst
new file mode 100644
index 000000000000..f3ad9fd26408
--- /dev/null
+++ b/Documentation/serial/n_gsm.rst
@@ -0,0 +1,103 @@
+==============================
+GSM 0710 tty multiplexor HOWTO
+==============================
+
+This line discipline implements the GSM 07.10 multiplexing protocol
+detailed in the following 3GPP document:
+
+ http://www.3gpp.org/ftp/Specs/archive/07_series/07.10/0710-720.zip
+
+This document give some hints on how to use this driver with GPRS and 3G
+modems connected to a physical serial port.
+
+How to use it
+-------------
+1. initialize the modem in 0710 mux mode (usually AT+CMUX= command) through
+ its serial port. Depending on the modem used, you can pass more or less
+ parameters to this command,
+2. switch the serial line to using the n_gsm line discipline by using
+ TIOCSETD ioctl,
+3. configure the mux using GSMIOC_GETCONF / GSMIOC_SETCONF ioctl,
+
+Major parts of the initialization program :
+(a good starting point is util-linux-ng/sys-utils/ldattach.c)::
+
+ #include <linux/gsmmux.h>
+ #define N_GSM0710 21 /* GSM 0710 Mux */
+ #define DEFAULT_SPEED B115200
+ #define SERIAL_PORT /dev/ttyS0
+
+ int ldisc = N_GSM0710;
+ struct gsm_config c;
+ struct termios configuration;
+
+ /* open the serial port connected to the modem */
+ fd = open(SERIAL_PORT, O_RDWR | O_NOCTTY | O_NDELAY);
+
+ /* configure the serial port : speed, flow control ... */
+
+ /* send the AT commands to switch the modem to CMUX mode
+ and check that it's successful (should return OK) */
+ write(fd, "AT+CMUX=0\r", 10);
+
+ /* experience showed that some modems need some time before
+ being able to answer to the first MUX packet so a delay
+ may be needed here in some case */
+ sleep(3);
+
+ /* use n_gsm line discipline */
+ ioctl(fd, TIOCSETD, &ldisc);
+
+ /* get n_gsm configuration */
+ ioctl(fd, GSMIOC_GETCONF, &c);
+ /* we are initiator and need encoding 0 (basic) */
+ c.initiator = 1;
+ c.encapsulation = 0;
+ /* our modem defaults to a maximum size of 127 bytes */
+ c.mru = 127;
+ c.mtu = 127;
+ /* set the new configuration */
+ ioctl(fd, GSMIOC_SETCONF, &c);
+
+ /* and wait for ever to keep the line discipline enabled */
+ daemon(0,0);
+ pause();
+
+4. create the devices corresponding to the "virtual" serial ports (take care,
+ each modem has its configuration and some DLC have dedicated functions,
+ for example GPS), starting with minor 1 (DLC0 is reserved for the management
+ of the mux)::
+
+ MAJOR=`cat /proc/devices |grep gsmtty | awk '{print $1}`
+ for i in `seq 1 4`; do
+ mknod /dev/ttygsm$i c $MAJOR $i
+ done
+
+5. use these devices as plain serial ports.
+
+ for example, it's possible:
+
+ - and to use gnokii to send / receive SMS on ttygsm1
+ - to use ppp to establish a datalink on ttygsm2
+
+6. first close all virtual ports before closing the physical port.
+
+ Note that after closing the physical port the modem is still in multiplexing
+ mode. This may prevent a successful re-opening of the port later. To avoid
+ this situation either reset the modem if your hardware allows that or send
+ a disconnect command frame manually before initializing the multiplexing mode
+ for the second time. The byte sequence for the disconnect command frame is::
+
+ 0xf9, 0x03, 0xef, 0x03, 0xc3, 0x16, 0xf9.
+
+Additional Documentation
+------------------------
+More practical details on the protocol and how it's supported by industrial
+modems can be found in the following documents :
+
+- http://www.telit.com/module/infopool/download.php?id=616
+- http://www.u-blox.com/images/downloads/Product_Docs/LEON-G100-G200-MuxImplementation_ApplicationNote_%28GSM%20G1-CS-10002%29.pdf
+- http://www.sierrawireless.com/Support/Downloads/AirPrime/WMP_Series/~/media/Support_Downloads/AirPrime/Application_notes/CMUX_Feature_Application_Note-Rev004.ashx
+- http://wm.sim.com/sim/News/photo/2010721161442.pdf
+
+11-03-08 - Eric Bénard - <eric@eukrea.com>
diff --git a/Documentation/serial/n_gsm.txt b/Documentation/serial/n_gsm.txt
deleted file mode 100644
index 875361bb7cb4..000000000000
--- a/Documentation/serial/n_gsm.txt
+++ /dev/null
@@ -1,96 +0,0 @@
-n_gsm.c GSM 0710 tty multiplexor HOWTO
-===================================================
-
-This line discipline implements the GSM 07.10 multiplexing protocol
-detailed in the following 3GPP document :
-http://www.3gpp.org/ftp/Specs/archive/07_series/07.10/0710-720.zip
-
-This document give some hints on how to use this driver with GPRS and 3G
-modems connected to a physical serial port.
-
-How to use it
--------------
-1- initialize the modem in 0710 mux mode (usually AT+CMUX= command) through
-its serial port. Depending on the modem used, you can pass more or less
-parameters to this command,
-2- switch the serial line to using the n_gsm line discipline by using
-TIOCSETD ioctl,
-3- configure the mux using GSMIOC_GETCONF / GSMIOC_SETCONF ioctl,
-
-Major parts of the initialization program :
-(a good starting point is util-linux-ng/sys-utils/ldattach.c)
-#include <linux/gsmmux.h>
-#define N_GSM0710 21 /* GSM 0710 Mux */
-#define DEFAULT_SPEED B115200
-#define SERIAL_PORT /dev/ttyS0
-
- int ldisc = N_GSM0710;
- struct gsm_config c;
- struct termios configuration;
-
- /* open the serial port connected to the modem */
- fd = open(SERIAL_PORT, O_RDWR | O_NOCTTY | O_NDELAY);
-
- /* configure the serial port : speed, flow control ... */
-
- /* send the AT commands to switch the modem to CMUX mode
- and check that it's successful (should return OK) */
- write(fd, "AT+CMUX=0\r", 10);
-
- /* experience showed that some modems need some time before
- being able to answer to the first MUX packet so a delay
- may be needed here in some case */
- sleep(3);
-
- /* use n_gsm line discipline */
- ioctl(fd, TIOCSETD, &ldisc);
-
- /* get n_gsm configuration */
- ioctl(fd, GSMIOC_GETCONF, &c);
- /* we are initiator and need encoding 0 (basic) */
- c.initiator = 1;
- c.encapsulation = 0;
- /* our modem defaults to a maximum size of 127 bytes */
- c.mru = 127;
- c.mtu = 127;
- /* set the new configuration */
- ioctl(fd, GSMIOC_SETCONF, &c);
-
- /* and wait for ever to keep the line discipline enabled */
- daemon(0,0);
- pause();
-
-4- create the devices corresponding to the "virtual" serial ports (take care,
-each modem has its configuration and some DLC have dedicated functions,
-for example GPS), starting with minor 1 (DLC0 is reserved for the management
-of the mux)
-
-MAJOR=`cat /proc/devices |grep gsmtty | awk '{print $1}`
-for i in `seq 1 4`; do
- mknod /dev/ttygsm$i c $MAJOR $i
-done
-
-5- use these devices as plain serial ports.
-for example, it's possible :
-- and to use gnokii to send / receive SMS on ttygsm1
-- to use ppp to establish a datalink on ttygsm2
-
-6- first close all virtual ports before closing the physical port.
-
-Note that after closing the physical port the modem is still in multiplexing
-mode. This may prevent a successful re-opening of the port later. To avoid
-this situation either reset the modem if your hardware allows that or send
-a disconnect command frame manually before initializing the multiplexing mode
-for the second time. The byte sequence for the disconnect command frame is:
-0xf9, 0x03, 0xef, 0x03, 0xc3, 0x16, 0xf9.
-
-Additional Documentation
-------------------------
-More practical details on the protocol and how it's supported by industrial
-modems can be found in the following documents :
-http://www.telit.com/module/infopool/download.php?id=616
-http://www.u-blox.com/images/downloads/Product_Docs/LEON-G100-G200-MuxImplementation_ApplicationNote_%28GSM%20G1-CS-10002%29.pdf
-http://www.sierrawireless.com/Support/Downloads/AirPrime/WMP_Series/~/media/Support_Downloads/AirPrime/Application_notes/CMUX_Feature_Application_Note-Rev004.ashx
-http://wm.sim.com/sim/News/photo/2010721161442.pdf
-
-11-03-08 - Eric Bénard - <eric@eukrea.com>
diff --git a/Documentation/serial/rocket.txt b/Documentation/serial/rocket.rst
similarity index 68%
rename from Documentation/serial/rocket.txt
rename to Documentation/serial/rocket.rst
index 60b039891057..23761eae4282 100644
--- a/Documentation/serial/rocket.txt
+++ b/Documentation/serial/rocket.rst
@@ -1,20 +1,22 @@
-Comtrol(tm) RocketPort(R)/RocketModem(TM) Series
+================================================
+Comtrol(tm) RocketPort(R)/RocketModem(TM) Series
+================================================
+
Device Driver for the Linux Operating System
+============================================
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
-
-PRODUCT OVERVIEW
+Product overview
----------------
This driver provides a loadable kernel driver for the Comtrol RocketPort
-and RocketModem PCI boards. These boards provide, 2, 4, 8, 16, or 32
+and RocketModem PCI boards. These boards provide, 2, 4, 8, 16, or 32
high-speed serial ports or modems. This driver supports up to a combination
of four RocketPort or RocketModems boards in one machine simultaneously.
This file assumes that you are using the RocketPort driver which is
-integrated into the kernel sources.
+integrated into the kernel sources.
-The driver can also be installed as an external module using the usual
-"make;make install" routine. This external module driver, obtainable
+The driver can also be installed as an external module using the usual
+"make;make install" routine. This external module driver, obtainable
from the Comtrol website listed below, is useful for updating the driver
or installing it into kernels which do not have the driver configured
into them. Installations instructions for the external module
@@ -29,57 +31,59 @@ information on how to set the DIP switches.
You pass the I/O port to the driver using the following module parameters:
-board1 : I/O port for the first ISA board
-board2 : I/O port for the second ISA board
-board3 : I/O port for the third ISA board
-board4 : I/O port for the fourth ISA board
+board1:
+ I/O port for the first ISA board
+board2:
+ I/O port for the second ISA board
+board3:
+ I/O port for the third ISA board
+board4:
+ I/O port for the fourth ISA board
There is a set of utilities and scripts provided with the external driver
-( downloadable from http://www.comtrol.com ) that ease the configuration and
+(downloadable from http://www.comtrol.com) that ease the configuration and
setup of the ISA cards.
The RocketModem II PCI boards require firmware to be loaded into the card
before it will function. The driver has only been tested as a module for this
board.
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
-
-INSTALLATION PROCEDURES
+Installation Procedures
-----------------------
-RocketPort/RocketModem PCI cards require no driver configuration, they are
+RocketPort/RocketModem PCI cards require no driver configuration, they are
automatically detected and configured.
-The RocketPort driver can be installed as a module (recommended) or built
+The RocketPort driver can be installed as a module (recommended) or built
into the kernel. This is selected, as for other drivers, through the `make config`
-command from the root of the Linux source tree during the kernel build process.
+command from the root of the Linux source tree during the kernel build process.
The RocketPort/RocketModem serial ports installed by this driver are assigned
-device major number 46, and will be named /dev/ttyRx, where x is the port number
+device major number 46, and will be named /dev/ttyRx, where x is the port number
starting at zero (ex. /dev/ttyR0, /devttyR1, ...). If you have multiple cards
installed in the system, the mapping of port names to serial ports is displayed
in the system log at /var/log/messages.
If installed as a module, the module must be loaded. This can be done
manually by entering "modprobe rocket". To have the module loaded automatically
-upon system boot, edit a /etc/modprobe.d/*.conf file and add the line
+upon system boot, edit a `/etc/modprobe.d/*.conf` file and add the line
"alias char-major-46 rocket".
In order to use the ports, their device names (nodes) must be created with mknod.
-This is only required once, the system will retain the names once created. To
-create the RocketPort/RocketModem device names, use the command
-"mknod /dev/ttyRx c 46 x" where x is the port number starting at zero. For example:
+This is only required once, the system will retain the names once created. To
+create the RocketPort/RocketModem device names, use the command
+"mknod /dev/ttyRx c 46 x" where x is the port number starting at zero.
->mknod /dev/ttyR0 c 46 0
->mknod /dev/ttyR1 c 46 1
->mknod /dev/ttyR2 c 46 2
+For example::
+
+ > mknod /dev/ttyR0 c 46 0
+ > mknod /dev/ttyR1 c 46 1
+ > mknod /dev/ttyR2 c 46 2
The Linux script MAKEDEV will create the first 16 ttyRx device names (nodes)
-for you:
+for you::
->/dev/MAKEDEV ttyR
-
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
+ >/dev/MAKEDEV ttyR
ISA Rocketport Boards
---------------------
@@ -89,7 +93,7 @@ card before installing and using it. This is done by setting a set of DIP
switches on the Rocketport board.
-SETTING THE I/O ADDRESS
+Setting the I/O address
-----------------------
Before installing RocketPort(R) or RocketPort RA boards, you must find
@@ -130,40 +134,36 @@ the first 4 bytes of that range are used by the first board. You would
need to set the second, third, or fourth board to one of the next available
blocks such as 0x180.
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
+RocketPort and RocketPort RA SW1 Settings::
-RocketPort and RocketPort RA SW1 Settings:
+ +-------------------------------+
+ | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
+ +-------+-------+---------------+
+ | Unused| Card | I/O Port Block|
+ +-------------------------------+
- +-------------------------------+
- | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
- +-------+-------+---------------+
- | Unused| Card | I/O Port Block|
- +-------------------------------+
+ DIP Switches DIP Switches
+ 7 8 6 5
+ =================== ===================
+ On On UNUSED, MUST BE ON. On On First Card <==== Default
+ On Off Second Card
+ Off On Third Card
+ Off Off Fourth Card
-DIP Switches DIP Switches
-7 8 6 5
-=================== ===================
-On On UNUSED, MUST BE ON. On On First Card <==== Default
- On Off Second Card
- Off On Third Card
- Off Off Fourth Card
+ DIP Switches I/O Address Range
+ 4 3 2 1 Used by the First Card
+ =====================================
+ On Off On Off 100-143
+ On Off Off On 140-183
+ On Off Off Off 180-1C3 <==== Default
+ Off On On Off 200-243
+ Off On Off On 240-283
+ Off On Off Off 280-2C3
+ Off Off On Off 300-343
+ Off Off Off On 340-383
+ Off Off Off Off 380-3C3
-DIP Switches I/O Address Range
-4 3 2 1 Used by the First Card
-=====================================
-On Off On Off 100-143
-On Off Off On 140-183
-On Off Off Off 180-1C3 <==== Default
-Off On On Off 200-243
-Off On Off On 240-283
-Off On Off Off 280-2C3
-Off Off On Off 300-343
-Off Off Off On 340-383
-Off Off Off Off 380-3C3
-
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
-
-REPORTING BUGS
+Reporting Bugs
--------------
For technical support, please provide the following
@@ -171,19 +171,15 @@ information: Driver version, kernel release, distribution of
kernel, and type of board you are using. Error messages and log
printouts port configuration details are especially helpful.
-USA
- Phone: (612) 494-4100
- FAX: (612) 494-4199
- email: support@comtrol.com
+USA:
+ :Phone: (612) 494-4100
+ :FAX: (612) 494-4199
+ :email: support@comtrol.com
-Comtrol Europe
- Phone: +44 (0) 1 869 323-220
- FAX: +44 (0) 1 869 323-211
- email: support@comtrol.co.uk
+Comtrol Europe:
+ :Phone: +44 (0) 1 869 323-220
+ :FAX: +44 (0) 1 869 323-211
+ :email: support@comtrol.co.uk
Web: http://www.comtrol.com
FTP: ftp.comtrol.com
-
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
-
-
diff --git a/Documentation/serial/serial-iso7816.txt b/Documentation/serial/serial-iso7816.rst
similarity index 85%
rename from Documentation/serial/serial-iso7816.txt
rename to Documentation/serial/serial-iso7816.rst
index 3193d24a2b0f..d990143de0c6 100644
--- a/Documentation/serial/serial-iso7816.txt
+++ b/Documentation/serial/serial-iso7816.rst
@@ -1,11 +1,15 @@
- ISO7816 SERIAL COMMUNICATIONS
+=============================
+ISO7816 Serial Communications
+=============================
-1. INTRODUCTION
+1. Introduction
+===============
ISO/IEC7816 is a series of standards specifying integrated circuit cards (ICC)
also known as smart cards.
-2. HARDWARE-RELATED CONSIDERATIONS
+2. Hardware-related considerations
+==================================
Some CPUs/UARTs (e.g., Microchip AT91) contain a built-in mode capable of
handling communication with a smart card.
@@ -15,7 +19,8 @@
available at user-level to allow switching from one mode to the other, and
vice versa.
-3. DATA STRUCTURES ALREADY AVAILABLE IN THE KERNEL
+3. Data Structures Already Available in the Kernel
+==================================================
The Linux kernel provides the serial_iso7816 structure (see [1]) to handle
ISO7816 communications. This data structure is used to set and configure
@@ -27,10 +32,11 @@
to TIOCGISO7816 and TIOCSISO7816 ioctls (see below). The iso7816_config
callback receives a pointer to struct serial_iso7816.
-4. USAGE FROM USER-LEVEL
+4. Usage from user-level
+========================
From user-level, ISO7816 configuration can be get/set using the previous
- ioctls. For instance, to set ISO7816 you can use the following code:
+ ioctls. For instance, to set ISO7816 you can use the following code::
#include <linux/serial.h>
@@ -78,6 +84,7 @@
/* Error handling. See errno. */
}
-5. REFERENCES
+5. References
+=============
[1] include/uapi/linux/serial.h
diff --git a/Documentation/serial/serial-rs485.txt b/Documentation/serial/serial-rs485.rst
similarity index 89%
rename from Documentation/serial/serial-rs485.txt
rename to Documentation/serial/serial-rs485.rst
index ce0c1a9b8aab..6bc824f948f9 100644
--- a/Documentation/serial/serial-rs485.txt
+++ b/Documentation/serial/serial-rs485.rst
@@ -1,6 +1,9 @@
- RS485 SERIAL COMMUNICATIONS
+===========================
+RS485 Serial Communications
+===========================
-1. INTRODUCTION
+1. Introduction
+===============
EIA-485, also known as TIA/EIA-485 or RS-485, is a standard defining the
electrical characteristics of drivers and receivers for use in balanced
@@ -9,7 +12,8 @@
because it can be used effectively over long distances and in electrically
noisy environments.
-2. HARDWARE-RELATED CONSIDERATIONS
+2. Hardware-related Considerations
+==================================
Some CPUs/UARTs (e.g., Atmel AT91 or 16C950 UART) contain a built-in
half-duplex mode capable of automatically controlling line direction by
@@ -22,7 +26,8 @@
available at user-level to allow switching from one mode to the other, and
vice versa.
-3. DATA STRUCTURES ALREADY AVAILABLE IN THE KERNEL
+3. Data Structures Already Available in the Kernel
+==================================================
The Linux kernel provides the serial_rs485 structure (see [1]) to handle
RS485 communications. This data structure is used to set and configure RS485
@@ -38,10 +43,11 @@
to TIOCSRS485 and TIOCGRS485 ioctls (see below). The rs485_config callback
receives a pointer to struct serial_rs485.
-4. USAGE FROM USER-LEVEL
+4. Usage from user-level
+========================
From user-level, RS485 configuration can be get/set using the previous
- ioctls. For instance, to set RS485 you can use the following code:
+ ioctls. For instance, to set RS485 you can use the following code::
#include <linux/serial.h>
@@ -89,7 +95,9 @@
/* Error handling. See errno. */
}
-5. REFERENCES
+5. References
+=============
[1] include/uapi/linux/serial.h
+
[2] Documentation/devicetree/bindings/serial/rs485.txt
diff --git a/Documentation/serial/tty.txt b/Documentation/serial/tty.rst
similarity index 74%
rename from Documentation/serial/tty.txt
rename to Documentation/serial/tty.rst
index b48780977a68..dd972caacf3e 100644
--- a/Documentation/serial/tty.txt
+++ b/Documentation/serial/tty.rst
@@ -1,5 +1,6 @@
-
- The Lockronomicon
+=================
+The Lockronomicon
+=================
Your guide to the ancient and twisted locking policies of the tty layer and
the warped logic behind them. Beware all ye who read on.
@@ -9,12 +10,12 @@ Line Discipline
---------------
Line disciplines are registered with tty_register_ldisc() passing the
-discipline number and the ldisc structure. At the point of registration the
+discipline number and the ldisc structure. At the point of registration the
discipline must be ready to use and it is possible it will get used before
the call returns success. If the call returns an error then it won't get
called. Do not re-use ldisc numbers as they are part of the userspace ABI
and writing over an existing ldisc will cause demons to eat your computer.
-After the return the ldisc data has been copied so you may free your own
+After the return the ldisc data has been copied so you may free your own
copy of the structure. You must not re-register over the top of the line
discipline even with the same data or your computer again will be eaten by
demons.
@@ -26,7 +27,7 @@ code manages the module counts this should not usually be a concern.
Heed this warning: the reference count field of the registered copies of the
tty_ldisc structure in the ldisc table counts the number of lines using this
-discipline. The reference count of the tty_ldisc structure within a tty
+discipline. The reference count of the tty_ldisc structure within a tty
counts the number of active users of the ldisc at this instant. In effect it
counts the number of threads of execution within an ldisc method (plus those
about to enter and exit although this detail matters not).
@@ -34,9 +35,11 @@ about to enter and exit although this detail matters not).
Line Discipline Methods
-----------------------
-TTY side interfaces:
+TTY side interfaces
+^^^^^^^^^^^^^^^^^^^
-open() - Called when the line discipline is attached to
+======================= =======================================================
+open() Called when the line discipline is attached to
the terminal. No other call into the line
discipline for this tty will occur until it
completes successfully. Should initialize any
@@ -47,66 +50,69 @@ open() - Called when the line discipline is attached to
Returning an error will prevent the ldisc from
being attached. Can sleep.
-close() - This is called on a terminal when the line
+close() This is called on a terminal when the line
discipline is being unplugged. At the point of
execution no further users will enter the
ldisc code for this tty. Can sleep.
-hangup() - Called when the tty line is hung up.
+hangup() Called when the tty line is hung up.
The line discipline should cease I/O to the tty.
No further calls into the ldisc code will occur.
The return value is ignored. Can sleep.
-read() - (optional) A process requests reading data from
+read() (optional) A process requests reading data from
the line. Multiple read calls may occur in parallel
and the ldisc must deal with serialization issues.
If not defined, the process will receive an EIO
error. May sleep.
-write() - (optional) A process requests writing data to the
+write() (optional) A process requests writing data to the
line. Multiple write calls are serialized by the
tty layer for the ldisc. If not defined, the
process will receive an EIO error. May sleep.
-flush_buffer() - (optional) May be called at any point between
+flush_buffer() (optional) May be called at any point between
open and close, and instructs the line discipline
to empty its input buffer.
-set_termios() - (optional) Called on termios structure changes.
+set_termios() (optional) Called on termios structure changes.
The caller passes the old termios data and the
current data is in the tty. Called under the
termios semaphore so allowed to sleep. Serialized
against itself only.
-poll() - (optional) Check the status for the poll/select
+poll() (optional) Check the status for the poll/select
calls. Multiple poll calls may occur in parallel.
May sleep.
-ioctl() - (optional) Called when an ioctl is handed to the
+ioctl() (optional) Called when an ioctl is handed to the
tty layer that might be for the ldisc. Multiple
ioctl calls may occur in parallel. May sleep.
-compat_ioctl() - (optional) Called when a 32 bit ioctl is handed
+compat_ioctl() (optional) Called when a 32 bit ioctl is handed
to the tty layer that might be for the ldisc.
Multiple ioctl calls may occur in parallel.
May sleep.
+======================= =======================================================
-Driver Side Interfaces:
+Driver Side Interfaces
+^^^^^^^^^^^^^^^^^^^^^^
-receive_buf() - (optional) Called by the low-level driver to hand
+======================= =======================================================
+receive_buf() (optional) Called by the low-level driver to hand
a buffer of received bytes to the ldisc for
processing. The number of bytes is guaranteed not
to exceed the current value of tty->receive_room.
All bytes must be processed.
-receive_buf2() - (optional) Called by the low-level driver to hand
+receive_buf2() (optional) Called by the low-level driver to hand
a buffer of received bytes to the ldisc for
processing. Returns the number of bytes processed.
If both receive_buf() and receive_buf2() are
defined, receive_buf2() should be preferred.
-write_wakeup() - May be called at any point between open and close.
+write_wakeup() May be called at any point between open and close.
The TTY_DO_WRITE_WAKEUP flag indicates if a call
is needed but always races versus calls. Thus the
ldisc must be careful about setting order and to
@@ -117,17 +123,20 @@ write_wakeup() - May be called at any point between open and close.
is permitted to call the driver write method from
this function. In such a situation defer it.
-dcd_change() - Report to the tty line the current DCD pin status
+dcd_change() Report to the tty line the current DCD pin status
changes and the relative timestamp. The timestamp
cannot be NULL.
+======================= =======================================================
Driver Access
+^^^^^^^^^^^^^
Line discipline methods can call the following methods of the underlying
hardware driver through the function pointers within the tty->driver
structure:
+======================= =======================================================
write() Write a block of characters to the tty device.
Returns the number of characters accepted. The
character buffer passed to this method is already
@@ -189,13 +198,16 @@ wait_until_sent() Waits until the device has written out all of the
characters in its transmitter FIFO.
send_xchar() Send a high-priority XON/XOFF character to the device.
+======================= =======================================================
Flags
+^^^^^
Line discipline methods have access to tty->flags field containing the
following interesting flags:
+======================= =======================================================
TTY_THROTTLED Driver input is throttled. The ldisc should call
tty->driver->unthrottle() in order to resume
reception when it is ready to process more data.
@@ -212,102 +224,105 @@ TTY_OTHER_CLOSED Device is a pty and the other side has closed.
TTY_NO_WRITE_SPLIT Prevent driver from splitting up writes into
smaller chunks.
+======================= =======================================================
Locking
+^^^^^^^
Callers to the line discipline functions from the tty layer are required to
take line discipline locks. The same is true of calls from the driver side
but not yet enforced.
-Three calls are now provided
+Three calls are now provided::
ldisc = tty_ldisc_ref(tty);
takes a handle to the line discipline in the tty and returns it. If no ldisc
is currently attached or the ldisc is being closed and re-opened at this
point then NULL is returned. While this handle is held the ldisc will not
-change or go away.
+change or go away::
tty_ldisc_deref(ldisc)
Returns the ldisc reference and allows the ldisc to be closed. Returning the
reference takes away your right to call the ldisc functions until you take
-a new reference.
+a new reference::
ldisc = tty_ldisc_ref_wait(tty);
Performs the same function as tty_ldisc_ref except that it will wait for an
-ldisc change to complete and then return a reference to the new ldisc.
+ldisc change to complete and then return a reference to the new ldisc.
While these functions are slightly slower than the old code they should have
minimal impact as most receive logic uses the flip buffers and they only
need to take a reference when they push bits up through the driver.
-A caution: The ldisc->open(), ldisc->close() and driver->set_ldisc
+A caution: The ldisc->open(), ldisc->close() and driver->set_ldisc
functions are called with the ldisc unavailable. Thus tty_ldisc_ref will
fail in this situation if used within these functions. Ldisc and driver
-code calling its own functions must be careful in this case.
+code calling its own functions must be careful in this case.
Driver Interface
----------------
-open() - Called when a device is opened. May sleep
+======================= =======================================================
+open() Called when a device is opened. May sleep
-close() - Called when a device is closed. At the point of
- return from this call the driver must make no
+close() Called when a device is closed. At the point of
+ return from this call the driver must make no
further ldisc calls of any kind. May sleep
-write() - Called to write bytes to the device. May not
- sleep. May occur in parallel in special cases.
+write() Called to write bytes to the device. May not
+ sleep. May occur in parallel in special cases.
Because this includes panic paths drivers generally
shouldn't try and do clever locking here.
-put_char() - Stuff a single character onto the queue. The
+put_char() Stuff a single character onto the queue. The
driver is guaranteed following up calls to
flush_chars.
-flush_chars() - Ask the kernel to write put_char queue
+flush_chars() Ask the kernel to write put_char queue
-write_room() - Return the number of characters that can be stuffed
+write_room() Return the number of characters that can be stuffed
into the port buffers without overflow (or less).
The ldisc is responsible for being intelligent
- about multi-threading of write_room/write calls
+ about multi-threading of write_room/write calls
-ioctl() - Called when an ioctl may be for the driver
+ioctl() Called when an ioctl may be for the driver
-set_termios() - Called on termios change, serialized against
+set_termios() Called on termios change, serialized against
itself by a semaphore. May sleep.
-set_ldisc() - Notifier for discipline change. At the point this
+set_ldisc() Notifier for discipline change. At the point this
is done the discipline is not yet usable. Can now
sleep (I think)
-throttle() - Called by the ldisc to ask the driver to do flow
+throttle() Called by the ldisc to ask the driver to do flow
control. Serialization including with unthrottle
is the job of the ldisc layer.
-unthrottle() - Called by the ldisc to ask the driver to stop flow
+unthrottle() Called by the ldisc to ask the driver to stop flow
control.
-stop() - Ldisc notifier to the driver to stop output. As with
+stop() Ldisc notifier to the driver to stop output. As with
throttle the serializations with start() are down
to the ldisc layer.
-start() - Ldisc notifier to the driver to start output.
+start() Ldisc notifier to the driver to start output.
-hangup() - Ask the tty driver to cause a hangup initiated
+hangup() Ask the tty driver to cause a hangup initiated
from the host side. [Can sleep ??]
-break_ctl() - Send RS232 break. Can sleep. Can get called in
+break_ctl() Send RS232 break. Can sleep. Can get called in
parallel, driver must serialize (for now), and
with write calls.
-wait_until_sent() - Wait for characters to exit the hardware queue
+wait_until_sent() Wait for characters to exit the hardware queue
of the driver. Can sleep
-send_xchar() - Send XON/XOFF and if possible jump the queue with
+send_xchar() Send XON/XOFF and if possible jump the queue with
it in order to get fast flow control responses.
Cannot sleep ??
-
+======================= =======================================================
diff --git a/MAINTAINERS b/MAINTAINERS
index 8c0cb2aa4c00..7e600004f993 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -10512,7 +10512,7 @@ F: include/uapi/linux/meye.h
MOXA SMARTIO/INDUSTIO/INTELLIO SERIAL CARD
M: Jiri Slaby <jirislaby@gmail.com>
S: Maintained
-F: Documentation/serial/moxa-smartio
+F: Documentation/serial/moxa-smartio.rst
F: drivers/tty/mxser.*
MR800 AVERMEDIA USB FM RADIO DRIVER
@@ -13396,7 +13396,7 @@ ROCKETPORT DRIVER
P: Comtrol Corp.
W: http://www.comtrol.com
S: Maintained
-F: Documentation/serial/rocket.txt
+F: Documentation/serial/rocket.rst
F: drivers/tty/rocket*
ROCKETPORT EXPRESS/INFINITY DRIVER
diff --git a/drivers/tty/Kconfig b/drivers/tty/Kconfig
index 9acf8ccdabf6..957db30b9ecb 100644
--- a/drivers/tty/Kconfig
+++ b/drivers/tty/Kconfig
@@ -176,7 +176,7 @@ config ROCKETPORT
This driver supports Comtrol RocketPort and RocketModem PCI boards.
These boards provide 2, 4, 8, 16, or 32 high-speed serial ports or
modems. For information about the RocketPort/RocketModem boards
- and this driver read <file:Documentation/serial/rocket.txt>.
+ and this driver read <file:Documentation/serial/rocket.rst>.
To compile this driver as a module, choose M here: the
module will be called rocket.
@@ -194,7 +194,7 @@ config CYCLADES
your Linux box, for instance in order to become a dial-in server.
For information about the Cyclades-Z card, read
- <file:Documentation/serial/README.cycladesZ>.
+ <file:Documentation/serial/cyclades_z.rst>.
To compile this driver as a module, choose M here: the
module will be called cyclades.
diff --git a/drivers/tty/serial/ucc_uart.c b/drivers/tty/serial/ucc_uart.c
index 2b6376e6e5ad..6e3c66ab0e62 100644
--- a/drivers/tty/serial/ucc_uart.c
+++ b/drivers/tty/serial/ucc_uart.c
@@ -1081,7 +1081,7 @@ static int qe_uart_verify_port(struct uart_port *port,
}
/* UART operations
*
- * Details on these functions can be found in Documentation/serial/driver
+ * Details on these functions can be found in Documentation/serial/driver.rst
*/
static const struct uart_ops qe_uart_pops = {
.tx_empty = qe_uart_tx_empty,
diff --git a/include/linux/serial_core.h b/include/linux/serial_core.h
index 5fe2b037e833..fea2216a893f 100644
--- a/include/linux/serial_core.h
+++ b/include/linux/serial_core.h
@@ -45,7 +45,7 @@ struct device;
/*
* This structure describes all the operations that can be done on the
- * physical hardware. See Documentation/serial/driver for details.
+ * physical hardware. See Documentation/serial/driver.rst for details.
*/
struct uart_ops {
unsigned int (*tx_empty)(struct uart_port *);
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 34/79] docs: target: convert docs to ReST and rename to *.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (25 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 33/79] docs: serial: convert docs to ReST and rename to *.rst Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 35/79] docs: timers: " Mauro Carvalho Chehab
` (46 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Martin K. Petersen, linux-scsi, target-devel
Convert the TCM docs to ReST format and add them to the
bookset.
This has a mix of userspace-faced and Kernelspace faced
docs. Still, it sounds a better candidate to be added at
the kernel API set of docs.
The conversion is actually:
- add blank lines and identation in order to identify paragraphs;
- fix tables markups;
- add some lists markups;
- mark literal blocks;
- adjust title markups.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/target/index.rst | 19 ++
Documentation/target/scripts.rst | 11 +
Documentation/target/tcm_mod_builder.rst | 149 ++++++++++
Documentation/target/tcm_mod_builder.txt | 145 ----------
.../{tcmu-design.txt => tcmu-design.rst} | 268 ++++++++++--------
scripts/documentation-file-ref-check | 2 +-
6 files changed, 326 insertions(+), 268 deletions(-)
create mode 100644 Documentation/target/index.rst
create mode 100644 Documentation/target/scripts.rst
create mode 100644 Documentation/target/tcm_mod_builder.rst
delete mode 100644 Documentation/target/tcm_mod_builder.txt
rename Documentation/target/{tcmu-design.txt => tcmu-design.rst} (69%)
diff --git a/Documentation/target/index.rst b/Documentation/target/index.rst
new file mode 100644
index 000000000000..b68f48982392
--- /dev/null
+++ b/Documentation/target/index.rst
@@ -0,0 +1,19 @@
+:orphan:
+
+==================
+TCM Virtual Device
+==================
+
+.. toctree::
+ :maxdepth: 1
+
+ tcmu-design
+ tcm_mod_builder
+ scripts
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/target/scripts.rst b/Documentation/target/scripts.rst
new file mode 100644
index 000000000000..172d42b522e4
--- /dev/null
+++ b/Documentation/target/scripts.rst
@@ -0,0 +1,11 @@
+TCM mod builder script
+----------------------
+
+.. literalinclude:: tcm_mod_builder.py
+ :language: perl
+
+Target export device script
+---------------------------
+
+.. literalinclude:: target-export-device
+ :language: shell
diff --git a/Documentation/target/tcm_mod_builder.rst b/Documentation/target/tcm_mod_builder.rst
new file mode 100644
index 000000000000..9bfc9822e2bd
--- /dev/null
+++ b/Documentation/target/tcm_mod_builder.rst
@@ -0,0 +1,149 @@
+=========================================
+The TCM v4 fabric module script generator
+=========================================
+
+Greetings all,
+
+This document is intended to be a mini-HOWTO for using the tcm_mod_builder.py
+script to generate a brand new functional TCM v4 fabric .ko module of your very own,
+that once built can be immediately be loaded to start access the new TCM/ConfigFS
+fabric skeleton, by simply using::
+
+ modprobe $TCM_NEW_MOD
+ mkdir -p /sys/kernel/config/target/$TCM_NEW_MOD
+
+This script will create a new drivers/target/$TCM_NEW_MOD/, and will do the following
+
+ 1) Generate new API callers for drivers/target/target_core_fabric_configs.c logic
+ ->make_tpg(), ->drop_tpg(), ->make_wwn(), ->drop_wwn(). These are created
+ into $TCM_NEW_MOD/$TCM_NEW_MOD_configfs.c
+ 2) Generate basic infrastructure for loading/unloading LKMs and TCM/ConfigFS fabric module
+ using a skeleton struct target_core_fabric_ops API template.
+ 3) Based on user defined T10 Proto_Ident for the new fabric module being built,
+ the TransportID / Initiator and Target WWPN related handlers for
+ SPC-3 persistent reservation are automatically generated in $TCM_NEW_MOD/$TCM_NEW_MOD_fabric.c
+ using drivers/target/target_core_fabric_lib.c logic.
+ 4) NOP API calls for all other Data I/O path and fabric dependent attribute logic
+ in $TCM_NEW_MOD/$TCM_NEW_MOD_fabric.c
+
+tcm_mod_builder.py depends upon the mandatory '-p $PROTO_IDENT' and '-m
+$FABRIC_MOD_name' parameters, and actually running the script looks like::
+
+ target:/mnt/sdb/lio-core-2.6.git/Documentation/target# python tcm_mod_builder.py -p iSCSI -m tcm_nab5000
+ tcm_dir: /mnt/sdb/lio-core-2.6.git/Documentation/target/../../
+ Set fabric_mod_name: tcm_nab5000
+ Set fabric_mod_dir:
+ /mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000
+ Using proto_ident: iSCSI
+ Creating fabric_mod_dir:
+ /mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000
+ Writing file:
+ /mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/tcm_nab5000_base.h
+ Using tcm_mod_scan_fabric_ops:
+ /mnt/sdb/lio-core-2.6.git/Documentation/target/../../include/target/target_core_fabric_ops.h
+ Writing file:
+ /mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/tcm_nab5000_fabric.c
+ Writing file:
+ /mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/tcm_nab5000_fabric.h
+ Writing file:
+ /mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/tcm_nab5000_configfs.c
+ Writing file:
+ /mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/Kbuild
+ Writing file:
+ /mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/Kconfig
+ Would you like to add tcm_nab5000to drivers/target/Kbuild..? [yes,no]: yes
+ Would you like to add tcm_nab5000to drivers/target/Kconfig..? [yes,no]: yes
+
+At the end of tcm_mod_builder.py. the script will ask to add the following
+line to drivers/target/Kbuild::
+
+ obj-$(CONFIG_TCM_NAB5000) += tcm_nab5000/
+
+and the same for drivers/target/Kconfig::
+
+ source "drivers/target/tcm_nab5000/Kconfig"
+
+#) Run 'make menuconfig' and select the new CONFIG_TCM_NAB5000 item::
+
+ <M> TCM_NAB5000 fabric module
+
+#) Build using 'make modules', once completed you will have::
+
+ target:/mnt/sdb/lio-core-2.6.git# ls -la drivers/target/tcm_nab5000/
+ total 1348
+ drwxr-xr-x 2 root root 4096 2010-10-05 03:23 .
+ drwxr-xr-x 9 root root 4096 2010-10-05 03:22 ..
+ -rw-r--r-- 1 root root 282 2010-10-05 03:22 Kbuild
+ -rw-r--r-- 1 root root 171 2010-10-05 03:22 Kconfig
+ -rw-r--r-- 1 root root 49 2010-10-05 03:23 modules.order
+ -rw-r--r-- 1 root root 738 2010-10-05 03:22 tcm_nab5000_base.h
+ -rw-r--r-- 1 root root 9096 2010-10-05 03:22 tcm_nab5000_configfs.c
+ -rw-r--r-- 1 root root 191200 2010-10-05 03:23 tcm_nab5000_configfs.o
+ -rw-r--r-- 1 root root 40504 2010-10-05 03:23 .tcm_nab5000_configfs.o.cmd
+ -rw-r--r-- 1 root root 5414 2010-10-05 03:22 tcm_nab5000_fabric.c
+ -rw-r--r-- 1 root root 2016 2010-10-05 03:22 tcm_nab5000_fabric.h
+ -rw-r--r-- 1 root root 190932 2010-10-05 03:23 tcm_nab5000_fabric.o
+ -rw-r--r-- 1 root root 40713 2010-10-05 03:23 .tcm_nab5000_fabric.o.cmd
+ -rw-r--r-- 1 root root 401861 2010-10-05 03:23 tcm_nab5000.ko
+ -rw-r--r-- 1 root root 265 2010-10-05 03:23 .tcm_nab5000.ko.cmd
+ -rw-r--r-- 1 root root 459 2010-10-05 03:23 tcm_nab5000.mod.c
+ -rw-r--r-- 1 root root 23896 2010-10-05 03:23 tcm_nab5000.mod.o
+ -rw-r--r-- 1 root root 22655 2010-10-05 03:23 .tcm_nab5000.mod.o.cmd
+ -rw-r--r-- 1 root root 379022 2010-10-05 03:23 tcm_nab5000.o
+ -rw-r--r-- 1 root root 211 2010-10-05 03:23 .tcm_nab5000.o.cmd
+
+#) Load the new module, create a lun_0 configfs group, and add new TCM Core
+ IBLOCK backstore symlink to port::
+
+ target:/mnt/sdb/lio-core-2.6.git# insmod drivers/target/tcm_nab5000.ko
+ target:/mnt/sdb/lio-core-2.6.git# mkdir -p /sys/kernel/config/target/nab5000/iqn.foo/tpgt_1/lun/lun_0
+ target:/mnt/sdb/lio-core-2.6.git# cd /sys/kernel/config/target/nab5000/iqn.foo/tpgt_1/lun/lun_0/
+ target:/sys/kernel/config/target/nab5000/iqn.foo/tpgt_1/lun/lun_0# ln -s /sys/kernel/config/target/core/iblock_0/lvm_test0 nab5000_port
+
+ target:/sys/kernel/config/target/nab5000/iqn.foo/tpgt_1/lun/lun_0# cd -
+ target:/mnt/sdb/lio-core-2.6.git# tree /sys/kernel/config/target/nab5000/
+ /sys/kernel/config/target/nab5000/
+ |-- discovery_auth
+ |-- iqn.foo
+ | `-- tpgt_1
+ | |-- acls
+ | |-- attrib
+ | |-- lun
+ | | `-- lun_0
+ | | |-- alua_tg_pt_gp
+ | | |-- alua_tg_pt_offline
+ | | |-- alua_tg_pt_status
+ | | |-- alua_tg_pt_write_md
+ | | `-- nab5000_port -> ../../../../../../target/core/iblock_0/lvm_test0
+ | |-- np
+ | `-- param
+ `-- version
+
+ target:/mnt/sdb/lio-core-2.6.git# lsmod
+ Module Size Used by
+ tcm_nab5000 3935 4
+ iscsi_target_mod 193211 0
+ target_core_stgt 8090 0
+ target_core_pscsi 11122 1
+ target_core_file 9172 2
+ target_core_iblock 9280 1
+ target_core_mod 228575 31
+ tcm_nab5000,iscsi_target_mod,target_core_stgt,target_core_pscsi,target_core_file,target_core_iblock
+ libfc 73681 0
+ scsi_debug 56265 0
+ scsi_tgt 8666 1 target_core_stgt
+ configfs 20644 2 target_core_mod
+
+----------------------------------------------------------------------
+
+Future TODO items
+=================
+
+ 1) Add more T10 proto_idents
+ 2) Make tcm_mod_dump_fabric_ops() smarter and generate function pointer
+ defs directly from include/target/target_core_fabric_ops.h:struct target_core_fabric_ops
+ structure members.
+
+October 5th, 2010
+
+Nicholas A. Bellinger <nab@linux-iscsi.org>
diff --git a/Documentation/target/tcm_mod_builder.txt b/Documentation/target/tcm_mod_builder.txt
deleted file mode 100644
index ae22f7005540..000000000000
--- a/Documentation/target/tcm_mod_builder.txt
+++ /dev/null
@@ -1,145 +0,0 @@
->>>>>>>>>> The TCM v4 fabric module script generator <<<<<<<<<<
-
-Greetings all,
-
-This document is intended to be a mini-HOWTO for using the tcm_mod_builder.py
-script to generate a brand new functional TCM v4 fabric .ko module of your very own,
-that once built can be immediately be loaded to start access the new TCM/ConfigFS
-fabric skeleton, by simply using:
-
- modprobe $TCM_NEW_MOD
- mkdir -p /sys/kernel/config/target/$TCM_NEW_MOD
-
-This script will create a new drivers/target/$TCM_NEW_MOD/, and will do the following
-
- *) Generate new API callers for drivers/target/target_core_fabric_configs.c logic
- ->make_tpg(), ->drop_tpg(), ->make_wwn(), ->drop_wwn(). These are created
- into $TCM_NEW_MOD/$TCM_NEW_MOD_configfs.c
- *) Generate basic infrastructure for loading/unloading LKMs and TCM/ConfigFS fabric module
- using a skeleton struct target_core_fabric_ops API template.
- *) Based on user defined T10 Proto_Ident for the new fabric module being built,
- the TransportID / Initiator and Target WWPN related handlers for
- SPC-3 persistent reservation are automatically generated in $TCM_NEW_MOD/$TCM_NEW_MOD_fabric.c
- using drivers/target/target_core_fabric_lib.c logic.
- *) NOP API calls for all other Data I/O path and fabric dependent attribute logic
- in $TCM_NEW_MOD/$TCM_NEW_MOD_fabric.c
-
-tcm_mod_builder.py depends upon the mandatory '-p $PROTO_IDENT' and '-m
-$FABRIC_MOD_name' parameters, and actually running the script looks like:
-
-target:/mnt/sdb/lio-core-2.6.git/Documentation/target# python tcm_mod_builder.py -p iSCSI -m tcm_nab5000
-tcm_dir: /mnt/sdb/lio-core-2.6.git/Documentation/target/../../
-Set fabric_mod_name: tcm_nab5000
-Set fabric_mod_dir:
-/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000
-Using proto_ident: iSCSI
-Creating fabric_mod_dir:
-/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000
-Writing file:
-/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/tcm_nab5000_base.h
-Using tcm_mod_scan_fabric_ops:
-/mnt/sdb/lio-core-2.6.git/Documentation/target/../../include/target/target_core_fabric_ops.h
-Writing file:
-/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/tcm_nab5000_fabric.c
-Writing file:
-/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/tcm_nab5000_fabric.h
-Writing file:
-/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/tcm_nab5000_configfs.c
-Writing file:
-/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/Kbuild
-Writing file:
-/mnt/sdb/lio-core-2.6.git/Documentation/target/../../drivers/target/tcm_nab5000/Kconfig
-Would you like to add tcm_nab5000to drivers/target/Kbuild..? [yes,no]: yes
-Would you like to add tcm_nab5000to drivers/target/Kconfig..? [yes,no]: yes
-
-At the end of tcm_mod_builder.py. the script will ask to add the following
-line to drivers/target/Kbuild:
-
- obj-$(CONFIG_TCM_NAB5000) += tcm_nab5000/
-
-and the same for drivers/target/Kconfig:
-
- source "drivers/target/tcm_nab5000/Kconfig"
-
-*) Run 'make menuconfig' and select the new CONFIG_TCM_NAB5000 item:
-
- <M> TCM_NAB5000 fabric module
-
-*) Build using 'make modules', once completed you will have:
-
-target:/mnt/sdb/lio-core-2.6.git# ls -la drivers/target/tcm_nab5000/
-total 1348
-drwxr-xr-x 2 root root 4096 2010-10-05 03:23 .
-drwxr-xr-x 9 root root 4096 2010-10-05 03:22 ..
--rw-r--r-- 1 root root 282 2010-10-05 03:22 Kbuild
--rw-r--r-- 1 root root 171 2010-10-05 03:22 Kconfig
--rw-r--r-- 1 root root 49 2010-10-05 03:23 modules.order
--rw-r--r-- 1 root root 738 2010-10-05 03:22 tcm_nab5000_base.h
--rw-r--r-- 1 root root 9096 2010-10-05 03:22 tcm_nab5000_configfs.c
--rw-r--r-- 1 root root 191200 2010-10-05 03:23 tcm_nab5000_configfs.o
--rw-r--r-- 1 root root 40504 2010-10-05 03:23 .tcm_nab5000_configfs.o.cmd
--rw-r--r-- 1 root root 5414 2010-10-05 03:22 tcm_nab5000_fabric.c
--rw-r--r-- 1 root root 2016 2010-10-05 03:22 tcm_nab5000_fabric.h
--rw-r--r-- 1 root root 190932 2010-10-05 03:23 tcm_nab5000_fabric.o
--rw-r--r-- 1 root root 40713 2010-10-05 03:23 .tcm_nab5000_fabric.o.cmd
--rw-r--r-- 1 root root 401861 2010-10-05 03:23 tcm_nab5000.ko
--rw-r--r-- 1 root root 265 2010-10-05 03:23 .tcm_nab5000.ko.cmd
--rw-r--r-- 1 root root 459 2010-10-05 03:23 tcm_nab5000.mod.c
--rw-r--r-- 1 root root 23896 2010-10-05 03:23 tcm_nab5000.mod.o
--rw-r--r-- 1 root root 22655 2010-10-05 03:23 .tcm_nab5000.mod.o.cmd
--rw-r--r-- 1 root root 379022 2010-10-05 03:23 tcm_nab5000.o
--rw-r--r-- 1 root root 211 2010-10-05 03:23 .tcm_nab5000.o.cmd
-
-*) Load the new module, create a lun_0 configfs group, and add new TCM Core
- IBLOCK backstore symlink to port:
-
-target:/mnt/sdb/lio-core-2.6.git# insmod drivers/target/tcm_nab5000.ko
-target:/mnt/sdb/lio-core-2.6.git# mkdir -p /sys/kernel/config/target/nab5000/iqn.foo/tpgt_1/lun/lun_0
-target:/mnt/sdb/lio-core-2.6.git# cd /sys/kernel/config/target/nab5000/iqn.foo/tpgt_1/lun/lun_0/
-target:/sys/kernel/config/target/nab5000/iqn.foo/tpgt_1/lun/lun_0# ln -s /sys/kernel/config/target/core/iblock_0/lvm_test0 nab5000_port
-
-target:/sys/kernel/config/target/nab5000/iqn.foo/tpgt_1/lun/lun_0# cd -
-target:/mnt/sdb/lio-core-2.6.git# tree /sys/kernel/config/target/nab5000/
-/sys/kernel/config/target/nab5000/
-|-- discovery_auth
-|-- iqn.foo
-| `-- tpgt_1
-| |-- acls
-| |-- attrib
-| |-- lun
-| | `-- lun_0
-| | |-- alua_tg_pt_gp
-| | |-- alua_tg_pt_offline
-| | |-- alua_tg_pt_status
-| | |-- alua_tg_pt_write_md
-| | `-- nab5000_port -> ../../../../../../target/core/iblock_0/lvm_test0
-| |-- np
-| `-- param
-`-- version
-
-target:/mnt/sdb/lio-core-2.6.git# lsmod
-Module Size Used by
-tcm_nab5000 3935 4
-iscsi_target_mod 193211 0
-target_core_stgt 8090 0
-target_core_pscsi 11122 1
-target_core_file 9172 2
-target_core_iblock 9280 1
-target_core_mod 228575 31
-tcm_nab5000,iscsi_target_mod,target_core_stgt,target_core_pscsi,target_core_file,target_core_iblock
-libfc 73681 0
-scsi_debug 56265 0
-scsi_tgt 8666 1 target_core_stgt
-configfs 20644 2 target_core_mod
-
-----------------------------------------------------------------------
-
-Future TODO items:
-
- *) Add more T10 proto_idents
- *) Make tcm_mod_dump_fabric_ops() smarter and generate function pointer
- defs directly from include/target/target_core_fabric_ops.h:struct target_core_fabric_ops
- structure members.
-
-October 5th, 2010
-Nicholas A. Bellinger <nab@linux-iscsi.org>
diff --git a/Documentation/target/tcmu-design.txt b/Documentation/target/tcmu-design.rst
similarity index 69%
rename from Documentation/target/tcmu-design.txt
rename to Documentation/target/tcmu-design.rst
index 4cebc1ebf99a..a7b426707bf6 100644
--- a/Documentation/target/tcmu-design.txt
+++ b/Documentation/target/tcmu-design.rst
@@ -1,25 +1,30 @@
-Contents:
+====================
+TCM Userspace Design
+====================
+
+
+.. Contents:
-1) TCM Userspace Design
- a) Background
- b) Benefits
- c) Design constraints
- d) Implementation overview
- i. Mailbox
- ii. Command ring
- iii. Data Area
- e) Device discovery
- f) Device events
- g) Other contingencies
-2) Writing a user pass-through handler
- a) Discovering and configuring TCMU uio devices
- b) Waiting for events on the device(s)
- c) Managing the command ring
-3) A final note
+ 1) TCM Userspace Design
+ a) Background
+ b) Benefits
+ c) Design constraints
+ d) Implementation overview
+ i. Mailbox
+ ii. Command ring
+ iii. Data Area
+ e) Device discovery
+ f) Device events
+ g) Other contingencies
+ 2) Writing a user pass-through handler
+ a) Discovering and configuring TCMU uio devices
+ b) Waiting for events on the device(s)
+ c) Managing the command ring
+ 3) A final note
TCM Userspace Design
---------------------
+====================
TCM is another name for LIO, an in-kernel iSCSI target (server).
Existing TCM targets run in the kernel. TCMU (TCM in Userspace)
@@ -32,7 +37,8 @@ modules for file, block device, RAM or using another SCSI device as
storage. These are called "backstores" or "storage engines". These
built-in modules are implemented entirely as kernel code.
-Background:
+Background
+----------
In addition to modularizing the transport protocol used for carrying
SCSI commands ("fabrics"), the Linux kernel target, LIO, also modularizes
@@ -60,7 +66,8 @@ kernel, another approach is to create a userspace pass-through
backstore for LIO, "TCMU".
-Benefits:
+Benefits
+--------
In addition to allowing relatively easy support for RBD and GLFS, TCMU
will also allow easier development of new backstores. TCMU combines
@@ -72,21 +79,25 @@ The disadvantage is there are more distinct components to configure, and
potentially to malfunction. This is unavoidable, but hopefully not
fatal if we're careful to keep things as simple as possible.
-Design constraints:
+Design constraints
+------------------
- Good performance: high throughput, low latency
- Cleanly handle if userspace:
+
1) never attaches
2) hangs
3) dies
4) misbehaves
+
- Allow future flexibility in user & kernel implementations
- Be reasonably memory-efficient
- Simple to configure & run
- Simple to write a userspace backend
-Implementation overview:
+Implementation overview
+-----------------------
The core of the TCMU interface is a memory region that is shared
between kernel and userspace. Within this region is: a control area
@@ -108,7 +119,8 @@ the region mapped at a different virtual address.
See target_core_user.h for the struct definitions.
-The Mailbox:
+The Mailbox
+-----------
The mailbox is always at the start of the shared memory region, and
contains a version, details about the starting offset and size of the
@@ -117,19 +129,27 @@ userspace (respectively) to put commands on the ring, and indicate
when the commands are completed.
version - 1 (userspace should abort if otherwise)
+
flags:
-- TCMU_MAILBOX_FLAG_CAP_OOOC: indicates out-of-order completion is
- supported. See "The Command Ring" for details.
-cmdr_off - The offset of the start of the command ring from the start
-of the memory region, to account for the mailbox size.
-cmdr_size - The size of the command ring. This does *not* need to be a
-power of two.
-cmd_head - Modified by the kernel to indicate when a command has been
-placed on the ring.
-cmd_tail - Modified by userspace to indicate when it has completed
-processing of a command.
+ - TCMU_MAILBOX_FLAG_CAP_OOOC:
+ indicates out-of-order completion is supported.
+ See "The Command Ring" for details.
-The Command Ring:
+cmdr_off
+ The offset of the start of the command ring from the start
+ of the memory region, to account for the mailbox size.
+cmdr_size
+ The size of the command ring. This does *not* need to be a
+ power of two.
+cmd_head
+ Modified by the kernel to indicate when a command has been
+ placed on the ring.
+cmd_tail
+ Modified by userspace to indicate when it has completed
+ processing of a command.
+
+The Command Ring
+----------------
Commands are placed on the ring by the kernel incrementing
mailbox.cmd_head by the size of the command, modulo cmdr_size, and
@@ -180,29 +200,31 @@ opcode it does not handle, it must set UNKNOWN_OP bit (bit 0) in
hdr.uflags, update cmd_tail, and proceed with processing additional
commands, if any.
-The Data Area:
+The Data Area
+-------------
This is shared-memory space after the command ring. The organization
of this area is not defined in the TCMU interface, and userspace
should access only the parts referenced by pending iovs.
-Device Discovery:
+Device Discovery
+----------------
Other devices may be using UIO besides TCMU. Unrelated user processes
may also be handling different sets of TCMU devices. TCMU userspace
processes must find their devices by scanning sysfs
class/uio/uio*/name. For TCMU devices, these names will be of the
-format:
+format::
-tcm-user/<hba_num>/<device_name>/<subtype>/<path>
+ tcm-user/<hba_num>/<device_name>/<subtype>/<path>
where "tcm-user" is common for all TCMU-backed UIO devices. <hba_num>
and <device_name> allow userspace to find the device's path in the
kernel target's configfs tree. Assuming the usual mount point, it is
-found at:
+found at::
-/sys/kernel/config/target/core/user_<hba_num>/<device_name>
+ /sys/kernel/config/target/core/user_<hba_num>/<device_name>
This location contains attributes such as "hw_block_size", that
userspace needs to know for correct operation.
@@ -214,15 +236,16 @@ configure the device, if needed. The name cannot contain ':', due to
LIO limitations.
For all devices so discovered, the user handler opens /dev/uioX and
-calls mmap():
+calls mmap()::
-mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0)
+ mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0)
where size must be equal to the value read from
/sys/class/uio/uioX/maps/map0/size.
-Device Events:
+Device Events
+-------------
If a new device is added or removed, a notification will be broadcast
over netlink, using a generic netlink family name of "TCM-USER" and a
@@ -233,7 +256,8 @@ the LIO device, so that after determining the device is supported
(based on subtype) it can take the appropriate action.
-Other contingencies:
+Other contingencies
+-------------------
Userspace handler process never attaches:
@@ -258,7 +282,7 @@ Userspace handler process is malicious:
Writing a user pass-through handler (with example code)
--------------------------------------------------------
+=======================================================
A user process handing a TCMU device must support the following:
@@ -277,103 +301,103 @@ TCMU is designed so that multiple unrelated processes can manage TCMU
devices separately. All handlers should make sure to only open their
devices, based opon a known subtype string.
-a) Discovering and configuring TCMU UIO devices:
+a) Discovering and configuring TCMU UIO devices::
-(error checking omitted for brevity)
+ /* error checking omitted for brevity */
-int fd, dev_fd;
-char buf[256];
-unsigned long long map_len;
-void *map;
+ int fd, dev_fd;
+ char buf[256];
+ unsigned long long map_len;
+ void *map;
-fd = open("/sys/class/uio/uio0/name", O_RDONLY);
-ret = read(fd, buf, sizeof(buf));
-close(fd);
-buf[ret-1] = '\0'; /* null-terminate and chop off the \n */
+ fd = open("/sys/class/uio/uio0/name", O_RDONLY);
+ ret = read(fd, buf, sizeof(buf));
+ close(fd);
+ buf[ret-1] = '\0'; /* null-terminate and chop off the \n */
-/* we only want uio devices whose name is a format we expect */
-if (strncmp(buf, "tcm-user", 8))
+ /* we only want uio devices whose name is a format we expect */
+ if (strncmp(buf, "tcm-user", 8))
exit(-1);
-/* Further checking for subtype also needed here */
+ /* Further checking for subtype also needed here */
-fd = open(/sys/class/uio/%s/maps/map0/size, O_RDONLY);
-ret = read(fd, buf, sizeof(buf));
-close(fd);
-str_buf[ret-1] = '\0'; /* null-terminate and chop off the \n */
+ fd = open(/sys/class/uio/%s/maps/map0/size, O_RDONLY);
+ ret = read(fd, buf, sizeof(buf));
+ close(fd);
+ str_buf[ret-1] = '\0'; /* null-terminate and chop off the \n */
-map_len = strtoull(buf, NULL, 0);
+ map_len = strtoull(buf, NULL, 0);
-dev_fd = open("/dev/uio0", O_RDWR);
-map = mmap(NULL, map_len, PROT_READ|PROT_WRITE, MAP_SHARED, dev_fd, 0);
+ dev_fd = open("/dev/uio0", O_RDWR);
+ map = mmap(NULL, map_len, PROT_READ|PROT_WRITE, MAP_SHARED, dev_fd, 0);
-b) Waiting for events on the device(s)
+ b) Waiting for events on the device(s)
-while (1) {
- char buf[4];
+ while (1) {
+ char buf[4];
- int ret = read(dev_fd, buf, 4); /* will block */
+ int ret = read(dev_fd, buf, 4); /* will block */
- handle_device_events(dev_fd, map);
-}
-
-
-c) Managing the command ring
-
-#include <linux/target_core_user.h>
-
-int handle_device_events(int fd, void *map)
-{
- struct tcmu_mailbox *mb = map;
- struct tcmu_cmd_entry *ent = (void *) mb + mb->cmdr_off + mb->cmd_tail;
- int did_some_work = 0;
-
- /* Process events from cmd ring until we catch up with cmd_head */
- while (ent != (void *)mb + mb->cmdr_off + mb->cmd_head) {
-
- if (tcmu_hdr_get_op(ent->hdr.len_op) == TCMU_OP_CMD) {
- uint8_t *cdb = (void *)mb + ent->req.cdb_off;
- bool success = true;
+ handle_device_events(dev_fd, map);
+ }
- /* Handle command here. */
- printf("SCSI opcode: 0x%x\n", cdb[0]);
- /* Set response fields */
- if (success)
- ent->rsp.scsi_status = SCSI_NO_SENSE;
- else {
- /* Also fill in rsp->sense_buffer here */
- ent->rsp.scsi_status = SCSI_CHECK_CONDITION;
+c) Managing the command ring::
+
+ #include <linux/target_core_user.h>
+
+ int handle_device_events(int fd, void *map)
+ {
+ struct tcmu_mailbox *mb = map;
+ struct tcmu_cmd_entry *ent = (void *) mb + mb->cmdr_off + mb->cmd_tail;
+ int did_some_work = 0;
+
+ /* Process events from cmd ring until we catch up with cmd_head */
+ while (ent != (void *)mb + mb->cmdr_off + mb->cmd_head) {
+
+ if (tcmu_hdr_get_op(ent->hdr.len_op) == TCMU_OP_CMD) {
+ uint8_t *cdb = (void *)mb + ent->req.cdb_off;
+ bool success = true;
+
+ /* Handle command here. */
+ printf("SCSI opcode: 0x%x\n", cdb[0]);
+
+ /* Set response fields */
+ if (success)
+ ent->rsp.scsi_status = SCSI_NO_SENSE;
+ else {
+ /* Also fill in rsp->sense_buffer here */
+ ent->rsp.scsi_status = SCSI_CHECK_CONDITION;
+ }
+ }
+ else if (tcmu_hdr_get_op(ent->hdr.len_op) != TCMU_OP_PAD) {
+ /* Tell the kernel we didn't handle unknown opcodes */
+ ent->hdr.uflags |= TCMU_UFLAG_UNKNOWN_OP;
+ }
+ else {
+ /* Do nothing for PAD entries except update cmd_tail */
+ }
+
+ /* update cmd_tail */
+ mb->cmd_tail = (mb->cmd_tail + tcmu_hdr_get_len(&ent->hdr)) % mb->cmdr_size;
+ ent = (void *) mb + mb->cmdr_off + mb->cmd_tail;
+ did_some_work = 1;
+ }
+
+ /* Notify the kernel that work has been finished */
+ if (did_some_work) {
+ uint32_t buf = 0;
+
+ write(fd, &buf, 4);
+ }
+
+ return 0;
}
- }
- else if (tcmu_hdr_get_op(ent->hdr.len_op) != TCMU_OP_PAD) {
- /* Tell the kernel we didn't handle unknown opcodes */
- ent->hdr.uflags |= TCMU_UFLAG_UNKNOWN_OP;
- }
- else {
- /* Do nothing for PAD entries except update cmd_tail */
- }
-
- /* update cmd_tail */
- mb->cmd_tail = (mb->cmd_tail + tcmu_hdr_get_len(&ent->hdr)) % mb->cmdr_size;
- ent = (void *) mb + mb->cmdr_off + mb->cmd_tail;
- did_some_work = 1;
- }
-
- /* Notify the kernel that work has been finished */
- if (did_some_work) {
- uint32_t buf = 0;
-
- write(fd, &buf, 4);
- }
-
- return 0;
-}
A final note
-------------
+============
Please be careful to return codes as defined by the SCSI
specifications. These are different than some values defined in the
diff --git a/scripts/documentation-file-ref-check b/scripts/documentation-file-ref-check
index bd7d9ab63941..f47ef26754fa 100755
--- a/scripts/documentation-file-ref-check
+++ b/scripts/documentation-file-ref-check
@@ -81,7 +81,7 @@ while (<IN>) {
# Remove sched-pelt false-positive
next if ($fulref =~ m,^Documentation/scheduler/sched-pelt$,);
- # Discard some build examples from Documentation/target/tcm_mod_builder.txt
+ # Discard some build examples from Documentation/target/tcm_mod_builder.rst
next if ($fulref =~ m,mnt/sdb/lio-core-2.6.git/Documentation/target,);
# Check if exists, evaluating wildcards
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 35/79] docs: timers: convert docs to ReST and rename to *.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (26 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 34/79] docs: target: " Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 36/79] docs: watchdog: " Mauro Carvalho Chehab
` (45 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Thomas Gleixner, Clemens Ladisch,
Antti Palosaari, Liam Girdwood, Mark Brown, Andy Whitcroft,
Joe Perches
The conversion here is really trivial: just a bunch of title
markups and very few puntual changes is enough to make it to
be parsed by Sphinx and generate a nice html.
The conversion is actually:
- add blank lines and identation in order to identify paragraphs;
- fix tables markups;
- add some lists markups;
- mark literal blocks;
- adjust title markups.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
.../timers/{highres.txt => highres.rst} | 13 +++---
Documentation/timers/{hpet.txt => hpet.rst} | 4 +-
.../timers/{hrtimers.txt => hrtimers.rst} | 6 +--
Documentation/timers/index.rst | 22 ++++++++++
Documentation/timers/{NO_HZ.txt => no_hz.rst} | 40 +++++++++++--------
.../{timekeeping.txt => timekeeping.rst} | 3 +-
.../{timers-howto.txt => timers-howto.rst} | 15 +++++--
MAINTAINERS | 2 +-
drivers/media/usb/dvb-usb-v2/anysee.c | 2 +-
drivers/regulator/core.c | 2 +-
include/linux/iopoll.h | 4 +-
include/linux/regmap.h | 4 +-
scripts/checkpatch.pl | 8 ++--
13 files changed, 83 insertions(+), 42 deletions(-)
rename Documentation/timers/{highres.txt => highres.rst} (98%)
rename Documentation/timers/{hpet.txt => hpet.rst} (91%)
rename Documentation/timers/{hrtimers.txt => hrtimers.rst} (98%)
create mode 100644 Documentation/timers/index.rst
rename Documentation/timers/{NO_HZ.txt => no_hz.rst} (93%)
rename Documentation/timers/{timekeeping.txt => timekeeping.rst} (98%)
rename Documentation/timers/{timers-howto.txt => timers-howto.rst} (93%)
diff --git a/Documentation/timers/highres.txt b/Documentation/timers/highres.rst
similarity index 98%
rename from Documentation/timers/highres.txt
rename to Documentation/timers/highres.rst
index 8f9741592123..bde5eb7e5c9e 100644
--- a/Documentation/timers/highres.txt
+++ b/Documentation/timers/highres.rst
@@ -1,5 +1,6 @@
+=====================================================
High resolution timers and dynamic ticks design notes
------------------------------------------------------
+=====================================================
Further information can be found in the paper of the OLS 2006 talk "hrtimers
and beyond". The paper is part of the OLS 2006 Proceedings Volume 1, which can
@@ -30,11 +31,12 @@ hrtimer base infrastructure
---------------------------
The hrtimer base infrastructure was merged into the 2.6.16 kernel. Details of
-the base implementation are covered in Documentation/timers/hrtimers.txt. See
+the base implementation are covered in Documentation/timers/hrtimers.rst. See
also figure #2 (OLS slides p. 15)
The main differences to the timer wheel, which holds the armed timer_list type
timers are:
+
- time ordered enqueueing into a rb-tree
- independent of ticks (the processing is based on nanoseconds)
@@ -55,7 +57,8 @@ merged into the 2.6.18 kernel.
Further information about the Generic Time Of Day framework is available in the
OLS 2005 Proceedings Volume 1:
-http://www.linuxsymposium.org/2005/linuxsymposium_procv1.pdf
+
+ http://www.linuxsymposium.org/2005/linuxsymposium_procv1.pdf
The paper "We Are Not Getting Any Younger: A New Approach to Time and
Timers" was written by J. Stultz, D.V. Hart, & N. Aravamudan.
@@ -100,6 +103,7 @@ accounting, profiling, and high resolution timers.
The management layer assigns one or more of the following functions to a clock
event device:
+
- system global periodic tick (jiffies update)
- cpu local update_process_times
- cpu local profiling
@@ -244,6 +248,3 @@ extended to x86_64 and ARM already. Initial (work in progress) support is also
available for MIPS and PowerPC.
Thomas, Ingo
-
-
-
diff --git a/Documentation/timers/hpet.txt b/Documentation/timers/hpet.rst
similarity index 91%
rename from Documentation/timers/hpet.txt
rename to Documentation/timers/hpet.rst
index 895345ec513b..c9d05d3caaca 100644
--- a/Documentation/timers/hpet.txt
+++ b/Documentation/timers/hpet.rst
@@ -1,4 +1,6 @@
- High Precision Event Timer Driver for Linux
+===========================================
+High Precision Event Timer Driver for Linux
+===========================================
The High Precision Event Timer (HPET) hardware follows a specification
by Intel and Microsoft, revision 1.
diff --git a/Documentation/timers/hrtimers.txt b/Documentation/timers/hrtimers.rst
similarity index 98%
rename from Documentation/timers/hrtimers.txt
rename to Documentation/timers/hrtimers.rst
index 588d85724f10..c1c20a693e8f 100644
--- a/Documentation/timers/hrtimers.txt
+++ b/Documentation/timers/hrtimers.rst
@@ -1,6 +1,6 @@
-
+======================================================
hrtimers - subsystem for high-resolution kernel timers
-----------------------------------------------------
+======================================================
This patch introduces a new subsystem for high-resolution kernel timers.
@@ -146,7 +146,7 @@ the clock_getres() interface. This will return whatever real resolution
a given clock has - be it low-res, high-res, or artificially-low-res.
hrtimers - testing and verification
-----------------------------------
+-----------------------------------
We used the high-resolution clock subsystem ontop of hrtimers to verify
the hrtimer implementation details in praxis, and we also ran the posix
diff --git a/Documentation/timers/index.rst b/Documentation/timers/index.rst
new file mode 100644
index 000000000000..91f6f8263c48
--- /dev/null
+++ b/Documentation/timers/index.rst
@@ -0,0 +1,22 @@
+:orphan:
+
+======
+timers
+======
+
+.. toctree::
+ :maxdepth: 1
+
+ highres
+ hpet
+ hrtimers
+ no_hz
+ timekeeping
+ timers-howto
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/timers/NO_HZ.txt b/Documentation/timers/no_hz.rst
similarity index 93%
rename from Documentation/timers/NO_HZ.txt
rename to Documentation/timers/no_hz.rst
index 9591092da5e0..065db217cb04 100644
--- a/Documentation/timers/NO_HZ.txt
+++ b/Documentation/timers/no_hz.rst
@@ -1,4 +1,6 @@
- NO_HZ: Reducing Scheduling-Clock Ticks
+======================================
+NO_HZ: Reducing Scheduling-Clock Ticks
+======================================
This document describes Kconfig options and boot parameters that can
@@ -28,7 +30,8 @@ by a third section on RCU-specific considerations, a fourth section
discussing testing, and a fifth and final section listing known issues.
-NEVER OMIT SCHEDULING-CLOCK TICKS
+Never Omit Scheduling-Clock Ticks
+=================================
Very old versions of Linux from the 1990s and the very early 2000s
are incapable of omitting scheduling-clock ticks. It turns out that
@@ -59,7 +62,8 @@ degrade your applications performance. If this describes your workload,
you should read the following two sections.
-OMIT SCHEDULING-CLOCK TICKS FOR IDLE CPUs
+Omit Scheduling-Clock Ticks For Idle CPUs
+=========================================
If a CPU is idle, there is little point in sending it a scheduling-clock
interrupt. After all, the primary purpose of a scheduling-clock interrupt
@@ -97,7 +101,8 @@ By default, CONFIG_NO_HZ_IDLE=y kernels boot with "nohz=on", enabling
dyntick-idle mode.
-OMIT SCHEDULING-CLOCK TICKS FOR CPUs WITH ONLY ONE RUNNABLE TASK
+Omit Scheduling-Clock Ticks For CPUs With Only One Runnable Task
+================================================================
If a CPU has only one runnable task, there is little point in sending it
a scheduling-clock interrupt because there is no other task to switch to.
@@ -174,7 +179,8 @@ However, the drawbacks listed above mean that adaptive ticks should not
(yet) be enabled by default.
-RCU IMPLICATIONS
+RCU Implications
+================
There are situations in which idle CPUs cannot be permitted to
enter either dyntick-idle mode or adaptive-tick mode, the most
@@ -199,7 +205,8 @@ scheduler will decide where to run them, which might or might not be
where you want them to run.
-TESTING
+Testing
+=======
So you enable all the OS-jitter features described in this document,
but do not see any change in your workload's behavior. Is this because
@@ -222,9 +229,10 @@ We do not currently have a good way to remove OS jitter from single-CPU
systems.
-KNOWN ISSUES
+Known Issues
+============
-o Dyntick-idle slows transitions to and from idle slightly.
+* Dyntick-idle slows transitions to and from idle slightly.
In practice, this has not been a problem except for the most
aggressive real-time workloads, which have the option of disabling
dyntick-idle mode, an option that most of them take. However,
@@ -248,13 +256,13 @@ o Dyntick-idle slows transitions to and from idle slightly.
this parameter effectively disables Turbo Mode on Intel
CPUs, which can significantly reduce maximum performance.
-o Adaptive-ticks slows user/kernel transitions slightly.
+* Adaptive-ticks slows user/kernel transitions slightly.
This is not expected to be a problem for computationally intensive
workloads, which have few such transitions. Careful benchmarking
will be required to determine whether or not other workloads
are significantly affected by this effect.
-o Adaptive-ticks does not do anything unless there is only one
+* Adaptive-ticks does not do anything unless there is only one
runnable task for a given CPU, even though there are a number
of other situations where the scheduling-clock tick is not
needed. To give but one example, consider a CPU that has one
@@ -275,7 +283,7 @@ o Adaptive-ticks does not do anything unless there is only one
Better handling of these sorts of situations is future work.
-o A reboot is required to reconfigure both adaptive idle and RCU
+* A reboot is required to reconfigure both adaptive idle and RCU
callback offloading. Runtime reconfiguration could be provided
if needed, however, due to the complexity of reconfiguring RCU at
runtime, there would need to be an earthshakingly good reason.
@@ -283,12 +291,12 @@ o A reboot is required to reconfigure both adaptive idle and RCU
simply offloading RCU callbacks from all CPUs and pinning them
where you want them whenever you want them pinned.
-o Additional configuration is required to deal with other sources
+* Additional configuration is required to deal with other sources
of OS jitter, including interrupts and system-utility tasks
and processes. This configuration normally involves binding
interrupts and tasks to particular CPUs.
-o Some sources of OS jitter can currently be eliminated only by
+* Some sources of OS jitter can currently be eliminated only by
constraining the workload. For example, the only way to eliminate
OS jitter due to global TLB shootdowns is to avoid the unmapping
operations (such as kernel module unload operations) that
@@ -299,17 +307,17 @@ o Some sources of OS jitter can currently be eliminated only by
helpful, especially when combined with the mlock() and mlockall()
system calls.
-o Unless all CPUs are idle, at least one CPU must keep the
+* Unless all CPUs are idle, at least one CPU must keep the
scheduling-clock interrupt going in order to support accurate
timekeeping.
-o If there might potentially be some adaptive-ticks CPUs, there
+* If there might potentially be some adaptive-ticks CPUs, there
will be at least one CPU keeping the scheduling-clock interrupt
going, even if all CPUs are otherwise idle.
Better handling of this situation is ongoing work.
-o Some process-handling operations still require the occasional
+* Some process-handling operations still require the occasional
scheduling-clock tick. These operations include calculating CPU
load, maintaining sched average, computing CFS entity vruntime,
computing avenrun, and carrying out load balancing. They are
diff --git a/Documentation/timers/timekeeping.txt b/Documentation/timers/timekeeping.rst
similarity index 98%
rename from Documentation/timers/timekeeping.txt
rename to Documentation/timers/timekeeping.rst
index 2d1732b0a868..f83e98852e2c 100644
--- a/Documentation/timers/timekeeping.txt
+++ b/Documentation/timers/timekeeping.rst
@@ -1,5 +1,6 @@
+===========================================================
Clock sources, Clock events, sched_clock() and delay timers
------------------------------------------------------------
+===========================================================
This document tries to briefly explain some basic kernel timekeeping
abstractions. It partly pertains to the drivers usually found in
diff --git a/Documentation/timers/timers-howto.txt b/Documentation/timers/timers-howto.rst
similarity index 93%
rename from Documentation/timers/timers-howto.txt
rename to Documentation/timers/timers-howto.rst
index 038f8c77a076..7e3167bec2b1 100644
--- a/Documentation/timers/timers-howto.txt
+++ b/Documentation/timers/timers-howto.rst
@@ -1,5 +1,6 @@
+===================================================================
delays - Information on the various kernel delay / sleep mechanisms
--------------------------------------------------------------------
+===================================================================
This document seeks to answer the common question: "What is the
RightWay (TM) to insert a delay?"
@@ -17,7 +18,7 @@ code in an atomic context?" This should be followed closely by "Does
it really need to delay in atomic context?" If so...
ATOMIC CONTEXT:
- You must use the *delay family of functions. These
+ You must use the `*delay` family of functions. These
functions use the jiffie estimation of clock speed
and will busy wait for enough loop cycles to achieve
the desired delay:
@@ -35,21 +36,26 @@ ATOMIC CONTEXT:
be refactored to allow for the use of msleep.
NON-ATOMIC CONTEXT:
- You should use the *sleep[_range] family of functions.
+ You should use the `*sleep[_range]` family of functions.
There are a few more options here, while any of them may
work correctly, using the "right" sleep function will
help the scheduler, power management, and just make your
driver better :)
-- Backed by busy-wait loop:
+
udelay(unsigned long usecs)
+
-- Backed by hrtimers:
+
usleep_range(unsigned long min, unsigned long max)
+
-- Backed by jiffies / legacy_timers
+
msleep(unsigned long msecs)
msleep_interruptible(unsigned long msecs)
- Unlike the *delay family, the underlying mechanism
+ Unlike the `*delay` family, the underlying mechanism
driving each of these calls varies, thus there are
quirks you should be aware of.
@@ -70,6 +76,7 @@ NON-ATOMIC CONTEXT:
- Why not msleep for (1ms - 20ms)?
Explained originally here:
http://lkml.org/lkml/2007/8/3/250
+
msleep(1~20) may not do what the caller intends, and
will often sleep longer (~20 ms actual sleep for any
value given in the 1~20ms range). In many cases this
diff --git a/MAINTAINERS b/MAINTAINERS
index 7e600004f993..8dfa2fa5101a 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -7127,7 +7127,7 @@ F: drivers/net/ethernet/hp/hp100.*
HPET: High Precision Event Timers driver
M: Clemens Ladisch <clemens@ladisch.de>
S: Maintained
-F: Documentation/timers/hpet.txt
+F: Documentation/timers/hpet.rst
F: drivers/char/hpet.c
F: include/linux/hpet.h
F: include/uapi/linux/hpet.h
diff --git a/drivers/media/usb/dvb-usb-v2/anysee.c b/drivers/media/usb/dvb-usb-v2/anysee.c
index 0df7ad69e6c7..a4271f6c414a 100644
--- a/drivers/media/usb/dvb-usb-v2/anysee.c
+++ b/drivers/media/usb/dvb-usb-v2/anysee.c
@@ -65,7 +65,7 @@ static int anysee_ctrl_msg(struct dvb_usb_device *d,
/* TODO FIXME: dvb_usb_generic_rw() fails rarely with error code -32
* (EPIPE, Broken pipe). Function supports currently msleep() as a
* parameter but I would not like to use it, since according to
- * Documentation/timers/timers-howto.txt it should not be used such
+ * Documentation/timers/timers-howto.rst it should not be used such
* short, under < 20ms, sleeps. Repeating failed message would be
* better choice as not to add unwanted delays...
* Fixing that correctly is one of those or both;
diff --git a/drivers/regulator/core.c b/drivers/regulator/core.c
index 186a37675b50..e67a98115d9d 100644
--- a/drivers/regulator/core.c
+++ b/drivers/regulator/core.c
@@ -2308,7 +2308,7 @@ static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
*
* Delay for the requested amount of time as per the guidelines in:
*
- * Documentation/timers/timers-howto.txt
+ * Documentation/timers/timers-howto.rst
*
* The assumption here is that regulators will never be enabled in
* atomic context and therefore sleeping functions can be used.
diff --git a/include/linux/iopoll.h b/include/linux/iopoll.h
index b1d861caca16..320bbc9761c8 100644
--- a/include/linux/iopoll.h
+++ b/include/linux/iopoll.h
@@ -30,7 +30,7 @@
* @cond: Break condition (usually involving @val)
* @sleep_us: Maximum time to sleep between reads in us (0
* tight-loops). Should be less than ~20ms since usleep_range
- * is used (see Documentation/timers/timers-howto.txt).
+ * is used (see Documentation/timers/timers-howto.rst).
* @timeout_us: Timeout in us, 0 means never timeout
*
* Returns 0 on success and -ETIMEDOUT upon a timeout. In either
@@ -69,7 +69,7 @@
* @cond: Break condition (usually involving @val)
* @delay_us: Time to udelay between reads in us (0 tight-loops). Should
* be less than ~10us since udelay is used (see
- * Documentation/timers/timers-howto.txt).
+ * Documentation/timers/timers-howto.rst).
* @timeout_us: Timeout in us, 0 means never timeout
*
* Returns 0 on success and -ETIMEDOUT upon a timeout. In either
diff --git a/include/linux/regmap.h b/include/linux/regmap.h
index daeec7dbd65c..ed5e9d0a1285 100644
--- a/include/linux/regmap.h
+++ b/include/linux/regmap.h
@@ -112,7 +112,7 @@ struct reg_sequence {
* @cond: Break condition (usually involving @val)
* @sleep_us: Maximum time to sleep between reads in us (0
* tight-loops). Should be less than ~20ms since usleep_range
- * is used (see Documentation/timers/timers-howto.txt).
+ * is used (see Documentation/timers/timers-howto.rst).
* @timeout_us: Timeout in us, 0 means never timeout
*
* Returns 0 on success and -ETIMEDOUT upon a timeout or the regmap_read
@@ -154,7 +154,7 @@ struct reg_sequence {
* @cond: Break condition (usually involving @val)
* @sleep_us: Maximum time to sleep between reads in us (0
* tight-loops). Should be less than ~20ms since usleep_range
- * is used (see Documentation/timers/timers-howto.txt).
+ * is used (see Documentation/timers/timers-howto.rst).
* @timeout_us: Timeout in us, 0 means never timeout
*
* Returns 0 on success and -ETIMEDOUT upon a timeout or the regmap_field_read
diff --git a/scripts/checkpatch.pl b/scripts/checkpatch.pl
index 1c421ac42b07..d36598bbf1b0 100755
--- a/scripts/checkpatch.pl
+++ b/scripts/checkpatch.pl
@@ -5714,7 +5714,7 @@ sub process {
# ignore udelay's < 10, however
if (! ($delay < 10) ) {
CHK("USLEEP_RANGE",
- "usleep_range is preferred over udelay; see Documentation/timers/timers-howto.txt\n" . $herecurr);
+ "usleep_range is preferred over udelay; see Documentation/timers/timers-howto.rst\n" . $herecurr);
}
if ($delay > 2000) {
WARN("LONG_UDELAY",
@@ -5726,7 +5726,7 @@ sub process {
if ($line =~ /\bmsleep\s*\((\d+)\);/) {
if ($1 < 20) {
WARN("MSLEEP",
- "msleep < 20ms can sleep for up to 20ms; see Documentation/timers/timers-howto.txt\n" . $herecurr);
+ "msleep < 20ms can sleep for up to 20ms; see Documentation/timers/timers-howto.rst\n" . $herecurr);
}
}
@@ -6117,11 +6117,11 @@ sub process {
my $max = $7;
if ($min eq $max) {
WARN("USLEEP_RANGE",
- "usleep_range should not use min == max args; see Documentation/timers/timers-howto.txt\n" . "$here\n$stat\n");
+ "usleep_range should not use min == max args; see Documentation/timers/timers-howto.rst\n" . "$here\n$stat\n");
} elsif ($min =~ /^\d+$/ && $max =~ /^\d+$/ &&
$min > $max) {
WARN("USLEEP_RANGE",
- "usleep_range args reversed, use min then max; see Documentation/timers/timers-howto.txt\n" . "$here\n$stat\n");
+ "usleep_range args reversed, use min then max; see Documentation/timers/timers-howto.rst\n" . "$here\n$stat\n");
}
}
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 36/79] docs: watchdog: convert docs to ReST and rename to *.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (27 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 35/79] docs: timers: " Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 37/79] docs: xilinx: convert eemi.txt to eemi.rst Mauro Carvalho Chehab
` (44 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Wim Van Sebroeck, Guenter Roeck, Jerry Hoemann,
linux-watchdog
To: Linux Doc Mailing List <linux-doc@vger.kernel.org>
Cc: Mauro Carvalho Chehab <mchehab@infradead.org>, linux-kernel@vger.kernel.org, Jonathan Corbet <corbet@lwn.net>
Convert those documents and prepare them to be part of the kernel
API book, as most of the stuff there are related to the
Kernel interfaces.
Still, in the future, it would make sense to split the docs,
as some of the stuff is clearly focused on sysadmin tasks.
The conversion is actually:
- add blank lines and identation in order to identify paragraphs;
- fix tables markups;
- add some lists markups;
- mark literal blocks;
- adjust title markups.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
.../admin-guide/kernel-parameters.txt | 2 +-
Documentation/kernel-per-CPU-kthreads.txt | 2 +-
....txt => convert_drivers_to_kernel_api.rst} | 109 +--
.../watchdog/{hpwdt.txt => hpwdt.rst} | 25 +-
Documentation/watchdog/index.rst | 25 +
.../watchdog/{mlx-wdt.txt => mlx-wdt.rst} | 24 +-
.../{pcwd-watchdog.txt => pcwd-watchdog.rst} | 13 +-
.../{watchdog-api.txt => watchdog-api.rst} | 76 +-
...kernel-api.txt => watchdog-kernel-api.rst} | 91 ++-
.../watchdog/watchdog-parameters.rst | 736 ++++++++++++++++++
.../watchdog/watchdog-parameters.txt | 410 ----------
.../{watchdog-pm.txt => watchdog-pm.rst} | 3 +
Documentation/watchdog/{wdt.txt => wdt.rst} | 31 +-
MAINTAINERS | 2 +-
drivers/watchdog/Kconfig | 6 +-
drivers/watchdog/smsc37b787_wdt.c | 2 +-
16 files changed, 1004 insertions(+), 553 deletions(-)
rename Documentation/watchdog/{convert_drivers_to_kernel_api.txt => convert_drivers_to_kernel_api.rst} (75%)
rename Documentation/watchdog/{hpwdt.txt => hpwdt.rst} (79%)
create mode 100644 Documentation/watchdog/index.rst
rename Documentation/watchdog/{mlx-wdt.txt => mlx-wdt.rst} (78%)
rename Documentation/watchdog/{pcwd-watchdog.txt => pcwd-watchdog.rst} (89%)
rename Documentation/watchdog/{watchdog-api.txt => watchdog-api.rst} (80%)
rename Documentation/watchdog/{watchdog-kernel-api.txt => watchdog-kernel-api.rst} (90%)
create mode 100644 Documentation/watchdog/watchdog-parameters.rst
delete mode 100644 Documentation/watchdog/watchdog-parameters.txt
rename Documentation/watchdog/{watchdog-pm.txt => watchdog-pm.rst} (92%)
rename Documentation/watchdog/{wdt.txt => wdt.rst} (68%)
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index 97ec048f68af..5006f876cf0e 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -5094,7 +5094,7 @@
Default: 3 = cyan.
watchdog timers [HW,WDT] For information on watchdog timers,
- see Documentation/watchdog/watchdog-parameters.txt
+ see Documentation/watchdog/watchdog-parameters.rst
or other driver-specific files in the
Documentation/watchdog/ directory.
diff --git a/Documentation/kernel-per-CPU-kthreads.txt b/Documentation/kernel-per-CPU-kthreads.txt
index 23b0c8b20cd1..5623b9916411 100644
--- a/Documentation/kernel-per-CPU-kthreads.txt
+++ b/Documentation/kernel-per-CPU-kthreads.txt
@@ -348,7 +348,7 @@ To reduce its OS jitter, do at least one of the following:
2. Boot with "nosoftlockup=0", which will also prevent these kthreads
from being created. Other related watchdog and softlockup boot
parameters may be found in Documentation/admin-guide/kernel-parameters.rst
- and Documentation/watchdog/watchdog-parameters.txt.
+ and Documentation/watchdog/watchdog-parameters.rst.
3. Echo a zero to /proc/sys/kernel/watchdog to disable the
watchdog timer.
4. Echo a large number of /proc/sys/kernel/watchdog_thresh in
diff --git a/Documentation/watchdog/convert_drivers_to_kernel_api.txt b/Documentation/watchdog/convert_drivers_to_kernel_api.rst
similarity index 75%
rename from Documentation/watchdog/convert_drivers_to_kernel_api.txt
rename to Documentation/watchdog/convert_drivers_to_kernel_api.rst
index 9fffb2958d13..dd934cc08e40 100644
--- a/Documentation/watchdog/convert_drivers_to_kernel_api.txt
+++ b/Documentation/watchdog/convert_drivers_to_kernel_api.rst
@@ -1,6 +1,8 @@
+=========================================================
Converting old watchdog drivers to the watchdog framework
+=========================================================
+
by Wolfram Sang <w.sang@pengutronix.de>
-=========================================================
Before the watchdog framework came into the kernel, every driver had to
implement the API on its own. Now, as the framework factored out the common
@@ -69,16 +71,16 @@ Here is a overview of the functions and probably needed actions:
-ENOIOCTLCMD, the IOCTLs of the framework will be tried, too. Any other error
is directly given to the user.
-Example conversion:
+Example conversion::
--static const struct file_operations s3c2410wdt_fops = {
-- .owner = THIS_MODULE,
-- .llseek = no_llseek,
-- .write = s3c2410wdt_write,
-- .unlocked_ioctl = s3c2410wdt_ioctl,
-- .open = s3c2410wdt_open,
-- .release = s3c2410wdt_release,
--};
+ -static const struct file_operations s3c2410wdt_fops = {
+ - .owner = THIS_MODULE,
+ - .llseek = no_llseek,
+ - .write = s3c2410wdt_write,
+ - .unlocked_ioctl = s3c2410wdt_ioctl,
+ - .open = s3c2410wdt_open,
+ - .release = s3c2410wdt_release,
+ -};
Check the functions for device-specific stuff and keep it for later
refactoring. The rest can go.
@@ -89,24 +91,24 @@ Remove the miscdevice
Since the file_operations are gone now, you can also remove the 'struct
miscdevice'. The framework will create it on watchdog_dev_register() called by
-watchdog_register_device().
+watchdog_register_device()::
--static struct miscdevice s3c2410wdt_miscdev = {
-- .minor = WATCHDOG_MINOR,
-- .name = "watchdog",
-- .fops = &s3c2410wdt_fops,
--};
+ -static struct miscdevice s3c2410wdt_miscdev = {
+ - .minor = WATCHDOG_MINOR,
+ - .name = "watchdog",
+ - .fops = &s3c2410wdt_fops,
+ -};
Remove obsolete includes and defines
------------------------------------
Because of the simplifications, a few defines are probably unused now. Remove
-them. Includes can be removed, too. For example:
+them. Includes can be removed, too. For example::
-- #include <linux/fs.h>
-- #include <linux/miscdevice.h> (if MODULE_ALIAS_MISCDEV is not used)
-- #include <linux/uaccess.h> (if no custom IOCTLs are used)
+ - #include <linux/fs.h>
+ - #include <linux/miscdevice.h> (if MODULE_ALIAS_MISCDEV is not used)
+ - #include <linux/uaccess.h> (if no custom IOCTLs are used)
Add the watchdog operations
@@ -121,30 +123,30 @@ change the function header. Other changes are most likely not needed, because
here simply happens the direct hardware access. If you have device-specific
code left from the above steps, it should be refactored into these callbacks.
-Here is a simple example:
+Here is a simple example::
-+static struct watchdog_ops s3c2410wdt_ops = {
-+ .owner = THIS_MODULE,
-+ .start = s3c2410wdt_start,
-+ .stop = s3c2410wdt_stop,
-+ .ping = s3c2410wdt_keepalive,
-+ .set_timeout = s3c2410wdt_set_heartbeat,
-+};
+ +static struct watchdog_ops s3c2410wdt_ops = {
+ + .owner = THIS_MODULE,
+ + .start = s3c2410wdt_start,
+ + .stop = s3c2410wdt_stop,
+ + .ping = s3c2410wdt_keepalive,
+ + .set_timeout = s3c2410wdt_set_heartbeat,
+ +};
-A typical function-header change looks like:
+A typical function-header change looks like::
--static void s3c2410wdt_keepalive(void)
-+static int s3c2410wdt_keepalive(struct watchdog_device *wdd)
- {
-...
-+
-+ return 0;
- }
+ -static void s3c2410wdt_keepalive(void)
+ +static int s3c2410wdt_keepalive(struct watchdog_device *wdd)
+ {
+ ...
+ +
+ + return 0;
+ }
-...
+ ...
-- s3c2410wdt_keepalive();
-+ s3c2410wdt_keepalive(&s3c2410_wdd);
+ - s3c2410wdt_keepalive();
+ + s3c2410wdt_keepalive(&s3c2410_wdd);
Add the watchdog device
@@ -159,12 +161,12 @@ static variables. Those have to be converted to use the members in
watchdog_device. Note that the timeout values are unsigned int. Some drivers
use signed int, so this has to be converted, too.
-Here is a simple example for a watchdog device:
+Here is a simple example for a watchdog device::
-+static struct watchdog_device s3c2410_wdd = {
-+ .info = &s3c2410_wdt_ident,
-+ .ops = &s3c2410wdt_ops,
-+};
+ +static struct watchdog_device s3c2410_wdd = {
+ + .info = &s3c2410_wdt_ident,
+ + .ops = &s3c2410wdt_ops,
+ +};
Handle the 'nowayout' feature
@@ -173,12 +175,12 @@ Handle the 'nowayout' feature
A few drivers use nowayout statically, i.e. there is no module parameter for it
and only CONFIG_WATCHDOG_NOWAYOUT determines if the feature is going to be
used. This needs to be converted by initializing the status variable of the
-watchdog_device like this:
+watchdog_device like this::
.status = WATCHDOG_NOWAYOUT_INIT_STATUS,
Most drivers, however, also allow runtime configuration of nowayout, usually
-by adding a module parameter. The conversion for this would be something like:
+by adding a module parameter. The conversion for this would be something like::
watchdog_set_nowayout(&s3c2410_wdd, nowayout);
@@ -191,15 +193,15 @@ Register the watchdog device
Replace misc_register(&miscdev) with watchdog_register_device(&watchdog_dev).
Make sure the return value gets checked and the error message, if present,
-still fits. Also convert the unregister case.
+still fits. Also convert the unregister case::
-- ret = misc_register(&s3c2410wdt_miscdev);
-+ ret = watchdog_register_device(&s3c2410_wdd);
+ - ret = misc_register(&s3c2410wdt_miscdev);
+ + ret = watchdog_register_device(&s3c2410_wdd);
-...
+ ...
-- misc_deregister(&s3c2410wdt_miscdev);
-+ watchdog_unregister_device(&s3c2410_wdd);
+ - misc_deregister(&s3c2410wdt_miscdev);
+ + watchdog_unregister_device(&s3c2410_wdd);
Update the Kconfig-entry
@@ -207,7 +209,7 @@ Update the Kconfig-entry
The entry for the driver now needs to select WATCHDOG_CORE:
-+ select WATCHDOG_CORE
+ + select WATCHDOG_CORE
Create a patch and send it to upstream
@@ -215,4 +217,3 @@ Create a patch and send it to upstream
Make sure you understood Documentation/process/submitting-patches.rst and send your patch to
linux-watchdog@vger.kernel.org. We are looking forward to it :)
-
diff --git a/Documentation/watchdog/hpwdt.txt b/Documentation/watchdog/hpwdt.rst
similarity index 79%
rename from Documentation/watchdog/hpwdt.txt
rename to Documentation/watchdog/hpwdt.rst
index aaa9e4b4bdcd..94a96371113e 100644
--- a/Documentation/watchdog/hpwdt.txt
+++ b/Documentation/watchdog/hpwdt.rst
@@ -1,7 +1,12 @@
+===========================
+HPE iLO NMI Watchdog Driver
+===========================
+
+for iLO based ProLiant Servers
+==============================
+
Last reviewed: 08/20/2018
- HPE iLO NMI Watchdog Driver
- for iLO based ProLiant Servers
The HPE iLO NMI Watchdog driver is a kernel module that provides basic
watchdog functionality and handler for the iLO "Generate NMI to System"
@@ -20,23 +25,26 @@ Last reviewed: 08/20/2018
The hpwdt driver also has the following module parameters:
- soft_margin - allows the user to set the watchdog timer value.
+ ============ ================================================================
+ soft_margin allows the user to set the watchdog timer value.
Default value is 30 seconds.
- timeout - an alias of soft_margin.
- pretimeout - allows the user to set the watchdog pretimeout value.
+ timeout an alias of soft_margin.
+ pretimeout allows the user to set the watchdog pretimeout value.
This is the number of seconds before timeout when an
NMI is delivered to the system. Setting the value to
zero disables the pretimeout NMI.
Default value is 9 seconds.
- nowayout - basic watchdog parameter that does not allow the timer to
+ nowayout basic watchdog parameter that does not allow the timer to
be restarted or an impending ASR to be escaped.
Default value is set when compiling the kernel. If it is set
to "Y", then there is no way of disabling the watchdog once
it has been started.
+ ============ ================================================================
- NOTE: More information about watchdog drivers in general, including the ioctl
+ NOTE:
+ More information about watchdog drivers in general, including the ioctl
interface to /dev/watchdog can be found in
- Documentation/watchdog/watchdog-api.txt and Documentation/IPMI.txt.
+ Documentation/watchdog/watchdog-api.rst and Documentation/IPMI.txt.
Due to limitations in the iLO hardware, the NMI pretimeout if enabled,
can only be set to 9 seconds. Attempts to set pretimeout to other
@@ -63,4 +71,3 @@ Last reviewed: 08/20/2018
The HPE iLO NMI Watchdog Driver and documentation were originally developed
by Tom Mingarelli.
-
diff --git a/Documentation/watchdog/index.rst b/Documentation/watchdog/index.rst
new file mode 100644
index 000000000000..33a0de631e84
--- /dev/null
+++ b/Documentation/watchdog/index.rst
@@ -0,0 +1,25 @@
+:orphan:
+
+======================
+Linux Watchdog Support
+======================
+
+.. toctree::
+ :maxdepth: 1
+
+ hpwdt
+ mlx-wdt
+ pcwd-watchdog
+ watchdog-api
+ watchdog-kernel-api
+ watchdog-parameters
+ watchdog-pm
+ wdt
+ convert_drivers_to_kernel_api
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/watchdog/mlx-wdt.txt b/Documentation/watchdog/mlx-wdt.rst
similarity index 78%
rename from Documentation/watchdog/mlx-wdt.txt
rename to Documentation/watchdog/mlx-wdt.rst
index 66eeb78505c3..bf5bafac47f0 100644
--- a/Documentation/watchdog/mlx-wdt.txt
+++ b/Documentation/watchdog/mlx-wdt.rst
@@ -1,5 +1,9 @@
- Mellanox watchdog drivers
- for x86 based system switches
+=========================
+Mellanox watchdog drivers
+=========================
+
+for x86 based system switches
+=============================
This driver provides watchdog functionality for various Mellanox
Ethernet and Infiniband switch systems.
@@ -9,16 +13,16 @@ Mellanox watchdog device is implemented in a programmable logic device.
There are 2 types of HW watchdog implementations.
Type 1:
-Actual HW timeout can be defined as a power of 2 msec.
-e.g. timeout 20 sec will be rounded up to 32768 msec.
-The maximum timeout period is 32 sec (32768 msec.),
-Get time-left isn't supported
+ Actual HW timeout can be defined as a power of 2 msec.
+ e.g. timeout 20 sec will be rounded up to 32768 msec.
+ The maximum timeout period is 32 sec (32768 msec.),
+ Get time-left isn't supported
Type 2:
-Actual HW timeout is defined in sec. and it's the same as
-a user-defined timeout.
-Maximum timeout is 255 sec.
-Get time-left is supported.
+ Actual HW timeout is defined in sec. and it's the same as
+ a user-defined timeout.
+ Maximum timeout is 255 sec.
+ Get time-left is supported.
Type 1 HW watchdog implementation exist in old systems and
all new systems have type 2 HW watchdog.
diff --git a/Documentation/watchdog/pcwd-watchdog.txt b/Documentation/watchdog/pcwd-watchdog.rst
similarity index 89%
rename from Documentation/watchdog/pcwd-watchdog.txt
rename to Documentation/watchdog/pcwd-watchdog.rst
index b8e60a441a43..405e2a370082 100644
--- a/Documentation/watchdog/pcwd-watchdog.txt
+++ b/Documentation/watchdog/pcwd-watchdog.rst
@@ -1,8 +1,13 @@
+===================================
+Berkshire Products PC Watchdog Card
+===================================
+
Last reviewed: 10/05/2007
- Berkshire Products PC Watchdog Card
- Support for ISA Cards Revision A and C
- Documentation and Driver by Ken Hollis <kenji@bitgate.com>
+Support for ISA Cards Revision A and C
+=======================================
+
+Documentation and Driver by Ken Hollis <kenji@bitgate.com>
The PC Watchdog is a card that offers the same type of functionality that
the WDT card does, only it doesn't require an IRQ to run. Furthermore,
@@ -33,6 +38,7 @@ Last reviewed: 10/05/2007
WDIOC_GETSUPPORT
This returns the support of the card itself. This
returns in structure "PCWDS" which returns:
+
options = WDIOS_TEMPPANIC
(This card supports temperature)
firmware_version = xxxx
@@ -63,4 +69,3 @@ Last reviewed: 10/05/2007
-- Ken Hollis
(kenji@bitgate.com)
-
diff --git a/Documentation/watchdog/watchdog-api.txt b/Documentation/watchdog/watchdog-api.rst
similarity index 80%
rename from Documentation/watchdog/watchdog-api.txt
rename to Documentation/watchdog/watchdog-api.rst
index 0e62ba33b7fb..c6c1e9fa9f73 100644
--- a/Documentation/watchdog/watchdog-api.txt
+++ b/Documentation/watchdog/watchdog-api.rst
@@ -1,7 +1,10 @@
+=============================
+The Linux Watchdog driver API
+=============================
+
Last reviewed: 10/05/2007
-The Linux Watchdog driver API.
Copyright 2002 Christer Weingel <wingel@nano-system.com>
@@ -10,7 +13,8 @@ driver which is (c) Copyright 2000 Jakob Oestergaard <jakob@ostenfeld.dk>
This document describes the state of the Linux 2.4.18 kernel.
-Introduction:
+Introduction
+============
A Watchdog Timer (WDT) is a hardware circuit that can reset the
computer system in case of a software fault. You probably knew that
@@ -30,7 +34,8 @@ drivers implement different, and sometimes incompatible, parts of it.
This file is an attempt to document the existing usage and allow
future driver writers to use it as a reference.
-The simplest API:
+The simplest API
+================
All drivers support the basic mode of operation, where the watchdog
activates as soon as /dev/watchdog is opened and will reboot unless
@@ -54,7 +59,8 @@ after the timeout has passed. Watchdog devices also usually support
the nowayout module parameter so that this option can be controlled at
runtime.
-Magic Close feature:
+Magic Close feature
+===================
If a driver supports "Magic Close", the driver will not disable the
watchdog unless a specific magic character 'V' has been sent to
@@ -64,7 +70,8 @@ will assume that the daemon (and userspace in general) died, and will
stop pinging the watchdog without disabling it first. This will then
cause a reboot if the watchdog is not re-opened in sufficient time.
-The ioctl API:
+The ioctl API
+=============
All conforming drivers also support an ioctl API.
@@ -73,7 +80,7 @@ Pinging the watchdog using an ioctl:
All drivers that have an ioctl interface support at least one ioctl,
KEEPALIVE. This ioctl does exactly the same thing as a write to the
watchdog device, so the main loop in the above program could be
-replaced with:
+replaced with::
while (1) {
ioctl(fd, WDIOC_KEEPALIVE, 0);
@@ -82,14 +89,15 @@ replaced with:
the argument to the ioctl is ignored.
-Setting and getting the timeout:
+Setting and getting the timeout
+===============================
For some drivers it is possible to modify the watchdog timeout on the
fly with the SETTIMEOUT ioctl, those drivers have the WDIOF_SETTIMEOUT
flag set in their option field. The argument is an integer
representing the timeout in seconds. The driver returns the real
timeout used in the same variable, and this timeout might differ from
-the requested one due to limitation of the hardware.
+the requested one due to limitation of the hardware::
int timeout = 45;
ioctl(fd, WDIOC_SETTIMEOUT, &timeout);
@@ -99,18 +107,19 @@ This example might actually print "The timeout was set to 60 seconds"
if the device has a granularity of minutes for its timeout.
Starting with the Linux 2.4.18 kernel, it is possible to query the
-current timeout using the GETTIMEOUT ioctl.
+current timeout using the GETTIMEOUT ioctl::
ioctl(fd, WDIOC_GETTIMEOUT, &timeout);
printf("The timeout was is %d seconds\n", timeout);
-Pretimeouts:
+Pretimeouts
+===========
Some watchdog timers can be set to have a trigger go off before the
actual time they will reset the system. This can be done with an NMI,
interrupt, or other mechanism. This allows Linux to record useful
information (like panic information and kernel coredumps) before it
-resets.
+resets::
pretimeout = 10;
ioctl(fd, WDIOC_SETPRETIMEOUT, &pretimeout);
@@ -121,89 +130,113 @@ the pretimeout. So, for instance, if you set the timeout to 60 seconds
and the pretimeout to 10 seconds, the pretimeout will go off in 50
seconds. Setting a pretimeout to zero disables it.
-There is also a get function for getting the pretimeout:
+There is also a get function for getting the pretimeout::
ioctl(fd, WDIOC_GETPRETIMEOUT, &timeout);
printf("The pretimeout was is %d seconds\n", timeout);
Not all watchdog drivers will support a pretimeout.
-Get the number of seconds before reboot:
+Get the number of seconds before reboot
+=======================================
Some watchdog drivers have the ability to report the remaining time
before the system will reboot. The WDIOC_GETTIMELEFT is the ioctl
-that returns the number of seconds before reboot.
+that returns the number of seconds before reboot::
ioctl(fd, WDIOC_GETTIMELEFT, &timeleft);
printf("The timeout was is %d seconds\n", timeleft);
-Environmental monitoring:
+Environmental monitoring
+========================
All watchdog drivers are required return more information about the system,
some do temperature, fan and power level monitoring, some can tell you
the reason for the last reboot of the system. The GETSUPPORT ioctl is
-available to ask what the device can do:
+available to ask what the device can do::
struct watchdog_info ident;
ioctl(fd, WDIOC_GETSUPPORT, &ident);
the fields returned in the ident struct are:
+ ================ =============================================
identity a string identifying the watchdog driver
firmware_version the firmware version of the card if available
options a flags describing what the device supports
+ ================ =============================================
the options field can have the following bits set, and describes what
kind of information that the GET_STATUS and GET_BOOT_STATUS ioctls can
return. [FIXME -- Is this correct?]
+ ================ =========================
WDIOF_OVERHEAT Reset due to CPU overheat
+ ================ =========================
The machine was last rebooted by the watchdog because the thermal limit was
-exceeded
+exceeded:
+ ============== ==========
WDIOF_FANFAULT Fan failed
+ ============== ==========
A system fan monitored by the watchdog card has failed
+ ============= ================
WDIOF_EXTERN1 External relay 1
+ ============= ================
External monitoring relay/source 1 was triggered. Controllers intended for
real world applications include external monitoring pins that will trigger
a reset.
+ ============= ================
WDIOF_EXTERN2 External relay 2
+ ============= ================
External monitoring relay/source 2 was triggered
+ ================ =====================
WDIOF_POWERUNDER Power bad/power fault
+ ================ =====================
The machine is showing an undervoltage status
+ =============== =============================
WDIOF_CARDRESET Card previously reset the CPU
+ =============== =============================
The last reboot was caused by the watchdog card
+ ================ =====================
WDIOF_POWEROVER Power over voltage
+ ================ =====================
The machine is showing an overvoltage status. Note that if one level is
under and one over both bits will be set - this may seem odd but makes
sense.
+ =================== =====================
WDIOF_KEEPALIVEPING Keep alive ping reply
+ =================== =====================
The watchdog saw a keepalive ping since it was last queried.
+ ================ =======================
WDIOF_SETTIMEOUT Can set/get the timeout
+ ================ =======================
The watchdog can do pretimeouts.
+ ================ ================================
WDIOF_PRETIMEOUT Pretimeout (in seconds), get/set
+ ================ ================================
For those drivers that return any bits set in the option field, the
GETSTATUS and GETBOOTSTATUS ioctls can be used to ask for the current
-status, and the status at the last reboot, respectively.
+status, and the status at the last reboot, respectively::
int flags;
ioctl(fd, WDIOC_GETSTATUS, &flags);
@@ -216,22 +249,23 @@ Note that not all devices support these two calls, and some only
support the GETBOOTSTATUS call.
Some drivers can measure the temperature using the GETTEMP ioctl. The
-returned value is the temperature in degrees fahrenheit.
+returned value is the temperature in degrees fahrenheit::
int temperature;
ioctl(fd, WDIOC_GETTEMP, &temperature);
Finally the SETOPTIONS ioctl can be used to control some aspects of
-the cards operation.
+the cards operation::
int options = 0;
ioctl(fd, WDIOC_SETOPTIONS, &options);
The following options are available:
+ ================= ================================
WDIOS_DISABLECARD Turn off the watchdog timer
WDIOS_ENABLECARD Turn on the watchdog timer
WDIOS_TEMPPANIC Kernel panic on temperature trip
+ ================= ================================
[FIXME -- better explanations]
-
diff --git a/Documentation/watchdog/watchdog-kernel-api.txt b/Documentation/watchdog/watchdog-kernel-api.rst
similarity index 90%
rename from Documentation/watchdog/watchdog-kernel-api.txt
rename to Documentation/watchdog/watchdog-kernel-api.rst
index 3a91ef5af044..864edbe932c1 100644
--- a/Documentation/watchdog/watchdog-kernel-api.txt
+++ b/Documentation/watchdog/watchdog-kernel-api.rst
@@ -1,5 +1,7 @@
-The Linux WatchDog Timer Driver Core kernel API.
===============================================
+The Linux WatchDog Timer Driver Core kernel API
+===============================================
+
Last reviewed: 12-Feb-2013
Wim Van Sebroeck <wim@iguana.be>
@@ -9,7 +11,7 @@ Introduction
This document does not describe what a WatchDog Timer (WDT) Driver or Device is.
It also does not describe the API which can be used by user space to communicate
with a WatchDog Timer. If you want to know this then please read the following
-file: Documentation/watchdog/watchdog-api.txt .
+file: Documentation/watchdog/watchdog-api.rst .
So what does this document describe? It describes the API that can be used by
WatchDog Timer Drivers that want to use the WatchDog Timer Driver Core
@@ -23,10 +25,10 @@ The API
Each watchdog timer driver that wants to use the WatchDog Timer Driver Core
must #include <linux/watchdog.h> (you would have to do this anyway when
writing a watchdog device driver). This include file contains following
-register/unregister routines:
+register/unregister routines::
-extern int watchdog_register_device(struct watchdog_device *);
-extern void watchdog_unregister_device(struct watchdog_device *);
+ extern int watchdog_register_device(struct watchdog_device *);
+ extern void watchdog_unregister_device(struct watchdog_device *);
The watchdog_register_device routine registers a watchdog timer device.
The parameter of this routine is a pointer to a watchdog_device structure.
@@ -40,9 +42,9 @@ The watchdog subsystem includes an registration deferral mechanism,
which allows you to register an watchdog as early as you wish during
the boot process.
-The watchdog device structure looks like this:
+The watchdog device structure looks like this::
-struct watchdog_device {
+ struct watchdog_device {
int id;
struct device *parent;
const struct attribute_group **groups;
@@ -62,9 +64,10 @@ struct watchdog_device {
struct watchdog_core_data *wd_data;
unsigned long status;
struct list_head deferred;
-};
+ };
It contains following fields:
+
* id: set by watchdog_register_device, id 0 is special. It has both a
/dev/watchdog0 cdev (dynamic major, minor 0) as well as the old
/dev/watchdog miscdev. The id is set automatically when calling
@@ -114,9 +117,9 @@ It contains following fields:
* deferred: entry in wtd_deferred_reg_list which is used to
register early initialized watchdogs.
-The list of watchdog operations is defined as:
+The list of watchdog operations is defined as::
-struct watchdog_ops {
+ struct watchdog_ops {
struct module *owner;
/* mandatory operations */
int (*start)(struct watchdog_device *);
@@ -129,7 +132,7 @@ struct watchdog_ops {
unsigned int (*get_timeleft)(struct watchdog_device *);
int (*restart)(struct watchdog_device *);
long (*ioctl)(struct watchdog_device *, unsigned int, unsigned long);
-};
+ };
It is important that you first define the module owner of the watchdog timer
driver's operations. This module owner will be used to lock the module when
@@ -138,6 +141,7 @@ module and /dev/watchdog is still open).
Some operations are mandatory and some are optional. The mandatory operations
are:
+
* start: this is a pointer to the routine that starts the watchdog timer
device.
The routine needs a pointer to the watchdog timer device structure as a
@@ -146,51 +150,64 @@ are:
Not all watchdog timer hardware supports the same functionality. That's why
all other routines/operations are optional. They only need to be provided if
they are supported. These optional routines/operations are:
+
* stop: with this routine the watchdog timer device is being stopped.
+
The routine needs a pointer to the watchdog timer device structure as a
parameter. It returns zero on success or a negative errno code for failure.
Some watchdog timer hardware can only be started and not be stopped. A
driver supporting such hardware does not have to implement the stop routine.
+
If a driver has no stop function, the watchdog core will set WDOG_HW_RUNNING
and start calling the driver's keepalive pings function after the watchdog
device is closed.
+
If a watchdog driver does not implement the stop function, it must set
max_hw_heartbeat_ms.
* ping: this is the routine that sends a keepalive ping to the watchdog timer
hardware.
+
The routine needs a pointer to the watchdog timer device structure as a
parameter. It returns zero on success or a negative errno code for failure.
+
Most hardware that does not support this as a separate function uses the
start function to restart the watchdog timer hardware. And that's also what
the watchdog timer driver core does: to send a keepalive ping to the watchdog
timer hardware it will either use the ping operation (when available) or the
start operation (when the ping operation is not available).
+
(Note: the WDIOC_KEEPALIVE ioctl call will only be active when the
WDIOF_KEEPALIVEPING bit has been set in the option field on the watchdog's
info structure).
* status: this routine checks the status of the watchdog timer device. The
status of the device is reported with watchdog WDIOF_* status flags/bits.
+
WDIOF_MAGICCLOSE and WDIOF_KEEPALIVEPING are reported by the watchdog core;
it is not necessary to report those bits from the driver. Also, if no status
function is provided by the driver, the watchdog core reports the status bits
provided in the bootstatus variable of struct watchdog_device.
+
* set_timeout: this routine checks and changes the timeout of the watchdog
timer device. It returns 0 on success, -EINVAL for "parameter out of range"
and -EIO for "could not write value to the watchdog". On success this
routine should set the timeout value of the watchdog_device to the
achieved timeout value (which may be different from the requested one
because the watchdog does not necessarily have a 1 second resolution).
+
Drivers implementing max_hw_heartbeat_ms set the hardware watchdog heartbeat
to the minimum of timeout and max_hw_heartbeat_ms. Those drivers set the
timeout value of the watchdog_device either to the requested timeout value
(if it is larger than max_hw_heartbeat_ms), or to the achieved timeout value.
(Note: the WDIOF_SETTIMEOUT needs to be set in the options field of the
watchdog's info structure).
+
If the watchdog driver does not have to perform any action but setting the
watchdog_device.timeout, this callback can be omitted.
+
If set_timeout is not provided but, WDIOF_SETTIMEOUT is set, the watchdog
infrastructure updates the timeout value of the watchdog_device internally
to the requested value.
+
If the pretimeout feature is used (WDIOF_PRETIMEOUT), then set_timeout must
also take care of checking if pretimeout is still valid and set up the timer
accordingly. This can't be done in the core without races, so it is the
@@ -201,13 +218,16 @@ they are supported. These optional routines/operations are:
seconds before the actual timeout would happen. It returns 0 on success,
-EINVAL for "parameter out of range" and -EIO for "could not write value to
the watchdog". A value of 0 disables pretimeout notification.
+
(Note: the WDIOF_PRETIMEOUT needs to be set in the options field of the
watchdog's info structure).
+
If the watchdog driver does not have to perform any action but setting the
watchdog_device.pretimeout, this callback can be omitted. That means if
set_pretimeout is not provided but WDIOF_PRETIMEOUT is set, the watchdog
infrastructure updates the pretimeout value of the watchdog_device internally
to the requested value.
+
* get_timeleft: this routines returns the time that's left before a reset.
* restart: this routine restarts the machine. It returns 0 on success or a
negative errno code for failure.
@@ -218,6 +238,7 @@ they are supported. These optional routines/operations are:
The status bits should (preferably) be set with the set_bit and clear_bit alike
bit-operations. The status bits that are defined are:
+
* WDOG_ACTIVE: this status bit indicates whether or not a watchdog timer device
is active or not from user perspective. User space is expected to send
heartbeat requests to the driver while this flag is set.
@@ -235,22 +256,30 @@ bit-operations. The status bits that are defined are:
To set the WDOG_NO_WAY_OUT status bit (before registering your watchdog
timer device) you can either:
+
* set it statically in your watchdog_device struct with
+
.status = WATCHDOG_NOWAYOUT_INIT_STATUS,
+
(this will set the value the same as CONFIG_WATCHDOG_NOWAYOUT) or
- * use the following helper function:
- static inline void watchdog_set_nowayout(struct watchdog_device *wdd, int nowayout)
+ * use the following helper function::
+
+ static inline void watchdog_set_nowayout(struct watchdog_device *wdd,
+ int nowayout)
+
+Note:
+ The WatchDog Timer Driver Core supports the magic close feature and
+ the nowayout feature. To use the magic close feature you must set the
+ WDIOF_MAGICCLOSE bit in the options field of the watchdog's info structure.
-Note: The WatchDog Timer Driver Core supports the magic close feature and
-the nowayout feature. To use the magic close feature you must set the
-WDIOF_MAGICCLOSE bit in the options field of the watchdog's info structure.
The nowayout feature will overrule the magic close feature.
To get or set driver specific data the following two helper functions should be
-used:
+used::
-static inline void watchdog_set_drvdata(struct watchdog_device *wdd, void *data)
-static inline void *watchdog_get_drvdata(struct watchdog_device *wdd)
+ static inline void watchdog_set_drvdata(struct watchdog_device *wdd,
+ void *data)
+ static inline void *watchdog_get_drvdata(struct watchdog_device *wdd)
The watchdog_set_drvdata function allows you to add driver specific data. The
arguments of this function are the watchdog device where you want to add the
@@ -260,10 +289,11 @@ The watchdog_get_drvdata function allows you to retrieve driver specific data.
The argument of this function is the watchdog device where you want to retrieve
data from. The function returns the pointer to the driver specific data.
-To initialize the timeout field, the following function can be used:
+To initialize the timeout field, the following function can be used::
-extern int watchdog_init_timeout(struct watchdog_device *wdd,
- unsigned int timeout_parm, struct device *dev);
+ extern int watchdog_init_timeout(struct watchdog_device *wdd,
+ unsigned int timeout_parm,
+ struct device *dev);
The watchdog_init_timeout function allows you to initialize the timeout field
using the module timeout parameter or by retrieving the timeout-sec property from
@@ -272,30 +302,33 @@ to set the default timeout value as timeout value in the watchdog_device and
then use this function to set the user "preferred" timeout value.
This routine returns zero on success and a negative errno code for failure.
-To disable the watchdog on reboot, the user must call the following helper:
+To disable the watchdog on reboot, the user must call the following helper::
-static inline void watchdog_stop_on_reboot(struct watchdog_device *wdd);
+ static inline void watchdog_stop_on_reboot(struct watchdog_device *wdd);
To disable the watchdog when unregistering the watchdog, the user must call
the following helper. Note that this will only stop the watchdog if the
nowayout flag is not set.
-static inline void watchdog_stop_on_unregister(struct watchdog_device *wdd);
+::
+
+ static inline void watchdog_stop_on_unregister(struct watchdog_device *wdd);
To change the priority of the restart handler the following helper should be
-used:
+used::
-void watchdog_set_restart_priority(struct watchdog_device *wdd, int priority);
+ void watchdog_set_restart_priority(struct watchdog_device *wdd, int priority);
User should follow the following guidelines for setting the priority:
+
* 0: should be called in last resort, has limited restart capabilities
* 128: default restart handler, use if no other handler is expected to be
available, and/or if restart is sufficient to restart the entire system
* 255: highest priority, will preempt all other restart handlers
-To raise a pretimeout notification, the following function should be used:
+To raise a pretimeout notification, the following function should be used::
-void watchdog_notify_pretimeout(struct watchdog_device *wdd)
+ void watchdog_notify_pretimeout(struct watchdog_device *wdd)
The function can be called in the interrupt context. If watchdog pretimeout
governor framework (kbuild CONFIG_WATCHDOG_PRETIMEOUT_GOV symbol) is enabled,
diff --git a/Documentation/watchdog/watchdog-parameters.rst b/Documentation/watchdog/watchdog-parameters.rst
new file mode 100644
index 000000000000..b121caae7798
--- /dev/null
+++ b/Documentation/watchdog/watchdog-parameters.rst
@@ -0,0 +1,736 @@
+==========================
+WatchDog Module Parameters
+==========================
+
+This file provides information on the module parameters of many of
+the Linux watchdog drivers. Watchdog driver parameter specs should
+be listed here unless the driver has its own driver-specific information
+file.
+
+See Documentation/admin-guide/kernel-parameters.rst for information on
+providing kernel parameters for builtin drivers versus loadable
+modules.
+
+-------------------------------------------------
+
+acquirewdt:
+ wdt_stop:
+ Acquire WDT 'stop' io port (default 0x43)
+ wdt_start:
+ Acquire WDT 'start' io port (default 0x443)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+advantechwdt:
+ wdt_stop:
+ Advantech WDT 'stop' io port (default 0x443)
+ wdt_start:
+ Advantech WDT 'start' io port (default 0x443)
+ timeout:
+ Watchdog timeout in seconds. 1<= timeout <=63, default=60.
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+alim1535_wdt:
+ timeout:
+ Watchdog timeout in seconds. (0 < timeout < 18000, default=60
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+alim7101_wdt:
+ timeout:
+ Watchdog timeout in seconds. (1<=timeout<=3600, default=30
+ use_gpio:
+ Use the gpio watchdog (required by old cobalt boards).
+ default=0/off/no
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+ar7_wdt:
+ margin:
+ Watchdog margin in seconds (default=60)
+ nowayout:
+ Disable watchdog shutdown on close
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+armada_37xx_wdt:
+ timeout:
+ Watchdog timeout in seconds. (default=120)
+ nowayout:
+ Disable watchdog shutdown on close
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+at91rm9200_wdt:
+ wdt_time:
+ Watchdog time in seconds. (default=5)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+at91sam9_wdt:
+ heartbeat:
+ Watchdog heartbeats in seconds. (default = 15)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+bcm47xx_wdt:
+ wdt_time:
+ Watchdog time in seconds. (default=30)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+coh901327_wdt:
+ margin:
+ Watchdog margin in seconds (default 60s)
+
+-------------------------------------------------
+
+cpu5wdt:
+ port:
+ base address of watchdog card, default is 0x91
+ verbose:
+ be verbose, default is 0 (no)
+ ticks:
+ count down ticks, default is 10000
+
+-------------------------------------------------
+
+cpwd:
+ wd0_timeout:
+ Default watchdog0 timeout in 1/10secs
+ wd1_timeout:
+ Default watchdog1 timeout in 1/10secs
+ wd2_timeout:
+ Default watchdog2 timeout in 1/10secs
+
+-------------------------------------------------
+
+da9052wdt:
+ timeout:
+ Watchdog timeout in seconds. 2<= timeout <=131, default=2.048s
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+davinci_wdt:
+ heartbeat:
+ Watchdog heartbeat period in seconds from 1 to 600, default 60
+
+-------------------------------------------------
+
+ebc-c384_wdt:
+ timeout:
+ Watchdog timeout in seconds. (1<=timeout<=15300, default=60)
+ nowayout:
+ Watchdog cannot be stopped once started
+
+-------------------------------------------------
+
+ep93xx_wdt:
+ nowayout:
+ Watchdog cannot be stopped once started
+ timeout:
+ Watchdog timeout in seconds. (1<=timeout<=3600, default=TBD)
+
+-------------------------------------------------
+
+eurotechwdt:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+ io:
+ Eurotech WDT io port (default=0x3f0)
+ irq:
+ Eurotech WDT irq (default=10)
+ ev:
+ Eurotech WDT event type (default is `int`)
+
+-------------------------------------------------
+
+gef_wdt:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+geodewdt:
+ timeout:
+ Watchdog timeout in seconds. 1<= timeout <=131, default=60.
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+i6300esb:
+ heartbeat:
+ Watchdog heartbeat in seconds. (1<heartbeat<2046, default=30)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+iTCO_wdt:
+ heartbeat:
+ Watchdog heartbeat in seconds.
+ (2<heartbeat<39 (TCO v1) or 613 (TCO v2), default=30)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+iTCO_vendor_support:
+ vendorsupport:
+ iTCO vendor specific support mode, default=0 (none),
+ 1=SuperMicro Pent3, 2=SuperMicro Pent4+, 911=Broken SMI BIOS
+
+-------------------------------------------------
+
+ib700wdt:
+ timeout:
+ Watchdog timeout in seconds. 0<= timeout <=30, default=30.
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+ibmasr:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+imx2_wdt:
+ timeout:
+ Watchdog timeout in seconds (default 60 s)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+indydog:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+iop_wdt:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+it8712f_wdt:
+ margin:
+ Watchdog margin in seconds (default 60)
+ nowayout:
+ Disable watchdog shutdown on close
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+it87_wdt:
+ nogameport:
+ Forbid the activation of game port, default=0
+ nocir:
+ Forbid the use of CIR (workaround for some buggy setups); set to 1 if
+system resets despite watchdog daemon running, default=0
+ exclusive:
+ Watchdog exclusive device open, default=1
+ timeout:
+ Watchdog timeout in seconds, default=60
+ testmode:
+ Watchdog test mode (1 = no reboot), default=0
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+ixp4xx_wdt:
+ heartbeat:
+ Watchdog heartbeat in seconds (default 60s)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+ks8695_wdt:
+ wdt_time:
+ Watchdog time in seconds. (default=5)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+machzwd:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+ action:
+ after watchdog resets, generate:
+ 0 = RESET(*) 1 = SMI 2 = NMI 3 = SCI
+
+-------------------------------------------------
+
+max63xx_wdt:
+ heartbeat:
+ Watchdog heartbeat period in seconds from 1 to 60, default 60
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+ nodelay:
+ Force selection of a timeout setting without initial delay
+ (max6373/74 only, default=0)
+
+-------------------------------------------------
+
+mixcomwd:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+mpc8xxx_wdt:
+ timeout:
+ Watchdog timeout in ticks. (0<timeout<65536, default=65535)
+ reset:
+ Watchdog Interrupt/Reset Mode. 0 = interrupt, 1 = reset
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+mv64x60_wdt:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+ni903x_wdt:
+ timeout:
+ Initial watchdog timeout in seconds (0<timeout<516, default=60)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+nic7018_wdt:
+ timeout:
+ Initial watchdog timeout in seconds (0<timeout<464, default=80)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+nuc900_wdt:
+ heartbeat:
+ Watchdog heartbeats in seconds.
+ (default = 15)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+omap_wdt:
+ timer_margin:
+ initial watchdog timeout (in seconds)
+ early_enable:
+ Watchdog is started on module insertion (default=0
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+orion_wdt:
+ heartbeat:
+ Initial watchdog heartbeat in seconds
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+pc87413_wdt:
+ io:
+ pc87413 WDT I/O port (default: io).
+ timeout:
+ Watchdog timeout in minutes (default=timeout).
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+pika_wdt:
+ heartbeat:
+ Watchdog heartbeats in seconds. (default = 15)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+pnx4008_wdt:
+ heartbeat:
+ Watchdog heartbeat period in seconds from 1 to 60, default 19
+ nowayout:
+ Set to 1 to keep watchdog running after device release
+
+-------------------------------------------------
+
+pnx833x_wdt:
+ timeout:
+ Watchdog timeout in Mhz. (68Mhz clock), default=2040000000 (30 seconds)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+ start_enabled:
+ Watchdog is started on module insertion (default=1)
+
+-------------------------------------------------
+
+rc32434_wdt:
+ timeout:
+ Watchdog timeout value, in seconds (default=20)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+riowd:
+ riowd_timeout:
+ Watchdog timeout in minutes (default=1)
+
+-------------------------------------------------
+
+s3c2410_wdt:
+ tmr_margin:
+ Watchdog tmr_margin in seconds. (default=15)
+ tmr_atboot:
+ Watchdog is started at boot time if set to 1, default=0
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+ soft_noboot:
+ Watchdog action, set to 1 to ignore reboots, 0 to reboot
+ debug:
+ Watchdog debug, set to >1 for debug, (default 0)
+
+-------------------------------------------------
+
+sa1100_wdt:
+ margin:
+ Watchdog margin in seconds (default 60s)
+
+-------------------------------------------------
+
+sb_wdog:
+ timeout:
+ Watchdog timeout in microseconds (max/default 8388607 or 8.3ish secs)
+
+-------------------------------------------------
+
+sbc60xxwdt:
+ wdt_stop:
+ SBC60xx WDT 'stop' io port (default 0x45)
+ wdt_start:
+ SBC60xx WDT 'start' io port (default 0x443)
+ timeout:
+ Watchdog timeout in seconds. (1<=timeout<=3600, default=30)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+sbc7240_wdt:
+ timeout:
+ Watchdog timeout in seconds. (1<=timeout<=255, default=30)
+ nowayout:
+ Disable watchdog when closing device file
+
+-------------------------------------------------
+
+sbc8360:
+ timeout:
+ Index into timeout table (0-63) (default=27 (60s))
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+sbc_epx_c3:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+sbc_fitpc2_wdt:
+ margin:
+ Watchdog margin in seconds (default 60s)
+ nowayout:
+ Watchdog cannot be stopped once started
+
+-------------------------------------------------
+
+sbsa_gwdt:
+ timeout:
+ Watchdog timeout in seconds. (default 10s)
+ action:
+ Watchdog action at the first stage timeout,
+ set to 0 to ignore, 1 to panic. (default=0)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+sc1200wdt:
+ isapnp:
+ When set to 0 driver ISA PnP support will be disabled (default=1)
+ io:
+ io port
+ timeout:
+ range is 0-255 minutes, default is 1
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+sc520_wdt:
+ timeout:
+ Watchdog timeout in seconds. (1 <= timeout <= 3600, default=30)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+sch311x_wdt:
+ force_id:
+ Override the detected device ID
+ therm_trip:
+ Should a ThermTrip trigger the reset generator
+ timeout:
+ Watchdog timeout in seconds. 1<= timeout <=15300, default=60
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+scx200_wdt:
+ margin:
+ Watchdog margin in seconds
+ nowayout:
+ Disable watchdog shutdown on close
+
+-------------------------------------------------
+
+shwdt:
+ clock_division_ratio:
+ Clock division ratio. Valid ranges are from 0x5 (1.31ms)
+ to 0x7 (5.25ms). (default=7)
+ heartbeat:
+ Watchdog heartbeat in seconds. (1 <= heartbeat <= 3600, default=30
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+smsc37b787_wdt:
+ timeout:
+ range is 1-255 units, default is 60
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+softdog:
+ soft_margin:
+ Watchdog soft_margin in seconds.
+ (0 < soft_margin < 65536, default=60)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+ soft_noboot:
+ Softdog action, set to 1 to ignore reboots, 0 to reboot
+ (default=0)
+
+-------------------------------------------------
+
+stmp3xxx_wdt:
+ heartbeat:
+ Watchdog heartbeat period in seconds from 1 to 4194304, default 19
+
+-------------------------------------------------
+
+tegra_wdt:
+ heartbeat:
+ Watchdog heartbeats in seconds. (default = 120)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+ts72xx_wdt:
+ timeout:
+ Watchdog timeout in seconds. (1 <= timeout <= 8, default=8)
+ nowayout:
+ Disable watchdog shutdown on close
+
+-------------------------------------------------
+
+twl4030_wdt:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+txx9wdt:
+ timeout:
+ Watchdog timeout in seconds. (0<timeout<N, default=60)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+uniphier_wdt:
+ timeout:
+ Watchdog timeout in power of two seconds.
+ (1 <= timeout <= 128, default=64)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+w83627hf_wdt:
+ wdt_io:
+ w83627hf/thf WDT io port (default 0x2E)
+ timeout:
+ Watchdog timeout in seconds. 1 <= timeout <= 255, default=60.
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+w83877f_wdt:
+ timeout:
+ Watchdog timeout in seconds. (1<=timeout<=3600, default=30)
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+w83977f_wdt:
+ timeout:
+ Watchdog timeout in seconds (15..7635), default=45)
+ testmode:
+ Watchdog testmode (1 = no reboot), default=0
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+wafer5823wdt:
+ timeout:
+ Watchdog timeout in seconds. 1 <= timeout <= 255, default=60.
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+wdt285:
+ soft_margin:
+ Watchdog timeout in seconds (default=60)
+
+-------------------------------------------------
+
+wdt977:
+ timeout:
+ Watchdog timeout in seconds (60..15300, default=60)
+ testmode:
+ Watchdog testmode (1 = no reboot), default=0
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+wm831x_wdt:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+wm8350_wdt:
+ nowayout:
+ Watchdog cannot be stopped once started
+ (default=kernel config parameter)
+
+-------------------------------------------------
+
+sun4v_wdt:
+ timeout_ms:
+ Watchdog timeout in milliseconds 1..180000, default=60000)
+ nowayout:
+ Watchdog cannot be stopped once started
diff --git a/Documentation/watchdog/watchdog-parameters.txt b/Documentation/watchdog/watchdog-parameters.txt
deleted file mode 100644
index 0b88e333f9e1..000000000000
--- a/Documentation/watchdog/watchdog-parameters.txt
+++ /dev/null
@@ -1,410 +0,0 @@
-This file provides information on the module parameters of many of
-the Linux watchdog drivers. Watchdog driver parameter specs should
-be listed here unless the driver has its own driver-specific information
-file.
-
-
-See Documentation/admin-guide/kernel-parameters.rst for information on
-providing kernel parameters for builtin drivers versus loadable
-modules.
-
-
--------------------------------------------------
-acquirewdt:
-wdt_stop: Acquire WDT 'stop' io port (default 0x43)
-wdt_start: Acquire WDT 'start' io port (default 0x443)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-advantechwdt:
-wdt_stop: Advantech WDT 'stop' io port (default 0x443)
-wdt_start: Advantech WDT 'start' io port (default 0x443)
-timeout: Watchdog timeout in seconds. 1<= timeout <=63, default=60.
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-alim1535_wdt:
-timeout: Watchdog timeout in seconds. (0 < timeout < 18000, default=60
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-alim7101_wdt:
-timeout: Watchdog timeout in seconds. (1<=timeout<=3600, default=30
-use_gpio: Use the gpio watchdog (required by old cobalt boards).
- default=0/off/no
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-ar7_wdt:
-margin: Watchdog margin in seconds (default=60)
-nowayout: Disable watchdog shutdown on close
- (default=kernel config parameter)
--------------------------------------------------
-armada_37xx_wdt:
-timeout: Watchdog timeout in seconds. (default=120)
-nowayout: Disable watchdog shutdown on close
- (default=kernel config parameter)
--------------------------------------------------
-at91rm9200_wdt:
-wdt_time: Watchdog time in seconds. (default=5)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-at91sam9_wdt:
-heartbeat: Watchdog heartbeats in seconds. (default = 15)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-bcm47xx_wdt:
-wdt_time: Watchdog time in seconds. (default=30)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-coh901327_wdt:
-margin: Watchdog margin in seconds (default 60s)
--------------------------------------------------
-cpu5wdt:
-port: base address of watchdog card, default is 0x91
-verbose: be verbose, default is 0 (no)
-ticks: count down ticks, default is 10000
--------------------------------------------------
-cpwd:
-wd0_timeout: Default watchdog0 timeout in 1/10secs
-wd1_timeout: Default watchdog1 timeout in 1/10secs
-wd2_timeout: Default watchdog2 timeout in 1/10secs
--------------------------------------------------
-da9052wdt:
-timeout: Watchdog timeout in seconds. 2<= timeout <=131, default=2.048s
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-davinci_wdt:
-heartbeat: Watchdog heartbeat period in seconds from 1 to 600, default 60
--------------------------------------------------
-ebc-c384_wdt:
-timeout: Watchdog timeout in seconds. (1<=timeout<=15300, default=60)
-nowayout: Watchdog cannot be stopped once started
--------------------------------------------------
-ep93xx_wdt:
-nowayout: Watchdog cannot be stopped once started
-timeout: Watchdog timeout in seconds. (1<=timeout<=3600, default=TBD)
--------------------------------------------------
-eurotechwdt:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
-io: Eurotech WDT io port (default=0x3f0)
-irq: Eurotech WDT irq (default=10)
-ev: Eurotech WDT event type (default is `int')
--------------------------------------------------
-gef_wdt:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-geodewdt:
-timeout: Watchdog timeout in seconds. 1<= timeout <=131, default=60.
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-i6300esb:
-heartbeat: Watchdog heartbeat in seconds. (1<heartbeat<2046, default=30)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-iTCO_wdt:
-heartbeat: Watchdog heartbeat in seconds.
- (2<heartbeat<39 (TCO v1) or 613 (TCO v2), default=30)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-iTCO_vendor_support:
-vendorsupport: iTCO vendor specific support mode, default=0 (none),
- 1=SuperMicro Pent3, 2=SuperMicro Pent4+, 911=Broken SMI BIOS
--------------------------------------------------
-ib700wdt:
-timeout: Watchdog timeout in seconds. 0<= timeout <=30, default=30.
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-ibmasr:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-imx2_wdt:
-timeout: Watchdog timeout in seconds (default 60 s)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-indydog:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-iop_wdt:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-it8712f_wdt:
-margin: Watchdog margin in seconds (default 60)
-nowayout: Disable watchdog shutdown on close
- (default=kernel config parameter)
--------------------------------------------------
-it87_wdt:
-nogameport: Forbid the activation of game port, default=0
-nocir: Forbid the use of CIR (workaround for some buggy setups); set to 1 if
-system resets despite watchdog daemon running, default=0
-exclusive: Watchdog exclusive device open, default=1
-timeout: Watchdog timeout in seconds, default=60
-testmode: Watchdog test mode (1 = no reboot), default=0
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-ixp4xx_wdt:
-heartbeat: Watchdog heartbeat in seconds (default 60s)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-ks8695_wdt:
-wdt_time: Watchdog time in seconds. (default=5)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-machzwd:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
-action: after watchdog resets, generate:
- 0 = RESET(*) 1 = SMI 2 = NMI 3 = SCI
--------------------------------------------------
-max63xx_wdt:
-heartbeat: Watchdog heartbeat period in seconds from 1 to 60, default 60
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
-nodelay: Force selection of a timeout setting without initial delay
- (max6373/74 only, default=0)
--------------------------------------------------
-mixcomwd:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-mpc8xxx_wdt:
-timeout: Watchdog timeout in ticks. (0<timeout<65536, default=65535)
-reset: Watchdog Interrupt/Reset Mode. 0 = interrupt, 1 = reset
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-mv64x60_wdt:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-ni903x_wdt:
-timeout: Initial watchdog timeout in seconds (0<timeout<516, default=60)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-nic7018_wdt:
-timeout: Initial watchdog timeout in seconds (0<timeout<464, default=80)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-nuc900_wdt:
-heartbeat: Watchdog heartbeats in seconds.
- (default = 15)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-omap_wdt:
-timer_margin: initial watchdog timeout (in seconds)
-early_enable: Watchdog is started on module insertion (default=0
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-orion_wdt:
-heartbeat: Initial watchdog heartbeat in seconds
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-pc87413_wdt:
-io: pc87413 WDT I/O port (default: io).
-timeout: Watchdog timeout in minutes (default=timeout).
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-pika_wdt:
-heartbeat: Watchdog heartbeats in seconds. (default = 15)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-pnx4008_wdt:
-heartbeat: Watchdog heartbeat period in seconds from 1 to 60, default 19
-nowayout: Set to 1 to keep watchdog running after device release
--------------------------------------------------
-pnx833x_wdt:
-timeout: Watchdog timeout in Mhz. (68Mhz clock), default=2040000000 (30 seconds)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
-start_enabled: Watchdog is started on module insertion (default=1)
--------------------------------------------------
-rc32434_wdt:
-timeout: Watchdog timeout value, in seconds (default=20)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-riowd:
-riowd_timeout: Watchdog timeout in minutes (default=1)
--------------------------------------------------
-s3c2410_wdt:
-tmr_margin: Watchdog tmr_margin in seconds. (default=15)
-tmr_atboot: Watchdog is started at boot time if set to 1, default=0
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
-soft_noboot: Watchdog action, set to 1 to ignore reboots, 0 to reboot
-debug: Watchdog debug, set to >1 for debug, (default 0)
--------------------------------------------------
-sa1100_wdt:
-margin: Watchdog margin in seconds (default 60s)
--------------------------------------------------
-sb_wdog:
-timeout: Watchdog timeout in microseconds (max/default 8388607 or 8.3ish secs)
--------------------------------------------------
-sbc60xxwdt:
-wdt_stop: SBC60xx WDT 'stop' io port (default 0x45)
-wdt_start: SBC60xx WDT 'start' io port (default 0x443)
-timeout: Watchdog timeout in seconds. (1<=timeout<=3600, default=30)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-sbc7240_wdt:
-timeout: Watchdog timeout in seconds. (1<=timeout<=255, default=30)
-nowayout: Disable watchdog when closing device file
--------------------------------------------------
-sbc8360:
-timeout: Index into timeout table (0-63) (default=27 (60s))
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-sbc_epx_c3:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-sbc_fitpc2_wdt:
-margin: Watchdog margin in seconds (default 60s)
-nowayout: Watchdog cannot be stopped once started
--------------------------------------------------
-sbsa_gwdt:
-timeout: Watchdog timeout in seconds. (default 10s)
-action: Watchdog action at the first stage timeout,
- set to 0 to ignore, 1 to panic. (default=0)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-sc1200wdt:
-isapnp: When set to 0 driver ISA PnP support will be disabled (default=1)
-io: io port
-timeout: range is 0-255 minutes, default is 1
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-sc520_wdt:
-timeout: Watchdog timeout in seconds. (1 <= timeout <= 3600, default=30)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-sch311x_wdt:
-force_id: Override the detected device ID
-therm_trip: Should a ThermTrip trigger the reset generator
-timeout: Watchdog timeout in seconds. 1<= timeout <=15300, default=60
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-scx200_wdt:
-margin: Watchdog margin in seconds
-nowayout: Disable watchdog shutdown on close
--------------------------------------------------
-shwdt:
-clock_division_ratio: Clock division ratio. Valid ranges are from 0x5 (1.31ms)
- to 0x7 (5.25ms). (default=7)
-heartbeat: Watchdog heartbeat in seconds. (1 <= heartbeat <= 3600, default=30
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-smsc37b787_wdt:
-timeout: range is 1-255 units, default is 60
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-softdog:
-soft_margin: Watchdog soft_margin in seconds.
- (0 < soft_margin < 65536, default=60)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
-soft_noboot: Softdog action, set to 1 to ignore reboots, 0 to reboot
- (default=0)
--------------------------------------------------
-stmp3xxx_wdt:
-heartbeat: Watchdog heartbeat period in seconds from 1 to 4194304, default 19
--------------------------------------------------
-tegra_wdt:
-heartbeat: Watchdog heartbeats in seconds. (default = 120)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-ts72xx_wdt:
-timeout: Watchdog timeout in seconds. (1 <= timeout <= 8, default=8)
-nowayout: Disable watchdog shutdown on close
--------------------------------------------------
-twl4030_wdt:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-txx9wdt:
-timeout: Watchdog timeout in seconds. (0<timeout<N, default=60)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-uniphier_wdt:
-timeout: Watchdog timeout in power of two seconds.
- (1 <= timeout <= 128, default=64)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-w83627hf_wdt:
-wdt_io: w83627hf/thf WDT io port (default 0x2E)
-timeout: Watchdog timeout in seconds. 1 <= timeout <= 255, default=60.
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-w83877f_wdt:
-timeout: Watchdog timeout in seconds. (1<=timeout<=3600, default=30)
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-w83977f_wdt:
-timeout: Watchdog timeout in seconds (15..7635), default=45)
-testmode: Watchdog testmode (1 = no reboot), default=0
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-wafer5823wdt:
-timeout: Watchdog timeout in seconds. 1 <= timeout <= 255, default=60.
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-wdt285:
-soft_margin: Watchdog timeout in seconds (default=60)
--------------------------------------------------
-wdt977:
-timeout: Watchdog timeout in seconds (60..15300, default=60)
-testmode: Watchdog testmode (1 = no reboot), default=0
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-wm831x_wdt:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-wm8350_wdt:
-nowayout: Watchdog cannot be stopped once started
- (default=kernel config parameter)
--------------------------------------------------
-sun4v_wdt:
-timeout_ms: Watchdog timeout in milliseconds 1..180000, default=60000)
-nowayout: Watchdog cannot be stopped once started
--------------------------------------------------
diff --git a/Documentation/watchdog/watchdog-pm.txt b/Documentation/watchdog/watchdog-pm.rst
similarity index 92%
rename from Documentation/watchdog/watchdog-pm.txt
rename to Documentation/watchdog/watchdog-pm.rst
index 7a4dd46e0d24..646e1f28f31f 100644
--- a/Documentation/watchdog/watchdog-pm.txt
+++ b/Documentation/watchdog/watchdog-pm.rst
@@ -1,5 +1,7 @@
+===============================================
The Linux WatchDog Timer Power Management Guide
===============================================
+
Last reviewed: 17-Dec-2018
Wolfram Sang <wsa+renesas@sang-engineering.com>
@@ -16,4 +18,5 @@ On resume, a watchdog timer shall be reset to its selected value to give
userspace enough time to resume. [1] [2]
[1] https://patchwork.kernel.org/patch/10252209/
+
[2] https://patchwork.kernel.org/patch/10711625/
diff --git a/Documentation/watchdog/wdt.txt b/Documentation/watchdog/wdt.rst
similarity index 68%
rename from Documentation/watchdog/wdt.txt
rename to Documentation/watchdog/wdt.rst
index ed2f0b860869..d97b0361535b 100644
--- a/Documentation/watchdog/wdt.txt
+++ b/Documentation/watchdog/wdt.rst
@@ -1,11 +1,14 @@
+============================================================
+WDT Watchdog Timer Interfaces For The Linux Operating System
+============================================================
+
Last Reviewed: 10/05/2007
- WDT Watchdog Timer Interfaces For The Linux Operating System
- Alan Cox <alan@lxorguk.ukuu.org.uk>
+Alan Cox <alan@lxorguk.ukuu.org.uk>
- ICS WDT501-P
- ICS WDT501-P (no fan tachometer)
- ICS WDT500-P
+ - ICS WDT501-P
+ - ICS WDT501-P (no fan tachometer)
+ - ICS WDT500-P
All the interfaces provide /dev/watchdog, which when open must be written
to within a timeout or the machine will reboot. Each write delays the reboot
@@ -21,19 +24,26 @@ degrees Fahrenheit. Each read returns a single byte giving the temperature.
The third interface logs kernel messages on additional alert events.
The ICS ISA-bus wdt card cannot be safely probed for. Instead you need to
-pass IO address and IRQ boot parameters. E.g.:
+pass IO address and IRQ boot parameters. E.g.::
+
wdt.io=0x240 wdt.irq=11
Other "wdt" driver parameters are:
+
+ =========== ======================================================
heartbeat Watchdog heartbeat in seconds (default 60)
nowayout Watchdog cannot be stopped once started (kernel
- build parameter)
+ build parameter)
tachometer WDT501-P Fan Tachometer support (0=disable, default=0)
type WDT501-P Card type (500 or 501, default=500)
+ =========== ======================================================
Features
--------
- WDT501P WDT500P
+
+================ ======= =======
+ WDT501P WDT500P
+================ ======= =======
Reboot Timer X X
External Reboot X X
I/O Port Monitor o o
@@ -42,9 +52,12 @@ Fan Speed X o
Power Under X o
Power Over X o
Overheat X o
+================ ======= =======
The external event interfaces on the WDT boards are not currently supported.
Minor numbers are however allocated for it.
-Example Watchdog Driver: see samples/watchdog/watchdog-simple.c
+Example Watchdog Driver:
+
+ see samples/watchdog/watchdog-simple.c
diff --git a/MAINTAINERS b/MAINTAINERS
index 8dfa2fa5101a..24c52307361f 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -6944,7 +6944,7 @@ F: drivers/media/usb/hdpvr/
HEWLETT PACKARD ENTERPRISE ILO NMI WATCHDOG DRIVER
M: Jerry Hoemann <jerry.hoemann@hpe.com>
S: Supported
-F: Documentation/watchdog/hpwdt.txt
+F: Documentation/watchdog/hpwdt.rst
F: drivers/watchdog/hpwdt.c
HEWLETT-PACKARD SMART ARRAY RAID DRIVER (hpsa)
diff --git a/drivers/watchdog/Kconfig b/drivers/watchdog/Kconfig
index 242eea859637..932b8227312f 100644
--- a/drivers/watchdog/Kconfig
+++ b/drivers/watchdog/Kconfig
@@ -17,7 +17,7 @@ menuconfig WATCHDOG
reboot the machine) and a driver for hardware watchdog boards, which
are more robust and can also keep track of the temperature inside
your computer. For details, read
- <file:Documentation/watchdog/watchdog-api.txt> in the kernel source.
+ <file:Documentation/watchdog/watchdog-api.rst> in the kernel source.
The watchdog is usually used together with the watchdog daemon
which is available from
@@ -1781,7 +1781,7 @@ config BOOKE_WDT
Watchdog driver for PowerPC Book-E chips, such as the Freescale
MPC85xx SOCs and the IBM PowerPC 440.
- Please see Documentation/watchdog/watchdog-api.txt for
+ Please see Documentation/watchdog/watchdog-api.rst for
more information.
config BOOKE_WDT_DEFAULT_TIMEOUT
@@ -1930,7 +1930,7 @@ config PCWATCHDOG
This card simply watches your kernel to make sure it doesn't freeze,
and if it does, it reboots your computer after a certain amount of
time. This driver is like the WDT501 driver but for different
- hardware. Please read <file:Documentation/watchdog/pcwd-watchdog.txt>. The PC
+ hardware. Please read <file:Documentation/watchdog/pcwd-watchdog.rst>. The PC
watchdog cards can be ordered from <http://www.berkprod.com/>.
To compile this driver as a module, choose M here: the
diff --git a/drivers/watchdog/smsc37b787_wdt.c b/drivers/watchdog/smsc37b787_wdt.c
index c768dcd53034..790d23b76bcb 100644
--- a/drivers/watchdog/smsc37b787_wdt.c
+++ b/drivers/watchdog/smsc37b787_wdt.c
@@ -40,7 +40,7 @@
* mknod /dev/watchdog c 10 130
*
* For an example userspace keep-alive daemon, see:
- * Documentation/watchdog/wdt.txt
+ * Documentation/watchdog/wdt.rst
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 37/79] docs: xilinx: convert eemi.txt to eemi.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (28 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 36/79] docs: watchdog: " Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 38/79] docs: scheduler: convert docs to ReST and rename to *.rst Mauro Carvalho Chehab
` (43 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Michal Simek, linux-arm-kernel
This is a very trivial conversion: adjust the title markup
and add a few literal block markups to produce a better
visual when parsed and avoid warnings.
As newer documents related to xilinx could be added in the future,
create a new index file for it.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/xilinx/{eemi.txt => eemi.rst} | 8 ++++----
Documentation/xilinx/index.rst | 17 +++++++++++++++++
2 files changed, 21 insertions(+), 4 deletions(-)
rename Documentation/xilinx/{eemi.txt => eemi.rst} (92%)
create mode 100644 Documentation/xilinx/index.rst
diff --git a/Documentation/xilinx/eemi.txt b/Documentation/xilinx/eemi.rst
similarity index 92%
rename from Documentation/xilinx/eemi.txt
rename to Documentation/xilinx/eemi.rst
index 0ab686c173be..8ca82c782ba6 100644
--- a/Documentation/xilinx/eemi.txt
+++ b/Documentation/xilinx/eemi.rst
@@ -1,6 +1,6 @@
----------------------------------------------------------------------
+====================================
Xilinx Zynq MPSoC EEMI Documentation
----------------------------------------------------------------------
+====================================
Xilinx Zynq MPSoC Firmware Interface
-------------------------------------
@@ -21,7 +21,7 @@ The zynqmp-firmware driver maintain all EEMI APIs in zynqmp_eemi_ops
structure. Any driver who want to communicate with PMC using EEMI APIs
can call zynqmp_pm_get_eemi_ops().
-Example of EEMI ops:
+Example of EEMI ops::
/* zynqmp-firmware driver maintain all EEMI APIs */
struct zynqmp_eemi_ops {
@@ -34,7 +34,7 @@ Example of EEMI ops:
.query_data = zynqmp_pm_query_data,
};
-Example of EEMI ops usage:
+Example of EEMI ops usage::
static const struct zynqmp_eemi_ops *eemi_ops;
u32 ret_payload[PAYLOAD_ARG_CNT];
diff --git a/Documentation/xilinx/index.rst b/Documentation/xilinx/index.rst
new file mode 100644
index 000000000000..01cc1a0714df
--- /dev/null
+++ b/Documentation/xilinx/index.rst
@@ -0,0 +1,17 @@
+:orphan:
+
+===========
+Xilinx FPGA
+===========
+
+.. toctree::
+ :maxdepth: 1
+
+ eemi
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 38/79] docs: scheduler: convert docs to ReST and rename to *.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (29 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 37/79] docs: xilinx: convert eemi.txt to eemi.rst Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-23 8:29 ` Peter Zijlstra
2019-04-22 13:27 ` [PATCH v2 39/79] docs: EDID/HOWTO.txt: convert it and rename to howto.rst Mauro Carvalho Chehab
` (42 subsequent siblings)
73 siblings, 1 reply; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Ingo Molnar, Peter Zijlstra
In order to prepare to add them to the Kernel API book,
convert the files to ReST format.
The conversion is actually:
- add blank lines and identation in order to identify paragraphs;
- fix tables markups;
- add some lists markups;
- mark literal blocks;
- adjust title markups.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/ABI/testing/sysfs-kernel-uids | 2 +-
.../{completion.txt => completion.rst} | 38 +--
Documentation/scheduler/index.rst | 29 ++
.../{sched-arch.txt => sched-arch.rst} | 18 +-
.../{sched-bwc.txt => sched-bwc.rst} | 30 +-
...{sched-deadline.txt => sched-deadline.rst} | 295 +++++++++---------
...ed-design-CFS.txt => sched-design-CFS.rst} | 15 +-
.../{sched-domains.txt => sched-domains.rst} | 8 +-
.../{sched-energy.txt => sched-energy.rst} | 47 +--
...-nice-design.txt => sched-nice-design.rst} | 6 +-
...{sched-rt-group.txt => sched-rt-group.rst} | 28 +-
.../{sched-stats.txt => sched-stats.rst} | 35 ++-
Documentation/scheduler/text_files.rst | 5 +
Documentation/vm/numa.rst | 2 +-
init/Kconfig | 6 +-
kernel/sched/deadline.c | 2 +-
16 files changed, 332 insertions(+), 234 deletions(-)
rename Documentation/scheduler/{completion.txt => completion.rst} (94%)
create mode 100644 Documentation/scheduler/index.rst
rename Documentation/scheduler/{sched-arch.txt => sched-arch.rst} (81%)
rename Documentation/scheduler/{sched-bwc.txt => sched-bwc.rst} (90%)
rename Documentation/scheduler/{sched-deadline.txt => sched-deadline.rst} (88%)
rename Documentation/scheduler/{sched-design-CFS.txt => sched-design-CFS.rst} (97%)
rename Documentation/scheduler/{sched-domains.txt => sched-domains.rst} (97%)
rename Documentation/scheduler/{sched-energy.txt => sched-energy.rst} (96%)
rename Documentation/scheduler/{sched-nice-design.txt => sched-nice-design.rst} (98%)
rename Documentation/scheduler/{sched-rt-group.txt => sched-rt-group.rst} (95%)
rename Documentation/scheduler/{sched-stats.txt => sched-stats.rst} (91%)
create mode 100644 Documentation/scheduler/text_files.rst
diff --git a/Documentation/ABI/testing/sysfs-kernel-uids b/Documentation/ABI/testing/sysfs-kernel-uids
index 28f14695a852..4182b7061816 100644
--- a/Documentation/ABI/testing/sysfs-kernel-uids
+++ b/Documentation/ABI/testing/sysfs-kernel-uids
@@ -11,4 +11,4 @@ Description:
example would be, if User A has shares = 1024 and user
B has shares = 2048, User B will get twice the CPU
bandwidth user A will. For more details refer
- Documentation/scheduler/sched-design-CFS.txt
+ Documentation/scheduler/sched-design-CFS.rst
diff --git a/Documentation/scheduler/completion.txt b/Documentation/scheduler/completion.rst
similarity index 94%
rename from Documentation/scheduler/completion.txt
rename to Documentation/scheduler/completion.rst
index e5b9df4d8078..9f039b4f4b09 100644
--- a/Documentation/scheduler/completion.txt
+++ b/Documentation/scheduler/completion.rst
@@ -1,3 +1,4 @@
+================================================
Completions - "wait for completion" barrier APIs
================================================
@@ -46,7 +47,7 @@ it has to wait for it.
To use completions you need to #include <linux/completion.h> and
create a static or dynamic variable of type 'struct completion',
-which has only two fields:
+which has only two fields::
struct completion {
unsigned int done;
@@ -57,7 +58,7 @@ This provides the ->wait waitqueue to place tasks on for waiting (if any), and
the ->done completion flag for indicating whether it's completed or not.
Completions should be named to refer to the event that is being synchronized on.
-A good example is:
+A good example is::
wait_for_completion(&early_console_added);
@@ -81,7 +82,7 @@ have taken place, even if these wait functions return prematurely due to a timeo
or a signal triggering.
Initializing of dynamically allocated completion objects is done via a call to
-init_completion():
+init_completion()::
init_completion(&dynamic_object->done);
@@ -100,7 +101,8 @@ but be aware of other races.
For static declaration and initialization, macros are available.
-For static (or global) declarations in file scope you can use DECLARE_COMPLETION():
+For static (or global) declarations in file scope you can use
+DECLARE_COMPLETION()::
static DECLARE_COMPLETION(setup_done);
DECLARE_COMPLETION(setup_done);
@@ -111,7 +113,7 @@ initialized to 'not done' and doesn't require an init_completion() call.
When a completion is declared as a local variable within a function,
then the initialization should always use DECLARE_COMPLETION_ONSTACK()
explicitly, not just to make lockdep happy, but also to make it clear
-that limited scope had been considered and is intentional:
+that limited scope had been considered and is intentional::
DECLARE_COMPLETION_ONSTACK(setup_done)
@@ -140,11 +142,11 @@ Waiting for completions:
------------------------
For a thread to wait for some concurrent activity to finish, it
-calls wait_for_completion() on the initialized completion structure:
+calls wait_for_completion() on the initialized completion structure::
void wait_for_completion(struct completion *done)
-A typical usage scenario is:
+A typical usage scenario is::
CPU#1 CPU#2
@@ -192,17 +194,17 @@ A common problem that occurs is to have unclean assignment of return types,
so take care to assign return-values to variables of the proper type.
Checking for the specific meaning of return values also has been found
-to be quite inaccurate, e.g. constructs like:
+to be quite inaccurate, e.g. constructs like::
if (!wait_for_completion_interruptible_timeout(...))
... would execute the same code path for successful completion and for the
-interrupted case - which is probably not what you want.
+interrupted case - which is probably not what you want::
int wait_for_completion_interruptible(struct completion *done)
This function marks the task TASK_INTERRUPTIBLE while it is waiting.
-If a signal was received while waiting it will return -ERESTARTSYS; 0 otherwise.
+If a signal was received while waiting it will return -ERESTARTSYS; 0 otherwise::
unsigned long wait_for_completion_timeout(struct completion *done, unsigned long timeout)
@@ -214,7 +216,7 @@ Timeouts are preferably calculated with msecs_to_jiffies() or usecs_to_jiffies()
to make the code largely HZ-invariant.
If the returned timeout value is deliberately ignored a comment should probably explain
-why (e.g. see drivers/mfd/wm8350-core.c wm8350_read_auxadc()).
+why (e.g. see drivers/mfd/wm8350-core.c wm8350_read_auxadc())::
long wait_for_completion_interruptible_timeout(struct completion *done, unsigned long timeout)
@@ -225,14 +227,14 @@ jiffies if completion occurred.
Further variants include _killable which uses TASK_KILLABLE as the
designated tasks state and will return -ERESTARTSYS if it is interrupted,
-or 0 if completion was achieved. There is a _timeout variant as well:
+or 0 if completion was achieved. There is a _timeout variant as well::
long wait_for_completion_killable(struct completion *done)
long wait_for_completion_killable_timeout(struct completion *done, unsigned long timeout)
The _io variants wait_for_completion_io() behave the same as the non-_io
variants, except for accounting waiting time as 'waiting on IO', which has
-an impact on how the task is accounted in scheduling/IO stats:
+an impact on how the task is accounted in scheduling/IO stats::
void wait_for_completion_io(struct completion *done)
unsigned long wait_for_completion_io_timeout(struct completion *done, unsigned long timeout)
@@ -243,11 +245,11 @@ Signaling completions:
A thread that wants to signal that the conditions for continuation have been
achieved calls complete() to signal exactly one of the waiters that it can
-continue:
+continue::
void complete(struct completion *done)
-... or calls complete_all() to signal all current and future waiters:
+... or calls complete_all() to signal all current and future waiters::
void complete_all(struct completion *done)
@@ -268,7 +270,7 @@ probably are a design bug.
Signaling completion from IRQ context is fine as it will appropriately
lock with spin_lock_irqsave()/spin_unlock_irqrestore() and it will never
-sleep.
+sleep.
try_wait_for_completion()/completion_done():
@@ -276,14 +278,14 @@ try_wait_for_completion()/completion_done():
The try_wait_for_completion() function will not put the thread on the wait
queue but rather returns false if it would need to enqueue (block) the thread,
-else it consumes one posted completion and returns true.
+else it consumes one posted completion and returns true::
bool try_wait_for_completion(struct completion *done)
Finally, to check the state of a completion without changing it in any way,
call completion_done(), which returns false if there are no posted
completions that were not yet consumed by waiters (implying that there are
-waiters) and true otherwise;
+waiters) and true otherwise::
bool completion_done(struct completion *done)
diff --git a/Documentation/scheduler/index.rst b/Documentation/scheduler/index.rst
new file mode 100644
index 000000000000..058be77a4c34
--- /dev/null
+++ b/Documentation/scheduler/index.rst
@@ -0,0 +1,29 @@
+:orphan:
+
+===============
+Linux Scheduler
+===============
+
+.. toctree::
+ :maxdepth: 1
+
+
+ completion
+ sched-arch
+ sched-bwc
+ sched-deadline
+ sched-design-CFS
+ sched-domains
+ sched-energy
+ sched-nice-design
+ sched-rt-group
+ sched-stats
+
+ text_files
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/scheduler/sched-arch.txt b/Documentation/scheduler/sched-arch.rst
similarity index 81%
rename from Documentation/scheduler/sched-arch.txt
rename to Documentation/scheduler/sched-arch.rst
index a2f27bbf2cba..0eaec669790a 100644
--- a/Documentation/scheduler/sched-arch.txt
+++ b/Documentation/scheduler/sched-arch.rst
@@ -1,4 +1,6 @@
- CPU Scheduler implementation hints for architecture specific code
+=================================================================
+CPU Scheduler implementation hints for architecture specific code
+=================================================================
Nick Piggin, 2005
@@ -35,9 +37,10 @@ Your cpu_idle routines need to obey the following rules:
4. The only time interrupts need to be disabled when checking
need_resched is if we are about to sleep the processor until
the next interrupt (this doesn't provide any protection of
- need_resched, it prevents losing an interrupt).
+ need_resched, it prevents losing an interrupt):
+
+ 4a. Common problem with this type of sleep appears to be::
- 4a. Common problem with this type of sleep appears to be:
local_irq_disable();
if (!need_resched()) {
local_irq_enable();
@@ -51,10 +54,10 @@ Your cpu_idle routines need to obey the following rules:
although it may be reasonable to do some background work or enter
a low CPU priority.
- 5a. If TIF_POLLING_NRFLAG is set, and we do decide to enter
- an interrupt sleep, it needs to be cleared then a memory
- barrier issued (followed by a test of need_resched with
- interrupts disabled, as explained in 3).
+ - 5a. If TIF_POLLING_NRFLAG is set, and we do decide to enter
+ an interrupt sleep, it needs to be cleared then a memory
+ barrier issued (followed by a test of need_resched with
+ interrupts disabled, as explained in 3).
arch/x86/kernel/process.c has examples of both polling and
sleeping idle functions.
@@ -71,4 +74,3 @@ sh64 - Is sleeping racy vs interrupts? (See #4a)
sparc - IRQs on at this point(?), change local_irq_save to _disable.
- TODO: needs secondary CPUs to disable preempt (See #1)
-
diff --git a/Documentation/scheduler/sched-bwc.txt b/Documentation/scheduler/sched-bwc.rst
similarity index 90%
rename from Documentation/scheduler/sched-bwc.txt
rename to Documentation/scheduler/sched-bwc.rst
index f6b1873f68ab..3a9064219656 100644
--- a/Documentation/scheduler/sched-bwc.txt
+++ b/Documentation/scheduler/sched-bwc.rst
@@ -1,8 +1,9 @@
+=====================
CFS Bandwidth Control
=====================
[ This document only discusses CPU bandwidth control for SCHED_NORMAL.
- The SCHED_RT case is covered in Documentation/scheduler/sched-rt-group.txt ]
+ The SCHED_RT case is covered in Documentation/scheduler/sched-rt-group.rst ]
CFS bandwidth control is a CONFIG_FAIR_GROUP_SCHED extension which allows the
specification of the maximum CPU bandwidth available to a group or hierarchy.
@@ -27,7 +28,8 @@ cpu.cfs_quota_us: the total available run-time within a period (in microseconds)
cpu.cfs_period_us: the length of a period (in microseconds)
cpu.stat: exports throttling statistics [explained further below]
-The default values are:
+The default values are::
+
cpu.cfs_period_us=100ms
cpu.cfs_quota=-1
@@ -55,7 +57,8 @@ For efficiency run-time is transferred between the global pool and CPU local
on large systems. The amount transferred each time such an update is required
is described as the "slice".
-This is tunable via procfs:
+This is tunable via procfs::
+
/proc/sys/kernel/sched_cfs_bandwidth_slice_us (default=5ms)
Larger slice values will reduce transfer overheads, while smaller values allow
@@ -66,6 +69,7 @@ Statistics
A group's bandwidth statistics are exported via 3 fields in cpu.stat.
cpu.stat:
+
- nr_periods: Number of enforcement intervals that have elapsed.
- nr_throttled: Number of times the group has been throttled/limited.
- throttled_time: The total time duration (in nanoseconds) for which entities
@@ -78,12 +82,15 @@ Hierarchical considerations
The interface enforces that an individual entity's bandwidth is always
attainable, that is: max(c_i) <= C. However, over-subscription in the
aggregate case is explicitly allowed to enable work-conserving semantics
-within a hierarchy.
+within a hierarchy:
+
e.g. \Sum (c_i) may exceed C
+
[ Where C is the parent's bandwidth, and c_i its children ]
There are two ways in which a group may become throttled:
+
a. it fully consumes its own quota within a period
b. a parent's quota is fully consumed within its period
@@ -92,7 +99,7 @@ be allowed to until the parent's runtime is refreshed.
Examples
--------
-1. Limit a group to 1 CPU worth of runtime.
+1. Limit a group to 1 CPU worth of runtime::
If period is 250ms and quota is also 250ms, the group will get
1 CPU worth of runtime every 250ms.
@@ -100,10 +107,10 @@ Examples
# echo 250000 > cpu.cfs_quota_us /* quota = 250ms */
# echo 250000 > cpu.cfs_period_us /* period = 250ms */
-2. Limit a group to 2 CPUs worth of runtime on a multi-CPU machine.
+2. Limit a group to 2 CPUs worth of runtime on a multi-CPU machine
- With 500ms period and 1000ms quota, the group can get 2 CPUs worth of
- runtime every 500ms.
+ With 500ms period and 1000ms quota, the group can get 2 CPUs worth of
+ runtime every 500ms::
# echo 1000000 > cpu.cfs_quota_us /* quota = 1000ms */
# echo 500000 > cpu.cfs_period_us /* period = 500ms */
@@ -112,11 +119,10 @@ Examples
3. Limit a group to 20% of 1 CPU.
- With 50ms period, 10ms quota will be equivalent to 20% of 1 CPU.
+ With 50ms period, 10ms quota will be equivalent to 20% of 1 CPU::
# echo 10000 > cpu.cfs_quota_us /* quota = 10ms */
# echo 50000 > cpu.cfs_period_us /* period = 50ms */
- By using a small period here we are ensuring a consistent latency
- response at the expense of burst capacity.
-
+ By using a small period here we are ensuring a consistent latency
+ response at the expense of burst capacity.
diff --git a/Documentation/scheduler/sched-deadline.txt b/Documentation/scheduler/sched-deadline.rst
similarity index 88%
rename from Documentation/scheduler/sched-deadline.txt
rename to Documentation/scheduler/sched-deadline.rst
index a7514343b660..3391e86d810c 100644
--- a/Documentation/scheduler/sched-deadline.txt
+++ b/Documentation/scheduler/sched-deadline.rst
@@ -1,29 +1,29 @@
- Deadline Task Scheduling
- ------------------------
+========================
+Deadline Task Scheduling
+========================
-CONTENTS
-========
+.. CONTENTS
- 0. WARNING
- 1. Overview
- 2. Scheduling algorithm
- 2.1 Main algorithm
- 2.2 Bandwidth reclaiming
- 3. Scheduling Real-Time Tasks
- 3.1 Definitions
- 3.2 Schedulability Analysis for Uniprocessor Systems
- 3.3 Schedulability Analysis for Multiprocessor Systems
- 3.4 Relationship with SCHED_DEADLINE Parameters
- 4. Bandwidth management
- 4.1 System-wide settings
- 4.2 Task interface
- 4.3 Default behavior
- 4.4 Behavior of sched_yield()
- 5. Tasks CPU affinity
- 5.1 SCHED_DEADLINE and cpusets HOWTO
- 6. Future plans
- A. Test suite
- B. Minimal main()
+ 0. WARNING
+ 1. Overview
+ 2. Scheduling algorithm
+ 2.1 Main algorithm
+ 2.2 Bandwidth reclaiming
+ 3. Scheduling Real-Time Tasks
+ 3.1 Definitions
+ 3.2 Schedulability Analysis for Uniprocessor Systems
+ 3.3 Schedulability Analysis for Multiprocessor Systems
+ 3.4 Relationship with SCHED_DEADLINE Parameters
+ 4. Bandwidth management
+ 4.1 System-wide settings
+ 4.2 Task interface
+ 4.3 Default behavior
+ 4.4 Behavior of sched_yield()
+ 5. Tasks CPU affinity
+ 5.1 SCHED_DEADLINE and cpusets HOWTO
+ 6. Future plans
+ A. Test suite
+ B. Minimal main()
0. WARNING
@@ -44,7 +44,7 @@ CONTENTS
2. Scheduling algorithm
-==================
+=======================
2.1 Main algorithm
------------------
@@ -80,7 +80,7 @@ CONTENTS
a "remaining runtime". These two parameters are initially set to 0;
- When a SCHED_DEADLINE task wakes up (becomes ready for execution),
- the scheduler checks if
+ the scheduler checks if::
remaining runtime runtime
---------------------------------- > ---------
@@ -97,7 +97,7 @@ CONTENTS
left unchanged;
- When a SCHED_DEADLINE task executes for an amount of time t, its
- remaining runtime is decreased as
+ remaining runtime is decreased as::
remaining runtime = remaining runtime - t
@@ -112,7 +112,7 @@ CONTENTS
- When the current time is equal to the replenishment time of a
throttled task, the scheduling deadline and the remaining runtime are
- updated as
+ updated as::
scheduling deadline = scheduling deadline + period
remaining runtime = remaining runtime + runtime
@@ -129,7 +129,7 @@ CONTENTS
Reclamation of Unused Bandwidth) algorithm [15, 16, 17] and it is enabled
when flag SCHED_FLAG_RECLAIM is set.
- The following diagram illustrates the state names for tasks handled by GRUB:
+ The following diagram illustrates the state names for tasks handled by GRUB::
------------
(d) | Active |
@@ -168,7 +168,7 @@ CONTENTS
breaking the real-time guarantees.
The 0-lag time for a task entering the ActiveNonContending state is
- computed as
+ computed as::
(runtime * dl_period)
deadline - ---------------------
@@ -183,7 +183,7 @@ CONTENTS
the task's utilization must be removed from the previous runqueue's active
utilization and must be added to the new runqueue's active utilization.
In order to avoid races between a task waking up on a runqueue while the
- "inactive timer" is running on a different CPU, the "dl_non_contending"
+ "inactive timer" is running on a different CPU, the "dl_non_contending"
flag is used to indicate that a task is not on a runqueue but is active
(so, the flag is set when the task blocks and is cleared when the
"inactive timer" fires or when the task wakes up).
@@ -222,36 +222,36 @@ CONTENTS
Let's now see a trivial example of two deadline tasks with runtime equal
- to 4 and period equal to 8 (i.e., bandwidth equal to 0.5):
+ to 4 and period equal to 8 (i.e., bandwidth equal to 0.5)::
- A Task T1
- |
- | |
- | |
- |-------- |----
- | | V
- |---|---|---|---|---|---|---|---|--------->t
- 0 1 2 3 4 5 6 7 8
+ A Task T1
+ |
+ | |
+ | |
+ |-------- |----
+ | | V
+ |---|---|---|---|---|---|---|---|--------->t
+ 0 1 2 3 4 5 6 7 8
- A Task T2
- |
- | |
- | |
- | ------------------------|
- | | V
- |---|---|---|---|---|---|---|---|--------->t
- 0 1 2 3 4 5 6 7 8
+ A Task T2
+ |
+ | |
+ | |
+ | ------------------------|
+ | | V
+ |---|---|---|---|---|---|---|---|--------->t
+ 0 1 2 3 4 5 6 7 8
- A running_bw
- |
- 1 ----------------- ------
- | | |
- 0.5- -----------------
- | |
- |---|---|---|---|---|---|---|---|--------->t
- 0 1 2 3 4 5 6 7 8
+ A running_bw
+ |
+ 1 ----------------- ------
+ | | |
+ 0.5- -----------------
+ | |
+ |---|---|---|---|---|---|---|---|--------->t
+ 0 1 2 3 4 5 6 7 8
- Time t = 0:
@@ -284,7 +284,7 @@ CONTENTS
2.3 Energy-aware scheduling
-------------------------
+---------------------------
When cpufreq's schedutil governor is selected, SCHED_DEADLINE implements the
GRUB-PA [19] algorithm, reducing the CPU operating frequency to the minimum
@@ -299,15 +299,20 @@ CONTENTS
3. Scheduling Real-Time Tasks
=============================
- * BIG FAT WARNING ******************************************************
- *
- * This section contains a (not-thorough) summary on classical deadline
- * scheduling theory, and how it applies to SCHED_DEADLINE.
- * The reader can "safely" skip to Section 4 if only interested in seeing
- * how the scheduling policy can be used. Anyway, we strongly recommend
- * to come back here and continue reading (once the urge for testing is
- * satisfied :P) to be sure of fully understanding all technical details.
- ************************************************************************
+
+
+ .. BIG FAT WARNING ******************************************************
+
+ .. warning::
+
+ This section contains a (not-thorough) summary on classical deadline
+ scheduling theory, and how it applies to SCHED_DEADLINE.
+ The reader can "safely" skip to Section 4 if only interested in seeing
+ how the scheduling policy can be used. Anyway, we strongly recommend
+ to come back here and continue reading (once the urge for testing is
+ satisfied :P) to be sure of fully understanding all technical details.
+
+ .. ************************************************************************
There are no limitations on what kind of task can exploit this new
scheduling discipline, even if it must be said that it is particularly
@@ -329,6 +334,7 @@ CONTENTS
sporadic with minimum inter-arrival time P is r_{j+1} >= r_j + P. Finally,
d_j = r_j + D, where D is the task's relative deadline.
Summing up, a real-time task can be described as
+
Task = (WCET, D, P)
The utilization of a real-time task is defined as the ratio between its
@@ -352,13 +358,15 @@ CONTENTS
between the finishing time of a job and its absolute deadline).
More precisely, it can be proven that using a global EDF scheduler the
maximum tardiness of each task is smaller or equal than
+
((M − 1) · WCET_max − WCET_min)/(M − (M − 2) · U_max) + WCET_max
+
where WCET_max = max{WCET_i} is the maximum WCET, WCET_min=min{WCET_i}
is the minimum WCET, and U_max = max{WCET_i/P_i} is the maximum
utilization[12].
3.2 Schedulability Analysis for Uniprocessor Systems
-------------------------
+----------------------------------------------------
If M=1 (uniprocessor system), or in case of partitioned scheduling (each
real-time task is statically assigned to one and only one CPU), it is
@@ -370,7 +378,9 @@ CONTENTS
a task as WCET_i/min{D_i,P_i}, and EDF is able to respect all the deadlines
of all the tasks running on a CPU if the sum of the densities of the tasks
running on such a CPU is smaller or equal than 1:
+
sum(WCET_i / min{D_i, P_i}) <= 1
+
It is important to notice that this condition is only sufficient, and not
necessary: there are task sets that are schedulable, but do not respect the
condition. For example, consider the task set {Task_1,Task_2} composed by
@@ -379,7 +389,9 @@ CONTENTS
(Task_1 is scheduled as soon as it is released, and finishes just in time
to respect its deadline; Task_2 is scheduled immediately after Task_1, hence
its response time cannot be larger than 50ms + 10ms = 60ms) even if
+
50 / min{50,100} + 10 / min{100, 100} = 50 / 50 + 10 / 100 = 1.1
+
Of course it is possible to test the exact schedulability of tasks with
D_i != P_i (checking a condition that is both sufficient and necessary),
but this cannot be done by comparing the total utilization or density with
@@ -399,7 +411,7 @@ CONTENTS
4 Linux uses an admission test based on the tasks' utilizations.
3.3 Schedulability Analysis for Multiprocessor Systems
-------------------------
+------------------------------------------------------
On multiprocessor systems with global EDF scheduling (non partitioned
systems), a sufficient test for schedulability can not be based on the
@@ -428,7 +440,9 @@ CONTENTS
between total utilization (or density) and a fixed constant. If all tasks
have D_i = P_i, a sufficient schedulability condition can be expressed in
a simple way:
+
sum(WCET_i / P_i) <= M - (M - 1) · U_max
+
where U_max = max{WCET_i / P_i}[10]. Notice that for U_max = 1,
M - (M - 1) · U_max becomes M - M + 1 = 1 and this schedulability condition
just confirms the Dhall's effect. A more complete survey of the literature
@@ -447,7 +461,7 @@ CONTENTS
the tasks are limited.
3.4 Relationship with SCHED_DEADLINE Parameters
-------------------------
+-----------------------------------------------
Finally, it is important to understand the relationship between the
SCHED_DEADLINE scheduling parameters described in Section 2 (runtime,
@@ -473,6 +487,7 @@ CONTENTS
this task, as it is not possible to respect its temporal constraints.
References:
+
1 - C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the Association for
Computing Machinery, 20(1), 1973.
@@ -550,7 +565,7 @@ CONTENTS
The interface used to control the CPU bandwidth that can be allocated
to -deadline tasks is similar to the one already used for -rt
tasks with real-time group scheduling (a.k.a. RT-throttling - see
- Documentation/scheduler/sched-rt-group.txt), and is based on readable/
+ Documentation/scheduler/sched-rt-group.rst), and is based on readable/
writable control files located in procfs (for system wide settings).
Notice that per-group settings (controlled through cgroupfs) are still not
defined for -deadline tasks, because more discussion is needed in order to
@@ -596,11 +611,13 @@ CONTENTS
Specifying a periodic/sporadic task that executes for a given amount of
runtime at each instance, and that is scheduled according to the urgency of
its own timing constraints needs, in general, a way of declaring:
+
- a (maximum/typical) instance execution time,
- a minimum interval between consecutive instances,
- a time constraint by which each instance must be completed.
Therefore:
+
* a new struct sched_attr, containing all the necessary fields is
provided;
* the new scheduling related syscalls that manipulate it, i.e.,
@@ -658,21 +675,21 @@ CONTENTS
------------------------------------
An example of a simple configuration (pin a -deadline task to CPU0)
- follows (rt-app is used to create a -deadline task).
+ follows (rt-app is used to create a -deadline task)::
- mkdir /dev/cpuset
- mount -t cgroup -o cpuset cpuset /dev/cpuset
- cd /dev/cpuset
- mkdir cpu0
- echo 0 > cpu0/cpuset.cpus
- echo 0 > cpu0/cpuset.mems
- echo 1 > cpuset.cpu_exclusive
- echo 0 > cpuset.sched_load_balance
- echo 1 > cpu0/cpuset.cpu_exclusive
- echo 1 > cpu0/cpuset.mem_exclusive
- echo $$ > cpu0/tasks
- rt-app -t 100000:10000:d:0 -D5 (it is now actually superfluous to specify
- task affinity)
+ mkdir /dev/cpuset
+ mount -t cgroup -o cpuset cpuset /dev/cpuset
+ cd /dev/cpuset
+ mkdir cpu0
+ echo 0 > cpu0/cpuset.cpus
+ echo 0 > cpu0/cpuset.mems
+ echo 1 > cpuset.cpu_exclusive
+ echo 0 > cpuset.sched_load_balance
+ echo 1 > cpu0/cpuset.cpu_exclusive
+ echo 1 > cpu0/cpuset.mem_exclusive
+ echo $$ > cpu0/tasks
+ rt-app -t 100000:10000:d:0 -D5 # it is now actually superfluous to specify
+ # task affinity
6. Future plans
===============
@@ -711,7 +728,7 @@ Appendix A. Test suite
rt-app is available at: https://github.com/scheduler-tools/rt-app.
Thread parameters can be specified from the command line, with something like
- this:
+ this::
# rt-app -t 100000:10000:d -t 150000:20000:f:10 -D5
@@ -721,27 +738,27 @@ Appendix A. Test suite
of 5 seconds.
More interestingly, configurations can be described with a json file that
- can be passed as input to rt-app with something like this:
+ can be passed as input to rt-app with something like this::
# rt-app my_config.json
The parameters that can be specified with the second method are a superset
of the command line options. Please refer to rt-app documentation for more
- details (<rt-app-sources>/doc/*.json).
+ details (`<rt-app-sources>/doc/*.json`).
The second testing application is a modification of schedtool, called
schedtool-dl, which can be used to setup SCHED_DEADLINE parameters for a
certain pid/application. schedtool-dl is available at:
https://github.com/scheduler-tools/schedtool-dl.git.
- The usage is straightforward:
+ The usage is straightforward::
# schedtool -E -t 10000000:100000000 -e ./my_cpuhog_app
With this, my_cpuhog_app is put to run inside a SCHED_DEADLINE reservation
of 10ms every 100ms (note that parameters are expressed in microseconds).
You can also use schedtool to create a reservation for an already running
- application, given that you know its pid:
+ application, given that you know its pid::
# schedtool -E -t 10000000:100000000 my_app_pid
@@ -750,43 +767,43 @@ Appendix B. Minimal main()
We provide in what follows a simple (ugly) self-contained code snippet
showing how SCHED_DEADLINE reservations can be created by a real-time
- application developer.
-
- #define _GNU_SOURCE
- #include <unistd.h>
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include <time.h>
- #include <linux/unistd.h>
- #include <linux/kernel.h>
- #include <linux/types.h>
- #include <sys/syscall.h>
- #include <pthread.h>
-
- #define gettid() syscall(__NR_gettid)
-
- #define SCHED_DEADLINE 6
-
- /* XXX use the proper syscall numbers */
- #ifdef __x86_64__
- #define __NR_sched_setattr 314
- #define __NR_sched_getattr 315
- #endif
-
- #ifdef __i386__
- #define __NR_sched_setattr 351
- #define __NR_sched_getattr 352
- #endif
-
- #ifdef __arm__
- #define __NR_sched_setattr 380
- #define __NR_sched_getattr 381
- #endif
-
- static volatile int done;
-
- struct sched_attr {
+ application developer::
+
+ #define _GNU_SOURCE
+ #include <unistd.h>
+ #include <stdio.h>
+ #include <stdlib.h>
+ #include <string.h>
+ #include <time.h>
+ #include <linux/unistd.h>
+ #include <linux/kernel.h>
+ #include <linux/types.h>
+ #include <sys/syscall.h>
+ #include <pthread.h>
+
+ #define gettid() syscall(__NR_gettid)
+
+ #define SCHED_DEADLINE 6
+
+ /* XXX use the proper syscall numbers */
+ #ifdef __x86_64__
+ #define __NR_sched_setattr 314
+ #define __NR_sched_getattr 315
+ #endif
+
+ #ifdef __i386__
+ #define __NR_sched_setattr 351
+ #define __NR_sched_getattr 352
+ #endif
+
+ #ifdef __arm__
+ #define __NR_sched_setattr 380
+ #define __NR_sched_getattr 381
+ #endif
+
+ static volatile int done;
+
+ struct sched_attr {
__u32 size;
__u32 sched_policy;
@@ -802,25 +819,25 @@ Appendix B. Minimal main()
__u64 sched_runtime;
__u64 sched_deadline;
__u64 sched_period;
- };
+ };
- int sched_setattr(pid_t pid,
+ int sched_setattr(pid_t pid,
const struct sched_attr *attr,
unsigned int flags)
- {
+ {
return syscall(__NR_sched_setattr, pid, attr, flags);
- }
+ }
- int sched_getattr(pid_t pid,
+ int sched_getattr(pid_t pid,
struct sched_attr *attr,
unsigned int size,
unsigned int flags)
- {
+ {
return syscall(__NR_sched_getattr, pid, attr, size, flags);
- }
+ }
- void *run_deadline(void *data)
- {
+ void *run_deadline(void *data)
+ {
struct sched_attr attr;
int x = 0;
int ret;
@@ -851,10 +868,10 @@ Appendix B. Minimal main()
printf("deadline thread dies [%ld]\n", gettid());
return NULL;
- }
+ }
- int main (int argc, char **argv)
- {
+ int main (int argc, char **argv)
+ {
pthread_t thread;
printf("main thread [%ld]\n", gettid());
@@ -868,4 +885,4 @@ Appendix B. Minimal main()
printf("main dies [%ld]\n", gettid());
return 0;
- }
+ }
diff --git a/Documentation/scheduler/sched-design-CFS.txt b/Documentation/scheduler/sched-design-CFS.rst
similarity index 97%
rename from Documentation/scheduler/sched-design-CFS.txt
rename to Documentation/scheduler/sched-design-CFS.rst
index d1328890ef28..53b30d1967cf 100644
--- a/Documentation/scheduler/sched-design-CFS.txt
+++ b/Documentation/scheduler/sched-design-CFS.rst
@@ -1,9 +1,10 @@
- =============
- CFS Scheduler
- =============
+=============
+CFS Scheduler
+=============
1. OVERVIEW
+============
CFS stands for "Completely Fair Scheduler," and is the new "desktop" process
scheduler implemented by Ingo Molnar and merged in Linux 2.6.23. It is the
@@ -27,6 +28,7 @@ is its actual runtime normalized to the total number of running tasks.
2. FEW IMPLEMENTATION DETAILS
+==============================
In CFS the virtual runtime is expressed and tracked via the per-task
p->se.vruntime (nanosec-unit) value. This way, it's possible to accurately
@@ -49,6 +51,7 @@ algorithm variants to recognize sleepers.
3. THE RBTREE
+==============
CFS's design is quite radical: it does not use the old data structures for the
runqueues, but it uses a time-ordered rbtree to build a "timeline" of future
@@ -84,6 +87,7 @@ picked and the current task is preempted.
4. SOME FEATURES OF CFS
+========================
CFS uses nanosecond granularity accounting and does not rely on any jiffies or
other HZ detail. Thus the CFS scheduler has no notion of "timeslices" in the
@@ -113,6 +117,7 @@ result.
5. Scheduling policies
+======================
CFS implements three scheduling policies:
@@ -137,6 +142,7 @@ SCHED_IDLE.
6. SCHEDULING CLASSES
+======================
The new CFS scheduler has been designed in such a way to introduce "Scheduling
Classes," an extensible hierarchy of scheduler modules. These modules
@@ -197,6 +203,7 @@ This is the (partial) list of the hooks:
7. GROUP SCHEDULER EXTENSIONS TO CFS
+=====================================
Normally, the scheduler operates on individual tasks and strives to provide
fair CPU time to each task. Sometimes, it may be desirable to group tasks and
@@ -219,7 +226,7 @@ SCHED_BATCH) tasks.
When CONFIG_FAIR_GROUP_SCHED is defined, a "cpu.shares" file is created for each
group created using the pseudo filesystem. See example steps below to create
-task groups and modify their CPU share using the "cgroups" pseudo filesystem.
+task groups and modify their CPU share using the "cgroups" pseudo filesystem::
# mount -t tmpfs cgroup_root /sys/fs/cgroup
# mkdir /sys/fs/cgroup/cpu
diff --git a/Documentation/scheduler/sched-domains.txt b/Documentation/scheduler/sched-domains.rst
similarity index 97%
rename from Documentation/scheduler/sched-domains.txt
rename to Documentation/scheduler/sched-domains.rst
index 4af80b1c05aa..f7504226f445 100644
--- a/Documentation/scheduler/sched-domains.txt
+++ b/Documentation/scheduler/sched-domains.rst
@@ -1,3 +1,7 @@
+=================
+Scheduler Domains
+=================
+
Each CPU has a "base" scheduling domain (struct sched_domain). The domain
hierarchy is built from these base domains via the ->parent pointer. ->parent
MUST be NULL terminated, and domain structures should be per-CPU as they are
@@ -46,7 +50,9 @@ CPU's runqueue and the newly found busiest one and starts moving tasks from it
to our runqueue. The exact number of tasks amounts to an imbalance previously
computed while iterating over this sched domain's groups.
-*** Implementing sched domains ***
+Implementing sched domains
+==========================
+
The "base" domain will "span" the first level of the hierarchy. In the case
of SMT, you'll span all siblings of the physical CPU, with each group being
a single virtual CPU.
diff --git a/Documentation/scheduler/sched-energy.txt b/Documentation/scheduler/sched-energy.rst
similarity index 96%
rename from Documentation/scheduler/sched-energy.txt
rename to Documentation/scheduler/sched-energy.rst
index d97207b9accb..9580c57a52bc 100644
--- a/Documentation/scheduler/sched-energy.txt
+++ b/Documentation/scheduler/sched-energy.rst
@@ -1,6 +1,6 @@
- =======================
- Energy Aware Scheduling
- =======================
+=======================
+Energy Aware Scheduling
+=======================
1. Introduction
---------------
@@ -12,7 +12,7 @@ with a minimal impact on throughput. This document aims at providing an
introduction on how EAS works, what are the main design decisions behind it, and
details what is needed to get it to run.
-Before going any further, please note that at the time of writing:
+Before going any further, please note that at the time of writing::
/!\ EAS does not support platforms with symmetric CPU topologies /!\
@@ -33,13 +33,13 @@ To make it clear from the start:
- power = energy/time = [joule/second] = [watt]
The goal of EAS is to minimize energy, while still getting the job done. That
-is, we want to maximize:
+is, we want to maximize::
performance [inst/s]
--------------------
power [W]
-which is equivalent to minimizing:
+which is equivalent to minimizing::
energy [J]
-----------
@@ -97,7 +97,7 @@ domains can contain duplicate elements.
Example 1.
Let us consider a platform with 12 CPUs, split in 3 performance domains
- (pd0, pd4 and pd8), organized as follows:
+ (pd0, pd4 and pd8), organized as follows::
CPUs: 0 1 2 3 4 5 6 7 8 9 10 11
PDs: |--pd0--|--pd4--|---pd8---|
@@ -108,6 +108,7 @@ Example 1.
containing 6 CPUs. The two root domains are denoted rd1 and rd2 in the
above figure. Since pd4 intersects with both rd1 and rd2, it will be
present in the linked list '->pd' attached to each of them:
+
* rd1->pd: pd0 -> pd4
* rd2->pd: pd4 -> pd8
@@ -159,9 +160,9 @@ Example 2.
Each performance domain has three Operating Performance Points (OPPs).
The CPU capacity and power cost associated with each OPP is listed in
the Energy Model table. The util_avg of P is shown on the figures
- below as 'PP'.
+ below as 'PP'::
- CPU util.
+ CPU util.
1024 - - - - - - - Energy Model
+-----------+-------------+
| Little | Big |
@@ -188,8 +189,7 @@ Example 2.
(which is coherent with the behaviour of the schedutil CPUFreq
governor, see Section 6. for more details on this topic).
- Case 1. P is migrated to CPU1
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ **Case 1. P is migrated to CPU1**::
1024 - - - - - - -
@@ -207,8 +207,7 @@ Example 2.
CPU0 CPU1 CPU2 CPU3
- Case 2. P is migrated to CPU3
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ **Case 2. P is migrated to CPU3**::
1024 - - - - - - -
@@ -226,8 +225,7 @@ Example 2.
CPU0 CPU1 CPU2 CPU3
- Case 3. P stays on prev_cpu / CPU 0
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ **Case 3. P stays on prev_cpu / CPU 0**::
1024 - - - - - - -
@@ -324,7 +322,9 @@ hardware properties and on other features of the kernel being enabled. This
section lists these dependencies and provides hints as to how they can be met.
- 6.1 - Asymmetric CPU topology
+6.1 - Asymmetric CPU topology
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
As mentioned in the introduction, EAS is only supported on platforms with
asymmetric CPU topologies for now. This requirement is checked at run-time by
@@ -347,7 +347,8 @@ significant savings on SMP platforms have been observed yet. This restriction
could be amended in the future if proven otherwise.
- 6.2 - Energy Model presence
+6.2 - Energy Model presence
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
EAS uses the EM of a platform to estimate the impact of scheduling decisions on
energy. So, your platform must provide power cost tables to the EM framework in
@@ -358,7 +359,8 @@ Please also note that the scheduling domains need to be re-built after the
EM has been registered in order to start EAS.
- 6.3 - Energy Model complexity
+6.3 - Energy Model complexity
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The task wake-up path is very latency-sensitive. When the EM of a platform is
too complex (too many CPUs, too many performance domains, too many performance
@@ -388,7 +390,8 @@ two possible options:
hence enabling it to cope with larger EMs in reasonable time.
- 6.4 - Schedutil governor
+6.4 - Schedutil governor
+^^^^^^^^^^^^^^^^^^^^^^^^
EAS tries to predict at which OPP will the CPUs be running in the close future
in order to estimate their energy consumption. To do so, it is assumed that OPPs
@@ -405,7 +408,8 @@ frequency requests and energy predictions.
Using EAS with any other governor than schedutil is not supported.
- 6.5 Scale-invariant utilization signals
+6.5 Scale-invariant utilization signals
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In order to make accurate prediction across CPUs and for all performance
states, EAS needs frequency-invariant and CPU-invariant PELT signals. These can
@@ -416,7 +420,8 @@ Using EAS on a platform that doesn't implement these two callbacks is not
supported.
- 6.6 Multithreading (SMT)
+6.6 Multithreading (SMT)
+^^^^^^^^^^^^^^^^^^^^^^^^
EAS in its current form is SMT unaware and is not able to leverage
multithreaded hardware to save energy. EAS considers threads as independent
diff --git a/Documentation/scheduler/sched-nice-design.txt b/Documentation/scheduler/sched-nice-design.rst
similarity index 98%
rename from Documentation/scheduler/sched-nice-design.txt
rename to Documentation/scheduler/sched-nice-design.rst
index 3ac1e46d5365..0571f1b47e64 100644
--- a/Documentation/scheduler/sched-nice-design.txt
+++ b/Documentation/scheduler/sched-nice-design.rst
@@ -1,3 +1,7 @@
+=====================
+Scheduler Nice Design
+=====================
+
This document explains the thinking about the revamped and streamlined
nice-levels implementation in the new Linux scheduler.
@@ -14,7 +18,7 @@ much stronger than they were before in 2.4 (and people were happy about
that change), and we also intentionally calibrated the linear timeslice
rule so that nice +19 level would be _exactly_ 1 jiffy. To better
understand it, the timeslice graph went like this (cheesy ASCII art
-alert!):
+alert!)::
A
diff --git a/Documentation/scheduler/sched-rt-group.txt b/Documentation/scheduler/sched-rt-group.rst
similarity index 95%
rename from Documentation/scheduler/sched-rt-group.txt
rename to Documentation/scheduler/sched-rt-group.rst
index c09f7a3fee66..d27d3f3712fd 100644
--- a/Documentation/scheduler/sched-rt-group.txt
+++ b/Documentation/scheduler/sched-rt-group.rst
@@ -1,18 +1,18 @@
- Real-Time group scheduling
- --------------------------
+==========================
+Real-Time group scheduling
+==========================
-CONTENTS
-========
+.. CONTENTS
-0. WARNING
-1. Overview
- 1.1 The problem
- 1.2 The solution
-2. The interface
- 2.1 System-wide settings
- 2.2 Default behaviour
- 2.3 Basis for grouping tasks
-3. Future plans
+ 0. WARNING
+ 1. Overview
+ 1.1 The problem
+ 1.2 The solution
+ 2. The interface
+ 2.1 System-wide settings
+ 2.2 Default behaviour
+ 2.3 Basis for grouping tasks
+ 3. Future plans
0. WARNING
@@ -159,9 +159,11 @@ Consider two sibling groups A and B; both have 50% bandwidth, but A's
period is twice the length of B's.
* group A: period=100000us, runtime=50000us
+
- this runs for 0.05s once every 0.1s
* group B: period= 50000us, runtime=25000us
+
- this runs for 0.025s twice every 0.1s (or once every 0.05 sec).
This means that currently a while (1) loop in A will run for the full period of
diff --git a/Documentation/scheduler/sched-stats.txt b/Documentation/scheduler/sched-stats.rst
similarity index 91%
rename from Documentation/scheduler/sched-stats.txt
rename to Documentation/scheduler/sched-stats.rst
index 8259b34a66ae..0cb0aa714545 100644
--- a/Documentation/scheduler/sched-stats.txt
+++ b/Documentation/scheduler/sched-stats.rst
@@ -1,3 +1,7 @@
+====================
+Scheduler Statistics
+====================
+
Version 15 of schedstats dropped counters for some sched_yield:
yld_exp_empty, yld_act_empty and yld_both_empty. Otherwise, it is
identical to version 14.
@@ -35,19 +39,23 @@ CPU statistics
cpu<N> 1 2 3 4 5 6 7 8 9
First field is a sched_yield() statistic:
+
1) # of times sched_yield() was called
Next three are schedule() statistics:
+
2) This field is a legacy array expiration count field used in the O(1)
scheduler. We kept it for ABI compatibility, but it is always set to zero.
3) # of times schedule() was called
4) # of times schedule() left the processor idle
Next two are try_to_wake_up() statistics:
+
5) # of times try_to_wake_up() was called
6) # of times try_to_wake_up() was called to wake up the local cpu
Next three are statistics describing scheduling latency:
+
7) sum of all time spent running by tasks on this processor (in jiffies)
8) sum of all time spent waiting to run by tasks on this processor (in
jiffies)
@@ -67,24 +75,23 @@ The first field is a bit mask indicating what cpus this domain operates over.
The next 24 are a variety of load_balance() statistics in grouped into types
of idleness (idle, busy, and newly idle):
- 1) # of times in this domain load_balance() was called when the
+ 1) # of times in this domain load_balance() was called when the
cpu was idle
- 2) # of times in this domain load_balance() checked but found
+ 2) # of times in this domain load_balance() checked but found
the load did not require balancing when the cpu was idle
- 3) # of times in this domain load_balance() tried to move one or
+ 3) # of times in this domain load_balance() tried to move one or
more tasks and failed, when the cpu was idle
- 4) sum of imbalances discovered (if any) with each call to
+ 4) sum of imbalances discovered (if any) with each call to
load_balance() in this domain when the cpu was idle
- 5) # of times in this domain pull_task() was called when the cpu
+ 5) # of times in this domain pull_task() was called when the cpu
was idle
- 6) # of times in this domain pull_task() was called even though
+ 6) # of times in this domain pull_task() was called even though
the target task was cache-hot when idle
- 7) # of times in this domain load_balance() was called but did
+ 7) # of times in this domain load_balance() was called but did
not find a busier queue while the cpu was idle
- 8) # of times in this domain a busier queue was found while the
+ 8) # of times in this domain a busier queue was found while the
cpu was idle but no busier group was found
-
- 9) # of times in this domain load_balance() was called when the
+ 9) # of times in this domain load_balance() was called when the
cpu was busy
10) # of times in this domain load_balance() checked but found the
load did not require balancing when busy
@@ -117,21 +124,25 @@ of idleness (idle, busy, and newly idle):
was just becoming idle but no busier group was found
Next three are active_load_balance() statistics:
+
25) # of times active_load_balance() was called
26) # of times active_load_balance() tried to move a task and failed
27) # of times active_load_balance() successfully moved a task
Next three are sched_balance_exec() statistics:
+
28) sbe_cnt is not used
29) sbe_balanced is not used
30) sbe_pushed is not used
Next three are sched_balance_fork() statistics:
+
31) sbf_cnt is not used
32) sbf_balanced is not used
33) sbf_pushed is not used
Next three are try_to_wake_up() statistics:
+
34) # of times in this domain try_to_wake_up() awoke a task that
last ran on a different cpu in this domain
35) # of times in this domain try_to_wake_up() moved a task to the
@@ -139,10 +150,11 @@ of idleness (idle, busy, and newly idle):
36) # of times in this domain try_to_wake_up() started passive balancing
/proc/<pid>/schedstat
-----------------
+---------------------
schedstats also adds a new /proc/<pid>/schedstat file to include some of
the same information on a per-process level. There are three fields in
this file correlating for that process to:
+
1) time spent on the cpu
2) time spent waiting on a runqueue
3) # of timeslices run on this cpu
@@ -151,4 +163,5 @@ A program could be easily written to make use of these extra fields to
report on how well a particular process or set of processes is faring
under the scheduler's policies. A simple version of such a program is
available at
+
http://eaglet.rain.com/rick/linux/schedstat/v12/latency.c
diff --git a/Documentation/scheduler/text_files.rst b/Documentation/scheduler/text_files.rst
new file mode 100644
index 000000000000..0bc50307b241
--- /dev/null
+++ b/Documentation/scheduler/text_files.rst
@@ -0,0 +1,5 @@
+Scheduler pelt c program
+------------------------
+
+.. literalinclude:: sched-pelt.c
+ :language: c
diff --git a/Documentation/vm/numa.rst b/Documentation/vm/numa.rst
index 0d830edae8fe..130f3cfa1c19 100644
--- a/Documentation/vm/numa.rst
+++ b/Documentation/vm/numa.rst
@@ -99,7 +99,7 @@ Local allocation will tend to keep subsequent access to the allocated memory
as long as the task on whose behalf the kernel allocated some memory does not
later migrate away from that memory. The Linux scheduler is aware of the
NUMA topology of the platform--embodied in the "scheduling domains" data
-structures [see Documentation/scheduler/sched-domains.txt]--and the scheduler
+structures [see Documentation/scheduler/sched-domains.rst]--and the scheduler
attempts to minimize task migration to distant scheduling domains. However,
the scheduler does not take a task's NUMA footprint into account directly.
Thus, under sufficient imbalance, tasks can migrate between nodes, remote
diff --git a/init/Kconfig b/init/Kconfig
index 9b52c958fd92..70fa2d57ef49 100644
--- a/init/Kconfig
+++ b/init/Kconfig
@@ -725,7 +725,7 @@ menuconfig CGROUPS
use with process control subsystems such as Cpusets, CFS, memory
controls or device isolation.
See
- - Documentation/scheduler/sched-design-CFS.txt (CFS)
+ - Documentation/scheduler/sched-design-CFS.rst (CFS)
- Documentation/cgroup-v1/ (features for grouping, isolation
and resource control)
@@ -826,7 +826,7 @@ config CFS_BANDWIDTH
tasks running within the fair group scheduler. Groups with no limit
set are considered to be unconstrained and will run with no
restriction.
- See Documentation/scheduler/sched-bwc.txt for more information.
+ See Documentation/scheduler/sched-bwc.rst for more information.
config RT_GROUP_SCHED
bool "Group scheduling for SCHED_RR/FIFO"
@@ -837,7 +837,7 @@ config RT_GROUP_SCHED
to task groups. If enabled, it will also make it impossible to
schedule realtime tasks for non-root users until you allocate
realtime bandwidth for them.
- See Documentation/scheduler/sched-rt-group.txt for more information.
+ See Documentation/scheduler/sched-rt-group.rst for more information.
endif #CGROUP_SCHED
diff --git a/kernel/sched/deadline.c b/kernel/sched/deadline.c
index 43901fa3f269..049d795ee9d3 100644
--- a/kernel/sched/deadline.c
+++ b/kernel/sched/deadline.c
@@ -726,7 +726,7 @@ static void replenish_dl_entity(struct sched_dl_entity *dl_se,
* refill the runtime and set the deadline a period in the future,
* because keeping the current (absolute) deadline of the task would
* result in breaking guarantees promised to other tasks (refer to
- * Documentation/scheduler/sched-deadline.txt for more information).
+ * Documentation/scheduler/sched-deadline.rst for more information).
*
* This function returns true if:
*
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* Re: [PATCH v2 38/79] docs: scheduler: convert docs to ReST and rename to *.rst
2019-04-22 13:27 ` [PATCH v2 38/79] docs: scheduler: convert docs to ReST and rename to *.rst Mauro Carvalho Chehab
@ 2019-04-23 8:29 ` Peter Zijlstra
2019-04-23 10:32 ` Ingo Molnar
0 siblings, 1 reply; 115+ messages in thread
From: Peter Zijlstra @ 2019-04-23 8:29 UTC (permalink / raw)
To: Mauro Carvalho Chehab
Cc: Linux Doc Mailing List, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Ingo Molnar
On Mon, Apr 22, 2019 at 10:27:27AM -0300, Mauro Carvalho Chehab wrote:
> In order to prepare to add them to the Kernel API book,
> convert the files to ReST format.
>
> The conversion is actually:
> - add blank lines and identation in order to identify paragraphs;
> - fix tables markups;
> - add some lists markups;
> - mark literal blocks;
> - adjust title markups.
>
> At its new index.rst, let's add a :orphan: while this is not linked to
> the main index.rst file, in order to avoid build warnings.
Well, just don't expect me to ever touch these files again.
^ permalink raw reply [flat|nested] 115+ messages in thread
* Re: [PATCH v2 38/79] docs: scheduler: convert docs to ReST and rename to *.rst
2019-04-23 8:29 ` Peter Zijlstra
@ 2019-04-23 10:32 ` Ingo Molnar
2019-04-23 11:19 ` Peter Zijlstra
0 siblings, 1 reply; 115+ messages in thread
From: Ingo Molnar @ 2019-04-23 10:32 UTC (permalink / raw)
To: Peter Zijlstra
Cc: Mauro Carvalho Chehab, Linux Doc Mailing List,
Mauro Carvalho Chehab, linux-kernel, Jonathan Corbet, Ingo Molnar
* Peter Zijlstra <peterz@infradead.org> wrote:
> On Mon, Apr 22, 2019 at 10:27:27AM -0300, Mauro Carvalho Chehab wrote:
> > In order to prepare to add them to the Kernel API book,
> > convert the files to ReST format.
> >
> > The conversion is actually:
> > - add blank lines and identation in order to identify paragraphs;
> > - fix tables markups;
> > - add some lists markups;
> > - mark literal blocks;
> > - adjust title markups.
> >
> > At its new index.rst, let's add a :orphan: while this is not linked to
> > the main index.rst file, in order to avoid build warnings.
>
> Well, just don't expect me to ever touch these files again.
The .rst files still read like text files, right?
So just pretend they are text files, I'll fix up any markup errors! :-)
Thanks,
Ingo
^ permalink raw reply [flat|nested] 115+ messages in thread
* Re: [PATCH v2 38/79] docs: scheduler: convert docs to ReST and rename to *.rst
2019-04-23 10:32 ` Ingo Molnar
@ 2019-04-23 11:19 ` Peter Zijlstra
2019-04-23 12:30 ` Ingo Molnar
0 siblings, 1 reply; 115+ messages in thread
From: Peter Zijlstra @ 2019-04-23 11:19 UTC (permalink / raw)
To: Ingo Molnar
Cc: Mauro Carvalho Chehab, Linux Doc Mailing List,
Mauro Carvalho Chehab, linux-kernel, Jonathan Corbet, Ingo Molnar
On Tue, Apr 23, 2019 at 12:32:02PM +0200, Ingo Molnar wrote:
> The .rst files still read like text files, right?
Like a harder to read text file for no gains.
^ permalink raw reply [flat|nested] 115+ messages in thread
* Re: [PATCH v2 38/79] docs: scheduler: convert docs to ReST and rename to *.rst
2019-04-23 11:19 ` Peter Zijlstra
@ 2019-04-23 12:30 ` Ingo Molnar
0 siblings, 0 replies; 115+ messages in thread
From: Ingo Molnar @ 2019-04-23 12:30 UTC (permalink / raw)
To: Peter Zijlstra
Cc: Mauro Carvalho Chehab, Linux Doc Mailing List,
Mauro Carvalho Chehab, linux-kernel, Jonathan Corbet, Ingo Molnar
* Peter Zijlstra <peterz@infradead.org> wrote:
> On Tue, Apr 23, 2019 at 12:32:02PM +0200, Ingo Molnar wrote:
>
> > The .rst files still read like text files, right?
>
> Like a harder to read text file for no gains.
I just looked through a couple of RST files in Documentation/, and they
look like perfectly readable text files to me.
Some of the formatting details are arguably 'special' and can be broken
via "text edits" without being aware of the RST markup relevance - but I
don't think it's a problem for RST-unaware developers to break that
markup, the Documentation/ folks have been rather generous and flexible
in fixing those up, in addition to fixing all the typos as well.
So I'd be cautiously in favor of the RST conversion, assuming I don't get
yelled at if I break the markup. ;-)
Thanks,
Ingo
^ permalink raw reply [flat|nested] 115+ messages in thread
* [PATCH v2 39/79] docs: EDID/HOWTO.txt: convert it and rename to howto.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (30 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 38/79] docs: scheduler: convert docs to ReST and rename to *.rst Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 40/79] convert docs to ReST and rename to *.rst Mauro Carvalho Chehab
` (41 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Maarten Lankhorst, Maxime Ripard, Sean Paul,
David Airlie, Daniel Vetter, dri-devel
Sphinx need to know when a paragraph ends. So, do some adjustments
at the file for it to be properly parsed.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
that's said, I believe that this file should be moved to the
GPU/DRM documentation.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/EDID/{HOWTO.txt => howto.rst} | 31 ++++++++++++-------
.../admin-guide/kernel-parameters.txt | 2 +-
drivers/gpu/drm/Kconfig | 2 +-
3 files changed, 22 insertions(+), 13 deletions(-)
rename Documentation/EDID/{HOWTO.txt => howto.rst} (83%)
diff --git a/Documentation/EDID/HOWTO.txt b/Documentation/EDID/howto.rst
similarity index 83%
rename from Documentation/EDID/HOWTO.txt
rename to Documentation/EDID/howto.rst
index 539871c3b785..725fd49a88ca 100644
--- a/Documentation/EDID/HOWTO.txt
+++ b/Documentation/EDID/howto.rst
@@ -1,3 +1,9 @@
+:orphan:
+
+====
+EDID
+====
+
In the good old days when graphics parameters were configured explicitly
in a file called xorg.conf, even broken hardware could be managed.
@@ -34,16 +40,19 @@ Makefile. Please note that the EDID data structure expects the timing
values in a different way as compared to the standard X11 format.
X11:
-HTimings: hdisp hsyncstart hsyncend htotal
-VTimings: vdisp vsyncstart vsyncend vtotal
+ HTimings:
+ hdisp hsyncstart hsyncend htotal
+ VTimings:
+ vdisp vsyncstart vsyncend vtotal
-EDID:
-#define XPIX hdisp
-#define XBLANK htotal-hdisp
-#define XOFFSET hsyncstart-hdisp
-#define XPULSE hsyncend-hsyncstart
+EDID::
-#define YPIX vdisp
-#define YBLANK vtotal-vdisp
-#define YOFFSET vsyncstart-vdisp
-#define YPULSE vsyncend-vsyncstart
+ #define XPIX hdisp
+ #define XBLANK htotal-hdisp
+ #define XOFFSET hsyncstart-hdisp
+ #define XPULSE hsyncend-hsyncstart
+
+ #define YPIX vdisp
+ #define YBLANK vtotal-vdisp
+ #define YOFFSET vsyncstart-vdisp
+ #define YPULSE vsyncend-vsyncstart
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index 5006f876cf0e..4a2260eac131 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -929,7 +929,7 @@
edid/1680x1050.bin, or edid/1920x1080.bin is given
and no file with the same name exists. Details and
instructions how to build your own EDID data are
- available in Documentation/EDID/HOWTO.txt. An EDID
+ available in Documentation/EDID/howto.rst. An EDID
data set will only be used for a particular connector,
if its name and a colon are prepended to the EDID
name. Each connector may use a unique EDID data
diff --git a/drivers/gpu/drm/Kconfig b/drivers/gpu/drm/Kconfig
index 39d5f7562f1c..bc5658d7a84b 100644
--- a/drivers/gpu/drm/Kconfig
+++ b/drivers/gpu/drm/Kconfig
@@ -140,7 +140,7 @@ config DRM_LOAD_EDID_FIRMWARE
monitor are unable to provide appropriate EDID data. Since this
feature is provided as a workaround for broken hardware, the
default case is N. Details and instructions how to build your own
- EDID data are given in Documentation/EDID/HOWTO.txt.
+ EDID data are given in Documentation/EDID/howto.rst.
config DRM_DP_CEC
bool "Enable DisplayPort CEC-Tunneling-over-AUX HDMI support"
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 40/79] convert docs to ReST and rename to *.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (31 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 39/79] docs: EDID/HOWTO.txt: convert it and rename to howto.rst Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 41/79] docs: lcd-panel-cgram.txt: " Mauro Carvalho Chehab
` (40 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Evgeniy Polyakov
As it has some function definitions, move them to connector.h.
The remaining conversion is actually:
- add blank lines and identation in order to identify paragraphs;
- fix tables markups;
- add some lists markups;
- mark literal blocks;
- adjust title markups.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
.../{connector.txt => connector.rst} | 130 ++++++------------
drivers/w1/Kconfig | 2 +-
include/linux/connector.h | 63 ++++++++-
samples/Kconfig | 2 +-
4 files changed, 109 insertions(+), 88 deletions(-)
rename Documentation/connector/{connector.txt => connector.rst} (57%)
diff --git a/Documentation/connector/connector.txt b/Documentation/connector/connector.rst
similarity index 57%
rename from Documentation/connector/connector.txt
rename to Documentation/connector/connector.rst
index ab7ca897fab7..24e26dc22dbf 100644
--- a/Documentation/connector/connector.txt
+++ b/Documentation/connector/connector.rst
@@ -1,6 +1,8 @@
-/*****************************************/
-Kernel Connector.
-/*****************************************/
+:orphan:
+
+================
+Kernel Connector
+================
Kernel connector - new netlink based userspace <-> kernel space easy
to use communication module.
@@ -12,94 +14,55 @@ identifier, the appropriate callback will be called.
From the userspace point of view it's quite straightforward:
- socket();
- bind();
- send();
- recv();
+ - socket();
+ - bind();
+ - send();
+ - recv();
But if kernelspace wants to use the full power of such connections, the
driver writer must create special sockets, must know about struct sk_buff
handling, etc... The Connector driver allows any kernelspace agents to use
netlink based networking for inter-process communication in a significantly
-easier way:
+easier way::
-int cn_add_callback(struct cb_id *id, char *name, void (*callback) (struct cn_msg *, struct netlink_skb_parms *));
-void cn_netlink_send_multi(struct cn_msg *msg, u16 len, u32 portid, u32 __group, int gfp_mask);
-void cn_netlink_send(struct cn_msg *msg, u32 portid, u32 __group, int gfp_mask);
+ int cn_add_callback(struct cb_id *id, char *name, void (*callback) (struct cn_msg *, struct netlink_skb_parms *));
+ void cn_netlink_send_multi(struct cn_msg *msg, u16 len, u32 portid, u32 __group, int gfp_mask);
+ void cn_netlink_send(struct cn_msg *msg, u32 portid, u32 __group, int gfp_mask);
-struct cb_id
-{
+ struct cb_id
+ {
__u32 idx;
__u32 val;
-};
+ };
idx and val are unique identifiers which must be registered in the
-connector.h header for in-kernel usage. void (*callback) (void *) is a
+connector.h header for in-kernel usage. `void (*callback) (void *)` is a
callback function which will be called when a message with above idx.val
is received by the connector core. The argument for that function must
-be dereferenced to struct cn_msg *.
+be dereferenced to `struct cn_msg *`::
-struct cn_msg
-{
+ struct cn_msg
+ {
struct cb_id id;
__u32 seq;
__u32 ack;
- __u32 len; /* Length of the following data */
+ __u32 len; /* Length of the following data */
__u8 data[0];
-};
+ };
-/*****************************************/
-Connector interfaces.
-/*****************************************/
+Connector interfaces
+====================
-int cn_add_callback(struct cb_id *id, char *name, void (*callback) (struct cn_msg *, struct netlink_skb_parms *));
+ .. kernel-doc:: include/linux/connector.h
- Registers new callback with connector core.
+ Note:
+ When registering new callback user, connector core assigns
+ netlink group to the user which is equal to its id.idx.
- struct cb_id *id - unique connector's user identifier.
- It must be registered in connector.h for legal in-kernel users.
- char *name - connector's callback symbolic name.
- void (*callback) (struct cn..) - connector's callback.
- cn_msg and the sender's credentials
-
-
-void cn_del_callback(struct cb_id *id);
-
- Unregisters new callback with connector core.
-
- struct cb_id *id - unique connector's user identifier.
-
-
-int cn_netlink_send_multi(struct cn_msg *msg, u16 len, u32 portid, u32 __groups, int gfp_mask);
-int cn_netlink_send(struct cn_msg *msg, u32 portid, u32 __groups, int gfp_mask);
-
- Sends message to the specified groups. It can be safely called from
- softirq context, but may silently fail under strong memory pressure.
- If there are no listeners for given group -ESRCH can be returned.
-
- struct cn_msg * - message header(with attached data).
- u16 len - for *_multi multiple cn_msg messages can be sent
- u32 port - destination port.
- If non-zero the message will be sent to the
- given port, which should be set to the
- original sender.
- u32 __group - destination group.
- If port and __group is zero, then appropriate group will
- be searched through all registered connector users,
- and message will be delivered to the group which was
- created for user with the same ID as in msg.
- If __group is not zero, then message will be delivered
- to the specified group.
- int gfp_mask - GFP mask.
-
- Note: When registering new callback user, connector core assigns
- netlink group to the user which is equal to its id.idx.
-
-/*****************************************/
-Protocol description.
-/*****************************************/
+Protocol description
+====================
The current framework offers a transport layer with fixed headers. The
recommended protocol which uses such a header is as following:
@@ -132,9 +95,8 @@ driver (it also registers itself with id={-1, -1}).
As example of this usage can be found in the cn_test.c module which
uses the connector to request notification and to send messages.
-/*****************************************/
-Reliability.
-/*****************************************/
+Reliability
+===========
Netlink itself is not a reliable protocol. That means that messages can
be lost due to memory pressure or process' receiving queue overflowed,
@@ -142,32 +104,31 @@ so caller is warned that it must be prepared. That is why the struct
cn_msg [main connector's message header] contains u32 seq and u32 ack
fields.
-/*****************************************/
-Userspace usage.
-/*****************************************/
+Userspace usage
+===============
2.6.14 has a new netlink socket implementation, which by default does not
allow people to send data to netlink groups other than 1.
So, if you wish to use a netlink socket (for example using connector)
with a different group number, the userspace application must subscribe to
-that group first. It can be achieved by the following pseudocode:
+that group first. It can be achieved by the following pseudocode::
-s = socket(PF_NETLINK, SOCK_DGRAM, NETLINK_CONNECTOR);
+ s = socket(PF_NETLINK, SOCK_DGRAM, NETLINK_CONNECTOR);
-l_local.nl_family = AF_NETLINK;
-l_local.nl_groups = 12345;
-l_local.nl_pid = 0;
+ l_local.nl_family = AF_NETLINK;
+ l_local.nl_groups = 12345;
+ l_local.nl_pid = 0;
-if (bind(s, (struct sockaddr *)&l_local, sizeof(struct sockaddr_nl)) == -1) {
+ if (bind(s, (struct sockaddr *)&l_local, sizeof(struct sockaddr_nl)) == -1) {
perror("bind");
close(s);
return -1;
-}
+ }
-{
+ {
int on = l_local.nl_groups;
setsockopt(s, 270, 1, &on, sizeof(on));
-}
+ }
Where 270 above is SOL_NETLINK, and 1 is a NETLINK_ADD_MEMBERSHIP socket
option. To drop a multicast subscription, one should call the above socket
@@ -180,16 +141,15 @@ group number 12345, you must increment CN_NETLINK_USERS to that number.
Additional 0xf numbers are allocated to be used by non-in-kernel users.
Due to this limitation, group 0xffffffff does not work now, so one can
-not use add/remove connector's group notifications, but as far as I know,
+not use add/remove connector's group notifications, but as far as I know,
only cn_test.c test module used it.
Some work in netlink area is still being done, so things can be changed in
2.6.15 timeframe, if it will happen, documentation will be updated for that
kernel.
-/*****************************************/
Code samples
-/*****************************************/
+============
Sample code for a connector test module and user space can be found
in samples/connector/. To build this code, enable CONFIG_CONNECTOR
diff --git a/drivers/w1/Kconfig b/drivers/w1/Kconfig
index dbb41f45af8a..c670bb247f21 100644
--- a/drivers/w1/Kconfig
+++ b/drivers/w1/Kconfig
@@ -18,7 +18,7 @@ config W1_CON
default y
---help---
This allows to communicate with userspace using connector. For more
- information see <file:Documentation/connector/connector.txt>.
+ information see <file:Documentation/connector/connector.rst>.
There are three types of messages between w1 core and userspace:
1. Events. They are generated each time new master or slave device found
either due to automatic or requested search.
diff --git a/include/linux/connector.h b/include/linux/connector.h
index 032102b19645..5aeb15f71b3a 100644
--- a/include/linux/connector.h
+++ b/include/linux/connector.h
@@ -68,10 +68,71 @@ struct cn_dev {
struct cn_queue_dev *cbdev;
};
+/**
+ * cn_add_callback() - Registers new callback with connector core.
+ *
+ * @id: unique connector's user identifier.
+ * It must be registered in connector.h for legal
+ * in-kernel users.
+ * @name: connector's callback symbolic name.
+ * @callback: connector's callback.
+ * parameters are %cn_msg and the sender's credentials
+ */
int cn_add_callback(struct cb_id *id, const char *name,
void (*callback)(struct cn_msg *, struct netlink_skb_parms *));
-void cn_del_callback(struct cb_id *);
+/**
+ * cn_del_callback() - Unregisters new callback with connector core.
+ *
+ * @id: unique connector's user identifier.
+ */
+void cn_del_callback(struct cb_id *id);
+
+
+/**
+ * cn_netlink_send_mult - Sends message to the specified groups.
+ *
+ * @msg: message header(with attached data).
+ * @len: Number of @msg to be sent.
+ * @portid: destination port.
+ * If non-zero the message will be sent to the given port,
+ * which should be set to the original sender.
+ * @group: destination group.
+ * If @portid and @group is zero, then appropriate group will
+ * be searched through all registered connector users, and
+ * message will be delivered to the group which was created
+ * for user with the same ID as in @msg.
+ * If @group is not zero, then message will be delivered
+ * to the specified group.
+ * @gfp_mask: GFP mask.
+ *
+ * It can be safely called from softirq context, but may silently
+ * fail under strong memory pressure.
+ *
+ * If there are no listeners for given group %-ESRCH can be returned.
+ */
int cn_netlink_send_mult(struct cn_msg *msg, u16 len, u32 portid, u32 group, gfp_t gfp_mask);
+
+/**
+ * cn_netlink_send_mult - Sends message to the specified groups.
+ *
+ * @msg: message header(with attached data).
+ * @portid: destination port.
+ * If non-zero the message will be sent to the given port,
+ * which should be set to the original sender.
+ * @group: destination group.
+ * If @portid and @group is zero, then appropriate group will
+ * be searched through all registered connector users, and
+ * message will be delivered to the group which was created
+ * for user with the same ID as in @msg.
+ * If @group is not zero, then message will be delivered
+ * to the specified group.
+ * @gfp_mask: GFP mask.
+ *
+ * It can be safely called from softirq context, but may silently
+ * fail under strong memory pressure.
+ *
+ * If there are no listeners for given group %-ESRCH can be returned.
+ */
int cn_netlink_send(struct cn_msg *msg, u32 portid, u32 group, gfp_t gfp_mask);
int cn_queue_add_callback(struct cn_queue_dev *dev, const char *name,
diff --git a/samples/Kconfig b/samples/Kconfig
index d19754ccad08..12009247f482 100644
--- a/samples/Kconfig
+++ b/samples/Kconfig
@@ -100,7 +100,7 @@ config SAMPLE_CONNECTOR
When enabled, this builds both a sample kernel module for
the connector interface and a user space tool to communicate
with it.
- See also Documentation/connector/connector.txt
+ See also Documentation/connector/connector.rst
config SAMPLE_SECCOMP
tristate "Build seccomp sample code -- loadable modules only"
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 41/79] docs: lcd-panel-cgram.txt: convert docs to ReST and rename to *.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (32 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 40/79] convert docs to ReST and rename to *.rst Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 42/79] docs: lp855x-driver.txt: convert to ReST and move to kernel-api Mauro Carvalho Chehab
` (39 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet
This small text file describes the usage of parallel port LCD
displays from userspace PoV. So, a good candidate for the
admin guide.
While this is not part of the admin-guide book, mark it as
:orphan:, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
.../{lcd-panel-cgram.txt => lcd-panel-cgram.rst} | 9 +++++++--
MAINTAINERS | 2 +-
2 files changed, 8 insertions(+), 3 deletions(-)
rename Documentation/auxdisplay/{lcd-panel-cgram.txt => lcd-panel-cgram.rst} (88%)
diff --git a/Documentation/auxdisplay/lcd-panel-cgram.txt b/Documentation/auxdisplay/lcd-panel-cgram.rst
similarity index 88%
rename from Documentation/auxdisplay/lcd-panel-cgram.txt
rename to Documentation/auxdisplay/lcd-panel-cgram.rst
index 7f82c905763d..dfef50286018 100644
--- a/Documentation/auxdisplay/lcd-panel-cgram.txt
+++ b/Documentation/auxdisplay/lcd-panel-cgram.rst
@@ -1,3 +1,9 @@
+:orphan:
+
+======================================
+Parallel port LCD/Keypad Panel support
+======================================
+
Some LCDs allow you to define up to 8 characters, mapped to ASCII
characters 0 to 7. The escape code to define a new character is
'\e[LG' followed by one digit from 0 to 7, representing the character
@@ -7,7 +13,7 @@ illuminated pixel with LSB on the right. Lines are numbered from the
top of the character to the bottom. On a 5x7 matrix, only the 5 lower
bits of the 7 first bytes are used for each character. If the string
is incomplete, only complete lines will be redefined. Here are some
-examples :
+examples::
printf "\e[LG0010101050D1F0C04;" => 0 = [enter]
printf "\e[LG1040E1F0000000000;" => 1 = [up]
@@ -21,4 +27,3 @@ examples :
printf "\e[LG00002061E1E060200;" => small speaker
Willy
-
diff --git a/MAINTAINERS b/MAINTAINERS
index 24c52307361f..c40b6a876f2d 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -11773,7 +11773,7 @@ PARALLEL LCD/KEYPAD PANEL DRIVER
M: Willy Tarreau <willy@haproxy.com>
M: Ksenija Stanojevic <ksenija.stanojevic@gmail.com>
S: Odd Fixes
-F: Documentation/auxdisplay/lcd-panel-cgram.txt
+F: Documentation/auxdisplay/lcd-panel-cgram.rst
F: drivers/auxdisplay/panel.c
PARALLEL PORT SUBSYSTEM
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 42/79] docs: lp855x-driver.txt: convert to ReST and move to kernel-api
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (33 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 41/79] docs: lcd-panel-cgram.txt: " Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 43/79] docs: m68k: convert docs to ReST and rename to *.rst Mauro Carvalho Chehab
` (38 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Milo Kim
This small file seems to be an attempt to start documenting
backlight drivers.
It contains descriptions of the controls for the driver
with could sound as an somewhat user-faced description, but
it's main focus is to describe, instead, the data that should
be passed via platform data and some driver-specific stuff.
While this is not part of the driver-api book, mark it as
:orphan:, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/backlight/lp855x-driver.rst | 83 +++++++++++++++++++++++
Documentation/backlight/lp855x-driver.txt | 66 ------------------
MAINTAINERS | 2 +-
3 files changed, 84 insertions(+), 67 deletions(-)
create mode 100644 Documentation/backlight/lp855x-driver.rst
delete mode 100644 Documentation/backlight/lp855x-driver.txt
diff --git a/Documentation/backlight/lp855x-driver.rst b/Documentation/backlight/lp855x-driver.rst
new file mode 100644
index 000000000000..62b7ed847a77
--- /dev/null
+++ b/Documentation/backlight/lp855x-driver.rst
@@ -0,0 +1,83 @@
+:orphan:
+
+====================
+Kernel driver lp855x
+====================
+
+Backlight driver for LP855x ICs
+
+Supported chips:
+
+ Texas Instruments LP8550, LP8551, LP8552, LP8553, LP8555, LP8556 and
+ LP8557
+
+Author: Milo(Woogyom) Kim <milo.kim@ti.com>
+
+Description
+-----------
+
+* Brightness control
+
+ Brightness can be controlled by the pwm input or the i2c command.
+ The lp855x driver supports both cases.
+
+* Device attributes
+
+ 1) bl_ctl_mode
+
+ Backlight control mode.
+
+ Value: pwm based or register based
+
+ 2) chip_id
+
+ The lp855x chip id.
+
+ Value: lp8550/lp8551/lp8552/lp8553/lp8555/lp8556/lp8557
+
+Platform data for lp855x
+------------------------
+
+For supporting platform specific data, the lp855x platform data can be used.
+
+* name:
+ Backlight driver name. If it is not defined, default name is set.
+* device_control:
+ Value of DEVICE CONTROL register.
+* initial_brightness:
+ Initial value of backlight brightness.
+* period_ns:
+ Platform specific PWM period value. unit is nano.
+ Only valid when brightness is pwm input mode.
+* size_program:
+ Total size of lp855x_rom_data.
+* rom_data:
+ List of new eeprom/eprom registers.
+
+Examples
+========
+
+1) lp8552 platform data: i2c register mode with new eeprom data::
+
+ #define EEPROM_A5_ADDR 0xA5
+ #define EEPROM_A5_VAL 0x4f /* EN_VSYNC=0 */
+
+ static struct lp855x_rom_data lp8552_eeprom_arr[] = {
+ {EEPROM_A5_ADDR, EEPROM_A5_VAL},
+ };
+
+ static struct lp855x_platform_data lp8552_pdata = {
+ .name = "lcd-bl",
+ .device_control = I2C_CONFIG(LP8552),
+ .initial_brightness = INITIAL_BRT,
+ .size_program = ARRAY_SIZE(lp8552_eeprom_arr),
+ .rom_data = lp8552_eeprom_arr,
+ };
+
+2) lp8556 platform data: pwm input mode with default rom data::
+
+ static struct lp855x_platform_data lp8556_pdata = {
+ .device_control = PWM_CONFIG(LP8556),
+ .initial_brightness = INITIAL_BRT,
+ .period_ns = 1000000,
+ };
diff --git a/Documentation/backlight/lp855x-driver.txt b/Documentation/backlight/lp855x-driver.txt
deleted file mode 100644
index 01bce243d3d7..000000000000
--- a/Documentation/backlight/lp855x-driver.txt
+++ /dev/null
@@ -1,66 +0,0 @@
-Kernel driver lp855x
-====================
-
-Backlight driver for LP855x ICs
-
-Supported chips:
- Texas Instruments LP8550, LP8551, LP8552, LP8553, LP8555, LP8556 and
- LP8557
-
-Author: Milo(Woogyom) Kim <milo.kim@ti.com>
-
-Description
------------
-
-* Brightness control
-
-Brightness can be controlled by the pwm input or the i2c command.
-The lp855x driver supports both cases.
-
-* Device attributes
-
-1) bl_ctl_mode
-Backlight control mode.
-Value : pwm based or register based
-
-2) chip_id
-The lp855x chip id.
-Value : lp8550/lp8551/lp8552/lp8553/lp8555/lp8556/lp8557
-
-Platform data for lp855x
-------------------------
-
-For supporting platform specific data, the lp855x platform data can be used.
-
-* name : Backlight driver name. If it is not defined, default name is set.
-* device_control : Value of DEVICE CONTROL register.
-* initial_brightness : Initial value of backlight brightness.
-* period_ns : Platform specific PWM period value. unit is nano.
- Only valid when brightness is pwm input mode.
-* size_program : Total size of lp855x_rom_data.
-* rom_data : List of new eeprom/eprom registers.
-
-example 1) lp8552 platform data : i2c register mode with new eeprom data
-
-#define EEPROM_A5_ADDR 0xA5
-#define EEPROM_A5_VAL 0x4f /* EN_VSYNC=0 */
-
-static struct lp855x_rom_data lp8552_eeprom_arr[] = {
- {EEPROM_A5_ADDR, EEPROM_A5_VAL},
-};
-
-static struct lp855x_platform_data lp8552_pdata = {
- .name = "lcd-bl",
- .device_control = I2C_CONFIG(LP8552),
- .initial_brightness = INITIAL_BRT,
- .size_program = ARRAY_SIZE(lp8552_eeprom_arr),
- .rom_data = lp8552_eeprom_arr,
-};
-
-example 2) lp8556 platform data : pwm input mode with default rom data
-
-static struct lp855x_platform_data lp8556_pdata = {
- .device_control = PWM_CONFIG(LP8556),
- .initial_brightness = INITIAL_BRT,
- .period_ns = 1000000,
-};
diff --git a/MAINTAINERS b/MAINTAINERS
index c40b6a876f2d..f67d86aad5f0 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -15616,7 +15616,7 @@ F: sound/soc/codecs/isabelle*
TI LP855x BACKLIGHT DRIVER
M: Milo Kim <milo.kim@ti.com>
S: Maintained
-F: Documentation/backlight/lp855x-driver.txt
+F: Documentation/backlight/lp855x-driver.rst
F: drivers/video/backlight/lp855x_bl.c
F: include/linux/platform_data/lp855x.h
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 43/79] docs: m68k: convert docs to ReST and rename to *.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (34 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 42/79] docs: lp855x-driver.txt: convert to ReST and move to kernel-api Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-05-03 11:55 ` Geert Uytterhoeven
2019-04-22 13:27 ` [PATCH v2 44/79] docs: cma/debugfs.txt: " Mauro Carvalho Chehab
` (37 subsequent siblings)
73 siblings, 1 reply; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet
Convert the m68k kernel-options.txt file to ReST.
The conversion is trivial, as the document is already on a format
close enough to ReST. Just some small adjustments were needed in
order to make it both good for being parsed while keeping it on
a good txt shape.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
.../admin-guide/kernel-parameters.rst | 2 +-
Documentation/m68k/index.rst | 17 +
...{kernel-options.txt => kernel-options.rst} | 319 ++++++++++--------
3 files changed, 191 insertions(+), 147 deletions(-)
create mode 100644 Documentation/m68k/index.rst
rename Documentation/m68k/{kernel-options.txt => kernel-options.rst} (78%)
diff --git a/Documentation/admin-guide/kernel-parameters.rst b/Documentation/admin-guide/kernel-parameters.rst
index b8d0bc07ed0a..a4d76c6a13bd 100644
--- a/Documentation/admin-guide/kernel-parameters.rst
+++ b/Documentation/admin-guide/kernel-parameters.rst
@@ -117,7 +117,7 @@ parameter is applicable::
LOOP Loopback device support is enabled.
M68k M68k architecture is enabled.
These options have more detailed description inside of
- Documentation/m68k/kernel-options.txt.
+ Documentation/m68k/kernel-options.rst.
MDA MDA console support is enabled.
MIPS MIPS architecture is enabled.
MOUSE Appropriate mouse support is enabled.
diff --git a/Documentation/m68k/index.rst b/Documentation/m68k/index.rst
new file mode 100644
index 000000000000..f3273ec075c3
--- /dev/null
+++ b/Documentation/m68k/index.rst
@@ -0,0 +1,17 @@
+:orphan:
+
+=================
+m68k Architecture
+=================
+
+.. toctree::
+ :maxdepth: 2
+
+ kernel-options
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/m68k/kernel-options.txt b/Documentation/m68k/kernel-options.rst
similarity index 78%
rename from Documentation/m68k/kernel-options.txt
rename to Documentation/m68k/kernel-options.rst
index 79d21246c75a..cabd9419740d 100644
--- a/Documentation/m68k/kernel-options.txt
+++ b/Documentation/m68k/kernel-options.rst
@@ -1,22 +1,24 @@
-
-
- Command Line Options for Linux/m68k
- ===================================
+===================================
+Command Line Options for Linux/m68k
+===================================
Last Update: 2 May 1999
+
Linux/m68k version: 2.2.6
+
Author: Roman.Hodek@informatik.uni-erlangen.de (Roman Hodek)
+
Update: jds@kom.auc.dk (Jes Sorensen) and faq@linux-m68k.org (Chris Lawrence)
0) Introduction
===============
- Often I've been asked which command line options the Linux/m68k
+Often I've been asked which command line options the Linux/m68k
kernel understands, or how the exact syntax for the ... option is, or
... about the option ... . I hope, this document supplies all the
answers...
- Note that some options might be outdated, their descriptions being
+Note that some options might be outdated, their descriptions being
incomplete or missing. Please update the information and send in the
patches.
@@ -38,11 +40,11 @@ argument contains an '=', it is of class 2, and the definition is put
into init's environment. All other arguments are passed to init as
command line options.
- This document describes the valid kernel options for Linux/m68k in
+This document describes the valid kernel options for Linux/m68k in
the version mentioned at the start of this file. Later revisions may
add new such options, and some may be missing in older versions.
- In general, the value (the part after the '=') of an option is a
+In general, the value (the part after the '=') of an option is a
list of values separated by commas. The interpretation of these values
is up to the driver that "owns" the option. This association of
options with drivers is also the reason that some are further
@@ -55,21 +57,21 @@ subdivided.
2.1) root=
----------
-Syntax: root=/dev/<device>
- or: root=<hex_number>
+:Syntax: root=/dev/<device>
+:or: root=<hex_number>
This tells the kernel which device it should mount as the root
filesystem. The device must be a block device with a valid filesystem
on it.
- The first syntax gives the device by name. These names are converted
+The first syntax gives the device by name. These names are converted
into a major/minor number internally in the kernel in an unusual way.
Normally, this "conversion" is done by the device files in /dev, but
this isn't possible here, because the root filesystem (with /dev)
isn't mounted yet... So the kernel parses the name itself, with some
hardcoded name to number mappings. The name must always be a
combination of two or three letters, followed by a decimal number.
-Valid names are:
+Valid names are::
/dev/ram: -> 0x0100 (initial ramdisk)
/dev/hda: -> 0x0300 (first IDE disk)
@@ -81,7 +83,7 @@ Valid names are:
/dev/sde: -> 0x0840 (fifth SCSI disk)
/dev/fd : -> 0x0200 (floppy disk)
- The name must be followed by a decimal number, that stands for the
+The name must be followed by a decimal number, that stands for the
partition number. Internally, the value of the number is just
added to the device number mentioned in the table above. The
exceptions are /dev/ram and /dev/fd, where /dev/ram refers to an
@@ -100,12 +102,12 @@ the kernel command line.
[Strange and maybe uninteresting stuff ON]
- This unusual translation of device names has some strange
+This unusual translation of device names has some strange
consequences: If, for example, you have a symbolic link from /dev/fd
to /dev/fd0D720 as an abbreviation for floppy driver #0 in DD format,
you cannot use this name for specifying the root device, because the
kernel cannot see this symlink before mounting the root FS and it
-isn't in the table above. If you use it, the root device will not be
+isn't in the table above. If you use it, the root device will not be
set at all, without an error message. Another example: You cannot use a
partition on e.g. the sixth SCSI disk as the root filesystem, if you
want to specify it by name. This is, because only the devices up to
@@ -118,7 +120,7 @@ knowledge that each disk uses 16 minors, and write "root=/dev/sde17"
[Strange and maybe uninteresting stuff OFF]
- If the device containing your root partition isn't in the table
+If the device containing your root partition isn't in the table
above, you can also specify it by major and minor numbers. These are
written in hex, with no prefix and no separator between. E.g., if you
have a CD with contents appropriate as a root filesystem in the first
@@ -136,6 +138,7 @@ known partition UUID as the starting point. For example,
if partition 5 of the device has the UUID of
00112233-4455-6677-8899-AABBCCDDEEFF then partition 3 may be found as
follows:
+
PARTUUID=00112233-4455-6677-8899-AABBCCDDEEFF/PARTNROFF=-2
Authoritative information can be found in
@@ -145,8 +148,8 @@ Authoritative information can be found in
2.2) ro, rw
-----------
-Syntax: ro
- or: rw
+:Syntax: ro
+:or: rw
These two options tell the kernel whether it should mount the root
filesystem read-only or read-write. The default is read-only, except
@@ -156,7 +159,7 @@ for ramdisks, which default to read-write.
2.3) debug
----------
-Syntax: debug
+:Syntax: debug
This raises the kernel log level to 10 (the default is 7). This is the
same level as set by the "dmesg" command, just that the maximum level
@@ -166,7 +169,7 @@ selectable by dmesg is 8.
2.4) debug=
-----------
-Syntax: debug=<device>
+:Syntax: debug=<device>
This option causes certain kernel messages be printed to the selected
debugging device. This can aid debugging the kernel, since the
@@ -175,7 +178,7 @@ devices are possible depends on the machine type. There are no checks
for the validity of the device name. If the device isn't implemented,
nothing happens.
- Messages logged this way are in general stack dumps after kernel
+Messages logged this way are in general stack dumps after kernel
memory faults or bad kernel traps, and kernel panics. To be exact: all
messages of level 0 (panic messages) and all messages printed while
the log level is 8 or more (their level doesn't matter). Before stack
@@ -185,19 +188,27 @@ at least 8 can also be set by the "debug" command line option (see
Devices possible for Amiga:
- - "ser": built-in serial port; parameters: 9600bps, 8N1
- - "mem": Save the messages to a reserved area in chip mem. After
+ - "ser":
+ built-in serial port; parameters: 9600bps, 8N1
+ - "mem":
+ Save the messages to a reserved area in chip mem. After
rebooting, they can be read under AmigaOS with the tool
'dmesg'.
Devices possible for Atari:
- - "ser1": ST-MFP serial port ("Modem1"); parameters: 9600bps, 8N1
- - "ser2": SCC channel B serial port ("Modem2"); parameters: 9600bps, 8N1
- - "ser" : default serial port
+ - "ser1":
+ ST-MFP serial port ("Modem1"); parameters: 9600bps, 8N1
+ - "ser2":
+ SCC channel B serial port ("Modem2"); parameters: 9600bps, 8N1
+ - "ser" :
+ default serial port
This is "ser2" for a Falcon, and "ser1" for any other machine
- - "midi": The MIDI port; parameters: 31250bps, 8N1
- - "par" : parallel port
+ - "midi":
+ The MIDI port; parameters: 31250bps, 8N1
+ - "par" :
+ parallel port
+
The printing routine for this implements a timeout for the
case there's no printer connected (else the kernel would
lock up). The timeout is not exact, but usually a few
@@ -205,26 +216,29 @@ Devices possible for Atari:
2.6) ramdisk_size=
--------------
+------------------
-Syntax: ramdisk_size=<size>
+:Syntax: ramdisk_size=<size>
- This option instructs the kernel to set up a ramdisk of the given
+This option instructs the kernel to set up a ramdisk of the given
size in KBytes. Do not use this option if the ramdisk contents are
passed by bootstrap! In this case, the size is selected automatically
and should not be overwritten.
- The only application is for root filesystems on floppy disks, that
+The only application is for root filesystems on floppy disks, that
should be loaded into memory. To do that, select the corresponding
size of the disk as ramdisk size, and set the root device to the disk
drive (with "root=").
2.7) swap=
+
+ I can't find any sign of this option in 2.2.6.
+
2.8) buff=
-----------
- I can't find any sign of these options in 2.2.6.
+ I can't find any sign of this option in 2.2.6.
3) General Device Options (Amiga and Atari)
@@ -233,13 +247,13 @@ drive (with "root=").
3.1) ether=
-----------
-Syntax: ether=[<irq>[,<base_addr>[,<mem_start>[,<mem_end>]]]],<dev-name>
+:Syntax: ether=[<irq>[,<base_addr>[,<mem_start>[,<mem_end>]]]],<dev-name>
- <dev-name> is the name of a net driver, as specified in
+<dev-name> is the name of a net driver, as specified in
drivers/net/Space.c in the Linux source. Most prominent are eth0, ...
eth3, sl0, ... sl3, ppp0, ..., ppp3, dummy, and lo.
- The non-ethernet drivers (sl, ppp, dummy, lo) obviously ignore the
+The non-ethernet drivers (sl, ppp, dummy, lo) obviously ignore the
settings by this options. Also, the existing ethernet drivers for
Linux/m68k (ariadne, a2065, hydra) don't use them because Zorro boards
are really Plug-'n-Play, so the "ether=" option is useless altogether
@@ -249,9 +263,9 @@ for Linux/m68k.
3.2) hd=
--------
-Syntax: hd=<cylinders>,<heads>,<sectors>
+:Syntax: hd=<cylinders>,<heads>,<sectors>
- This option sets the disk geometry of an IDE disk. The first hd=
+This option sets the disk geometry of an IDE disk. The first hd=
option is for the first IDE disk, the second for the second one.
(I.e., you can give this option twice.) In most cases, you won't have
to use this option, since the kernel can obtain the geometry data
@@ -262,9 +276,9 @@ disks.
3.3) max_scsi_luns=
-------------------
-Syntax: max_scsi_luns=<n>
+:Syntax: max_scsi_luns=<n>
- Sets the maximum number of LUNs (logical units) of SCSI devices to
+Sets the maximum number of LUNs (logical units) of SCSI devices to
be scanned. Valid values for <n> are between 1 and 8. Default is 8 if
"Probe all LUNs on each SCSI device" was selected during the kernel
configuration, else 1.
@@ -273,9 +287,9 @@ configuration, else 1.
3.4) st=
--------
-Syntax: st=<buffer_size>,[<write_thres>,[<max_buffers>]]
+:Syntax: st=<buffer_size>,[<write_thres>,[<max_buffers>]]
- Sets several parameters of the SCSI tape driver. <buffer_size> is
+Sets several parameters of the SCSI tape driver. <buffer_size> is
the number of 512-byte buffers reserved for tape operations for each
device. <write_thres> sets the number of blocks which must be filled
to start an actual write operation to the tape. Maximum value is the
@@ -286,9 +300,9 @@ buffers allocated for all tape devices.
3.5) dmasound=
--------------
-Syntax: dmasound=[<buffers>,<buffer-size>[,<catch-radius>]]
+:Syntax: dmasound=[<buffers>,<buffer-size>[,<catch-radius>]]
- This option controls some configurations of the Linux/m68k DMA sound
+This option controls some configurations of the Linux/m68k DMA sound
driver (Amiga and Atari): <buffers> is the number of buffers you want
to use (minimum 4, default 4), <buffer-size> is the size of each
buffer in kilobytes (minimum 4, default 32) and <catch-radius> says
@@ -305,20 +319,22 @@ don't need to expand the sound.
4.1) video=
-----------
-Syntax: video=<fbname>:<sub-options...>
+:Syntax: video=<fbname>:<sub-options...>
The <fbname> parameter specifies the name of the frame buffer,
-eg. most atari users will want to specify `atafb' here. The
+eg. most atari users will want to specify `atafb` here. The
<sub-options> is a comma-separated list of the sub-options listed
below.
-NB: Please notice that this option was renamed from `atavideo' to
- `video' during the development of the 1.3.x kernels, thus you
+NB:
+ Please notice that this option was renamed from `atavideo` to
+ `video` during the development of the 1.3.x kernels, thus you
might need to update your boot-scripts if upgrading to 2.x from
an 1.2.x kernel.
-NBB: The behavior of video= was changed in 2.1.57 so the recommended
-option is to specify the name of the frame buffer.
+NBB:
+ The behavior of video= was changed in 2.1.57 so the recommended
+ option is to specify the name of the frame buffer.
4.1.1) Video Mode
-----------------
@@ -341,11 +357,11 @@ mode, if the hardware allows. Currently defined names are:
- falh2 : 896x608x1, Falcon only
- falh16 : 896x608x4, Falcon only
- If no video mode is given on the command line, the kernel tries the
+If no video mode is given on the command line, the kernel tries the
modes names "default<n>" in turn, until one is possible with the
hardware in use.
- A video mode setting doesn't make sense, if the external driver is
+A video mode setting doesn't make sense, if the external driver is
activated by a "external:" sub-option.
4.1.2) inverse
@@ -358,17 +374,17 @@ option, you can make the background white.
4.1.3) font
-----------
-Syntax: font:<fontname>
+:Syntax: font:<fontname>
Specify the font to use in text modes. Currently you can choose only
-between `VGA8x8', `VGA8x16' and `PEARL8x8'. `VGA8x8' is default, if the
+between `VGA8x8`, `VGA8x16` and `PEARL8x8`. `VGA8x8` is default, if the
vertical size of the display is less than 400 pixel rows. Otherwise, the
-`VGA8x16' font is the default.
+`VGA8x16` font is the default.
-4.1.4) hwscroll_
-----------------
+4.1.4) `hwscroll_`
+------------------
-Syntax: hwscroll_<n>
+:Syntax: `hwscroll_<n>`
The number of additional lines of video memory to reserve for
speeding up the scrolling ("hardware scrolling"). Hardware scrolling
@@ -378,7 +394,7 @@ possible with plain STs and graphics cards (The former because the
base address must be on a 256 byte boundary there, the latter because
the kernel doesn't know how to set the base address at all.)
- By default, <n> is set to the number of visible text lines on the
+By default, <n> is set to the number of visible text lines on the
display. Thus, the amount of video memory is doubled, compared to no
hardware scrolling. You can turn off the hardware scrolling altogether
by setting <n> to 0.
@@ -386,31 +402,31 @@ by setting <n> to 0.
4.1.5) internal:
----------------
-Syntax: internal:<xres>;<yres>[;<xres_max>;<yres_max>;<offset>]
+:Syntax: internal:<xres>;<yres>[;<xres_max>;<yres_max>;<offset>]
This option specifies the capabilities of some extended internal video
hardware, like e.g. OverScan. <xres> and <yres> give the (extended)
dimensions of the screen.
- If your OverScan needs a black border, you have to write the last
+If your OverScan needs a black border, you have to write the last
three arguments of the "internal:". <xres_max> is the maximum line
length the hardware allows, <yres_max> the maximum number of lines.
<offset> is the offset of the visible part of the screen memory to its
physical start, in bytes.
- Often, extended interval video hardware has to be activated somehow.
+Often, extended interval video hardware has to be activated somehow.
For this, see the "sw_*" options below.
4.1.6) external:
----------------
-Syntax:
- external:<xres>;<yres>;<depth>;<org>;<scrmem>[;<scrlen>[;<vgabase>\
- [;<colw>[;<coltype>[;<xres_virtual>]]]]]
+:Syntax:
+ external:<xres>;<yres>;<depth>;<org>;<scrmem>[;<scrlen>[;<vgabase>
+ [;<colw>[;<coltype>[;<xres_virtual>]]]]]
-[I had to break this line...]
+.. I had to break this line...
- This is probably the most complicated parameter... It specifies that
+This is probably the most complicated parameter... It specifies that
you have some external video hardware (a graphics board), and how to
use it under Linux/m68k. The kernel cannot know more about the hardware
than you tell it here! The kernel also is unable to set or change any
@@ -418,38 +434,44 @@ video modes, since it doesn't know about any board internal. So, you
have to switch to that video mode before you start Linux, and cannot
switch to another mode once Linux has started.
- The first 3 parameters of this sub-option should be obvious: <xres>,
+The first 3 parameters of this sub-option should be obvious: <xres>,
<yres> and <depth> give the dimensions of the screen and the number of
planes (depth). The depth is the logarithm to base 2 of the number
of colors possible. (Or, the other way round: The number of colors is
2^depth).
- You have to tell the kernel furthermore how the video memory is
+You have to tell the kernel furthermore how the video memory is
organized. This is done by a letter as <org> parameter:
- 'n': "normal planes", i.e. one whole plane after another
- 'i': "interleaved planes", i.e. 16 bit of the first plane, than 16 bit
+ 'n':
+ "normal planes", i.e. one whole plane after another
+ 'i':
+ "interleaved planes", i.e. 16 bit of the first plane, than 16 bit
of the next, and so on... This mode is used only with the
- built-in Atari video modes, I think there is no card that
- supports this mode.
- 'p': "packed pixels", i.e. <depth> consecutive bits stand for all
- planes of one pixel; this is the most common mode for 8 planes
- (256 colors) on graphic cards
- 't': "true color" (more or less packed pixels, but without a color
- lookup table); usually depth is 24
+ built-in Atari video modes, I think there is no card that
+ supports this mode.
+ 'p':
+ "packed pixels", i.e. <depth> consecutive bits stand for all
+ planes of one pixel; this is the most common mode for 8 planes
+ (256 colors) on graphic cards
+ 't':
+ "true color" (more or less packed pixels, but without a color
+ lookup table); usually depth is 24
For monochrome modes (i.e., <depth> is 1), the <org> letter has a
different meaning:
- 'n': normal colors, i.e. 0=white, 1=black
- 'i': inverted colors, i.e. 0=black, 1=white
+ 'n':
+ normal colors, i.e. 0=white, 1=black
+ 'i':
+ inverted colors, i.e. 0=black, 1=white
- The next important information about the video hardware is the base
+The next important information about the video hardware is the base
address of the video memory. That is given in the <scrmem> parameter,
as a hexadecimal number with a "0x" prefix. You have to find out this
address in the documentation of your hardware.
- The next parameter, <scrlen>, tells the kernel about the size of the
+The next parameter, <scrlen>, tells the kernel about the size of the
video memory. If it's missing, the size is calculated from <xres>,
<yres>, and <depth>. For now, it is not useful to write a value here.
It would be used only for hardware scrolling (which isn't possible
@@ -460,7 +482,7 @@ empty, either by ending the "external:" after the video address or by
writing two consecutive semicolons, if you want to give a <vgabase>
(it is allowed to leave this parameter empty).
- The <vgabase> parameter is optional. If it is not given, the kernel
+The <vgabase> parameter is optional. If it is not given, the kernel
cannot read or write any color registers of the video hardware, and
thus you have to set appropriate colors before you start Linux. But if
your card is somehow VGA compatible, you can tell the kernel the base
@@ -472,18 +494,18 @@ uses the addresses vgabase+0x3c7...vgabase+0x3c9. The <vgabase>
parameter is written in hexadecimal with a "0x" prefix, just as
<scrmem>.
- <colw> is meaningful only if <vgabase> is specified. It tells the
+<colw> is meaningful only if <vgabase> is specified. It tells the
kernel how wide each of the color register is, i.e. the number of bits
per single color (red/green/blue). Default is 6, another quite usual
value is 8.
- Also <coltype> is used together with <vgabase>. It tells the kernel
+Also <coltype> is used together with <vgabase>. It tells the kernel
about the color register model of your gfx board. Currently, the types
"vga" (which is also the default) and "mv300" (SANG MV300) are
implemented.
- Parameter <xres_virtual> is required for ProMST or ET4000 cards where
-the physical linelength differs from the visible length. With ProMST,
+Parameter <xres_virtual> is required for ProMST or ET4000 cards where
+the physical linelength differs from the visible length. With ProMST,
xres_virtual must be set to 2048. For ET4000, xres_virtual depends on the
initialisation of the video-card.
If you're missing a corresponding yres_virtual: the external part is legacy,
@@ -499,13 +521,13 @@ currently works only with the ScreenWonder!
4.1.8) monitorcap:
-------------------
-Syntax: monitorcap:<vmin>;<vmax>;<hmin>;<hmax>
+:Syntax: monitorcap:<vmin>;<vmax>;<hmin>;<hmax>
This describes the capabilities of a multisync monitor. Don't use it
with a fixed-frequency monitor! For now, only the Falcon frame buffer
uses the settings of "monitorcap:".
- <vmin> and <vmax> are the minimum and maximum, resp., vertical frequencies
+<vmin> and <vmax> are the minimum and maximum, resp., vertical frequencies
your monitor can work with, in Hz. <hmin> and <hmax> are the same for
the horizontal frequency, in kHz.
@@ -520,28 +542,28 @@ If this option is given, the framebuffer device doesn't do any video
mode calculations and settings on its own. The only Atari fb device
that does this currently is the Falcon.
- What you reach with this: Settings for unknown video extensions
+What you reach with this: Settings for unknown video extensions
aren't overridden by the driver, so you can still use the mode found
when booting, when the driver doesn't know to set this mode itself.
But this also means, that you can't switch video modes anymore...
- An example where you may want to use "keep" is the ScreenBlaster for
+An example where you may want to use "keep" is the ScreenBlaster for
the Falcon.
4.2) atamouse=
--------------
-Syntax: atamouse=<x-threshold>,[<y-threshold>]
+:Syntax: atamouse=<x-threshold>,[<y-threshold>]
- With this option, you can set the mouse movement reporting threshold.
+With this option, you can set the mouse movement reporting threshold.
This is the number of pixels of mouse movement that have to accumulate
before the IKBD sends a new mouse packet to the kernel. Higher values
reduce the mouse interrupt load and thus reduce the chance of keyboard
overruns. Lower values give a slightly faster mouse responses and
slightly better mouse tracking.
- You can set the threshold in x and y separately, but usually this is
+You can set the threshold in x and y separately, but usually this is
of little practical use. If there's just one number in the option, it
is used for both dimensions. The default value is 2 for both
thresholds.
@@ -550,7 +572,7 @@ thresholds.
4.3) ataflop=
-------------
-Syntax: ataflop=<drive type>[,<trackbuffering>[,<steprateA>[,<steprateB>]]]
+:Syntax: ataflop=<drive type>[,<trackbuffering>[,<steprateA>[,<steprateB>]]]
The drive type may be 0, 1, or 2, for DD, HD, and ED, resp. This
setting affects how many buffers are reserved and which formats are
@@ -563,15 +585,15 @@ Syntax: ataflop=<drive type>[,<trackbuffering>[,<steprateA>[,<steprateB>]]]
no for the Medusa and yes for all others.
With the two following parameters, you can change the default
- steprate used for drive A and B, resp.
+ steprate used for drive A and B, resp.
4.4) atascsi=
-------------
-Syntax: atascsi=<can_queue>[,<cmd_per_lun>[,<scat-gat>[,<host-id>[,<tagged>]]]]
+:Syntax: atascsi=<can_queue>[,<cmd_per_lun>[,<scat-gat>[,<host-id>[,<tagged>]]]]
- This option sets some parameters for the Atari native SCSI driver.
+This option sets some parameters for the Atari native SCSI driver.
Generally, any number of arguments can be omitted from the end. And
for each of the numbers, a negative value means "use default". The
defaults depend on whether TT-style or Falcon-style SCSI is used.
@@ -597,11 +619,14 @@ ignored (others aren't affected).
32). Default: 8/1. (Note: Values > 1 seem to cause problems on a
Falcon, cause not yet known.)
- The <cmd_per_lun> value at a great part determines the amount of
+ The <cmd_per_lun> value at a great part determines the amount of
memory SCSI reserves for itself. The formula is rather
complicated, but I can give you some hints:
- no scatter-gather : cmd_per_lun * 232 bytes
- full scatter-gather: cmd_per_lun * approx. 17 Kbytes
+
+ no scatter-gather:
+ cmd_per_lun * 232 bytes
+ full scatter-gather:
+ cmd_per_lun * approx. 17 Kbytes
<scat-gat>:
Size of the scatter-gather table, i.e. the number of requests
@@ -634,19 +659,23 @@ ignored (others aren't affected).
4.5 switches=
-------------
-Syntax: switches=<list of switches>
+:Syntax: switches=<list of switches>
- With this option you can switch some hardware lines that are often
+With this option you can switch some hardware lines that are often
used to enable/disable certain hardware extensions. Examples are
OverScan, overclocking, ...
- The <list of switches> is a comma-separated list of the following
+The <list of switches> is a comma-separated list of the following
items:
- ikbd: set RTS of the keyboard ACIA high
- midi: set RTS of the MIDI ACIA high
- snd6: set bit 6 of the PSG port A
- snd7: set bit 6 of the PSG port A
+ ikbd:
+ set RTS of the keyboard ACIA high
+ midi:
+ set RTS of the MIDI ACIA high
+ snd6:
+ set bit 6 of the PSG port A
+ snd7:
+ set bit 6 of the PSG port A
It doesn't make sense to mention a switch more than once (no
difference to only once), but you can give as many switches as you
@@ -654,16 +683,16 @@ want to enable different features. The switch lines are set as early
as possible during kernel initialization (even before determining the
present hardware.)
- All of the items can also be prefixed with "ov_", i.e. "ov_ikbd",
-"ov_midi", ... These options are meant for switching on an OverScan
+All of the items can also be prefixed with `ov_`, i.e. `ov_ikbd`,
+`ov_midi`, ... These options are meant for switching on an OverScan
video extension. The difference to the bare option is that the
switch-on is done after video initialization, and somehow synchronized
to the HBLANK. A speciality is that ov_ikbd and ov_midi are switched
off before rebooting, so that OverScan is disabled and TOS boots
correctly.
- If you give an option both, with and without the "ov_" prefix, the
-earlier initialization ("ov_"-less) takes precedence. But the
+If you give an option both, with and without the `ov_` prefix, the
+earlier initialization (`ov_`-less) takes precedence. But the
switching-off on reset still happens in this case.
5) Options for Amiga Only:
@@ -672,10 +701,10 @@ switching-off on reset still happens in this case.
5.1) video=
-----------
-Syntax: video=<fbname>:<sub-options...>
+:Syntax: video=<fbname>:<sub-options...>
The <fbname> parameter specifies the name of the frame buffer, valid
-options are `amifb', `cyber', 'virge', `retz3' and `clgen', provided
+options are `amifb`, `cyber`, 'virge', `retz3` and `clgen`, provided
that the respective frame buffer devices have been compiled into the
kernel (or compiled as loadable modules). The behavior of the <fbname>
option was changed in 2.1.57 so it is now recommended to specify this
@@ -697,9 +726,11 @@ predefined video modes are available:
NTSC modes:
- ntsc : 640x200, 15 kHz, 60 Hz
- ntsc-lace : 640x400, 15 kHz, 60 Hz interlaced
+
PAL modes:
- pal : 640x256, 15 kHz, 50 Hz
- pal-lace : 640x512, 15 kHz, 50 Hz interlaced
+
ECS modes:
- multiscan : 640x480, 29 kHz, 57 Hz
- multiscan-lace : 640x960, 29 kHz, 57 Hz interlaced
@@ -715,6 +746,7 @@ ECS modes:
- dblpal-lace : 640x1024, 27 kHz, 47 Hz interlaced
- dblntsc : 640x200, 27 kHz, 57 Hz doublescan
- dblpal : 640x256, 27 kHz, 47 Hz doublescan
+
VGA modes:
- vga : 640x480, 31 kHz, 60 Hz
- vga70 : 640x400, 31 kHz, 70 Hz
@@ -726,7 +758,7 @@ chipset and 8-bit color for the AGA chipset.
5.1.2) depth
------------
-Syntax: depth:<nr. of bit-planes>
+:Syntax: depth:<nr. of bit-planes>
Specify the number of bit-planes for the selected video-mode.
@@ -739,32 +771,32 @@ Use inverted display (black on white). Functionally the same as the
5.1.4) font
-----------
-Syntax: font:<fontname>
+:Syntax: font:<fontname>
Specify the font to use in text modes. Functionally the same as the
-"font" sub-option for the Atari, except that `PEARL8x8' is used instead
-of `VGA8x8' if the vertical size of the display is less than 400 pixel
+"font" sub-option for the Atari, except that `PEARL8x8` is used instead
+of `VGA8x8` if the vertical size of the display is less than 400 pixel
rows.
5.1.5) monitorcap:
-------------------
-Syntax: monitorcap:<vmin>;<vmax>;<hmin>;<hmax>
+:Syntax: monitorcap:<vmin>;<vmax>;<hmin>;<hmax>
This describes the capabilities of a multisync monitor. For now, only
the color frame buffer uses the settings of "monitorcap:".
- <vmin> and <vmax> are the minimum and maximum, resp., vertical frequencies
+<vmin> and <vmax> are the minimum and maximum, resp., vertical frequencies
your monitor can work with, in Hz. <hmin> and <hmax> are the same for
the horizontal frequency, in kHz.
- The defaults are 50;90;15;38 (Generic Amiga multisync monitor).
+The defaults are 50;90;15;38 (Generic Amiga multisync monitor).
5.2) fd_def_df0=
----------------
-Syntax: fd_def_df0=<value>
+:Syntax: fd_def_df0=<value>
Sets the df0 value for "silent" floppy drives. The value should be in
hexadecimal with "0x" prefix.
@@ -773,7 +805,7 @@ hexadecimal with "0x" prefix.
5.3) wd33c93=
-------------
-Syntax: wd33c93=<sub-options...>
+:Syntax: wd33c93=<sub-options...>
These options affect the A590/A2091, A3000 and GVP Series II SCSI
controllers.
@@ -784,9 +816,9 @@ below.
5.3.1) nosync
-------------
-Syntax: nosync:bitmask
+:Syntax: nosync:bitmask
- bitmask is a byte where the 1st 7 bits correspond with the 7
+bitmask is a byte where the 1st 7 bits correspond with the 7
possible SCSI devices. Set a bit to prevent sync negotiation on that
device. To maintain backwards compatibility, a command-line such as
"wd33c93=255" will be automatically translated to
@@ -796,35 +828,35 @@ all devices, eg. nosync:0xff.
5.3.2) period
-------------
-Syntax: period:ns
+:Syntax: period:ns
- `ns' is the minimum # of nanoseconds in a SCSI data transfer
+`ns` is the minimum # of nanoseconds in a SCSI data transfer
period. Default is 500; acceptable values are 250 - 1000.
5.3.3) disconnect
-----------------
-Syntax: disconnect:x
+:Syntax: disconnect:x
- Specify x = 0 to never allow disconnects, 2 to always allow them.
+Specify x = 0 to never allow disconnects, 2 to always allow them.
x = 1 does 'adaptive' disconnects, which is the default and generally
the best choice.
5.3.4) debug
------------
-Syntax: debug:x
+:Syntax: debug:x
- If `DEBUGGING_ON' is defined, x is a bit mask that causes various
+If `DEBUGGING_ON` is defined, x is a bit mask that causes various
types of debug output to printed - see the DB_xxx defines in
wd33c93.h.
5.3.5) clock
------------
-Syntax: clock:x
+:Syntax: clock:x
- x = clock input in MHz for WD33c93 chip. Normal values would be from
+x = clock input in MHz for WD33c93 chip. Normal values would be from
8 through 20. The default value depends on your hostadapter(s),
default for the A3000 internal controller is 14, for the A2091 it's 8
and for the GVP hostadapters it's either 8 or 14, depending on the
@@ -834,15 +866,15 @@ hostadapters.
5.3.6) next
-----------
- No argument. Used to separate blocks of keywords when there's more
+No argument. Used to separate blocks of keywords when there's more
than one wd33c93-based host adapter in the system.
5.3.7) nodma
------------
-Syntax: nodma:x
+:Syntax: nodma:x
- If x is 1 (or if the option is just written as "nodma"), the WD33c93
+If x is 1 (or if the option is just written as "nodma"), the WD33c93
controller will not use DMA (= direct memory access) to access the
Amiga's memory. This is useful for some systems (like A3000's and
A4000's with the A3640 accelerator, revision 3.0) that have problems
@@ -853,32 +885,27 @@ possible.
5.4) gvp11=
-----------
-Syntax: gvp11=<addr-mask>
+:Syntax: gvp11=<addr-mask>
- The earlier versions of the GVP driver did not handle DMA
+The earlier versions of the GVP driver did not handle DMA
address-mask settings correctly which made it necessary for some
people to use this option, in order to get their GVP controller
running under Linux. These problems have hopefully been solved and the
use of this option is now highly unrecommended!
- Incorrect use can lead to unpredictable behavior, so please only use
+Incorrect use can lead to unpredictable behavior, so please only use
this option if you *know* what you are doing and have a reason to do
so. In any case if you experience problems and need to use this
option, please inform us about it by mailing to the Linux/68k kernel
mailing list.
- The address mask set by this option specifies which addresses are
+The address mask set by this option specifies which addresses are
valid for DMA with the GVP Series II SCSI controller. An address is
valid, if no bits are set except the bits that are set in the mask,
too.
- Some versions of the GVP can only DMA into a 24 bit address range,
+Some versions of the GVP can only DMA into a 24 bit address range,
some can address a 25 bit address range while others can use the whole
32 bit address range for DMA. The correct setting depends on your
controller and should be autodetected by the driver. An example is the
24 bit region which is specified by a mask of 0x00fffffe.
-
-
-/* Local Variables: */
-/* mode: text */
-/* End: */
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* Re: [PATCH v2 43/79] docs: m68k: convert docs to ReST and rename to *.rst
2019-04-22 13:27 ` [PATCH v2 43/79] docs: m68k: convert docs to ReST and rename to *.rst Mauro Carvalho Chehab
@ 2019-05-03 11:55 ` Geert Uytterhoeven
0 siblings, 0 replies; 115+ messages in thread
From: Geert Uytterhoeven @ 2019-05-03 11:55 UTC (permalink / raw)
To: Mauro Carvalho Chehab
Cc: Linux Doc Mailing List, Mauro Carvalho Chehab,
Linux Kernel Mailing List, Jonathan Corbet
Hi Mauro,
On Mon, Apr 22, 2019 at 3:34 PM Mauro Carvalho Chehab
<mchehab+samsung@kernel.org> wrote:
> Convert the m68k kernel-options.txt file to ReST.
>
> The conversion is trivial, as the document is already on a format
> close enough to ReST. Just some small adjustments were needed in
> order to make it both good for being parsed while keeping it on
> a good txt shape.
>
> At its new index.rst, let's add a :orphan: while this is not linked to
> the main index.rst file, in order to avoid build warnings.
>
> Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Thanks for the conversion!
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
P.S. Looks like some kernel options no longer exist, and need to be removed.
Gr{oetje,eeting}s,
Geert
--
Geert Uytterhoeven -- There's lots of Linux beyond ia32 -- geert@linux-m68k.org
In personal conversations with technical people, I call myself a hacker. But
when I'm talking to journalists I just say "programmer" or something like that.
-- Linus Torvalds
^ permalink raw reply [flat|nested] 115+ messages in thread
* [PATCH v2 44/79] docs: cma/debugfs.txt: convert docs to ReST and rename to *.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (35 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 43/79] docs: m68k: convert docs to ReST and rename to *.rst Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 45/79] docs: console.txt: " Mauro Carvalho Chehab
` (36 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet
The debugfs interface for CMA should be there together with other
mm-related documents.
Convert this small file to ReST and move it to its rightful place.
The conversion is actually quite simple: just add a title for the
document. In order to make it to look better for the audience,
also mark the "echo" command as a literal block.
While this is not part of any book, mark it as :orphan:,
in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/cma/{debugfs.txt => debugfs.rst} | 8 +++++++-
1 file changed, 7 insertions(+), 1 deletion(-)
rename Documentation/cma/{debugfs.txt => debugfs.rst} (91%)
diff --git a/Documentation/cma/debugfs.txt b/Documentation/cma/debugfs.rst
similarity index 91%
rename from Documentation/cma/debugfs.txt
rename to Documentation/cma/debugfs.rst
index 6cef20a8cedc..518fe401b5ee 100644
--- a/Documentation/cma/debugfs.txt
+++ b/Documentation/cma/debugfs.rst
@@ -1,3 +1,9 @@
+:orphan:
+
+=====================
+CMA Debugfs Interface
+=====================
+
The CMA debugfs interface is useful to retrieve basic information out of the
different CMA areas and to test allocation/release in each of the areas.
@@ -12,7 +18,7 @@ The structure of the files created under that directory is as follows:
- [RO] count: Amount of memory in the CMA area.
- [RO] order_per_bit: Order of pages represented by one bit.
- [RO] bitmap: The bitmap of page states in the zone.
- - [WO] alloc: Allocate N pages from that CMA area. For example:
+ - [WO] alloc: Allocate N pages from that CMA area. For example::
echo 5 > <debugfs>/cma/cma-2/alloc
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 45/79] docs: console.txt: convert docs to ReST and rename to *.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (36 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 44/79] docs: cma/debugfs.txt: " Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-05-06 13:41 ` Bartlomiej Zolnierkiewicz
2019-04-22 13:27 ` [PATCH v2 46/79] docs: pti_intel_mid.txt: convert it to pti_intel_mid.rst Mauro Carvalho Chehab
` (35 subsequent siblings)
73 siblings, 1 reply; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Bartlomiej Zolnierkiewicz, Greg Kroah-Hartman,
Jiri Slaby, dri-devel, linux-fbdev
Convert this small file to ReST in preparation for adding it to
the driver-api book.
While this is not part of the driver-api book, mark it as
:orphan:, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
.../console/{console.txt => console.rst} | 63 ++++++++++---------
Documentation/fb/fbcon.rst | 4 +-
drivers/tty/Kconfig | 2 +-
3 files changed, 38 insertions(+), 31 deletions(-)
rename Documentation/console/{console.txt => console.rst} (80%)
diff --git a/Documentation/console/console.txt b/Documentation/console/console.rst
similarity index 80%
rename from Documentation/console/console.txt
rename to Documentation/console/console.rst
index d73c2ab4beda..b374141b027e 100644
--- a/Documentation/console/console.txt
+++ b/Documentation/console/console.rst
@@ -1,3 +1,6 @@
+:orphan:
+
+===============
Console Drivers
===============
@@ -17,25 +20,26 @@ of driver occupying the consoles.) They can only take over the console that is
occupied by the system driver. In the same token, if the modular driver is
released by the console, the system driver will take over.
-Modular drivers, from the programmer's point of view, have to call:
+Modular drivers, from the programmer's point of view, have to call::
do_take_over_console() - load and bind driver to console layer
give_up_console() - unload driver; it will only work if driver
is fully unbound
-In newer kernels, the following are also available:
+In newer kernels, the following are also available::
do_register_con_driver()
do_unregister_con_driver()
If sysfs is enabled, the contents of /sys/class/vtconsole can be
examined. This shows the console backends currently registered by the
-system which are named vtcon<n> where <n> is an integer from 0 to 15. Thus:
+system which are named vtcon<n> where <n> is an integer from 0 to 15.
+Thus::
ls /sys/class/vtconsole
. .. vtcon0 vtcon1
-Each directory in /sys/class/vtconsole has 3 files:
+Each directory in /sys/class/vtconsole has 3 files::
ls /sys/class/vtconsole/vtcon0
. .. bind name uevent
@@ -46,27 +50,29 @@ What do these files signify?
read, or acts to bind or unbind the driver to the virtual consoles
when written to. The possible values are:
- 0 - means the driver is not bound and if echo'ed, commands the driver
+ 0
+ - means the driver is not bound and if echo'ed, commands the driver
to unbind
- 1 - means the driver is bound and if echo'ed, commands the driver to
+ 1
+ - means the driver is bound and if echo'ed, commands the driver to
bind
- 2. name - read-only file. Shows the name of the driver in this format:
+ 2. name - read-only file. Shows the name of the driver in this format::
- cat /sys/class/vtconsole/vtcon0/name
- (S) VGA+
+ cat /sys/class/vtconsole/vtcon0/name
+ (S) VGA+
- '(S)' stands for a (S)ystem driver, i.e., it cannot be directly
- commanded to bind or unbind
+ '(S)' stands for a (S)ystem driver, i.e., it cannot be directly
+ commanded to bind or unbind
- 'VGA+' is the name of the driver
+ 'VGA+' is the name of the driver
- cat /sys/class/vtconsole/vtcon1/name
- (M) frame buffer device
+ cat /sys/class/vtconsole/vtcon1/name
+ (M) frame buffer device
- In this case, '(M)' stands for a (M)odular driver, one that can be
- directly commanded to bind or unbind.
+ In this case, '(M)' stands for a (M)odular driver, one that can be
+ directly commanded to bind or unbind.
3. uevent - ignore this file
@@ -75,14 +81,17 @@ driver takes over the consoles vacated by the driver. Binding, on the other
hand, will bind the driver to the consoles that are currently occupied by a
system driver.
-NOTE1: Binding and unbinding must be selected in Kconfig. It's under:
+NOTE1:
+ Binding and unbinding must be selected in Kconfig. It's under::
-Device Drivers -> Character devices -> Support for binding and unbinding
-console drivers
+ Device Drivers ->
+ Character devices ->
+ Support for binding and unbinding console drivers
-NOTE2: If any of the virtual consoles are in KD_GRAPHICS mode, then binding or
-unbinding will not succeed. An example of an application that sets the console
-to KD_GRAPHICS is X.
+NOTE2:
+ If any of the virtual consoles are in KD_GRAPHICS mode, then binding or
+ unbinding will not succeed. An example of an application that sets the
+ console to KD_GRAPHICS is X.
How useful is this feature? This is very useful for console driver
developers. By unbinding the driver from the console layer, one can unload the
@@ -92,10 +101,10 @@ framebuffer console to VGA console and vice versa, this feature also makes
this possible. (NOTE NOTE NOTE: Please read fbcon.txt under Documentation/fb
for more details.)
-Notes for developers:
-=====================
+Notes for developers
+====================
-do_take_over_console() is now broken up into:
+do_take_over_console() is now broken up into::
do_register_con_driver()
do_bind_con_driver() - private function
@@ -104,7 +113,7 @@ give_up_console() is a wrapper to do_unregister_con_driver(), and a driver must
be fully unbound for this call to succeed. con_is_bound() will check if the
driver is bound or not.
-Guidelines for console driver writers:
+Guidelines for console driver writers
=====================================
In order for binding to and unbinding from the console to properly work,
@@ -140,6 +149,4 @@ The current crop of console drivers should still work correctly, but binding
and unbinding them may cause problems. With minimal fixes, these drivers can
be made to work correctly.
-==========================
Antonino Daplas <adaplas@pol.net>
-
diff --git a/Documentation/fb/fbcon.rst b/Documentation/fb/fbcon.rst
index cfb9f7c38f18..22112718dd5d 100644
--- a/Documentation/fb/fbcon.rst
+++ b/Documentation/fb/fbcon.rst
@@ -187,7 +187,7 @@ the hardware. Thus, in a VGA console::
Assuming the VGA driver can be unloaded, one must first unbind the VGA driver
from the console layer before unloading the driver. The VGA driver cannot be
unloaded if it is still bound to the console layer. (See
-Documentation/console/console.txt for more information).
+Documentation/console/console.rst for more information).
This is more complicated in the case of the framebuffer console (fbcon),
because fbcon is an intermediate layer between the console and the drivers::
@@ -204,7 +204,7 @@ fbcon. Thus, there is no need to explicitly unbind the fbdev drivers from
fbcon.
So, how do we unbind fbcon from the console? Part of the answer is in
-Documentation/console/console.txt. To summarize:
+Documentation/console/console.rst. To summarize:
Echo a value to the bind file that represents the framebuffer console
driver. So assuming vtcon1 represents fbcon, then::
diff --git a/drivers/tty/Kconfig b/drivers/tty/Kconfig
index 957db30b9ecb..c30bfc95e03c 100644
--- a/drivers/tty/Kconfig
+++ b/drivers/tty/Kconfig
@@ -94,7 +94,7 @@ config VT_HW_CONSOLE_BINDING
select the console driver that will serve as the backend for the
virtual terminals.
- See <file:Documentation/console/console.txt> for more
+ See <file:Documentation/console/console.rst> for more
information. For framebuffer console users, please refer to
<file:Documentation/fb/fbcon.rst>.
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* Re: [PATCH v2 45/79] docs: console.txt: convert docs to ReST and rename to *.rst
2019-04-22 13:27 ` [PATCH v2 45/79] docs: console.txt: " Mauro Carvalho Chehab
@ 2019-05-06 13:41 ` Bartlomiej Zolnierkiewicz
0 siblings, 0 replies; 115+ messages in thread
From: Bartlomiej Zolnierkiewicz @ 2019-05-06 13:41 UTC (permalink / raw)
To: Mauro Carvalho Chehab
Cc: Linux Doc Mailing List, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Greg Kroah-Hartman, Jiri Slaby, dri-devel,
linux-fbdev
On 04/22/2019 03:27 PM, Mauro Carvalho Chehab wrote:
> Convert this small file to ReST in preparation for adding it to
> the driver-api book.
>
> While this is not part of the driver-api book, mark it as
> :orphan:, in order to avoid build warnings.
>
> Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Acked-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Best regards,
--
Bartlomiej Zolnierkiewicz
Samsung R&D Institute Poland
Samsung Electronics
^ permalink raw reply [flat|nested] 115+ messages in thread
* [PATCH v2 46/79] docs: pti_intel_mid.txt: convert it to pti_intel_mid.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (37 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 45/79] docs: console.txt: " Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 47/79] docs: early-userspace: convert docs to ReST and rename to *.rst Mauro Carvalho Chehab
` (34 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet
Convert this small file to ReST format and rename it.
Most of the conversion were related to adjusting whitespaces
in order for each section to be properly parsed.
While this is not part of any book, mark it as :orphan:, in order
to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/pti/pti_intel_mid.rst | 106 ++++++++++++++++++++++++++++
Documentation/pti/pti_intel_mid.txt | 99 --------------------------
2 files changed, 106 insertions(+), 99 deletions(-)
create mode 100644 Documentation/pti/pti_intel_mid.rst
delete mode 100644 Documentation/pti/pti_intel_mid.txt
diff --git a/Documentation/pti/pti_intel_mid.rst b/Documentation/pti/pti_intel_mid.rst
new file mode 100644
index 000000000000..ea05725174cb
--- /dev/null
+++ b/Documentation/pti/pti_intel_mid.rst
@@ -0,0 +1,106 @@
+:orphan:
+
+=============
+Intel MID PTI
+=============
+
+The Intel MID PTI project is HW implemented in Intel Atom
+system-on-a-chip designs based on the Parallel Trace
+Interface for MIPI P1149.7 cJTAG standard. The kernel solution
+for this platform involves the following files::
+
+ ./include/linux/pti.h
+ ./drivers/.../n_tracesink.h
+ ./drivers/.../n_tracerouter.c
+ ./drivers/.../n_tracesink.c
+ ./drivers/.../pti.c
+
+pti.c is the driver that enables various debugging features
+popular on platforms from certain mobile manufacturers.
+n_tracerouter.c and n_tracesink.c allow extra system information to
+be collected and routed to the pti driver, such as trace
+debugging data from a modem. Although n_tracerouter
+and n_tracesink are a part of the complete PTI solution,
+these two line disciplines can work separately from
+pti.c and route any data stream from one /dev/tty node
+to another /dev/tty node via kernel-space. This provides
+a stable, reliable connection that will not break unless
+the user-space application shuts down (plus avoids
+kernel->user->kernel context switch overheads of routing
+data).
+
+An example debugging usage for this driver system:
+
+ * Hook /dev/ttyPTI0 to syslogd. Opening this port will also start
+ a console device to further capture debugging messages to PTI.
+ * Hook /dev/ttyPTI1 to modem debugging data to write to PTI HW.
+ This is where n_tracerouter and n_tracesink are used.
+ * Hook /dev/pti to a user-level debugging application for writing
+ to PTI HW.
+ * `Use mipi_` Kernel Driver API in other device drivers for
+ debugging to PTI by first requesting a PTI write address via
+ mipi_request_masterchannel(1).
+
+Below is example pseudo-code on how a 'privileged' application
+can hook up n_tracerouter and n_tracesink to any tty on
+a system. 'Privileged' means the application has enough
+privileges to successfully manipulate the ldisc drivers
+but is not just blindly executing as 'root'. Keep in mind
+the use of ioctl(,TIOCSETD,) is not specific to the n_tracerouter
+and n_tracesink line discpline drivers but is a generic
+operation for a program to use a line discpline driver
+on a tty port other than the default n_tty::
+
+ /////////// To hook up n_tracerouter and n_tracesink /////////
+
+ // Note that n_tracerouter depends on n_tracesink.
+ #include <errno.h>
+ #define ONE_TTY "/dev/ttyOne"
+ #define TWO_TTY "/dev/ttyTwo"
+
+ // needed global to hand onto ldisc connection
+ static int g_fd_source = -1;
+ static int g_fd_sink = -1;
+
+ // these two vars used to grab LDISC values from loaded ldisc drivers
+ // in OS. Look at /proc/tty/ldiscs to get the right numbers from
+ // the ldiscs loaded in the system.
+ int source_ldisc_num, sink_ldisc_num = -1;
+ int retval;
+
+ g_fd_source = open(ONE_TTY, O_RDWR); // must be R/W
+ g_fd_sink = open(TWO_TTY, O_RDWR); // must be R/W
+
+ if (g_fd_source <= 0) || (g_fd_sink <= 0) {
+ // doubt you'll want to use these exact error lines of code
+ printf("Error on open(). errno: %d\n",errno);
+ return errno;
+ }
+
+ retval = ioctl(g_fd_sink, TIOCSETD, &sink_ldisc_num);
+ if (retval < 0) {
+ printf("Error on ioctl(). errno: %d\n", errno);
+ return errno;
+ }
+
+ retval = ioctl(g_fd_source, TIOCSETD, &source_ldisc_num);
+ if (retval < 0) {
+ printf("Error on ioctl(). errno: %d\n", errno);
+ return errno;
+ }
+
+ /////////// To disconnect n_tracerouter and n_tracesink ////////
+
+ // First make sure data through the ldiscs has stopped.
+
+ // Second, disconnect ldiscs. This provides a
+ // little cleaner shutdown on tty stack.
+ sink_ldisc_num = 0;
+ source_ldisc_num = 0;
+ ioctl(g_fd_uart, TIOCSETD, &sink_ldisc_num);
+ ioctl(g_fd_gadget, TIOCSETD, &source_ldisc_num);
+
+ // Three, program closes connection, and cleanup:
+ close(g_fd_uart);
+ close(g_fd_gadget);
+ g_fd_uart = g_fd_gadget = NULL;
diff --git a/Documentation/pti/pti_intel_mid.txt b/Documentation/pti/pti_intel_mid.txt
deleted file mode 100644
index e7a5b6d1f7a9..000000000000
--- a/Documentation/pti/pti_intel_mid.txt
+++ /dev/null
@@ -1,99 +0,0 @@
-The Intel MID PTI project is HW implemented in Intel Atom
-system-on-a-chip designs based on the Parallel Trace
-Interface for MIPI P1149.7 cJTAG standard. The kernel solution
-for this platform involves the following files:
-
-./include/linux/pti.h
-./drivers/.../n_tracesink.h
-./drivers/.../n_tracerouter.c
-./drivers/.../n_tracesink.c
-./drivers/.../pti.c
-
-pti.c is the driver that enables various debugging features
-popular on platforms from certain mobile manufacturers.
-n_tracerouter.c and n_tracesink.c allow extra system information to
-be collected and routed to the pti driver, such as trace
-debugging data from a modem. Although n_tracerouter
-and n_tracesink are a part of the complete PTI solution,
-these two line disciplines can work separately from
-pti.c and route any data stream from one /dev/tty node
-to another /dev/tty node via kernel-space. This provides
-a stable, reliable connection that will not break unless
-the user-space application shuts down (plus avoids
-kernel->user->kernel context switch overheads of routing
-data).
-
-An example debugging usage for this driver system:
- *Hook /dev/ttyPTI0 to syslogd. Opening this port will also start
- a console device to further capture debugging messages to PTI.
- *Hook /dev/ttyPTI1 to modem debugging data to write to PTI HW.
- This is where n_tracerouter and n_tracesink are used.
- *Hook /dev/pti to a user-level debugging application for writing
- to PTI HW.
- *Use mipi_* Kernel Driver API in other device drivers for
- debugging to PTI by first requesting a PTI write address via
- mipi_request_masterchannel(1).
-
-Below is example pseudo-code on how a 'privileged' application
-can hook up n_tracerouter and n_tracesink to any tty on
-a system. 'Privileged' means the application has enough
-privileges to successfully manipulate the ldisc drivers
-but is not just blindly executing as 'root'. Keep in mind
-the use of ioctl(,TIOCSETD,) is not specific to the n_tracerouter
-and n_tracesink line discpline drivers but is a generic
-operation for a program to use a line discpline driver
-on a tty port other than the default n_tty.
-
-/////////// To hook up n_tracerouter and n_tracesink /////////
-
-// Note that n_tracerouter depends on n_tracesink.
-#include <errno.h>
-#define ONE_TTY "/dev/ttyOne"
-#define TWO_TTY "/dev/ttyTwo"
-
-// needed global to hand onto ldisc connection
-static int g_fd_source = -1;
-static int g_fd_sink = -1;
-
-// these two vars used to grab LDISC values from loaded ldisc drivers
-// in OS. Look at /proc/tty/ldiscs to get the right numbers from
-// the ldiscs loaded in the system.
-int source_ldisc_num, sink_ldisc_num = -1;
-int retval;
-
-g_fd_source = open(ONE_TTY, O_RDWR); // must be R/W
-g_fd_sink = open(TWO_TTY, O_RDWR); // must be R/W
-
-if (g_fd_source <= 0) || (g_fd_sink <= 0) {
- // doubt you'll want to use these exact error lines of code
- printf("Error on open(). errno: %d\n",errno);
- return errno;
-}
-
-retval = ioctl(g_fd_sink, TIOCSETD, &sink_ldisc_num);
-if (retval < 0) {
- printf("Error on ioctl(). errno: %d\n", errno);
- return errno;
-}
-
-retval = ioctl(g_fd_source, TIOCSETD, &source_ldisc_num);
-if (retval < 0) {
- printf("Error on ioctl(). errno: %d\n", errno);
- return errno;
-}
-
-/////////// To disconnect n_tracerouter and n_tracesink ////////
-
-// First make sure data through the ldiscs has stopped.
-
-// Second, disconnect ldiscs. This provides a
-// little cleaner shutdown on tty stack.
-sink_ldisc_num = 0;
-source_ldisc_num = 0;
-ioctl(g_fd_uart, TIOCSETD, &sink_ldisc_num);
-ioctl(g_fd_gadget, TIOCSETD, &source_ldisc_num);
-
-// Three, program closes connection, and cleanup:
-close(g_fd_uart);
-close(g_fd_gadget);
-g_fd_uart = g_fd_gadget = NULL;
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 47/79] docs: early-userspace: convert docs to ReST and rename to *.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (38 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 46/79] docs: pti_intel_mid.txt: convert it to pti_intel_mid.rst Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 48/79] docs: driver-model: " Mauro Carvalho Chehab
` (33 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet
The two files there describes a Kernel API feature, used to
support early userspace stuff. Prepare for moving them to
the kernel API book by converting to ReST format.
The conversion itself was quite trivial: just add/mark a few
titles as such, add a literal block markup, add a table markup
and a few blank lines, in order to make Sphinx to properly parse it.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
.../{buffer-format.txt => buffer-format.rst} | 19 +++++++++++++------
.../{README => early_userspace_support.rst} | 3 +++
Documentation/early-userspace/index.rst | 18 ++++++++++++++++++
Documentation/filesystems/nfs/nfsroot.txt | 2 +-
.../filesystems/ramfs-rootfs-initramfs.txt | 4 ++--
usr/Kconfig | 2 +-
6 files changed, 38 insertions(+), 10 deletions(-)
rename Documentation/early-userspace/{buffer-format.txt => buffer-format.rst} (91%)
rename Documentation/early-userspace/{README => early_userspace_support.rst} (99%)
create mode 100644 Documentation/early-userspace/index.rst
diff --git a/Documentation/early-userspace/buffer-format.txt b/Documentation/early-userspace/buffer-format.rst
similarity index 91%
rename from Documentation/early-userspace/buffer-format.txt
rename to Documentation/early-userspace/buffer-format.rst
index e1fd7f9dad16..7f74e301fdf3 100644
--- a/Documentation/early-userspace/buffer-format.txt
+++ b/Documentation/early-userspace/buffer-format.rst
@@ -1,8 +1,10 @@
- initramfs buffer format
- -----------------------
+=======================
+initramfs buffer format
+=======================
- Al Viro, H. Peter Anvin
- Last revision: 2002-01-13
+Al Viro, H. Peter Anvin
+
+Last revision: 2002-01-13
Starting with kernel 2.5.x, the old "initial ramdisk" protocol is
getting {replaced/complemented} with the new "initial ramfs"
@@ -18,7 +20,8 @@ archive can be compressed using gzip(1). One valid version of an
initramfs buffer is thus a single .cpio.gz file.
The full format of the initramfs buffer is defined by the following
-grammar, where:
+grammar, where::
+
* is used to indicate "0 or more occurrences of"
(|) indicates alternatives
+ indicates concatenation
@@ -49,7 +52,9 @@ hexadecimal ASCII numbers fully padded with '0' on the left to the
full width of the field, for example, the integer 4780 is represented
by the ASCII string "000012ac"):
+============= ================== ==============================================
Field name Field size Meaning
+============= ================== ==============================================
c_magic 6 bytes The string "070701" or "070702"
c_ino 8 bytes File inode number
c_mode 8 bytes File mode and permissions
@@ -65,6 +70,7 @@ c_rmin 8 bytes Minor part of device node reference
c_namesize 8 bytes Length of filename, including final \0
c_chksum 8 bytes Checksum of data field if c_magic is 070702;
otherwise zero
+============= ================== ==============================================
The c_mode field matches the contents of st_mode returned by stat(2)
on Linux, and encodes the file type and file permissions.
@@ -82,7 +88,8 @@ If the filename is "TRAILER!!!" this is actually an end-of-archive
marker; the c_filesize for an end-of-archive marker must be zero.
-*** Handling of hard links
+Handling of hard links
+======================
When a nondirectory with c_nlink > 1 is seen, the (c_maj,c_min,c_ino)
tuple is looked up in a tuple buffer. If not found, it is entered in
diff --git a/Documentation/early-userspace/README b/Documentation/early-userspace/early_userspace_support.rst
similarity index 99%
rename from Documentation/early-userspace/README
rename to Documentation/early-userspace/early_userspace_support.rst
index 955d667dc87e..3deefb34046b 100644
--- a/Documentation/early-userspace/README
+++ b/Documentation/early-userspace/early_userspace_support.rst
@@ -1,3 +1,4 @@
+=======================
Early userspace support
=======================
@@ -26,6 +27,7 @@ archive to be used as the image or have the kernel build process build
the image from specifications.
CPIO ARCHIVE method
+-------------------
You can create a cpio archive that contains the early userspace image.
Your cpio archive should be specified in CONFIG_INITRAMFS_SOURCE and it
@@ -34,6 +36,7 @@ CONFIG_INITRAMFS_SOURCE and directory and file names are not allowed in
combination with a cpio archive.
IMAGE BUILDING method
+---------------------
The kernel build process can also build an early userspace image from
source parts rather than supplying a cpio archive. This method provides
diff --git a/Documentation/early-userspace/index.rst b/Documentation/early-userspace/index.rst
new file mode 100644
index 000000000000..2b8eb6132058
--- /dev/null
+++ b/Documentation/early-userspace/index.rst
@@ -0,0 +1,18 @@
+:orphan:
+
+===============
+Early Userspace
+===============
+
+.. toctree::
+ :maxdepth: 1
+
+ early_userspace_support
+ buffer-format
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/filesystems/nfs/nfsroot.txt b/Documentation/filesystems/nfs/nfsroot.txt
index d2963123eb1c..4862d3d77e27 100644
--- a/Documentation/filesystems/nfs/nfsroot.txt
+++ b/Documentation/filesystems/nfs/nfsroot.txt
@@ -239,7 +239,7 @@ rdinit=<executable file>
A description of the process of mounting the root file system can be
found in:
- Documentation/early-userspace/README
+ Documentation/early-userspace/early_userspace_support.rst
diff --git a/Documentation/filesystems/ramfs-rootfs-initramfs.txt b/Documentation/filesystems/ramfs-rootfs-initramfs.txt
index 79637d227e85..fa985909dbca 100644
--- a/Documentation/filesystems/ramfs-rootfs-initramfs.txt
+++ b/Documentation/filesystems/ramfs-rootfs-initramfs.txt
@@ -105,7 +105,7 @@ All this differs from the old initrd in several ways:
- The old initrd file was a gzipped filesystem image (in some file format,
such as ext2, that needed a driver built into the kernel), while the new
initramfs archive is a gzipped cpio archive (like tar only simpler,
- see cpio(1) and Documentation/early-userspace/buffer-format.txt). The
+ see cpio(1) and Documentation/early-userspace/buffer-format.rst). The
kernel's cpio extraction code is not only extremely small, it's also
__init text and data that can be discarded during the boot process.
@@ -159,7 +159,7 @@ One advantage of the configuration file is that root access is not required to
set permissions or create device nodes in the new archive. (Note that those
two example "file" entries expect to find files named "init.sh" and "busybox" in
a directory called "initramfs", under the linux-2.6.* directory. See
-Documentation/early-userspace/README for more details.)
+Documentation/early-userspace/early_userspace_support.rst for more details.)
The kernel does not depend on external cpio tools. If you specify a
directory instead of a configuration file, the kernel's build infrastructure
diff --git a/usr/Kconfig b/usr/Kconfig
index 43658b8a975e..86e37e297278 100644
--- a/usr/Kconfig
+++ b/usr/Kconfig
@@ -18,7 +18,7 @@ config INITRAMFS_SOURCE
When multiple directories and files are specified then the
initramfs image will be the aggregate of all of them.
- See <file:Documentation/early-userspace/README> for more details.
+ See <file:Documentation/early-userspace/early_userspace_support.rst> for more details.
If you are not sure, leave it blank.
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 48/79] docs: driver-model: convert docs to ReST and rename to *.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (39 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 47/79] docs: early-userspace: convert docs to ReST and rename to *.rst Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 14:47 ` Julia Lawall
2019-04-22 22:30 ` Guenter Roeck
2019-04-22 13:27 ` [PATCH v2 50/79] docs: memory-devices: convert ti-emif.txt to ReST Mauro Carvalho Chehab
` (32 subsequent siblings)
73 siblings, 2 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Linus Walleij, Bartosz Golaszewski, Jean Delvare,
Guenter Roeck, Greg Kroah-Hartman, Rafael J. Wysocki,
Jeff Kirsher, David S. Miller, Julia Lawall, Gilles Muller,
Nicolas Palix, Michal Marek, linux-gpio, linux-hwmon,
intel-wired-lan, netdev, cocci
Convert the various documents at the driver-model, preparing
them to be part of the driver-api book.
The conversion is actually:
- add blank lines and identation in order to identify paragraphs;
- fix tables markups;
- add some lists markups;
- mark literal blocks;
- adjust title markups.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/driver-api/gpio/driver.rst | 2 +-
.../driver-model/{binding.txt => binding.rst} | 20 +-
.../driver-model/{bus.txt => bus.rst} | 69 ++--
.../driver-model/{class.txt => class.rst} | 74 ++--
...esign-patterns.txt => design-patterns.rst} | 106 +++---
.../driver-model/{device.txt => device.rst} | 57 +--
.../driver-model/{devres.txt => devres.rst} | 50 +--
.../driver-model/{driver.txt => driver.rst} | 112 +++---
Documentation/driver-model/index.rst | 26 ++
.../{overview.txt => overview.rst} | 37 +-
.../{platform.txt => platform.rst} | 30 +-
.../driver-model/{porting.txt => porting.rst} | 333 +++++++++---------
Documentation/eisa.txt | 4 +-
Documentation/hwmon/submitting-patches.rst | 2 +-
drivers/base/platform.c | 2 +-
drivers/gpio/gpio-cs5535.c | 2 +-
drivers/net/ethernet/intel/ice/ice_main.c | 2 +-
scripts/coccinelle/free/devm_free.cocci | 2 +-
18 files changed, 489 insertions(+), 441 deletions(-)
rename Documentation/driver-model/{binding.txt => binding.rst} (92%)
rename Documentation/driver-model/{bus.txt => bus.rst} (76%)
rename Documentation/driver-model/{class.txt => class.rst} (75%)
rename Documentation/driver-model/{design-patterns.txt => design-patterns.rst} (59%)
rename Documentation/driver-model/{device.txt => device.rst} (71%)
rename Documentation/driver-model/{devres.txt => devres.rst} (93%)
rename Documentation/driver-model/{driver.txt => driver.rst} (75%)
create mode 100644 Documentation/driver-model/index.rst
rename Documentation/driver-model/{overview.txt => overview.rst} (90%)
rename Documentation/driver-model/{platform.txt => platform.rst} (95%)
rename Documentation/driver-model/{porting.txt => porting.rst} (62%)
diff --git a/Documentation/driver-api/gpio/driver.rst b/Documentation/driver-api/gpio/driver.rst
index 3043167fc557..0eb083baab9e 100644
--- a/Documentation/driver-api/gpio/driver.rst
+++ b/Documentation/driver-api/gpio/driver.rst
@@ -303,7 +303,7 @@ symbol:
the struct gpio_chip* for the chip to all IRQ callbacks, so the callbacks
need to embed the gpio_chip in its state container and obtain a pointer
to the container using container_of().
- (See Documentation/driver-model/design-patterns.txt)
+ (See Documentation/driver-model/design-patterns.rst)
* gpiochip_irqchip_add_nested(): adds a nested irqchip to a gpiochip.
Apart from that it works exactly like the chained irqchip.
diff --git a/Documentation/driver-model/binding.txt b/Documentation/driver-model/binding.rst
similarity index 92%
rename from Documentation/driver-model/binding.txt
rename to Documentation/driver-model/binding.rst
index abfc8e290d53..7ea1d7a41e1d 100644
--- a/Documentation/driver-model/binding.txt
+++ b/Documentation/driver-model/binding.rst
@@ -1,5 +1,6 @@
-
+==============
Driver Binding
+==============
Driver binding is the process of associating a device with a device
driver that can control it. Bus drivers have typically handled this
@@ -25,7 +26,7 @@ device_register
When a new device is added, the bus's list of drivers is iterated over
to find one that supports it. In order to determine that, the device
ID of the device must match one of the device IDs that the driver
-supports. The format and semantics for comparing IDs is bus-specific.
+supports. The format and semantics for comparing IDs is bus-specific.
Instead of trying to derive a complex state machine and matching
algorithm, it is up to the bus driver to provide a callback to compare
a device against the IDs of a driver. The bus returns 1 if a match was
@@ -36,14 +37,14 @@ int match(struct device * dev, struct device_driver * drv);
If a match is found, the device's driver field is set to the driver
and the driver's probe callback is called. This gives the driver a
chance to verify that it really does support the hardware, and that
-it's in a working state.
+it's in a working state.
Device Class
~~~~~~~~~~~~
Upon the successful completion of probe, the device is registered with
the class to which it belongs. Device drivers belong to one and only one
-class, and that is set in the driver's devclass field.
+class, and that is set in the driver's devclass field.
devclass_add_device is called to enumerate the device within the class
and actually register it with the class, which happens with the
class's register_dev callback.
@@ -53,7 +54,7 @@ Driver
~~~~~~
When a driver is attached to a device, the device is inserted into the
-driver's list of devices.
+driver's list of devices.
sysfs
@@ -67,18 +68,18 @@ to the device's directory in the physical hierarchy.
A directory for the device is created in the class's directory. A
symlink is created in that directory that points to the device's
-physical location in the sysfs tree.
+physical location in the sysfs tree.
A symlink can be created (though this isn't done yet) in the device's
physical directory to either its class directory, or the class's
top-level directory. One can also be created to point to its driver's
-directory also.
+directory also.
driver_register
~~~~~~~~~~~~~~~
-The process is almost identical for when a new driver is added.
+The process is almost identical for when a new driver is added.
The bus's list of devices is iterated over to find a match. Devices
that already have a driver are skipped. All the devices are iterated
over, to bind as many devices as possible to the driver.
@@ -94,5 +95,4 @@ of the driver is decremented. All symlinks between the two are removed.
When a driver is removed, the list of devices that it supports is
iterated over, and the driver's remove callback is called for each
-one. The device is removed from that list and the symlinks removed.
-
+one. The device is removed from that list and the symlinks removed.
diff --git a/Documentation/driver-model/bus.txt b/Documentation/driver-model/bus.rst
similarity index 76%
rename from Documentation/driver-model/bus.txt
rename to Documentation/driver-model/bus.rst
index c247b488a567..016b15a6e8ea 100644
--- a/Documentation/driver-model/bus.txt
+++ b/Documentation/driver-model/bus.rst
@@ -1,5 +1,6 @@
-
-Bus Types
+=========
+Bus Types
+=========
Definition
~~~~~~~~~~
@@ -13,12 +14,12 @@ Declaration
Each bus type in the kernel (PCI, USB, etc) should declare one static
object of this type. They must initialize the name field, and may
-optionally initialize the match callback.
+optionally initialize the match callback::
-struct bus_type pci_bus_type = {
- .name = "pci",
- .match = pci_bus_match,
-};
+ struct bus_type pci_bus_type = {
+ .name = "pci",
+ .match = pci_bus_match,
+ };
The structure should be exported to drivers in a header file:
@@ -30,8 +31,8 @@ Registration
When a bus driver is initialized, it calls bus_register. This
initializes the rest of the fields in the bus object and inserts it
-into a global list of bus types. Once the bus object is registered,
-the fields in it are usable by the bus driver.
+into a global list of bus types. Once the bus object is registered,
+the fields in it are usable by the bus driver.
Callbacks
@@ -43,17 +44,17 @@ match(): Attaching Drivers to Devices
The format of device ID structures and the semantics for comparing
them are inherently bus-specific. Drivers typically declare an array
of device IDs of devices they support that reside in a bus-specific
-driver structure.
+driver structure.
The purpose of the match callback is to give the bus an opportunity to
determine if a particular driver supports a particular device by
comparing the device IDs the driver supports with the device ID of a
particular device, without sacrificing bus-specific functionality or
-type-safety.
+type-safety.
When a driver is registered with the bus, the bus's list of devices is
iterated over, and the match callback is called for each device that
-does not have a driver associated with it.
+does not have a driver associated with it.
@@ -64,22 +65,23 @@ The lists of devices and drivers are intended to replace the local
lists that many buses keep. They are lists of struct devices and
struct device_drivers, respectively. Bus drivers are free to use the
lists as they please, but conversion to the bus-specific type may be
-necessary.
+necessary.
-The LDM core provides helper functions for iterating over each list.
+The LDM core provides helper functions for iterating over each list::
-int bus_for_each_dev(struct bus_type * bus, struct device * start, void * data,
- int (*fn)(struct device *, void *));
+ int bus_for_each_dev(struct bus_type * bus, struct device * start,
+ void * data,
+ int (*fn)(struct device *, void *));
-int bus_for_each_drv(struct bus_type * bus, struct device_driver * start,
- void * data, int (*fn)(struct device_driver *, void *));
+ int bus_for_each_drv(struct bus_type * bus, struct device_driver * start,
+ void * data, int (*fn)(struct device_driver *, void *));
These helpers iterate over the respective list, and call the callback
for each device or driver in the list. All list accesses are
synchronized by taking the bus's lock (read currently). The reference
count on each object in the list is incremented before the callback is
called; it is decremented after the next object has been obtained. The
-lock is not held when calling the callback.
+lock is not held when calling the callback.
sysfs
@@ -87,14 +89,14 @@ sysfs
There is a top-level directory named 'bus'.
Each bus gets a directory in the bus directory, along with two default
-directories:
+directories::
/sys/bus/pci/
|-- devices
`-- drivers
Drivers registered with the bus get a directory in the bus's drivers
-directory:
+directory::
/sys/bus/pci/
|-- devices
@@ -106,7 +108,7 @@ directory:
Each device that is discovered on a bus of that type gets a symlink in
the bus's devices directory to the device's directory in the physical
-hierarchy:
+hierarchy::
/sys/bus/pci/
|-- devices
@@ -118,26 +120,27 @@ hierarchy:
Exporting Attributes
~~~~~~~~~~~~~~~~~~~~
-struct bus_attribute {
+
+::
+
+ struct bus_attribute {
struct attribute attr;
ssize_t (*show)(struct bus_type *, char * buf);
ssize_t (*store)(struct bus_type *, const char * buf, size_t count);
-};
+ };
Bus drivers can export attributes using the BUS_ATTR_RW macro that works
similarly to the DEVICE_ATTR_RW macro for devices. For example, a
-definition like this:
+definition like this::
-static BUS_ATTR_RW(debug);
+ static BUS_ATTR_RW(debug);
-is equivalent to declaring:
+is equivalent to declaring::
-static bus_attribute bus_attr_debug;
+ static bus_attribute bus_attr_debug;
This can then be used to add and remove the attribute from the bus's
-sysfs directory using:
-
-int bus_create_file(struct bus_type *, struct bus_attribute *);
-void bus_remove_file(struct bus_type *, struct bus_attribute *);
-
+sysfs directory using::
+ int bus_create_file(struct bus_type *, struct bus_attribute *);
+ void bus_remove_file(struct bus_type *, struct bus_attribute *);
diff --git a/Documentation/driver-model/class.txt b/Documentation/driver-model/class.rst
similarity index 75%
rename from Documentation/driver-model/class.txt
rename to Documentation/driver-model/class.rst
index 1fefc480a80b..fff55b80e86a 100644
--- a/Documentation/driver-model/class.txt
+++ b/Documentation/driver-model/class.rst
@@ -1,6 +1,6 @@
-
+==============
Device Classes
-
+==============
Introduction
~~~~~~~~~~~~
@@ -13,37 +13,37 @@ device. The following device classes have been identified:
Each device class defines a set of semantics and a programming interface
that devices of that class adhere to. Device drivers are the
implementation of that programming interface for a particular device on
-a particular bus.
+a particular bus.
Device classes are agnostic with respect to what bus a device resides
-on.
+on.
Programming Interface
~~~~~~~~~~~~~~~~~~~~~
-The device class structure looks like:
+The device class structure looks like::
-typedef int (*devclass_add)(struct device *);
-typedef void (*devclass_remove)(struct device *);
+ typedef int (*devclass_add)(struct device *);
+ typedef void (*devclass_remove)(struct device *);
See the kerneldoc for the struct class.
-A typical device class definition would look like:
+A typical device class definition would look like::
-struct device_class input_devclass = {
+ struct device_class input_devclass = {
.name = "input",
.add_device = input_add_device,
.remove_device = input_remove_device,
-};
+ };
Each device class structure should be exported in a header file so it
can be used by drivers, extensions and interfaces.
-Device classes are registered and unregistered with the core using:
+Device classes are registered and unregistered with the core using::
-int devclass_register(struct device_class * cls);
-void devclass_unregister(struct device_class * cls);
+ int devclass_register(struct device_class * cls);
+ void devclass_unregister(struct device_class * cls);
Devices
@@ -52,16 +52,16 @@ As devices are bound to drivers, they are added to the device class
that the driver belongs to. Before the driver model core, this would
typically happen during the driver's probe() callback, once the device
has been initialized. It now happens after the probe() callback
-finishes from the core.
+finishes from the core.
The device is enumerated in the class. Each time a device is added to
the class, the class's devnum field is incremented and assigned to the
device. The field is never decremented, so if the device is removed
from the class and re-added, it will receive a different enumerated
-value.
+value.
The class is allowed to create a class-specific structure for the
-device and store it in the device's class_data pointer.
+device and store it in the device's class_data pointer.
There is no list of devices in the device class. Each driver has a
list of devices that it supports. The device class has a list of
@@ -73,15 +73,15 @@ Device Drivers
~~~~~~~~~~~~~~
Device drivers are added to device classes when they are registered
with the core. A driver specifies the class it belongs to by setting
-the struct device_driver::devclass field.
+the struct device_driver::devclass field.
sysfs directory structure
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-There is a top-level sysfs directory named 'class'.
+There is a top-level sysfs directory named 'class'.
Each class gets a directory in the class directory, along with two
-default subdirectories:
+default subdirectories::
class/
`-- input
@@ -89,8 +89,8 @@ default subdirectories:
`-- drivers
-Drivers registered with the class get a symlink in the drivers/ directory
-that points to the driver's directory (under its bus directory):
+Drivers registered with the class get a symlink in the drivers/ directory
+that points to the driver's directory (under its bus directory)::
class/
`-- input
@@ -99,8 +99,8 @@ that points to the driver's directory (under its bus directory):
`-- usb:usb_mouse -> ../../../bus/drivers/usb_mouse/
-Each device gets a symlink in the devices/ directory that points to the
-device's directory in the physical hierarchy:
+Each device gets a symlink in the devices/ directory that points to the
+device's directory in the physical hierarchy::
class/
`-- input
@@ -111,37 +111,39 @@ device's directory in the physical hierarchy:
Exporting Attributes
~~~~~~~~~~~~~~~~~~~~
-struct devclass_attribute {
+
+::
+
+ struct devclass_attribute {
struct attribute attr;
ssize_t (*show)(struct device_class *, char * buf, size_t count, loff_t off);
ssize_t (*store)(struct device_class *, const char * buf, size_t count, loff_t off);
-};
+ };
Class drivers can export attributes using the DEVCLASS_ATTR macro that works
-similarly to the DEVICE_ATTR macro for devices. For example, a definition
-like this:
+similarly to the DEVICE_ATTR macro for devices. For example, a definition
+like this::
-static DEVCLASS_ATTR(debug,0644,show_debug,store_debug);
+ static DEVCLASS_ATTR(debug,0644,show_debug,store_debug);
-is equivalent to declaring:
+is equivalent to declaring::
-static devclass_attribute devclass_attr_debug;
+ static devclass_attribute devclass_attr_debug;
The bus driver can add and remove the attribute from the class's
-sysfs directory using:
+sysfs directory using::
-int devclass_create_file(struct device_class *, struct devclass_attribute *);
-void devclass_remove_file(struct device_class *, struct devclass_attribute *);
+ int devclass_create_file(struct device_class *, struct devclass_attribute *);
+ void devclass_remove_file(struct device_class *, struct devclass_attribute *);
In the example above, the file will be named 'debug' in placed in the
-class's directory in sysfs.
+class's directory in sysfs.
Interfaces
~~~~~~~~~~
There may exist multiple mechanisms for accessing the same device of a
-particular class type. Device interfaces describe these mechanisms.
+particular class type. Device interfaces describe these mechanisms.
When a device is added to a device class, the core attempts to add it
to every interface that is registered with the device class.
-
diff --git a/Documentation/driver-model/design-patterns.txt b/Documentation/driver-model/design-patterns.rst
similarity index 59%
rename from Documentation/driver-model/design-patterns.txt
rename to Documentation/driver-model/design-patterns.rst
index ba7b2df64904..41eb8f41f7dd 100644
--- a/Documentation/driver-model/design-patterns.txt
+++ b/Documentation/driver-model/design-patterns.rst
@@ -1,6 +1,6 @@
-
+=============================
Device Driver Design Patterns
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+=============================
This document describes a few common design patterns found in device drivers.
It is likely that subsystem maintainers will ask driver developers to
@@ -19,23 +19,23 @@ that the device the driver binds to will appear in several instances. This
means that the probe() function and all callbacks need to be reentrant.
The most common way to achieve this is to use the state container design
-pattern. It usually has this form:
+pattern. It usually has this form::
-struct foo {
- spinlock_t lock; /* Example member */
- (...)
-};
+ struct foo {
+ spinlock_t lock; /* Example member */
+ (...)
+ };
-static int foo_probe(...)
-{
- struct foo *foo;
+ static int foo_probe(...)
+ {
+ struct foo *foo;
- foo = devm_kzalloc(dev, sizeof(*foo), GFP_KERNEL);
- if (!foo)
- return -ENOMEM;
- spin_lock_init(&foo->lock);
- (...)
-}
+ foo = devm_kzalloc(dev, sizeof(*foo), GFP_KERNEL);
+ if (!foo)
+ return -ENOMEM;
+ spin_lock_init(&foo->lock);
+ (...)
+ }
This will create an instance of struct foo in memory every time probe() is
called. This is our state container for this instance of the device driver.
@@ -43,21 +43,21 @@ Of course it is then necessary to always pass this instance of the
state around to all functions that need access to the state and its members.
For example, if the driver is registering an interrupt handler, you would
-pass around a pointer to struct foo like this:
+pass around a pointer to struct foo like this::
-static irqreturn_t foo_handler(int irq, void *arg)
-{
- struct foo *foo = arg;
- (...)
-}
+ static irqreturn_t foo_handler(int irq, void *arg)
+ {
+ struct foo *foo = arg;
+ (...)
+ }
-static int foo_probe(...)
-{
- struct foo *foo;
+ static int foo_probe(...)
+ {
+ struct foo *foo;
- (...)
- ret = request_irq(irq, foo_handler, 0, "foo", foo);
-}
+ (...)
+ ret = request_irq(irq, foo_handler, 0, "foo", foo);
+ }
This way you always get a pointer back to the correct instance of foo in
your interrupt handler.
@@ -66,38 +66,38 @@ your interrupt handler.
2. container_of()
~~~~~~~~~~~~~~~~~
-Continuing on the above example we add an offloaded work:
+Continuing on the above example we add an offloaded work::
-struct foo {
- spinlock_t lock;
- struct workqueue_struct *wq;
- struct work_struct offload;
- (...)
-};
+ struct foo {
+ spinlock_t lock;
+ struct workqueue_struct *wq;
+ struct work_struct offload;
+ (...)
+ };
-static void foo_work(struct work_struct *work)
-{
- struct foo *foo = container_of(work, struct foo, offload);
+ static void foo_work(struct work_struct *work)
+ {
+ struct foo *foo = container_of(work, struct foo, offload);
- (...)
-}
+ (...)
+ }
-static irqreturn_t foo_handler(int irq, void *arg)
-{
- struct foo *foo = arg;
+ static irqreturn_t foo_handler(int irq, void *arg)
+ {
+ struct foo *foo = arg;
- queue_work(foo->wq, &foo->offload);
- (...)
-}
+ queue_work(foo->wq, &foo->offload);
+ (...)
+ }
-static int foo_probe(...)
-{
- struct foo *foo;
+ static int foo_probe(...)
+ {
+ struct foo *foo;
- foo->wq = create_singlethread_workqueue("foo-wq");
- INIT_WORK(&foo->offload, foo_work);
- (...)
-}
+ foo->wq = create_singlethread_workqueue("foo-wq");
+ INIT_WORK(&foo->offload, foo_work);
+ (...)
+ }
The design pattern is the same for an hrtimer or something similar that will
return a single argument which is a pointer to a struct member in the
diff --git a/Documentation/driver-model/device.txt b/Documentation/driver-model/device.rst
similarity index 71%
rename from Documentation/driver-model/device.txt
rename to Documentation/driver-model/device.rst
index 2403eb856187..2b868d49d349 100644
--- a/Documentation/driver-model/device.txt
+++ b/Documentation/driver-model/device.rst
@@ -1,6 +1,6 @@
-
+==========================
The Basic Device Structure
-~~~~~~~~~~~~~~~~~~~~~~~~~~
+==========================
See the kerneldoc for the struct device.
@@ -8,9 +8,9 @@ See the kerneldoc for the struct device.
Programming Interface
~~~~~~~~~~~~~~~~~~~~~
The bus driver that discovers the device uses this to register the
-device with the core:
+device with the core::
-int device_register(struct device * dev);
+ int device_register(struct device * dev);
The bus should initialize the following fields:
@@ -20,30 +20,33 @@ The bus should initialize the following fields:
- bus
A device is removed from the core when its reference count goes to
-0. The reference count can be adjusted using:
+0. The reference count can be adjusted using::
-struct device * get_device(struct device * dev);
-void put_device(struct device * dev);
+ struct device * get_device(struct device * dev);
+ void put_device(struct device * dev);
get_device() will return a pointer to the struct device passed to it
if the reference is not already 0 (if it's in the process of being
removed already).
-A driver can access the lock in the device structure using:
+A driver can access the lock in the device structure using::
-void lock_device(struct device * dev);
-void unlock_device(struct device * dev);
+ void lock_device(struct device * dev);
+ void unlock_device(struct device * dev);
Attributes
~~~~~~~~~~
-struct device_attribute {
+
+::
+
+ struct device_attribute {
struct attribute attr;
ssize_t (*show)(struct device *dev, struct device_attribute *attr,
char *buf);
ssize_t (*store)(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count);
-};
+ };
Attributes of devices can be exported by a device driver through sysfs.
@@ -54,39 +57,39 @@ As explained in Documentation/kobject.txt, device attributes must be
created before the KOBJ_ADD uevent is generated. The only way to realize
that is by defining an attribute group.
-Attributes are declared using a macro called DEVICE_ATTR:
+Attributes are declared using a macro called DEVICE_ATTR::
-#define DEVICE_ATTR(name,mode,show,store)
+ #define DEVICE_ATTR(name,mode,show,store)
-Example:
+Example:::
-static DEVICE_ATTR(type, 0444, show_type, NULL);
-static DEVICE_ATTR(power, 0644, show_power, store_power);
+ static DEVICE_ATTR(type, 0444, show_type, NULL);
+ static DEVICE_ATTR(power, 0644, show_power, store_power);
This declares two structures of type struct device_attribute with respective
names 'dev_attr_type' and 'dev_attr_power'. These two attributes can be
-organized as follows into a group:
+organized as follows into a group::
-static struct attribute *dev_attrs[] = {
+ static struct attribute *dev_attrs[] = {
&dev_attr_type.attr,
&dev_attr_power.attr,
NULL,
-};
+ };
-static struct attribute_group dev_attr_group = {
+ static struct attribute_group dev_attr_group = {
.attrs = dev_attrs,
-};
+ };
-static const struct attribute_group *dev_attr_groups[] = {
+ static const struct attribute_group *dev_attr_groups[] = {
&dev_attr_group,
NULL,
-};
+ };
This array of groups can then be associated with a device by setting the
-group pointer in struct device before device_register() is invoked:
+group pointer in struct device before device_register() is invoked::
- dev->groups = dev_attr_groups;
- device_register(dev);
+ dev->groups = dev_attr_groups;
+ device_register(dev);
The device_register() function will use the 'groups' pointer to create the
device attributes and the device_unregister() function will use this pointer
diff --git a/Documentation/driver-model/devres.txt b/Documentation/driver-model/devres.rst
similarity index 93%
rename from Documentation/driver-model/devres.txt
rename to Documentation/driver-model/devres.rst
index 99994a461359..4f88bdd7d555 100644
--- a/Documentation/driver-model/devres.txt
+++ b/Documentation/driver-model/devres.rst
@@ -1,3 +1,4 @@
+================================
Devres - Managed Device Resource
================================
@@ -5,17 +6,18 @@ Tejun Heo <teheo@suse.de>
First draft 10 January 2007
+.. contents
-1. Intro : Huh? Devres?
-2. Devres : Devres in a nutshell
-3. Devres Group : Group devres'es and release them together
-4. Details : Life time rules, calling context, ...
-5. Overhead : How much do we have to pay for this?
-6. List of managed interfaces : Currently implemented managed interfaces
+ 1. Intro : Huh? Devres?
+ 2. Devres : Devres in a nutshell
+ 3. Devres Group : Group devres'es and release them together
+ 4. Details : Life time rules, calling context, ...
+ 5. Overhead : How much do we have to pay for this?
+ 6. List of managed interfaces: Currently implemented managed interfaces
- 1. Intro
- --------
+1. Intro
+--------
devres came up while trying to convert libata to use iomap. Each
iomapped address should be kept and unmapped on driver detach. For
@@ -42,8 +44,8 @@ would leak resources or even cause oops when failure occurs. iomap
adds more to this mix. So do msi and msix.
- 2. Devres
- ---------
+2. Devres
+---------
devres is basically linked list of arbitrarily sized memory areas
associated with a struct device. Each devres entry is associated with
@@ -58,7 +60,7 @@ using dma_alloc_coherent(). The managed version is called
dmam_alloc_coherent(). It is identical to dma_alloc_coherent() except
for the DMA memory allocated using it is managed and will be
automatically released on driver detach. Implementation looks like
-the following.
+the following::
struct dma_devres {
size_t size;
@@ -98,7 +100,7 @@ If a driver uses dmam_alloc_coherent(), the area is guaranteed to be
freed whether initialization fails half-way or the device gets
detached. If most resources are acquired using managed interface, a
driver can have much simpler init and exit code. Init path basically
-looks like the following.
+looks like the following::
my_init_one()
{
@@ -119,7 +121,7 @@ looks like the following.
return register_to_upper_layer(d);
}
-And exit path,
+And exit path::
my_remove_one()
{
@@ -140,13 +142,13 @@ on you. In some cases this may mean introducing checks that were not
necessary before moving to the managed devm_* calls.
- 3. Devres group
- ---------------
+3. Devres group
+---------------
Devres entries can be grouped using devres group. When a group is
released, all contained normal devres entries and properly nested
groups are released. One usage is to rollback series of acquired
-resources on failure. For example,
+resources on failure. For example::
if (!devres_open_group(dev, NULL, GFP_KERNEL))
return -ENOMEM;
@@ -172,7 +174,7 @@ like above are usually useful in midlayer driver (e.g. libata core
layer) where interface function shouldn't have side effect on failure.
For LLDs, just returning error code suffices in most cases.
-Each group is identified by void *id. It can either be explicitly
+Each group is identified by `void *id`. It can either be explicitly
specified by @id argument to devres_open_group() or automatically
created by passing NULL as @id as in the above example. In both
cases, devres_open_group() returns the group's id. The returned id
@@ -180,7 +182,7 @@ can be passed to other devres functions to select the target group.
If NULL is given to those functions, the latest open group is
selected.
-For example, you can do something like the following.
+For example, you can do something like the following::
int my_midlayer_create_something()
{
@@ -199,8 +201,8 @@ For example, you can do something like the following.
}
- 4. Details
- ----------
+4. Details
+----------
Lifetime of a devres entry begins on devres allocation and finishes
when it is released or destroyed (removed and freed) - no reference
@@ -220,8 +222,8 @@ All devres interface functions can be called without context if the
right gfp mask is given.
- 5. Overhead
- -----------
+5. Overhead
+-----------
Each devres bookkeeping info is allocated together with requested data
area. With debug option turned off, bookkeeping info occupies 16
@@ -237,8 +239,8 @@ and 400 bytes on 32bit machine after naive conversion (we can
certainly invest a bit more effort into libata core layer).
- 6. List of managed interfaces
- -----------------------------
+6. List of managed interfaces
+-----------------------------
CLOCK
devm_clk_get()
diff --git a/Documentation/driver-model/driver.txt b/Documentation/driver-model/driver.rst
similarity index 75%
rename from Documentation/driver-model/driver.txt
rename to Documentation/driver-model/driver.rst
index d661e6f7e6a0..11d281506a04 100644
--- a/Documentation/driver-model/driver.txt
+++ b/Documentation/driver-model/driver.rst
@@ -1,5 +1,6 @@
-
+==============
Device Drivers
+==============
See the kerneldoc for the struct device_driver.
@@ -26,50 +27,50 @@ Declaration
As stated above, struct device_driver objects are statically
allocated. Below is an example declaration of the eepro100
driver. This declaration is hypothetical only; it relies on the driver
-being converted completely to the new model.
+being converted completely to the new model::
-static struct device_driver eepro100_driver = {
- .name = "eepro100",
- .bus = &pci_bus_type,
-
- .probe = eepro100_probe,
- .remove = eepro100_remove,
- .suspend = eepro100_suspend,
- .resume = eepro100_resume,
-};
+ static struct device_driver eepro100_driver = {
+ .name = "eepro100",
+ .bus = &pci_bus_type,
+
+ .probe = eepro100_probe,
+ .remove = eepro100_remove,
+ .suspend = eepro100_suspend,
+ .resume = eepro100_resume,
+ };
Most drivers will not be able to be converted completely to the new
model because the bus they belong to has a bus-specific structure with
-bus-specific fields that cannot be generalized.
+bus-specific fields that cannot be generalized.
The most common example of this are device ID structures. A driver
typically defines an array of device IDs that it supports. The format
of these structures and the semantics for comparing device IDs are
completely bus-specific. Defining them as bus-specific entities would
-sacrifice type-safety, so we keep bus-specific structures around.
+sacrifice type-safety, so we keep bus-specific structures around.
Bus-specific drivers should include a generic struct device_driver in
-the definition of the bus-specific driver. Like this:
+the definition of the bus-specific driver. Like this::
-struct pci_driver {
- const struct pci_device_id *id_table;
- struct device_driver driver;
-};
+ struct pci_driver {
+ const struct pci_device_id *id_table;
+ struct device_driver driver;
+ };
A definition that included bus-specific fields would look like
-(using the eepro100 driver again):
+(using the eepro100 driver again)::
-static struct pci_driver eepro100_driver = {
- .id_table = eepro100_pci_tbl,
- .driver = {
+ static struct pci_driver eepro100_driver = {
+ .id_table = eepro100_pci_tbl,
+ .driver = {
.name = "eepro100",
.bus = &pci_bus_type,
.probe = eepro100_probe,
.remove = eepro100_remove,
.suspend = eepro100_suspend,
.resume = eepro100_resume,
- },
-};
+ },
+ };
Some may find the syntax of embedded struct initialization awkward or
even a bit ugly. So far, it's the best way we've found to do what we want...
@@ -77,12 +78,14 @@ even a bit ugly. So far, it's the best way we've found to do what we want...
Registration
~~~~~~~~~~~~
-int driver_register(struct device_driver * drv);
+::
+
+ int driver_register(struct device_driver *drv);
The driver registers the structure on startup. For drivers that have
no bus-specific fields (i.e. don't have a bus-specific driver
structure), they would use driver_register and pass a pointer to their
-struct device_driver object.
+struct device_driver object.
Most drivers, however, will have a bus-specific structure and will
need to register with the bus using something like pci_driver_register.
@@ -101,7 +104,7 @@ By defining wrapper functions, the transition to the new model can be
made easier. Drivers can ignore the generic structure altogether and
let the bus wrapper fill in the fields. For the callbacks, the bus can
define generic callbacks that forward the call to the bus-specific
-callbacks of the drivers.
+callbacks of the drivers.
This solution is intended to be only temporary. In order to get class
information in the driver, the drivers must be modified anyway. Since
@@ -113,16 +116,16 @@ Access
~~~~~~
Once the object has been registered, it may access the common fields of
-the object, like the lock and the list of devices.
+the object, like the lock and the list of devices::
-int driver_for_each_dev(struct device_driver * drv, void * data,
- int (*callback)(struct device * dev, void * data));
+ int driver_for_each_dev(struct device_driver *drv, void *data,
+ int (*callback)(struct device *dev, void *data));
The devices field is a list of all the devices that have been bound to
the driver. The LDM core provides a helper function to operate on all
the devices a driver controls. This helper locks the driver on each
node access, and does proper reference counting on each device as it
-accesses it.
+accesses it.
sysfs
@@ -142,7 +145,9 @@ supports.
Callbacks
~~~~~~~~~
- int (*probe) (struct device * dev);
+::
+
+ int (*probe) (struct device *dev);
The probe() entry is called in task context, with the bus's rwsem locked
and the driver partially bound to the device. Drivers commonly use
@@ -162,9 +167,9 @@ the driver to that device.
A driver's probe() may return a negative errno value to indicate that
the driver did not bind to this device, in which case it should have
-released all resources it allocated.
+released all resources it allocated::
- int (*remove) (struct device * dev);
+ int (*remove) (struct device *dev);
remove is called to unbind a driver from a device. This may be
called if a device is physically removed from the system, if the
@@ -173,43 +178,46 @@ in other cases.
It is up to the driver to determine if the device is present or
not. It should free any resources allocated specifically for the
-device; i.e. anything in the device's driver_data field.
+device; i.e. anything in the device's driver_data field.
If the device is still present, it should quiesce the device and place
-it into a supported low-power state.
+it into a supported low-power state::
- int (*suspend) (struct device * dev, pm_message_t state);
+ int (*suspend) (struct device *dev, pm_message_t state);
-suspend is called to put the device in a low power state.
+suspend is called to put the device in a low power state::
- int (*resume) (struct device * dev);
+ int (*resume) (struct device *dev);
Resume is used to bring a device back from a low power state.
Attributes
~~~~~~~~~~
-struct driver_attribute {
- struct attribute attr;
- ssize_t (*show)(struct device_driver *driver, char *buf);
- ssize_t (*store)(struct device_driver *, const char * buf, size_t count);
-};
-Device drivers can export attributes via their sysfs directories.
+::
+
+ struct driver_attribute {
+ struct attribute attr;
+ ssize_t (*show)(struct device_driver *driver, char *buf);
+ ssize_t (*store)(struct device_driver *, const char *buf, size_t count);
+ };
+
+Device drivers can export attributes via their sysfs directories.
Drivers can declare attributes using a DRIVER_ATTR_RW and DRIVER_ATTR_RO
macro that works identically to the DEVICE_ATTR_RW and DEVICE_ATTR_RO
macros.
-Example:
+Example::
-DRIVER_ATTR_RW(debug);
+ DRIVER_ATTR_RW(debug);
-This is equivalent to declaring:
+This is equivalent to declaring::
-struct driver_attribute driver_attr_debug;
+ struct driver_attribute driver_attr_debug;
This can then be used to add and remove the attribute from the
-driver's directory using:
+driver's directory using::
-int driver_create_file(struct device_driver *, const struct driver_attribute *);
-void driver_remove_file(struct device_driver *, const struct driver_attribute *);
+ int driver_create_file(struct device_driver *, const struct driver_attribute *);
+ void driver_remove_file(struct device_driver *, const struct driver_attribute *);
diff --git a/Documentation/driver-model/index.rst b/Documentation/driver-model/index.rst
new file mode 100644
index 000000000000..9f85d579ce56
--- /dev/null
+++ b/Documentation/driver-model/index.rst
@@ -0,0 +1,26 @@
+:orphan:
+
+============
+Driver Model
+============
+
+.. toctree::
+ :maxdepth: 1
+
+ binding
+ bus
+ class
+ design-patterns
+ device
+ devres
+ driver
+ overview
+ platform
+ porting
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/driver-model/overview.txt b/Documentation/driver-model/overview.rst
similarity index 90%
rename from Documentation/driver-model/overview.txt
rename to Documentation/driver-model/overview.rst
index 6a8f9a8075d8..d4d1e9b40e0c 100644
--- a/Documentation/driver-model/overview.txt
+++ b/Documentation/driver-model/overview.rst
@@ -1,4 +1,6 @@
+=============================
The Linux Kernel Device Model
+=============================
Patrick Mochel <mochel@digitalimplant.org>
@@ -41,14 +43,14 @@ data structure. These fields must still be accessed by the bus layers,
and sometimes by the device-specific drivers.
Other bus layers are encouraged to do what has been done for the PCI layer.
-struct pci_dev now looks like this:
+struct pci_dev now looks like this::
-struct pci_dev {
+ struct pci_dev {
...
struct device dev; /* Generic device interface */
...
-};
+ };
Note first that the struct device dev within the struct pci_dev is
statically allocated. This means only one allocation on device discovery.
@@ -80,26 +82,26 @@ easy. This has been accomplished by implementing a special purpose virtual
file system named sysfs.
Almost all mainstream Linux distros mount this filesystem automatically; you
-can see some variation of the following in the output of the "mount" command:
+can see some variation of the following in the output of the "mount" command::
-$ mount
-...
-none on /sys type sysfs (rw,noexec,nosuid,nodev)
-...
-$
+ $ mount
+ ...
+ none on /sys type sysfs (rw,noexec,nosuid,nodev)
+ ...
+ $
The auto-mounting of sysfs is typically accomplished by an entry similar to
-the following in the /etc/fstab file:
+the following in the /etc/fstab file::
-none /sys sysfs defaults 0 0
+ none /sys sysfs defaults 0 0
-or something similar in the /lib/init/fstab file on Debian-based systems:
+or something similar in the /lib/init/fstab file on Debian-based systems::
-none /sys sysfs nodev,noexec,nosuid 0 0
+ none /sys sysfs nodev,noexec,nosuid 0 0
-If sysfs is not automatically mounted, you can always do it manually with:
+If sysfs is not automatically mounted, you can always do it manually with::
-# mount -t sysfs sysfs /sys
+ # mount -t sysfs sysfs /sys
Whenever a device is inserted into the tree, a directory is created for it.
This directory may be populated at each layer of discovery - the global layer,
@@ -108,7 +110,7 @@ the bus layer, or the device layer.
The global layer currently creates two files - 'name' and 'power'. The
former only reports the name of the device. The latter reports the
current power state of the device. It will also be used to set the current
-power state.
+power state.
The bus layer may also create files for the devices it finds while probing the
bus. For example, the PCI layer currently creates 'irq' and 'resource' files
@@ -118,6 +120,5 @@ A device-specific driver may also export files in its directory to expose
device-specific data or tunable interfaces.
More information about the sysfs directory layout can be found in
-the other documents in this directory and in the file
+the other documents in this directory and in the file
Documentation/filesystems/sysfs.txt.
-
diff --git a/Documentation/driver-model/platform.txt b/Documentation/driver-model/platform.rst
similarity index 95%
rename from Documentation/driver-model/platform.txt
rename to Documentation/driver-model/platform.rst
index 9d9e47dfc013..334dd4071ae4 100644
--- a/Documentation/driver-model/platform.txt
+++ b/Documentation/driver-model/platform.rst
@@ -1,5 +1,7 @@
+============================
Platform Devices and Drivers
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+============================
+
See <linux/platform_device.h> for the driver model interface to the
platform bus: platform_device, and platform_driver. This pseudo-bus
is used to connect devices on busses with minimal infrastructure,
@@ -19,15 +21,15 @@ be connected through a segment of some other kind of bus; but its
registers will still be directly addressable.
Platform devices are given a name, used in driver binding, and a
-list of resources such as addresses and IRQs.
+list of resources such as addresses and IRQs::
-struct platform_device {
+ struct platform_device {
const char *name;
u32 id;
struct device dev;
u32 num_resources;
struct resource *resource;
-};
+ };
Platform drivers
@@ -35,9 +37,9 @@ Platform drivers
Platform drivers follow the standard driver model convention, where
discovery/enumeration is handled outside the drivers, and drivers
provide probe() and remove() methods. They support power management
-and shutdown notifications using the standard conventions.
+and shutdown notifications using the standard conventions::
-struct platform_driver {
+ struct platform_driver {
int (*probe)(struct platform_device *);
int (*remove)(struct platform_device *);
void (*shutdown)(struct platform_device *);
@@ -46,25 +48,25 @@ struct platform_driver {
int (*resume_early)(struct platform_device *);
int (*resume)(struct platform_device *);
struct device_driver driver;
-};
+ };
Note that probe() should in general verify that the specified device hardware
actually exists; sometimes platform setup code can't be sure. The probing
can use device resources, including clocks, and device platform_data.
-Platform drivers register themselves the normal way:
+Platform drivers register themselves the normal way::
int platform_driver_register(struct platform_driver *drv);
Or, in common situations where the device is known not to be hot-pluggable,
the probe() routine can live in an init section to reduce the driver's
-runtime memory footprint:
+runtime memory footprint::
int platform_driver_probe(struct platform_driver *drv,
int (*probe)(struct platform_device *))
Kernel modules can be composed of several platform drivers. The platform core
-provides helpers to register and unregister an array of drivers:
+provides helpers to register and unregister an array of drivers::
int __platform_register_drivers(struct platform_driver * const *drivers,
unsigned int count, struct module *owner);
@@ -73,7 +75,7 @@ provides helpers to register and unregister an array of drivers:
If one of the drivers fails to register, all drivers registered up to that
point will be unregistered in reverse order. Note that there is a convenience
-macro that passes THIS_MODULE as owner parameter:
+macro that passes THIS_MODULE as owner parameter::
#define platform_register_drivers(drivers, count)
@@ -81,7 +83,7 @@ macro that passes THIS_MODULE as owner parameter:
Device Enumeration
~~~~~~~~~~~~~~~~~~
As a rule, platform specific (and often board-specific) setup code will
-register platform devices:
+register platform devices::
int platform_device_register(struct platform_device *pdev);
@@ -133,14 +135,14 @@ tend to already have "normal" modes, such as ones using device nodes that
were created by PNP or by platform device setup.
None the less, there are some APIs to support such legacy drivers. Avoid
-using these calls except with such hotplug-deficient drivers.
+using these calls except with such hotplug-deficient drivers::
struct platform_device *platform_device_alloc(
const char *name, int id);
You can use platform_device_alloc() to dynamically allocate a device, which
you will then initialize with resources and platform_device_register().
-A better solution is usually:
+A better solution is usually::
struct platform_device *platform_device_register_simple(
const char *name, int id,
diff --git a/Documentation/driver-model/porting.txt b/Documentation/driver-model/porting.rst
similarity index 62%
rename from Documentation/driver-model/porting.txt
rename to Documentation/driver-model/porting.rst
index 453053f1661f..ae4bf843c1d6 100644
--- a/Documentation/driver-model/porting.txt
+++ b/Documentation/driver-model/porting.rst
@@ -1,5 +1,6 @@
-
+=======================================
Porting Drivers to the New Driver Model
+=======================================
Patrick Mochel
@@ -8,8 +9,8 @@ Patrick Mochel
Overview
-Please refer to Documentation/driver-model/*.txt for definitions of
-various driver types and concepts.
+Please refer to `Documentation/driver-model/*.rst` for definitions of
+various driver types and concepts.
Most of the work of porting devices drivers to the new model happens
at the bus driver layer. This was intentional, to minimize the
@@ -18,11 +19,11 @@ of bus drivers.
In a nutshell, the driver model consists of a set of objects that can
be embedded in larger, bus-specific objects. Fields in these generic
-objects can replace fields in the bus-specific objects.
+objects can replace fields in the bus-specific objects.
The generic objects must be registered with the driver model core. By
doing so, they will exported via the sysfs filesystem. sysfs can be
-mounted by doing
+mounted by doing::
# mount -t sysfs sysfs /sys
@@ -30,108 +31,109 @@ mounted by doing
The Process
-Step 0: Read include/linux/device.h for object and function definitions.
+Step 0: Read include/linux/device.h for object and function definitions.
-Step 1: Registering the bus driver.
+Step 1: Registering the bus driver.
-- Define a struct bus_type for the bus driver.
+- Define a struct bus_type for the bus driver::
-struct bus_type pci_bus_type = {
- .name = "pci",
-};
+ struct bus_type pci_bus_type = {
+ .name = "pci",
+ };
- Register the bus type.
+
This should be done in the initialization function for the bus type,
- which is usually the module_init(), or equivalent, function.
+ which is usually the module_init(), or equivalent, function::
-static int __init pci_driver_init(void)
-{
- return bus_register(&pci_bus_type);
-}
+ static int __init pci_driver_init(void)
+ {
+ return bus_register(&pci_bus_type);
+ }
-subsys_initcall(pci_driver_init);
+ subsys_initcall(pci_driver_init);
The bus type may be unregistered (if the bus driver may be compiled
- as a module) by doing:
+ as a module) by doing::
bus_unregister(&pci_bus_type);
-- Export the bus type for others to use.
+- Export the bus type for others to use.
- Other code may wish to reference the bus type, so declare it in a
+ Other code may wish to reference the bus type, so declare it in a
shared header file and export the symbol.
-From include/linux/pci.h:
+From include/linux/pci.h::
-extern struct bus_type pci_bus_type;
+ extern struct bus_type pci_bus_type;
-From file the above code appears in:
+From file the above code appears in::
-EXPORT_SYMBOL(pci_bus_type);
+ EXPORT_SYMBOL(pci_bus_type);
- This will cause the bus to show up in /sys/bus/pci/ with two
- subdirectories: 'devices' and 'drivers'.
+ subdirectories: 'devices' and 'drivers'::
-# tree -d /sys/bus/pci/
-/sys/bus/pci/
-|-- devices
-`-- drivers
+ # tree -d /sys/bus/pci/
+ /sys/bus/pci/
+ |-- devices
+ `-- drivers
-Step 2: Registering Devices.
+Step 2: Registering Devices.
struct device represents a single device. It mainly contains metadata
-describing the relationship the device has to other entities.
+describing the relationship the device has to other entities.
-- Embed a struct device in the bus-specific device type.
+- Embed a struct device in the bus-specific device type::
-struct pci_dev {
- ...
- struct device dev; /* Generic device interface */
- ...
-};
+ struct pci_dev {
+ ...
+ struct device dev; /* Generic device interface */
+ ...
+ };
- It is recommended that the generic device not be the first item in
+ It is recommended that the generic device not be the first item in
the struct to discourage programmers from doing mindless casts
between the object types. Instead macros, or inline functions,
- should be created to convert from the generic object type.
+ should be created to convert from the generic object type::
-#define to_pci_dev(n) container_of(n, struct pci_dev, dev)
+ #define to_pci_dev(n) container_of(n, struct pci_dev, dev)
-or
+ or
-static inline struct pci_dev * to_pci_dev(struct kobject * kobj)
-{
+ static inline struct pci_dev * to_pci_dev(struct kobject * kobj)
+ {
return container_of(n, struct pci_dev, dev);
-}
+ }
- This allows the compiler to verify type-safety of the operations
+ This allows the compiler to verify type-safety of the operations
that are performed (which is Good).
- Initialize the device on registration.
- When devices are discovered or registered with the bus type, the
+ When devices are discovered or registered with the bus type, the
bus driver should initialize the generic device. The most important
things to initialize are the bus_id, parent, and bus fields.
The bus_id is an ASCII string that contains the device's address on
the bus. The format of this string is bus-specific. This is
- necessary for representing devices in sysfs.
+ necessary for representing devices in sysfs.
parent is the physical parent of the device. It is important that
- the bus driver sets this field correctly.
+ the bus driver sets this field correctly.
The driver model maintains an ordered list of devices that it uses
for power management. This list must be in order to guarantee that
@@ -140,13 +142,13 @@ static inline struct pci_dev * to_pci_dev(struct kobject * kobj)
devices.
Also, the location of the device's sysfs directory depends on a
- device's parent. sysfs exports a directory structure that mirrors
+ device's parent. sysfs exports a directory structure that mirrors
the device hierarchy. Accurately setting the parent guarantees that
sysfs will accurately represent the hierarchy.
The device's bus field is a pointer to the bus type the device
belongs to. This should be set to the bus_type that was declared
- and initialized before.
+ and initialized before.
Optionally, the bus driver may set the device's name and release
fields.
@@ -155,107 +157,107 @@ static inline struct pci_dev * to_pci_dev(struct kobject * kobj)
"ATI Technologies Inc Radeon QD"
- The release field is a callback that the driver model core calls
- when the device has been removed, and all references to it have
+ The release field is a callback that the driver model core calls
+ when the device has been removed, and all references to it have
been released. More on this in a moment.
-- Register the device.
+- Register the device.
Once the generic device has been initialized, it can be registered
- with the driver model core by doing:
+ with the driver model core by doing::
device_register(&dev->dev);
- It can later be unregistered by doing:
+ It can later be unregistered by doing::
device_unregister(&dev->dev);
- This should happen on buses that support hotpluggable devices.
+ This should happen on buses that support hotpluggable devices.
If a bus driver unregisters a device, it should not immediately free
- it. It should instead wait for the driver model core to call the
- device's release method, then free the bus-specific object.
+ it. It should instead wait for the driver model core to call the
+ device's release method, then free the bus-specific object.
(There may be other code that is currently referencing the device
- structure, and it would be rude to free the device while that is
+ structure, and it would be rude to free the device while that is
happening).
- When the device is registered, a directory in sysfs is created.
- The PCI tree in sysfs looks like:
+ When the device is registered, a directory in sysfs is created.
+ The PCI tree in sysfs looks like::
-/sys/devices/pci0/
-|-- 00:00.0
-|-- 00:01.0
-| `-- 01:00.0
-|-- 00:02.0
-| `-- 02:1f.0
-| `-- 03:00.0
-|-- 00:1e.0
-| `-- 04:04.0
-|-- 00:1f.0
-|-- 00:1f.1
-| |-- ide0
-| | |-- 0.0
-| | `-- 0.1
-| `-- ide1
-| `-- 1.0
-|-- 00:1f.2
-|-- 00:1f.3
-`-- 00:1f.5
+ /sys/devices/pci0/
+ |-- 00:00.0
+ |-- 00:01.0
+ | `-- 01:00.0
+ |-- 00:02.0
+ | `-- 02:1f.0
+ | `-- 03:00.0
+ |-- 00:1e.0
+ | `-- 04:04.0
+ |-- 00:1f.0
+ |-- 00:1f.1
+ | |-- ide0
+ | | |-- 0.0
+ | | `-- 0.1
+ | `-- ide1
+ | `-- 1.0
+ |-- 00:1f.2
+ |-- 00:1f.3
+ `-- 00:1f.5
Also, symlinks are created in the bus's 'devices' directory
- that point to the device's directory in the physical hierarchy.
+ that point to the device's directory in the physical hierarchy::
-/sys/bus/pci/devices/
-|-- 00:00.0 -> ../../../devices/pci0/00:00.0
-|-- 00:01.0 -> ../../../devices/pci0/00:01.0
-|-- 00:02.0 -> ../../../devices/pci0/00:02.0
-|-- 00:1e.0 -> ../../../devices/pci0/00:1e.0
-|-- 00:1f.0 -> ../../../devices/pci0/00:1f.0
-|-- 00:1f.1 -> ../../../devices/pci0/00:1f.1
-|-- 00:1f.2 -> ../../../devices/pci0/00:1f.2
-|-- 00:1f.3 -> ../../../devices/pci0/00:1f.3
-|-- 00:1f.5 -> ../../../devices/pci0/00:1f.5
-|-- 01:00.0 -> ../../../devices/pci0/00:01.0/01:00.0
-|-- 02:1f.0 -> ../../../devices/pci0/00:02.0/02:1f.0
-|-- 03:00.0 -> ../../../devices/pci0/00:02.0/02:1f.0/03:00.0
-`-- 04:04.0 -> ../../../devices/pci0/00:1e.0/04:04.0
+ /sys/bus/pci/devices/
+ |-- 00:00.0 -> ../../../devices/pci0/00:00.0
+ |-- 00:01.0 -> ../../../devices/pci0/00:01.0
+ |-- 00:02.0 -> ../../../devices/pci0/00:02.0
+ |-- 00:1e.0 -> ../../../devices/pci0/00:1e.0
+ |-- 00:1f.0 -> ../../../devices/pci0/00:1f.0
+ |-- 00:1f.1 -> ../../../devices/pci0/00:1f.1
+ |-- 00:1f.2 -> ../../../devices/pci0/00:1f.2
+ |-- 00:1f.3 -> ../../../devices/pci0/00:1f.3
+ |-- 00:1f.5 -> ../../../devices/pci0/00:1f.5
+ |-- 01:00.0 -> ../../../devices/pci0/00:01.0/01:00.0
+ |-- 02:1f.0 -> ../../../devices/pci0/00:02.0/02:1f.0
+ |-- 03:00.0 -> ../../../devices/pci0/00:02.0/02:1f.0/03:00.0
+ `-- 04:04.0 -> ../../../devices/pci0/00:1e.0/04:04.0
Step 3: Registering Drivers.
struct device_driver is a simple driver structure that contains a set
-of operations that the driver model core may call.
+of operations that the driver model core may call.
-- Embed a struct device_driver in the bus-specific driver.
+- Embed a struct device_driver in the bus-specific driver.
- Just like with devices, do something like:
+ Just like with devices, do something like::
-struct pci_driver {
- ...
- struct device_driver driver;
-};
+ struct pci_driver {
+ ...
+ struct device_driver driver;
+ };
-- Initialize the generic driver structure.
+- Initialize the generic driver structure.
When the driver registers with the bus (e.g. doing pci_register_driver()),
initialize the necessary fields of the driver: the name and bus
- fields.
+ fields.
- Register the driver.
- After the generic driver has been initialized, call
+ After the generic driver has been initialized, call::
driver_register(&drv->driver);
to register the driver with the core.
When the driver is unregistered from the bus, unregister it from the
- core by doing:
+ core by doing::
driver_unregister(&drv->driver);
@@ -265,15 +267,15 @@ struct pci_driver {
- Sysfs representation.
- Drivers are exported via sysfs in their bus's 'driver's directory.
- For example:
+ Drivers are exported via sysfs in their bus's 'driver's directory.
+ For example::
-/sys/bus/pci/drivers/
-|-- 3c59x
-|-- Ensoniq AudioPCI
-|-- agpgart-amdk7
-|-- e100
-`-- serial
+ /sys/bus/pci/drivers/
+ |-- 3c59x
+ |-- Ensoniq AudioPCI
+ |-- agpgart-amdk7
+ |-- e100
+ `-- serial
Step 4: Define Generic Methods for Drivers.
@@ -281,30 +283,30 @@ Step 4: Define Generic Methods for Drivers.
struct device_driver defines a set of operations that the driver model
core calls. Most of these operations are probably similar to
operations the bus already defines for drivers, but taking different
-parameters.
+parameters.
It would be difficult and tedious to force every driver on a bus to
simultaneously convert their drivers to generic format. Instead, the
bus driver should define single instances of the generic methods that
-forward call to the bus-specific drivers. For instance:
+forward call to the bus-specific drivers. For instance::
-static int pci_device_remove(struct device * dev)
-{
- struct pci_dev * pci_dev = to_pci_dev(dev);
- struct pci_driver * drv = pci_dev->driver;
+ static int pci_device_remove(struct device * dev)
+ {
+ struct pci_dev * pci_dev = to_pci_dev(dev);
+ struct pci_driver * drv = pci_dev->driver;
- if (drv) {
- if (drv->remove)
- drv->remove(pci_dev);
- pci_dev->driver = NULL;
- }
- return 0;
-}
+ if (drv) {
+ if (drv->remove)
+ drv->remove(pci_dev);
+ pci_dev->driver = NULL;
+ }
+ return 0;
+ }
The generic driver should be initialized with these methods before it
-is registered.
+is registered::
/* initialize common driver fields */
drv->driver.name = drv->name;
@@ -320,23 +322,23 @@ is registered.
Ideally, the bus should only initialize the fields if they are not
already set. This allows the drivers to implement their own generic
-methods.
+methods.
-Step 5: Support generic driver binding.
+Step 5: Support generic driver binding.
The model assumes that a device or driver can be dynamically
registered with the bus at any time. When registration happens,
devices must be bound to a driver, or drivers must be bound to all
-devices that it supports.
+devices that it supports.
A driver typically contains a list of device IDs that it supports. The
-bus driver compares these IDs to the IDs of devices registered with it.
+bus driver compares these IDs to the IDs of devices registered with it.
The format of the device IDs, and the semantics for comparing them are
-bus-specific, so the generic model does attempt to generalize them.
+bus-specific, so the generic model does attempt to generalize them.
Instead, a bus may supply a method in struct bus_type that does the
-comparison:
+comparison::
int (*match)(struct device * dev, struct device_driver * drv);
@@ -346,59 +348,59 @@ and zero otherwise. It may also return error code (for example
not possible.
When a device is registered, the bus's list of drivers is iterated
-over. bus->match() is called for each one until a match is found.
+over. bus->match() is called for each one until a match is found.
When a driver is registered, the bus's list of devices is iterated
over. bus->match() is called for each device that is not already
-claimed by a driver.
+claimed by a driver.
When a device is successfully bound to a driver, device->driver is
set, the device is added to a per-driver list of devices, and a
symlink is created in the driver's sysfs directory that points to the
-device's physical directory:
+device's physical directory::
-/sys/bus/pci/drivers/
-|-- 3c59x
-| `-- 00:0b.0 -> ../../../../devices/pci0/00:0b.0
-|-- Ensoniq AudioPCI
-|-- agpgart-amdk7
-| `-- 00:00.0 -> ../../../../devices/pci0/00:00.0
-|-- e100
-| `-- 00:0c.0 -> ../../../../devices/pci0/00:0c.0
-`-- serial
+ /sys/bus/pci/drivers/
+ |-- 3c59x
+ | `-- 00:0b.0 -> ../../../../devices/pci0/00:0b.0
+ |-- Ensoniq AudioPCI
+ |-- agpgart-amdk7
+ | `-- 00:00.0 -> ../../../../devices/pci0/00:00.0
+ |-- e100
+ | `-- 00:0c.0 -> ../../../../devices/pci0/00:0c.0
+ `-- serial
This driver binding should replace the existing driver binding
-mechanism the bus currently uses.
+mechanism the bus currently uses.
Step 6: Supply a hotplug callback.
Whenever a device is registered with the driver model core, the
-userspace program /sbin/hotplug is called to notify userspace.
+userspace program /sbin/hotplug is called to notify userspace.
Users can define actions to perform when a device is inserted or
-removed.
+removed.
The driver model core passes several arguments to userspace via
environment variables, including
- ACTION: set to 'add' or 'remove'
-- DEVPATH: set to the device's physical path in sysfs.
+- DEVPATH: set to the device's physical path in sysfs.
A bus driver may also supply additional parameters for userspace to
consume. To do this, a bus must implement the 'hotplug' method in
-struct bus_type:
+struct bus_type::
- int (*hotplug) (struct device *dev, char **envp,
+ int (*hotplug) (struct device *dev, char **envp,
int num_envp, char *buffer, int buffer_size);
-This is called immediately before /sbin/hotplug is executed.
+This is called immediately before /sbin/hotplug is executed.
Step 7: Cleaning up the bus driver.
The generic bus, device, and driver structures provide several fields
-that can replace those defined privately to the bus driver.
+that can replace those defined privately to the bus driver.
- Device list.
@@ -407,36 +409,36 @@ type. This includes all devices on all instances of that bus type.
An internal list that the bus uses may be removed, in favor of using
this one.
-The core provides an iterator to access these devices.
+The core provides an iterator to access these devices::
-int bus_for_each_dev(struct bus_type * bus, struct device * start,
- void * data, int (*fn)(struct device *, void *));
+ int bus_for_each_dev(struct bus_type * bus, struct device * start,
+ void * data, int (*fn)(struct device *, void *));
- Driver list.
struct bus_type also contains a list of all drivers registered with
-it. An internal list of drivers that the bus driver maintains may
-be removed in favor of using the generic one.
+it. An internal list of drivers that the bus driver maintains may
+be removed in favor of using the generic one.
-The drivers may be iterated over, like devices:
+The drivers may be iterated over, like devices::
-int bus_for_each_drv(struct bus_type * bus, struct device_driver * start,
- void * data, int (*fn)(struct device_driver *, void *));
+ int bus_for_each_drv(struct bus_type * bus, struct device_driver * start,
+ void * data, int (*fn)(struct device_driver *, void *));
Please see drivers/base/bus.c for more information.
-- rwsem
+- rwsem
struct bus_type contains an rwsem that protects all core accesses to
the device and driver lists. This can be used by the bus driver
internally, and should be used when accessing the device or driver
-lists the bus maintains.
+lists the bus maintains.
-- Device and driver fields.
+- Device and driver fields.
Some of the fields in struct device and struct device_driver duplicate
fields in the bus-specific representations of these objects. Feel free
@@ -444,4 +446,3 @@ to remove the bus-specific ones and favor the generic ones. Note
though, that this will likely mean fixing up all the drivers that
reference the bus-specific fields (though those should all be 1-line
changes).
-
diff --git a/Documentation/eisa.txt b/Documentation/eisa.txt
index 2806e5544e43..f388545a85a7 100644
--- a/Documentation/eisa.txt
+++ b/Documentation/eisa.txt
@@ -103,7 +103,7 @@ id_table an array of NULL terminated EISA id strings,
(driver_data).
driver a generic driver, such as described in
- Documentation/driver-model/driver.txt. Only .name,
+ Documentation/driver-model/driver.rst. Only .name,
.probe and .remove members are mandatory.
=============== ====================================================
@@ -152,7 +152,7 @@ state set of flags indicating the state of the device. Current
flags are EISA_CONFIG_ENABLED and EISA_CONFIG_FORCED.
res set of four 256 bytes I/O regions allocated to this device
dma_mask DMA mask set from the parent device.
-dev generic device (see Documentation/driver-model/device.txt)
+dev generic device (see Documentation/driver-model/device.rst)
======== ============================================================
You can get the 'struct eisa_device' from 'struct device' using the
diff --git a/Documentation/hwmon/submitting-patches.rst b/Documentation/hwmon/submitting-patches.rst
index f9796b9d9db6..d5b05d3e54ba 100644
--- a/Documentation/hwmon/submitting-patches.rst
+++ b/Documentation/hwmon/submitting-patches.rst
@@ -89,7 +89,7 @@ increase the chances of your change being accepted.
console. Excessive logging can seriously affect system performance.
* Use devres functions whenever possible to allocate resources. For rationale
- and supported functions, please see Documentation/driver-model/devres.txt.
+ and supported functions, please see Documentation/driver-model/devres.rst.
If a function is not supported by devres, consider using devm_add_action().
* If the driver has a detect function, make sure it is silent. Debug messages
diff --git a/drivers/base/platform.c b/drivers/base/platform.c
index dab0a5abc391..f051d22f6e9f 100644
--- a/drivers/base/platform.c
+++ b/drivers/base/platform.c
@@ -5,7 +5,7 @@
* Copyright (c) 2002-3 Patrick Mochel
* Copyright (c) 2002-3 Open Source Development Labs
*
- * Please see Documentation/driver-model/platform.txt for more
+ * Please see Documentation/driver-model/platform.rst for more
* information.
*/
diff --git a/drivers/gpio/gpio-cs5535.c b/drivers/gpio/gpio-cs5535.c
index 8814c8f47e57..0cb568b3fac9 100644
--- a/drivers/gpio/gpio-cs5535.c
+++ b/drivers/gpio/gpio-cs5535.c
@@ -44,7 +44,7 @@ MODULE_PARM_DESC(mask, "GPIO channel mask.");
/*
* FIXME: convert this singleton driver to use the state container
- * design pattern, see Documentation/driver-model/design-patterns.txt
+ * design pattern, see Documentation/driver-model/design-patterns.rst
*/
static struct cs5535_gpio_chip {
struct gpio_chip chip;
diff --git a/drivers/net/ethernet/intel/ice/ice_main.c b/drivers/net/ethernet/intel/ice/ice_main.c
index f7073e046979..9b627ce970f4 100644
--- a/drivers/net/ethernet/intel/ice/ice_main.c
+++ b/drivers/net/ethernet/intel/ice/ice_main.c
@@ -2220,7 +2220,7 @@ ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
struct ice_hw *hw;
int err;
- /* this driver uses devres, see Documentation/driver-model/devres.txt */
+ /* this driver uses devres, see Documentation/driver-model/devres.rst */
err = pcim_enable_device(pdev);
if (err)
return err;
diff --git a/scripts/coccinelle/free/devm_free.cocci b/scripts/coccinelle/free/devm_free.cocci
index b2a2cf8bf81f..e32236a979a8 100644
--- a/scripts/coccinelle/free/devm_free.cocci
+++ b/scripts/coccinelle/free/devm_free.cocci
@@ -2,7 +2,7 @@
/// functions. Values allocated using the devm_functions are freed when
/// the device is detached, and thus the use of the standard freeing
/// function would cause a double free.
-/// See Documentation/driver-model/devres.txt for more information.
+/// See Documentation/driver-model/devres.rst for more information.
///
/// A difficulty of detecting this problem is that the standard freeing
/// function might be called from a different function than the one
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* Re: [PATCH v2 48/79] docs: driver-model: convert docs to ReST and rename to *.rst
2019-04-22 13:27 ` [PATCH v2 48/79] docs: driver-model: " Mauro Carvalho Chehab
@ 2019-04-22 14:47 ` Julia Lawall
2019-04-22 22:30 ` Guenter Roeck
1 sibling, 0 replies; 115+ messages in thread
From: Julia Lawall @ 2019-04-22 14:47 UTC (permalink / raw)
To: Mauro Carvalho Chehab
Cc: Linux Doc Mailing List, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Linus Walleij, Bartosz Golaszewski, Jean Delvare,
Guenter Roeck, Greg Kroah-Hartman, Rafael J. Wysocki,
Jeff Kirsher, David S. Miller, Julia Lawall, Gilles Muller,
Nicolas Palix, Michal Marek, linux-gpio, linux-hwmon,
intel-wired-lan, netdev, cocci
> diff --git a/scripts/coccinelle/free/devm_free.cocci b/scripts/coccinelle/free/devm_free.cocci
> index b2a2cf8bf81f..e32236a979a8 100644
> --- a/scripts/coccinelle/free/devm_free.cocci
> +++ b/scripts/coccinelle/free/devm_free.cocci
> @@ -2,7 +2,7 @@
> /// functions. Values allocated using the devm_functions are freed when
> /// the device is detached, and thus the use of the standard freeing
> /// function would cause a double free.
> -/// See Documentation/driver-model/devres.txt for more information.
> +/// See Documentation/driver-model/devres.rst for more information.
> ///
> /// A difficulty of detecting this problem is that the standard freeing
> /// function might be called from a different function than the one
Acked-by: Julia Lawall <julia.lawall@lip6.fr>
> --
> 2.20.1
>
>
^ permalink raw reply [flat|nested] 115+ messages in thread
* Re: [PATCH v2 48/79] docs: driver-model: convert docs to ReST and rename to *.rst
2019-04-22 13:27 ` [PATCH v2 48/79] docs: driver-model: " Mauro Carvalho Chehab
2019-04-22 14:47 ` Julia Lawall
@ 2019-04-22 22:30 ` Guenter Roeck
1 sibling, 0 replies; 115+ messages in thread
From: Guenter Roeck @ 2019-04-22 22:30 UTC (permalink / raw)
To: Mauro Carvalho Chehab
Cc: Linux Doc Mailing List, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Linus Walleij, Bartosz Golaszewski, Jean Delvare,
Greg Kroah-Hartman, Rafael J. Wysocki, Jeff Kirsher,
David S. Miller, Julia Lawall, Gilles Muller, Nicolas Palix,
Michal Marek, linux-gpio, linux-hwmon, intel-wired-lan, netdev,
cocci
On Mon, Apr 22, 2019 at 10:27:37AM -0300, Mauro Carvalho Chehab wrote:
> Convert the various documents at the driver-model, preparing
> them to be part of the driver-api book.
>
> The conversion is actually:
> - add blank lines and identation in order to identify paragraphs;
> - fix tables markups;
> - add some lists markups;
> - mark literal blocks;
> - adjust title markups.
>
> At its new index.rst, let's add a :orphan: while this is not linked to
> the main index.rst file, in order to avoid build warnings.
>
> Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
> Acked-by: Julia Lawall <julia.lawall@lip6.fr>
> ---
> Documentation/driver-api/gpio/driver.rst | 2 +-
> .../driver-model/{binding.txt => binding.rst} | 20 +-
> .../driver-model/{bus.txt => bus.rst} | 69 ++--
> .../driver-model/{class.txt => class.rst} | 74 ++--
> ...esign-patterns.txt => design-patterns.rst} | 106 +++---
> .../driver-model/{device.txt => device.rst} | 57 +--
> .../driver-model/{devres.txt => devres.rst} | 50 +--
> .../driver-model/{driver.txt => driver.rst} | 112 +++---
> Documentation/driver-model/index.rst | 26 ++
> .../{overview.txt => overview.rst} | 37 +-
> .../{platform.txt => platform.rst} | 30 +-
> .../driver-model/{porting.txt => porting.rst} | 333 +++++++++---------
> Documentation/eisa.txt | 4 +-
> Documentation/hwmon/submitting-patches.rst | 2 +-
For hwmon:
Acked-by: Guenter Roeck <linux@roeck-us.net>
^ permalink raw reply [flat|nested] 115+ messages in thread
* [PATCH v2 50/79] docs: memory-devices: convert ti-emif.txt to ReST
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (40 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 48/79] docs: driver-model: " Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 51/79] docs: xen-tpmfront.txt: convert it to .rst Mauro Carvalho Chehab
` (31 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet
Prepare this file to be moved to a kernel book by converting
it to ReST format and renaming it to ti-emif.rst.
While this is not part of any book, mark it as :orphan:, in order
to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
.../{ti-emif.txt => ti-emif.rst} | 27 ++++++++++++-------
1 file changed, 17 insertions(+), 10 deletions(-)
rename Documentation/memory-devices/{ti-emif.txt => ti-emif.rst} (81%)
diff --git a/Documentation/memory-devices/ti-emif.txt b/Documentation/memory-devices/ti-emif.rst
similarity index 81%
rename from Documentation/memory-devices/ti-emif.txt
rename to Documentation/memory-devices/ti-emif.rst
index f4ad9a7d0f4b..c9242294e63c 100644
--- a/Documentation/memory-devices/ti-emif.txt
+++ b/Documentation/memory-devices/ti-emif.rst
@@ -1,20 +1,24 @@
-TI EMIF SDRAM Controller Driver:
+:orphan:
+
+===============================
+TI EMIF SDRAM Controller Driver
+===============================
Author
-========
+======
Aneesh V <aneesh@ti.com>
Location
-============
+========
driver/memory/emif.c
Supported SoCs:
-===================
+===============
TI OMAP44xx
TI OMAP54xx
Menuconfig option:
-==========================
+==================
Device Drivers
Memory devices
Texas Instruments EMIF driver
@@ -29,10 +33,11 @@ functions of the driver includes re-configuring AC timing
parameters and other settings during frequency, voltage and
temperature changes
-Platform Data (see include/linux/platform_data/emif_plat.h):
-=====================================================================
+Platform Data (see include/linux/platform_data/emif_plat.h)
+===========================================================
DDR device details and other board dependent and SoC dependent
information can be passed through platform data (struct emif_platform_data)
+
- DDR device details: 'struct ddr_device_info'
- Device AC timings: 'struct lpddr2_timings' and 'struct lpddr2_min_tck'
- Custom configurations: customizable policy options through
@@ -40,17 +45,19 @@ information can be passed through platform data (struct emif_platform_data)
- IP revision
- PHY type
-Interface to the external world:
-================================
+Interface to the external world
+===============================
EMIF driver registers notifiers for voltage and frequency changes
affecting EMIF and takes appropriate actions when these are invoked.
+
- freq_pre_notify_handling()
- freq_post_notify_handling()
- volt_notify_handling()
Debugfs
-========
+=======
The driver creates two debugfs entries per device.
+
- regcache_dump : dump of register values calculated and saved for all
frequencies used so far.
- mr4 : last polled value of MR4 register in the LPDDR2 device. MR4
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 51/79] docs: xen-tpmfront.txt: convert it to .rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (41 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 50/79] docs: memory-devices: convert ti-emif.txt to ReST Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 52/79] docs: bus-devices: ti-gpmc.rst: convert it to ReST Mauro Carvalho Chehab
` (30 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet
In order to be able to add this file to the security book,
we need first to convert it to reST.
While this is not part of any book, mark it as :orphan:, in order
to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
.../{xen-tpmfront.txt => xen-tpmfront.rst} | 103 ++++++++++--------
1 file changed, 58 insertions(+), 45 deletions(-)
rename Documentation/security/tpm/{xen-tpmfront.txt => xen-tpmfront.rst} (66%)
diff --git a/Documentation/security/tpm/xen-tpmfront.txt b/Documentation/security/tpm/xen-tpmfront.rst
similarity index 66%
rename from Documentation/security/tpm/xen-tpmfront.txt
rename to Documentation/security/tpm/xen-tpmfront.rst
index 69346de87ff3..98a16ab87360 100644
--- a/Documentation/security/tpm/xen-tpmfront.txt
+++ b/Documentation/security/tpm/xen-tpmfront.rst
@@ -1,4 +1,8 @@
+:orphan:
+
+=============================
Virtual TPM interface for Xen
+=============================
Authors: Matthew Fioravante (JHUAPL), Daniel De Graaf (NSA)
@@ -6,7 +10,8 @@ This document describes the virtual Trusted Platform Module (vTPM) subsystem for
Xen. The reader is assumed to have familiarity with building and installing Xen,
Linux, and a basic understanding of the TPM and vTPM concepts.
-INTRODUCTION
+Introduction
+------------
The goal of this work is to provide a TPM functionality to a virtual guest
operating system (in Xen terms, a DomU). This allows programs to interact with
@@ -24,81 +29,89 @@ This mini-os vTPM subsystem was built on top of the previous vTPM work done by
IBM and Intel corporation.
-DESIGN OVERVIEW
+Design Overview
---------------
-The architecture of vTPM is described below:
+The architecture of vTPM is described below::
-+------------------+
-| Linux DomU | ...
-| | ^ |
-| v | |
-| xen-tpmfront |
-+------------------+
- | ^
- v |
-+------------------+
-| mini-os/tpmback |
-| | ^ |
-| v | |
-| vtpm-stubdom | ...
-| | ^ |
-| v | |
-| mini-os/tpmfront |
-+------------------+
- | ^
- v |
-+------------------+
-| mini-os/tpmback |
-| | ^ |
-| v | |
-| vtpmmgr-stubdom |
-| | ^ |
-| v | |
-| mini-os/tpm_tis |
-+------------------+
- | ^
- v |
-+------------------+
-| Hardware TPM |
-+------------------+
+ +------------------+
+ | Linux DomU | ...
+ | | ^ |
+ | v | |
+ | xen-tpmfront |
+ +------------------+
+ | ^
+ v |
+ +------------------+
+ | mini-os/tpmback |
+ | | ^ |
+ | v | |
+ | vtpm-stubdom | ...
+ | | ^ |
+ | v | |
+ | mini-os/tpmfront |
+ +------------------+
+ | ^
+ v |
+ +------------------+
+ | mini-os/tpmback |
+ | | ^ |
+ | v | |
+ | vtpmmgr-stubdom |
+ | | ^ |
+ | v | |
+ | mini-os/tpm_tis |
+ +------------------+
+ | ^
+ v |
+ +------------------+
+ | Hardware TPM |
+ +------------------+
- * Linux DomU: The Linux based guest that wants to use a vTPM. There may be
+* Linux DomU:
+ The Linux based guest that wants to use a vTPM. There may be
more than one of these.
- * xen-tpmfront.ko: Linux kernel virtual TPM frontend driver. This driver
+* xen-tpmfront.ko:
+ Linux kernel virtual TPM frontend driver. This driver
provides vTPM access to a Linux-based DomU.
- * mini-os/tpmback: Mini-os TPM backend driver. The Linux frontend driver
+* mini-os/tpmback:
+ Mini-os TPM backend driver. The Linux frontend driver
connects to this backend driver to facilitate communications
between the Linux DomU and its vTPM. This driver is also
used by vtpmmgr-stubdom to communicate with vtpm-stubdom.
- * vtpm-stubdom: A mini-os stub domain that implements a vTPM. There is a
+* vtpm-stubdom:
+ A mini-os stub domain that implements a vTPM. There is a
one to one mapping between running vtpm-stubdom instances and
logical vtpms on the system. The vTPM Platform Configuration
Registers (PCRs) are normally all initialized to zero.
- * mini-os/tpmfront: Mini-os TPM frontend driver. The vTPM mini-os domain
+* mini-os/tpmfront:
+ Mini-os TPM frontend driver. The vTPM mini-os domain
vtpm-stubdom uses this driver to communicate with
vtpmmgr-stubdom. This driver is also used in mini-os
domains such as pv-grub that talk to the vTPM domain.
- * vtpmmgr-stubdom: A mini-os domain that implements the vTPM manager. There is
+* vtpmmgr-stubdom:
+ A mini-os domain that implements the vTPM manager. There is
only one vTPM manager and it should be running during the
entire lifetime of the machine. This domain regulates
access to the physical TPM on the system and secures the
persistent state of each vTPM.
- * mini-os/tpm_tis: Mini-os TPM version 1.2 TPM Interface Specification (TIS)
+* mini-os/tpm_tis:
+ Mini-os TPM version 1.2 TPM Interface Specification (TIS)
driver. This driver used by vtpmmgr-stubdom to talk directly to
the hardware TPM. Communication is facilitated by mapping
hardware memory pages into vtpmmgr-stubdom.
- * Hardware TPM: The physical TPM that is soldered onto the motherboard.
+* Hardware TPM:
+ The physical TPM that is soldered onto the motherboard.
-INTEGRATION WITH XEN
+Integration With Xen
--------------------
Support for the vTPM driver was added in Xen using the libxl toolstack in Xen
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 52/79] docs: bus-devices: ti-gpmc.rst: convert it to ReST
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (42 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 51/79] docs: xen-tpmfront.txt: convert it to .rst Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 53/79] docs: nvmem: convert docs to ReST and rename to *.rst Mauro Carvalho Chehab
` (29 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet
In order to be able to add this file to a book, it needs
first to be converted to ReST and renamed.
While this is not part of any book, mark it as :orphan:, in order
to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
.../bus-devices/{ti-gpmc.txt => ti-gpmc.rst} | 159 ++++++++++++------
1 file changed, 108 insertions(+), 51 deletions(-)
rename Documentation/bus-devices/{ti-gpmc.txt => ti-gpmc.rst} (58%)
diff --git a/Documentation/bus-devices/ti-gpmc.txt b/Documentation/bus-devices/ti-gpmc.rst
similarity index 58%
rename from Documentation/bus-devices/ti-gpmc.txt
rename to Documentation/bus-devices/ti-gpmc.rst
index cc9ce57e0a26..87c366e418be 100644
--- a/Documentation/bus-devices/ti-gpmc.txt
+++ b/Documentation/bus-devices/ti-gpmc.rst
@@ -1,8 +1,12 @@
-GPMC (General Purpose Memory Controller):
-=========================================
+:orphan:
+
+========================================
+GPMC (General Purpose Memory Controller)
+========================================
GPMC is an unified memory controller dedicated to interfacing external
memory devices like
+
* Asynchronous SRAM like memories and application specific integrated
circuit devices.
* Asynchronous, synchronous, and page mode burst NOR flash devices
@@ -48,75 +52,128 @@ most of the datasheets & hardware (to be exact none of those supported
in mainline having custom timing routine) and by simulation.
gpmc timing dependency on peripheral timings:
+
[<gpmc_timing>: <peripheral timing1>, <peripheral timing2> ...]
1. common
-cs_on: t_ceasu
-adv_on: t_avdasu, t_ceavd
+
+cs_on:
+ t_ceasu
+adv_on:
+ t_avdasu, t_ceavd
2. sync common
-sync_clk: clk
-page_burst_access: t_bacc
-clk_activation: t_ces, t_avds
+
+sync_clk:
+ clk
+page_burst_access:
+ t_bacc
+clk_activation:
+ t_ces, t_avds
3. read async muxed
-adv_rd_off: t_avdp_r
-oe_on: t_oeasu, t_aavdh
-access: t_iaa, t_oe, t_ce, t_aa
-rd_cycle: t_rd_cycle, t_cez_r, t_oez
+
+adv_rd_off:
+ t_avdp_r
+oe_on:
+ t_oeasu, t_aavdh
+access:
+ t_iaa, t_oe, t_ce, t_aa
+rd_cycle:
+ t_rd_cycle, t_cez_r, t_oez
4. read async non-muxed
-adv_rd_off: t_avdp_r
-oe_on: t_oeasu
-access: t_iaa, t_oe, t_ce, t_aa
-rd_cycle: t_rd_cycle, t_cez_r, t_oez
+
+adv_rd_off:
+ t_avdp_r
+oe_on:
+ t_oeasu
+access:
+ t_iaa, t_oe, t_ce, t_aa
+rd_cycle:
+ t_rd_cycle, t_cez_r, t_oez
5. read sync muxed
-adv_rd_off: t_avdp_r, t_avdh
-oe_on: t_oeasu, t_ach, cyc_aavdh_oe
-access: t_iaa, cyc_iaa, cyc_oe
-rd_cycle: t_cez_r, t_oez, t_ce_rdyz
+
+adv_rd_off:
+ t_avdp_r, t_avdh
+oe_on:
+ t_oeasu, t_ach, cyc_aavdh_oe
+access:
+ t_iaa, cyc_iaa, cyc_oe
+rd_cycle:
+ t_cez_r, t_oez, t_ce_rdyz
6. read sync non-muxed
-adv_rd_off: t_avdp_r
-oe_on: t_oeasu
-access: t_iaa, cyc_iaa, cyc_oe
-rd_cycle: t_cez_r, t_oez, t_ce_rdyz
+
+adv_rd_off:
+ t_avdp_r
+oe_on:
+ t_oeasu
+access:
+ t_iaa, cyc_iaa, cyc_oe
+rd_cycle:
+ t_cez_r, t_oez, t_ce_rdyz
7. write async muxed
-adv_wr_off: t_avdp_w
-we_on, wr_data_mux_bus: t_weasu, t_aavdh, cyc_aavhd_we
-we_off: t_wpl
-cs_wr_off: t_wph
-wr_cycle: t_cez_w, t_wr_cycle
+
+adv_wr_off:
+ t_avdp_w
+we_on, wr_data_mux_bus:
+ t_weasu, t_aavdh, cyc_aavhd_we
+we_off:
+ t_wpl
+cs_wr_off:
+ t_wph
+wr_cycle:
+ t_cez_w, t_wr_cycle
8. write async non-muxed
-adv_wr_off: t_avdp_w
-we_on, wr_data_mux_bus: t_weasu
-we_off: t_wpl
-cs_wr_off: t_wph
-wr_cycle: t_cez_w, t_wr_cycle
+
+adv_wr_off:
+ t_avdp_w
+we_on, wr_data_mux_bus:
+ t_weasu
+we_off:
+ t_wpl
+cs_wr_off:
+ t_wph
+wr_cycle:
+ t_cez_w, t_wr_cycle
9. write sync muxed
-adv_wr_off: t_avdp_w, t_avdh
-we_on, wr_data_mux_bus: t_weasu, t_rdyo, t_aavdh, cyc_aavhd_we
-we_off: t_wpl, cyc_wpl
-cs_wr_off: t_wph
-wr_cycle: t_cez_w, t_ce_rdyz
+
+adv_wr_off:
+ t_avdp_w, t_avdh
+we_on, wr_data_mux_bus:
+ t_weasu, t_rdyo, t_aavdh, cyc_aavhd_we
+we_off:
+ t_wpl, cyc_wpl
+cs_wr_off:
+ t_wph
+wr_cycle:
+ t_cez_w, t_ce_rdyz
10. write sync non-muxed
-adv_wr_off: t_avdp_w
-we_on, wr_data_mux_bus: t_weasu, t_rdyo
-we_off: t_wpl, cyc_wpl
-cs_wr_off: t_wph
-wr_cycle: t_cez_w, t_ce_rdyz
+adv_wr_off:
+ t_avdp_w
+we_on, wr_data_mux_bus:
+ t_weasu, t_rdyo
+we_off:
+ t_wpl, cyc_wpl
+cs_wr_off:
+ t_wph
+wr_cycle:
+ t_cez_w, t_ce_rdyz
-Note: Many of gpmc timings are dependent on other gpmc timings (a few
-gpmc timings purely dependent on other gpmc timings, a reason that
-some of the gpmc timings are missing above), and it will result in
-indirect dependency of peripheral timings to gpmc timings other than
-mentioned above, refer timing routine for more details. To know what
-these peripheral timings correspond to, please see explanations in
-struct gpmc_device_timings definition. And for gpmc timings refer
-IP details (link above).
+
+Note:
+ Many of gpmc timings are dependent on other gpmc timings (a few
+ gpmc timings purely dependent on other gpmc timings, a reason that
+ some of the gpmc timings are missing above), and it will result in
+ indirect dependency of peripheral timings to gpmc timings other than
+ mentioned above, refer timing routine for more details. To know what
+ these peripheral timings correspond to, please see explanations in
+ struct gpmc_device_timings definition. And for gpmc timings refer
+ IP details (link above).
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 53/79] docs: nvmem: convert docs to ReST and rename to *.rst
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (43 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 52/79] docs: bus-devices: ti-gpmc.rst: convert it to ReST Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 54/79] docs: phy: convert samsung-usb2.txt to ReST format Mauro Carvalho Chehab
` (28 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet
In order to be able to add it into a doc book, we need first
convert it to ReST.
The conversion is actually:
- add blank lines and identation in order to identify paragraphs;
- mark literal blocks;
- adjust title markups.
While this is not part of any book, mark it as :orphan:, in order
to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/nvmem/{nvmem.txt => nvmem.rst} | 112 ++++++++++---------
1 file changed, 59 insertions(+), 53 deletions(-)
rename Documentation/nvmem/{nvmem.txt => nvmem.rst} (62%)
diff --git a/Documentation/nvmem/nvmem.txt b/Documentation/nvmem/nvmem.rst
similarity index 62%
rename from Documentation/nvmem/nvmem.txt
rename to Documentation/nvmem/nvmem.rst
index fc2fe4b18655..3866b6e066d5 100644
--- a/Documentation/nvmem/nvmem.txt
+++ b/Documentation/nvmem/nvmem.rst
@@ -1,5 +1,10 @@
- NVMEM SUBSYSTEM
- Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
+:orphan:
+
+===============
+NVMEM Subsystem
+===============
+
+ Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
This document explains the NVMEM Framework along with the APIs provided,
and how to use it.
@@ -40,54 +45,54 @@ nvmem_device pointer.
nvmem_unregister(nvmem) is used to unregister a previously registered provider.
-For example, a simple qfprom case:
+For example, a simple qfprom case::
-static struct nvmem_config econfig = {
+ static struct nvmem_config econfig = {
.name = "qfprom",
.owner = THIS_MODULE,
-};
+ };
-static int qfprom_probe(struct platform_device *pdev)
-{
+ static int qfprom_probe(struct platform_device *pdev)
+ {
...
econfig.dev = &pdev->dev;
nvmem = nvmem_register(&econfig);
...
-}
+ }
It is mandatory that the NVMEM provider has a regmap associated with its
struct device. Failure to do would return error code from nvmem_register().
Users of board files can define and register nvmem cells using the
-nvmem_cell_table struct:
+nvmem_cell_table struct::
-static struct nvmem_cell_info foo_nvmem_cells[] = {
+ static struct nvmem_cell_info foo_nvmem_cells[] = {
{
.name = "macaddr",
.offset = 0x7f00,
.bytes = ETH_ALEN,
}
-};
+ };
-static struct nvmem_cell_table foo_nvmem_cell_table = {
+ static struct nvmem_cell_table foo_nvmem_cell_table = {
.nvmem_name = "i2c-eeprom",
.cells = foo_nvmem_cells,
.ncells = ARRAY_SIZE(foo_nvmem_cells),
-};
+ };
-nvmem_add_cell_table(&foo_nvmem_cell_table);
+ nvmem_add_cell_table(&foo_nvmem_cell_table);
Additionally it is possible to create nvmem cell lookup entries and register
-them with the nvmem framework from machine code as shown in the example below:
+them with the nvmem framework from machine code as shown in the example below::
-static struct nvmem_cell_lookup foo_nvmem_lookup = {
+ static struct nvmem_cell_lookup foo_nvmem_lookup = {
.nvmem_name = "i2c-eeprom",
.cell_name = "macaddr",
.dev_id = "foo_mac.0",
.con_id = "mac-address",
-};
+ };
-nvmem_add_cell_lookups(&foo_nvmem_lookup, 1);
+ nvmem_add_cell_lookups(&foo_nvmem_lookup, 1);
NVMEM Consumers
+++++++++++++++
@@ -99,43 +104,43 @@ read from and to NVMEM.
=================================
NVMEM cells are the data entries/fields in the NVMEM.
-The NVMEM framework provides 3 APIs to read/write NVMEM cells.
+The NVMEM framework provides 3 APIs to read/write NVMEM cells::
-struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *name);
-struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *name);
+ struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *name);
+ struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *name);
-void nvmem_cell_put(struct nvmem_cell *cell);
-void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell);
+ void nvmem_cell_put(struct nvmem_cell *cell);
+ void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell);
-void *nvmem_cell_read(struct nvmem_cell *cell, ssize_t *len);
-int nvmem_cell_write(struct nvmem_cell *cell, void *buf, ssize_t len);
+ void *nvmem_cell_read(struct nvmem_cell *cell, ssize_t *len);
+ int nvmem_cell_write(struct nvmem_cell *cell, void *buf, ssize_t len);
-*nvmem_cell_get() apis will get a reference to nvmem cell for a given id,
+`*nvmem_cell_get()` apis will get a reference to nvmem cell for a given id,
and nvmem_cell_read/write() can then read or write to the cell.
-Once the usage of the cell is finished the consumer should call *nvmem_cell_put()
-to free all the allocation memory for the cell.
+Once the usage of the cell is finished the consumer should call
+`*nvmem_cell_put()` to free all the allocation memory for the cell.
4. Direct NVMEM device based consumer APIs
==========================================
In some instances it is necessary to directly read/write the NVMEM.
-To facilitate such consumers NVMEM framework provides below apis.
+To facilitate such consumers NVMEM framework provides below apis::
-struct nvmem_device *nvmem_device_get(struct device *dev, const char *name);
-struct nvmem_device *devm_nvmem_device_get(struct device *dev,
+ struct nvmem_device *nvmem_device_get(struct device *dev, const char *name);
+ struct nvmem_device *devm_nvmem_device_get(struct device *dev,
const char *name);
-void nvmem_device_put(struct nvmem_device *nvmem);
-int nvmem_device_read(struct nvmem_device *nvmem, unsigned int offset,
+ void nvmem_device_put(struct nvmem_device *nvmem);
+ int nvmem_device_read(struct nvmem_device *nvmem, unsigned int offset,
size_t bytes, void *buf);
-int nvmem_device_write(struct nvmem_device *nvmem, unsigned int offset,
+ int nvmem_device_write(struct nvmem_device *nvmem, unsigned int offset,
size_t bytes, void *buf);
-int nvmem_device_cell_read(struct nvmem_device *nvmem,
+ int nvmem_device_cell_read(struct nvmem_device *nvmem,
struct nvmem_cell_info *info, void *buf);
-int nvmem_device_cell_write(struct nvmem_device *nvmem,
+ int nvmem_device_cell_write(struct nvmem_device *nvmem,
struct nvmem_cell_info *info, void *buf);
Before the consumers can read/write NVMEM directly, it should get hold
-of nvmem_controller from one of the *nvmem_device_get() api.
+of nvmem_controller from one of the `*nvmem_device_get()` api.
The difference between these apis and cell based apis is that these apis always
take nvmem_device as parameter.
@@ -145,12 +150,12 @@ take nvmem_device as parameter.
When a consumer no longer needs the NVMEM, it has to release the reference
to the NVMEM it has obtained using the APIs mentioned in the above section.
-The NVMEM framework provides 2 APIs to release a reference to the NVMEM.
+The NVMEM framework provides 2 APIs to release a reference to the NVMEM::
-void nvmem_cell_put(struct nvmem_cell *cell);
-void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell);
-void nvmem_device_put(struct nvmem_device *nvmem);
-void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem);
+ void nvmem_cell_put(struct nvmem_cell *cell);
+ void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell);
+ void nvmem_device_put(struct nvmem_device *nvmem);
+ void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem);
Both these APIs are used to release a reference to the NVMEM and
devm_nvmem_cell_put and devm_nvmem_device_put destroys the devres associated
@@ -162,20 +167,21 @@ Userspace
6. Userspace binary interface
==============================
-Userspace can read/write the raw NVMEM file located at
-/sys/bus/nvmem/devices/*/nvmem
+Userspace can read/write the raw NVMEM file located at::
-ex:
+ /sys/bus/nvmem/devices/*/nvmem
-hexdump /sys/bus/nvmem/devices/qfprom0/nvmem
+ex::
-0000000 0000 0000 0000 0000 0000 0000 0000 0000
-*
-00000a0 db10 2240 0000 e000 0c00 0c00 0000 0c00
-0000000 0000 0000 0000 0000 0000 0000 0000 0000
-...
-*
-0001000
+ hexdump /sys/bus/nvmem/devices/qfprom0/nvmem
+
+ 0000000 0000 0000 0000 0000 0000 0000 0000 0000
+ *
+ 00000a0 db10 2240 0000 e000 0c00 0c00 0000 0c00
+ 0000000 0000 0000 0000 0000 0000 0000 0000 0000
+ ...
+ *
+ 0001000
7. DeviceTree Binding
=====================
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 54/79] docs: phy: convert samsung-usb2.txt to ReST format
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (44 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 53/79] docs: nvmem: convert docs to ReST and rename to *.rst Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 55/79] docs: rbtree.txt: fix Sphinx build warnings Mauro Carvalho Chehab
` (27 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Kamil Debski, Sylwester Nawrocki
In order to merge it into a Sphinx book, we need first to
convert to ReST.
While this is not part of any book, mark it as :orphan:, in order
to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
.../{samsung-usb2.txt => samsung-usb2.rst} | 62 ++++++++++---------
MAINTAINERS | 2 +-
2 files changed, 34 insertions(+), 30 deletions(-)
rename Documentation/phy/{samsung-usb2.txt => samsung-usb2.rst} (77%)
diff --git a/Documentation/phy/samsung-usb2.txt b/Documentation/phy/samsung-usb2.rst
similarity index 77%
rename from Documentation/phy/samsung-usb2.txt
rename to Documentation/phy/samsung-usb2.rst
index ed12d437189d..98b5952fcb97 100644
--- a/Documentation/phy/samsung-usb2.txt
+++ b/Documentation/phy/samsung-usb2.rst
@@ -1,9 +1,11 @@
-.------------------------------------------------------------------------------+
-| Samsung USB 2.0 PHY adaptation layer |
-+-----------------------------------------------------------------------------+'
+:orphan:
-| 1. Description
-+----------------
+====================================
+Samsung USB 2.0 PHY adaptation layer
+====================================
+
+1. Description
+--------------
The architecture of the USB 2.0 PHY module in Samsung SoCs is similar
among many SoCs. In spite of the similarities it proved difficult to
@@ -14,8 +16,8 @@ the PHY powering up process had to be altered. This adaptation layer is
a compromise between having separate drivers and having a single driver
with added support for many special cases.
-| 2. Files description
-+----------------------
+2. Files description
+--------------------
- phy-samsung-usb2.c
This is the main file of the adaptation layer. This file contains
@@ -32,44 +34,45 @@ with added support for many special cases.
driver. In addition it should contain extern declarations for
structures that describe particular SoCs.
-| 3. Supporting SoCs
-+--------------------
+3. Supporting SoCs
+------------------
To support a new SoC a new file should be added to the drivers/phy
directory. Each SoC's configuration is stored in an instance of the
-struct samsung_usb2_phy_config.
+struct samsung_usb2_phy_config::
-struct samsung_usb2_phy_config {
+ struct samsung_usb2_phy_config {
const struct samsung_usb2_common_phy *phys;
int (*rate_to_clk)(unsigned long, u32 *);
unsigned int num_phys;
bool has_mode_switch;
-};
+ };
-The num_phys is the number of phys handled by the driver. *phys is an
+The num_phys is the number of phys handled by the driver. `*phys` is an
array that contains the configuration for each phy. The has_mode_switch
property is a boolean flag that determines whether the SoC has USB host
and device on a single pair of pins. If so, a special register has to
be modified to change the internal routing of these pins between a USB
device or host module.
-For example the configuration for Exynos 4210 is following:
+For example the configuration for Exynos 4210 is following::
-const struct samsung_usb2_phy_config exynos4210_usb2_phy_config = {
+ const struct samsung_usb2_phy_config exynos4210_usb2_phy_config = {
.has_mode_switch = 0,
.num_phys = EXYNOS4210_NUM_PHYS,
.phys = exynos4210_phys,
.rate_to_clk = exynos4210_rate_to_clk,
-}
+ }
+
+- `int (*rate_to_clk)(unsigned long, u32 *)`
-- int (*rate_to_clk)(unsigned long, u32 *)
The rate_to_clk callback is to convert the rate of the clock
used as the reference clock for the PHY module to the value
that should be written in the hardware register.
-The exynos4210_phys configuration array is as follows:
+The exynos4210_phys configuration array is as follows::
-static const struct samsung_usb2_common_phy exynos4210_phys[] = {
+ static const struct samsung_usb2_common_phy exynos4210_phys[] = {
{
.label = "device",
.id = EXYNOS4210_DEVICE,
@@ -95,29 +98,30 @@ static const struct samsung_usb2_common_phy exynos4210_phys[] = {
.power_off = exynos4210_power_off,
},
{},
-};
+ };
+
+- `int (*power_on)(struct samsung_usb2_phy_instance *);`
+ `int (*power_off)(struct samsung_usb2_phy_instance *);`
-- int (*power_on)(struct samsung_usb2_phy_instance *);
-- int (*power_off)(struct samsung_usb2_phy_instance *);
These two callbacks are used to power on and power off the phy
by modifying appropriate registers.
Final change to the driver is adding appropriate compatible value to the
phy-samsung-usb2.c file. In case of Exynos 4210 the following lines were
-added to the struct of_device_id samsung_usb2_phy_of_match[] array:
+added to the struct of_device_id samsung_usb2_phy_of_match[] array::
-#ifdef CONFIG_PHY_EXYNOS4210_USB2
+ #ifdef CONFIG_PHY_EXYNOS4210_USB2
{
.compatible = "samsung,exynos4210-usb2-phy",
.data = &exynos4210_usb2_phy_config,
},
-#endif
+ #endif
To add further flexibility to the driver the Kconfig file enables to
include support for selected SoCs in the compiled driver. The Kconfig
-entry for Exynos 4210 is following:
+entry for Exynos 4210 is following::
-config PHY_EXYNOS4210_USB2
+ config PHY_EXYNOS4210_USB2
bool "Support for Exynos 4210"
depends on PHY_SAMSUNG_USB2
depends on CPU_EXYNOS4210
@@ -128,8 +132,8 @@ config PHY_EXYNOS4210_USB2
phys are available - device, host, HSCI0 and HSCI1.
The newly created file that supports the new SoC has to be also added to the
-Makefile. In case of Exynos 4210 the added line is following:
+Makefile. In case of Exynos 4210 the added line is following::
-obj-$(CONFIG_PHY_EXYNOS4210_USB2) += phy-exynos4210-usb2.o
+ obj-$(CONFIG_PHY_EXYNOS4210_USB2) += phy-exynos4210-usb2.o
After completing these steps the support for the new SoC should be ready.
diff --git a/MAINTAINERS b/MAINTAINERS
index 10cac0512711..9c99c5f47381 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -13783,7 +13783,7 @@ M: Sylwester Nawrocki <s.nawrocki@samsung.com>
L: linux-kernel@vger.kernel.org
S: Supported
F: Documentation/devicetree/bindings/phy/samsung-phy.txt
-F: Documentation/phy/samsung-usb2.txt
+F: Documentation/phy/samsung-usb2.rst
F: drivers/phy/samsung/phy-exynos4210-usb2.c
F: drivers/phy/samsung/phy-exynos4x12-usb2.c
F: drivers/phy/samsung/phy-exynos5250-usb2.c
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 55/79] docs: rbtree.txt: fix Sphinx build warnings
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (45 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 54/79] docs: phy: convert samsung-usb2.txt to ReST format Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 57/79] docs: accounting: convert to ReST Mauro Carvalho Chehab
` (26 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet
Ths file is already at ReST format. Yet, some recent changes
made it to produce a few warnings when building it with
Sphinx.
Those are trivially fixed by marking some literal blocks.
Fix them before adding it to the docs building system.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/rbtree.txt | 6 +++---
1 file changed, 3 insertions(+), 3 deletions(-)
diff --git a/Documentation/rbtree.txt b/Documentation/rbtree.txt
index c42a21b99046..523d54b60087 100644
--- a/Documentation/rbtree.txt
+++ b/Documentation/rbtree.txt
@@ -204,21 +204,21 @@ potentially expensive tree iterations. This is done at negligible runtime
overhead for maintanence; albeit larger memory footprint.
Similar to the rb_root structure, cached rbtrees are initialized to be
-empty via:
+empty via::
struct rb_root_cached mytree = RB_ROOT_CACHED;
Cached rbtree is simply a regular rb_root with an extra pointer to cache the
leftmost node. This allows rb_root_cached to exist wherever rb_root does,
which permits augmented trees to be supported as well as only a few extra
-interfaces:
+interfaces::
struct rb_node *rb_first_cached(struct rb_root_cached *tree);
void rb_insert_color_cached(struct rb_node *, struct rb_root_cached *, bool);
void rb_erase_cached(struct rb_node *node, struct rb_root_cached *);
Both insert and erase calls have their respective counterpart of augmented
-trees:
+trees::
void rb_insert_augmented_cached(struct rb_node *node, struct rb_root_cached *,
bool, struct rb_augment_callbacks *);
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 57/79] docs: accounting: convert to ReST
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (46 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 55/79] docs: rbtree.txt: fix Sphinx build warnings Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-05-06 15:46 ` Tejun Heo
2019-04-22 13:27 ` [PATCH v2 58/79] docs: fmc: " Mauro Carvalho Chehab
` (25 subsequent siblings)
73 siblings, 1 reply; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Balbir Singh, Tejun Heo, Li Zefan,
Johannes Weiner, cgroups
Rename the accounting documentation files to ReST, add an
index for them and adjust in order to produce a nice html
output via the Sphinx build system.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
.../{cgroupstats.txt => cgroupstats.rst} | 14 +++--
...ay-accounting.txt => delay-accounting.rst} | 61 +++++++++++--------
Documentation/accounting/index.rst | 14 +++++
Documentation/accounting/{psi.txt => psi.rst} | 40 ++++++------
...kstats-struct.txt => taskstats-struct.rst} | 53 ++++++++++------
.../{taskstats.txt => taskstats.rst} | 15 +++--
Documentation/admin-guide/cgroup-v2.rst | 6 +-
init/Kconfig | 2 +-
8 files changed, 126 insertions(+), 79 deletions(-)
rename Documentation/accounting/{cgroupstats.txt => cgroupstats.rst} (77%)
rename Documentation/accounting/{delay-accounting.txt => delay-accounting.rst} (77%)
create mode 100644 Documentation/accounting/index.rst
rename Documentation/accounting/{psi.txt => psi.rst} (91%)
rename Documentation/accounting/{taskstats-struct.txt => taskstats-struct.rst} (90%)
rename Documentation/accounting/{taskstats.txt => taskstats.rst} (95%)
diff --git a/Documentation/accounting/cgroupstats.txt b/Documentation/accounting/cgroupstats.rst
similarity index 77%
rename from Documentation/accounting/cgroupstats.txt
rename to Documentation/accounting/cgroupstats.rst
index d16a9849e60e..b9afc48f4ea2 100644
--- a/Documentation/accounting/cgroupstats.txt
+++ b/Documentation/accounting/cgroupstats.rst
@@ -1,3 +1,7 @@
+==================
+Control Groupstats
+==================
+
Control Groupstats is inspired by the discussion at
http://lkml.org/lkml/2007/4/11/187 and implements per cgroup statistics as
suggested by Andrew Morton in http://lkml.org/lkml/2007/4/11/263.
@@ -19,9 +23,9 @@ about tasks blocked on I/O. If CONFIG_TASK_DELAY_ACCT is disabled, this
information will not be available.
To extract cgroup statistics a utility very similar to getdelays.c
-has been developed, the sample output of the utility is shown below
+has been developed, the sample output of the utility is shown below::
-~/balbir/cgroupstats # ./getdelays -C "/sys/fs/cgroup/a"
-sleeping 1, blocked 0, running 1, stopped 0, uninterruptible 0
-~/balbir/cgroupstats # ./getdelays -C "/sys/fs/cgroup"
-sleeping 155, blocked 0, running 1, stopped 0, uninterruptible 2
+ ~/balbir/cgroupstats # ./getdelays -C "/sys/fs/cgroup/a"
+ sleeping 1, blocked 0, running 1, stopped 0, uninterruptible 0
+ ~/balbir/cgroupstats # ./getdelays -C "/sys/fs/cgroup"
+ sleeping 155, blocked 0, running 1, stopped 0, uninterruptible 2
diff --git a/Documentation/accounting/delay-accounting.txt b/Documentation/accounting/delay-accounting.rst
similarity index 77%
rename from Documentation/accounting/delay-accounting.txt
rename to Documentation/accounting/delay-accounting.rst
index 042ea59b5853..7cc7f5852da0 100644
--- a/Documentation/accounting/delay-accounting.txt
+++ b/Documentation/accounting/delay-accounting.rst
@@ -1,5 +1,6 @@
+================
Delay accounting
-----------------
+================
Tasks encounter delays in execution when they wait
for some kernel resource to become available e.g. a
@@ -39,7 +40,9 @@ in detail in a separate document in this directory. Taskstats returns a
generic data structure to userspace corresponding to per-pid and per-tgid
statistics. The delay accounting functionality populates specific fields of
this structure. See
+
include/linux/taskstats.h
+
for a description of the fields pertaining to delay accounting.
It will generally be in the form of counters returning the cumulative
delay seen for cpu, sync block I/O, swapin, memory reclaim etc.
@@ -61,13 +64,16 @@ also serves as an example of using the taskstats interface.
Usage
-----
-Compile the kernel with
+Compile the kernel with::
+
CONFIG_TASK_DELAY_ACCT=y
CONFIG_TASKSTATS=y
Delay accounting is enabled by default at boot up.
-To disable, add
+To disable, add::
+
nodelayacct
+
to the kernel boot options. The rest of the instructions
below assume this has not been done.
@@ -78,40 +84,43 @@ The utility also allows a given command to be
executed and the corresponding delays to be
seen.
-General format of the getdelays command
+General format of the getdelays command::
-getdelays [-t tgid] [-p pid] [-c cmd...]
+ getdelays [-t tgid] [-p pid] [-c cmd...]
-Get delays, since system boot, for pid 10
-# ./getdelays -p 10
-(output similar to next case)
+Get delays, since system boot, for pid 10::
-Get sum of delays, since system boot, for all pids with tgid 5
-# ./getdelays -t 5
+ # ./getdelays -p 10
+ (output similar to next case)
+Get sum of delays, since system boot, for all pids with tgid 5::
-CPU count real total virtual total delay total
- 7876 92005750 100000000 24001500
-IO count delay total
- 0 0
-SWAP count delay total
- 0 0
-RECLAIM count delay total
- 0 0
+ # ./getdelays -t 5
-Get delays seen in executing a given simple command
-# ./getdelays -c ls /
-bin data1 data3 data5 dev home media opt root srv sys usr
-boot data2 data4 data6 etc lib mnt proc sbin subdomain tmp var
+ CPU count real total virtual total delay total
+ 7876 92005750 100000000 24001500
+ IO count delay total
+ 0 0
+ SWAP count delay total
+ 0 0
+ RECLAIM count delay total
+ 0 0
+Get delays seen in executing a given simple command::
-CPU count real total virtual total delay total
+ # ./getdelays -c ls /
+
+ bin data1 data3 data5 dev home media opt root srv sys usr
+ boot data2 data4 data6 etc lib mnt proc sbin subdomain tmp var
+
+
+ CPU count real total virtual total delay total
6 4000250 4000000 0
-IO count delay total
+ IO count delay total
0 0
-SWAP count delay total
+ SWAP count delay total
0 0
-RECLAIM count delay total
+ RECLAIM count delay total
0 0
diff --git a/Documentation/accounting/index.rst b/Documentation/accounting/index.rst
new file mode 100644
index 000000000000..e1f6284b5ff3
--- /dev/null
+++ b/Documentation/accounting/index.rst
@@ -0,0 +1,14 @@
+:orphan:
+
+==========
+Accounting
+==========
+
+.. toctree::
+ :maxdepth: 1
+
+ cgroupstats
+ delay-accounting
+ psi
+ taskstats
+ taskstats-struct
diff --git a/Documentation/accounting/psi.txt b/Documentation/accounting/psi.rst
similarity index 91%
rename from Documentation/accounting/psi.txt
rename to Documentation/accounting/psi.rst
index 5cbe5659e3b7..621111ce5740 100644
--- a/Documentation/accounting/psi.txt
+++ b/Documentation/accounting/psi.rst
@@ -35,14 +35,14 @@ Pressure interface
Pressure information for each resource is exported through the
respective file in /proc/pressure/ -- cpu, memory, and io.
-The format for CPU is as such:
+The format for CPU is as such::
-some avg10=0.00 avg60=0.00 avg300=0.00 total=0
+ some avg10=0.00 avg60=0.00 avg300=0.00 total=0
-and for memory and IO:
+and for memory and IO::
-some avg10=0.00 avg60=0.00 avg300=0.00 total=0
-full avg10=0.00 avg60=0.00 avg300=0.00 total=0
+ some avg10=0.00 avg60=0.00 avg300=0.00 total=0
+ full avg10=0.00 avg60=0.00 avg300=0.00 total=0
The "some" line indicates the share of time in which at least some
tasks are stalled on a given resource.
@@ -77,9 +77,9 @@ To register a trigger user has to open psi interface file under
/proc/pressure/ representing the resource to be monitored and write the
desired threshold and time window. The open file descriptor should be
used to wait for trigger events using select(), poll() or epoll().
-The following format is used:
+The following format is used::
-<some|full> <stall amount in us> <time window in us>
+ <some|full> <stall amount in us> <time window in us>
For example writing "some 150000 1000000" into /proc/pressure/memory
would add 150ms threshold for partial memory stall measured within
@@ -115,18 +115,20 @@ trigger is closed.
Userspace monitor usage example
===============================
-#include <errno.h>
-#include <fcntl.h>
-#include <stdio.h>
-#include <poll.h>
-#include <string.h>
-#include <unistd.h>
+::
-/*
- * Monitor memory partial stall with 1s tracking window size
- * and 150ms threshold.
- */
-int main() {
+ #include <errno.h>
+ #include <fcntl.h>
+ #include <stdio.h>
+ #include <poll.h>
+ #include <string.h>
+ #include <unistd.h>
+
+ /*
+ * Monitor memory partial stall with 1s tracking window size
+ * and 150ms threshold.
+ */
+ int main() {
const char trig[] = "some 150000 1000000";
struct pollfd fds;
int n;
@@ -165,7 +167,7 @@ int main() {
}
return 0;
-}
+ }
Cgroup2 interface
=================
diff --git a/Documentation/accounting/taskstats-struct.txt b/Documentation/accounting/taskstats-struct.rst
similarity index 90%
rename from Documentation/accounting/taskstats-struct.txt
rename to Documentation/accounting/taskstats-struct.rst
index e7512c061c15..6392d2966abd 100644
--- a/Documentation/accounting/taskstats-struct.txt
+++ b/Documentation/accounting/taskstats-struct.rst
@@ -1,5 +1,6 @@
+====================
The struct taskstats
---------------------
+====================
This document contains an explanation of the struct taskstats fields.
@@ -10,16 +11,24 @@ There are three different groups of fields in the struct taskstats:
the common fields and basic accounting fields are collected for
delivery at do_exit() of a task.
2) Delay accounting fields
- These fields are placed between
- /* Delay accounting fields start */
- and
- /* Delay accounting fields end */
+ These fields are placed between::
+
+ /* Delay accounting fields start */
+
+ and::
+
+ /* Delay accounting fields end */
+
Their values are collected if CONFIG_TASK_DELAY_ACCT is set.
3) Extended accounting fields
- These fields are placed between
- /* Extended accounting fields start */
- and
- /* Extended accounting fields end */
+ These fields are placed between::
+
+ /* Extended accounting fields start */
+
+ and::
+
+ /* Extended accounting fields end */
+
Their values are collected if CONFIG_TASK_XACCT is set.
4) Per-task and per-thread context switch count statistics
@@ -31,10 +40,12 @@ There are three different groups of fields in the struct taskstats:
Future extension should add fields to the end of the taskstats struct, and
should not change the relative position of each field within the struct.
+::
-struct taskstats {
+ struct taskstats {
+
+1) Common and basic accounting fields::
-1) Common and basic accounting fields:
/* The version number of this struct. This field is always set to
* TAKSTATS_VERSION, which is defined in <linux/taskstats.h>.
* Each time the struct is changed, the value should be incremented.
@@ -83,7 +94,8 @@ struct taskstats {
__u64 ac_majflt; /* Major Page Fault Count */
-2) Delay accounting fields:
+2) Delay accounting fields::
+
/* Delay accounting fields start
*
* All values, until the comment "Delay accounting fields end" are
@@ -134,7 +146,8 @@ struct taskstats {
/* version 1 ends here */
-3) Extended accounting fields
+3) Extended accounting fields::
+
/* Extended accounting fields start */
/* Accumulated RSS usage in duration of a task, in MBytes-usecs.
@@ -164,17 +177,23 @@ struct taskstats {
/* Extended accounting fields end */
-4) Per-task and per-thread statistics
+4) Per-task and per-thread statistics::
+
__u64 nvcsw; /* Context voluntary switch counter */
__u64 nivcsw; /* Context involuntary switch counter */
-5) Time accounting for SMT machines
+5) Time accounting for SMT machines::
+
__u64 ac_utimescaled; /* utime scaled on frequency etc */
__u64 ac_stimescaled; /* stime scaled on frequency etc */
__u64 cpu_scaled_run_real_total; /* scaled cpu_run_real_total */
-6) Extended delay accounting fields for memory reclaim
+6) Extended delay accounting fields for memory reclaim::
+
/* Delay waiting for memory reclaim */
__u64 freepages_count;
__u64 freepages_delay_total;
-}
+
+::
+
+ }
diff --git a/Documentation/accounting/taskstats.txt b/Documentation/accounting/taskstats.rst
similarity index 95%
rename from Documentation/accounting/taskstats.txt
rename to Documentation/accounting/taskstats.rst
index ff06b738bb88..2a28b7f55c10 100644
--- a/Documentation/accounting/taskstats.txt
+++ b/Documentation/accounting/taskstats.rst
@@ -1,5 +1,6 @@
+=============================
Per-task statistics interface
------------------------------
+=============================
Taskstats is a netlink-based interface for sending per-task and
@@ -65,7 +66,7 @@ taskstats.h file.
The data exchanged between user and kernel space is a netlink message belonging
to the NETLINK_GENERIC family and using the netlink attributes interface.
-The messages are in the format
+The messages are in the format::
+----------+- - -+-------------+-------------------+
| nlmsghdr | Pad | genlmsghdr | taskstats payload |
@@ -167,15 +168,13 @@ extended and the number of cpus grows large.
To avoid losing statistics, userspace should do one or more of the following:
- increase the receive buffer sizes for the netlink sockets opened by
-listeners to receive exit data.
+ listeners to receive exit data.
- create more listeners and reduce the number of cpus being listened to by
-each listener. In the extreme case, there could be one listener for each cpu.
-Users may also consider setting the cpu affinity of the listener to the subset
-of cpus to which it listens, especially if they are listening to just one cpu.
+ each listener. In the extreme case, there could be one listener for each cpu.
+ Users may also consider setting the cpu affinity of the listener to the subset
+ of cpus to which it listens, especially if they are listening to just one cpu.
Despite these measures, if the userspace receives ENOBUFS error messages
indicated overflow of receive buffers, it should take measures to handle the
loss of data.
-
-----
diff --git a/Documentation/admin-guide/cgroup-v2.rst b/Documentation/admin-guide/cgroup-v2.rst
index 19c4e78666ff..123c87b75787 100644
--- a/Documentation/admin-guide/cgroup-v2.rst
+++ b/Documentation/admin-guide/cgroup-v2.rst
@@ -981,7 +981,7 @@ All time durations are in microseconds.
A read-only nested-key file which exists on non-root cgroups.
Shows pressure stall information for CPU. See
- Documentation/accounting/psi.txt for details.
+ Documentation/accounting/psi.rst for details.
Memory
@@ -1318,7 +1318,7 @@ PAGE_SIZE multiple when read back.
A read-only nested-key file which exists on non-root cgroups.
Shows pressure stall information for memory. See
- Documentation/accounting/psi.txt for details.
+ Documentation/accounting/psi.rst for details.
Usage Guidelines
@@ -1461,7 +1461,7 @@ IO Interface Files
A read-only nested-key file which exists on non-root cgroups.
Shows pressure stall information for IO. See
- Documentation/accounting/psi.txt for details.
+ Documentation/accounting/psi.rst for details.
Writeback
diff --git a/init/Kconfig b/init/Kconfig
index 448f8daa1204..4fb96464f0f2 100644
--- a/init/Kconfig
+++ b/init/Kconfig
@@ -516,7 +516,7 @@ config PSI
have cpu.pressure, memory.pressure, and io.pressure files,
which aggregate pressure stalls for the grouped tasks only.
- For more details see Documentation/accounting/psi.txt.
+ For more details see Documentation/accounting/psi.rst.
Say N if unsure.
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* Re: [PATCH v2 57/79] docs: accounting: convert to ReST
2019-04-22 13:27 ` [PATCH v2 57/79] docs: accounting: convert to ReST Mauro Carvalho Chehab
@ 2019-05-06 15:46 ` Tejun Heo
0 siblings, 0 replies; 115+ messages in thread
From: Tejun Heo @ 2019-05-06 15:46 UTC (permalink / raw)
To: Mauro Carvalho Chehab
Cc: Linux Doc Mailing List, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Balbir Singh, Li Zefan, Johannes Weiner, cgroups
On Mon, Apr 22, 2019 at 10:27:46AM -0300, Mauro Carvalho Chehab wrote:
> Rename the accounting documentation files to ReST, add an
> index for them and adjust in order to produce a nice html
> output via the Sphinx build system.
>
> At its new index.rst, let's add a :orphan: while this is not linked to
> the main index.rst file, in order to avoid build warnings.
>
> Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Thanks.
--
tejun
^ permalink raw reply [flat|nested] 115+ messages in thread
* [PATCH v2 58/79] docs: fmc: convert to ReST
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (47 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 57/79] docs: accounting: convert to ReST Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 59/79] docs: hid: " Mauro Carvalho Chehab
` (24 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet
Rename the FMC documentation files to ReST, add an
index for them and adjust in order to produce a nice html
output via the Sphinx build system.
At least some of this files seemed to be using some markup
language similar to ReST, but with a different markup for
cross-references. Adjust those to use the ReST syntax.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/fmc/{API.txt => api.rst} | 10 +--
.../fmc/{carrier.txt => carrier.rst} | 65 ++++++++++---------
.../fmc/{FMC-and-SDB.txt => fmc-and-sdb.rst} | 19 ++++--
.../fmc/{fmc-chardev.txt => fmc-chardev.rst} | 9 +--
.../fmc/{fmc-fakedev.txt => fmc-fakedev.rst} | 13 ++--
.../fmc/{fmc-trivial.txt => fmc-trivial.rst} | 11 ++--
...-write-eeprom.txt => fmc-write-eeprom.rst} | 36 +++++-----
.../fmc/{identifiers.txt => identifiers.rst} | 20 +++---
Documentation/fmc/index.rst | 21 ++++++
.../fmc/{mezzanine.txt => mezzanine.rst} | 34 +++++-----
.../fmc/{parameters.txt => parameters.rst} | 11 ++--
11 files changed, 147 insertions(+), 102 deletions(-)
rename Documentation/fmc/{API.txt => api.rst} (87%)
rename Documentation/fmc/{carrier.txt => carrier.rst} (91%)
rename Documentation/fmc/{FMC-and-SDB.txt => fmc-and-sdb.rst} (88%)
rename Documentation/fmc/{fmc-chardev.txt => fmc-chardev.rst} (96%)
rename Documentation/fmc/{fmc-fakedev.txt => fmc-fakedev.rst} (85%)
rename Documentation/fmc/{fmc-trivial.txt => fmc-trivial.rst} (69%)
rename Documentation/fmc/{fmc-write-eeprom.txt => fmc-write-eeprom.rst} (79%)
rename Documentation/fmc/{identifiers.txt => identifiers.rst} (93%)
create mode 100644 Documentation/fmc/index.rst
rename Documentation/fmc/{mezzanine.txt => mezzanine.rst} (87%)
rename Documentation/fmc/{parameters.txt => parameters.rst} (96%)
diff --git a/Documentation/fmc/API.txt b/Documentation/fmc/api.rst
similarity index 87%
rename from Documentation/fmc/API.txt
rename to Documentation/fmc/api.rst
index 06b06b92c794..157a7343180c 100644
--- a/Documentation/fmc/API.txt
+++ b/Documentation/fmc/api.rst
@@ -2,7 +2,7 @@ Functions Exported by fmc.ko
****************************
The FMC core exports the usual 4 functions that are needed for a bus to
-work, and a few more:
+work, and a few more::
int fmc_driver_register(struct fmc_driver *drv);
void fmc_driver_unregister(struct fmc_driver *drv);
@@ -20,9 +20,9 @@ work, and a few more:
int fmc_reprogram(struct fmc_device *f, struct fmc_driver *d, char *gw,
int sdb_entry);
-The data structure that describe a device is detailed in *note FMC
-Device::, the one that describes a driver is detailed in *note FMC
-Driver::. Please note that structures of type fmc_device must be
+The data structure that describe a device is detailed in :ref:`fmc_device`,
+the one that describes a driver is detailed in :ref:`fmc_driver`.
+Please note that structures of type fmc_device must be
allocated by the caller, but must not be released after unregistering.
The fmc-bus itself takes care of releasing the structure when their use
count reaches zero - actually, the device model does that in lieu of us.
@@ -39,7 +39,7 @@ should register as a group only mezzanines that are driven by the same
FPGA, for the reason outlined above.
Finally, the fmc_reprogram function calls the reprogram method (see
-*note The API Offered by Carriers:: and also scans the memory area for
+:ref:`fmc_api_offered_by_carriers`) and also scans the memory area for
an SDB tree. You can pass -1 as sdb_entry to disable such scan.
Otherwise, the function fails if no tree is found at the specified
entry point. The function is meant to factorize common code, and by
diff --git a/Documentation/fmc/carrier.txt b/Documentation/fmc/carrier.rst
similarity index 91%
rename from Documentation/fmc/carrier.txt
rename to Documentation/fmc/carrier.rst
index 5e4f1dd3e98b..06ba443441e1 100644
--- a/Documentation/fmc/carrier.txt
+++ b/Documentation/fmc/carrier.rst
@@ -1,5 +1,8 @@
+.. _fmc_device:
+
+==========
FMC Device
-**********
+==========
Within the Linux bus framework, the FMC device is created and
registered by the carrier driver. For example, the PCI driver for the
@@ -25,7 +28,7 @@ change for compatible changes (like a new flag) and the major number
will increase when an incompatible change happens (for example, a
change in layout of some fmc data structures). Device writers should
just set it to the value FMC_VERSION, and be ready to get back -EINVAL
-at registration time.
+at registration time::
struct fmc_device {
unsigned long version;
@@ -123,13 +126,15 @@ As I write this, she SPEC carrier is already completely functional in
the fmc-bus environment, and is a good reference to look at.
+.. _fmc_api_offered_by_carriers:
+
The API Offered by Carriers
===========================
The carrier provides a number of methods by means of the
-`fmc_operations' structure, which currently is defined like this
+`fmc_operations` structure, which currently is defined like this
(again, it is a moving target, please refer to the header rather than
-this document):
+this document)::
struct fmc_operations {
uint32_t (*readl)(struct fmc_device *fmc, int offset);
@@ -148,8 +153,7 @@ this document):
The individual methods perform the following tasks:
-`readl'
-`writel'
+`readl`, `writel`
These functions access FPGA registers by whatever means the
carrier offers. They are not expected to fail, and most of the time
they will just make a memory access to the host bus. If the
@@ -161,20 +165,20 @@ The individual methods perform the following tasks:
or other non-local carriers, error-management is still to be
defined.
-`validate'
+`validate`
Module parameters are used to manage different applications for
two or more boards of the same kind. Validation is based on the
busid module parameter, if provided, and returns the matching
- index in the associated array. See *note Module Parameters:: in in
- doubt. If no match is found, `-ENOENT' is returned; if the user
- didn't pass `busid=', all devices will pass validation. The value
+ index in the associated array. See :ref:`fmc_module_parameters` in in
+ doubt. If no match is found, `-ENOENT` is returned; if the user
+ didn't pass `busid=`, all devices will pass validation. The value
returned by the validate method can be used as index into other
- parameters (for example, some drivers use the `lm32=' parameter in
- this way). Such "generic parameters" are documented in *note
- Module Parameters::, below. The validate method is used by
- `fmc-trivial.ko', described in *note fmc-trivial::.
+ parameters (for example, some drivers use the `lm32=` parameter in
+ this way). Such "generic parameters" are documented in
+ :ref:`fmc_module_parameters` below. The validate method is used by
+ `fmc-trivial.ko`, described in :ref:`fmc_trivial`.
-`reprogram'
+`reprogram`
The carrier enumerates FMC devices by loading a standard (or
golden) FPGA binary that allows EEPROM access. Each driver, then,
will need to reprogram the FPGA by calling this function. If the
@@ -182,31 +186,28 @@ The individual methods perform the following tasks:
binary. If the gateware name has been overridden through module
parameters (in a carrier-specific way) the file loaded will match
the parameters. Per-device gateware names can be specified using
- the `gateware=' parameter, see *note Module Parameters::. Note:
+ the `gateware=` parameter, see :ref:`fmc_module_parameters`. Note:
Clients should call rhe new helper, fmc_reprogram, which both
calls this method and parse the SDB tree of the FPGA.
-`irq_request'
-`irq_ack'
-`irq_free'
+`irq_request`, `irq_ack`, `irq_free`
Interrupt management is carrier-specific, so it is abstracted as
operations. The interrupt number is listed in the device
structure, and for the mezzanine driver the number is only
informative. The handler will receive the fmc pointer as dev_id;
the flags argument is passed to the Linux request_irq function,
but fmc-specific flags may be added in the future. You'll most
- likely want to pass the `IRQF_SHARED' flag.
+ likely want to pass the `IRQF_SHARED` flag.
-`gpio_config'
+`gpio_config`
The method allows to configure a GPIO pin in the carrier, and read
- its current value if it is configured as input. See *note The GPIO
- Abstraction:: for details.
+ its current value if it is configured as input. See
+ :ref:`fmc_gpio_abstraction` for details.
-`read_ee'
-`write_ee'
+`read_ee`, `write_ee`
Read or write the EEPROM. The functions are expected to be only
called before reprogramming and the carrier should refuse them
- with `ENODEV' after reprogramming. The offset is expected to be
+ with `ENODEV` after reprogramming. The offset is expected to be
within 8kB (the current size), but addresses up to 1MB are
reserved to fit bigger I2C devices in the future. Carriers may
offer access to other internal flash memories using these same
@@ -214,9 +215,9 @@ The individual methods perform the following tasks:
I2C memory is seen at offset 1M and the internal SPI flash is seen
at offset 16M. This multiplexing of several flash memories in the
same address space is carrier-specific and should only be used
- by a driver that has verified the `carrier_name' field.
-
+ by a driver that has verified the `carrier_name` field.
+.. _fmc_gpio_abstraction:
The GPIO Abstraction
====================
@@ -230,7 +231,7 @@ some knowledge of the carrier itself. For this reason, the specific
driver can request to configure carrier-specific GPIO pins, numbered
from 0 to at most 4095. Configuration is performed by passing a
pointer to an array of struct fmc_gpio items, as well as the length of
-the array. This is the data structure:
+the array. This is the data structure::
struct fmc_gpio {
char *carrier_name;
@@ -254,7 +255,7 @@ pins, and expect one such configuration to succeed - if none succeeds
it most likely means that the current carrier is a still-unknown one.
If, however, your GPIO pin has a specific known role, you can pass a
-special number in the gpio field, using one of the following macros:
+special number in the gpio field, using one of the following macros::
#define FMC_GPIO_RAW(x) (x) /* 4096 of them */
#define FMC_GPIO_IRQ(x) ((x) + 0x1000) /* 256 of them */
@@ -293,9 +294,9 @@ carriers.
The return value of gpio_config is defined as follows:
- * If no pin in the array can be used by the carrier, `-ENODEV'.
+ * If no pin in the array can be used by the carrier, `-ENODEV`.
- * If at least one virtual GPIO number cannot be mapped, `-ENOENT'.
+ * If at least one virtual GPIO number cannot be mapped, `-ENOENT`.
* On success, 0 or positive. The value returned is the number of
high input bits (if no input is configured, the value for success
diff --git a/Documentation/fmc/FMC-and-SDB.txt b/Documentation/fmc/fmc-and-sdb.rst
similarity index 88%
rename from Documentation/fmc/FMC-and-SDB.txt
rename to Documentation/fmc/fmc-and-sdb.rst
index fa14e0b24521..e64c6104a241 100644
--- a/Documentation/fmc/FMC-and-SDB.txt
+++ b/Documentation/fmc/fmc-and-sdb.rst
@@ -1,3 +1,6 @@
+============
+Introduction
+============
FMC (FPGA Mezzanine Card) is the standard we use for our I/O devices,
in the context of White Rabbit and related hardware.
@@ -18,12 +21,12 @@ submodule.
The most up to date version of code and documentation is always
available from the repository you can clone from:
- git://ohwr.org/fmc-projects/fmc-bus.git (read-only)
- git@ohwr.org:fmc-projects/fmc-bus.git (read-write for developers)
+ - git://ohwr.org/fmc-projects/fmc-bus.git (read-only)
+ - git@ohwr.org:fmc-projects/fmc-bus.git (read-write for developers)
Selected versions of the documentation, as well as complete tar
archives for selected revisions are placed to the Files section of the
-project: `http://www.ohwr.org/projects/fmc-bus/files'
+project: `http://www.ohwr.org/projects/fmc-bus/files`
What is FMC
@@ -62,13 +65,15 @@ a filesystem inside the FMC EEPROM.
SDB is not mandatory for use of this FMC kernel bus, but if you have SDB
this package can make good use of it. SDB itself is developed in the
fpga-config-space OHWR project. The link to the repository is
-`git://ohwr.org/hdl-core-lib/fpga-config-space.git' and what is used in
+`git://ohwr.org/hdl-core-lib/fpga-config-space.git` and what is used in
this project lives in the sdbfs subdirectory in there.
-SDB support for FMC is described in *note FMC Identification:: and
-*note SDB Support::
+SDB support for FMC is described in :ref:`fmc_identification` and
+:ref:`fmc_sdb_support`.
+.. _fmc_sdb_support:
+
SDB Support
***********
@@ -79,7 +84,7 @@ memory image.
The module exports the following functions, in the special header
<linux/fmc-sdb.h>. The linux/ prefix in the name is there because we
plan to submit it upstream in the future, and don't want to force
-changes on our drivers if that happens.
+changes on our drivers if that happens::
int fmc_scan_sdb_tree(struct fmc_device *fmc, unsigned long address);
void fmc_show_sdb_tree(struct fmc_device *fmc);
diff --git a/Documentation/fmc/fmc-chardev.txt b/Documentation/fmc/fmc-chardev.rst
similarity index 96%
rename from Documentation/fmc/fmc-chardev.txt
rename to Documentation/fmc/fmc-chardev.rst
index d9ccb278e597..5aa77511e4d1 100644
--- a/Documentation/fmc/fmc-chardev.txt
+++ b/Documentation/fmc/fmc-chardev.rst
@@ -1,5 +1,6 @@
-fmc-chardev
-===========
+================
+Character device
+================
This is a simple generic driver, that allows user access by means of a
character device (actually, one for each mezzanine it takes hold of).
@@ -27,7 +28,7 @@ arises.
The example below shows raw access to a SPEC card programmed with its
golden FPGA file, that features an SDB structure at offset 256 - i.e.
64 words. The mezzanine's EEPROM in this case is not programmed, so the
-default name is fmc-<bus><devfn>, and there are two cards in the system:
+default name is fmc-<bus><devfn>, and there are two cards in the system::
spusa.root# insmod fmc-chardev.ko
[ 1073.339332] spec 0000:02:00.0: Driver has no ID: matches all
@@ -52,7 +53,7 @@ repeated reading data is written to stdout; repeated writes read from
stdin and the value argument is ignored.
The following examples show reading the SDB magic number and the first
-SDB record from a SPEC device programmed with its golden image:
+SDB record from a SPEC device programmed with its golden image::
spusa.root# ./fmc-mem /dev/fmc-0200 100
5344422d
diff --git a/Documentation/fmc/fmc-fakedev.txt b/Documentation/fmc/fmc-fakedev.rst
similarity index 85%
rename from Documentation/fmc/fmc-fakedev.txt
rename to Documentation/fmc/fmc-fakedev.rst
index e85b74a4ae30..e9300e839eef 100644
--- a/Documentation/fmc/fmc-fakedev.txt
+++ b/Documentation/fmc/fmc-fakedev.rst
@@ -1,7 +1,10 @@
-fmc-fakedev
-===========
+.. _fmc_fakedev:
-This package includes a software-only device, called fmc-fakedev, which
+=========================
+Software-only Fake Device
+=========================
+
+This package includes a software-only device, called **fmc-fakedev**, which
is able to register up to 4 mezzanines (by default it registers one).
Unlike the SPEC driver, which creates an FMC device for each PCI cards
it manages, this module creates a single instance of its set of
@@ -9,14 +12,14 @@ mezzanines.
It is meant as the simplest possible example of how a driver should be
written, and it includes a fake EEPROM image (built using the tools
-described in *note FMC Identification::),, which by default is
+described in :ref:`fmc_identification` which by default is
replicated for each fake mezzanine.
You can also use this device to verify the match algorithms, by asking
it to test your own EEPROM image. You can provide the image by means of
the eeprom= module parameter: the new EEPROM image is loaded, as usual,
by means of the firmware loader. This example shows the defaults and a
-custom EEPROM image:
+custom EEPROM image::
spusa.root# insmod fmc-fakedev.ko
[ 99.971247] fake-fmc-carrier: mezzanine 0
diff --git a/Documentation/fmc/fmc-trivial.txt b/Documentation/fmc/fmc-trivial.rst
similarity index 69%
rename from Documentation/fmc/fmc-trivial.txt
rename to Documentation/fmc/fmc-trivial.rst
index d1910bc67159..c98324f955ea 100644
--- a/Documentation/fmc/fmc-trivial.txt
+++ b/Documentation/fmc/fmc-trivial.rst
@@ -1,7 +1,9 @@
-fmc-trivial
-===========
+.. _fmc_trivial:
-The simple module fmc-trivial is just a simple client that registers an
+FMC trivial driver
+==================
+
+The simple module **fmc-trivial** is just a simple client that registers an
interrupt handler. I used it to verify the basic mechanism of the FMC
bus and how interrupts worked.
@@ -9,8 +11,7 @@ The module implements the generic FMC parameters, so it can program a
different gateware file in each card. The whole list of parameters it
accepts are:
-`busid='
-`gateware='
+`busid=`, `gateware=`
Generic parameters. See mezzanine.txt
diff --git a/Documentation/fmc/fmc-write-eeprom.txt b/Documentation/fmc/fmc-write-eeprom.rst
similarity index 79%
rename from Documentation/fmc/fmc-write-eeprom.txt
rename to Documentation/fmc/fmc-write-eeprom.rst
index e0a9712156aa..45311bcc804a 100644
--- a/Documentation/fmc/fmc-write-eeprom.txt
+++ b/Documentation/fmc/fmc-write-eeprom.rst
@@ -1,9 +1,12 @@
-fmc-write-eeprom
+.. _fmc_write_eeprom:
+
+================
+FMC write eeprom
================
-This module is designed to load a binary file from /lib/firmware and to
-write it to the internal EEPROM of the mezzanine card. This driver uses
-the `busid' generic parameter.
+The module **fmc-write-eeprom** is designed to load a binary file from
+/lib/firmware and to write it to the internal EEPROM of the mezzanine card.
+This driver uses the `busid` generic parameter.
Overwriting the EEPROM is not something you should do daily, and it is
expected to only happen during manufacturing. For this reason, the
@@ -11,36 +14,36 @@ module makes it unlikely for the random user to change a working EEPROM.
However, since the EEPROM may include application-specific information
other than the identification, later versions of this packages added
-write-support through sysfs. See *note Accessing the EEPROM::.
+write-support through sysfs. See :ref:`fmc_accessing_eeprom`.
To avoid damaging the EEPROM content, the module takes the following
measures:
- * It accepts a `file=' argument (within /lib/firmware) and if no
+ * It accepts a `file=` argument (within /lib/firmware) and if no
such argument is received, it doesn't write anything to EEPROM
(i.e. there is no default file name).
- * If the file name ends with `.bin' it is written verbatim starting
+ * If the file name ends with `.bin` it is written verbatim starting
at offset 0.
- * If the file name ends with `.tlv' it is interpreted as
+ * If the file name ends with `.tlv` it is interpreted as
type-length-value (i.e., it allows writev(2)-like operation).
* If the file name doesn't match any of the patterns above, it is
ignored and no write is performed.
- * Only cards listed with `busid=' are written to. If no busid is
+ * Only cards listed with `busid=` are written to. If no busid is
specified, no programming is done (and the probe function of the
driver will fail).
Each TLV tuple is formatted in this way: the header is 5 bytes,
-followed by data. The first byte is `w' for write, the next two bytes
+followed by data. The first byte is `w` for write, the next two bytes
represent the address, in little-endian byte order, and the next two
represent the data length, in little-endian order. The length does not
include the header (it is the actual number of bytes to be written).
-This is a real example: that writes 5 bytes at position 0x110:
+This is a real example: that writes 5 bytes at position 0x110::
spusa.root# od -t x1 -Ax /lib/firmware/try.tlv
000000 77 10 01 05 00 30 31 32 33 34
@@ -55,13 +58,13 @@ Rabbit environment. For this reason the TLV format is not expected to
be used much and is not expected to be developed further.
If you want to try reflashing fake EEPROM devices, you can use the
-fmc-fakedev.ko module (see *note fmc-fakedev::). Whenever you change
+fmc-fakedev.ko module (see :ref:`fmc_fakedev`). Whenever you change
the image starting at offset 0, it will deregister and register again
after two seconds. Please note, however, that if fmc-write-eeprom is
still loaded, the system will associate it to the new device, which
will be reprogrammed and thus will be unloaded after two seconds. The
following example removes the module after it reflashed fakedev the
-first time.
+first time::
spusa.root# insmod fmc-fakedev.ko
[ 72.984733] fake-fmc: Manufacturer: fake-vendor
@@ -74,12 +77,13 @@ first time.
[ 132.895794] fake-fmc: Manufacturer: CERN
[ 132.899872] fake-fmc: Product name: FmcDelay1ns4cha
+.. _fmc_accessing_eeprom:
Accessing the EEPROM
-=====================
+====================
The bus creates a sysfs binary file called eeprom for each mezzanine it
-knows about:
+knows about::
spusa.root# cd /sys/bus/fmc/devices; ls -l */eeprom
-r--r--r-- 1 root root 8192 Feb 21 12:30 FmcAdc100m14b4cha-0800/eeprom
@@ -94,5 +98,5 @@ the FPGA with a custom circuit, the carrier is unable to access the
EEPROM and returns ENOTSUPP.
An alternative way to write the EEPROM is the mezzanine driver
-fmc-write-eeprom (See *note fmc-write-eeprom::), but the procedure is
+fmc-write-eeprom (See :ref:`fmc_write_eeprom`), but the procedure is
more complex.
diff --git a/Documentation/fmc/identifiers.txt b/Documentation/fmc/identifiers.rst
similarity index 93%
rename from Documentation/fmc/identifiers.txt
rename to Documentation/fmc/identifiers.rst
index 3bb577ff0d52..01e6dde0996f 100644
--- a/Documentation/fmc/identifiers.txt
+++ b/Documentation/fmc/identifiers.rst
@@ -1,3 +1,5 @@
+.. _fmc_identification:
+
FMC Identification
******************
@@ -19,7 +21,7 @@ package and SDB (part of the fpga-config-space package).
The first sections are only interesting for manufacturers who need to
write the EEPROM. If you are just a software developer writing an FMC
-device or driver, you may jump straight to *note SDB Support::.
+device or driver, you may jump straight to :ref:`fmc_sdb_support`.
Building the FRU Structure
@@ -27,7 +29,7 @@ Building the FRU Structure
If you want to know the internals of the FRU structure and despair, you
can retrieve the document from
-`http://download.intel.com/design/servers/ipmi/FRU1011.pdf' . The
+`http://download.intel.com/design/servers/ipmi/FRU1011.pdf` . The
standard is awful and difficult without reason, so we only support the
minimum mandatory subset - we create a simple structure and parse it
back at run time, but we are not able to either generate or parse more
@@ -43,13 +45,15 @@ line takes precedence)
To make a long story short, in order to build a standard-compliant
binary file to be burned in your EEPROM, you need the following items:
+ =========== === ===================== ============
Environment Opt Official Name Default
----------------------------------------------------------------------
+ =========== === ===================== ============
FRU_VENDOR -v "Board Manufacturer" fmc-example
FRU_NAME -n "Board Product Name" mezzanine
- FRU_SERIAL -s `Board Serial Number" 0001
+ FRU_SERIAL -s "Board Serial Number" 0001
FRU_PART -p "Board Part Number" sample-part
FRU_OUTPUT -o not applicable /dev/stdout
+ =========== === ===================== ============
The "Official Name" above is what you find in the FRU official
documentation, chapter 11, page 7 ("Board Info Area Format"). The
@@ -63,7 +67,7 @@ soon as I find some time for that.
FIXME: consumption etc for FRU are here or in PTS?
-The following example creates a binary image for a specific board:
+The following example creates a binary image for a specific board::
./tools/fru-generator -v CERN -n FmcAdc100m14b4cha \
-s HCCFFIA___-CR000003 -p EDA-02063-V5-0 > eeprom.bin
@@ -71,7 +75,7 @@ The following example creates a binary image for a specific board:
The following example shows a script that builds several binary EEPROM
images for a series of boards, changing the serial number for each of
them. The script uses a mix of environment variables and command line
-options, and uses the same string patterns shown above.
+options, and uses the same string patterns shown above::
#!/bin/sh
@@ -131,7 +135,7 @@ name. The IPMI-FRU name is not mandatory, but a strongly suggested
choice; the name filename is mandatory, because this is the preferred
short name used by the FMC core. For example, a name of "fdelay" may
supplement a Product Name like "FmcDelay1ns4cha" - exactly as
-demonstrated in `tools/sdbfs'.
+demonstrated in `tools/sdbfs`.
Note: SDB access to flash memory is not yet supported, so the short
name currently in use is just the "Product Name" FRU string.
@@ -139,7 +143,7 @@ name currently in use is just the "Product Name" FRU string.
The example in tools/sdbfs includes an extra file, that is needed by
the fine-delay driver, and must live at a known address of 0x1800. By
running gensdbfs on that directory you can output your binary EEPROM
-image (here below spusa$ is the shell prompt):
+image (here below spusa$ is the shell prompt)::
spusa$ ../fru-generator -v CERN -n FmcDelay1ns4cha -s proto-0 \
-p EDA-02267-V3 > IPMI-FRU
diff --git a/Documentation/fmc/index.rst b/Documentation/fmc/index.rst
new file mode 100644
index 000000000000..a749cb04f39e
--- /dev/null
+++ b/Documentation/fmc/index.rst
@@ -0,0 +1,21 @@
+:orphan:
+
+=========================
+FMC (FPGA Mezzanine Card)
+=========================
+
+.. toctree::
+ :maxdepth: 1
+
+ fmc-and-sdb
+ carrier
+ identifiers
+ mezzanine
+ parameters
+
+ api
+
+ fmc-fakedev
+ fmc-trivial
+ fmc-write-eeprom
+ fmc-chardev
diff --git a/Documentation/fmc/mezzanine.txt b/Documentation/fmc/mezzanine.rst
similarity index 87%
rename from Documentation/fmc/mezzanine.txt
rename to Documentation/fmc/mezzanine.rst
index 87910dbfc91e..9a37147e8f14 100644
--- a/Documentation/fmc/mezzanine.txt
+++ b/Documentation/fmc/mezzanine.rst
@@ -1,5 +1,8 @@
+.. _fmc_driver:
+
+==========
FMC Driver
-**********
+==========
An FMC driver is concerned with the specific mezzanine and associated
gateware. As such, it is expected to be independent of the carrier
@@ -12,23 +15,23 @@ configured in the FPGA; the latter technique is used when the FPGA is
already programmed when the device is registered to the bus core.
In some special cases it is possible for a driver to directly access
-FPGA registers, by means of the `fpga_base' field of the device
+FPGA registers, by means of the `fpga_base` field of the device
structure. This may be needed for high-bandwidth peripherals like fast
ADC cards. If the device module registered a remote device (for example
-by means of Etherbone), the `fpga_base' pointer will be NULL.
+by means of Etherbone), the `fpga_base` pointer will be NULL.
Therefore, drivers must be ready to deal with NULL base pointers, and
fail gracefully. Most driver, however, are not expected to access the
pointer directly but run fmc_readl and fmc_writel instead, which will
work in any case.
In even more special cases, the driver may access carrier-specific
-functionality: the `carrier_name' string allows the driver to check
-which is the current carrier and make use of the `carrier_data'
+functionality: the `carrier_name` string allows the driver to check
+which is the current carrier and make use of the `carrier_data`
pointer. We chose to use carrier names rather than numeric identifiers
for greater flexibility, but also to avoid a central registry within
-the `fmc.h' file - we hope other users will exploit our framework with
+the `fmc.h` file - we hope other users will exploit our framework with
their own carriers. An example use of carrier names is in GPIO setup
-(see *note The GPIO Abstraction::), although the name match is not
+(see :ref:`fmc_gpio_abstraction`), although the name match is not
expected to be performed by the driver. If you depend on specific
carriers, please check the carrier name and fail gracefully if your
driver finds it is running in a yet-unknown-to-it environment.
@@ -44,7 +47,7 @@ their EEPROM or on the actual FPGA cores that can be enumerated.
Therefore, we have two tables of identifiers.
Matching of FRU information depends on two names, the manufacturer (or
-vendor) and the device (see *note FMC Identification::); for
+vendor) and the device (see :ref:`fmc_identification`); for
flexibility during production (i.e. before writing to the EEPROM) the
bus supports a catch-all driver that specifies NULL strings. For this
reason, the table is specified as pointer-and-length, not a a
@@ -58,7 +61,7 @@ instantiated), and for consistency the list is passed as
pointer-and-length. Several similar devices can be driven by the same
driver, and thus the driver specifies and array of such arrays.
-The complete set of involved data structures is thus the following:
+The complete set of involved data structures is thus the following::
struct fmc_fru_id { char *manufacturer; char *product_name; };
struct fmc_sdb_one_id { uint64_t vendor; uint32_t device; };
@@ -71,13 +74,14 @@ The complete set of involved data structures is thus the following:
A better reference, with full explanation, is the <linux/fmc.h> header.
+.. _fmc_module_parameters:
Module Parameters
=================
Most of the FMC drivers need the same set of kernel parameters. This
package includes support to implement common parameters by means of
-fields in the `fmc_driver' structure and simple macro definitions.
+fields in the `fmc_driver` structure and simple macro definitions.
The parameters are carrier-specific, in that they rely on the busid
concept, that varies among carriers. For the SPEC, the identifier is a
@@ -88,20 +92,20 @@ and some code duplication is unavoidable.
This is the list of parameters that are common to several modules to
see how they are actually used, please look at spec-trivial.c.
-`busid='
+`busid=`
This is an array of integers, listing carrier-specific
- identification numbers. For PIC, for example, `0x0400' represents
+ identification numbers. For PIC, for example, `0x0400` represents
bus 4, slot 0. If any such ID is specified, the driver will only
accept to drive cards that appear in the list (even if the FMC ID
matches). This is accomplished by the validate carrier method.
-`gateware='
+`gateware=`
The argument is an array of strings. If no busid= is specified,
the first string of gateware= is used for all cards; otherwise the
identifiers and gateware names are paired one by one, in the order
specified.
-`show_sdb='
+`show_sdb=`
For modules supporting it, this parameter asks to show the SDB
internal structure by means of kernel messages. It is disabled by
default because those lines tend to hide more important messages,
@@ -113,7 +117,7 @@ see how they are actually used, please look at spec-trivial.c.
For example, if you are using the trivial driver to load two different
gateware files to two different cards, you can use the following
parameters to load different binaries to the cards, after looking up
-the PCI identifiers. This has been tested with a SPEC carrier.
+the PCI identifiers. This has been tested with a SPEC carrier::
insmod fmc-trivial.ko \
busid=0x0200,0x0400 \
diff --git a/Documentation/fmc/parameters.txt b/Documentation/fmc/parameters.rst
similarity index 96%
rename from Documentation/fmc/parameters.txt
rename to Documentation/fmc/parameters.rst
index 59edf088e3a4..bf4566967e9c 100644
--- a/Documentation/fmc/parameters.txt
+++ b/Documentation/fmc/parameters.rst
@@ -1,16 +1,17 @@
+===========================
Module Parameters in fmc.ko
-***************************
+===========================
The core driver receives two module parameters, meant to help debugging
client modules. Both parameters can be modified by writing to
/sys/module/fmc/parameters/, because they are used when client drivers
are devices are registered, not when fmc.ko is loaded.
-`dump_eeprom='
+`dump_eeprom=`
If not zero, the parameter asks the bus controller to dump the
EEPROM of any device that is registered, using printk.
-`dump_sdb='
+`dump_sdb=`
If not zero, the parameter prints the SDB tree of every FPGA it is
loaded by fmc_reprogram(). If greater than one, it asks to dump
the binary content of SDB records. This currently only dumps the
@@ -19,7 +20,7 @@ are devices are registered, not when fmc.ko is loaded.
EEPROM dumping avoids repeating lines, since most of the contents is
usually empty and all bits are one or zero. This is an example of the
-output:
+output::
[ 6625.850480] spec 0000:02:00.0: FPGA programming successful
[ 6626.139949] spec 0000:02:00.0: Manufacturer: CERN
@@ -40,7 +41,7 @@ output:
The dump of SDB looks like the following; the example shows the simple
golden gateware for the SPEC card, removing the leading timestamps to
-fit the page:
+fit the page::
spec 0000:02:00.0: SDB: 00000651:e6a542c9 WB4-Crossbar-GSI
spec 0000:02:00.0: SDB: 0000ce42:ff07fc47 WR-Periph-Syscon (00000000-000000ff)
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 59/79] docs: hid: convert to ReST
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (48 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 58/79] docs: fmc: " Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 60/79] docs: ia64: " Mauro Carvalho Chehab
` (23 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Jiri Kosina, Jonathan Cameron,
Srinivas Pandruvada, Benjamin Tissoires, Dmitry Torokhov,
linux-input, linux-iio, linux-usb
Rename the HID documentation files to ReST, add an
index for them and adjust in order to produce a nice html
output via the Sphinx build system.
While here, fix the sysfs example from hid-sensor.txt, that
has a lot of "?" instead of the proper UTF-8 characters that
are produced by the tree command.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
.../hid/{hid-alps.txt => hid-alps.rst} | 85 ++-
.../hid/{hid-sensor.txt => hid-sensor.rst} | 192 +++----
.../{hid-transport.txt => hid-transport.rst} | 82 ++-
Documentation/hid/{hiddev.txt => hiddev.rst} | 130 +++--
Documentation/hid/{hidraw.txt => hidraw.rst} | 53 +-
Documentation/hid/index.rst | 18 +
Documentation/hid/intel-ish-hid.rst | 485 ++++++++++++++++++
Documentation/hid/intel-ish-hid.txt | 454 ----------------
Documentation/hid/{uhid.txt => uhid.rst} | 46 +-
Documentation/input/input.rst | 2 +-
MAINTAINERS | 2 +-
11 files changed, 885 insertions(+), 664 deletions(-)
rename Documentation/hid/{hid-alps.txt => hid-alps.rst} (64%)
rename Documentation/hid/{hid-sensor.txt => hid-sensor.rst} (61%)
rename Documentation/hid/{hid-transport.txt => hid-transport.rst} (93%)
rename Documentation/hid/{hiddev.txt => hiddev.rst} (80%)
rename Documentation/hid/{hidraw.txt => hidraw.rst} (89%)
create mode 100644 Documentation/hid/index.rst
create mode 100644 Documentation/hid/intel-ish-hid.rst
delete mode 100644 Documentation/hid/intel-ish-hid.txt
rename Documentation/hid/{uhid.txt => uhid.rst} (94%)
diff --git a/Documentation/hid/hid-alps.txt b/Documentation/hid/hid-alps.rst
similarity index 64%
rename from Documentation/hid/hid-alps.txt
rename to Documentation/hid/hid-alps.rst
index 6b02a2447c77..e2f4c4c11e3f 100644
--- a/Documentation/hid/hid-alps.txt
+++ b/Documentation/hid/hid-alps.rst
@@ -1,19 +1,26 @@
+==========================
ALPS HID Touchpad Protocol
-----------------------
+==========================
Introduction
------------
Currently ALPS HID driver supports U1 Touchpad device.
-U1 devuce basic information.
+U1 device basic information.
+
+========== ======
Vender ID 0x044E
Product ID 0x120B
Version ID 0x0121
+========== ======
HID Descriptor
-------------
+--------------
+
+======= ==================== ===== =======================================
Byte Field Value Notes
+======= ==================== ===== =======================================
0 wHIDDescLength 001E Length of HID Descriptor : 30 bytes
2 bcdVersion 0100 Compliant with Version 1.00
4 wReportDescLength 00B2 Report Descriptor is 178 Bytes (0x00B2)
@@ -28,32 +35,42 @@ Byte Field Value Notes
22 wProductID 120B Product ID 0x120B
24 wVersionID 0121 Version 01.21
26 RESERVED 0000 RESERVED
+======= ==================== ===== =======================================
Report ID
-------------
-ReportID-1 (Input Reports) (HIDUsage-Mouse) for TP&SP
-ReportID-2 (Input Reports) (HIDUsage-keyboard) for TP
-ReportID-3 (Input Reports) (Vendor Usage: Max 10 finger data) for TP
-ReportID-4 (Input Reports) (Vendor Usage: ON bit data) for GP
-ReportID-5 (Feature Reports) Feature Reports
-ReportID-6 (Input Reports) (Vendor Usage: StickPointer data) for SP
-ReportID-7 (Feature Reports) Flash update (Bootloader)
+---------
+
+========== ================= =========================================
+ReportID-1 (Input Reports) (HIDUsage-Mouse) for TP&SP
+ReportID-2 (Input Reports) (HIDUsage-keyboard) for TP
+ReportID-3 (Input Reports) (Vendor Usage: Max 10 finger data) for TP
+ReportID-4 (Input Reports) (Vendor Usage: ON bit data) for GP
+ReportID-5 (Feature Reports) Feature Reports
+ReportID-6 (Input Reports) (Vendor Usage: StickPointer data) for SP
+ReportID-7 (Feature Reports) Flash update (Bootloader)
+========== ================= =========================================
Data pattern
------------
+
+===== ========== ===== =================
Case1 ReportID_1 TP/SP Relative/Relative
Case2 ReportID_3 TP Absolute
ReportID_6 SP Absolute
+===== ========== ===== =================
Command Read/Write
------------------
To read/write to RAM, need to send a commands to the device.
+
The command format is as below.
DataByte(SET_REPORT)
+
+===== ======================
Byte1 Command Byte
Byte2 Address - Byte 0 (LSB)
Byte3 Address - Byte 1
@@ -61,13 +78,19 @@ Byte4 Address - Byte 2
Byte5 Address - Byte 3 (MSB)
Byte6 Value Byte
Byte7 Checksum
+===== ======================
Command Byte is read=0xD1/write=0xD2 .
+
Address is read/write RAM address.
+
Value Byte is writing data when you send the write commands.
+
When you read RAM, there is no meaning.
DataByte(GET_REPORT)
+
+===== ======================
Byte1 Response Byte
Byte2 Address - Byte 0 (LSB)
Byte3 Address - Byte 1
@@ -75,6 +98,7 @@ Byte4 Address - Byte 2
Byte5 Address - Byte 3 (MSB)
Byte6 Value Byte
Byte7 Checksum
+===== ======================
Read value is stored in Value Byte.
@@ -82,7 +106,11 @@ Read value is stored in Value Byte.
Packet Format
Touchpad data byte
------------------
- b7 b6 b5 b4 b3 b2 b1 b0
+
+
+======= ======= ======= ======= ======= ======= ======= ======= =====
+- b7 b6 b5 b4 b3 b2 b1 b0
+======= ======= ======= ======= ======= ======= ======= ======= =====
1 0 0 SW6 SW5 SW4 SW3 SW2 SW1
2 0 0 0 Fcv Fn3 Fn2 Fn1 Fn0
3 Xa0_7 Xa0_6 Xa0_5 Xa0_4 Xa0_3 Xa0_2 Xa0_1 Xa0_0
@@ -114,17 +142,25 @@ Touchpad data byte
25 Ya4_7 Ya4_6 Ya4_5 Ya4_4 Ya4_3 Ya4_2 Ya4_1 Ya4_0
26 Ya4_15 Ya4_14 Ya4_13 Ya4_12 Ya4_11 Ya4_10 Ya4_9 Ya4_8
27 LFB4 Zs4_6 Zs4_5 Zs4_4 Zs4_3 Zs4_2 Zs4_1 Zs4_0
+======= ======= ======= ======= ======= ======= ======= ======= =====
-SW1-SW6: SW ON/OFF status
-Xan_15-0(16bit):X Absolute data of the "n"th finger
-Yan_15-0(16bit):Y Absolute data of the "n"th finger
-Zsn_6-0(7bit): Operation area of the "n"th finger
+SW1-SW6:
+ SW ON/OFF status
+Xan_15-0(16bit):
+ X Absolute data of the "n"th finger
+Yan_15-0(16bit):
+ Y Absolute data of the "n"th finger
+Zsn_6-0(7bit):
+ Operation area of the "n"th finger
StickPointer data byte
-------------------
- b7 b6 b5 b4 b3 b2 b1 b0
+----------------------
+
+======= ======= ======= ======= ======= ======= ======= ======= =====
+- b7 b6 b5 b4 b3 b2 b1 b0
+======= ======= ======= ======= ======= ======= ======= ======= =====
Byte1 1 1 1 0 1 SW3 SW2 SW1
Byte2 X7 X6 X5 X4 X3 X2 X1 X0
Byte3 X15 X14 X13 X12 X11 X10 X9 X8
@@ -132,8 +168,13 @@ Byte4 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0
Byte5 Y15 Y14 Y13 Y12 Y11 Y10 Y9 Y8
Byte6 Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0
Byte7 T&P Z14 Z13 Z12 Z11 Z10 Z9 Z8
+======= ======= ======= ======= ======= ======= ======= ======= =====
-SW1-SW3: SW ON/OFF status
-Xn_15-0(16bit):X Absolute data
-Yn_15-0(16bit):Y Absolute data
-Zn_14-0(15bit):Z
+SW1-SW3:
+ SW ON/OFF status
+Xn_15-0(16bit):
+ X Absolute data
+Yn_15-0(16bit):
+ Y Absolute data
+Zn_14-0(15bit):
+ Z
diff --git a/Documentation/hid/hid-sensor.txt b/Documentation/hid/hid-sensor.rst
similarity index 61%
rename from Documentation/hid/hid-sensor.txt
rename to Documentation/hid/hid-sensor.rst
index b287752a31cd..758972e34971 100644
--- a/Documentation/hid/hid-sensor.txt
+++ b/Documentation/hid/hid-sensor.rst
@@ -1,6 +1,6 @@
-
+=====================
HID Sensors Framework
-======================
+=====================
HID sensor framework provides necessary interfaces to implement sensor drivers,
which are connected to a sensor hub. The sensor hub is a HID device and it provides
a report descriptor conforming to HID 1.12 sensor usage tables.
@@ -15,22 +15,22 @@ the drivers themselves."
This specification describes many usage IDs, which describe the type of sensor
and also the individual data fields. Each sensor can have variable number of
data fields. The length and order is specified in the report descriptor. For
-example a part of report descriptor can look like:
+example a part of report descriptor can look like::
- INPUT(1)[INPUT]
- ..
- Field(2)
- Physical(0020.0073)
- Usage(1)
- 0020.045f
- Logical Minimum(-32767)
- Logical Maximum(32767)
- Report Size(8)
- Report Count(1)
- Report Offset(16)
- Flags(Variable Absolute)
-..
-..
+ INPUT(1)[INPUT]
+ ..
+ Field(2)
+ Physical(0020.0073)
+ Usage(1)
+ 0020.045f
+ Logical Minimum(-32767)
+ Logical Maximum(32767)
+ Report Size(8)
+ Report Count(1)
+ Report Offset(16)
+ Flags(Variable Absolute)
+ ..
+ ..
The report is indicating "sensor page (0x20)" contains an accelerometer-3D (0x73).
This accelerometer-3D has some fields. Here for example field 2 is motion intensity
@@ -40,13 +40,14 @@ data will use this format.
Implementation
-=================
+==============
This specification defines many different types of sensors with different sets of
data fields. It is difficult to have a common input event to user space applications,
for different sensors. For example an accelerometer can send X,Y and Z data, whereas
an ambient light sensor can send illumination data.
So the implementation has two parts:
+
- Core hid driver
- Individual sensor processing part (sensor drivers)
@@ -55,8 +56,11 @@ Core driver
The core driver registers (hid-sensor-hub) registers as a HID driver. It parses
report descriptors and identifies all the sensors present. It adds an MFD device
with name HID-SENSOR-xxxx (where xxxx is usage id from the specification).
-For example
+
+For example:
+
HID-SENSOR-200073 is registered for an Accelerometer 3D driver.
+
So if any driver with this name is inserted, then the probe routine for that
function will be called. So an accelerometer processing driver can register
with this name and will be probed if there is an accelerometer-3D detected.
@@ -66,7 +70,8 @@ drivers to register and get events for that usage id. Also it provides parsing
functions, which get and set each input/feature/output report.
Individual sensor processing part (sensor drivers)
------------
+--------------------------------------------------
+
The processing driver will use an interface provided by the core driver to parse
the report and get the indexes of the fields and also can get events. This driver
can use IIO interface to use the standard ABI defined for a type of sensor.
@@ -75,31 +80,34 @@ can use IIO interface to use the standard ABI defined for a type of sensor.
Core driver Interface
=====================
-Callback structure:
-Each processing driver can use this structure to set some callbacks.
+Callback structure::
+
+ Each processing driver can use this structure to set some callbacks.
int (*suspend)(..): Callback when HID suspend is received
int (*resume)(..): Callback when HID resume is received
int (*capture_sample)(..): Capture a sample for one of its data fields
int (*send_event)(..): One complete event is received which can have
multiple data fields.
-Registration functions:
-int sensor_hub_register_callback(struct hid_sensor_hub_device *hsdev,
+Registration functions::
+
+ int sensor_hub_register_callback(struct hid_sensor_hub_device *hsdev,
u32 usage_id,
struct hid_sensor_hub_callbacks *usage_callback):
Registers callbacks for an usage id. The callback functions are not allowed
-to sleep.
+to sleep::
-int sensor_hub_remove_callback(struct hid_sensor_hub_device *hsdev,
+ int sensor_hub_remove_callback(struct hid_sensor_hub_device *hsdev,
u32 usage_id):
Removes callbacks for an usage id.
-Parsing function:
-int sensor_hub_input_get_attribute_info(struct hid_sensor_hub_device *hsdev,
+Parsing function::
+
+ int sensor_hub_input_get_attribute_info(struct hid_sensor_hub_device *hsdev,
u8 type,
u32 usage_id, u32 attr_usage_id,
struct hid_sensor_hub_attribute_info *info);
@@ -110,26 +118,27 @@ so that fields can be set or get individually.
These indexes avoid searching every time and getting field index to get or set.
-Set Feature report
-int sensor_hub_set_feature(struct hid_sensor_hub_device *hsdev, u32 report_id,
+Set Feature report::
+
+ int sensor_hub_set_feature(struct hid_sensor_hub_device *hsdev, u32 report_id,
u32 field_index, s32 value);
This interface is used to set a value for a field in feature report. For example
if there is a field report_interval, which is parsed by a call to
-sensor_hub_input_get_attribute_info before, then it can directly set that individual
-field.
+sensor_hub_input_get_attribute_info before, then it can directly set that
+individual field::
-int sensor_hub_get_feature(struct hid_sensor_hub_device *hsdev, u32 report_id,
+ int sensor_hub_get_feature(struct hid_sensor_hub_device *hsdev, u32 report_id,
u32 field_index, s32 *value);
This interface is used to get a value for a field in input report. For example
if there is a field report_interval, which is parsed by a call to
-sensor_hub_input_get_attribute_info before, then it can directly get that individual
-field value.
+sensor_hub_input_get_attribute_info before, then it can directly get that
+individual field value::
-int sensor_hub_input_attr_get_raw_value(struct hid_sensor_hub_device *hsdev,
+ int sensor_hub_input_attr_get_raw_value(struct hid_sensor_hub_device *hsdev,
u32 usage_id,
u32 attr_usage_id, u32 report_id);
@@ -143,6 +152,8 @@ registered callback function to process the sample.
----------
HID Custom and generic Sensors
+------------------------------
+
HID Sensor specification defines two special sensor usage types. Since they
don't represent a standard sensor, it is not possible to define using Linux IIO
@@ -158,66 +169,73 @@ keyboard attached/detached or lid open/close.
To allow application to utilize these sensors, here they are exported uses sysfs
attribute groups, attributes and misc device interface.
-An example of this representation on sysfs:
-/sys/devices/pci0000:00/INT33C2:00/i2c-0/i2c-INT33D1:00/0018:8086:09FA.0001/HID-SENSOR-2000e1.6.auto$ tree -R
-.
-????????? enable_sensor
-????????? feature-0-200316
-??????? ????????? feature-0-200316-maximum
-??????? ????????? feature-0-200316-minimum
-??????? ????????? feature-0-200316-name
-??????? ????????? feature-0-200316-size
-??????? ????????? feature-0-200316-unit-expo
-??????? ????????? feature-0-200316-units
-??????? ????????? feature-0-200316-value
-????????? feature-1-200201
-??????? ????????? feature-1-200201-maximum
-??????? ????????? feature-1-200201-minimum
-??????? ????????? feature-1-200201-name
-??????? ????????? feature-1-200201-size
-??????? ????????? feature-1-200201-unit-expo
-??????? ????????? feature-1-200201-units
-??????? ????????? feature-1-200201-value
-????????? input-0-200201
-??????? ????????? input-0-200201-maximum
-??????? ????????? input-0-200201-minimum
-??????? ????????? input-0-200201-name
-??????? ????????? input-0-200201-size
-??????? ????????? input-0-200201-unit-expo
-??????? ????????? input-0-200201-units
-??????? ????????? input-0-200201-value
-????????? input-1-200202
-??????? ????????? input-1-200202-maximum
-??????? ????????? input-1-200202-minimum
-??????? ????????? input-1-200202-name
-??????? ????????? input-1-200202-size
-??????? ????????? input-1-200202-unit-expo
-??????? ????????? input-1-200202-units
-??????? ????????? input-1-200202-value
+An example of this representation on sysfs::
+
+ /sys/devices/pci0000:00/INT33C2:00/i2c-0/i2c-INT33D1:00/0018:8086:09FA.0001/HID-SENSOR-2000e1.6.auto$ tree -R
+ .
+ │ ├── enable_sensor
+ │ │ ├── feature-0-200316
+ │ │ │ ├── feature-0-200316-maximum
+ │ │ │ ├── feature-0-200316-minimum
+ │ │ │ ├── feature-0-200316-name
+ │ │ │ ├── feature-0-200316-size
+ │ │ │ ├── feature-0-200316-unit-expo
+ │ │ │ ├── feature-0-200316-units
+ │ │ │ ├── feature-0-200316-value
+ │ │ ├── feature-1-200201
+ │ │ │ ├── feature-1-200201-maximum
+ │ │ │ ├── feature-1-200201-minimum
+ │ │ │ ├── feature-1-200201-name
+ │ │ │ ├── feature-1-200201-size
+ │ │ │ ├── feature-1-200201-unit-expo
+ │ │ │ ├── feature-1-200201-units
+ │ │ │ ├── feature-1-200201-value
+ │ │ ├── input-0-200201
+ │ │ │ ├── input-0-200201-maximum
+ │ │ │ ├── input-0-200201-minimum
+ │ │ │ ├── input-0-200201-name
+ │ │ │ ├── input-0-200201-size
+ │ │ │ ├── input-0-200201-unit-expo
+ │ │ │ ├── input-0-200201-units
+ │ │ │ ├── input-0-200201-value
+ │ │ ├── input-1-200202
+ │ │ │ ├── input-1-200202-maximum
+ │ │ │ ├── input-1-200202-minimum
+ │ │ │ ├── input-1-200202-name
+ │ │ │ ├── input-1-200202-size
+ │ │ │ ├── input-1-200202-unit-expo
+ │ │ │ ├── input-1-200202-units
+ │ │ │ ├── input-1-200202-value
Here there is a custom sensors with four fields, two feature and two inputs.
Each field is represented by a set of attributes. All fields except the "value"
are read only. The value field is a RW field.
-Example
-/sys/bus/platform/devices/HID-SENSOR-2000e1.6.auto/feature-0-200316$ grep -r . *
-feature-0-200316-maximum:6
-feature-0-200316-minimum:0
-feature-0-200316-name:property-reporting-state
-feature-0-200316-size:1
-feature-0-200316-unit-expo:0
-feature-0-200316-units:25
-feature-0-200316-value:1
+
+Example::
+
+ /sys/bus/platform/devices/HID-SENSOR-2000e1.6.auto/feature-0-200316$ grep -r . *
+ feature-0-200316-maximum:6
+ feature-0-200316-minimum:0
+ feature-0-200316-name:property-reporting-state
+ feature-0-200316-size:1
+ feature-0-200316-unit-expo:0
+ feature-0-200316-units:25
+ feature-0-200316-value:1
How to enable such sensor?
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+
By default sensor can be power gated. To enable sysfs attribute "enable" can be
-used.
-$ echo 1 > enable_sensor
+used::
+
+ $ echo 1 > enable_sensor
Once enabled and powered on, sensor can report value using HID reports.
-These reports are pushed using misc device interface in a FIFO order.
-/dev$ tree | grep HID-SENSOR-2000e1.6.auto
-??????? ????????? 10:53 -> ../HID-SENSOR-2000e1.6.auto
-????????? HID-SENSOR-2000e1.6.auto
+These reports are pushed using misc device interface in a FIFO order::
+
+ /dev$ tree | grep HID-SENSOR-2000e1.6.auto
+ │ │ │ ├── 10:53 -> ../HID-SENSOR-2000e1.6.auto
+ │ ├── HID-SENSOR-2000e1.6.auto
Each reports can be of variable length preceded by a header. This header
consist of a 32 bit usage id, 64 bit time stamp and 32 bit length field of raw
diff --git a/Documentation/hid/hid-transport.txt b/Documentation/hid/hid-transport.rst
similarity index 93%
rename from Documentation/hid/hid-transport.txt
rename to Documentation/hid/hid-transport.rst
index 3dcba9fd4a3a..6f3aaa86ce7b 100644
--- a/Documentation/hid/hid-transport.txt
+++ b/Documentation/hid/hid-transport.rst
@@ -1,5 +1,6 @@
- HID I/O Transport Drivers
- ===========================
+=========================
+HID I/O Transport Drivers
+=========================
The HID subsystem is independent of the underlying transport driver. Initially,
only USB was supported, but other specifications adopted the HID design and
@@ -16,6 +17,8 @@ transport and device setup/management. HID core is responsible of
report-parsing, report interpretation and the user-space API. Device specifics
and quirks are handled by all layers depending on the quirk.
+::
+
+-----------+ +-----------+ +-----------+ +-----------+
| Device #1 | | Device #i | | Device #j | | Device #k |
+-----------+ +-----------+ +-----------+ +-----------+
@@ -42,8 +45,9 @@ and quirks are handled by all layers depending on the quirk.
+----------------+ +-----------+ +------------------+ +------------------+
Example Drivers:
- I/O: USB, I2C, Bluetooth-l2cap
- Transport: USB-HID, I2C-HID, BT-HIDP
+
+ - I/O: USB, I2C, Bluetooth-l2cap
+ - Transport: USB-HID, I2C-HID, BT-HIDP
Everything below "HID Core" is simplified in this graph as it is only of
interest to HID device drivers. Transport drivers do not need to know the
@@ -183,7 +187,7 @@ Other ctrl-channel requests are supported by USB-HID but are not available
-------------------
Transport drivers normally use the following procedure to register a new device
-with HID core:
+with HID core::
struct hid_device *hid;
int ret;
@@ -215,7 +219,7 @@ Once hid_add_device() is entered, HID core might use the callbacks provided in
"custom_ll_driver". Note that fields like "country" can be ignored by underlying
transport-drivers if not supported.
-To unregister a device, use:
+To unregister a device, use::
hid_destroy_device(hid);
@@ -226,73 +230,110 @@ driver callbacks.
-----------------------------
The available HID callbacks are:
- - int (*start) (struct hid_device *hdev)
+
+ ::
+
+ int (*start) (struct hid_device *hdev)
+
Called from HID device drivers once they want to use the device. Transport
drivers can choose to setup their device in this callback. However, normally
devices are already set up before transport drivers register them to HID core
so this is mostly only used by USB-HID.
- - void (*stop) (struct hid_device *hdev)
+ ::
+
+ void (*stop) (struct hid_device *hdev)
+
Called from HID device drivers once they are done with a device. Transport
drivers can free any buffers and deinitialize the device. But note that
->start() might be called again if another HID device driver is loaded on the
device.
+
Transport drivers are free to ignore it and deinitialize devices after they
destroyed them via hid_destroy_device().
- - int (*open) (struct hid_device *hdev)
+ ::
+
+ int (*open) (struct hid_device *hdev)
+
Called from HID device drivers once they are interested in data reports.
Usually, while user-space didn't open any input API/etc., device drivers are
not interested in device data and transport drivers can put devices asleep.
However, once ->open() is called, transport drivers must be ready for I/O.
->open() calls are nested for each client that opens the HID device.
- - void (*close) (struct hid_device *hdev)
+ ::
+
+ void (*close) (struct hid_device *hdev)
+
Called from HID device drivers after ->open() was called but they are no
longer interested in device reports. (Usually if user-space closed any input
devices of the driver).
+
Transport drivers can put devices asleep and terminate any I/O of all
->open() calls have been followed by a ->close() call. However, ->start() may
be called again if the device driver is interested in input reports again.
- - int (*parse) (struct hid_device *hdev)
+ ::
+
+ int (*parse) (struct hid_device *hdev)
+
Called once during device setup after ->start() has been called. Transport
drivers must read the HID report-descriptor from the device and tell HID core
about it via hid_parse_report().
- - int (*power) (struct hid_device *hdev, int level)
+ ::
+
+ int (*power) (struct hid_device *hdev, int level)
+
Called by HID core to give PM hints to transport drivers. Usually this is
analogical to the ->open() and ->close() hints and redundant.
- - void (*request) (struct hid_device *hdev, struct hid_report *report,
- int reqtype)
+ ::
+
+ void (*request) (struct hid_device *hdev, struct hid_report *report,
+ int reqtype)
+
Send an HID request on the ctrl channel. "report" contains the report that
should be sent and "reqtype" the request type. Request-type can be
HID_REQ_SET_REPORT or HID_REQ_GET_REPORT.
+
This callback is optional. If not provided, HID core will assemble a raw
report following the HID specs and send it via the ->raw_request() callback.
The transport driver is free to implement this asynchronously.
- - int (*wait) (struct hid_device *hdev)
+ ::
+
+ int (*wait) (struct hid_device *hdev)
+
Used by HID core before calling ->request() again. A transport driver can use
it to wait for any pending requests to complete if only one request is
allowed at a time.
- - int (*raw_request) (struct hid_device *hdev, unsigned char reportnum,
- __u8 *buf, size_t count, unsigned char rtype,
- int reqtype)
+ ::
+
+ int (*raw_request) (struct hid_device *hdev, unsigned char reportnum,
+ __u8 *buf, size_t count, unsigned char rtype,
+ int reqtype)
+
Same as ->request() but provides the report as raw buffer. This request shall
be synchronous. A transport driver must not use ->wait() to complete such
requests. This request is mandatory and hid core will reject the device if
it is missing.
- - int (*output_report) (struct hid_device *hdev, __u8 *buf, size_t len)
+ ::
+
+ int (*output_report) (struct hid_device *hdev, __u8 *buf, size_t len)
+
Send raw output report via intr channel. Used by some HID device drivers
which require high throughput for outgoing requests on the intr channel. This
must not cause SET_REPORT calls! This must be implemented as asynchronous
output report on the intr channel!
- - int (*idle) (struct hid_device *hdev, int report, int idle, int reqtype)
+ ::
+
+ int (*idle) (struct hid_device *hdev, int report, int idle, int reqtype)
+
Perform SET/GET_IDLE request. Only used by USB-HID, do not implement!
2.3) Data Path
@@ -314,4 +355,5 @@ transport driver and not passed to hid_input_report().
Acknowledgements to SET_REPORT requests are not of interest to HID core.
----------------------------------------------------
+
Written 2013, David Herrmann <dh.herrmann@gmail.com>
diff --git a/Documentation/hid/hiddev.txt b/Documentation/hid/hiddev.rst
similarity index 80%
rename from Documentation/hid/hiddev.txt
rename to Documentation/hid/hiddev.rst
index 638448707aa2..16c663530db2 100644
--- a/Documentation/hid/hiddev.txt
+++ b/Documentation/hid/hiddev.rst
@@ -1,6 +1,9 @@
+================================================
Care and feeding of your Human Interface Devices
+================================================
-INTRODUCTION
+Introduction
+============
In addition to the normal input type HID devices, USB also uses the
human interface device protocols for things that are not really human
@@ -16,7 +19,7 @@ normalised event interface - see Documentation/input/input.rst
* the hiddev interface, which provides fairly raw HID events
The data flow for a HID event produced by a device is something like
-the following :
+the following::
usb.c ---> hid-core.c ----> hid-input.c ----> [keyboard/mouse/joystick/event]
|
@@ -27,27 +30,29 @@ In addition, other subsystems (apart from USB) can potentially feed
events into the input subsystem, but these have no effect on the hid
device interface.
-USING THE HID DEVICE INTERFACE
+Using the HID Device Interface
+==============================
The hiddev interface is a char interface using the normal USB major,
with the minor numbers starting at 96 and finishing at 111. Therefore,
-you need the following commands:
-mknod /dev/usb/hiddev0 c 180 96
-mknod /dev/usb/hiddev1 c 180 97
-mknod /dev/usb/hiddev2 c 180 98
-mknod /dev/usb/hiddev3 c 180 99
-mknod /dev/usb/hiddev4 c 180 100
-mknod /dev/usb/hiddev5 c 180 101
-mknod /dev/usb/hiddev6 c 180 102
-mknod /dev/usb/hiddev7 c 180 103
-mknod /dev/usb/hiddev8 c 180 104
-mknod /dev/usb/hiddev9 c 180 105
-mknod /dev/usb/hiddev10 c 180 106
-mknod /dev/usb/hiddev11 c 180 107
-mknod /dev/usb/hiddev12 c 180 108
-mknod /dev/usb/hiddev13 c 180 109
-mknod /dev/usb/hiddev14 c 180 110
-mknod /dev/usb/hiddev15 c 180 111
+you need the following commands::
+
+ mknod /dev/usb/hiddev0 c 180 96
+ mknod /dev/usb/hiddev1 c 180 97
+ mknod /dev/usb/hiddev2 c 180 98
+ mknod /dev/usb/hiddev3 c 180 99
+ mknod /dev/usb/hiddev4 c 180 100
+ mknod /dev/usb/hiddev5 c 180 101
+ mknod /dev/usb/hiddev6 c 180 102
+ mknod /dev/usb/hiddev7 c 180 103
+ mknod /dev/usb/hiddev8 c 180 104
+ mknod /dev/usb/hiddev9 c 180 105
+ mknod /dev/usb/hiddev10 c 180 106
+ mknod /dev/usb/hiddev11 c 180 107
+ mknod /dev/usb/hiddev12 c 180 108
+ mknod /dev/usb/hiddev13 c 180 109
+ mknod /dev/usb/hiddev14 c 180 110
+ mknod /dev/usb/hiddev15 c 180 111
So you point your hiddev compliant user-space program at the correct
interface for your device, and it all just works.
@@ -56,7 +61,9 @@ Assuming that you have a hiddev compliant user-space program, of
course. If you need to write one, read on.
-THE HIDDEV API
+The HIDDEV API
+==============
+
This description should be read in conjunction with the HID
specification, freely available from http://www.usb.org, and
conveniently linked of http://www.linux-usb.org.
@@ -69,12 +76,14 @@ each of which can have one or more "usages". In the hid-core,
each one of these usages has a single signed 32 bit value.
read():
+-------
+
This is the event interface. When the HID device's state changes,
it performs an interrupt transfer containing a report which contains
the changed value. The hid-core.c module parses the report, and
returns to hiddev.c the individual usages that have changed within
the report. In its basic mode, the hiddev will make these individual
-usage changes available to the reader using a struct hiddev_event:
+usage changes available to the reader using a struct hiddev_event::
struct hiddev_event {
unsigned hid;
@@ -91,12 +100,18 @@ ioctl() described below.
ioctl():
+--------
+
This is the control interface. There are a number of controls:
-HIDIOCGVERSION - int (read)
-Gets the version code out of the hiddev driver.
+HIDIOCGVERSION
+ - int (read)
+
+ Gets the version code out of the hiddev driver.
+
+HIDIOCAPPLICATION
+ - (none)
-HIDIOCAPPLICATION - (none)
This ioctl call returns the HID application usage associated with the
hid device. The third argument to ioctl() specifies which application
index to get. This is useful when the device has more than one
@@ -106,7 +121,9 @@ returns -1. You can find out beforehand how many application
collections the device has from the num_applications field from the
hiddev_devinfo structure.
-HIDIOCGCOLLECTIONINFO - struct hiddev_collection_info (read/write)
+HIDIOCGCOLLECTIONINFO
+ - struct hiddev_collection_info (read/write)
+
This returns a superset of the information above, providing not only
application collections, but all the collections the device has. It
also returns the level the collection lives in the hierarchy.
@@ -115,14 +132,20 @@ field set to the index that should be returned. The ioctl fills in
the other fields. If the index is larger than the last collection
index, the ioctl returns -1 and sets errno to -EINVAL.
-HIDIOCGDEVINFO - struct hiddev_devinfo (read)
+HIDIOCGDEVINFO
+ - struct hiddev_devinfo (read)
+
Gets a hiddev_devinfo structure which describes the device.
-HIDIOCGSTRING - struct hiddev_string_descriptor (read/write)
+HIDIOCGSTRING
+ - struct hiddev_string_descriptor (read/write)
+
Gets a string descriptor from the device. The caller must fill in the
"index" field to indicate which descriptor should be returned.
-HIDIOCINITREPORT - (none)
+HIDIOCINITREPORT
+ - (none)
+
Instructs the kernel to retrieve all input and feature report values
from the device. At this point, all the usage structures will contain
current values for the device, and will maintain it as the device
@@ -130,21 +153,29 @@ changes. Note that the use of this ioctl is unnecessary in general,
since later kernels automatically initialize the reports from the
device at attach time.
-HIDIOCGNAME - string (variable length)
+HIDIOCGNAME
+ - string (variable length)
+
Gets the device name
-HIDIOCGREPORT - struct hiddev_report_info (write)
+HIDIOCGREPORT
+ - struct hiddev_report_info (write)
+
Instructs the kernel to get a feature or input report from the device,
in order to selectively update the usage structures (in contrast to
INITREPORT).
-HIDIOCSREPORT - struct hiddev_report_info (write)
+HIDIOCSREPORT
+ - struct hiddev_report_info (write)
+
Instructs the kernel to send a report to the device. This report can
be filled in by the user through HIDIOCSUSAGE calls (below) to fill in
individual usage values in the report before sending the report in full
to the device.
-HIDIOCGREPORTINFO - struct hiddev_report_info (read/write)
+HIDIOCGREPORTINFO
+ - struct hiddev_report_info (read/write)
+
Fills in a hiddev_report_info structure for the user. The report is
looked up by type (input, output or feature) and id, so these fields
must be filled in by the user. The ID can be absolute -- the actual
@@ -156,19 +187,25 @@ use the relative IDs above to enumerate the valid IDs. The ioctl
returns non-zero when there is no more next ID. The real report ID is
filled into the returned hiddev_report_info structure.
-HIDIOCGFIELDINFO - struct hiddev_field_info (read/write)
+HIDIOCGFIELDINFO
+ - struct hiddev_field_info (read/write)
+
Returns the field information associated with a report in a
hiddev_field_info structure. The user must fill in report_id and
report_type in this structure, as above. The field_index should also
be filled in, which should be a number from 0 and maxfield-1, as
returned from a previous HIDIOCGREPORTINFO call.
-HIDIOCGUCODE - struct hiddev_usage_ref (read/write)
+HIDIOCGUCODE
+ - struct hiddev_usage_ref (read/write)
+
Returns the usage_code in a hiddev_usage_ref structure, given that
given its report type, report id, field index, and index within the
field have already been filled into the structure.
-HIDIOCGUSAGE - struct hiddev_usage_ref (read/write)
+HIDIOCGUSAGE
+ - struct hiddev_usage_ref (read/write)
+
Returns the value of a usage in a hiddev_usage_ref structure. The
usage to be retrieved can be specified as above, or the user can
choose to fill in the report_type field and specify the report_id as
@@ -176,28 +213,37 @@ HID_REPORT_ID_UNKNOWN. In this case, the hiddev_usage_ref will be
filled in with the report and field information associated with this
usage if it is found.
-HIDIOCSUSAGE - struct hiddev_usage_ref (write)
+HIDIOCSUSAGE
+ - struct hiddev_usage_ref (write)
+
Sets the value of a usage in an output report. The user fills in
the hiddev_usage_ref structure as above, but additionally fills in
the value field.
-HIDIOGCOLLECTIONINDEX - struct hiddev_usage_ref (write)
+HIDIOGCOLLECTIONINDEX
+ - struct hiddev_usage_ref (write)
+
Returns the collection index associated with this usage. This
indicates where in the collection hierarchy this usage sits.
-HIDIOCGFLAG - int (read)
-HIDIOCSFLAG - int (write)
+HIDIOCGFLAG
+ - int (read)
+HIDIOCSFLAG
+ - int (write)
+
These operations respectively inspect and replace the mode flags
that influence the read() call above. The flags are as follows:
- HIDDEV_FLAG_UREF - read() calls will now return
+ HIDDEV_FLAG_UREF
+ - read() calls will now return
struct hiddev_usage_ref instead of struct hiddev_event.
This is a larger structure, but in situations where the
device has more than one usage in its reports with the
same usage code, this mode serves to resolve such
ambiguity.
- HIDDEV_FLAG_REPORT - This flag can only be used in conjunction
+ HIDDEV_FLAG_REPORT
+ - This flag can only be used in conjunction
with HIDDEV_FLAG_UREF. With this flag set, when the device
sends a report, a struct hiddev_usage_ref will be returned
to read() filled in with the report_type and report_id, but
diff --git a/Documentation/hid/hidraw.txt b/Documentation/hid/hidraw.rst
similarity index 89%
rename from Documentation/hid/hidraw.txt
rename to Documentation/hid/hidraw.rst
index c8436e354f44..4a4a0ba1f362 100644
--- a/Documentation/hid/hidraw.txt
+++ b/Documentation/hid/hidraw.rst
@@ -1,5 +1,6 @@
- HIDRAW - Raw Access to USB and Bluetooth Human Interface Devices
- ==================================================================
+================================================================
+HIDRAW - Raw Access to USB and Bluetooth Human Interface Devices
+================================================================
The hidraw driver provides a raw interface to USB and Bluetooth Human
Interface Devices (HIDs). It differs from hiddev in that reports sent and
@@ -31,6 +32,7 @@ directly under /dev (eg: /dev/hidraw0). As this location is distribution-
and udev rule-dependent, applications should use libudev to locate hidraw
devices attached to the system. There is a tutorial on libudev with a
working example at:
+
http://www.signal11.us/oss/udev/
The HIDRAW API
@@ -51,7 +53,7 @@ byte. For devices which do not use numbered reports, the report data
will begin at the first byte.
write()
---------
+-------
The write() function will write a report to the device. For USB devices, if
the device has an INTERRUPT OUT endpoint, the report will be sent on that
endpoint. If it does not, the report will be sent over the control endpoint,
@@ -62,38 +64,52 @@ number. If the device does not use numbered reports, the first byte should
be set to 0. The report data itself should begin at the second byte.
ioctl()
---------
+-------
Hidraw supports the following ioctls:
-HIDIOCGRDESCSIZE: Get Report Descriptor Size
+HIDIOCGRDESCSIZE:
+ Get Report Descriptor Size
+
This ioctl will get the size of the device's report descriptor.
-HIDIOCGRDESC: Get Report Descriptor
+HIDIOCGRDESC:
+ Get Report Descriptor
+
This ioctl returns the device's report descriptor using a
hidraw_report_descriptor struct. Make sure to set the size field of the
hidraw_report_descriptor struct to the size returned from HIDIOCGRDESCSIZE.
-HIDIOCGRAWINFO: Get Raw Info
+HIDIOCGRAWINFO:
+ Get Raw Info
+
This ioctl will return a hidraw_devinfo struct containing the bus type, the
vendor ID (VID), and product ID (PID) of the device. The bus type can be one
-of:
- BUS_USB
- BUS_HIL
- BUS_BLUETOOTH
- BUS_VIRTUAL
+of::
+
+ - BUS_USB
+ - BUS_HIL
+ - BUS_BLUETOOTH
+ - BUS_VIRTUAL
+
which are defined in uapi/linux/input.h.
-HIDIOCGRAWNAME(len): Get Raw Name
+HIDIOCGRAWNAME(len):
+ Get Raw Name
+
This ioctl returns a string containing the vendor and product strings of
the device. The returned string is Unicode, UTF-8 encoded.
-HIDIOCGRAWPHYS(len): Get Physical Address
+HIDIOCGRAWPHYS(len):
+ Get Physical Address
+
This ioctl returns a string representing the physical address of the device.
For USB devices, the string contains the physical path to the device (the
USB controller, hubs, ports, etc). For Bluetooth devices, the string
contains the hardware (MAC) address of the device.
-HIDIOCSFEATURE(len): Send a Feature Report
+HIDIOCSFEATURE(len):
+ Send a Feature Report
+
This ioctl will send a feature report to the device. Per the HID
specification, feature reports are always sent using the control endpoint.
Set the first byte of the supplied buffer to the report number. For devices
@@ -101,7 +117,9 @@ which do not use numbered reports, set the first byte to 0. The report data
begins in the second byte. Make sure to set len accordingly, to one more
than the length of the report (to account for the report number).
-HIDIOCGFEATURE(len): Get a Feature Report
+HIDIOCGFEATURE(len):
+ Get a Feature Report
+
This ioctl will request a feature report from the device using the control
endpoint. The first byte of the supplied buffer should be set to the report
number of the requested report. For devices which do not use numbered
@@ -109,11 +127,12 @@ reports, set the first byte to 0. The report will be returned starting at
the first byte of the buffer (ie: the report number is not returned).
Example
----------
+-------
In samples/, find hid-example.c, which shows examples of read(), write(),
and all the ioctls for hidraw. The code may be used by anyone for any
purpose, and can serve as a starting point for developing applications using
hidraw.
Document by:
+
Alan Ott <alan@signal11.us>, Signal 11 Software
diff --git a/Documentation/hid/index.rst b/Documentation/hid/index.rst
new file mode 100644
index 000000000000..af4324902622
--- /dev/null
+++ b/Documentation/hid/index.rst
@@ -0,0 +1,18 @@
+:orphan:
+
+=============================
+Human Interface Devices (HID)
+=============================
+
+.. toctree::
+ :maxdepth: 1
+
+ hiddev
+ hidraw
+ hid-sensor
+ hid-transport
+
+ uhid
+
+ hid-alps
+ intel-ish-hid
diff --git a/Documentation/hid/intel-ish-hid.rst b/Documentation/hid/intel-ish-hid.rst
new file mode 100644
index 000000000000..cccbf4be17d7
--- /dev/null
+++ b/Documentation/hid/intel-ish-hid.rst
@@ -0,0 +1,485 @@
+=================================
+Intel Integrated Sensor Hub (ISH)
+=================================
+
+A sensor hub enables the ability to offload sensor polling and algorithm
+processing to a dedicated low power co-processor. This allows the core
+processor to go into low power modes more often, resulting in the increased
+battery life.
+
+There are many vendors providing external sensor hubs confirming to HID
+Sensor usage tables, and used in several tablets, 2 in 1 convertible laptops
+and embedded products. Linux had this support since Linux 3.9.
+
+Intel® introduced integrated sensor hubs as a part of the SoC starting from
+Cherry Trail and now supported on multiple generations of CPU packages. There
+are many commercial devices already shipped with Integrated Sensor Hubs (ISH).
+These ISH also comply to HID sensor specification, but the difference is the
+transport protocol used for communication. The current external sensor hubs
+mainly use HID over i2C or USB. But ISH doesn't use either i2c or USB.
+
+1. Overview
+===========
+
+Using a analogy with a usbhid implementation, the ISH follows a similar model
+for a very high speed communication::
+
+ ----------------- ----------------------
+ | USB HID | --> | ISH HID |
+ ----------------- ----------------------
+ ----------------- ----------------------
+ | USB protocol | --> | ISH Transport |
+ ----------------- ----------------------
+ ----------------- ----------------------
+ | EHCI/XHCI | --> | ISH IPC |
+ ----------------- ----------------------
+ PCI PCI
+ ----------------- ----------------------
+ |Host controller| --> | ISH processor |
+ ----------------- ----------------------
+ USB Link
+ ----------------- ----------------------
+ | USB End points| --> | ISH Clients |
+ ----------------- ----------------------
+
+Like USB protocol provides a method for device enumeration, link management
+and user data encapsulation, the ISH also provides similar services. But it is
+very light weight tailored to manage and communicate with ISH client
+applications implemented in the firmware.
+
+The ISH allows multiple sensor management applications executing in the
+firmware. Like USB endpoints the messaging can be to/from a client. As part of
+enumeration process, these clients are identified. These clients can be simple
+HID sensor applications, sensor calibration application or senor firmware
+update application.
+
+The implementation model is similar, like USB bus, ISH transport is also
+implemented as a bus. Each client application executing in the ISH processor
+is registered as a device on this bus. The driver, which binds each device
+(ISH HID driver) identifies the device type and registers with the hid core.
+
+2. ISH Implementation: Block Diagram
+====================================
+
+::
+
+ ---------------------------
+ | User Space Applications |
+ ---------------------------
+
+ ----------------IIO ABI----------------
+ --------------------------
+ | IIO Sensor Drivers |
+ --------------------------
+ --------------------------
+ | IIO core |
+ --------------------------
+ --------------------------
+ | HID Sensor Hub MFD |
+ --------------------------
+ --------------------------
+ | HID Core |
+ --------------------------
+ --------------------------
+ | HID over ISH Client |
+ --------------------------
+ --------------------------
+ | ISH Transport (ISHTP) |
+ --------------------------
+ --------------------------
+ | IPC Drivers |
+ --------------------------
+ OS
+ ---------------- PCI -----------------
+ Hardware + Firmware
+ ----------------------------
+ | ISH Hardware/Firmware(FW) |
+ ----------------------------
+
+3. High level processing in above blocks
+========================================
+
+3.1 Hardware Interface
+----------------------
+
+The ISH is exposed as "Non-VGA unclassified PCI device" to the host. The PCI
+product and vendor IDs are changed from different generations of processors. So
+the source code which enumerate drivers needs to update from generation to
+generation.
+
+3.2 Inter Processor Communication (IPC) driver
+----------------------------------------------
+
+Location: drivers/hid/intel-ish-hid/ipc
+
+The IPC message used memory mapped I/O. The registers are defined in
+hw-ish-regs.h.
+
+3.2.1 IPC/FW message types
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+There are two types of messages, one for management of link and other messages
+are to and from transport layers.
+
+TX and RX of Transport messages
+...............................
+
+A set of memory mapped register offers support of multi byte messages TX and
+RX (E.g.IPC_REG_ISH2HOST_MSG, IPC_REG_HOST2ISH_MSG). The IPC layer maintains
+internal queues to sequence messages and send them in order to the FW.
+Optionally the caller can register handler to get notification of completion.
+A door bell mechanism is used in messaging to trigger processing in host and
+client firmware side. When ISH interrupt handler is called, the ISH2HOST
+doorbell register is used by host drivers to determine that the interrupt
+is for ISH.
+
+Each side has 32 32-bit message registers and a 32-bit doorbell. Doorbell
+register has the following format:
+Bits 0..6: fragment length (7 bits are used)
+Bits 10..13: encapsulated protocol
+Bits 16..19: management command (for IPC management protocol)
+Bit 31: doorbell trigger (signal H/W interrupt to the other side)
+Other bits are reserved, should be 0.
+
+3.2.2 Transport layer interface
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+To abstract HW level IPC communication, a set of callbacks are registered.
+The transport layer uses them to send and receive messages.
+Refer to struct ishtp_hw_ops for callbacks.
+
+3.3 ISH Transport layer
+-----------------------
+
+Location: drivers/hid/intel-ish-hid/ishtp/
+
+3.3.1 A Generic Transport Layer
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The transport layer is a bi-directional protocol, which defines:
+- Set of commands to start, stop, connect, disconnect and flow control
+(ishtp/hbm.h) for details
+- A flow control mechanism to avoid buffer overflows
+
+This protocol resembles bus messages described in the following document:
+http://www.intel.com/content/dam/www/public/us/en/documents/technical-\
+specifications/dcmi-hi-1-0-spec.pdf "Chapter 7: Bus Message Layer"
+
+3.3.2 Connection and Flow Control Mechanism
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Each FW client and a protocol is identified by an UUID. In order to communicate
+to a FW client, a connection must be established using connect request and
+response bus messages. If successful, a pair (host_client_id and fw_client_id)
+will identify the connection.
+
+Once connection is established, peers send each other flow control bus messages
+independently. Every peer may send a message only if it has received a
+flow-control credit before. Once it sent a message, it may not send another one
+before receiving the next flow control credit.
+Either side can send disconnect request bus message to end communication. Also
+the link will be dropped if major FW reset occurs.
+
+3.3.3 Peer to Peer data transfer
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Peer to Peer data transfer can happen with or without using DMA. Depending on
+the sensor bandwidth requirement DMA can be enabled by using module parameter
+ishtp_use_dma under intel_ishtp.
+
+Each side (host and FW) manages its DMA transfer memory independently. When an
+ISHTP client from either host or FW side wants to send something, it decides
+whether to send over IPC or over DMA; for each transfer the decision is
+independent. The sending side sends DMA_XFER message when the message is in
+the respective host buffer (TX when host client sends, RX when FW client
+sends). The recipient of DMA message responds with DMA_XFER_ACK, indicating
+the sender that the memory region for that message may be reused.
+
+DMA initialization is started with host sending DMA_ALLOC_NOTIFY bus message
+(that includes RX buffer) and FW responds with DMA_ALLOC_NOTIFY_ACK.
+Additionally to DMA address communication, this sequence checks capabilities:
+if thw host doesn't support DMA, then it won't send DMA allocation, so FW can't
+send DMA; if FW doesn't support DMA then it won't respond with
+DMA_ALLOC_NOTIFY_ACK, in which case host will not use DMA transfers.
+Here ISH acts as busmaster DMA controller. Hence when host sends DMA_XFER,
+it's request to do host->ISH DMA transfer; when FW sends DMA_XFER, it means
+that it already did DMA and the message resides at host. Thus, DMA_XFER
+and DMA_XFER_ACK act as ownership indicators.
+
+At initial state all outgoing memory belongs to the sender (TX to host, RX to
+FW), DMA_XFER transfers ownership on the region that contains ISHTP message to
+the receiving side, DMA_XFER_ACK returns ownership to the sender. A sender
+needs not wait for previous DMA_XFER to be ack'ed, and may send another message
+as long as remaining continuous memory in its ownership is enough.
+In principle, multiple DMA_XFER and DMA_XFER_ACK messages may be sent at once
+(up to IPC MTU), thus allowing for interrupt throttling.
+Currently, ISH FW decides to send over DMA if ISHTP message is more than 3 IPC
+fragments and via IPC otherwise.
+
+3.3.4 Ring Buffers
+^^^^^^^^^^^^^^^^^^
+
+When a client initiate a connection, a ring or RX and TX buffers are allocated.
+The size of ring can be specified by the client. HID client set 16 and 32 for
+TX and RX buffers respectively. On send request from client, the data to be
+sent is copied to one of the send ring buffer and scheduled to be sent using
+bus message protocol. These buffers are required because the FW may have not
+have processed the last message and may not have enough flow control credits
+to send. Same thing holds true on receive side and flow control is required.
+
+3.3.5 Host Enumeration
+^^^^^^^^^^^^^^^^^^^^^^
+
+The host enumeration bus command allow discovery of clients present in the FW.
+There can be multiple sensor clients and clients for calibration function.
+
+To ease in implantation and allow independent driver handle each client
+this transport layer takes advantage of Linux Bus driver model. Each
+client is registered as device on the the transport bus (ishtp bus).
+
+Enumeration sequence of messages:
+
+- Host sends HOST_START_REQ_CMD, indicating that host ISHTP layer is up.
+- FW responds with HOST_START_RES_CMD
+- Host sends HOST_ENUM_REQ_CMD (enumerate FW clients)
+- FW responds with HOST_ENUM_RES_CMD that includes bitmap of available FW
+ client IDs
+- For each FW ID found in that bitmap host sends
+ HOST_CLIENT_PROPERTIES_REQ_CMD
+- FW responds with HOST_CLIENT_PROPERTIES_RES_CMD. Properties include UUID,
+ max ISHTP message size, etc.
+- Once host received properties for that last discovered client, it considers
+ ISHTP device fully functional (and allocates DMA buffers)
+
+3.4 HID over ISH Client
+-----------------------
+
+Location: drivers/hid/intel-ish-hid
+
+The ISHTP client driver is responsible for:
+
+- enumerate HID devices under FW ISH client
+- Get Report descriptor
+- Register with HID core as a LL driver
+- Process Get/Set feature request
+- Get input reports
+
+3.5 HID Sensor Hub MFD and IIO sensor drivers
+---------------------------------------------
+
+The functionality in these drivers is the same as an external sensor hub.
+Refer to
+Documentation/hid/hid-sensor.rst for HID sensor
+Documentation/ABI/testing/sysfs-bus-iio for IIO ABIs to user space
+
+3.6 End to End HID transport Sequence Diagram
+---------------------------------------------
+
+::
+
+ HID-ISH-CLN ISHTP IPC HW
+ | | | |
+ | | |-----WAKE UP------------------>|
+ | | | |
+ | | |-----HOST READY--------------->|
+ | | | |
+ | | |<----MNG_RESET_NOTIFY_ACK----- |
+ | | | |
+ | |<----ISHTP_START------ | |
+ | | | |
+ | |<-----------------HOST_START_RES_CMD-------------------|
+ | | | |
+ | |------------------QUERY_SUBSCRIBER-------------------->|
+ | | | |
+ | |------------------HOST_ENUM_REQ_CMD------------------->|
+ | | | |
+ | |<-----------------HOST_ENUM_RES_CMD--------------------|
+ | | | |
+ | |------------------HOST_CLIENT_PROPERTIES_REQ_CMD------>|
+ | | | |
+ | |<-----------------HOST_CLIENT_PROPERTIES_RES_CMD-------|
+ | Create new device on in ishtp bus | |
+ | | | |
+ | |------------------HOST_CLIENT_PROPERTIES_REQ_CMD------>|
+ | | | |
+ | |<-----------------HOST_CLIENT_PROPERTIES_RES_CMD-------|
+ | Create new device on in ishtp bus | |
+ | | | |
+ | |--Repeat HOST_CLIENT_PROPERTIES_REQ_CMD-till last one--|
+ | | | |
+ probed()
+ |----ishtp_cl_connect--->|----------------- CLIENT_CONNECT_REQ_CMD-------------->|
+ | | | |
+ | |<----------------CLIENT_CONNECT_RES_CMD----------------|
+ | | | |
+ |register event callback | | |
+ | | | |
+ |ishtp_cl_send(
+ HOSTIF_DM_ENUM_DEVICES) |----------fill ishtp_msg_hdr struct write to HW----- >|
+ | | | |
+ | | |<-----IRQ(IPC_PROTOCOL_ISHTP---|
+ | | | |
+ |<--ENUM_DEVICE RSP------| | |
+ | | | |
+ for each enumerated device
+ |ishtp_cl_send(
+ HOSTIF_GET_HID_DESCRIPTOR|----------fill ishtp_msg_hdr struct write to HW----- >|
+ | | | |
+ ...Response
+ | | | |
+ for each enumerated device
+ |ishtp_cl_send(
+ HOSTIF_GET_REPORT_DESCRIPTOR|--------------fill ishtp_msg_hdr struct write to HW-- >|
+ | | | |
+ | | | |
+ hid_allocate_device
+ | | | |
+ hid_add_device | | |
+ | | | |
+
+
+3.7 ISH Debugging
+-----------------
+
+To debug ISH, event tracing mechanism is used. To enable debug logs
+echo 1 > /sys/kernel/debug/tracing/events/intel_ish/enable
+cat sys/kernel/debug/tracing/trace
+
+3.8 ISH IIO sysfs Example on Lenovo thinkpad Yoga 260
+-----------------------------------------------------
+
+::
+
+ root@otcpl-ThinkPad-Yoga-260:~# tree -l /sys/bus/iio/devices/
+ /sys/bus/iio/devices/
+ ├── iio:device0 -> ../../../devices/0044:8086:22D8.0001/HID-SENSOR-200073.9.auto/iio:device0
+ │ ├── buffer
+ │ │ ├── enable
+ │ │ ├── length
+ │ │ └── watermark
+ ...
+ │ ├── in_accel_hysteresis
+ │ ├── in_accel_offset
+ │ ├── in_accel_sampling_frequency
+ │ ├── in_accel_scale
+ │ ├── in_accel_x_raw
+ │ ├── in_accel_y_raw
+ │ ├── in_accel_z_raw
+ │ ├── name
+ │ ├── scan_elements
+ │ │ ├── in_accel_x_en
+ │ │ ├── in_accel_x_index
+ │ │ ├── in_accel_x_type
+ │ │ ├── in_accel_y_en
+ │ │ ├── in_accel_y_index
+ │ │ ├── in_accel_y_type
+ │ │ ├── in_accel_z_en
+ │ │ ├── in_accel_z_index
+ │ │ └── in_accel_z_type
+ ...
+ │ │ ├── devices
+ │ │ │ │ ├── buffer
+ │ │ │ │ │ ├── enable
+ │ │ │ │ │ ├── length
+ │ │ │ │ │ └── watermark
+ │ │ │ │ ├── dev
+ │ │ │ │ ├── in_intensity_both_raw
+ │ │ │ │ ├── in_intensity_hysteresis
+ │ │ │ │ ├── in_intensity_offset
+ │ │ │ │ ├── in_intensity_sampling_frequency
+ │ │ │ │ ├── in_intensity_scale
+ │ │ │ │ ├── name
+ │ │ │ │ ├── scan_elements
+ │ │ │ │ │ ├── in_intensity_both_en
+ │ │ │ │ │ ├── in_intensity_both_index
+ │ │ │ │ │ └── in_intensity_both_type
+ │ │ │ │ ├── trigger
+ │ │ │ │ │ └── current_trigger
+ ...
+ │ │ │ │ ├── buffer
+ │ │ │ │ │ ├── enable
+ │ │ │ │ │ ├── length
+ │ │ │ │ │ └── watermark
+ │ │ │ │ ├── dev
+ │ │ │ │ ├── in_magn_hysteresis
+ │ │ │ │ ├── in_magn_offset
+ │ │ │ │ ├── in_magn_sampling_frequency
+ │ │ │ │ ├── in_magn_scale
+ │ │ │ │ ├── in_magn_x_raw
+ │ │ │ │ ├── in_magn_y_raw
+ │ │ │ │ ├── in_magn_z_raw
+ │ │ │ │ ├── in_rot_from_north_magnetic_tilt_comp_raw
+ │ │ │ │ ├── in_rot_hysteresis
+ │ │ │ │ ├── in_rot_offset
+ │ │ │ │ ├── in_rot_sampling_frequency
+ │ │ │ │ ├── in_rot_scale
+ │ │ │ │ ├── name
+ ...
+ │ │ │ │ ├── scan_elements
+ │ │ │ │ │ ├── in_magn_x_en
+ │ │ │ │ │ ├── in_magn_x_index
+ │ │ │ │ │ ├── in_magn_x_type
+ │ │ │ │ │ ├── in_magn_y_en
+ │ │ │ │ │ ├── in_magn_y_index
+ │ │ │ │ │ ├── in_magn_y_type
+ │ │ │ │ │ ├── in_magn_z_en
+ │ │ │ │ │ ├── in_magn_z_index
+ │ │ │ │ │ ├── in_magn_z_type
+ │ │ │ │ │ ├── in_rot_from_north_magnetic_tilt_comp_en
+ │ │ │ │ │ ├── in_rot_from_north_magnetic_tilt_comp_index
+ │ │ │ │ │ └── in_rot_from_north_magnetic_tilt_comp_type
+ │ │ │ │ ├── trigger
+ │ │ │ │ │ └── current_trigger
+ ...
+ │ │ │ │ ├── buffer
+ │ │ │ │ │ ├── enable
+ │ │ │ │ │ ├── length
+ │ │ │ │ │ └── watermark
+ │ │ │ │ ├── dev
+ │ │ │ │ ├── in_anglvel_hysteresis
+ │ │ │ │ ├── in_anglvel_offset
+ │ │ │ │ ├── in_anglvel_sampling_frequency
+ │ │ │ │ ├── in_anglvel_scale
+ │ │ │ │ ├── in_anglvel_x_raw
+ │ │ │ │ ├── in_anglvel_y_raw
+ │ │ │ │ ├── in_anglvel_z_raw
+ │ │ │ │ ├── name
+ │ │ │ │ ├── scan_elements
+ │ │ │ │ │ ├── in_anglvel_x_en
+ │ │ │ │ │ ├── in_anglvel_x_index
+ │ │ │ │ │ ├── in_anglvel_x_type
+ │ │ │ │ │ ├── in_anglvel_y_en
+ │ │ │ │ │ ├── in_anglvel_y_index
+ │ │ │ │ │ ├── in_anglvel_y_type
+ │ │ │ │ │ ├── in_anglvel_z_en
+ │ │ │ │ │ ├── in_anglvel_z_index
+ │ │ │ │ │ └── in_anglvel_z_type
+ │ │ │ │ ├── trigger
+ │ │ │ │ │ └── current_trigger
+ ...
+ │ │ │ │ ├── buffer
+ │ │ │ │ │ ├── enable
+ │ │ │ │ │ ├── length
+ │ │ │ │ │ └── watermark
+ │ │ │ │ ├── dev
+ │ │ │ │ ├── in_anglvel_hysteresis
+ │ │ │ │ ├── in_anglvel_offset
+ │ │ │ │ ├── in_anglvel_sampling_frequency
+ │ │ │ │ ├── in_anglvel_scale
+ │ │ │ │ ├── in_anglvel_x_raw
+ │ │ │ │ ├── in_anglvel_y_raw
+ │ │ │ │ ├── in_anglvel_z_raw
+ │ │ │ │ ├── name
+ │ │ │ │ ├── scan_elements
+ │ │ │ │ │ ├── in_anglvel_x_en
+ │ │ │ │ │ ├── in_anglvel_x_index
+ │ │ │ │ │ ├── in_anglvel_x_type
+ │ │ │ │ │ ├── in_anglvel_y_en
+ │ │ │ │ │ ├── in_anglvel_y_index
+ │ │ │ │ │ ├── in_anglvel_y_type
+ │ │ │ │ │ ├── in_anglvel_z_en
+ │ │ │ │ │ ├── in_anglvel_z_index
+ │ │ │ │ │ └── in_anglvel_z_type
+ │ │ │ │ ├── trigger
+ │ │ │ │ │ └── current_trigger
+ ...
diff --git a/Documentation/hid/intel-ish-hid.txt b/Documentation/hid/intel-ish-hid.txt
deleted file mode 100644
index d48b21c71ddd..000000000000
--- a/Documentation/hid/intel-ish-hid.txt
+++ /dev/null
@@ -1,454 +0,0 @@
-Intel Integrated Sensor Hub (ISH)
-===============================
-
-A sensor hub enables the ability to offload sensor polling and algorithm
-processing to a dedicated low power co-processor. This allows the core
-processor to go into low power modes more often, resulting in the increased
-battery life.
-
-There are many vendors providing external sensor hubs confirming to HID
-Sensor usage tables, and used in several tablets, 2 in 1 convertible laptops
-and embedded products. Linux had this support since Linux 3.9.
-
-Intel® introduced integrated sensor hubs as a part of the SoC starting from
-Cherry Trail and now supported on multiple generations of CPU packages. There
-are many commercial devices already shipped with Integrated Sensor Hubs (ISH).
-These ISH also comply to HID sensor specification, but the difference is the
-transport protocol used for communication. The current external sensor hubs
-mainly use HID over i2C or USB. But ISH doesn't use either i2c or USB.
-
-1. Overview
-
-Using a analogy with a usbhid implementation, the ISH follows a similar model
-for a very high speed communication:
-
- ----------------- ----------------------
- | USB HID | --> | ISH HID |
- ----------------- ----------------------
- ----------------- ----------------------
- | USB protocol | --> | ISH Transport |
- ----------------- ----------------------
- ----------------- ----------------------
- | EHCI/XHCI | --> | ISH IPC |
- ----------------- ----------------------
- PCI PCI
- ----------------- ----------------------
- |Host controller| --> | ISH processor |
- ----------------- ----------------------
- USB Link
- ----------------- ----------------------
- | USB End points| --> | ISH Clients |
- ----------------- ----------------------
-
-Like USB protocol provides a method for device enumeration, link management
-and user data encapsulation, the ISH also provides similar services. But it is
-very light weight tailored to manage and communicate with ISH client
-applications implemented in the firmware.
-
-The ISH allows multiple sensor management applications executing in the
-firmware. Like USB endpoints the messaging can be to/from a client. As part of
-enumeration process, these clients are identified. These clients can be simple
-HID sensor applications, sensor calibration application or senor firmware
-update application.
-
-The implementation model is similar, like USB bus, ISH transport is also
-implemented as a bus. Each client application executing in the ISH processor
-is registered as a device on this bus. The driver, which binds each device
-(ISH HID driver) identifies the device type and registers with the hid core.
-
-2. ISH Implementation: Block Diagram
-
- ---------------------------
- | User Space Applications |
- ---------------------------
-
-----------------IIO ABI----------------
- --------------------------
- | IIO Sensor Drivers |
- --------------------------
- --------------------------
- | IIO core |
- --------------------------
- --------------------------
- | HID Sensor Hub MFD |
- --------------------------
- --------------------------
- | HID Core |
- --------------------------
- --------------------------
- | HID over ISH Client |
- --------------------------
- --------------------------
- | ISH Transport (ISHTP) |
- --------------------------
- --------------------------
- | IPC Drivers |
- --------------------------
-OS
----------------- PCI -----------------
-Hardware + Firmware
- ----------------------------
- | ISH Hardware/Firmware(FW) |
- ----------------------------
-
-3. High level processing in above blocks
-
-3.1 Hardware Interface
-
-The ISH is exposed as "Non-VGA unclassified PCI device" to the host. The PCI
-product and vendor IDs are changed from different generations of processors. So
-the source code which enumerate drivers needs to update from generation to
-generation.
-
-3.2 Inter Processor Communication (IPC) driver
-Location: drivers/hid/intel-ish-hid/ipc
-
-The IPC message used memory mapped I/O. The registers are defined in
-hw-ish-regs.h.
-
-3.2.1 IPC/FW message types
-
-There are two types of messages, one for management of link and other messages
-are to and from transport layers.
-
-TX and RX of Transport messages
-
-A set of memory mapped register offers support of multi byte messages TX and
-RX (E.g.IPC_REG_ISH2HOST_MSG, IPC_REG_HOST2ISH_MSG). The IPC layer maintains
-internal queues to sequence messages and send them in order to the FW.
-Optionally the caller can register handler to get notification of completion.
-A door bell mechanism is used in messaging to trigger processing in host and
-client firmware side. When ISH interrupt handler is called, the ISH2HOST
-doorbell register is used by host drivers to determine that the interrupt
-is for ISH.
-
-Each side has 32 32-bit message registers and a 32-bit doorbell. Doorbell
-register has the following format:
-Bits 0..6: fragment length (7 bits are used)
-Bits 10..13: encapsulated protocol
-Bits 16..19: management command (for IPC management protocol)
-Bit 31: doorbell trigger (signal H/W interrupt to the other side)
-Other bits are reserved, should be 0.
-
-3.2.2 Transport layer interface
-
-To abstract HW level IPC communication, a set of callbacks are registered.
-The transport layer uses them to send and receive messages.
-Refer to struct ishtp_hw_ops for callbacks.
-
-3.3 ISH Transport layer
-Location: drivers/hid/intel-ish-hid/ishtp/
-
-3.3.1 A Generic Transport Layer
-
-The transport layer is a bi-directional protocol, which defines:
-- Set of commands to start, stop, connect, disconnect and flow control
-(ishtp/hbm.h) for details
-- A flow control mechanism to avoid buffer overflows
-
-This protocol resembles bus messages described in the following document:
-http://www.intel.com/content/dam/www/public/us/en/documents/technical-\
-specifications/dcmi-hi-1-0-spec.pdf "Chapter 7: Bus Message Layer"
-
-3.3.2 Connection and Flow Control Mechanism
-
-Each FW client and a protocol is identified by an UUID. In order to communicate
-to a FW client, a connection must be established using connect request and
-response bus messages. If successful, a pair (host_client_id and fw_client_id)
-will identify the connection.
-
-Once connection is established, peers send each other flow control bus messages
-independently. Every peer may send a message only if it has received a
-flow-control credit before. Once it sent a message, it may not send another one
-before receiving the next flow control credit.
-Either side can send disconnect request bus message to end communication. Also
-the link will be dropped if major FW reset occurs.
-
-3.3.3 Peer to Peer data transfer
-
-Peer to Peer data transfer can happen with or without using DMA. Depending on
-the sensor bandwidth requirement DMA can be enabled by using module parameter
-ishtp_use_dma under intel_ishtp.
-
-Each side (host and FW) manages its DMA transfer memory independently. When an
-ISHTP client from either host or FW side wants to send something, it decides
-whether to send over IPC or over DMA; for each transfer the decision is
-independent. The sending side sends DMA_XFER message when the message is in
-the respective host buffer (TX when host client sends, RX when FW client
-sends). The recipient of DMA message responds with DMA_XFER_ACK, indicating
-the sender that the memory region for that message may be reused.
-
-DMA initialization is started with host sending DMA_ALLOC_NOTIFY bus message
-(that includes RX buffer) and FW responds with DMA_ALLOC_NOTIFY_ACK.
-Additionally to DMA address communication, this sequence checks capabilities:
-if thw host doesn't support DMA, then it won't send DMA allocation, so FW can't
-send DMA; if FW doesn't support DMA then it won't respond with
-DMA_ALLOC_NOTIFY_ACK, in which case host will not use DMA transfers.
-Here ISH acts as busmaster DMA controller. Hence when host sends DMA_XFER,
-it's request to do host->ISH DMA transfer; when FW sends DMA_XFER, it means
-that it already did DMA and the message resides at host. Thus, DMA_XFER
-and DMA_XFER_ACK act as ownership indicators.
-
-At initial state all outgoing memory belongs to the sender (TX to host, RX to
-FW), DMA_XFER transfers ownership on the region that contains ISHTP message to
-the receiving side, DMA_XFER_ACK returns ownership to the sender. A sender
-needs not wait for previous DMA_XFER to be ack'ed, and may send another message
-as long as remaining continuous memory in its ownership is enough.
-In principle, multiple DMA_XFER and DMA_XFER_ACK messages may be sent at once
-(up to IPC MTU), thus allowing for interrupt throttling.
-Currently, ISH FW decides to send over DMA if ISHTP message is more than 3 IPC
-fragments and via IPC otherwise.
-
-3.3.4 Ring Buffers
-
-When a client initiate a connection, a ring or RX and TX buffers are allocated.
-The size of ring can be specified by the client. HID client set 16 and 32 for
-TX and RX buffers respectively. On send request from client, the data to be
-sent is copied to one of the send ring buffer and scheduled to be sent using
-bus message protocol. These buffers are required because the FW may have not
-have processed the last message and may not have enough flow control credits
-to send. Same thing holds true on receive side and flow control is required.
-
-3.3.5 Host Enumeration
-
-The host enumeration bus command allow discovery of clients present in the FW.
-There can be multiple sensor clients and clients for calibration function.
-
-To ease in implantation and allow independent driver handle each client
-this transport layer takes advantage of Linux Bus driver model. Each
-client is registered as device on the the transport bus (ishtp bus).
-
-Enumeration sequence of messages:
-- Host sends HOST_START_REQ_CMD, indicating that host ISHTP layer is up.
-- FW responds with HOST_START_RES_CMD
-- Host sends HOST_ENUM_REQ_CMD (enumerate FW clients)
-- FW responds with HOST_ENUM_RES_CMD that includes bitmap of available FW
-client IDs
-- For each FW ID found in that bitmap host sends
-HOST_CLIENT_PROPERTIES_REQ_CMD
-- FW responds with HOST_CLIENT_PROPERTIES_RES_CMD. Properties include UUID,
-max ISHTP message size, etc.
-- Once host received properties for that last discovered client, it considers
-ISHTP device fully functional (and allocates DMA buffers)
-
-3.4 HID over ISH Client
-Location: drivers/hid/intel-ish-hid
-
-The ISHTP client driver is responsible for:
-- enumerate HID devices under FW ISH client
-- Get Report descriptor
-- Register with HID core as a LL driver
-- Process Get/Set feature request
-- Get input reports
-
-3.5 HID Sensor Hub MFD and IIO sensor drivers
-
-The functionality in these drivers is the same as an external sensor hub.
-Refer to
-Documentation/hid/hid-sensor.txt for HID sensor
-Documentation/ABI/testing/sysfs-bus-iio for IIO ABIs to user space
-
-3.6 End to End HID transport Sequence Diagram
-
-HID-ISH-CLN ISHTP IPC HW
- | | | |
- | | |-----WAKE UP------------------>|
- | | | |
- | | |-----HOST READY--------------->|
- | | | |
- | | |<----MNG_RESET_NOTIFY_ACK----- |
- | | | |
- | |<----ISHTP_START------ | |
- | | | |
- | |<-----------------HOST_START_RES_CMD-------------------|
- | | | |
- | |------------------QUERY_SUBSCRIBER-------------------->|
- | | | |
- | |------------------HOST_ENUM_REQ_CMD------------------->|
- | | | |
- | |<-----------------HOST_ENUM_RES_CMD--------------------|
- | | | |
- | |------------------HOST_CLIENT_PROPERTIES_REQ_CMD------>|
- | | | |
- | |<-----------------HOST_CLIENT_PROPERTIES_RES_CMD-------|
- | Create new device on in ishtp bus | |
- | | | |
- | |------------------HOST_CLIENT_PROPERTIES_REQ_CMD------>|
- | | | |
- | |<-----------------HOST_CLIENT_PROPERTIES_RES_CMD-------|
- | Create new device on in ishtp bus | |
- | | | |
- | |--Repeat HOST_CLIENT_PROPERTIES_REQ_CMD-till last one--|
- | | | |
- probed()
- |----ishtp_cl_connect-->|----------------- CLIENT_CONNECT_REQ_CMD-------------->|
- | | | |
- | |<----------------CLIENT_CONNECT_RES_CMD----------------|
- | | | |
- |register event callback| | |
- | | | |
- |ishtp_cl_send(
- HOSTIF_DM_ENUM_DEVICES) |----------fill ishtp_msg_hdr struct write to HW----- >|
- | | | |
- | | |<-----IRQ(IPC_PROTOCOL_ISHTP---|
- | | | |
- |<--ENUM_DEVICE RSP-----| | |
- | | | |
-for each enumerated device
- |ishtp_cl_send(
- HOSTIF_GET_HID_DESCRIPTOR |----------fill ishtp_msg_hdr struct write to HW--- >|
- | | | |
- ...Response
- | | | |
-for each enumerated device
- |ishtp_cl_send(
- HOSTIF_GET_REPORT_DESCRIPTOR |----------fill ishtp_msg_hdr struct write to HW- >|
- | | | |
- | | | |
- hid_allocate_device
- | | | |
- hid_add_device | | |
- | | | |
-
-
-3.7 ISH Debugging
-
-To debug ISH, event tracing mechanism is used. To enable debug logs
-echo 1 > /sys/kernel/debug/tracing/events/intel_ish/enable
-cat sys/kernel/debug/tracing/trace
-
-3.8 ISH IIO sysfs Example on Lenovo thinkpad Yoga 260
-
-root@otcpl-ThinkPad-Yoga-260:~# tree -l /sys/bus/iio/devices/
-/sys/bus/iio/devices/
-├── iio:device0 -> ../../../devices/0044:8086:22D8.0001/HID-SENSOR-200073.9.auto/iio:device0
-│ ├── buffer
-│ │ ├── enable
-│ │ ├── length
-│ │ └── watermark
-...
-│ ├── in_accel_hysteresis
-│ ├── in_accel_offset
-│ ├── in_accel_sampling_frequency
-│ ├── in_accel_scale
-│ ├── in_accel_x_raw
-│ ├── in_accel_y_raw
-│ ├── in_accel_z_raw
-│ ├── name
-│ ├── scan_elements
-│ │ ├── in_accel_x_en
-│ │ ├── in_accel_x_index
-│ │ ├── in_accel_x_type
-│ │ ├── in_accel_y_en
-│ │ ├── in_accel_y_index
-│ │ ├── in_accel_y_type
-│ │ ├── in_accel_z_en
-│ │ ├── in_accel_z_index
-│ │ └── in_accel_z_type
-...
-│ │ ├── devices
-│ │ │ │ ├── buffer
-│ │ │ │ │ ├── enable
-│ │ │ │ │ ├── length
-│ │ │ │ │ └── watermark
-│ │ │ │ ├── dev
-│ │ │ │ ├── in_intensity_both_raw
-│ │ │ │ ├── in_intensity_hysteresis
-│ │ │ │ ├── in_intensity_offset
-│ │ │ │ ├── in_intensity_sampling_frequency
-│ │ │ │ ├── in_intensity_scale
-│ │ │ │ ├── name
-│ │ │ │ ├── scan_elements
-│ │ │ │ │ ├── in_intensity_both_en
-│ │ │ │ │ ├── in_intensity_both_index
-│ │ │ │ │ └── in_intensity_both_type
-│ │ │ │ ├── trigger
-│ │ │ │ │ └── current_trigger
-...
-│ │ │ │ ├── buffer
-│ │ │ │ │ ├── enable
-│ │ │ │ │ ├── length
-│ │ │ │ │ └── watermark
-│ │ │ │ ├── dev
-│ │ │ │ ├── in_magn_hysteresis
-│ │ │ │ ├── in_magn_offset
-│ │ │ │ ├── in_magn_sampling_frequency
-│ │ │ │ ├── in_magn_scale
-│ │ │ │ ├── in_magn_x_raw
-│ │ │ │ ├── in_magn_y_raw
-│ │ │ │ ├── in_magn_z_raw
-│ │ │ │ ├── in_rot_from_north_magnetic_tilt_comp_raw
-│ │ │ │ ├── in_rot_hysteresis
-│ │ │ │ ├── in_rot_offset
-│ │ │ │ ├── in_rot_sampling_frequency
-│ │ │ │ ├── in_rot_scale
-│ │ │ │ ├── name
-...
-│ │ │ │ ├── scan_elements
-│ │ │ │ │ ├── in_magn_x_en
-│ │ │ │ │ ├── in_magn_x_index
-│ │ │ │ │ ├── in_magn_x_type
-│ │ │ │ │ ├── in_magn_y_en
-│ │ │ │ │ ├── in_magn_y_index
-│ │ │ │ │ ├── in_magn_y_type
-│ │ │ │ │ ├── in_magn_z_en
-│ │ │ │ │ ├── in_magn_z_index
-│ │ │ │ │ ├── in_magn_z_type
-│ │ │ │ │ ├── in_rot_from_north_magnetic_tilt_comp_en
-│ │ │ │ │ ├── in_rot_from_north_magnetic_tilt_comp_index
-│ │ │ │ │ └── in_rot_from_north_magnetic_tilt_comp_type
-│ │ │ │ ├── trigger
-│ │ │ │ │ └── current_trigger
-...
-│ │ │ │ ├── buffer
-│ │ │ │ │ ├── enable
-│ │ │ │ │ ├── length
-│ │ │ │ │ └── watermark
-│ │ │ │ ├── dev
-│ │ │ │ ├── in_anglvel_hysteresis
-│ │ │ │ ├── in_anglvel_offset
-│ │ │ │ ├── in_anglvel_sampling_frequency
-│ │ │ │ ├── in_anglvel_scale
-│ │ │ │ ├── in_anglvel_x_raw
-│ │ │ │ ├── in_anglvel_y_raw
-│ │ │ │ ├── in_anglvel_z_raw
-│ │ │ │ ├── name
-│ │ │ │ ├── scan_elements
-│ │ │ │ │ ├── in_anglvel_x_en
-│ │ │ │ │ ├── in_anglvel_x_index
-│ │ │ │ │ ├── in_anglvel_x_type
-│ │ │ │ │ ├── in_anglvel_y_en
-│ │ │ │ │ ├── in_anglvel_y_index
-│ │ │ │ │ ├── in_anglvel_y_type
-│ │ │ │ │ ├── in_anglvel_z_en
-│ │ │ │ │ ├── in_anglvel_z_index
-│ │ │ │ │ └── in_anglvel_z_type
-│ │ │ │ ├── trigger
-│ │ │ │ │ └── current_trigger
-...
-│ │ │ │ ├── buffer
-│ │ │ │ │ ├── enable
-│ │ │ │ │ ├── length
-│ │ │ │ │ └── watermark
-│ │ │ │ ├── dev
-│ │ │ │ ├── in_anglvel_hysteresis
-│ │ │ │ ├── in_anglvel_offset
-│ │ │ │ ├── in_anglvel_sampling_frequency
-│ │ │ │ ├── in_anglvel_scale
-│ │ │ │ ├── in_anglvel_x_raw
-│ │ │ │ ├── in_anglvel_y_raw
-│ │ │ │ ├── in_anglvel_z_raw
-│ │ │ │ ├── name
-│ │ │ │ ├── scan_elements
-│ │ │ │ │ ├── in_anglvel_x_en
-│ │ │ │ │ ├── in_anglvel_x_index
-│ │ │ │ │ ├── in_anglvel_x_type
-│ │ │ │ │ ├── in_anglvel_y_en
-│ │ │ │ │ ├── in_anglvel_y_index
-│ │ │ │ │ ├── in_anglvel_y_type
-│ │ │ │ │ ├── in_anglvel_z_en
-│ │ │ │ │ ├── in_anglvel_z_index
-│ │ │ │ │ └── in_anglvel_z_type
-│ │ │ │ ├── trigger
-│ │ │ │ │ └── current_trigger
-...
diff --git a/Documentation/hid/uhid.txt b/Documentation/hid/uhid.rst
similarity index 94%
rename from Documentation/hid/uhid.txt
rename to Documentation/hid/uhid.rst
index 958fff945304..b18cb96c885f 100644
--- a/Documentation/hid/uhid.txt
+++ b/Documentation/hid/uhid.rst
@@ -1,5 +1,6 @@
- UHID - User-space I/O driver support for HID subsystem
- ========================================================
+======================================================
+UHID - User-space I/O driver support for HID subsystem
+======================================================
UHID allows user-space to implement HID transport drivers. Please see
hid-transport.txt for an introduction into HID transport drivers. This document
@@ -22,9 +23,9 @@ If a new device is detected by your HID I/O Driver and you want to register this
device with the HID subsystem, then you need to open /dev/uhid once for each
device you want to register. All further communication is done by read()'ing or
write()'ing "struct uhid_event" objects. Non-blocking operations are supported
-by setting O_NONBLOCK.
+by setting O_NONBLOCK::
-struct uhid_event {
+ struct uhid_event {
__u32 type;
union {
struct uhid_create2_req create2;
@@ -32,7 +33,7 @@ struct uhid_event {
struct uhid_input2_req input2;
...
} u;
-};
+ };
The "type" field contains the ID of the event. Depending on the ID different
payloads are sent. You must not split a single event across multiple read()'s or
@@ -86,31 +87,31 @@ the request was handled successfully. O_NONBLOCK does not affect write() as
writes are always handled immediately in a non-blocking fashion. Future requests
might make use of O_NONBLOCK, though.
- UHID_CREATE2:
+UHID_CREATE2:
This creates the internal HID device. No I/O is possible until you send this
event to the kernel. The payload is of type struct uhid_create2_req and
contains information about your device. You can start I/O now.
- UHID_DESTROY:
+UHID_DESTROY:
This destroys the internal HID device. No further I/O will be accepted. There
may still be pending messages that you can receive with read() but no further
UHID_INPUT events can be sent to the kernel.
You can create a new device by sending UHID_CREATE2 again. There is no need to
reopen the character device.
- UHID_INPUT2:
+UHID_INPUT2:
You must send UHID_CREATE2 before sending input to the kernel! This event
contains a data-payload. This is the raw data that you read from your device
on the interrupt channel. The kernel will parse the HID reports.
- UHID_GET_REPORT_REPLY:
+UHID_GET_REPORT_REPLY:
If you receive a UHID_GET_REPORT request you must answer with this request.
You must copy the "id" field from the request into the answer. Set the "err"
field to 0 if no error occurred or to EIO if an I/O error occurred.
If "err" is 0 then you should fill the buffer of the answer with the results
of the GET_REPORT request and set "size" correspondingly.
- UHID_SET_REPORT_REPLY:
+UHID_SET_REPORT_REPLY:
This is the SET_REPORT equivalent of UHID_GET_REPORT_REPLY. Unlike GET_REPORT,
SET_REPORT never returns a data buffer, therefore, it's sufficient to set the
"id" and "err" fields correctly.
@@ -120,16 +121,18 @@ read()
read() will return a queued output report. No reaction is required to any of
them but you should handle them according to your needs.
- UHID_START:
+UHID_START:
This is sent when the HID device is started. Consider this as an answer to
UHID_CREATE2. This is always the first event that is sent. Note that this
event might not be available immediately after write(UHID_CREATE2) returns.
Device drivers might required delayed setups.
This event contains a payload of type uhid_start_req. The "dev_flags" field
describes special behaviors of a device. The following flags are defined:
- UHID_DEV_NUMBERED_FEATURE_REPORTS:
- UHID_DEV_NUMBERED_OUTPUT_REPORTS:
- UHID_DEV_NUMBERED_INPUT_REPORTS:
+
+ - UHID_DEV_NUMBERED_FEATURE_REPORTS
+ - UHID_DEV_NUMBERED_OUTPUT_REPORTS
+ - UHID_DEV_NUMBERED_INPUT_REPORTS
+
Each of these flags defines whether a given report-type uses numbered
reports. If numbered reports are used for a type, all messages from
the kernel already have the report-number as prefix. Otherwise, no
@@ -137,33 +140,35 @@ them but you should handle them according to your needs.
For messages sent by user-space to the kernel, you must adjust the
prefixes according to these flags.
- UHID_STOP:
+UHID_STOP:
This is sent when the HID device is stopped. Consider this as an answer to
UHID_DESTROY.
+
If you didn't destroy your device via UHID_DESTROY, but the kernel sends an
UHID_STOP event, this should usually be ignored. It means that the kernel
reloaded/changed the device driver loaded on your HID device (or some other
maintenance actions happened).
+
You can usually ignored any UHID_STOP events safely.
- UHID_OPEN:
+UHID_OPEN:
This is sent when the HID device is opened. That is, the data that the HID
device provides is read by some other process. You may ignore this event but
it is useful for power-management. As long as you haven't received this event
there is actually no other process that reads your data so there is no need to
send UHID_INPUT2 events to the kernel.
- UHID_CLOSE:
+UHID_CLOSE:
This is sent when there are no more processes which read the HID data. It is
the counterpart of UHID_OPEN and you may as well ignore this event.
- UHID_OUTPUT:
+UHID_OUTPUT:
This is sent if the HID device driver wants to send raw data to the I/O
device on the interrupt channel. You should read the payload and forward it to
the device. The payload is of type "struct uhid_output_req".
This may be received even though you haven't received UHID_OPEN, yet.
- UHID_GET_REPORT:
+UHID_GET_REPORT:
This event is sent if the kernel driver wants to perform a GET_REPORT request
on the control channeld as described in the HID specs. The report-type and
report-number are available in the payload.
@@ -177,11 +182,12 @@ them but you should handle them according to your needs.
timed out, the kernel will ignore the response silently. The "id" field is
never re-used, so conflicts cannot happen.
- UHID_SET_REPORT:
+UHID_SET_REPORT:
This is the SET_REPORT equivalent of UHID_GET_REPORT. On receipt, you shall
send a SET_REPORT request to your hid device. Once it replies, you must tell
the kernel about it via UHID_SET_REPORT_REPLY.
The same restrictions as for UHID_GET_REPORT apply.
----------------------------------------------------
+
Written 2012, David Herrmann <dh.herrmann@gmail.com>
diff --git a/Documentation/input/input.rst b/Documentation/input/input.rst
index 47f86a4bf16c..0eb61e67a7b7 100644
--- a/Documentation/input/input.rst
+++ b/Documentation/input/input.rst
@@ -188,7 +188,7 @@ LCDs and many other purposes.
The monitor and speaker controls should be easy to add to the hid/input
interface, but for the UPSs and LCDs it doesn't make much sense. For this,
-the hiddev interface was designed. See Documentation/hid/hiddev.txt
+the hiddev interface was designed. See Documentation/hid/hiddev.rst
for more information about it.
The usage of the usbhid module is very simple, it takes no parameters,
diff --git a/MAINTAINERS b/MAINTAINERS
index 66bcec263dbf..4e1e598a32d9 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -16165,7 +16165,7 @@ M: Benjamin Tissoires <benjamin.tissoires@redhat.com>
L: linux-usb@vger.kernel.org
T: git git://git.kernel.org/pub/scm/linux/kernel/git/hid/hid.git
S: Maintained
-F: Documentation/hid/hiddev.txt
+F: Documentation/hid/hiddev.rst
F: drivers/hid/usbhid/
USB INTEL XHCI ROLE MUX DRIVER
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 60/79] docs: ia64: convert to ReST
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (49 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 59/79] docs: hid: " Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 61/79] docs: leds: " Mauro Carvalho Chehab
` (22 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Pat Gefre, Ard Biesheuvel, Tony Luck, Fenghua Yu,
linux-ia64, linux-efi
Rename the ia64 documentation files to ReST, add an
index for them and adjust in order to produce a nice html
output via the Sphinx build system.
There are two upper case file names. Rename them to
lower case, as we're working to avoid upper case file
names at Documentation.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
.../ia64/{aliasing.txt => aliasing.rst} | 71 ++--
Documentation/ia64/{efirtc.txt => efirtc.rst} | 86 +++--
.../ia64/{err_inject.txt => err_inject.rst} | 347 +++++++++---------
Documentation/ia64/{fsys.txt => fsys.rst} | 127 ++++---
Documentation/ia64/{README => ia64.rst} | 26 +-
Documentation/ia64/index.rst | 18 +
.../ia64/{IRQ-redir.txt => irq-redir.rst} | 30 +-
Documentation/ia64/{mca.txt => mca.rst} | 10 +-
Documentation/ia64/{serial.txt => serial.rst} | 36 +-
Documentation/ia64/xen.rst | 206 +++++++++++
Documentation/ia64/xen.txt | 183 ---------
MAINTAINERS | 2 +-
arch/ia64/kernel/efi.c | 2 +-
arch/ia64/kernel/fsys.S | 2 +-
arch/ia64/mm/ioremap.c | 2 +-
arch/ia64/pci/pci.c | 2 +-
16 files changed, 642 insertions(+), 508 deletions(-)
rename Documentation/ia64/{aliasing.txt => aliasing.rst} (84%)
rename Documentation/ia64/{efirtc.txt => efirtc.rst} (76%)
rename Documentation/ia64/{err_inject.txt => err_inject.rst} (82%)
rename Documentation/ia64/{fsys.txt => fsys.rst} (76%)
rename Documentation/ia64/{README => ia64.rst} (61%)
create mode 100644 Documentation/ia64/index.rst
rename Documentation/ia64/{IRQ-redir.txt => irq-redir.rst} (86%)
rename Documentation/ia64/{mca.txt => mca.rst} (96%)
rename Documentation/ia64/{serial.txt => serial.rst} (87%)
create mode 100644 Documentation/ia64/xen.rst
delete mode 100644 Documentation/ia64/xen.txt
diff --git a/Documentation/ia64/aliasing.txt b/Documentation/ia64/aliasing.rst
similarity index 84%
rename from Documentation/ia64/aliasing.txt
rename to Documentation/ia64/aliasing.rst
index 5a4dea6abebd..b9c97189072a 100644
--- a/Documentation/ia64/aliasing.txt
+++ b/Documentation/ia64/aliasing.rst
@@ -1,20 +1,25 @@
- MEMORY ATTRIBUTE ALIASING ON IA-64
+==================================
+Memory Attribute Aliasing on IA-64
+==================================
- Bjorn Helgaas
- <bjorn.helgaas@hp.com>
- May 4, 2006
+Bjorn Helgaas <bjorn.helgaas@hp.com>
+May 4, 2006
-MEMORY ATTRIBUTES
+
+Memory Attributes
+=================
Itanium supports several attributes for virtual memory references.
The attribute is part of the virtual translation, i.e., it is
contained in the TLB entry. The ones of most interest to the Linux
kernel are:
- WB Write-back (cacheable)
+ == ======================
+ WB Write-back (cacheable)
UC Uncacheable
WC Write-coalescing
+ == ======================
System memory typically uses the WB attribute. The UC attribute is
used for memory-mapped I/O devices. The WC attribute is uncacheable
@@ -29,7 +34,8 @@ MEMORY ATTRIBUTES
support either WB or UC access to main memory, while others support
only WB access.
-MEMORY MAP
+Memory Map
+==========
Platform firmware describes the physical memory map and the
supported attributes for each region. At boot-time, the kernel uses
@@ -55,7 +61,8 @@ MEMORY MAP
The efi_memmap table is preserved unmodified because the original
boot-time information is required for kexec.
-KERNEL IDENTITY MAPPINGS
+Kernel Identify Mappings
+========================
Linux/ia64 identity mappings are done with large pages, currently
either 16MB or 64MB, referred to as "granules." Cacheable mappings
@@ -74,17 +81,20 @@ KERNEL IDENTITY MAPPINGS
are only partially populated, or populated with a combination of UC
and WB regions.
-USER MAPPINGS
+User Mappings
+=============
User mappings are typically done with 16K or 64K pages. The smaller
page size allows more flexibility because only 16K or 64K has to be
homogeneous with respect to memory attributes.
-POTENTIAL ATTRIBUTE ALIASING CASES
+Potential Attribute Aliasing Cases
+==================================
There are several ways the kernel creates new mappings:
- mmap of /dev/mem
+mmap of /dev/mem
+----------------
This uses remap_pfn_range(), which creates user mappings. These
mappings may be either WB or UC. If the region being mapped
@@ -98,7 +108,8 @@ POTENTIAL ATTRIBUTE ALIASING CASES
Since the EFI memory map does not describe MMIO on some
machines, this should use an uncacheable mapping as a fallback.
- mmap of /sys/class/pci_bus/.../legacy_mem
+mmap of /sys/class/pci_bus/.../legacy_mem
+-----------------------------------------
This is very similar to mmap of /dev/mem, except that legacy_mem
only allows mmap of the one megabyte "legacy MMIO" area for a
@@ -112,7 +123,8 @@ POTENTIAL ATTRIBUTE ALIASING CASES
The /dev/mem mmap constraints apply.
- mmap of /proc/bus/pci/.../??.?
+mmap of /proc/bus/pci/.../??.?
+------------------------------
This is an MMIO mmap of PCI functions, which additionally may or
may not be requested as using the WC attribute.
@@ -124,7 +136,8 @@ POTENTIAL ATTRIBUTE ALIASING CASES
Otherwise, the user mapping must use the same attribute as the
kernel mapping.
- read/write of /dev/mem
+read/write of /dev/mem
+----------------------
This uses copy_from_user(), which implicitly uses a kernel
identity mapping. This is obviously safe for things in
@@ -138,7 +151,8 @@ POTENTIAL ATTRIBUTE ALIASING CASES
eight-byte accesses, and the copy_from_user() path doesn't allow
any control over the access size, so this would be dangerous.
- ioremap()
+ioremap()
+---------
This returns a mapping for use inside the kernel.
@@ -155,9 +169,11 @@ POTENTIAL ATTRIBUTE ALIASING CASES
Failing all of the above, we have to fall back to a UC mapping.
-PAST PROBLEM CASES
+Past Problem Cases
+==================
- mmap of various MMIO regions from /dev/mem by "X" on Intel platforms
+mmap of various MMIO regions from /dev/mem by "X" on Intel platforms
+--------------------------------------------------------------------
The EFI memory map may not report these MMIO regions.
@@ -166,12 +182,16 @@ PAST PROBLEM CASES
succeed. It may create either WB or UC user mappings, depending
on whether the region is in kern_memmap or the EFI memory map.
- mmap of 0x0-0x9FFFF /dev/mem by "hwinfo" on HP sx1000 with VGA enabled
+mmap of 0x0-0x9FFFF /dev/mem by "hwinfo" on HP sx1000 with VGA enabled
+----------------------------------------------------------------------
The EFI memory map reports the following attributes:
+
+ =============== ======= ==================
0x00000-0x9FFFF WB only
0xA0000-0xBFFFF UC only (VGA frame buffer)
0xC0000-0xFFFFF WB only
+ =============== ======= ==================
This mmap is done with user pages, not kernel identity mappings,
so it is safe to use WB mappings.
@@ -182,7 +202,8 @@ PAST PROBLEM CASES
never generate an uncacheable reference to the WB-only areas unless
the driver explicitly touches them.
- mmap of 0x0-0xFFFFF legacy_mem by "X"
+mmap of 0x0-0xFFFFF legacy_mem by "X"
+-------------------------------------
If the EFI memory map reports that the entire range supports the
same attributes, we can allow the mmap (and we will prefer WB if
@@ -197,15 +218,18 @@ PAST PROBLEM CASES
that doesn't report the VGA frame buffer at all), we should fail the
mmap and force the user to map just the specific region of interest.
- mmap of 0xA0000-0xBFFFF legacy_mem by "X" on HP sx1000 with VGA disabled
+mmap of 0xA0000-0xBFFFF legacy_mem by "X" on HP sx1000 with VGA disabled
+------------------------------------------------------------------------
+
+ The EFI memory map reports the following attributes::
- The EFI memory map reports the following attributes:
0x00000-0xFFFFF WB only (no VGA MMIO hole)
This is a special case of the previous case, and the mmap should
fail for the same reason as above.
- read of /sys/devices/.../rom
+read of /sys/devices/.../rom
+----------------------------
For VGA devices, this may cause an ioremap() of 0xC0000. This
used to be done with a UC mapping, because the VGA frame buffer
@@ -215,7 +239,8 @@ PAST PROBLEM CASES
We should use WB page table mappings to avoid covering the VGA
frame buffer.
-NOTES
+Notes
+=====
[1] SDM rev 2.2, vol 2, sec 4.4.1.
[2] SDM rev 2.2, vol 2, sec 4.4.6.
diff --git a/Documentation/ia64/efirtc.txt b/Documentation/ia64/efirtc.rst
similarity index 76%
rename from Documentation/ia64/efirtc.txt
rename to Documentation/ia64/efirtc.rst
index 057e6bebda8f..e4bc856e6875 100644
--- a/Documentation/ia64/efirtc.txt
+++ b/Documentation/ia64/efirtc.rst
@@ -1,9 +1,13 @@
+==========================
EFI Real Time Clock driver
--------------------------------
+==========================
+
S. Eranian <eranian@hpl.hp.com>
+
March 2000
-I/ Introduction
+1. Introduction
+===============
This document describes the efirtc.c driver has provided for
the IA-64 platform.
@@ -16,7 +20,8 @@ SetTime(), GetWakeupTime(), SetWakeupTime() which are all supported by this
driver. We describe those calls as well the design of the driver in the
following sections.
-II/ Design Decisions
+2. Design Decisions
+===================
The original ideas was to provide a very simple driver to get access to,
at first, the time of day service. This is required in order to access, in a
@@ -50,45 +55,53 @@ we have created the include/linux/rtc.h header file to contain only the
in include/linux/mc146818rtc.h.
-III/ Time of day service
+3. Time of day service
+======================
The part of the driver gives access to the time of day service of EFI.
Two ioctl()s, compatible with the legacy RTC calls:
- Read the CMOS clock: ioctl(d, RTC_RD_TIME, &rtc);
+ Read the CMOS clock::
- Write the CMOS clock: ioctl(d, RTC_SET_TIME, &rtc);
+ ioctl(d, RTC_RD_TIME, &rtc);
+
+ Write the CMOS clock::
+
+ ioctl(d, RTC_SET_TIME, &rtc);
The rtc is a pointer to a data structure defined in rtc.h which is close
-to a struct tm:
+to a struct tm::
-struct rtc_time {
- int tm_sec;
- int tm_min;
- int tm_hour;
- int tm_mday;
- int tm_mon;
- int tm_year;
- int tm_wday;
- int tm_yday;
- int tm_isdst;
-};
+ struct rtc_time {
+ int tm_sec;
+ int tm_min;
+ int tm_hour;
+ int tm_mday;
+ int tm_mon;
+ int tm_year;
+ int tm_wday;
+ int tm_yday;
+ int tm_isdst;
+ };
The driver takes care of converting back an forth between the EFI time and
this format.
Those two ioctl()s can be exercised with the hwclock command:
-For reading:
-# /sbin/hwclock --show
-Mon Mar 6 15:32:32 2000 -0.910248 seconds
+For reading::
-For setting:
-# /sbin/hwclock --systohc
+ # /sbin/hwclock --show
+ Mon Mar 6 15:32:32 2000 -0.910248 seconds
+
+For setting::
+
+ # /sbin/hwclock --systohc
Root privileges are required to be able to set the time of day.
-IV/ Wakeup Alarm service
+4. Wakeup Alarm service
+=======================
EFI provides an API by which one can program when a machine should wakeup,
i.e. reboot. This is very different from the alarm provided by the legacy
@@ -98,22 +111,24 @@ introduced 2 news ioctl()s to the interface of an RTC.
We have added 2 new ioctl()s that are specific to the EFI driver:
- Read the current state of the alarm
- ioctl(d, RTC_WKLAM_RD, &wkt)
+ Read the current state of the alarm::
- Set the alarm or change its status
- ioctl(d, RTC_WKALM_SET, &wkt)
+ ioctl(d, RTC_WKLAM_RD, &wkt)
+
+ Set the alarm or change its status::
+
+ ioctl(d, RTC_WKALM_SET, &wkt)
The wkt structure encapsulates a struct rtc_time + 2 extra fields to get
-status information:
+status information::
-struct rtc_wkalrm {
+ struct rtc_wkalrm {
- unsigned char enabled; /* =1 if alarm is enabled */
- unsigned char pending; /* =1 if alarm is pending */
+ unsigned char enabled; /* =1 if alarm is enabled */
+ unsigned char pending; /* =1 if alarm is pending */
- struct rtc_time time;
-}
+ struct rtc_time time;
+ }
As of today, none of the existing user-level apps supports this feature.
However writing such a program should be hard by simply using those two
@@ -121,7 +136,8 @@ ioctl().
Root privileges are required to be able to set the alarm.
-V/ References.
+5. References
+=============
Checkout the following Web site for more information on EFI:
diff --git a/Documentation/ia64/err_inject.txt b/Documentation/ia64/err_inject.rst
similarity index 82%
rename from Documentation/ia64/err_inject.txt
rename to Documentation/ia64/err_inject.rst
index 9f651c181429..b482a055095b 100644
--- a/Documentation/ia64/err_inject.txt
+++ b/Documentation/ia64/err_inject.rst
@@ -1,4 +1,4 @@
-
+========================================
IPF Machine Check (MC) error inject tool
========================================
@@ -32,94 +32,94 @@ Errata: Itanium 2 Processors Specification Update lists some errata against
the pal_mc_error_inject PAL procedure. The following err.conf has been tested
on latest Montecito PAL.
-err.conf:
+err.conf::
-#This is configuration file for err_inject_tool.
-#The format of the each line is:
-#cpu, loop, interval, err_type_info, err_struct_info, err_data_buffer
-#where
-# cpu: logical cpu number the error will be inject in.
-# loop: times the error will be injected.
-# interval: In second. every so often one error is injected.
-# err_type_info, err_struct_info: PAL parameters.
-#
-#Note: All values are hex w/o or w/ 0x prefix.
+ #This is configuration file for err_inject_tool.
+ #The format of the each line is:
+ #cpu, loop, interval, err_type_info, err_struct_info, err_data_buffer
+ #where
+ # cpu: logical cpu number the error will be inject in.
+ # loop: times the error will be injected.
+ # interval: In second. every so often one error is injected.
+ # err_type_info, err_struct_info: PAL parameters.
+ #
+ #Note: All values are hex w/o or w/ 0x prefix.
-#On cpu2, inject only total 0x10 errors, interval 5 seconds
-#corrected, data cache, hier-2, physical addr(assigned by tool code).
-#working on Montecito latest PAL.
-2, 10, 5, 4101, 95
+ #On cpu2, inject only total 0x10 errors, interval 5 seconds
+ #corrected, data cache, hier-2, physical addr(assigned by tool code).
+ #working on Montecito latest PAL.
+ 2, 10, 5, 4101, 95
-#On cpu4, inject and consume total 0x10 errors, interval 5 seconds
-#corrected, data cache, hier-2, physical addr(assigned by tool code).
-#working on Montecito latest PAL.
-4, 10, 5, 4109, 95
+ #On cpu4, inject and consume total 0x10 errors, interval 5 seconds
+ #corrected, data cache, hier-2, physical addr(assigned by tool code).
+ #working on Montecito latest PAL.
+ 4, 10, 5, 4109, 95
-#On cpu15, inject and consume total 0x10 errors, interval 5 seconds
-#recoverable, DTR0, hier-2.
-#working on Montecito latest PAL.
-0xf, 0x10, 5, 4249, 15
+ #On cpu15, inject and consume total 0x10 errors, interval 5 seconds
+ #recoverable, DTR0, hier-2.
+ #working on Montecito latest PAL.
+ 0xf, 0x10, 5, 4249, 15
The sample application source code:
-err_injection_tool.c:
+err_injection_tool.c::
-/*
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
- * NON INFRINGEMENT. See the GNU General Public License for more
- * details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- *
- * Copyright (C) 2006 Intel Co
- * Fenghua Yu <fenghua.yu@intel.com>
- *
- */
-#include <sys/types.h>
-#include <sys/stat.h>
-#include <fcntl.h>
-#include <stdio.h>
-#include <sched.h>
-#include <unistd.h>
-#include <stdlib.h>
-#include <stdarg.h>
-#include <string.h>
-#include <errno.h>
-#include <time.h>
-#include <sys/ipc.h>
-#include <sys/sem.h>
-#include <sys/wait.h>
-#include <sys/mman.h>
-#include <sys/shm.h>
+ /*
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
+ * NON INFRINGEMENT. See the GNU General Public License for more
+ * details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ *
+ * Copyright (C) 2006 Intel Co
+ * Fenghua Yu <fenghua.yu@intel.com>
+ *
+ */
+ #include <sys/types.h>
+ #include <sys/stat.h>
+ #include <fcntl.h>
+ #include <stdio.h>
+ #include <sched.h>
+ #include <unistd.h>
+ #include <stdlib.h>
+ #include <stdarg.h>
+ #include <string.h>
+ #include <errno.h>
+ #include <time.h>
+ #include <sys/ipc.h>
+ #include <sys/sem.h>
+ #include <sys/wait.h>
+ #include <sys/mman.h>
+ #include <sys/shm.h>
-#define MAX_FN_SIZE 256
-#define MAX_BUF_SIZE 256
-#define DATA_BUF_SIZE 256
-#define NR_CPUS 512
-#define MAX_TASK_NUM 2048
-#define MIN_INTERVAL 5 // seconds
-#define ERR_DATA_BUFFER_SIZE 3 // Three 8-byte.
-#define PARA_FIELD_NUM 5
-#define MASK_SIZE (NR_CPUS/64)
-#define PATH_FORMAT "/sys/devices/system/cpu/cpu%d/err_inject/"
+ #define MAX_FN_SIZE 256
+ #define MAX_BUF_SIZE 256
+ #define DATA_BUF_SIZE 256
+ #define NR_CPUS 512
+ #define MAX_TASK_NUM 2048
+ #define MIN_INTERVAL 5 // seconds
+ #define ERR_DATA_BUFFER_SIZE 3 // Three 8-byte.
+ #define PARA_FIELD_NUM 5
+ #define MASK_SIZE (NR_CPUS/64)
+ #define PATH_FORMAT "/sys/devices/system/cpu/cpu%d/err_inject/"
-int sched_setaffinity(pid_t pid, unsigned int len, unsigned long *mask);
+ int sched_setaffinity(pid_t pid, unsigned int len, unsigned long *mask);
-int verbose;
-#define vbprintf if (verbose) printf
+ int verbose;
+ #define vbprintf if (verbose) printf
-int log_info(int cpu, const char *fmt, ...)
-{
+ int log_info(int cpu, const char *fmt, ...)
+ {
FILE *log;
char fn[MAX_FN_SIZE];
char buf[MAX_BUF_SIZE];
@@ -142,12 +142,12 @@ int log_info(int cpu, const char *fmt, ...)
fclose(log);
return 0;
-}
+ }
-typedef unsigned long u64;
-typedef unsigned int u32;
+ typedef unsigned long u64;
+ typedef unsigned int u32;
-typedef union err_type_info_u {
+ typedef union err_type_info_u {
struct {
u64 mode : 3, /* 0-2 */
err_inj : 3, /* 3-5 */
@@ -157,9 +157,9 @@ typedef union err_type_info_u {
reserved : 48; /* 16-63 */
} err_type_info_u;
u64 err_type_info;
-} err_type_info_t;
+ } err_type_info_t;
-typedef union err_struct_info_u {
+ typedef union err_struct_info_u {
struct {
u64 siv : 1, /* 0 */
c_t : 2, /* 1-2 */
@@ -197,9 +197,9 @@ typedef union err_struct_info_u {
u64 reserved;
} err_struct_info_bus_processor_interconnect;
u64 err_struct_info;
-} err_struct_info_t;
+ } err_struct_info_t;
-typedef union err_data_buffer_u {
+ typedef union err_data_buffer_u {
struct {
u64 trigger_addr; /* 0-63 */
u64 inj_addr; /* 64-127 */
@@ -221,9 +221,9 @@ typedef union err_data_buffer_u {
u64 reserved; /* 0-63 */
} err_data_buffer_bus_processor_interconnect;
u64 err_data_buffer[ERR_DATA_BUFFER_SIZE];
-} err_data_buffer_t;
+ } err_data_buffer_t;
-typedef union capabilities_u {
+ typedef union capabilities_u {
struct {
u64 i : 1,
d : 1,
@@ -276,9 +276,9 @@ typedef union capabilities_u {
struct {
u64 reserved;
} capabilities_bus_processor_interconnect;
-} capabilities_t;
+ } capabilities_t;
-typedef struct resources_s {
+ typedef struct resources_s {
u64 ibr0 : 1,
ibr2 : 1,
ibr4 : 1,
@@ -288,24 +288,24 @@ typedef struct resources_s {
dbr4 : 1,
dbr6 : 1,
reserved : 48;
-} resources_t;
+ } resources_t;
-long get_page_size(void)
-{
+ long get_page_size(void)
+ {
long page_size=sysconf(_SC_PAGESIZE);
return page_size;
-}
+ }
-#define PAGE_SIZE (get_page_size()==-1?0x4000:get_page_size())
-#define SHM_SIZE (2*PAGE_SIZE*NR_CPUS)
-#define SHM_VA 0x2000000100000000
+ #define PAGE_SIZE (get_page_size()==-1?0x4000:get_page_size())
+ #define SHM_SIZE (2*PAGE_SIZE*NR_CPUS)
+ #define SHM_VA 0x2000000100000000
-int shmid;
-void *shmaddr;
+ int shmid;
+ void *shmaddr;
-int create_shm(void)
-{
+ int create_shm(void)
+ {
key_t key;
char fn[MAX_FN_SIZE];
@@ -343,34 +343,34 @@ int create_shm(void)
mlock(shmaddr, SHM_SIZE);
return 0;
-}
+ }
-int free_shm()
-{
+ int free_shm()
+ {
munlock(shmaddr, SHM_SIZE);
- shmdt(shmaddr);
+ shmdt(shmaddr);
semctl(shmid, 0, IPC_RMID);
return 0;
-}
+ }
-#ifdef _SEM_SEMUN_UNDEFINED
-union semun
-{
+ #ifdef _SEM_SEMUN_UNDEFINED
+ union semun
+ {
int val;
struct semid_ds *buf;
unsigned short int *array;
struct seminfo *__buf;
-};
-#endif
+ };
+ #endif
-u32 mode=1; /* 1: physical mode; 2: virtual mode. */
-int one_lock=1;
-key_t key[NR_CPUS];
-int semid[NR_CPUS];
+ u32 mode=1; /* 1: physical mode; 2: virtual mode. */
+ int one_lock=1;
+ key_t key[NR_CPUS];
+ int semid[NR_CPUS];
-int create_sem(int cpu)
-{
+ int create_sem(int cpu)
+ {
union semun arg;
char fn[MAX_FN_SIZE];
int sid;
@@ -407,37 +407,37 @@ int create_sem(int cpu)
}
return 0;
-}
+ }
-static int lock(int cpu)
-{
+ static int lock(int cpu)
+ {
struct sembuf lock;
lock.sem_num = cpu;
lock.sem_op = 1;
semop(semid[cpu], &lock, 1);
- return 0;
-}
+ return 0;
+ }
-static int unlock(int cpu)
-{
+ static int unlock(int cpu)
+ {
struct sembuf unlock;
unlock.sem_num = cpu;
unlock.sem_op = -1;
semop(semid[cpu], &unlock, 1);
- return 0;
-}
+ return 0;
+ }
-void free_sem(int cpu)
-{
+ void free_sem(int cpu)
+ {
semctl(semid[cpu], 0, IPC_RMID);
-}
+ }
-int wr_multi(char *fn, unsigned long *data, int size)
-{
+ int wr_multi(char *fn, unsigned long *data, int size)
+ {
int fd;
char buf[MAX_BUF_SIZE];
int ret;
@@ -459,15 +459,15 @@ int wr_multi(char *fn, unsigned long *data, int size)
ret=write(fd, buf, sizeof(buf));
close(fd);
return ret;
-}
+ }
-int wr(char *fn, unsigned long data)
-{
+ int wr(char *fn, unsigned long data)
+ {
return wr_multi(fn, &data, 1);
-}
+ }
-int rd(char *fn, unsigned long *data)
-{
+ int rd(char *fn, unsigned long *data)
+ {
int fd;
char buf[MAX_BUF_SIZE];
@@ -480,10 +480,10 @@ int rd(char *fn, unsigned long *data)
*data=strtoul(buf, NULL, 16);
close(fd);
return 0;
-}
+ }
-int rd_status(char *path, int *status)
-{
+ int rd_status(char *path, int *status)
+ {
char fn[MAX_FN_SIZE];
sprintf(fn, "%s/status", path);
if (rd(fn, (u64*)status)<0) {
@@ -492,10 +492,10 @@ int rd_status(char *path, int *status)
}
return 0;
-}
+ }
-int rd_capabilities(char *path, u64 *capabilities)
-{
+ int rd_capabilities(char *path, u64 *capabilities)
+ {
char fn[MAX_FN_SIZE];
sprintf(fn, "%s/capabilities", path);
if (rd(fn, capabilities)<0) {
@@ -504,10 +504,10 @@ int rd_capabilities(char *path, u64 *capabilities)
}
return 0;
-}
+ }
-int rd_all(char *path)
-{
+ int rd_all(char *path)
+ {
unsigned long err_type_info, err_struct_info, err_data_buffer;
int status;
unsigned long capabilities, resources;
@@ -556,11 +556,11 @@ int rd_all(char *path)
printf("resources=%lx\n", resources);
return 0;
-}
+ }
-int query_capabilities(char *path, err_type_info_t err_type_info,
+ int query_capabilities(char *path, err_type_info_t err_type_info,
u64 *capabilities)
-{
+ {
char fn[MAX_FN_SIZE];
err_struct_info_t err_struct_info;
err_data_buffer_t err_data_buffer;
@@ -583,10 +583,10 @@ int query_capabilities(char *path, err_type_info_t err_type_info,
return -1;
return 0;
-}
+ }
-int query_all_capabilities()
-{
+ int query_all_capabilities()
+ {
int status;
err_type_info_t err_type_info;
int err_sev, err_struct, struct_hier;
@@ -629,12 +629,12 @@ int query_all_capabilities()
}
return 0;
-}
+ }
-int err_inject(int cpu, char *path, err_type_info_t err_type_info,
+ int err_inject(int cpu, char *path, err_type_info_t err_type_info,
err_struct_info_t err_struct_info,
err_data_buffer_t err_data_buffer)
-{
+ {
int status;
char fn[MAX_FN_SIZE];
@@ -667,13 +667,13 @@ int err_inject(int cpu, char *path, err_type_info_t err_type_info,
}
return status;
-}
+ }
-static int construct_data_buf(char *path, err_type_info_t err_type_info,
+ static int construct_data_buf(char *path, err_type_info_t err_type_info,
err_struct_info_t err_struct_info,
err_data_buffer_t *err_data_buffer,
void *va1)
-{
+ {
char fn[MAX_FN_SIZE];
u64 virt_addr=0, phys_addr=0;
@@ -710,22 +710,22 @@ static int construct_data_buf(char *path, err_type_info_t err_type_info,
}
return 0;
-}
+ }
-typedef struct {
+ typedef struct {
u64 cpu;
u64 loop;
u64 interval;
u64 err_type_info;
u64 err_struct_info;
u64 err_data_buffer[ERR_DATA_BUFFER_SIZE];
-} parameters_t;
+ } parameters_t;
-parameters_t line_para;
-int para;
+ parameters_t line_para;
+ int para;
-static int empty_data_buffer(u64 *err_data_buffer)
-{
+ static int empty_data_buffer(u64 *err_data_buffer)
+ {
int empty=1;
int i;
@@ -734,10 +734,10 @@ static int empty_data_buffer(u64 *err_data_buffer)
empty=0;
return empty;
-}
+ }
-int err_inj()
-{
+ int err_inj()
+ {
err_type_info_t err_type_info;
err_struct_info_t err_struct_info;
err_data_buffer_t err_data_buffer;
@@ -951,10 +951,10 @@ int err_inj()
printf("All done.\n");
return 0;
-}
+ }
-void help()
-{
+ void help()
+ {
printf("err_inject_tool:\n");
printf("\t-q: query all capabilities. default: off\n");
printf("\t-m: procedure mode. 1: physical 2: virtual. default: 1\n");
@@ -977,10 +977,10 @@ void help()
printf("The tool will take err.conf file as ");
printf("input to inject single or multiple errors ");
printf("on one or multiple cpus in parallel.\n");
-}
+ }
-int main(int argc, char **argv)
-{
+ int main(int argc, char **argv)
+ {
char c;
int do_err_inj=0;
int do_query_all=0;
@@ -1064,5 +1064,4 @@ int main(int argc, char **argv)
help();
return 0;
-}
-
+ }
diff --git a/Documentation/ia64/fsys.txt b/Documentation/ia64/fsys.rst
similarity index 76%
rename from Documentation/ia64/fsys.txt
rename to Documentation/ia64/fsys.rst
index 59dd689d9b86..a702d2cc94b6 100644
--- a/Documentation/ia64/fsys.txt
+++ b/Documentation/ia64/fsys.rst
@@ -1,9 +1,9 @@
--*-Mode: outline-*-
-
- Light-weight System Calls for IA-64
- -----------------------------------
+===================================
+Light-weight System Calls for IA-64
+===================================
Started: 13-Jan-2003
+
Last update: 27-Sep-2003
David Mosberger-Tang
@@ -52,12 +52,13 @@ privilege level is at level 0, this means that fsys-mode requires some
care (see below).
-* How to tell fsys-mode
+How to tell fsys-mode
+=====================
Linux operates in fsys-mode when (a) the privilege level is 0 (most
privileged) and (b) the stacks have NOT been switched to kernel memory
yet. For convenience, the header file <asm-ia64/ptrace.h> provides
-three macros:
+three macros::
user_mode(regs)
user_stack(task,regs)
@@ -70,11 +71,12 @@ to by "regs" was executing in user mode (privilege level 3).
user_stack() returns TRUE if the state pointed to by "regs" was
executing on the user-level stack(s). Finally, fsys_mode() returns
TRUE if the CPU state pointed to by "regs" was executing in fsys-mode.
-The fsys_mode() macro is equivalent to the expression:
+The fsys_mode() macro is equivalent to the expression::
!user_mode(regs) && user_stack(task,regs)
-* How to write an fsyscall handler
+How to write an fsyscall handler
+================================
The file arch/ia64/kernel/fsys.S contains a table of fsyscall-handlers
(fsyscall_table). This table contains one entry for each system call.
@@ -87,66 +89,72 @@ of the getpid() system call.
The entry and exit-state of an fsyscall handler is as follows:
-** Machine state on entry to fsyscall handler:
+Machine state on entry to fsyscall handler
+------------------------------------------
- - r10 = 0
- - r11 = saved ar.pfs (a user-level value)
- - r15 = system call number
- - r16 = "current" task pointer (in normal kernel-mode, this is in r13)
- - r32-r39 = system call arguments
- - b6 = return address (a user-level value)
- - ar.pfs = previous frame-state (a user-level value)
- - PSR.be = cleared to zero (i.e., little-endian byte order is in effect)
- - all other registers may contain values passed in from user-mode
+ ========= ===============================================================
+ r10 0
+ r11 saved ar.pfs (a user-level value)
+ r15 system call number
+ r16 "current" task pointer (in normal kernel-mode, this is in r13)
+ r32-r39 system call arguments
+ b6 return address (a user-level value)
+ ar.pfs previous frame-state (a user-level value)
+ PSR.be cleared to zero (i.e., little-endian byte order is in effect)
+ - all other registers may contain values passed in from user-mode
+ ========= ===============================================================
-** Required machine state on exit to fsyscall handler:
+Required machine state on exit to fsyscall handler
+--------------------------------------------------
- - r11 = saved ar.pfs (as passed into the fsyscall handler)
- - r15 = system call number (as passed into the fsyscall handler)
- - r32-r39 = system call arguments (as passed into the fsyscall handler)
- - b6 = return address (as passed into the fsyscall handler)
- - ar.pfs = previous frame-state (as passed into the fsyscall handler)
+ ========= ===========================================================
+ r11 saved ar.pfs (as passed into the fsyscall handler)
+ r15 system call number (as passed into the fsyscall handler)
+ r32-r39 system call arguments (as passed into the fsyscall handler)
+ b6 return address (as passed into the fsyscall handler)
+ ar.pfs previous frame-state (as passed into the fsyscall handler)
+ ========= ===========================================================
Fsyscall handlers can execute with very little overhead, but with that
speed comes a set of restrictions:
- o Fsyscall-handlers MUST check for any pending work in the flags
+ * Fsyscall-handlers MUST check for any pending work in the flags
member of the thread-info structure and if any of the
TIF_ALLWORK_MASK flags are set, the handler needs to fall back on
doing a full system call (by calling fsys_fallback_syscall).
- o Fsyscall-handlers MUST preserve incoming arguments (r32-r39, r11,
+ * Fsyscall-handlers MUST preserve incoming arguments (r32-r39, r11,
r15, b6, and ar.pfs) because they will be needed in case of a
system call restart. Of course, all "preserved" registers also
must be preserved, in accordance to the normal calling conventions.
- o Fsyscall-handlers MUST check argument registers for containing a
+ * Fsyscall-handlers MUST check argument registers for containing a
NaT value before using them in any way that could trigger a
NaT-consumption fault. If a system call argument is found to
contain a NaT value, an fsyscall-handler may return immediately
with r8=EINVAL, r10=-1.
- o Fsyscall-handlers MUST NOT use the "alloc" instruction or perform
+ * Fsyscall-handlers MUST NOT use the "alloc" instruction or perform
any other operation that would trigger mandatory RSE
(register-stack engine) traffic.
- o Fsyscall-handlers MUST NOT write to any stacked registers because
+ * Fsyscall-handlers MUST NOT write to any stacked registers because
it is not safe to assume that user-level called a handler with the
proper number of arguments.
- o Fsyscall-handlers need to be careful when accessing per-CPU variables:
+ * Fsyscall-handlers need to be careful when accessing per-CPU variables:
unless proper safe-guards are taken (e.g., interruptions are avoided),
execution may be pre-empted and resumed on another CPU at any given
time.
- o Fsyscall-handlers must be careful not to leak sensitive kernel'
+ * Fsyscall-handlers must be careful not to leak sensitive kernel'
information back to user-level. In particular, before returning to
user-level, care needs to be taken to clear any scratch registers
that could contain sensitive information (note that the current
task pointer is not considered sensitive: it's already exposed
through ar.k6).
- o Fsyscall-handlers MUST NOT access user-memory without first
+ * Fsyscall-handlers MUST NOT access user-memory without first
validating access-permission (this can be done typically via
probe.r.fault and/or probe.w.fault) and without guarding against
memory access exceptions (this can be done with the EX() macros
@@ -162,7 +170,8 @@ fast system call execution (while fully preserving system call
semantics), but there is also a lot of flexibility in handling more
complicated cases.
-* Signal handling
+Signal handling
+===============
The delivery of (asynchronous) signals must be delayed until fsys-mode
is exited. This is accomplished with the help of the lower-privilege
@@ -173,7 +182,8 @@ PSR.lp and returns immediately. When fsys-mode is exited via the
occur. The trap handler clears PSR.lp again and returns immediately.
The kernel exit path then checks for and delivers any pending signals.
-* PSR Handling
+PSR Handling
+============
The "epc" instruction doesn't change the contents of PSR at all. This
is in contrast to a regular interruption, which clears almost all
@@ -181,6 +191,7 @@ bits. Because of that, some care needs to be taken to ensure things
work as expected. The following discussion describes how each PSR bit
is handled.
+======= =======================================================================
PSR.be Cleared when entering fsys-mode. A srlz.d instruction is used
to ensure the CPU is in little-endian mode before the first
load/store instruction is executed. PSR.be is normally NOT
@@ -202,7 +213,8 @@ PSR.pp Unchanged.
PSR.di Unchanged.
PSR.si Unchanged.
PSR.db Unchanged. The kernel prevents user-level from setting a hardware
- breakpoint that triggers at any privilege level other than 3 (user-mode).
+ breakpoint that triggers at any privilege level other than
+ 3 (user-mode).
PSR.lp Unchanged.
PSR.tb Lazy redirect. If a taken-branch trap occurs while in
fsys-mode, the trap-handler modifies the saved machine state
@@ -235,47 +247,52 @@ PSR.ed Unchanged. Note: This bit could only have an effect if an fsys-mode
PSR.bn Unchanged. Note: fsys-mode handlers may clear the bit, if needed.
Doing so requires clearing PSR.i and PSR.ic as well.
PSR.ia Unchanged. Note: the ia64 linux kernel never sets this bit.
+======= =======================================================================
-* Using fast system calls
+Using fast system calls
+=======================
To use fast system calls, userspace applications need simply call
__kernel_syscall_via_epc(). For example
-- example fgettimeofday() call --
+
-- fgettimeofday.S --
-#include <asm/asmmacro.h>
+::
-GLOBAL_ENTRY(fgettimeofday)
-.prologue
-.save ar.pfs, r11
-mov r11 = ar.pfs
-.body
+ #include <asm/asmmacro.h>
-mov r2 = 0xa000000000020660;; // gate address
- // found by inspection of System.map for the
+ GLOBAL_ENTRY(fgettimeofday)
+ .prologue
+ .save ar.pfs, r11
+ mov r11 = ar.pfs
+ .body
+
+ mov r2 = 0xa000000000020660;; // gate address
+ // found by inspection of System.map for the
// __kernel_syscall_via_epc() function. See
// below for how to do this for real.
-mov b7 = r2
-mov r15 = 1087 // gettimeofday syscall
-;;
-br.call.sptk.many b6 = b7
-;;
+ mov b7 = r2
+ mov r15 = 1087 // gettimeofday syscall
+ ;;
+ br.call.sptk.many b6 = b7
+ ;;
-.restore sp
+ .restore sp
-mov ar.pfs = r11
-br.ret.sptk.many rp;; // return to caller
-END(fgettimeofday)
+ mov ar.pfs = r11
+ br.ret.sptk.many rp;; // return to caller
+ END(fgettimeofday)
-- end fgettimeofday.S --
In reality, getting the gate address is accomplished by two extra
values passed via the ELF auxiliary vector (include/asm-ia64/elf.h)
- o AT_SYSINFO : is the address of __kernel_syscall_via_epc()
- o AT_SYSINFO_EHDR : is the address of the kernel gate ELF DSO
+ * AT_SYSINFO : is the address of __kernel_syscall_via_epc()
+ * AT_SYSINFO_EHDR : is the address of the kernel gate ELF DSO
The ELF DSO is a pre-linked library that is mapped in by the kernel at
the gate page. It is a proper ELF shared object so, with a dynamic
diff --git a/Documentation/ia64/README b/Documentation/ia64/ia64.rst
similarity index 61%
rename from Documentation/ia64/README
rename to Documentation/ia64/ia64.rst
index aa17f2154cba..b725019a9492 100644
--- a/Documentation/ia64/README
+++ b/Documentation/ia64/ia64.rst
@@ -1,43 +1,49 @@
- Linux kernel release 2.4.xx for the IA-64 Platform
+===========================================
+Linux kernel release for the IA-64 Platform
+===========================================
- These are the release notes for Linux version 2.4 for IA-64
+ These are the release notes for Linux since version 2.4 for IA-64
platform. This document provides information specific to IA-64
ONLY, to get additional information about the Linux kernel also
read the original Linux README provided with the kernel.
-INSTALLING the kernel:
+Installing the Kernel
+=====================
- IA-64 kernel installation is the same as the other platforms, see
original README for details.
-SOFTWARE REQUIREMENTS
+Software Requirements
+=====================
Compiling and running this kernel requires an IA-64 compliant GCC
compiler. And various software packages also compiled with an
IA-64 compliant GCC compiler.
-CONFIGURING the kernel:
+Configuring the Kernel
+======================
Configuration is the same, see original README for details.
-COMPILING the kernel:
+Compiling the Kernel:
- Compiling this kernel doesn't differ from other platform so read
the original README for details BUT make sure you have an IA-64
compliant GCC compiler.
-IA-64 SPECIFICS
+IA-64 Specifics
+===============
- General issues:
- o Hardly any performance tuning has been done. Obvious targets
+ * Hardly any performance tuning has been done. Obvious targets
include the library routines (IP checksum, etc.). Less
obvious targets include making sure we don't flush the TLB
needlessly, etc.
- o SMP locks cleanup/optimization
+ * SMP locks cleanup/optimization
- o IA32 support. Currently experimental. It mostly works.
+ * IA32 support. Currently experimental. It mostly works.
diff --git a/Documentation/ia64/index.rst b/Documentation/ia64/index.rst
new file mode 100644
index 000000000000..a3e3052ad6e2
--- /dev/null
+++ b/Documentation/ia64/index.rst
@@ -0,0 +1,18 @@
+:orphan:
+
+==================
+IA-64 Architecture
+==================
+
+.. toctree::
+ :maxdepth: 1
+
+ ia64
+ aliasing
+ efirtc
+ err_inject
+ fsys
+ irq-redir
+ mca
+ serial
+ xen
diff --git a/Documentation/ia64/IRQ-redir.txt b/Documentation/ia64/irq-redir.rst
similarity index 86%
rename from Documentation/ia64/IRQ-redir.txt
rename to Documentation/ia64/irq-redir.rst
index 364ce9879f54..eedb42aacead 100644
--- a/Documentation/ia64/IRQ-redir.txt
+++ b/Documentation/ia64/irq-redir.rst
@@ -1,6 +1,8 @@
+==============================
IRQ affinity on IA64 platforms
-------------------------------
- 07.01.2002, Erich Focht <efocht@ess.nec.de>
+==============================
+
+07.01.2002, Erich Focht <efocht@ess.nec.de>
By writing to /proc/irq/IRQ#/smp_affinity the interrupt routing can be
@@ -12,22 +14,27 @@ IRQ target is one particular CPU and cannot be a mask of several
CPUs. Only the first non-zero bit is taken into account.
-Usage examples:
+Usage examples
+==============
The target CPU has to be specified as a hexadecimal CPU mask. The
first non-zero bit is the selected CPU. This format has been kept for
compatibility reasons with i386.
Set the delivery mode of interrupt 41 to fixed and route the
-interrupts to CPU #3 (logical CPU number) (2^3=0x08):
+interrupts to CPU #3 (logical CPU number) (2^3=0x08)::
+
echo "8" >/proc/irq/41/smp_affinity
Set the default route for IRQ number 41 to CPU 6 in lowest priority
-delivery mode (redirectable):
+delivery mode (redirectable)::
+
echo "r 40" >/proc/irq/41/smp_affinity
-The output of the command
+The output of the command::
+
cat /proc/irq/IRQ#/smp_affinity
+
gives the target CPU mask for the specified interrupt vector. If the CPU
mask is preceded by the character "r", the interrupt is redirectable
(i.e. lowest priority mode routing is used), otherwise its route is
@@ -35,7 +42,8 @@ fixed.
-Initialization and default behavior:
+Initialization and default behavior
+===================================
If the platform features IRQ redirection (info provided by SAL) all
IO-SAPIC interrupts are initialized with CPU#0 as their default target
@@ -43,9 +51,11 @@ and the routing is the so called "lowest priority mode" (actually
fixed SAPIC mode with hint). The XTP chipset registers are used as hints
for the IRQ routing. Currently in Linux XTP registers can have three
values:
+
- minimal for an idle task,
- normal if any other task runs,
- maximal if the CPU is going to be switched off.
+
The IRQ is routed to the CPU with lowest XTP register value, the
search begins at the default CPU. Therefore most of the interrupts
will be handled by CPU #0.
@@ -53,12 +63,14 @@ will be handled by CPU #0.
If the platform doesn't feature interrupt redirection IOSAPIC fixed
routing is used. The target CPUs are distributed in a round robin
manner. IRQs will be routed only to the selected target CPUs. Check
-with
+with::
+
cat /proc/interrupts
-Comments:
+Comments
+========
On large (multi-node) systems it is recommended to route the IRQs to
the node to which the corresponding device is connected.
diff --git a/Documentation/ia64/mca.txt b/Documentation/ia64/mca.rst
similarity index 96%
rename from Documentation/ia64/mca.txt
rename to Documentation/ia64/mca.rst
index f097c60cba1b..08270bba44a4 100644
--- a/Documentation/ia64/mca.txt
+++ b/Documentation/ia64/mca.rst
@@ -1,5 +1,8 @@
-An ad-hoc collection of notes on IA64 MCA and INIT processing. Feel
-free to update it with notes about any area that is not clear.
+=============================================================
+An ad-hoc collection of notes on IA64 MCA and INIT processing
+=============================================================
+
+Feel free to update it with notes about any area that is not clear.
---
@@ -82,7 +85,8 @@ if we have a choice here.
own stack as running on that cpu. Then a recursive error gets a
trace of the failing handler's "task".
-[1] My (Keith Owens) original design called for ia64 to separate its
+[1]
+ My (Keith Owens) original design called for ia64 to separate its
struct task and the kernel stacks. Then the MCA/INIT data would be
chained stacks like i386 interrupt stacks. But that required
radical surgery on the rest of ia64, plus extra hard wired TLB
diff --git a/Documentation/ia64/serial.txt b/Documentation/ia64/serial.rst
similarity index 87%
rename from Documentation/ia64/serial.txt
rename to Documentation/ia64/serial.rst
index a63d2c54329b..1de70c305a79 100644
--- a/Documentation/ia64/serial.txt
+++ b/Documentation/ia64/serial.rst
@@ -1,4 +1,9 @@
-SERIAL DEVICE NAMING
+==============
+Serial Devices
+==============
+
+Serial Device Naming
+====================
As of 2.6.10, serial devices on ia64 are named based on the
order of ACPI and PCI enumeration. The first device in the
@@ -30,17 +35,21 @@ SERIAL DEVICE NAMING
(described in the ACPI namespace) plus an MP[2] (a PCI device) has
these ports:
- pre-2.6.10 pre-2.6.10
- MMIO (EFI console (EFI console
- address on builtin) on MP port) 2.6.10
- ========== ========== ========== ======
+ ========== ========== ============ ============ =======
+ Type MMIO pre-2.6.10 pre-2.6.10 2.6.10+
+ address
+ (EFI console (EFI console
+ on builtin) on MP port)
+ ========== ========== ============ ============ =======
builtin 0xff5e0000 ttyS0 ttyS1 ttyS0
MP UPS 0xf8031000 ttyS1 ttyS2 ttyS1
MP Console 0xf8030000 ttyS2 ttyS0 ttyS2
MP 2 0xf8030010 ttyS3 ttyS3 ttyS3
MP 3 0xf8030038 ttyS4 ttyS4 ttyS4
+ ========== ========== ============ ============ =======
-CONSOLE SELECTION
+Console Selection
+=================
EFI knows what your console devices are, but it doesn't tell the
kernel quite enough to actually locate them. The DIG64 HCDP
@@ -67,7 +76,8 @@ CONSOLE SELECTION
entries in /etc/inittab (for getty) and /etc/securetty (to allow
root login).
-EARLY SERIAL CONSOLE
+Early Serial Console
+====================
The kernel can't start using a serial console until it knows where
the device lives. Normally this happens when the driver enumerates
@@ -80,7 +90,8 @@ EARLY SERIAL CONSOLE
or if the EFI console path contains only a UART device and the
firmware supplies an HCDP.
-TROUBLESHOOTING SERIAL CONSOLE PROBLEMS
+Troubleshooting Serial Console Problems
+=======================================
No kernel output after elilo prints "Uncompressing Linux... done":
@@ -133,19 +144,22 @@ TROUBLESHOOTING SERIAL CONSOLE PROBLEMS
-[1] http://www.dig64.org/specifications/agreement
+[1]
+ http://www.dig64.org/specifications/agreement
The table was originally defined as the "HCDP" for "Headless
Console/Debug Port." The current version is the "PCDP" for
"Primary Console and Debug Port Devices."
-[2] The HP MP (management processor) is a PCI device that provides
+[2]
+ The HP MP (management processor) is a PCI device that provides
several UARTs. One of the UARTs is often used as a console; the
EFI Boot Manager identifies it as "Acpi(HWP0002,700)/Pci(...)/Uart".
The external connection is usually a 25-pin connector, and a
special dongle converts that to three 9-pin connectors, one of
which is labelled "Console."
-[3] EFI console devices are configured using the EFI Boot Manager
+[3]
+ EFI console devices are configured using the EFI Boot Manager
"Boot option maintenance" menu. You may have to interrupt the
boot sequence to use this menu, and you will have to reset the
box after changing console configuration.
diff --git a/Documentation/ia64/xen.rst b/Documentation/ia64/xen.rst
new file mode 100644
index 000000000000..831339c74441
--- /dev/null
+++ b/Documentation/ia64/xen.rst
@@ -0,0 +1,206 @@
+********************************************************
+Recipe for getting/building/running Xen/ia64 with pv_ops
+********************************************************
+This recipe describes how to get xen-ia64 source and build it,
+and run domU with pv_ops.
+
+Requirements
+============
+
+ - python
+ - mercurial
+ it (aka "hg") is an open-source source code
+ management software. See the below.
+ http://www.selenic.com/mercurial/wiki/
+ - git
+ - bridge-utils
+
+Getting and Building Xen and Dom0
+=================================
+
+ My environment is:
+
+ - Machine : Tiger4
+ - Domain0 OS : RHEL5
+ - DomainU OS : RHEL5
+
+ 1. Download source::
+
+ # hg clone http://xenbits.xensource.com/ext/ia64/xen-unstable.hg
+ # cd xen-unstable.hg
+ # hg clone http://xenbits.xensource.com/ext/ia64/linux-2.6.18-xen.hg
+
+ 2. # make world
+
+ 3. # make install-tools
+
+ 4. copy kernels and xen::
+
+ # cp xen/xen.gz /boot/efi/efi/redhat/
+ # cp build-linux-2.6.18-xen_ia64/vmlinux.gz \
+ /boot/efi/efi/redhat/vmlinuz-2.6.18.8-xen
+
+ 5. make initrd for Dom0/DomU::
+
+ # make -C linux-2.6.18-xen.hg ARCH=ia64 modules_install \
+ O=$(pwd)/build-linux-2.6.18-xen_ia64
+ # mkinitrd -f /boot/efi/efi/redhat/initrd-2.6.18.8-xen.img \
+ 2.6.18.8-xen --builtin mptspi --builtin mptbase \
+ --builtin mptscsih --builtin uhci-hcd --builtin ohci-hcd \
+ --builtin ehci-hcd
+
+Making a disk image for guest OS
+================================
+
+ 1. make file::
+
+ # dd if=/dev/zero of=/root/rhel5.img bs=1M seek=4096 count=0
+ # mke2fs -F -j /root/rhel5.img
+ # mount -o loop /root/rhel5.img /mnt
+ # cp -ax /{dev,var,etc,usr,bin,sbin,lib} /mnt
+ # mkdir /mnt/{root,proc,sys,home,tmp}
+
+ Note: You may miss some device files. If so, please create them
+ with mknod. Or you can use tar instead of cp.
+
+ 2. modify DomU's fstab::
+
+ # vi /mnt/etc/fstab
+ /dev/xvda1 / ext3 defaults 1 1
+ none /dev/pts devpts gid=5,mode=620 0 0
+ none /dev/shm tmpfs defaults 0 0
+ none /proc proc defaults 0 0
+ none /sys sysfs defaults 0 0
+
+ 3. modify inittab
+
+ set runlevel to 3 to avoid X trying to start::
+
+ # vi /mnt/etc/inittab
+ id:3:initdefault:
+
+ Start a getty on the hvc0 console::
+
+ X0:2345:respawn:/sbin/mingetty hvc0
+
+ tty1-6 mingetty can be commented out
+
+ 4. add hvc0 into /etc/securetty::
+
+ # vi /mnt/etc/securetty (add hvc0)
+
+ 5. umount::
+
+ # umount /mnt
+
+FYI, virt-manager can also make a disk image for guest OS.
+It's GUI tools and easy to make it.
+
+Boot Xen & Domain0
+==================
+
+ 1. replace elilo
+ elilo of RHEL5 can boot Xen and Dom0.
+ If you use old elilo (e.g RHEL4), please download from the below
+ http://elilo.sourceforge.net/cgi-bin/blosxom
+ and copy into /boot/efi/efi/redhat/::
+
+ # cp elilo-3.6-ia64.efi /boot/efi/efi/redhat/elilo.efi
+
+ 2. modify elilo.conf (like the below)::
+
+ # vi /boot/efi/efi/redhat/elilo.conf
+ prompt
+ timeout=20
+ default=xen
+ relocatable
+
+ image=vmlinuz-2.6.18.8-xen
+ label=xen
+ vmm=xen.gz
+ initrd=initrd-2.6.18.8-xen.img
+ read-only
+ append=" -- rhgb root=/dev/sda2"
+
+The append options before "--" are for xen hypervisor,
+the options after "--" are for dom0.
+
+FYI, your machine may need console options like
+"com1=19200,8n1 console=vga,com1". For example,
+append="com1=19200,8n1 console=vga,com1 -- rhgb console=tty0 \
+console=ttyS0 root=/dev/sda2"
+
+Getting and Building domU with pv_ops
+=====================================
+
+ 1. get pv_ops tree::
+
+ # git clone http://people.valinux.co.jp/~yamahata/xen-ia64/linux-2.6-xen-ia64.git/
+
+ 2. git branch (if necessary)::
+
+ # cd linux-2.6-xen-ia64/
+ # git checkout -b your_branch origin/xen-ia64-domu-minimal-2008may19
+
+ Note:
+ The current branch is xen-ia64-domu-minimal-2008may19.
+ But you would find the new branch. You can see with
+ "git branch -r" to get the branch lists.
+
+ http://people.valinux.co.jp/~yamahata/xen-ia64/for_eagl/linux-2.6-ia64-pv-ops.git/
+
+ is also available.
+
+ The tree is based on
+
+ git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6 test)
+
+ 3. copy .config for pv_ops of domU::
+
+ # cp arch/ia64/configs/xen_domu_wip_defconfig .config
+
+ 4. make kernel with pv_ops::
+
+ # make oldconfig
+ # make
+
+ 5. install the kernel and initrd::
+
+ # cp vmlinux.gz /boot/efi/efi/redhat/vmlinuz-2.6-pv_ops-xenU
+ # make modules_install
+ # mkinitrd -f /boot/efi/efi/redhat/initrd-2.6-pv_ops-xenU.img \
+ 2.6.26-rc3xen-ia64-08941-g1b12161 --builtin mptspi \
+ --builtin mptbase --builtin mptscsih --builtin uhci-hcd \
+ --builtin ohci-hcd --builtin ehci-hcd
+
+Boot DomainU with pv_ops
+========================
+
+ 1. make config of DomU::
+
+ # vi /etc/xen/rhel5
+ kernel = "/boot/efi/efi/redhat/vmlinuz-2.6-pv_ops-xenU"
+ ramdisk = "/boot/efi/efi/redhat/initrd-2.6-pv_ops-xenU.img"
+ vcpus = 1
+ memory = 512
+ name = "rhel5"
+ disk = [ 'file:/root/rhel5.img,xvda1,w' ]
+ root = "/dev/xvda1 ro"
+ extra= "rhgb console=hvc0"
+
+ 2. After boot xen and dom0, start xend::
+
+ # /etc/init.d/xend start
+
+ ( In the debugging case, `# XEND_DEBUG=1 xend trace_start` )
+
+ 3. start domU::
+
+ # xm create -c rhel5
+
+Reference
+=========
+- Wiki of Xen/IA64 upstream merge
+ http://wiki.xensource.com/xenwiki/XenIA64/UpstreamMerge
+
+Written by Akio Takebe <takebe_akio@jp.fujitsu.com> on 28 May 2008
diff --git a/Documentation/ia64/xen.txt b/Documentation/ia64/xen.txt
deleted file mode 100644
index a12c74ce2773..000000000000
--- a/Documentation/ia64/xen.txt
+++ /dev/null
@@ -1,183 +0,0 @@
- Recipe for getting/building/running Xen/ia64 with pv_ops
- --------------------------------------------------------
-
-This recipe describes how to get xen-ia64 source and build it,
-and run domU with pv_ops.
-
-============
-Requirements
-============
-
- - python
- - mercurial
- it (aka "hg") is an open-source source code
- management software. See the below.
- http://www.selenic.com/mercurial/wiki/
- - git
- - bridge-utils
-
-=================================
-Getting and Building Xen and Dom0
-=================================
-
- My environment is;
- Machine : Tiger4
- Domain0 OS : RHEL5
- DomainU OS : RHEL5
-
- 1. Download source
- # hg clone http://xenbits.xensource.com/ext/ia64/xen-unstable.hg
- # cd xen-unstable.hg
- # hg clone http://xenbits.xensource.com/ext/ia64/linux-2.6.18-xen.hg
-
- 2. # make world
-
- 3. # make install-tools
-
- 4. copy kernels and xen
- # cp xen/xen.gz /boot/efi/efi/redhat/
- # cp build-linux-2.6.18-xen_ia64/vmlinux.gz \
- /boot/efi/efi/redhat/vmlinuz-2.6.18.8-xen
-
- 5. make initrd for Dom0/DomU
- # make -C linux-2.6.18-xen.hg ARCH=ia64 modules_install \
- O=$(pwd)/build-linux-2.6.18-xen_ia64
- # mkinitrd -f /boot/efi/efi/redhat/initrd-2.6.18.8-xen.img \
- 2.6.18.8-xen --builtin mptspi --builtin mptbase \
- --builtin mptscsih --builtin uhci-hcd --builtin ohci-hcd \
- --builtin ehci-hcd
-
-================================
-Making a disk image for guest OS
-================================
-
- 1. make file
- # dd if=/dev/zero of=/root/rhel5.img bs=1M seek=4096 count=0
- # mke2fs -F -j /root/rhel5.img
- # mount -o loop /root/rhel5.img /mnt
- # cp -ax /{dev,var,etc,usr,bin,sbin,lib} /mnt
- # mkdir /mnt/{root,proc,sys,home,tmp}
-
- Note: You may miss some device files. If so, please create them
- with mknod. Or you can use tar instead of cp.
-
- 2. modify DomU's fstab
- # vi /mnt/etc/fstab
- /dev/xvda1 / ext3 defaults 1 1
- none /dev/pts devpts gid=5,mode=620 0 0
- none /dev/shm tmpfs defaults 0 0
- none /proc proc defaults 0 0
- none /sys sysfs defaults 0 0
-
- 3. modify inittab
- set runlevel to 3 to avoid X trying to start
- # vi /mnt/etc/inittab
- id:3:initdefault:
- Start a getty on the hvc0 console
- X0:2345:respawn:/sbin/mingetty hvc0
- tty1-6 mingetty can be commented out
-
- 4. add hvc0 into /etc/securetty
- # vi /mnt/etc/securetty (add hvc0)
-
- 5. umount
- # umount /mnt
-
-FYI, virt-manager can also make a disk image for guest OS.
-It's GUI tools and easy to make it.
-
-==================
-Boot Xen & Domain0
-==================
-
- 1. replace elilo
- elilo of RHEL5 can boot Xen and Dom0.
- If you use old elilo (e.g RHEL4), please download from the below
- http://elilo.sourceforge.net/cgi-bin/blosxom
- and copy into /boot/efi/efi/redhat/
- # cp elilo-3.6-ia64.efi /boot/efi/efi/redhat/elilo.efi
-
- 2. modify elilo.conf (like the below)
- # vi /boot/efi/efi/redhat/elilo.conf
- prompt
- timeout=20
- default=xen
- relocatable
-
- image=vmlinuz-2.6.18.8-xen
- label=xen
- vmm=xen.gz
- initrd=initrd-2.6.18.8-xen.img
- read-only
- append=" -- rhgb root=/dev/sda2"
-
-The append options before "--" are for xen hypervisor,
-the options after "--" are for dom0.
-
-FYI, your machine may need console options like
-"com1=19200,8n1 console=vga,com1". For example,
-append="com1=19200,8n1 console=vga,com1 -- rhgb console=tty0 \
-console=ttyS0 root=/dev/sda2"
-
-=====================================
-Getting and Building domU with pv_ops
-=====================================
-
- 1. get pv_ops tree
- # git clone http://people.valinux.co.jp/~yamahata/xen-ia64/linux-2.6-xen-ia64.git/
-
- 2. git branch (if necessary)
- # cd linux-2.6-xen-ia64/
- # git checkout -b your_branch origin/xen-ia64-domu-minimal-2008may19
- (Note: The current branch is xen-ia64-domu-minimal-2008may19.
- But you would find the new branch. You can see with
- "git branch -r" to get the branch lists.
- http://people.valinux.co.jp/~yamahata/xen-ia64/for_eagl/linux-2.6-ia64-pv-ops.git/
- is also available. The tree is based on
- git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6 test)
-
-
- 3. copy .config for pv_ops of domU
- # cp arch/ia64/configs/xen_domu_wip_defconfig .config
-
- 4. make kernel with pv_ops
- # make oldconfig
- # make
-
- 5. install the kernel and initrd
- # cp vmlinux.gz /boot/efi/efi/redhat/vmlinuz-2.6-pv_ops-xenU
- # make modules_install
- # mkinitrd -f /boot/efi/efi/redhat/initrd-2.6-pv_ops-xenU.img \
- 2.6.26-rc3xen-ia64-08941-g1b12161 --builtin mptspi \
- --builtin mptbase --builtin mptscsih --builtin uhci-hcd \
- --builtin ohci-hcd --builtin ehci-hcd
-
-========================
-Boot DomainU with pv_ops
-========================
-
- 1. make config of DomU
- # vi /etc/xen/rhel5
- kernel = "/boot/efi/efi/redhat/vmlinuz-2.6-pv_ops-xenU"
- ramdisk = "/boot/efi/efi/redhat/initrd-2.6-pv_ops-xenU.img"
- vcpus = 1
- memory = 512
- name = "rhel5"
- disk = [ 'file:/root/rhel5.img,xvda1,w' ]
- root = "/dev/xvda1 ro"
- extra= "rhgb console=hvc0"
-
- 2. After boot xen and dom0, start xend
- # /etc/init.d/xend start
- ( In the debugging case, # XEND_DEBUG=1 xend trace_start )
-
- 3. start domU
- # xm create -c rhel5
-
-=========
-Reference
-=========
-- Wiki of Xen/IA64 upstream merge
- http://wiki.xensource.com/xenwiki/XenIA64/UpstreamMerge
-
-Written by Akio Takebe <takebe_akio@jp.fujitsu.com> on 28 May 2008
diff --git a/MAINTAINERS b/MAINTAINERS
index 4e1e598a32d9..ddd526efcb46 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -14083,7 +14083,7 @@ SGI SN-IA64 (Altix) SERIAL CONSOLE DRIVER
M: Pat Gefre <pfg@sgi.com>
L: linux-ia64@vger.kernel.org
S: Supported
-F: Documentation/ia64/serial.txt
+F: Documentation/ia64/serial.rst
F: drivers/tty/serial/ioc?_serial.c
F: include/linux/ioc?.h
diff --git a/arch/ia64/kernel/efi.c b/arch/ia64/kernel/efi.c
index 8f106638913c..3795d18276c4 100644
--- a/arch/ia64/kernel/efi.c
+++ b/arch/ia64/kernel/efi.c
@@ -852,7 +852,7 @@ valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
* /dev/mem reads and writes use copy_to_user(), which implicitly
* uses a granule-sized kernel identity mapping. It's really
* only safe to do this for regions in kern_memmap. For more
- * details, see Documentation/ia64/aliasing.txt.
+ * details, see Documentation/ia64/aliasing.rst.
*/
attr = kern_mem_attribute(phys_addr, size);
if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
diff --git a/arch/ia64/kernel/fsys.S b/arch/ia64/kernel/fsys.S
index d80c99a5f55d..0750a716adc7 100644
--- a/arch/ia64/kernel/fsys.S
+++ b/arch/ia64/kernel/fsys.S
@@ -28,7 +28,7 @@
#include <asm/native/inst.h>
/*
- * See Documentation/ia64/fsys.txt for details on fsyscalls.
+ * See Documentation/ia64/fsys.rst for details on fsyscalls.
*
* On entry to an fsyscall handler:
* r10 = 0 (i.e., defaults to "successful syscall return")
diff --git a/arch/ia64/mm/ioremap.c b/arch/ia64/mm/ioremap.c
index 43964cde6214..c7da3376b6f8 100644
--- a/arch/ia64/mm/ioremap.c
+++ b/arch/ia64/mm/ioremap.c
@@ -45,7 +45,7 @@ ioremap (unsigned long phys_addr, unsigned long size)
/*
* For things in kern_memmap, we must use the same attribute
* as the rest of the kernel. For more details, see
- * Documentation/ia64/aliasing.txt.
+ * Documentation/ia64/aliasing.rst.
*/
attr = kern_mem_attribute(phys_addr, size);
if (attr & EFI_MEMORY_WB)
diff --git a/arch/ia64/pci/pci.c b/arch/ia64/pci/pci.c
index 196a0dd7ff97..881dd5327752 100644
--- a/arch/ia64/pci/pci.c
+++ b/arch/ia64/pci/pci.c
@@ -449,7 +449,7 @@ pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
return -ENOSYS;
/*
- * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt
+ * Avoid attribute aliasing. See Documentation/ia64/aliasing.rst
* for more details.
*/
if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 61/79] docs: leds: convert to ReST
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (50 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 60/79] docs: ia64: " Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-23 19:00 ` Jacek Anaszewski
2019-04-22 13:27 ` [PATCH v2 62/79] docs: laptops: " Mauro Carvalho Chehab
` (21 subsequent siblings)
73 siblings, 1 reply; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Vadim Pasternak, Jacek Anaszewski, Pavel Machek,
Pablo Neira Ayuso, Jozsef Kadlecsik, Florian Westphal,
David S. Miller, linux-leds, netfilter-devel, coreteam, netdev
Rename the leds documentation files to ReST, add an
index for them and adjust in order to produce a nice html
output via the Sphinx build system.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/laptops/thinkpad-acpi.txt | 4 +-
Documentation/leds/index.rst | 25 ++
.../leds/{leds-blinkm.txt => leds-blinkm.rst} | 63 ++---
...s-class-flash.txt => leds-class-flash.rst} | 49 ++--
.../leds/{leds-class.txt => leds-class.rst} | 15 +-
.../leds/{leds-lm3556.txt => leds-lm3556.rst} | 100 ++++++--
.../leds/{leds-lp3944.txt => leds-lp3944.rst} | 23 +-
Documentation/leds/leds-lp5521.rst | 115 +++++++++
Documentation/leds/leds-lp5521.txt | 101 --------
Documentation/leds/leds-lp5523.rst | 147 ++++++++++++
Documentation/leds/leds-lp5523.txt | 130 ----------
Documentation/leds/leds-lp5562.rst | 137 +++++++++++
Documentation/leds/leds-lp5562.txt | 120 ----------
Documentation/leds/leds-lp55xx.rst | 224 ++++++++++++++++++
Documentation/leds/leds-lp55xx.txt | 194 ---------------
Documentation/leds/leds-mlxcpld.rst | 118 +++++++++
Documentation/leds/leds-mlxcpld.txt | 110 ---------
...edtrig-oneshot.txt => ledtrig-oneshot.rst} | 11 +-
...ig-transient.txt => ledtrig-transient.rst} | 63 +++--
...edtrig-usbport.txt => ledtrig-usbport.rst} | 11 +-
Documentation/leds/{uleds.txt => uleds.rst} | 5 +-
MAINTAINERS | 2 +-
drivers/leds/trigger/Kconfig | 2 +-
drivers/leds/trigger/ledtrig-transient.c | 2 +-
net/netfilter/Kconfig | 2 +-
25 files changed, 996 insertions(+), 777 deletions(-)
create mode 100644 Documentation/leds/index.rst
rename Documentation/leds/{leds-blinkm.txt => leds-blinkm.rst} (56%)
rename Documentation/leds/{leds-class-flash.txt => leds-class-flash.rst} (74%)
rename Documentation/leds/{leds-class.txt => leds-class.rst} (92%)
rename Documentation/leds/{leds-lm3556.txt => leds-lm3556.rst} (70%)
rename Documentation/leds/{leds-lp3944.txt => leds-lp3944.rst} (78%)
create mode 100644 Documentation/leds/leds-lp5521.rst
delete mode 100644 Documentation/leds/leds-lp5521.txt
create mode 100644 Documentation/leds/leds-lp5523.rst
delete mode 100644 Documentation/leds/leds-lp5523.txt
create mode 100644 Documentation/leds/leds-lp5562.rst
delete mode 100644 Documentation/leds/leds-lp5562.txt
create mode 100644 Documentation/leds/leds-lp55xx.rst
delete mode 100644 Documentation/leds/leds-lp55xx.txt
create mode 100644 Documentation/leds/leds-mlxcpld.rst
delete mode 100644 Documentation/leds/leds-mlxcpld.txt
rename Documentation/leds/{ledtrig-oneshot.txt => ledtrig-oneshot.rst} (90%)
rename Documentation/leds/{ledtrig-transient.txt => ledtrig-transient.rst} (81%)
rename Documentation/leds/{ledtrig-usbport.txt => ledtrig-usbport.rst} (86%)
rename Documentation/leds/{uleds.txt => uleds.rst} (95%)
diff --git a/Documentation/laptops/thinkpad-acpi.txt b/Documentation/laptops/thinkpad-acpi.txt
index 3de3c95f01f6..65719384fc36 100644
--- a/Documentation/laptops/thinkpad-acpi.txt
+++ b/Documentation/laptops/thinkpad-acpi.txt
@@ -679,7 +679,7 @@ status as "unknown". The available commands are:
sysfs notes:
The ThinkLight sysfs interface is documented by the LED class
-documentation, in Documentation/leds/leds-class.txt. The ThinkLight LED name
+documentation, in Documentation/leds/leds-class.rst. The ThinkLight LED name
is "tpacpi::thinklight".
Due to limitations in the sysfs LED class, if the status of the ThinkLight
@@ -779,7 +779,7 @@ All of the above can be turned on and off and can be made to blink.
sysfs notes:
The ThinkPad LED sysfs interface is described in detail by the LED class
-documentation, in Documentation/leds/leds-class.txt.
+documentation, in Documentation/leds/leds-class.rst.
The LEDs are named (in LED ID order, from 0 to 12):
"tpacpi::power", "tpacpi:orange:batt", "tpacpi:green:batt",
diff --git a/Documentation/leds/index.rst b/Documentation/leds/index.rst
new file mode 100644
index 000000000000..9885f7c1b75d
--- /dev/null
+++ b/Documentation/leds/index.rst
@@ -0,0 +1,25 @@
+:orphan:
+
+====
+LEDs
+====
+
+.. toctree::
+ :maxdepth: 1
+
+ leds-class
+ leds-class-flash
+ ledtrig-oneshot
+ ledtrig-transient
+ ledtrig-usbport
+
+ uleds
+
+ leds-blinkm
+ leds-lm3556
+ leds-lp3944
+ leds-lp5521
+ leds-lp5523
+ leds-lp5562
+ leds-lp55xx
+ leds-mlxcpld
diff --git a/Documentation/leds/leds-blinkm.txt b/Documentation/leds/leds-blinkm.rst
similarity index 56%
rename from Documentation/leds/leds-blinkm.txt
rename to Documentation/leds/leds-blinkm.rst
index 9dd92f4cf4e1..4c970b7d21cd 100644
--- a/Documentation/leds/leds-blinkm.txt
+++ b/Documentation/leds/leds-blinkm.rst
@@ -1,3 +1,7 @@
+==================
+Leds BlinkM driver
+==================
+
The leds-blinkm driver supports the devices of the BlinkM family.
They are RGB-LED modules driven by a (AT)tiny microcontroller and
@@ -14,35 +18,36 @@ The interface this driver provides is 2-fold:
a) LED class interface for use with triggers
############################################
-The registration follows the scheme:
-blinkm-<i2c-bus-nr>-<i2c-device-nr>-<color>
+The registration follows the scheme::
-$ ls -h /sys/class/leds/blinkm-6-*
-/sys/class/leds/blinkm-6-9-blue:
-brightness device max_brightness power subsystem trigger uevent
+ blinkm-<i2c-bus-nr>-<i2c-device-nr>-<color>
-/sys/class/leds/blinkm-6-9-green:
-brightness device max_brightness power subsystem trigger uevent
+ $ ls -h /sys/class/leds/blinkm-6-*
+ /sys/class/leds/blinkm-6-9-blue:
+ brightness device max_brightness power subsystem trigger uevent
-/sys/class/leds/blinkm-6-9-red:
-brightness device max_brightness power subsystem trigger uevent
+ /sys/class/leds/blinkm-6-9-green:
+ brightness device max_brightness power subsystem trigger uevent
+
+ /sys/class/leds/blinkm-6-9-red:
+ brightness device max_brightness power subsystem trigger uevent
(same is /sys/bus/i2c/devices/6-0009/leds)
We can control the colors separated into red, green and blue and
assign triggers on each color.
-E.g.:
+E.g.::
-$ cat blinkm-6-9-blue/brightness
-05
+ $ cat blinkm-6-9-blue/brightness
+ 05
-$ echo 200 > blinkm-6-9-blue/brightness
-$
+ $ echo 200 > blinkm-6-9-blue/brightness
+ $
-$ modprobe ledtrig-heartbeat
-$ echo heartbeat > blinkm-6-9-green/trigger
-$
+ $ modprobe ledtrig-heartbeat
+ $ echo heartbeat > blinkm-6-9-green/trigger
+ $
b) Sysfs group to control rgb, fade, hsb, scripts ...
@@ -52,25 +57,25 @@ This extended interface is available as folder blinkm
in the sysfs folder of the I2C device.
E.g. below /sys/bus/i2c/devices/6-0009/blinkm
-$ ls -h /sys/bus/i2c/devices/6-0009/blinkm/
-blue green red test
+ $ ls -h /sys/bus/i2c/devices/6-0009/blinkm/
+ blue green red test
Currently supported is just setting red, green, blue
and a test sequence.
-E.g.:
+E.g.::
-$ cat *
-00
-00
-00
-#Write into test to start test sequence!#
+ $ cat *
+ 00
+ 00
+ 00
+ #Write into test to start test sequence!#
-$ echo 1 > test
-$
+ $ echo 1 > test
+ $
-$ echo 255 > red
-$
+ $ echo 255 > red
+ $
diff --git a/Documentation/leds/leds-class-flash.txt b/Documentation/leds/leds-class-flash.rst
similarity index 74%
rename from Documentation/leds/leds-class-flash.txt
rename to Documentation/leds/leds-class-flash.rst
index 8da3c6f4b60b..6ec12c5a1a0e 100644
--- a/Documentation/leds/leds-class-flash.txt
+++ b/Documentation/leds/leds-class-flash.rst
@@ -1,9 +1,9 @@
-
+==============================
Flash LED handling under Linux
==============================
Some LED devices provide two modes - torch and flash. In the LED subsystem
-those modes are supported by LED class (see Documentation/leds/leds-class.txt)
+those modes are supported by LED class (see Documentation/leds/leds-class.rst)
and LED Flash class respectively. The torch mode related features are enabled
by default and the flash ones only if a driver declares it by setting
LED_DEV_CAP_FLASH flag.
@@ -14,6 +14,7 @@ registered in the LED subsystem with led_classdev_flash_register function.
Following sysfs attributes are exposed for controlling flash LED devices:
(see Documentation/ABI/testing/sysfs-class-led-flash)
+
- flash_brightness
- max_flash_brightness
- flash_timeout
@@ -31,30 +32,46 @@ be defined in the kernel config.
The driver must call the v4l2_flash_init function to get registered in the
V4L2 subsystem. The function takes six arguments:
-- dev : flash device, e.g. an I2C device
-- of_node : of_node of the LED, may be NULL if the same as device's
-- fled_cdev : LED flash class device to wrap
-- iled_cdev : LED flash class device representing indicator LED associated with
- fled_cdev, may be NULL
-- ops : V4L2 specific ops
- * external_strobe_set - defines the source of the flash LED strobe -
+
+- dev:
+ flash device, e.g. an I2C device
+- of_node:
+ of_node of the LED, may be NULL if the same as device's
+- fled_cdev:
+ LED flash class device to wrap
+- iled_cdev:
+ LED flash class device representing indicator LED associated with
+ fled_cdev, may be NULL
+- ops:
+ V4L2 specific ops
+
+ * external_strobe_set
+ defines the source of the flash LED strobe -
V4L2_CID_FLASH_STROBE control or external source, typically
a sensor, which makes it possible to synchronise the flash
strobe start with exposure start,
- * intensity_to_led_brightness and led_brightness_to_intensity - perform
+ * intensity_to_led_brightness and led_brightness_to_intensity
+ perform
enum led_brightness <-> V4L2 intensity conversion in a device
specific manner - they can be used for devices with non-linear
LED current scale.
-- config : configuration for V4L2 Flash sub-device
- * dev_name - the name of the media entity, unique in the system,
- * flash_faults - bitmask of flash faults that the LED flash class
+- config:
+ configuration for V4L2 Flash sub-device
+
+ * dev_name
+ the name of the media entity, unique in the system,
+ * flash_faults
+ bitmask of flash faults that the LED flash class
device can report; corresponding LED_FAULT* bit definitions are
available in <linux/led-class-flash.h>,
- * torch_intensity - constraints for the LED in TORCH mode
+ * torch_intensity
+ constraints for the LED in TORCH mode
in microamperes,
- * indicator_intensity - constraints for the indicator LED
+ * indicator_intensity
+ constraints for the indicator LED
in microamperes,
- * has_external_strobe - determines whether the flash strobe source
+ * has_external_strobe
+ determines whether the flash strobe source
can be switched to external,
On remove the v4l2_flash_release function has to be called, which takes one
diff --git a/Documentation/leds/leds-class.txt b/Documentation/leds/leds-class.rst
similarity index 92%
rename from Documentation/leds/leds-class.txt
rename to Documentation/leds/leds-class.rst
index 8b39cc6b03ee..df0120a1ee3c 100644
--- a/Documentation/leds/leds-class.txt
+++ b/Documentation/leds/leds-class.rst
@@ -1,4 +1,4 @@
-
+========================
LED handling under Linux
========================
@@ -43,7 +43,7 @@ LED Device Naming
Is currently of the form:
-"devicename:colour:function"
+ "devicename:colour:function"
There have been calls for LED properties such as colour to be exported as
individual led class attributes. As a solution which doesn't incur as much
@@ -57,9 +57,12 @@ Brightness setting API
LED subsystem core exposes following API for setting brightness:
- - led_set_brightness : it is guaranteed not to sleep, passing LED_OFF stops
+ - led_set_brightness:
+ it is guaranteed not to sleep, passing LED_OFF stops
blinking,
- - led_set_brightness_sync : for use cases when immediate effect is desired -
+
+ - led_set_brightness_sync:
+ for use cases when immediate effect is desired -
it can block the caller for the time required for accessing
device registers and can sleep, passing LED_OFF stops hardware
blinking, returns -EBUSY if software blink fallback is enabled.
@@ -70,7 +73,7 @@ LED registration API
A driver wanting to register a LED classdev for use by other drivers /
userspace needs to allocate and fill a led_classdev struct and then call
-[devm_]led_classdev_register. If the non devm version is used the driver
+`[devm_]led_classdev_register`. If the non devm version is used the driver
must call led_classdev_unregister from its remove function before
free-ing the led_classdev struct.
@@ -94,7 +97,7 @@ with brightness value LED_OFF, which should stop any software
timers that may have been required for blinking.
The blink_set() function should choose a user friendly blinking value
-if it is called with *delay_on==0 && *delay_off==0 parameters. In this
+if it is called with `*delay_on==0` && `*delay_off==0` parameters. In this
case the driver should give back the chosen value through delay_on and
delay_off parameters to the leds subsystem.
diff --git a/Documentation/leds/leds-lm3556.txt b/Documentation/leds/leds-lm3556.rst
similarity index 70%
rename from Documentation/leds/leds-lm3556.txt
rename to Documentation/leds/leds-lm3556.rst
index 62278e871b50..1ef17d7d800e 100644
--- a/Documentation/leds/leds-lm3556.txt
+++ b/Documentation/leds/leds-lm3556.rst
@@ -1,68 +1,118 @@
+========================
Kernel driver for lm3556
========================
-*Texas Instrument:
- 1.5 A Synchronous Boost LED Flash Driver w/ High-Side Current Source
+* Texas Instrument:
+ 1.5 A Synchronous Boost LED Flash Driver w/ High-Side Current Source
* Datasheet: http://www.national.com/ds/LM/LM3556.pdf
Authors:
- Daniel Jeong
+ - Daniel Jeong
+
Contact:Daniel Jeong(daniel.jeong-at-ti.com, gshark.jeong-at-gmail.com)
Description
-----------
There are 3 functions in LM3556, Flash, Torch and Indicator.
-FLASH MODE
+Flash Mode
+^^^^^^^^^^
+
In Flash Mode, the LED current source(LED) provides 16 target current levels
from 93.75 mA to 1500 mA.The Flash currents are adjusted via the CURRENT
CONTROL REGISTER(0x09).Flash mode is activated by the ENABLE REGISTER(0x0A),
or by pulling the STROBE pin HIGH.
+
LM3556 Flash can be controlled through sys/class/leds/flash/brightness file
+
* if STROBE pin is enabled, below example control brightness only, and
-ON / OFF will be controlled by STROBE pin.
+ ON / OFF will be controlled by STROBE pin.
Flash Example:
-OFF : #echo 0 > sys/class/leds/flash/brightness
-93.75 mA: #echo 1 > sys/class/leds/flash/brightness
-... .....
-1500 mA: #echo 16 > sys/class/leds/flash/brightness
-TORCH MODE
+OFF::
+
+ #echo 0 > sys/class/leds/flash/brightness
+
+93.75 mA::
+
+ #echo 1 > sys/class/leds/flash/brightness
+
+...
+
+1500 mA::
+
+ #echo 16 > sys/class/leds/flash/brightness
+
+Torch Mode
+^^^^^^^^^^
+
In Torch Mode, the current source(LED) is programmed via the CURRENT CONTROL
REGISTER(0x09).Torch Mode is activated by the ENABLE REGISTER(0x0A) or by the
hardware TORCH input.
+
LM3556 torch can be controlled through sys/class/leds/torch/brightness file.
* if TORCH pin is enabled, below example control brightness only,
and ON / OFF will be controlled by TORCH pin.
Torch Example:
-OFF : #echo 0 > sys/class/leds/torch/brightness
-46.88 mA: #echo 1 > sys/class/leds/torch/brightness
-... .....
-375 mA : #echo 8 > sys/class/leds/torch/brightness
-INDICATOR MODE
+OFF::
+
+ #echo 0 > sys/class/leds/torch/brightness
+
+46.88 mA::
+
+ #echo 1 > sys/class/leds/torch/brightness
+
+...
+
+375 mA::
+
+ #echo 8 > sys/class/leds/torch/brightness
+
+Indicator Mode
+^^^^^^^^^^^^^^
+
Indicator pattern can be set through sys/class/leds/indicator/pattern file,
and 4 patterns are pre-defined in indicator_pattern array.
+
According to N-lank, Pulse time and N Period values, different pattern wiill
be generated.If you want new patterns for your own device, change
indicator_pattern array with your own values and INDIC_PATTERN_SIZE.
+
Please refer datasheet for more detail about N-Blank, Pulse time and N Period.
Indicator pattern example:
-pattern 0: #echo 0 > sys/class/leds/indicator/pattern
-....
-pattern 3: #echo 3 > sys/class/leds/indicator/pattern
+
+pattern 0::
+
+ #echo 0 > sys/class/leds/indicator/pattern
+
+...
+
+pattern 3::
+
+ #echo 3 > sys/class/leds/indicator/pattern
Indicator brightness can be controlled through
sys/class/leds/indicator/brightness file.
Example:
-OFF : #echo 0 > sys/class/leds/indicator/brightness
-5.86 mA : #echo 1 > sys/class/leds/indicator/brightness
-........
-46.875mA : #echo 8 > sys/class/leds/indicator/brightness
+
+OFF::
+
+ #echo 0 > sys/class/leds/indicator/brightness
+
+5.86 mA::
+
+ #echo 1 > sys/class/leds/indicator/brightness
+
+...
+
+46.875mA::
+
+ #echo 8 > sys/class/leds/indicator/brightness
Notes
-----
@@ -70,7 +120,8 @@ Driver expects it is registered using the i2c_board_info mechanism.
To register the chip at address 0x63 on specific adapter, set the platform data
according to include/linux/platform_data/leds-lm3556.h, set the i2c board info
-Example:
+Example::
+
static struct i2c_board_info board_i2c_ch4[] __initdata = {
{
I2C_BOARD_INFO(LM3556_NAME, 0x63),
@@ -80,6 +131,7 @@ Example:
and register it in the platform init function
-Example:
+Example::
+
board_register_i2c_bus(4, 400,
board_i2c_ch4, ARRAY_SIZE(board_i2c_ch4));
diff --git a/Documentation/leds/leds-lp3944.txt b/Documentation/leds/leds-lp3944.rst
similarity index 78%
rename from Documentation/leds/leds-lp3944.txt
rename to Documentation/leds/leds-lp3944.rst
index e88ac3b60c08..c2f87dc1a3a9 100644
--- a/Documentation/leds/leds-lp3944.txt
+++ b/Documentation/leds/leds-lp3944.rst
@@ -1,14 +1,20 @@
+====================
Kernel driver lp3944
====================
* National Semiconductor LP3944 Fun-light Chip
+
Prefix: 'lp3944'
+
Addresses scanned: None (see the Notes section below)
- Datasheet: Publicly available at the National Semiconductor website
- http://www.national.com/pf/LP/LP3944.html
+
+ Datasheet:
+
+ Publicly available at the National Semiconductor website
+ http://www.national.com/pf/LP/LP3944.html
Authors:
- Antonio Ospite <ospite@studenti.unina.it>
+ Antonio Ospite <ospite@studenti.unina.it>
Description
@@ -19,8 +25,11 @@ is used as a led controller.
The DIM modes are used to set _blink_ patterns for leds, the pattern is
specified supplying two parameters:
- - period: from 0s to 1.6s
- - duty cycle: percentage of the period the led is on, from 0 to 100
+
+ - period:
+ from 0s to 1.6s
+ - duty cycle:
+ percentage of the period the led is on, from 0 to 100
Setting a led in DIM0 or DIM1 mode makes it blink according to the pattern.
See the datasheet for details.
@@ -35,7 +44,7 @@ The chip is used mainly in embedded contexts, so this driver expects it is
registered using the i2c_board_info mechanism.
To register the chip at address 0x60 on adapter 0, set the platform data
-according to include/linux/leds-lp3944.h, set the i2c board info:
+according to include/linux/leds-lp3944.h, set the i2c board info::
static struct i2c_board_info a910_i2c_board_info[] __initdata = {
{
@@ -44,7 +53,7 @@ according to include/linux/leds-lp3944.h, set the i2c board info:
},
};
-and register it in the platform init function
+and register it in the platform init function::
i2c_register_board_info(0, a910_i2c_board_info,
ARRAY_SIZE(a910_i2c_board_info));
diff --git a/Documentation/leds/leds-lp5521.rst b/Documentation/leds/leds-lp5521.rst
new file mode 100644
index 000000000000..0432615b083d
--- /dev/null
+++ b/Documentation/leds/leds-lp5521.rst
@@ -0,0 +1,115 @@
+========================
+Kernel driver for lp5521
+========================
+
+* National Semiconductor LP5521 led driver chip
+* Datasheet: http://www.national.com/pf/LP/LP5521.html
+
+Authors: Mathias Nyman, Yuri Zaporozhets, Samu Onkalo
+
+Contact: Samu Onkalo (samu.p.onkalo-at-nokia.com)
+
+Description
+-----------
+
+LP5521 can drive up to 3 channels. Leds can be controlled directly via
+the led class control interface. Channels have generic names:
+lp5521:channelx, where x is 0 .. 2
+
+All three channels can be also controlled using the engine micro programs.
+More details of the instructions can be found from the public data sheet.
+
+LP5521 has the internal program memory for running various LED patterns.
+There are two ways to run LED patterns.
+
+1) Legacy interface - enginex_mode and enginex_load
+ Control interface for the engines:
+
+ x is 1 .. 3
+
+ enginex_mode:
+ disabled, load, run
+ enginex_load:
+ store program (visible only in engine load mode)
+
+ Example (start to blink the channel 2 led)::
+
+ cd /sys/class/leds/lp5521:channel2/device
+ echo "load" > engine3_mode
+ echo "037f4d0003ff6000" > engine3_load
+ echo "run" > engine3_mode
+
+ To stop the engine::
+
+ echo "disabled" > engine3_mode
+
+2) Firmware interface - LP55xx common interface
+
+For the details, please refer to 'firmware' section in leds-lp55xx.txt
+
+sysfs contains a selftest entry.
+
+The test communicates with the chip and checks that
+the clock mode is automatically set to the requested one.
+
+Each channel has its own led current settings.
+
+- /sys/class/leds/lp5521:channel0/led_current - RW
+- /sys/class/leds/lp5521:channel0/max_current - RO
+
+Format: 10x mA i.e 10 means 1.0 mA
+
+example platform data::
+
+ static struct lp55xx_led_config lp5521_led_config[] = {
+ {
+ .name = "red",
+ .chan_nr = 0,
+ .led_current = 50,
+ .max_current = 130,
+ }, {
+ .name = "green",
+ .chan_nr = 1,
+ .led_current = 0,
+ .max_current = 130,
+ }, {
+ .name = "blue",
+ .chan_nr = 2,
+ .led_current = 0,
+ .max_current = 130,
+ }
+ };
+
+ static int lp5521_setup(void)
+ {
+ /* setup HW resources */
+ }
+
+ static void lp5521_release(void)
+ {
+ /* Release HW resources */
+ }
+
+ static void lp5521_enable(bool state)
+ {
+ /* Control of chip enable signal */
+ }
+
+ static struct lp55xx_platform_data lp5521_platform_data = {
+ .led_config = lp5521_led_config,
+ .num_channels = ARRAY_SIZE(lp5521_led_config),
+ .clock_mode = LP55XX_CLOCK_EXT,
+ .setup_resources = lp5521_setup,
+ .release_resources = lp5521_release,
+ .enable = lp5521_enable,
+ };
+
+Note:
+ chan_nr can have values between 0 and 2.
+ The name of each channel can be configurable.
+ If the name field is not defined, the default name will be set to 'xxxx:channelN'
+ (XXXX : pdata->label or i2c client name, N : channel number)
+
+
+If the current is set to 0 in the platform data, that channel is
+disabled and it is not visible in the sysfs.
diff --git a/Documentation/leds/leds-lp5521.txt b/Documentation/leds/leds-lp5521.txt
deleted file mode 100644
index d08d8c179f85..000000000000
--- a/Documentation/leds/leds-lp5521.txt
+++ /dev/null
@@ -1,101 +0,0 @@
-Kernel driver for lp5521
-========================
-
-* National Semiconductor LP5521 led driver chip
-* Datasheet: http://www.national.com/pf/LP/LP5521.html
-
-Authors: Mathias Nyman, Yuri Zaporozhets, Samu Onkalo
-Contact: Samu Onkalo (samu.p.onkalo-at-nokia.com)
-
-Description
------------
-
-LP5521 can drive up to 3 channels. Leds can be controlled directly via
-the led class control interface. Channels have generic names:
-lp5521:channelx, where x is 0 .. 2
-
-All three channels can be also controlled using the engine micro programs.
-More details of the instructions can be found from the public data sheet.
-
-LP5521 has the internal program memory for running various LED patterns.
-There are two ways to run LED patterns.
-
-1) Legacy interface - enginex_mode and enginex_load
- Control interface for the engines:
- x is 1 .. 3
- enginex_mode : disabled, load, run
- enginex_load : store program (visible only in engine load mode)
-
- Example (start to blink the channel 2 led):
- cd /sys/class/leds/lp5521:channel2/device
- echo "load" > engine3_mode
- echo "037f4d0003ff6000" > engine3_load
- echo "run" > engine3_mode
-
- To stop the engine:
- echo "disabled" > engine3_mode
-
-2) Firmware interface - LP55xx common interface
- For the details, please refer to 'firmware' section in leds-lp55xx.txt
-
-sysfs contains a selftest entry.
-The test communicates with the chip and checks that
-the clock mode is automatically set to the requested one.
-
-Each channel has its own led current settings.
-/sys/class/leds/lp5521:channel0/led_current - RW
-/sys/class/leds/lp5521:channel0/max_current - RO
-Format: 10x mA i.e 10 means 1.0 mA
-
-example platform data:
-
-Note: chan_nr can have values between 0 and 2.
-The name of each channel can be configurable.
-If the name field is not defined, the default name will be set to 'xxxx:channelN'
-(XXXX : pdata->label or i2c client name, N : channel number)
-
-static struct lp55xx_led_config lp5521_led_config[] = {
- {
- .name = "red",
- .chan_nr = 0,
- .led_current = 50,
- .max_current = 130,
- }, {
- .name = "green",
- .chan_nr = 1,
- .led_current = 0,
- .max_current = 130,
- }, {
- .name = "blue",
- .chan_nr = 2,
- .led_current = 0,
- .max_current = 130,
- }
-};
-
-static int lp5521_setup(void)
-{
- /* setup HW resources */
-}
-
-static void lp5521_release(void)
-{
- /* Release HW resources */
-}
-
-static void lp5521_enable(bool state)
-{
- /* Control of chip enable signal */
-}
-
-static struct lp55xx_platform_data lp5521_platform_data = {
- .led_config = lp5521_led_config,
- .num_channels = ARRAY_SIZE(lp5521_led_config),
- .clock_mode = LP55XX_CLOCK_EXT,
- .setup_resources = lp5521_setup,
- .release_resources = lp5521_release,
- .enable = lp5521_enable,
-};
-
-If the current is set to 0 in the platform data, that channel is
-disabled and it is not visible in the sysfs.
diff --git a/Documentation/leds/leds-lp5523.rst b/Documentation/leds/leds-lp5523.rst
new file mode 100644
index 000000000000..7d7362a1dd57
--- /dev/null
+++ b/Documentation/leds/leds-lp5523.rst
@@ -0,0 +1,147 @@
+========================
+Kernel driver for lp5523
+========================
+
+* National Semiconductor LP5523 led driver chip
+* Datasheet: http://www.national.com/pf/LP/LP5523.html
+
+Authors: Mathias Nyman, Yuri Zaporozhets, Samu Onkalo
+Contact: Samu Onkalo (samu.p.onkalo-at-nokia.com)
+
+Description
+-----------
+LP5523 can drive up to 9 channels. Leds can be controlled directly via
+the led class control interface.
+The name of each channel is configurable in the platform data - name and label.
+There are three options to make the channel name.
+
+a) Define the 'name' in the platform data
+
+To make specific channel name, then use 'name' platform data.
+
+- /sys/class/leds/R1 (name: 'R1')
+- /sys/class/leds/B1 (name: 'B1')
+
+b) Use the 'label' with no 'name' field
+
+For one device name with channel number, then use 'label'.
+- /sys/class/leds/RGB:channelN (label: 'RGB', N: 0 ~ 8)
+
+c) Default
+
+If both fields are NULL, 'lp5523' is used by default.
+- /sys/class/leds/lp5523:channelN (N: 0 ~ 8)
+
+LP5523 has the internal program memory for running various LED patterns.
+There are two ways to run LED patterns.
+
+1) Legacy interface - enginex_mode, enginex_load and enginex_leds
+
+ Control interface for the engines:
+
+ x is 1 .. 3
+
+ enginex_mode:
+ disabled, load, run
+ enginex_load:
+ microcode load
+ enginex_leds:
+ led mux control
+
+ ::
+
+ cd /sys/class/leds/lp5523:channel2/device
+ echo "load" > engine3_mode
+ echo "9d80400004ff05ff437f0000" > engine3_load
+ echo "111111111" > engine3_leds
+ echo "run" > engine3_mode
+
+ To stop the engine::
+
+ echo "disabled" > engine3_mode
+
+2) Firmware interface - LP55xx common interface
+
+For the details, please refer to 'firmware' section in leds-lp55xx.txt
+
+LP5523 has three master faders. If a channel is mapped to one of
+the master faders, its output is dimmed based on the value of the master
+fader.
+
+For example::
+
+ echo "123000123" > master_fader_leds
+
+creates the following channel-fader mappings::
+
+ channel 0,6 to master_fader1
+ channel 1,7 to master_fader2
+ channel 2,8 to master_fader3
+
+Then, to have 25% of the original output on channel 0,6::
+
+ echo 64 > master_fader1
+
+To have 0% of the original output (i.e. no output) channel 1,7::
+
+ echo 0 > master_fader2
+
+To have 100% of the original output (i.e. no dimming) on channel 2,8::
+
+ echo 255 > master_fader3
+
+To clear all master fader controls::
+
+ echo "000000000" > master_fader_leds
+
+Selftest uses always the current from the platform data.
+
+Each channel contains led current settings.
+- /sys/class/leds/lp5523:channel2/led_current - RW
+- /sys/class/leds/lp5523:channel2/max_current - RO
+
+Format: 10x mA i.e 10 means 1.0 mA
+
+Example platform data::
+
+ static struct lp55xx_led_config lp5523_led_config[] = {
+ {
+ .name = "D1",
+ .chan_nr = 0,
+ .led_current = 50,
+ .max_current = 130,
+ },
+ ...
+ {
+ .chan_nr = 8,
+ .led_current = 50,
+ .max_current = 130,
+ }
+ };
+
+ static int lp5523_setup(void)
+ {
+ /* Setup HW resources */
+ }
+
+ static void lp5523_release(void)
+ {
+ /* Release HW resources */
+ }
+
+ static void lp5523_enable(bool state)
+ {
+ /* Control chip enable signal */
+ }
+
+ static struct lp55xx_platform_data lp5523_platform_data = {
+ .led_config = lp5523_led_config,
+ .num_channels = ARRAY_SIZE(lp5523_led_config),
+ .clock_mode = LP55XX_CLOCK_EXT,
+ .setup_resources = lp5523_setup,
+ .release_resources = lp5523_release,
+ .enable = lp5523_enable,
+ };
+
+Note
+ chan_nr can have values between 0 and 8.
diff --git a/Documentation/leds/leds-lp5523.txt b/Documentation/leds/leds-lp5523.txt
deleted file mode 100644
index 0961a060fc4d..000000000000
--- a/Documentation/leds/leds-lp5523.txt
+++ /dev/null
@@ -1,130 +0,0 @@
-Kernel driver for lp5523
-========================
-
-* National Semiconductor LP5523 led driver chip
-* Datasheet: http://www.national.com/pf/LP/LP5523.html
-
-Authors: Mathias Nyman, Yuri Zaporozhets, Samu Onkalo
-Contact: Samu Onkalo (samu.p.onkalo-at-nokia.com)
-
-Description
------------
-LP5523 can drive up to 9 channels. Leds can be controlled directly via
-the led class control interface.
-The name of each channel is configurable in the platform data - name and label.
-There are three options to make the channel name.
-
-a) Define the 'name' in the platform data
-To make specific channel name, then use 'name' platform data.
-/sys/class/leds/R1 (name: 'R1')
-/sys/class/leds/B1 (name: 'B1')
-
-b) Use the 'label' with no 'name' field
-For one device name with channel number, then use 'label'.
-/sys/class/leds/RGB:channelN (label: 'RGB', N: 0 ~ 8)
-
-c) Default
-If both fields are NULL, 'lp5523' is used by default.
-/sys/class/leds/lp5523:channelN (N: 0 ~ 8)
-
-LP5523 has the internal program memory for running various LED patterns.
-There are two ways to run LED patterns.
-
-1) Legacy interface - enginex_mode, enginex_load and enginex_leds
- Control interface for the engines:
- x is 1 .. 3
- enginex_mode : disabled, load, run
- enginex_load : microcode load
- enginex_leds : led mux control
-
- cd /sys/class/leds/lp5523:channel2/device
- echo "load" > engine3_mode
- echo "9d80400004ff05ff437f0000" > engine3_load
- echo "111111111" > engine3_leds
- echo "run" > engine3_mode
-
- To stop the engine:
- echo "disabled" > engine3_mode
-
-2) Firmware interface - LP55xx common interface
- For the details, please refer to 'firmware' section in leds-lp55xx.txt
-
-LP5523 has three master faders. If a channel is mapped to one of
-the master faders, its output is dimmed based on the value of the master
-fader.
-
-For example,
-
- echo "123000123" > master_fader_leds
-
-creates the following channel-fader mappings:
-
- channel 0,6 to master_fader1
- channel 1,7 to master_fader2
- channel 2,8 to master_fader3
-
-Then, to have 25% of the original output on channel 0,6:
-
- echo 64 > master_fader1
-
-To have 0% of the original output (i.e. no output) channel 1,7:
-
- echo 0 > master_fader2
-
-To have 100% of the original output (i.e. no dimming) on channel 2,8:
-
- echo 255 > master_fader3
-
-To clear all master fader controls:
-
- echo "000000000" > master_fader_leds
-
-Selftest uses always the current from the platform data.
-
-Each channel contains led current settings.
-/sys/class/leds/lp5523:channel2/led_current - RW
-/sys/class/leds/lp5523:channel2/max_current - RO
-Format: 10x mA i.e 10 means 1.0 mA
-
-Example platform data:
-
-Note - chan_nr can have values between 0 and 8.
-
-static struct lp55xx_led_config lp5523_led_config[] = {
- {
- .name = "D1",
- .chan_nr = 0,
- .led_current = 50,
- .max_current = 130,
- },
-...
- {
- .chan_nr = 8,
- .led_current = 50,
- .max_current = 130,
- }
-};
-
-static int lp5523_setup(void)
-{
- /* Setup HW resources */
-}
-
-static void lp5523_release(void)
-{
- /* Release HW resources */
-}
-
-static void lp5523_enable(bool state)
-{
- /* Control chip enable signal */
-}
-
-static struct lp55xx_platform_data lp5523_platform_data = {
- .led_config = lp5523_led_config,
- .num_channels = ARRAY_SIZE(lp5523_led_config),
- .clock_mode = LP55XX_CLOCK_EXT,
- .setup_resources = lp5523_setup,
- .release_resources = lp5523_release,
- .enable = lp5523_enable,
-};
diff --git a/Documentation/leds/leds-lp5562.rst b/Documentation/leds/leds-lp5562.rst
new file mode 100644
index 000000000000..79bbb2487ff6
--- /dev/null
+++ b/Documentation/leds/leds-lp5562.rst
@@ -0,0 +1,137 @@
+========================
+Kernel driver for lp5562
+========================
+
+* TI LP5562 LED Driver
+
+Author: Milo(Woogyom) Kim <milo.kim@ti.com>
+
+Description
+===========
+
+ LP5562 can drive up to 4 channels. R/G/B and White.
+ LEDs can be controlled directly via the led class control interface.
+
+ All four channels can be also controlled using the engine micro programs.
+ LP5562 has the internal program memory for running various LED patterns.
+ For the details, please refer to 'firmware' section in leds-lp55xx.txt
+
+Device attribute
+================
+
+engine_mux
+ 3 Engines are allocated in LP5562, but the number of channel is 4.
+ Therefore each channel should be mapped to the engine number.
+
+ Value: RGB or W
+
+ This attribute is used for programming LED data with the firmware interface.
+ Unlike the LP5521/LP5523/55231, LP5562 has unique feature for the engine mux,
+ so additional sysfs is required
+
+ LED Map
+
+ ===== === ===============================
+ Red ... Engine 1 (fixed)
+ Green ... Engine 2 (fixed)
+ Blue ... Engine 3 (fixed)
+ White ... Engine 1 or 2 or 3 (selective)
+ ===== === ===============================
+
+How to load the program data using engine_mux
+=============================================
+
+ Before loading the LP5562 program data, engine_mux should be written between
+ the engine selection and loading the firmware.
+ Engine mux has two different mode, RGB and W.
+ RGB is used for loading RGB program data, W is used for W program data.
+
+ For example, run blinking green channel pattern::
+
+ echo 2 > /sys/bus/i2c/devices/xxxx/select_engine # 2 is for green channel
+ echo "RGB" > /sys/bus/i2c/devices/xxxx/engine_mux # engine mux for RGB
+ echo 1 > /sys/class/firmware/lp5562/loading
+ echo "4000600040FF6000" > /sys/class/firmware/lp5562/data
+ echo 0 > /sys/class/firmware/lp5562/loading
+ echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
+
+ To run a blinking white pattern::
+
+ echo 1 or 2 or 3 > /sys/bus/i2c/devices/xxxx/select_engine
+ echo "W" > /sys/bus/i2c/devices/xxxx/engine_mux
+ echo 1 > /sys/class/firmware/lp5562/loading
+ echo "4000600040FF6000" > /sys/class/firmware/lp5562/data
+ echo 0 > /sys/class/firmware/lp5562/loading
+ echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
+
+How to load the predefined patterns
+===================================
+
+ Please refer to 'leds-lp55xx.txt"
+
+Setting Current of Each Channel
+===============================
+
+ Like LP5521 and LP5523/55231, LP5562 provides LED current settings.
+ The 'led_current' and 'max_current' are used.
+
+Example of Platform data
+========================
+
+::
+
+ static struct lp55xx_led_config lp5562_led_config[] = {
+ {
+ .name = "R",
+ .chan_nr = 0,
+ .led_current = 20,
+ .max_current = 40,
+ },
+ {
+ .name = "G",
+ .chan_nr = 1,
+ .led_current = 20,
+ .max_current = 40,
+ },
+ {
+ .name = "B",
+ .chan_nr = 2,
+ .led_current = 20,
+ .max_current = 40,
+ },
+ {
+ .name = "W",
+ .chan_nr = 3,
+ .led_current = 20,
+ .max_current = 40,
+ },
+ };
+
+ static int lp5562_setup(void)
+ {
+ /* setup HW resources */
+ }
+
+ static void lp5562_release(void)
+ {
+ /* Release HW resources */
+ }
+
+ static void lp5562_enable(bool state)
+ {
+ /* Control of chip enable signal */
+ }
+
+ static struct lp55xx_platform_data lp5562_platform_data = {
+ .led_config = lp5562_led_config,
+ .num_channels = ARRAY_SIZE(lp5562_led_config),
+ .setup_resources = lp5562_setup,
+ .release_resources = lp5562_release,
+ .enable = lp5562_enable,
+ };
+
+To configure the platform specific data, lp55xx_platform_data structure is used
+
+
+If the current is set to 0 in the platform data, that channel is
+disabled and it is not visible in the sysfs.
diff --git a/Documentation/leds/leds-lp5562.txt b/Documentation/leds/leds-lp5562.txt
deleted file mode 100644
index 5a823ff6b393..000000000000
--- a/Documentation/leds/leds-lp5562.txt
+++ /dev/null
@@ -1,120 +0,0 @@
-Kernel driver for LP5562
-========================
-
-* TI LP5562 LED Driver
-
-Author: Milo(Woogyom) Kim <milo.kim@ti.com>
-
-Description
-
- LP5562 can drive up to 4 channels. R/G/B and White.
- LEDs can be controlled directly via the led class control interface.
-
- All four channels can be also controlled using the engine micro programs.
- LP5562 has the internal program memory for running various LED patterns.
- For the details, please refer to 'firmware' section in leds-lp55xx.txt
-
-Device attribute: engine_mux
-
- 3 Engines are allocated in LP5562, but the number of channel is 4.
- Therefore each channel should be mapped to the engine number.
- Value : RGB or W
-
- This attribute is used for programming LED data with the firmware interface.
- Unlike the LP5521/LP5523/55231, LP5562 has unique feature for the engine mux,
- so additional sysfs is required.
-
- LED Map
- Red ... Engine 1 (fixed)
- Green ... Engine 2 (fixed)
- Blue ... Engine 3 (fixed)
- White ... Engine 1 or 2 or 3 (selective)
-
-How to load the program data using engine_mux
-
- Before loading the LP5562 program data, engine_mux should be written between
- the engine selection and loading the firmware.
- Engine mux has two different mode, RGB and W.
- RGB is used for loading RGB program data, W is used for W program data.
-
- For example, run blinking green channel pattern,
- echo 2 > /sys/bus/i2c/devices/xxxx/select_engine # 2 is for green channel
- echo "RGB" > /sys/bus/i2c/devices/xxxx/engine_mux # engine mux for RGB
- echo 1 > /sys/class/firmware/lp5562/loading
- echo "4000600040FF6000" > /sys/class/firmware/lp5562/data
- echo 0 > /sys/class/firmware/lp5562/loading
- echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
-
- To run a blinking white pattern,
- echo 1 or 2 or 3 > /sys/bus/i2c/devices/xxxx/select_engine
- echo "W" > /sys/bus/i2c/devices/xxxx/engine_mux
- echo 1 > /sys/class/firmware/lp5562/loading
- echo "4000600040FF6000" > /sys/class/firmware/lp5562/data
- echo 0 > /sys/class/firmware/lp5562/loading
- echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
-
-How to load the predefined patterns
-
- Please refer to 'leds-lp55xx.txt"
-
-Setting Current of Each Channel
-
- Like LP5521 and LP5523/55231, LP5562 provides LED current settings.
- The 'led_current' and 'max_current' are used.
-
-(Example of Platform data)
-
-To configure the platform specific data, lp55xx_platform_data structure is used.
-
-static struct lp55xx_led_config lp5562_led_config[] = {
- {
- .name = "R",
- .chan_nr = 0,
- .led_current = 20,
- .max_current = 40,
- },
- {
- .name = "G",
- .chan_nr = 1,
- .led_current = 20,
- .max_current = 40,
- },
- {
- .name = "B",
- .chan_nr = 2,
- .led_current = 20,
- .max_current = 40,
- },
- {
- .name = "W",
- .chan_nr = 3,
- .led_current = 20,
- .max_current = 40,
- },
-};
-
-static int lp5562_setup(void)
-{
- /* setup HW resources */
-}
-
-static void lp5562_release(void)
-{
- /* Release HW resources */
-}
-
-static void lp5562_enable(bool state)
-{
- /* Control of chip enable signal */
-}
-
-static struct lp55xx_platform_data lp5562_platform_data = {
- .led_config = lp5562_led_config,
- .num_channels = ARRAY_SIZE(lp5562_led_config),
- .setup_resources = lp5562_setup,
- .release_resources = lp5562_release,
- .enable = lp5562_enable,
-};
-
-If the current is set to 0 in the platform data, that channel is
-disabled and it is not visible in the sysfs.
diff --git a/Documentation/leds/leds-lp55xx.rst b/Documentation/leds/leds-lp55xx.rst
new file mode 100644
index 000000000000..632e41cec0b5
--- /dev/null
+++ b/Documentation/leds/leds-lp55xx.rst
@@ -0,0 +1,224 @@
+=================================================
+LP5521/LP5523/LP55231/LP5562/LP8501 Common Driver
+=================================================
+
+Authors: Milo(Woogyom) Kim <milo.kim@ti.com>
+
+Description
+-----------
+LP5521, LP5523/55231, LP5562 and LP8501 have common features as below.
+
+ Register access via the I2C
+ Device initialization/deinitialization
+ Create LED class devices for multiple output channels
+ Device attributes for user-space interface
+ Program memory for running LED patterns
+
+The LP55xx common driver provides these features using exported functions.
+
+ lp55xx_init_device() / lp55xx_deinit_device()
+ lp55xx_register_leds() / lp55xx_unregister_leds()
+ lp55xx_regsister_sysfs() / lp55xx_unregister_sysfs()
+
+( Driver Structure Data )
+
+In lp55xx common driver, two different data structure is used.
+
+* lp55xx_led
+ control multi output LED channels such as led current, channel index.
+* lp55xx_chip
+ general chip control such like the I2C and platform data.
+
+For example, LP5521 has maximum 3 LED channels.
+LP5523/55231 has 9 output channels::
+
+ lp55xx_chip for LP5521 ... lp55xx_led #1
+ lp55xx_led #2
+ lp55xx_led #3
+
+ lp55xx_chip for LP5523 ... lp55xx_led #1
+ lp55xx_led #2
+ .
+ .
+ lp55xx_led #9
+
+( Chip Dependent Code )
+
+To support device specific configurations, special structure
+'lpxx_device_config' is used.
+
+ - Maximum number of channels
+ - Reset command, chip enable command
+ - Chip specific initialization
+ - Brightness control register access
+ - Setting LED output current
+ - Program memory address access for running patterns
+ - Additional device specific attributes
+
+( Firmware Interface )
+
+LP55xx family devices have the internal program memory for running
+various LED patterns.
+
+This pattern data is saved as a file in the user-land or
+hex byte string is written into the memory through the I2C.
+
+LP55xx common driver supports the firmware interface.
+
+LP55xx chips have three program engines.
+
+To load and run the pattern, the programming sequence is following.
+
+ (1) Select an engine number (1/2/3)
+ (2) Mode change to load
+ (3) Write pattern data into selected area
+ (4) Mode change to run
+
+The LP55xx common driver provides simple interfaces as below.
+
+select_engine:
+ Select which engine is used for running program
+run_engine:
+ Start program which is loaded via the firmware interface
+firmware:
+ Load program data
+
+In case of LP5523, one more command is required, 'enginex_leds'.
+It is used for selecting LED output(s) at each engine number.
+In more details, please refer to 'leds-lp5523.txt'.
+
+For example, run blinking pattern in engine #1 of LP5521::
+
+ echo 1 > /sys/bus/i2c/devices/xxxx/select_engine
+ echo 1 > /sys/class/firmware/lp5521/loading
+ echo "4000600040FF6000" > /sys/class/firmware/lp5521/data
+ echo 0 > /sys/class/firmware/lp5521/loading
+ echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
+
+For example, run blinking pattern in engine #3 of LP55231
+
+Two LEDs are configured as pattern output channels::
+
+ echo 3 > /sys/bus/i2c/devices/xxxx/select_engine
+ echo 1 > /sys/class/firmware/lp55231/loading
+ echo "9d0740ff7e0040007e00a0010000" > /sys/class/firmware/lp55231/data
+ echo 0 > /sys/class/firmware/lp55231/loading
+ echo "000001100" > /sys/bus/i2c/devices/xxxx/engine3_leds
+ echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
+
+To start blinking patterns in engine #2 and #3 simultaneously::
+
+ for idx in 2 3
+ do
+ echo $idx > /sys/class/leds/red/device/select_engine
+ sleep 0.1
+ echo 1 > /sys/class/firmware/lp5521/loading
+ echo "4000600040FF6000" > /sys/class/firmware/lp5521/data
+ echo 0 > /sys/class/firmware/lp5521/loading
+ done
+ echo 1 > /sys/class/leds/red/device/run_engine
+
+Here is another example for LP5523.
+
+Full LED strings are selected by 'engine2_leds'::
+
+ echo 2 > /sys/bus/i2c/devices/xxxx/select_engine
+ echo 1 > /sys/class/firmware/lp5523/loading
+ echo "9d80400004ff05ff437f0000" > /sys/class/firmware/lp5523/data
+ echo 0 > /sys/class/firmware/lp5523/loading
+ echo "111111111" > /sys/bus/i2c/devices/xxxx/engine2_leds
+ echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
+
+As soon as 'loading' is set to 0, registered callback is called.
+Inside the callback, the selected engine is loaded and memory is updated.
+To run programmed pattern, 'run_engine' attribute should be enabled.
+
+The pattern sequence of LP8501 is similar to LP5523.
+
+However pattern data is specific.
+
+Ex 1) Engine 1 is used::
+
+ echo 1 > /sys/bus/i2c/devices/xxxx/select_engine
+ echo 1 > /sys/class/firmware/lp8501/loading
+ echo "9d0140ff7e0040007e00a001c000" > /sys/class/firmware/lp8501/data
+ echo 0 > /sys/class/firmware/lp8501/loading
+ echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
+
+Ex 2) Engine 2 and 3 are used at the same time::
+
+ echo 2 > /sys/bus/i2c/devices/xxxx/select_engine
+ sleep 1
+ echo 1 > /sys/class/firmware/lp8501/loading
+ echo "9d0140ff7e0040007e00a001c000" > /sys/class/firmware/lp8501/data
+ echo 0 > /sys/class/firmware/lp8501/loading
+ sleep 1
+ echo 3 > /sys/bus/i2c/devices/xxxx/select_engine
+ sleep 1
+ echo 1 > /sys/class/firmware/lp8501/loading
+ echo "9d0340ff7e0040007e00a001c000" > /sys/class/firmware/lp8501/data
+ echo 0 > /sys/class/firmware/lp8501/loading
+ sleep 1
+ echo 1 > /sys/class/leds/d1/device/run_engine
+
+( 'run_engine' and 'firmware_cb' )
+
+The sequence of running the program data is common.
+
+But each device has own specific register addresses for commands.
+
+To support this, 'run_engine' and 'firmware_cb' are configurable in each driver.
+
+run_engine:
+ Control the selected engine
+firmware_cb:
+ The callback function after loading the firmware is done.
+
+ Chip specific commands for loading and updating program memory.
+
+( Predefined pattern data )
+
+Without the firmware interface, LP55xx driver provides another method for
+loading a LED pattern. That is 'predefined' pattern.
+
+A predefined pattern is defined in the platform data and load it(or them)
+via the sysfs if needed.
+
+To use the predefined pattern concept, 'patterns' and 'num_patterns' should be
+configured.
+
+Example of predefined pattern data::
+
+ /* mode_1: blinking data */
+ static const u8 mode_1[] = {
+ 0x40, 0x00, 0x60, 0x00, 0x40, 0xFF, 0x60, 0x00,
+ };
+
+ /* mode_2: always on */
+ static const u8 mode_2[] = { 0x40, 0xFF, };
+
+ struct lp55xx_predef_pattern board_led_patterns[] = {
+ {
+ .r = mode_1,
+ .size_r = ARRAY_SIZE(mode_1),
+ },
+ {
+ .b = mode_2,
+ .size_b = ARRAY_SIZE(mode_2),
+ },
+ }
+
+ struct lp55xx_platform_data lp5562_pdata = {
+ ...
+ .patterns = board_led_patterns,
+ .num_patterns = ARRAY_SIZE(board_led_patterns),
+ };
+
+Then, mode_1 and mode_2 can be run via through the sysfs::
+
+ echo 1 > /sys/bus/i2c/devices/xxxx/led_pattern # red blinking LED pattern
+ echo 2 > /sys/bus/i2c/devices/xxxx/led_pattern # blue LED always on
+
+To stop running pattern::
+
+ echo 0 > /sys/bus/i2c/devices/xxxx/led_pattern
diff --git a/Documentation/leds/leds-lp55xx.txt b/Documentation/leds/leds-lp55xx.txt
deleted file mode 100644
index e23fa91ea722..000000000000
--- a/Documentation/leds/leds-lp55xx.txt
+++ /dev/null
@@ -1,194 +0,0 @@
-LP5521/LP5523/LP55231/LP5562/LP8501 Common Driver
-=================================================
-
-Authors: Milo(Woogyom) Kim <milo.kim@ti.com>
-
-Description
------------
-LP5521, LP5523/55231, LP5562 and LP8501 have common features as below.
-
- Register access via the I2C
- Device initialization/deinitialization
- Create LED class devices for multiple output channels
- Device attributes for user-space interface
- Program memory for running LED patterns
-
-The LP55xx common driver provides these features using exported functions.
- lp55xx_init_device() / lp55xx_deinit_device()
- lp55xx_register_leds() / lp55xx_unregister_leds()
- lp55xx_regsister_sysfs() / lp55xx_unregister_sysfs()
-
-( Driver Structure Data )
-
-In lp55xx common driver, two different data structure is used.
-
-o lp55xx_led
- control multi output LED channels such as led current, channel index.
-o lp55xx_chip
- general chip control such like the I2C and platform data.
-
-For example, LP5521 has maximum 3 LED channels.
-LP5523/55231 has 9 output channels.
-
-lp55xx_chip for LP5521 ... lp55xx_led #1
- lp55xx_led #2
- lp55xx_led #3
-
-lp55xx_chip for LP5523 ... lp55xx_led #1
- lp55xx_led #2
- .
- .
- lp55xx_led #9
-
-( Chip Dependent Code )
-
-To support device specific configurations, special structure
-'lpxx_device_config' is used.
-
- Maximum number of channels
- Reset command, chip enable command
- Chip specific initialization
- Brightness control register access
- Setting LED output current
- Program memory address access for running patterns
- Additional device specific attributes
-
-( Firmware Interface )
-
-LP55xx family devices have the internal program memory for running
-various LED patterns.
-This pattern data is saved as a file in the user-land or
-hex byte string is written into the memory through the I2C.
-LP55xx common driver supports the firmware interface.
-
-LP55xx chips have three program engines.
-To load and run the pattern, the programming sequence is following.
- (1) Select an engine number (1/2/3)
- (2) Mode change to load
- (3) Write pattern data into selected area
- (4) Mode change to run
-
-The LP55xx common driver provides simple interfaces as below.
-select_engine : Select which engine is used for running program
-run_engine : Start program which is loaded via the firmware interface
-firmware : Load program data
-
-In case of LP5523, one more command is required, 'enginex_leds'.
-It is used for selecting LED output(s) at each engine number.
-In more details, please refer to 'leds-lp5523.txt'.
-
-For example, run blinking pattern in engine #1 of LP5521
-echo 1 > /sys/bus/i2c/devices/xxxx/select_engine
-echo 1 > /sys/class/firmware/lp5521/loading
-echo "4000600040FF6000" > /sys/class/firmware/lp5521/data
-echo 0 > /sys/class/firmware/lp5521/loading
-echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
-
-For example, run blinking pattern in engine #3 of LP55231
-Two LEDs are configured as pattern output channels.
-echo 3 > /sys/bus/i2c/devices/xxxx/select_engine
-echo 1 > /sys/class/firmware/lp55231/loading
-echo "9d0740ff7e0040007e00a0010000" > /sys/class/firmware/lp55231/data
-echo 0 > /sys/class/firmware/lp55231/loading
-echo "000001100" > /sys/bus/i2c/devices/xxxx/engine3_leds
-echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
-
-To start blinking patterns in engine #2 and #3 simultaneously,
-for idx in 2 3
-do
- echo $idx > /sys/class/leds/red/device/select_engine
- sleep 0.1
- echo 1 > /sys/class/firmware/lp5521/loading
- echo "4000600040FF6000" > /sys/class/firmware/lp5521/data
- echo 0 > /sys/class/firmware/lp5521/loading
-done
-echo 1 > /sys/class/leds/red/device/run_engine
-
-Here is another example for LP5523.
-Full LED strings are selected by 'engine2_leds'.
-echo 2 > /sys/bus/i2c/devices/xxxx/select_engine
-echo 1 > /sys/class/firmware/lp5523/loading
-echo "9d80400004ff05ff437f0000" > /sys/class/firmware/lp5523/data
-echo 0 > /sys/class/firmware/lp5523/loading
-echo "111111111" > /sys/bus/i2c/devices/xxxx/engine2_leds
-echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
-
-As soon as 'loading' is set to 0, registered callback is called.
-Inside the callback, the selected engine is loaded and memory is updated.
-To run programmed pattern, 'run_engine' attribute should be enabled.
-
-The pattern sequence of LP8501 is similar to LP5523.
-However pattern data is specific.
-Ex 1) Engine 1 is used
-echo 1 > /sys/bus/i2c/devices/xxxx/select_engine
-echo 1 > /sys/class/firmware/lp8501/loading
-echo "9d0140ff7e0040007e00a001c000" > /sys/class/firmware/lp8501/data
-echo 0 > /sys/class/firmware/lp8501/loading
-echo 1 > /sys/bus/i2c/devices/xxxx/run_engine
-
-Ex 2) Engine 2 and 3 are used at the same time
-echo 2 > /sys/bus/i2c/devices/xxxx/select_engine
-sleep 1
-echo 1 > /sys/class/firmware/lp8501/loading
-echo "9d0140ff7e0040007e00a001c000" > /sys/class/firmware/lp8501/data
-echo 0 > /sys/class/firmware/lp8501/loading
-sleep 1
-echo 3 > /sys/bus/i2c/devices/xxxx/select_engine
-sleep 1
-echo 1 > /sys/class/firmware/lp8501/loading
-echo "9d0340ff7e0040007e00a001c000" > /sys/class/firmware/lp8501/data
-echo 0 > /sys/class/firmware/lp8501/loading
-sleep 1
-echo 1 > /sys/class/leds/d1/device/run_engine
-
-( 'run_engine' and 'firmware_cb' )
-The sequence of running the program data is common.
-But each device has own specific register addresses for commands.
-To support this, 'run_engine' and 'firmware_cb' are configurable in each driver.
-run_engine : Control the selected engine
-firmware_cb : The callback function after loading the firmware is done.
- Chip specific commands for loading and updating program memory.
-
-( Predefined pattern data )
-
-Without the firmware interface, LP55xx driver provides another method for
-loading a LED pattern. That is 'predefined' pattern.
-A predefined pattern is defined in the platform data and load it(or them)
-via the sysfs if needed.
-To use the predefined pattern concept, 'patterns' and 'num_patterns' should be
-configured.
-
- Example of predefined pattern data:
-
- /* mode_1: blinking data */
- static const u8 mode_1[] = {
- 0x40, 0x00, 0x60, 0x00, 0x40, 0xFF, 0x60, 0x00,
- };
-
- /* mode_2: always on */
- static const u8 mode_2[] = { 0x40, 0xFF, };
-
- struct lp55xx_predef_pattern board_led_patterns[] = {
- {
- .r = mode_1,
- .size_r = ARRAY_SIZE(mode_1),
- },
- {
- .b = mode_2,
- .size_b = ARRAY_SIZE(mode_2),
- },
- }
-
- struct lp55xx_platform_data lp5562_pdata = {
- ...
- .patterns = board_led_patterns,
- .num_patterns = ARRAY_SIZE(board_led_patterns),
- };
-
-Then, mode_1 and mode_2 can be run via through the sysfs.
-
- echo 1 > /sys/bus/i2c/devices/xxxx/led_pattern # red blinking LED pattern
- echo 2 > /sys/bus/i2c/devices/xxxx/led_pattern # blue LED always on
-
-To stop running pattern,
- echo 0 > /sys/bus/i2c/devices/xxxx/led_pattern
diff --git a/Documentation/leds/leds-mlxcpld.rst b/Documentation/leds/leds-mlxcpld.rst
new file mode 100644
index 000000000000..528582429e0b
--- /dev/null
+++ b/Documentation/leds/leds-mlxcpld.rst
@@ -0,0 +1,118 @@
+=======================================
+Kernel driver for Mellanox systems LEDs
+=======================================
+
+Provide system LED support for the nex Mellanox systems:
+"msx6710", "msx6720", "msb7700", "msn2700", "msx1410",
+"msn2410", "msb7800", "msn2740", "msn2100".
+
+Description
+-----------
+Driver provides the following LEDs for the systems "msx6710", "msx6720",
+"msb7700", "msn2700", "msx1410", "msn2410", "msb7800", "msn2740":
+
+ - mlxcpld:fan1:green
+ - mlxcpld:fan1:red
+ - mlxcpld:fan2:green
+ - mlxcpld:fan2:red
+ - mlxcpld:fan3:green
+ - mlxcpld:fan3:red
+ - mlxcpld:fan4:green
+ - mlxcpld:fan4:red
+ - mlxcpld:psu:green
+ - mlxcpld:psu:red
+ - mlxcpld:status:green
+ - mlxcpld:status:red
+
+ "status"
+ - CPLD reg offset: 0x20
+ - Bits [3:0]
+
+ "psu"
+ - CPLD reg offset: 0x20
+ - Bits [7:4]
+
+ "fan1"
+ - CPLD reg offset: 0x21
+ - Bits [3:0]
+
+ "fan2"
+ - CPLD reg offset: 0x21
+ - Bits [7:4]
+
+ "fan3"
+ - CPLD reg offset: 0x22
+ - Bits [3:0]
+
+ "fan4"
+ - CPLD reg offset: 0x22
+ - Bits [7:4]
+
+ Color mask for all the above LEDs:
+
+ [bit3,bit2,bit1,bit0] or
+ [bit7,bit6,bit5,bit4]:
+
+ - [0,0,0,0] = LED OFF
+ - [0,1,0,1] = Red static ON
+ - [1,1,0,1] = Green static ON
+ - [0,1,1,0] = Red blink 3Hz
+ - [1,1,1,0] = Green blink 3Hz
+ - [0,1,1,1] = Red blink 6Hz
+ - [1,1,1,1] = Green blink 6Hz
+
+Driver provides the following LEDs for the system "msn2100":
+
+ - mlxcpld:fan:green
+ - mlxcpld:fan:red
+ - mlxcpld:psu1:green
+ - mlxcpld:psu1:red
+ - mlxcpld:psu2:green
+ - mlxcpld:psu2:red
+ - mlxcpld:status:green
+ - mlxcpld:status:red
+ - mlxcpld:uid:blue
+
+ "status"
+ - CPLD reg offset: 0x20
+ - Bits [3:0]
+
+ "fan"
+ - CPLD reg offset: 0x21
+ - Bits [3:0]
+
+ "psu1"
+ - CPLD reg offset: 0x23
+ - Bits [3:0]
+
+ "psu2"
+ - CPLD reg offset: 0x23
+ - Bits [7:4]
+
+ "uid"
+ - CPLD reg offset: 0x24
+ - Bits [3:0]
+
+ Color mask for all the above LEDs, excepted uid:
+
+ [bit3,bit2,bit1,bit0] or
+ [bit7,bit6,bit5,bit4]:
+
+ - [0,0,0,0] = LED OFF
+ - [0,1,0,1] = Red static ON
+ - [1,1,0,1] = Green static ON
+ - [0,1,1,0] = Red blink 3Hz
+ - [1,1,1,0] = Green blink 3Hz
+ - [0,1,1,1] = Red blink 6Hz
+ - [1,1,1,1] = Green blink 6Hz
+
+ Color mask for uid LED:
+ [bit3,bit2,bit1,bit0]:
+
+ - [0,0,0,0] = LED OFF
+ - [1,1,0,1] = Blue static ON
+ - [1,1,1,0] = Blue blink 3Hz
+ - [1,1,1,1] = Blue blink 6Hz
+
+Driver supports HW blinking at 3Hz and 6Hz frequency (50% duty cycle).
+For 3Hz duty cylce is about 167 msec, for 6Hz is about 83 msec.
diff --git a/Documentation/leds/leds-mlxcpld.txt b/Documentation/leds/leds-mlxcpld.txt
deleted file mode 100644
index a0e8fd457117..000000000000
--- a/Documentation/leds/leds-mlxcpld.txt
+++ /dev/null
@@ -1,110 +0,0 @@
-Kernel driver for Mellanox systems LEDs
-=======================================
-
-Provide system LED support for the nex Mellanox systems:
-"msx6710", "msx6720", "msb7700", "msn2700", "msx1410",
-"msn2410", "msb7800", "msn2740", "msn2100".
-
-Description
------------
-Driver provides the following LEDs for the systems "msx6710", "msx6720",
-"msb7700", "msn2700", "msx1410", "msn2410", "msb7800", "msn2740":
- mlxcpld:fan1:green
- mlxcpld:fan1:red
- mlxcpld:fan2:green
- mlxcpld:fan2:red
- mlxcpld:fan3:green
- mlxcpld:fan3:red
- mlxcpld:fan4:green
- mlxcpld:fan4:red
- mlxcpld:psu:green
- mlxcpld:psu:red
- mlxcpld:status:green
- mlxcpld:status:red
-
- "status"
- CPLD reg offset: 0x20
- Bits [3:0]
-
- "psu"
- CPLD reg offset: 0x20
- Bits [7:4]
-
- "fan1"
- CPLD reg offset: 0x21
- Bits [3:0]
-
- "fan2"
- CPLD reg offset: 0x21
- Bits [7:4]
-
- "fan3"
- CPLD reg offset: 0x22
- Bits [3:0]
-
- "fan4"
- CPLD reg offset: 0x22
- Bits [7:4]
-
- Color mask for all the above LEDs:
- [bit3,bit2,bit1,bit0] or
- [bit7,bit6,bit5,bit4]:
- [0,0,0,0] = LED OFF
- [0,1,0,1] = Red static ON
- [1,1,0,1] = Green static ON
- [0,1,1,0] = Red blink 3Hz
- [1,1,1,0] = Green blink 3Hz
- [0,1,1,1] = Red blink 6Hz
- [1,1,1,1] = Green blink 6Hz
-
-Driver provides the following LEDs for the system "msn2100":
- mlxcpld:fan:green
- mlxcpld:fan:red
- mlxcpld:psu1:green
- mlxcpld:psu1:red
- mlxcpld:psu2:green
- mlxcpld:psu2:red
- mlxcpld:status:green
- mlxcpld:status:red
- mlxcpld:uid:blue
-
- "status"
- CPLD reg offset: 0x20
- Bits [3:0]
-
- "fan"
- CPLD reg offset: 0x21
- Bits [3:0]
-
- "psu1"
- CPLD reg offset: 0x23
- Bits [3:0]
-
- "psu2"
- CPLD reg offset: 0x23
- Bits [7:4]
-
- "uid"
- CPLD reg offset: 0x24
- Bits [3:0]
-
- Color mask for all the above LEDs, excepted uid:
- [bit3,bit2,bit1,bit0] or
- [bit7,bit6,bit5,bit4]:
- [0,0,0,0] = LED OFF
- [0,1,0,1] = Red static ON
- [1,1,0,1] = Green static ON
- [0,1,1,0] = Red blink 3Hz
- [1,1,1,0] = Green blink 3Hz
- [0,1,1,1] = Red blink 6Hz
- [1,1,1,1] = Green blink 6Hz
-
- Color mask for uid LED:
- [bit3,bit2,bit1,bit0]:
- [0,0,0,0] = LED OFF
- [1,1,0,1] = Blue static ON
- [1,1,1,0] = Blue blink 3Hz
- [1,1,1,1] = Blue blink 6Hz
-
-Driver supports HW blinking at 3Hz and 6Hz frequency (50% duty cycle).
-For 3Hz duty cylce is about 167 msec, for 6Hz is about 83 msec.
diff --git a/Documentation/leds/ledtrig-oneshot.txt b/Documentation/leds/ledtrig-oneshot.rst
similarity index 90%
rename from Documentation/leds/ledtrig-oneshot.txt
rename to Documentation/leds/ledtrig-oneshot.rst
index fe57474a12e2..69fa3ea1d554 100644
--- a/Documentation/leds/ledtrig-oneshot.txt
+++ b/Documentation/leds/ledtrig-oneshot.rst
@@ -1,3 +1,4 @@
+====================
One-shot LED Trigger
====================
@@ -17,27 +18,27 @@ additional "invert" property specifies if the LED has to stay off (normal) or
on (inverted) when not rearmed.
The trigger can be activated from user space on led class devices as shown
-below:
+below::
echo oneshot > trigger
This adds sysfs attributes to the LED that are documented in:
Documentation/ABI/testing/sysfs-class-led-trigger-oneshot
-Example use-case: network devices, initialization:
+Example use-case: network devices, initialization::
echo oneshot > trigger # set trigger for this led
echo 33 > delay_on # blink at 1 / (33 + 33) Hz on continuous traffic
echo 33 > delay_off
-interface goes up:
+interface goes up::
echo 1 > invert # set led as normally-on, turn the led on
-packet received/transmitted:
+packet received/transmitted::
echo 1 > shot # led starts blinking, ignored if already blinking
-interface goes down
+interface goes down::
echo 0 > invert # set led as normally-off, turn the led off
diff --git a/Documentation/leds/ledtrig-transient.txt b/Documentation/leds/ledtrig-transient.rst
similarity index 81%
rename from Documentation/leds/ledtrig-transient.txt
rename to Documentation/leds/ledtrig-transient.rst
index 3bd38b487df1..d921dc830cd0 100644
--- a/Documentation/leds/ledtrig-transient.txt
+++ b/Documentation/leds/ledtrig-transient.rst
@@ -1,3 +1,4 @@
+=====================
LED Transient Trigger
=====================
@@ -62,12 +63,13 @@ non-transient state. When driver gets suspended, irrespective of the transient
state, the LED state changes to LED_OFF.
Transient trigger can be enabled and disabled from user space on led class
-devices, that support this trigger as shown below:
+devices, that support this trigger as shown below::
-echo transient > trigger
-echo none > trigger
+ echo transient > trigger
+ echo none > trigger
-NOTE: Add a new property trigger state to control the state.
+NOTE:
+ Add a new property trigger state to control the state.
This trigger exports three properties, activate, state, and duration. When
transient trigger is activated these properties are set to default values.
@@ -79,7 +81,8 @@ transient trigger is activated these properties are set to default values.
- state allows user to specify a transient state to be held for the specified
duration.
- activate - one shot timer activate mechanism.
+ activate
+ - one shot timer activate mechanism.
1 when activated, 0 when deactivated.
default value is zero when transient trigger is enabled,
to allow duration to be set.
@@ -89,12 +92,14 @@ transient trigger is activated these properties are set to default values.
deactivated state indicates that there is no active timer
running.
- duration - one shot timer value. When activate is set, duration value
+ duration
+ - one shot timer value. When activate is set, duration value
is used to start a timer that runs once. This value doesn't
get changed by the trigger unless user does a set via
echo new_value > duration
- state - transient state to be held. It has two values 0 or 1. 0 maps
+ state
+ - transient state to be held. It has two values 0 or 1. 0 maps
to LED_OFF and 1 maps to LED_FULL. The specified state is
held for the duration of the one shot timer and then the
state gets changed to the non-transient state which is the
@@ -114,39 +119,49 @@ When timer expires activate goes back to deactivated state, duration is left
at the set value to be used when activate is set at a future time. This will
allow user app to set the time once and activate it to run it once for the
specified value as needed. When timer expires, state is restored to the
-non-transient state which is the inverse of the transient state.
+non-transient state which is the inverse of the transient state:
- echo 1 > activate - starts timer = duration when duration is not 0.
- echo 0 > activate - cancels currently running timer.
- echo n > duration - stores timer value to be used upon next
- activate. Currently active timer if
- any, continues to run for the specified time.
- echo 0 > duration - stores timer value to be used upon next
- activate. Currently active timer if any,
- continues to run for the specified time.
- echo 1 > state - stores desired transient state LED_FULL to be
+ ================= ===============================================
+ echo 1 > activate starts timer = duration when duration is not 0.
+ echo 0 > activate cancels currently running timer.
+ echo n > duration stores timer value to be used upon next
+ activate. Currently active timer if
+ any, continues to run for the specified time.
+ echo 0 > duration stores timer value to be used upon next
+ activate. Currently active timer if any,
+ continues to run for the specified time.
+ echo 1 > state stores desired transient state LED_FULL to be
held for the specified duration.
- echo 0 > state - stores desired transient state LED_OFF to be
+ echo 0 > state stores desired transient state LED_OFF to be
held for the specified duration.
+ ================= ===============================================
+
+What is not supported
+=====================
-What is not supported:
-======================
- Timer activation is one shot and extending and/or shortening the timer
is not supported.
-Example use-case 1:
+Examples
+========
+
+use-case 1::
+
echo transient > trigger
echo n > duration
echo 1 > state
-repeat the following step as needed:
+
+repeat the following step as needed::
+
echo 1 > activate - start timer = duration to run once
echo 1 > activate - start timer = duration to run once
echo none > trigger
This trigger is intended to be used for for the following example use cases:
+
- Control of vibrate (phones, tablets etc.) hardware by user space app.
- Use of LED by user space app as activity indicator.
- Use of LED by user space app as a kind of watchdog indicator -- as
- long as the app is alive, it can keep the LED illuminated, if it dies
- the LED will be extinguished automatically.
+ long as the app is alive, it can keep the LED illuminated, if it dies
+ the LED will be extinguished automatically.
- Use by any user space app that needs a transient GPIO output.
diff --git a/Documentation/leds/ledtrig-usbport.txt b/Documentation/leds/ledtrig-usbport.rst
similarity index 86%
rename from Documentation/leds/ledtrig-usbport.txt
rename to Documentation/leds/ledtrig-usbport.rst
index 69f54bfb4789..37c2505bfd57 100644
--- a/Documentation/leds/ledtrig-usbport.txt
+++ b/Documentation/leds/ledtrig-usbport.rst
@@ -1,3 +1,4 @@
+====================
USB port LED trigger
====================
@@ -10,14 +11,18 @@ listed as separated entries in a "ports" subdirectory. Selecting is handled by
echoing "1" to a chosen port.
Please note that this trigger allows selecting multiple USB ports for a single
-LED. This can be useful in two cases:
+LED.
+
+This can be useful in two cases:
1) Device with single USB LED and few physical ports
+====================================================
In such a case LED will be turned on as long as there is at least one connected
USB device.
2) Device with a physical port handled by few controllers
+=========================================================
Some devices may have one controller per PHY standard. E.g. USB 3.0 physical
port may be handled by ohci-platform, ehci-platform and xhci-hcd. If there is
@@ -25,14 +30,14 @@ only one LED user will most likely want to assign ports from all 3 hubs.
This trigger can be activated from user space on led class devices as shown
-below:
+below::
echo usbport > trigger
This adds sysfs attributes to the LED that are documented in:
Documentation/ABI/testing/sysfs-class-led-trigger-usbport
-Example use-case:
+Example use-case::
echo usbport > trigger
echo 1 > ports/usb1-port1
diff --git a/Documentation/leds/uleds.txt b/Documentation/leds/uleds.rst
similarity index 95%
rename from Documentation/leds/uleds.txt
rename to Documentation/leds/uleds.rst
index 13e375a580f9..83221098009c 100644
--- a/Documentation/leds/uleds.txt
+++ b/Documentation/leds/uleds.rst
@@ -1,3 +1,4 @@
+==============
Userspace LEDs
==============
@@ -10,12 +11,12 @@ Usage
When the driver is loaded, a character device is created at /dev/uleds. To
create a new LED class device, open /dev/uleds and write a uleds_user_dev
-structure to it (found in kernel public header file linux/uleds.h).
+structure to it (found in kernel public header file linux/uleds.h)::
#define LED_MAX_NAME_SIZE 64
struct uleds_user_dev {
- char name[LED_MAX_NAME_SIZE];
+ char name[LED_MAX_NAME_SIZE];
};
A new LED class device will be created with the name given. The name can be
diff --git a/MAINTAINERS b/MAINTAINERS
index ddd526efcb46..6696779c0826 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -10045,7 +10045,7 @@ L: linux-leds@vger.kernel.org
S: Supported
F: drivers/leds/leds-mlxcpld.c
F: drivers/leds/leds-mlxreg.c
-F: Documentation/leds/leds-mlxcpld.txt
+F: Documentation/leds/leds-mlxcpld.rst
MELLANOX PLATFORM DRIVER
M: Vadim Pasternak <vadimp@mellanox.com>
diff --git a/drivers/leds/trigger/Kconfig b/drivers/leds/trigger/Kconfig
index 23cc85e2e0e5..24e36eef95d3 100644
--- a/drivers/leds/trigger/Kconfig
+++ b/drivers/leds/trigger/Kconfig
@@ -14,7 +14,7 @@ config LEDS_TRIGGER_TIMER
This allows LEDs to be controlled by a programmable timer
via sysfs. Some LED hardware can be programmed to start
blinking the LED without any further software interaction.
- For more details read Documentation/leds/leds-class.txt.
+ For more details read Documentation/leds/leds-class.rst.
If unsure, say Y.
diff --git a/drivers/leds/trigger/ledtrig-transient.c b/drivers/leds/trigger/ledtrig-transient.c
index a80bb82aacc2..80635183fac8 100644
--- a/drivers/leds/trigger/ledtrig-transient.c
+++ b/drivers/leds/trigger/ledtrig-transient.c
@@ -3,7 +3,7 @@
// LED Kernel Transient Trigger
//
// Transient trigger allows one shot timer activation. Please refer to
-// Documentation/leds/ledtrig-transient.txt for details
+// Documentation/leds/ledtrig-transient.rst for details
// Copyright (C) 2012 Shuah Khan <shuahkhan@gmail.com>
//
// Based on Richard Purdie's ledtrig-timer.c and Atsushi Nemoto's
diff --git a/net/netfilter/Kconfig b/net/netfilter/Kconfig
index 1f4a4d9f80b4..21b13e75b0a9 100644
--- a/net/netfilter/Kconfig
+++ b/net/netfilter/Kconfig
@@ -905,7 +905,7 @@ config NETFILTER_XT_TARGET_LED
echo netfilter-ssh > /sys/class/leds/<ledname>/trigger
For more information on the LEDs available on your system, see
- Documentation/leds/leds-class.txt
+ Documentation/leds/leds-class.rst
config NETFILTER_XT_TARGET_LOG
tristate "LOG target support"
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* Re: [PATCH v2 61/79] docs: leds: convert to ReST
2019-04-22 13:27 ` [PATCH v2 61/79] docs: leds: " Mauro Carvalho Chehab
@ 2019-04-23 19:00 ` Jacek Anaszewski
0 siblings, 0 replies; 115+ messages in thread
From: Jacek Anaszewski @ 2019-04-23 19:00 UTC (permalink / raw)
To: Mauro Carvalho Chehab, Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, linux-kernel, Jonathan Corbet,
Vadim Pasternak, Pavel Machek, Pablo Neira Ayuso,
Jozsef Kadlecsik, Florian Westphal, David S. Miller, linux-leds,
netfilter-devel, coreteam, netdev
Hi Mauro,
Thank you for your effort.
On 4/22/19 3:27 PM, Mauro Carvalho Chehab wrote:
> Rename the leds documentation files to ReST, add an
> index for them and adjust in order to produce a nice html
> output via the Sphinx build system.
>
> At its new index.rst, let's add a :orphan: while this is not linked to
> the main index.rst file, in order to avoid build warnings.
>
> Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
> ---
> Documentation/laptops/thinkpad-acpi.txt | 4 +-
> Documentation/leds/index.rst | 25 ++
> .../leds/{leds-blinkm.txt => leds-blinkm.rst} | 63 ++---
> ...s-class-flash.txt => leds-class-flash.rst} | 49 ++--
> .../leds/{leds-class.txt => leds-class.rst} | 15 +-
> .../leds/{leds-lm3556.txt => leds-lm3556.rst} | 100 ++++++--
> .../leds/{leds-lp3944.txt => leds-lp3944.rst} | 23 +-
> Documentation/leds/leds-lp5521.rst | 115 +++++++++
> Documentation/leds/leds-lp5521.txt | 101 --------
> Documentation/leds/leds-lp5523.rst | 147 ++++++++++++
> Documentation/leds/leds-lp5523.txt | 130 ----------
> Documentation/leds/leds-lp5562.rst | 137 +++++++++++
> Documentation/leds/leds-lp5562.txt | 120 ----------
> Documentation/leds/leds-lp55xx.rst | 224 ++++++++++++++++++
> Documentation/leds/leds-lp55xx.txt | 194 ---------------
> Documentation/leds/leds-mlxcpld.rst | 118 +++++++++
> Documentation/leds/leds-mlxcpld.txt | 110 ---------
> ...edtrig-oneshot.txt => ledtrig-oneshot.rst} | 11 +-
> ...ig-transient.txt => ledtrig-transient.rst} | 63 +++--
> ...edtrig-usbport.txt => ledtrig-usbport.rst} | 11 +-
> Documentation/leds/{uleds.txt => uleds.rst} | 5 +-
> MAINTAINERS | 2 +-
> drivers/leds/trigger/Kconfig | 2 +-
> drivers/leds/trigger/ledtrig-transient.c | 2 +-
> net/netfilter/Kconfig | 2 +-
> 25 files changed, 996 insertions(+), 777 deletions(-)
> create mode 100644 Documentation/leds/index.rst
> rename Documentation/leds/{leds-blinkm.txt => leds-blinkm.rst} (56%)
> rename Documentation/leds/{leds-class-flash.txt => leds-class-flash.rst} (74%)
> rename Documentation/leds/{leds-class.txt => leds-class.rst} (92%)
> rename Documentation/leds/{leds-lm3556.txt => leds-lm3556.rst} (70%)
> rename Documentation/leds/{leds-lp3944.txt => leds-lp3944.rst} (78%)
> create mode 100644 Documentation/leds/leds-lp5521.rst
> delete mode 100644 Documentation/leds/leds-lp5521.txt
> create mode 100644 Documentation/leds/leds-lp5523.rst
> delete mode 100644 Documentation/leds/leds-lp5523.txt
> create mode 100644 Documentation/leds/leds-lp5562.rst
> delete mode 100644 Documentation/leds/leds-lp5562.txt
> create mode 100644 Documentation/leds/leds-lp55xx.rst
> delete mode 100644 Documentation/leds/leds-lp55xx.txt
> create mode 100644 Documentation/leds/leds-mlxcpld.rst
> delete mode 100644 Documentation/leds/leds-mlxcpld.txt
> rename Documentation/leds/{ledtrig-oneshot.txt => ledtrig-oneshot.rst} (90%)
> rename Documentation/leds/{ledtrig-transient.txt => ledtrig-transient.rst} (81%)
> rename Documentation/leds/{ledtrig-usbport.txt => ledtrig-usbport.rst} (86%)
> rename Documentation/leds/{uleds.txt => uleds.rst} (95%)
>
> diff --git a/Documentation/laptops/thinkpad-acpi.txt b/Documentation/laptops/thinkpad-acpi.txt
> index 3de3c95f01f6..65719384fc36 100644
Acked-by: Jacek Anaszewski <jacek.anaszewski@gmail.com>
--
Best regards,
Jacek Anaszewski
^ permalink raw reply [flat|nested] 115+ messages in thread
* [PATCH v2 62/79] docs: laptops: convert to ReST
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (51 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 61/79] docs: leds: " Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-05-06 8:59 ` Andy Shevchenko
2019-04-22 13:27 ` [PATCH v2 63/79] docs: iio: " Mauro Carvalho Chehab
` (20 subsequent siblings)
73 siblings, 1 reply; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Mattia Dongili, Arnd Bergmann,
Greg Kroah-Hartman, Darren Hart, Andy Shevchenko,
platform-driver-x86
Rename the laptops documentation files to ReST, add an
index for them and adjust in order to produce a nice html
output via the Sphinx build system.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/ABI/testing/sysfs-block-device | 2 +-
.../ABI/testing/sysfs-platform-asus-laptop | 2 +-
.../admin-guide/kernel-parameters.txt | 2 +-
.../{asus-laptop.txt => asus-laptop.rst} | 91 ++--
...otection.txt => disk-shock-protection.rst} | 32 +-
Documentation/laptops/index.rst | 17 +
.../{laptop-mode.txt => laptop-mode.rst} | 509 +++++++++---------
.../{sony-laptop.txt => sony-laptop.rst} | 58 +-
.../laptops/{sonypi.txt => sonypi.rst} | 28 +-
.../{thinkpad-acpi.txt => thinkpad-acpi.rst} | 363 ++++++++-----
.../{toshiba_haps.txt => toshiba_haps.rst} | 47 +-
Documentation/sysctl/vm.txt | 4 +-
MAINTAINERS | 2 +-
drivers/char/Kconfig | 2 +-
drivers/platform/x86/Kconfig | 4 +-
15 files changed, 660 insertions(+), 503 deletions(-)
rename Documentation/laptops/{asus-laptop.txt => asus-laptop.rst} (84%)
rename Documentation/laptops/{disk-shock-protection.txt => disk-shock-protection.rst} (91%)
create mode 100644 Documentation/laptops/index.rst
rename Documentation/laptops/{laptop-mode.txt => laptop-mode.rst} (62%)
rename Documentation/laptops/{sony-laptop.txt => sony-laptop.rst} (85%)
rename Documentation/laptops/{sonypi.txt => sonypi.rst} (87%)
rename Documentation/laptops/{thinkpad-acpi.txt => thinkpad-acpi.rst} (89%)
rename Documentation/laptops/{toshiba_haps.txt => toshiba_haps.rst} (60%)
diff --git a/Documentation/ABI/testing/sysfs-block-device b/Documentation/ABI/testing/sysfs-block-device
index 82ef6eab042d..0d57bbb4fddc 100644
--- a/Documentation/ABI/testing/sysfs-block-device
+++ b/Documentation/ABI/testing/sysfs-block-device
@@ -45,7 +45,7 @@ Description:
- Values below -2 are rejected with -EINVAL
For more information, see
- Documentation/laptops/disk-shock-protection.txt
+ Documentation/laptops/disk-shock-protection.rst
What: /sys/block/*/device/ncq_prio_enable
diff --git a/Documentation/ABI/testing/sysfs-platform-asus-laptop b/Documentation/ABI/testing/sysfs-platform-asus-laptop
index cd9d667c3da2..d67fa4bafa70 100644
--- a/Documentation/ABI/testing/sysfs-platform-asus-laptop
+++ b/Documentation/ABI/testing/sysfs-platform-asus-laptop
@@ -31,7 +31,7 @@ Description:
To control the LED display, use the following :
echo 0x0T000DDD > /sys/devices/platform/asus_laptop/
where T control the 3 letters display, and DDD the 3 digits display.
- The DDD table can be found in Documentation/laptops/asus-laptop.txt
+ The DDD table can be found in Documentation/laptops/asus-laptop.rst
What: /sys/devices/platform/asus_laptop/bluetooth
Date: January 2007
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index bf6d34fb7180..65d66010b134 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -4268,7 +4268,7 @@
Format: <integer>
sonypi.*= [HW] Sony Programmable I/O Control Device driver
- See Documentation/laptops/sonypi.txt
+ See Documentation/laptops/sonypi.rst
spectre_v2= [X86] Control mitigation of Spectre variant 2
(indirect branch speculation) vulnerability.
diff --git a/Documentation/laptops/asus-laptop.txt b/Documentation/laptops/asus-laptop.rst
similarity index 84%
rename from Documentation/laptops/asus-laptop.txt
rename to Documentation/laptops/asus-laptop.rst
index 5f2858712aa0..4c263f89a22b 100644
--- a/Documentation/laptops/asus-laptop.txt
+++ b/Documentation/laptops/asus-laptop.rst
@@ -1,6 +1,9 @@
+==================
Asus Laptop Extras
+==================
Version 0.1
+
August 6, 2009
Corentin Chary <corentincj@iksaif.net>
@@ -10,11 +13,12 @@ http://acpi4asus.sf.net/
It may also support some MEDION, JVC or VICTOR laptops (such as MEDION 9675 or
VICTOR XP7210 for example). It makes all the extra buttons generate input
events (like keyboards).
+
On some models adds support for changing the display brightness and output,
switching the LCD backlight on and off, and most importantly, allows you to
blink those fancy LEDs intended for reporting mail and wireless status.
-This driver supercedes the old asus_acpi driver.
+This driver supersedes the old asus_acpi driver.
Requirements
------------
@@ -49,7 +53,7 @@ Usage
see some lines like this :
Asus Laptop Extras version 0.42
- L2D model detected.
+ - L2D model detected.
If it is not the output you have on your laptop, send it (and the laptop's
DSDT) to me.
@@ -68,9 +72,12 @@ Usage
LEDs
----
- You can modify LEDs be echoing values to /sys/class/leds/asus::*/brightness :
+ You can modify LEDs be echoing values to `/sys/class/leds/asus/*/brightness`::
+
echo 1 > /sys/class/leds/asus::mail/brightness
+
will switch the mail LED on.
+
You can also know if they are on/off by reading their content and use
kernel triggers like disk-activity or heartbeat.
@@ -81,7 +88,7 @@ Backlight
/sys/class/backlight/asus-laptop/. Brightness Values are between 0 and 15.
Wireless devices
----------------
+----------------
You can turn the internal Bluetooth adapter on/off with the bluetooth entry
(only on models with Bluetooth). This usually controls the associated LED.
@@ -93,18 +100,20 @@ Display switching
Note: the display switching code is currently considered EXPERIMENTAL.
Switching works for the following models:
- L3800C
- A2500H
- L5800C
- M5200N
- W1000N (albeit with some glitches)
- M6700R
- A6JC
- F3J
+
+ - L3800C
+ - A2500H
+ - L5800C
+ - M5200N
+ - W1000N (albeit with some glitches)
+ - M6700R
+ - A6JC
+ - F3J
Switching doesn't work for the following:
- M3700N
- L2X00D (locks the laptop under certain conditions)
+
+ - M3700N
+ - L2X00D (locks the laptop under certain conditions)
To switch the displays, echo values from 0 to 15 to
/sys/devices/platform/asus-laptop/display. The significance of those values
@@ -113,48 +122,51 @@ Display switching
+-------+-----+-----+-----+-----+-----+
| Bin | Val | DVI | TV | CRT | LCD |
+-------+-----+-----+-----+-----+-----+
- + 0000 + 0 + + + + +
+ | 0000 | 0 | | | | |
+-------+-----+-----+-----+-----+-----+
- + 0001 + 1 + + + + X +
+ | 0001 | 1 | | | | X |
+-------+-----+-----+-----+-----+-----+
- + 0010 + 2 + + + X + +
+ | 0010 | 2 | | | X | |
+-------+-----+-----+-----+-----+-----+
- + 0011 + 3 + + + X + X +
+ | 0011 | 3 | | | X | X |
+-------+-----+-----+-----+-----+-----+
- + 0100 + 4 + + X + + +
+ | 0100 | 4 | | X | | |
+-------+-----+-----+-----+-----+-----+
- + 0101 + 5 + + X + + X +
+ | 0101 | 5 | | X | | X |
+-------+-----+-----+-----+-----+-----+
- + 0110 + 6 + + X + X + +
+ | 0110 | 6 | | X | X | |
+-------+-----+-----+-----+-----+-----+
- + 0111 + 7 + + X + X + X +
+ | 0111 | 7 | | X | X | X |
+-------+-----+-----+-----+-----+-----+
- + 1000 + 8 + X + + + +
+ | 1000 | 8 | X | | | |
+-------+-----+-----+-----+-----+-----+
- + 1001 + 9 + X + + + X +
+ | 1001 | 9 | X | | | X |
+-------+-----+-----+-----+-----+-----+
- + 1010 + 10 + X + + X + +
+ | 1010 | 10 | X | | X | |
+-------+-----+-----+-----+-----+-----+
- + 1011 + 11 + X + + X + X +
+ | 1011 | 11 | X | | X | X |
+-------+-----+-----+-----+-----+-----+
- + 1100 + 12 + X + X + + +
+ | 1100 | 12 | X | X | | |
+-------+-----+-----+-----+-----+-----+
- + 1101 + 13 + X + X + + X +
+ | 1101 | 13 | X | X | | X |
+-------+-----+-----+-----+-----+-----+
- + 1110 + 14 + X + X + X + +
+ | 1110 | 14 | X | X | X | |
+-------+-----+-----+-----+-----+-----+
- + 1111 + 15 + X + X + X + X +
+ | 1111 | 15 | X | X | X | X |
+-------+-----+-----+-----+-----+-----+
In most cases, the appropriate displays must be plugged in for the above
combinations to work. TV-Out may need to be initialized at boot time.
Debugging:
+
1) Check whether the Fn+F8 key:
+
a) does not lock the laptop (try a boot with noapic / nolapic if it does)
b) generates events (0x6n, where n is the value corresponding to the
configuration above)
c) actually works
+
Record the disp value at every configuration.
2) Echo values from 0 to 15 to /sys/devices/platform/asus-laptop/display.
Record its value, note any change. If nothing changes, try a broader range,
@@ -164,7 +176,7 @@ Display switching
Note: on some machines (e.g. L3C), after the module has been loaded, only 0x6n
events are generated and no actual switching occurs. In such a case, a line
- like:
+ like::
echo $((10#$arg-60)) > /sys/devices/platform/asus-laptop/display
@@ -180,15 +192,16 @@ LED display
several items of information.
LED display works for the following models:
- W1000N
- W1J
- To control the LED display, use the following :
+ - W1000N
+ - W1J
+
+ To control the LED display, use the following::
echo 0x0T000DDD > /sys/devices/platform/asus-laptop/
where T control the 3 letters display, and DDD the 3 digits display,
- according to the tables below.
+ according to the tables below::
DDD (digits)
000 to 999 = display digits
@@ -208,8 +221,8 @@ LED display
For example "echo 0x01000001 >/sys/devices/platform/asus-laptop/ledd"
would display "DVD001".
-Driver options:
----------------
+Driver options
+--------------
Options can be passed to the asus-laptop driver using the standard
module argument syntax (<param>=<value> when passing the option to the
@@ -219,6 +232,7 @@ Driver options:
wapf: WAPF defines the behavior of the Fn+Fx wlan key
The significance of values is yet to be found, but
most of the time:
+
- 0x0 should do nothing
- 0x1 should allow to control the device with Fn+Fx key.
- 0x4 should send an ACPI event (0x88) while pressing the Fn+Fx key
@@ -237,7 +251,7 @@ Unsupported models
- ASUS L7300G
- ASUS L8400
-Patches, Errors, Questions:
+Patches, Errors, Questions
--------------------------
I appreciate any success or failure
@@ -253,5 +267,6 @@ Patches, Errors, Questions:
Any other comments or patches are also more than welcome.
acpi4asus-user@lists.sourceforge.net
+
http://sourceforge.net/projects/acpi4asus
diff --git a/Documentation/laptops/disk-shock-protection.txt b/Documentation/laptops/disk-shock-protection.rst
similarity index 91%
rename from Documentation/laptops/disk-shock-protection.txt
rename to Documentation/laptops/disk-shock-protection.rst
index 0e6ba2663834..e97c5f78d8c3 100644
--- a/Documentation/laptops/disk-shock-protection.txt
+++ b/Documentation/laptops/disk-shock-protection.rst
@@ -1,17 +1,18 @@
+==========================
Hard disk shock protection
==========================
Author: Elias Oltmanns <eo@nebensachen.de>
+
Last modified: 2008-10-03
-0. Contents
------------
+.. 0. Contents
-1. Intro
-2. The interface
-3. References
-4. CREDITS
+ 1. Intro
+ 2. The interface
+ 3. References
+ 4. CREDITS
1. Intro
@@ -36,8 +37,8 @@ that).
----------------
For each ATA device, the kernel exports the file
-block/*/device/unload_heads in sysfs (here assumed to be mounted under
-/sys). Access to /sys/block/*/device/unload_heads is denied with
+`block/*/device/unload_heads` in sysfs (here assumed to be mounted under
+/sys). Access to `/sys/block/*/device/unload_heads` is denied with
-EOPNOTSUPP if the device does not support the unload feature.
Otherwise, writing an integer value to this file will take the heads
of the respective drive off the platter and block all I/O operations
@@ -54,18 +55,18 @@ cancel a previously set timeout and resume normal operation
immediately by specifying a timeout of 0. Values below -2 are rejected
with -EINVAL (see below for the special meaning of -1 and -2). If the
timeout specified for a recent head park request has not yet expired,
-reading from /sys/block/*/device/unload_heads will report the number
+reading from `/sys/block/*/device/unload_heads` will report the number
of milliseconds remaining until normal operation will be resumed;
otherwise, reading the unload_heads attribute will return 0.
For example, do the following in order to park the heads of drive
-/dev/sda and stop all I/O operations for five seconds:
+/dev/sda and stop all I/O operations for five seconds::
-# echo 5000 > /sys/block/sda/device/unload_heads
+ # echo 5000 > /sys/block/sda/device/unload_heads
-A simple
+A simple::
-# cat /sys/block/sda/device/unload_heads
+ # cat /sys/block/sda/device/unload_heads
will show you how many milliseconds are left before normal operation
will be resumed.
@@ -112,9 +113,9 @@ unload_heads attribute. If you know that your device really does
support the unload feature (for instance, because the vendor of your
laptop or the hard drive itself told you so), then you can tell the
kernel to enable the usage of this feature for that drive by writing
-the special value -1 to the unload_heads attribute:
+the special value -1 to the unload_heads attribute::
-# echo -1 > /sys/block/sda/device/unload_heads
+ # echo -1 > /sys/block/sda/device/unload_heads
will enable the feature for /dev/sda, and giving -2 instead of -1 will
disable it again.
@@ -135,6 +136,7 @@ for use. Please feel free to add projects that have been the victims
of my ignorance.
- http://www.thinkwiki.org/wiki/HDAPS
+
See this page for information about Linux support of the hard disk
active protection system as implemented in IBM/Lenovo Thinkpads.
diff --git a/Documentation/laptops/index.rst b/Documentation/laptops/index.rst
new file mode 100644
index 000000000000..001a30910d09
--- /dev/null
+++ b/Documentation/laptops/index.rst
@@ -0,0 +1,17 @@
+:orphan:
+
+==============
+Laptop Drivers
+==============
+
+.. toctree::
+ :maxdepth: 1
+
+ asus-laptop
+ disk-shock-protection
+ laptop-mode
+ lg-laptop
+ sony-laptop
+ sonypi
+ thinkpad-acpi
+ toshiba_haps
diff --git a/Documentation/laptops/laptop-mode.txt b/Documentation/laptops/laptop-mode.rst
similarity index 62%
rename from Documentation/laptops/laptop-mode.txt
rename to Documentation/laptops/laptop-mode.rst
index 1c707fc9b141..c984c4262f2e 100644
--- a/Documentation/laptops/laptop-mode.txt
+++ b/Documentation/laptops/laptop-mode.rst
@@ -1,8 +1,11 @@
+===============================================
How to conserve battery power using laptop-mode
------------------------------------------------
+===============================================
Document Author: Bart Samwel (bart@samwel.tk)
+
Date created: January 2, 2004
+
Last modified: December 06, 2004
Introduction
@@ -12,17 +15,16 @@ Laptop mode is used to minimize the time that the hard disk needs to be spun up,
to conserve battery power on laptops. It has been reported to cause significant
power savings.
-Contents
---------
+.. Contents
-* Introduction
-* Installation
-* Caveats
-* The Details
-* Tips & Tricks
-* Control script
-* ACPI integration
-* Monitoring tool
+ * Introduction
+ * Installation
+ * Caveats
+ * The Details
+ * Tips & Tricks
+ * Control script
+ * ACPI integration
+ * Monitoring tool
Installation
@@ -33,7 +35,7 @@ or anything. Simply install all the files included in this document, and
laptop mode will automatically be started when you're on battery. For
your convenience, a tarball containing an installer can be downloaded at:
-http://www.samwel.tk/laptop_mode/laptop_mode/
+ http://www.samwel.tk/laptop_mode/laptop_mode/
To configure laptop mode, you need to edit the configuration file, which is
located in /etc/default/laptop-mode on Debian-based systems, or in
@@ -209,7 +211,7 @@ Tips & Tricks
this on powerbooks too. I hope that this is a piece of information that
might be useful to the Laptop Mode patch or its users."
-* In syslog.conf, you can prefix entries with a dash ``-'' to omit syncing the
+* In syslog.conf, you can prefix entries with a dash `-` to omit syncing the
file after every logging. When you're using laptop-mode and your disk doesn't
spin down, this is a likely culprit.
@@ -233,83 +235,82 @@ configuration file
It should be installed as /etc/default/laptop-mode on Debian, and as
/etc/sysconfig/laptop-mode on Red Hat, SUSE, Mandrake, and other work-alikes.
---------------------CONFIG FILE BEGIN-------------------------------------------
-# Maximum time, in seconds, of hard drive spindown time that you are
-# comfortable with. Worst case, it's possible that you could lose this
-# amount of work if your battery fails you while in laptop mode.
-#MAX_AGE=600
+Config file::
-# Automatically disable laptop mode when the number of minutes of battery
-# that you have left goes below this threshold.
-MINIMUM_BATTERY_MINUTES=10
+ # Maximum time, in seconds, of hard drive spindown time that you are
+ # comfortable with. Worst case, it's possible that you could lose this
+ # amount of work if your battery fails you while in laptop mode.
+ #MAX_AGE=600
-# Read-ahead, in 512-byte sectors. You can spin down the disk while playing MP3/OGG
-# by setting the disk readahead to 8MB (READAHEAD=16384). Effectively, the disk
-# will read a complete MP3 at once, and will then spin down while the MP3/OGG is
-# playing.
-#READAHEAD=4096
+ # Automatically disable laptop mode when the number of minutes of battery
+ # that you have left goes below this threshold.
+ MINIMUM_BATTERY_MINUTES=10
-# Shall we remount journaled fs. with appropriate commit interval? (1=yes)
-#DO_REMOUNTS=1
+ # Read-ahead, in 512-byte sectors. You can spin down the disk while playing MP3/OGG
+ # by setting the disk readahead to 8MB (READAHEAD=16384). Effectively, the disk
+ # will read a complete MP3 at once, and will then spin down while the MP3/OGG is
+ # playing.
+ #READAHEAD=4096
-# And shall we add the "noatime" option to that as well? (1=yes)
-#DO_REMOUNT_NOATIME=1
+ # Shall we remount journaled fs. with appropriate commit interval? (1=yes)
+ #DO_REMOUNTS=1
-# Dirty synchronous ratio. At this percentage of dirty pages the process
-# which
-# calls write() does its own writeback
-#DIRTY_RATIO=40
+ # And shall we add the "noatime" option to that as well? (1=yes)
+ #DO_REMOUNT_NOATIME=1
-#
-# Allowed dirty background ratio, in percent. Once DIRTY_RATIO has been
-# exceeded, the kernel will wake flusher threads which will then reduce the
-# amount of dirty memory to dirty_background_ratio. Set this nice and low,
-# so once some writeout has commenced, we do a lot of it.
-#
-#DIRTY_BACKGROUND_RATIO=5
+ # Dirty synchronous ratio. At this percentage of dirty pages the process
+ # which
+ # calls write() does its own writeback
+ #DIRTY_RATIO=40
-# kernel default dirty buffer age
-#DEF_AGE=30
-#DEF_UPDATE=5
-#DEF_DIRTY_BACKGROUND_RATIO=10
-#DEF_DIRTY_RATIO=40
-#DEF_XFS_AGE_BUFFER=15
-#DEF_XFS_SYNC_INTERVAL=30
-#DEF_XFS_BUFD_INTERVAL=1
+ #
+ # Allowed dirty background ratio, in percent. Once DIRTY_RATIO has been
+ # exceeded, the kernel will wake flusher threads which will then reduce the
+ # amount of dirty memory to dirty_background_ratio. Set this nice and low,
+ # so once some writeout has commenced, we do a lot of it.
+ #
+ #DIRTY_BACKGROUND_RATIO=5
-# This must be adjusted manually to the value of HZ in the running kernel
-# on 2.4, until the XFS people change their 2.4 external interfaces to work in
-# centisecs. This can be automated, but it's a work in progress that still
-# needs# some fixes. On 2.6 kernels, XFS uses USER_HZ instead of HZ for
-# external interfaces, and that is currently always set to 100. So you don't
-# need to change this on 2.6.
-#XFS_HZ=100
+ # kernel default dirty buffer age
+ #DEF_AGE=30
+ #DEF_UPDATE=5
+ #DEF_DIRTY_BACKGROUND_RATIO=10
+ #DEF_DIRTY_RATIO=40
+ #DEF_XFS_AGE_BUFFER=15
+ #DEF_XFS_SYNC_INTERVAL=30
+ #DEF_XFS_BUFD_INTERVAL=1
-# Should the maximum CPU frequency be adjusted down while on battery?
-# Requires CPUFreq to be setup.
-# See Documentation/admin-guide/pm/cpufreq.rst for more info
-#DO_CPU=0
+ # This must be adjusted manually to the value of HZ in the running kernel
+ # on 2.4, until the XFS people change their 2.4 external interfaces to work in
+ # centisecs. This can be automated, but it's a work in progress that still
+ # needs# some fixes. On 2.6 kernels, XFS uses USER_HZ instead of HZ for
+ # external interfaces, and that is currently always set to 100. So you don't
+ # need to change this on 2.6.
+ #XFS_HZ=100
-# When on battery what is the maximum CPU speed that the system should
-# use? Legal values are "slowest" for the slowest speed that your
-# CPU is able to operate at, or a value listed in:
-# /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies
-# Only applicable if DO_CPU=1.
-#CPU_MAXFREQ=slowest
+ # Should the maximum CPU frequency be adjusted down while on battery?
+ # Requires CPUFreq to be setup.
+ # See Documentation/admin-guide/pm/cpufreq.rst for more info
+ #DO_CPU=0
-# Idle timeout for your hard drive (man hdparm for valid values, -S option)
-# Default is 2 hours on AC (AC_HD=244) and 20 seconds for battery (BATT_HD=4).
-#AC_HD=244
-#BATT_HD=4
+ # When on battery what is the maximum CPU speed that the system should
+ # use? Legal values are "slowest" for the slowest speed that your
+ # CPU is able to operate at, or a value listed in:
+ # /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies
+ # Only applicable if DO_CPU=1.
+ #CPU_MAXFREQ=slowest
-# The drives for which to adjust the idle timeout. Separate them by a space,
-# e.g. HD="/dev/hda /dev/hdb".
-#HD="/dev/hda"
+ # Idle timeout for your hard drive (man hdparm for valid values, -S option)
+ # Default is 2 hours on AC (AC_HD=244) and 20 seconds for battery (BATT_HD=4).
+ #AC_HD=244
+ #BATT_HD=4
-# Set the spindown timeout on a hard drive?
-#DO_HD=1
+ # The drives for which to adjust the idle timeout. Separate them by a space,
+ # e.g. HD="/dev/hda /dev/hdb".
+ #HD="/dev/hda"
---------------------CONFIG FILE END---------------------------------------------
+ # Set the spindown timeout on a hard drive?
+ #DO_HD=1
Control script
@@ -318,125 +319,126 @@ Control script
Please note that this control script works for the Linux 2.4 and 2.6 series (thanks
to Kiko Piris).
---------------------CONTROL SCRIPT BEGIN----------------------------------------
-#!/bin/bash
+Control script::
-# start or stop laptop_mode, best run by a power management daemon when
-# ac gets connected/disconnected from a laptop
-#
-# install as /sbin/laptop_mode
-#
-# Contributors to this script: Kiko Piris
-# Bart Samwel
-# Micha Feigin
-# Andrew Morton
-# Herve Eychenne
-# Dax Kelson
-#
-# Original Linux 2.4 version by: Jens Axboe
+ #!/bin/bash
-#############################################################################
+ # start or stop laptop_mode, best run by a power management daemon when
+ # ac gets connected/disconnected from a laptop
+ #
+ # install as /sbin/laptop_mode
+ #
+ # Contributors to this script: Kiko Piris
+ # Bart Samwel
+ # Micha Feigin
+ # Andrew Morton
+ # Herve Eychenne
+ # Dax Kelson
+ #
+ # Original Linux 2.4 version by: Jens Axboe
-# Source config
-if [ -f /etc/default/laptop-mode ] ; then
+ #############################################################################
+
+ # Source config
+ if [ -f /etc/default/laptop-mode ] ; then
# Debian
. /etc/default/laptop-mode
-elif [ -f /etc/sysconfig/laptop-mode ] ; then
+ elif [ -f /etc/sysconfig/laptop-mode ] ; then
# Others
- . /etc/sysconfig/laptop-mode
-fi
+ . /etc/sysconfig/laptop-mode
+ fi
-# Don't raise an error if the config file is incomplete
-# set defaults instead:
+ # Don't raise an error if the config file is incomplete
+ # set defaults instead:
-# Maximum time, in seconds, of hard drive spindown time that you are
-# comfortable with. Worst case, it's possible that you could lose this
-# amount of work if your battery fails you while in laptop mode.
-MAX_AGE=${MAX_AGE:-'600'}
+ # Maximum time, in seconds, of hard drive spindown time that you are
+ # comfortable with. Worst case, it's possible that you could lose this
+ # amount of work if your battery fails you while in laptop mode.
+ MAX_AGE=${MAX_AGE:-'600'}
-# Read-ahead, in kilobytes
-READAHEAD=${READAHEAD:-'4096'}
+ # Read-ahead, in kilobytes
+ READAHEAD=${READAHEAD:-'4096'}
-# Shall we remount journaled fs. with appropriate commit interval? (1=yes)
-DO_REMOUNTS=${DO_REMOUNTS:-'1'}
+ # Shall we remount journaled fs. with appropriate commit interval? (1=yes)
+ DO_REMOUNTS=${DO_REMOUNTS:-'1'}
-# And shall we add the "noatime" option to that as well? (1=yes)
-DO_REMOUNT_NOATIME=${DO_REMOUNT_NOATIME:-'1'}
+ # And shall we add the "noatime" option to that as well? (1=yes)
+ DO_REMOUNT_NOATIME=${DO_REMOUNT_NOATIME:-'1'}
-# Shall we adjust the idle timeout on a hard drive?
-DO_HD=${DO_HD:-'1'}
+ # Shall we adjust the idle timeout on a hard drive?
+ DO_HD=${DO_HD:-'1'}
-# Adjust idle timeout on which hard drive?
-HD="${HD:-'/dev/hda'}"
+ # Adjust idle timeout on which hard drive?
+ HD="${HD:-'/dev/hda'}"
-# spindown time for HD (hdparm -S values)
-AC_HD=${AC_HD:-'244'}
-BATT_HD=${BATT_HD:-'4'}
+ # spindown time for HD (hdparm -S values)
+ AC_HD=${AC_HD:-'244'}
+ BATT_HD=${BATT_HD:-'4'}
-# Dirty synchronous ratio. At this percentage of dirty pages the process which
-# calls write() does its own writeback
-DIRTY_RATIO=${DIRTY_RATIO:-'40'}
+ # Dirty synchronous ratio. At this percentage of dirty pages the process which
+ # calls write() does its own writeback
+ DIRTY_RATIO=${DIRTY_RATIO:-'40'}
-# cpu frequency scaling
-# See Documentation/admin-guide/pm/cpufreq.rst for more info
-DO_CPU=${CPU_MANAGE:-'0'}
-CPU_MAXFREQ=${CPU_MAXFREQ:-'slowest'}
+ # cpu frequency scaling
+ # See Documentation/admin-guide/pm/cpufreq.rst for more info
+ DO_CPU=${CPU_MANAGE:-'0'}
+ CPU_MAXFREQ=${CPU_MAXFREQ:-'slowest'}
-#
-# Allowed dirty background ratio, in percent. Once DIRTY_RATIO has been
-# exceeded, the kernel will wake flusher threads which will then reduce the
-# amount of dirty memory to dirty_background_ratio. Set this nice and low,
-# so once some writeout has commenced, we do a lot of it.
-#
-DIRTY_BACKGROUND_RATIO=${DIRTY_BACKGROUND_RATIO:-'5'}
+ #
+ # Allowed dirty background ratio, in percent. Once DIRTY_RATIO has been
+ # exceeded, the kernel will wake flusher threads which will then reduce the
+ # amount of dirty memory to dirty_background_ratio. Set this nice and low,
+ # so once some writeout has commenced, we do a lot of it.
+ #
+ DIRTY_BACKGROUND_RATIO=${DIRTY_BACKGROUND_RATIO:-'5'}
-# kernel default dirty buffer age
-DEF_AGE=${DEF_AGE:-'30'}
-DEF_UPDATE=${DEF_UPDATE:-'5'}
-DEF_DIRTY_BACKGROUND_RATIO=${DEF_DIRTY_BACKGROUND_RATIO:-'10'}
-DEF_DIRTY_RATIO=${DEF_DIRTY_RATIO:-'40'}
-DEF_XFS_AGE_BUFFER=${DEF_XFS_AGE_BUFFER:-'15'}
-DEF_XFS_SYNC_INTERVAL=${DEF_XFS_SYNC_INTERVAL:-'30'}
-DEF_XFS_BUFD_INTERVAL=${DEF_XFS_BUFD_INTERVAL:-'1'}
+ # kernel default dirty buffer age
+ DEF_AGE=${DEF_AGE:-'30'}
+ DEF_UPDATE=${DEF_UPDATE:-'5'}
+ DEF_DIRTY_BACKGROUND_RATIO=${DEF_DIRTY_BACKGROUND_RATIO:-'10'}
+ DEF_DIRTY_RATIO=${DEF_DIRTY_RATIO:-'40'}
+ DEF_XFS_AGE_BUFFER=${DEF_XFS_AGE_BUFFER:-'15'}
+ DEF_XFS_SYNC_INTERVAL=${DEF_XFS_SYNC_INTERVAL:-'30'}
+ DEF_XFS_BUFD_INTERVAL=${DEF_XFS_BUFD_INTERVAL:-'1'}
-# This must be adjusted manually to the value of HZ in the running kernel
-# on 2.4, until the XFS people change their 2.4 external interfaces to work in
-# centisecs. This can be automated, but it's a work in progress that still needs
-# some fixes. On 2.6 kernels, XFS uses USER_HZ instead of HZ for external
-# interfaces, and that is currently always set to 100. So you don't need to
-# change this on 2.6.
-XFS_HZ=${XFS_HZ:-'100'}
+ # This must be adjusted manually to the value of HZ in the running kernel
+ # on 2.4, until the XFS people change their 2.4 external interfaces to work in
+ # centisecs. This can be automated, but it's a work in progress that still needs
+ # some fixes. On 2.6 kernels, XFS uses USER_HZ instead of HZ for external
+ # interfaces, and that is currently always set to 100. So you don't need to
+ # change this on 2.6.
+ XFS_HZ=${XFS_HZ:-'100'}
-#############################################################################
+ #############################################################################
-KLEVEL="$(uname -r |
- {
+ KLEVEL="$(uname -r |
+ {
IFS='.' read a b c
echo $a.$b
}
-)"
-case "$KLEVEL" in
+ )"
+ case "$KLEVEL" in
"2.4"|"2.6")
;;
*)
echo "Unhandled kernel version: $KLEVEL ('uname -r' = '$(uname -r)')" >&2
exit 1
;;
-esac
+ esac
-if [ ! -e /proc/sys/vm/laptop_mode ] ; then
+ if [ ! -e /proc/sys/vm/laptop_mode ] ; then
echo "Kernel is not patched with laptop_mode patch." >&2
exit 1
-fi
+ fi
-if [ ! -w /proc/sys/vm/laptop_mode ] ; then
+ if [ ! -w /proc/sys/vm/laptop_mode ] ; then
echo "You do not have enough privileges to enable laptop_mode." >&2
exit 1
-fi
+ fi
-# Remove an option (the first parameter) of the form option=<number> from
-# a mount options string (the rest of the parameters).
-parse_mount_opts () {
+ # Remove an option (the first parameter) of the form option=<number> from
+ # a mount options string (the rest of the parameters).
+ parse_mount_opts () {
OPT="$1"
shift
echo ",$*," | sed \
@@ -444,11 +446,11 @@ parse_mount_opts () {
-e 's/,,*/,/g' \
-e 's/^,//' \
-e 's/,$//'
-}
+ }
-# Remove an option (the first parameter) without any arguments from
-# a mount option string (the rest of the parameters).
-parse_nonumber_mount_opts () {
+ # Remove an option (the first parameter) without any arguments from
+ # a mount option string (the rest of the parameters).
+ parse_nonumber_mount_opts () {
OPT="$1"
shift
echo ",$*," | sed \
@@ -456,20 +458,20 @@ parse_nonumber_mount_opts () {
-e 's/,,*/,/g' \
-e 's/^,//' \
-e 's/,$//'
-}
+ }
-# Find out the state of a yes/no option (e.g. "atime"/"noatime") in
-# fstab for a given filesystem, and use this state to replace the
-# value of the option in another mount options string. The device
-# is the first argument, the option name the second, and the default
-# value the third. The remainder is the mount options string.
-#
-# Example:
-# parse_yesno_opts_wfstab /dev/hda1 atime atime defaults,noatime
-#
-# If fstab contains, say, "rw" for this filesystem, then the result
-# will be "defaults,atime".
-parse_yesno_opts_wfstab () {
+ # Find out the state of a yes/no option (e.g. "atime"/"noatime") in
+ # fstab for a given filesystem, and use this state to replace the
+ # value of the option in another mount options string. The device
+ # is the first argument, the option name the second, and the default
+ # value the third. The remainder is the mount options string.
+ #
+ # Example:
+ # parse_yesno_opts_wfstab /dev/hda1 atime atime defaults,noatime
+ #
+ # If fstab contains, say, "rw" for this filesystem, then the result
+ # will be "defaults,atime".
+ parse_yesno_opts_wfstab () {
L_DEV="$1"
OPT="$2"
DEF_OPT="$3"
@@ -491,21 +493,21 @@ parse_yesno_opts_wfstab () {
# option not specified in fstab -- choose the default.
echo "$PARSEDOPTS1,$DEF_OPT"
fi
-}
+ }
-# Find out the state of a numbered option (e.g. "commit=NNN") in
-# fstab for a given filesystem, and use this state to replace the
-# value of the option in another mount options string. The device
-# is the first argument, and the option name the second. The
-# remainder is the mount options string in which the replacement
-# must be done.
-#
-# Example:
-# parse_mount_opts_wfstab /dev/hda1 commit defaults,commit=7
-#
-# If fstab contains, say, "commit=3,rw" for this filesystem, then the
-# result will be "rw,commit=3".
-parse_mount_opts_wfstab () {
+ # Find out the state of a numbered option (e.g. "commit=NNN") in
+ # fstab for a given filesystem, and use this state to replace the
+ # value of the option in another mount options string. The device
+ # is the first argument, and the option name the second. The
+ # remainder is the mount options string in which the replacement
+ # must be done.
+ #
+ # Example:
+ # parse_mount_opts_wfstab /dev/hda1 commit defaults,commit=7
+ #
+ # If fstab contains, say, "commit=3,rw" for this filesystem, then the
+ # result will be "rw,commit=3".
+ parse_mount_opts_wfstab () {
L_DEV="$1"
OPT="$2"
shift 2
@@ -523,9 +525,9 @@ parse_mount_opts_wfstab () {
# option not specified in fstab: set it to 0
echo "$PARSEDOPTS1,$OPT=0"
fi
-}
+ }
-deduce_fstype () {
+ deduce_fstype () {
MP="$1"
# My root filesystem unfortunately has
# type "unknown" in /etc/mtab. If we encounter
@@ -538,13 +540,13 @@ deduce_fstype () {
exit 0
fi
done
-}
+ }
-if [ $DO_REMOUNT_NOATIME -eq 1 ] ; then
+ if [ $DO_REMOUNT_NOATIME -eq 1 ] ; then
NOATIME_OPT=",noatime"
-fi
+ fi
-case "$1" in
+ case "$1" in
start)
AGE=$((100*$MAX_AGE))
XFS_AGE=$(($XFS_HZ*$MAX_AGE))
@@ -687,10 +689,9 @@ case "$1" in
exit 1
;;
-esac
+ esac
-exit 0
---------------------CONTROL SCRIPT END------------------------------------------
+ exit 0
ACPI integration
@@ -701,78 +702,76 @@ kick off the laptop_mode script and run hdparm. The part that
automatically disables laptop mode when the battery is low was
written by Jan Topinski.
------------------/etc/acpi/events/ac_adapter BEGIN------------------------------
-event=ac_adapter
-action=/etc/acpi/actions/ac.sh %e
-----------------/etc/acpi/events/ac_adapter END---------------------------------
+/etc/acpi/events/ac_adapter::
+ event=ac_adapter
+ action=/etc/acpi/actions/ac.sh %e
------------------/etc/acpi/events/battery BEGIN---------------------------------
-event=battery.*
-action=/etc/acpi/actions/battery.sh %e
-----------------/etc/acpi/events/battery END------------------------------------
+/etc/acpi/events/battery::
+ event=battery.*
+ action=/etc/acpi/actions/battery.sh %e
-----------------/etc/acpi/actions/ac.sh BEGIN-----------------------------------
-#!/bin/bash
+/etc/acpi/actions/ac.sh::
-# ac on/offline event handler
+ #!/bin/bash
-status=`awk '/^state: / { print $2 }' /proc/acpi/ac_adapter/$2/state`
+ # ac on/offline event handler
-case $status in
- "on-line")
- /sbin/laptop_mode stop
- exit 0
- ;;
- "off-line")
- /sbin/laptop_mode start
- exit 0
- ;;
-esac
----------------------------/etc/acpi/actions/ac.sh END--------------------------
+ status=`awk '/^state: / { print $2 }' /proc/acpi/ac_adapter/$2/state`
+ case $status in
+ "on-line")
+ /sbin/laptop_mode stop
+ exit 0
+ ;;
+ "off-line")
+ /sbin/laptop_mode start
+ exit 0
+ ;;
+ esac
----------------------------/etc/acpi/actions/battery.sh BEGIN-------------------
-#! /bin/bash
-# Automatically disable laptop mode when the battery almost runs out.
+/etc/acpi/actions/battery.sh::
-BATT_INFO=/proc/acpi/battery/$2/state
+ #! /bin/bash
-if [[ -f /proc/sys/vm/laptop_mode ]]
-then
- LM=`cat /proc/sys/vm/laptop_mode`
- if [[ $LM -gt 0 ]]
- then
- if [[ -f $BATT_INFO ]]
+ # Automatically disable laptop mode when the battery almost runs out.
+
+ BATT_INFO=/proc/acpi/battery/$2/state
+
+ if [[ -f /proc/sys/vm/laptop_mode ]]
+ then
+ LM=`cat /proc/sys/vm/laptop_mode`
+ if [[ $LM -gt 0 ]]
then
- # Source the config file only now that we know we need
- if [ -f /etc/default/laptop-mode ] ; then
- # Debian
- . /etc/default/laptop-mode
- elif [ -f /etc/sysconfig/laptop-mode ] ; then
- # Others
- . /etc/sysconfig/laptop-mode
- fi
- MINIMUM_BATTERY_MINUTES=${MINIMUM_BATTERY_MINUTES:-'10'}
+ if [[ -f $BATT_INFO ]]
+ then
+ # Source the config file only now that we know we need
+ if [ -f /etc/default/laptop-mode ] ; then
+ # Debian
+ . /etc/default/laptop-mode
+ elif [ -f /etc/sysconfig/laptop-mode ] ; then
+ # Others
+ . /etc/sysconfig/laptop-mode
+ fi
+ MINIMUM_BATTERY_MINUTES=${MINIMUM_BATTERY_MINUTES:-'10'}
- ACTION="`cat $BATT_INFO | grep charging | cut -c 26-`"
- if [[ ACTION -eq "discharging" ]]
- then
- PRESENT_RATE=`cat $BATT_INFO | grep "present rate:" | sed "s/.* \([0-9][0-9]* \).*/\1/" `
- REMAINING=`cat $BATT_INFO | grep "remaining capacity:" | sed "s/.* \([0-9][0-9]* \).*/\1/" `
- fi
- if (($REMAINING * 60 / $PRESENT_RATE < $MINIMUM_BATTERY_MINUTES))
- then
- /sbin/laptop_mode stop
- fi
- else
- logger -p daemon.warning "You are using laptop mode and your battery interface $BATT_INFO is missing. This may lead to loss of data when the battery runs out. Check kernel ACPI support and /proc/acpi/battery folder, and edit /etc/acpi/battery.sh to set BATT_INFO to the correct path."
+ ACTION="`cat $BATT_INFO | grep charging | cut -c 26-`"
+ if [[ ACTION -eq "discharging" ]]
+ then
+ PRESENT_RATE=`cat $BATT_INFO | grep "present rate:" | sed "s/.* \([0-9][0-9]* \).*/\1/" `
+ REMAINING=`cat $BATT_INFO | grep "remaining capacity:" | sed "s/.* \([0-9][0-9]* \).*/\1/" `
+ fi
+ if (($REMAINING * 60 / $PRESENT_RATE < $MINIMUM_BATTERY_MINUTES))
+ then
+ /sbin/laptop_mode stop
+ fi
+ else
+ logger -p daemon.warning "You are using laptop mode and your battery interface $BATT_INFO is missing. This may lead to loss of data when the battery runs out. Check kernel ACPI support and /proc/acpi/battery folder, and edit /etc/acpi/battery.sh to set BATT_INFO to the correct path."
+ fi
fi
- fi
-fi
----------------------------/etc/acpi/actions/battery.sh END--------------------
+ fi
Monitoring tool
diff --git a/Documentation/laptops/sony-laptop.txt b/Documentation/laptops/sony-laptop.rst
similarity index 85%
rename from Documentation/laptops/sony-laptop.txt
rename to Documentation/laptops/sony-laptop.rst
index 978b1e615155..9edcc7f6612f 100644
--- a/Documentation/laptops/sony-laptop.txt
+++ b/Documentation/laptops/sony-laptop.rst
@@ -1,7 +1,9 @@
+=========================================
Sony Notebook Control Driver (SNC) Readme
------------------------------------------
- Copyright (C) 2004- 2005 Stelian Pop <stelian@popies.net>
- Copyright (C) 2007 Mattia Dongili <malattia@linux.it>
+=========================================
+
+ - Copyright (C) 2004- 2005 Stelian Pop <stelian@popies.net>
+ - Copyright (C) 2007 Mattia Dongili <malattia@linux.it>
This mini-driver drives the SNC and SPIC device present in the ACPI BIOS of the
Sony Vaio laptops. This driver mixes both devices functions under the same
@@ -10,6 +12,7 @@ obsoleted by sony-laptop now.
Fn keys (hotkeys):
------------------
+
Some models report hotkeys through the SNC or SPIC devices, such events are
reported both through the ACPI subsystem as acpi events and through the INPUT
subsystem. See the logs of /proc/bus/input/devices to find out what those
@@ -28,11 +31,14 @@ If your laptop model supports it, you will find sysfs files in the
/sys/class/backlight/sony/
directory. You will be able to query and set the current screen
brightness:
+
+ ====================== =========================================
brightness get/set screen brightness (an integer
between 0 and 7)
actual_brightness reading from this file will query the HW
to get real brightness value
max_brightness the maximum brightness value
+ ====================== =========================================
Platform specific:
@@ -45,6 +51,8 @@ You then read/write integer values from/to those files by using
standard UNIX tools.
The files are:
+
+ ====================== ==========================================
brightness_default screen brightness which will be set
when the laptop will be rebooted
cdpower power on/off the internal CD drive
@@ -53,21 +61,39 @@ The files are:
(only in debug mode)
bluetoothpower power on/off the internal bluetooth device
fanspeed get/set the fan speed
+ ====================== ==========================================
Note that some files may be missing if they are not supported
by your particular laptop model.
-Example usage:
+Example usage::
+
# echo "1" > /sys/devices/platform/sony-laptop/brightness_default
-sets the lowest screen brightness for the next and later reboots,
+
+sets the lowest screen brightness for the next and later reboots
+
+::
+
# echo "8" > /sys/devices/platform/sony-laptop/brightness_default
-sets the highest screen brightness for the next and later reboots,
+
+sets the highest screen brightness for the next and later reboots
+
+::
+
# cat /sys/devices/platform/sony-laptop/brightness_default
-retrieves the value.
+
+retrieves the value
+
+::
# echo "0" > /sys/devices/platform/sony-laptop/audiopower
-powers off the sound card,
+
+powers off the sound card
+
+::
+
# echo "1" > /sys/devices/platform/sony-laptop/audiopower
+
powers on the sound card.
@@ -76,7 +102,8 @@ RFkill control:
More recent Vaio models expose a consistent set of ACPI methods to
control radio frequency emitting devices. If you are a lucky owner of
such a laptop you will find the necessary rfkill devices under
-/sys/class/rfkill. Check those starting with sony-* in
+/sys/class/rfkill. Check those starting with sony-* in::
+
# grep . /sys/class/rfkill/*/{state,name}
@@ -88,26 +115,29 @@ you are not afraid of any side effects doing strange things with
your ACPI BIOS could have on your laptop), load the driver and
pass the option 'debug=1'.
-REPEAT: DON'T DO THIS IF YOU DON'T LIKE RISKY BUSINESS.
+REPEAT:
+ **DON'T DO THIS IF YOU DON'T LIKE RISKY BUSINESS.**
In your kernel logs you will find the list of all ACPI methods
the SNC device has on your laptop.
* For new models you will see a long list of meaningless method names,
-reading the DSDT table source should reveal that:
+ reading the DSDT table source should reveal that:
+
(1) the SNC device uses an internal capability lookup table
(2) SN00 is used to find values in the lookup table
(3) SN06 and SN07 are used to call into the real methods based on
offsets you can obtain iterating the table using SN00
(4) SN02 used to enable events.
+
Some values in the capability lookup table are more or less known, see
the code for all sony_call_snc_handle calls, others are more obscure.
* For old models you can see the GCDP/GCDP methods used to pwer on/off
-the CD drive, but there are others and they are usually different from
-model to model.
+ the CD drive, but there are others and they are usually different from
+ model to model.
-I HAVE NO IDEA WHAT THOSE METHODS DO.
+**I HAVE NO IDEA WHAT THOSE METHODS DO.**
The sony-laptop driver creates, for some of those methods (the most
current ones found on several Vaio models), an entry under
diff --git a/Documentation/laptops/sonypi.txt b/Documentation/laptops/sonypi.rst
similarity index 87%
rename from Documentation/laptops/sonypi.txt
rename to Documentation/laptops/sonypi.rst
index 606bdb9ce036..2a1975ed7ee4 100644
--- a/Documentation/laptops/sonypi.txt
+++ b/Documentation/laptops/sonypi.rst
@@ -1,11 +1,13 @@
+==================================================
Sony Programmable I/O Control Device Driver Readme
---------------------------------------------------
- Copyright (C) 2001-2004 Stelian Pop <stelian@popies.net>
- Copyright (C) 2001-2002 Alcôve <www.alcove.com>
- Copyright (C) 2001 Michael Ashley <m.ashley@unsw.edu.au>
- Copyright (C) 2001 Junichi Morita <jun1m@mars.dti.ne.jp>
- Copyright (C) 2000 Takaya Kinjo <t-kinjo@tc4.so-net.ne.jp>
- Copyright (C) 2000 Andrew Tridgell <tridge@samba.org>
+==================================================
+
+ - Copyright (C) 2001-2004 Stelian Pop <stelian@popies.net>
+ - Copyright (C) 2001-2002 Alcôve <www.alcove.com>
+ - Copyright (C) 2001 Michael Ashley <m.ashley@unsw.edu.au>
+ - Copyright (C) 2001 Junichi Morita <jun1m@mars.dti.ne.jp>
+ - Copyright (C) 2000 Takaya Kinjo <t-kinjo@tc4.so-net.ne.jp>
+ - Copyright (C) 2000 Andrew Tridgell <tridge@samba.org>
This driver enables access to the Sony Programmable I/O Control Device which
can be found in many Sony Vaio laptops. Some newer Sony laptops (seems to be
@@ -14,6 +16,7 @@ sonypi device and are not supported at all by this driver.
It will give access (through a user space utility) to some events those laptops
generate, like:
+
- jogdial events (the small wheel on the side of Vaios)
- capture button events (only on Vaio Picturebook series)
- Fn keys
@@ -49,6 +52,7 @@ module argument syntax (<param>=<value> when passing the option to the
module or sonypi.<param>=<value> on the kernel boot line when sonypi is
statically linked into the kernel). Those options are:
+ =============== =======================================================
minor: minor number of the misc device /dev/sonypi,
default is -1 (automatic allocation, see /proc/misc
or kernel logs)
@@ -86,6 +90,8 @@ statically linked into the kernel). Those options are:
will be tried. You can use the following bits to
construct your own event mask (from
drivers/char/sonypi.h):
+
+ ======================== ======
SONYPI_JOGGER_MASK 0x0001
SONYPI_CAPTURE_MASK 0x0002
SONYPI_FNKEY_MASK 0x0004
@@ -100,22 +106,24 @@ statically linked into the kernel). Those options are:
SONYPI_MEMORYSTICK_MASK 0x0800
SONYPI_BATTERY_MASK 0x1000
SONYPI_WIRELESS_MASK 0x2000
+ ======================== ======
useinput: if set (which is the default) two input devices are
created, one which interprets the jogdial events as
mouse events, the other one which acts like a
keyboard reporting the pressing of the special keys.
+ =============== =======================================================
Module use:
-----------
In order to automatically load the sonypi module on use, you can put those
-lines a configuration file in /etc/modprobe.d/:
+lines a configuration file in /etc/modprobe.d/::
alias char-major-10-250 sonypi
options sonypi minor=250
-This supposes the use of minor 250 for the sonypi device:
+This supposes the use of minor 250 for the sonypi device::
# mknod /dev/sonypi c 10 250
@@ -148,5 +156,5 @@ Bugs:
http://www.acc.umu.se/~erikw/program/smartdimmer-0.1.tar.bz2
- since all development was done by reverse engineering, there is
- _absolutely no guarantee_ that this driver will not crash your
+ *absolutely no guarantee* that this driver will not crash your
laptop. Permanently.
diff --git a/Documentation/laptops/thinkpad-acpi.txt b/Documentation/laptops/thinkpad-acpi.rst
similarity index 89%
rename from Documentation/laptops/thinkpad-acpi.txt
rename to Documentation/laptops/thinkpad-acpi.rst
index 65719384fc36..d0f0d16c21b9 100644
--- a/Documentation/laptops/thinkpad-acpi.txt
+++ b/Documentation/laptops/thinkpad-acpi.rst
@@ -1,12 +1,15 @@
- ThinkPad ACPI Extras Driver
+===========================
+ThinkPad ACPI Extras Driver
+===========================
- Version 0.25
- October 16th, 2013
+Version 0.25
- Borislav Deianov <borislav@users.sf.net>
- Henrique de Moraes Holschuh <hmh@hmh.eng.br>
- http://ibm-acpi.sf.net/
+October 16th, 2013
+- Borislav Deianov <borislav@users.sf.net>
+- Henrique de Moraes Holschuh <hmh@hmh.eng.br>
+
+http://ibm-acpi.sf.net/
This is a Linux driver for the IBM and Lenovo ThinkPad laptops. It
supports various features of these laptops which are accessible
@@ -91,7 +94,8 @@ yet ready or stabilized, it is expected that this interface will change,
and any and all userspace programs must deal with it.
-Notes about the sysfs interface:
+Notes about the sysfs interface
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Unlike what was done with the procfs interface, correctness when talking
to the sysfs interfaces will be enforced, as will correctness in the
@@ -129,6 +133,7 @@ Driver version
--------------
procfs: /proc/acpi/ibm/driver
+
sysfs driver attribute: version
The driver name and version. No commands can be written to this file.
@@ -141,9 +146,13 @@ sysfs driver attribute: interface_version
Version of the thinkpad-acpi sysfs interface, as an unsigned long
(output in hex format: 0xAAAABBCC), where:
- AAAA - major revision
- BB - minor revision
- CC - bugfix revision
+
+ AAAA
+ - major revision
+ BB
+ - minor revision
+ CC
+ - bugfix revision
The sysfs interface version changelog for the driver can be found at the
end of this document. Changes to the sysfs interface done by the kernel
@@ -170,6 +179,7 @@ Hot keys
--------
procfs: /proc/acpi/ibm/hotkey
+
sysfs device attribute: hotkey_*
In a ThinkPad, the ACPI HKEY handler is responsible for communicating
@@ -181,7 +191,7 @@ firmware will behave in many situations.
The driver enables the HKEY ("hot key") event reporting automatically
when loaded, and disables it when it is removed.
-The driver will report HKEY events in the following format:
+The driver will report HKEY events in the following format::
ibm/hotkey HKEY 00000080 0000xxxx
@@ -217,9 +227,10 @@ ThinkPads, it is still possible to support some extra hotkeys by
polling the "CMOS NVRAM" at least 10 times per second. The driver
attempts to enables this functionality automatically when required.
-procfs notes:
+procfs notes
+^^^^^^^^^^^^
-The following commands can be written to the /proc/acpi/ibm/hotkey file:
+The following commands can be written to the /proc/acpi/ibm/hotkey file::
echo 0xffffffff > /proc/acpi/ibm/hotkey -- enable all hot keys
echo 0 > /proc/acpi/ibm/hotkey -- disable all possible hot keys
@@ -227,7 +238,7 @@ The following commands can be written to the /proc/acpi/ibm/hotkey file:
echo reset > /proc/acpi/ibm/hotkey -- restore the recommended mask
The following commands have been deprecated and will cause the kernel
-to log a warning:
+to log a warning::
echo enable > /proc/acpi/ibm/hotkey -- does nothing
echo disable > /proc/acpi/ibm/hotkey -- returns an error
@@ -237,7 +248,8 @@ maintain maximum bug-to-bug compatibility, it does not report any masks,
nor does it allow one to manipulate the hot key mask when the firmware
does not support masks at all, even if NVRAM polling is in use.
-sysfs notes:
+sysfs notes
+^^^^^^^^^^^
hotkey_bios_enabled:
DEPRECATED, WILL BE REMOVED SOON.
@@ -349,7 +361,8 @@ sysfs notes:
This attribute has poll()/select() support.
-input layer notes:
+input layer notes
+^^^^^^^^^^^^^^^^^
A Hot key is mapped to a single input layer EV_KEY event, possibly
followed by an EV_MSC MSC_SCAN event that shall contain that key's scan
@@ -362,11 +375,13 @@ remapping KEY_UNKNOWN keys.
The events are available in an input device, with the following id:
- Bus: BUS_HOST
- vendor: 0x1014 (PCI_VENDOR_ID_IBM) or
+ ============== ==============================
+ Bus BUS_HOST
+ vendor 0x1014 (PCI_VENDOR_ID_IBM) or
0x17aa (PCI_VENDOR_ID_LENOVO)
- product: 0x5054 ("TP")
- version: 0x4101
+ product 0x5054 ("TP")
+ version 0x4101
+ ============== ==============================
The version will have its LSB incremented if the keymap changes in a
backwards-compatible way. The MSB shall always be 0x41 for this input
@@ -380,9 +395,10 @@ backwards-compatible change for this input device.
Thinkpad-acpi Hot Key event map (version 0x4101):
+======= ======= ============== ==============================================
ACPI Scan
event code Key Notes
-
+======= ======= ============== ==============================================
0x1001 0x00 FN+F1 -
0x1002 0x01 FN+F2 IBM: battery (rare)
@@ -426,7 +442,9 @@ event code Key Notes
or toggle screen expand
0x1009 0x08 FN+F9 -
- .. .. ..
+
+... ... ... ...
+
0x100B 0x0A FN+F11 -
0x100C 0x0B FN+F12 Sleep to disk. You are always
@@ -480,8 +498,11 @@ event code Key Notes
0x1018 0x17 THINKPAD ThinkPad/Access IBM/Lenovo key
0x1019 0x18 unknown
-.. .. ..
+
+... ... ...
+
0x1020 0x1F unknown
+======= ======= ============== ==============================================
The ThinkPad firmware does not allow one to differentiate when most hot
keys are pressed or released (either that, or we don't know how to, yet).
@@ -499,14 +520,17 @@ generate input device EV_KEY events.
In addition to the EV_KEY events, thinkpad-acpi may also issue EV_SW
events for switches:
+============== ==============================================
SW_RFKILL_ALL T60 and later hardware rfkill rocker switch
SW_TABLET_MODE Tablet ThinkPads HKEY events 0x5009 and 0x500A
+============== ==============================================
-Non hotkey ACPI HKEY event map:
--------------------------------
+Non hotkey ACPI HKEY event map
+------------------------------
Events that are never propagated by the driver:
+====== ==================================================
0x2304 System is waking up from suspend to undock
0x2305 System is waking up from suspend to eject bay
0x2404 System is waking up from hibernation to undock
@@ -519,10 +543,12 @@ Events that are never propagated by the driver:
0x6000 KEYBOARD: Numlock key pressed
0x6005 KEYBOARD: Fn key pressed (TO BE VERIFIED)
0x7000 Radio Switch may have changed state
+====== ==================================================
Events that are propagated by the driver to userspace:
+====== =====================================================
0x2313 ALARM: System is waking up from suspend because
the battery is nearly empty
0x2413 ALARM: System is waking up from hibernation because
@@ -544,6 +570,7 @@ Events that are propagated by the driver to userspace:
0x6040 Nvidia Optimus/AC adapter related (TO BE VERIFIED)
0x60C0 X1 Yoga 2016, Tablet mode status changed
0x60F0 Thermal Transformation changed (GMTS, Windows)
+====== =====================================================
Battery nearly empty alarms are a last resort attempt to get the
operating system to hibernate or shutdown cleanly (0x2313), or shutdown
@@ -562,7 +589,8 @@ cycle, or a system shutdown. Obviously, something is very wrong if this
happens.
-Brightness hotkey notes:
+Brightness hotkey notes
+^^^^^^^^^^^^^^^^^^^^^^^
Don't mess with the brightness hotkeys in a Thinkpad. If you want
notifications for OSD, use the sysfs backlight class event support.
@@ -579,7 +607,9 @@ Bluetooth
---------
procfs: /proc/acpi/ibm/bluetooth
+
sysfs device attribute: bluetooth_enable (deprecated)
+
sysfs rfkill class: switch "tpacpi_bluetooth_sw"
This feature shows the presence and current state of a ThinkPad
@@ -588,22 +618,25 @@ Bluetooth device in the internal ThinkPad CDC slot.
If the ThinkPad supports it, the Bluetooth state is stored in NVRAM,
so it is kept across reboots and power-off.
-Procfs notes:
+Procfs notes
+^^^^^^^^^^^^
-If Bluetooth is installed, the following commands can be used:
+If Bluetooth is installed, the following commands can be used::
echo enable > /proc/acpi/ibm/bluetooth
echo disable > /proc/acpi/ibm/bluetooth
-Sysfs notes:
+Sysfs notes
+^^^^^^^^^^^
If the Bluetooth CDC card is installed, it can be enabled /
disabled through the "bluetooth_enable" thinkpad-acpi device
attribute, and its current status can also be queried.
enable:
- 0: disables Bluetooth / Bluetooth is disabled
- 1: enables Bluetooth / Bluetooth is enabled.
+
+ - 0: disables Bluetooth / Bluetooth is disabled
+ - 1: enables Bluetooth / Bluetooth is enabled.
Note: this interface has been superseded by the generic rfkill
class. It has been deprecated, and it will be removed in year
@@ -617,7 +650,7 @@ Video output control -- /proc/acpi/ibm/video
--------------------------------------------
This feature allows control over the devices used for video output -
-LCD, CRT or DVI (if available). The following commands are available:
+LCD, CRT or DVI (if available). The following commands are available::
echo lcd_enable > /proc/acpi/ibm/video
echo lcd_disable > /proc/acpi/ibm/video
@@ -630,9 +663,10 @@ LCD, CRT or DVI (if available). The following commands are available:
echo expand_toggle > /proc/acpi/ibm/video
echo video_switch > /proc/acpi/ibm/video
-NOTE: Access to this feature is restricted to processes owning the
-CAP_SYS_ADMIN capability for safety reasons, as it can interact badly
-enough with some versions of X.org to crash it.
+NOTE:
+ Access to this feature is restricted to processes owning the
+ CAP_SYS_ADMIN capability for safety reasons, as it can interact badly
+ enough with some versions of X.org to crash it.
Each video output device can be enabled or disabled individually.
Reading /proc/acpi/ibm/video shows the status of each device.
@@ -665,18 +699,21 @@ ThinkLight control
------------------
procfs: /proc/acpi/ibm/light
+
sysfs attributes: as per LED class, for the "tpacpi::thinklight" LED
-procfs notes:
+procfs notes
+^^^^^^^^^^^^
The ThinkLight status can be read and set through the procfs interface. A
few models which do not make the status available will show the ThinkLight
-status as "unknown". The available commands are:
+status as "unknown". The available commands are::
echo on > /proc/acpi/ibm/light
echo off > /proc/acpi/ibm/light
-sysfs notes:
+sysfs notes
+^^^^^^^^^^^
The ThinkLight sysfs interface is documented by the LED class
documentation, in Documentation/leds/leds-class.rst. The ThinkLight LED name
@@ -691,6 +728,7 @@ CMOS/UCMS control
-----------------
procfs: /proc/acpi/ibm/cmos
+
sysfs device attribute: cmos_command
This feature is mostly used internally by the ACPI firmware to keep the legacy
@@ -707,16 +745,16 @@ The range of valid cmos command numbers is 0 to 21, but not all have an
effect and the behavior varies from model to model. Here is the behavior
on the X40 (tpb is the ThinkPad Buttons utility):
- 0 - Related to "Volume down" key press
- 1 - Related to "Volume up" key press
- 2 - Related to "Mute on" key press
- 3 - Related to "Access IBM" key press
- 4 - Related to "LCD brightness up" key press
- 5 - Related to "LCD brightness down" key press
- 11 - Related to "toggle screen expansion" key press/function
- 12 - Related to "ThinkLight on"
- 13 - Related to "ThinkLight off"
- 14 - Related to "ThinkLight" key press (toggle ThinkLight)
+ - 0 - Related to "Volume down" key press
+ - 1 - Related to "Volume up" key press
+ - 2 - Related to "Mute on" key press
+ - 3 - Related to "Access IBM" key press
+ - 4 - Related to "LCD brightness up" key press
+ - 5 - Related to "LCD brightness down" key press
+ - 11 - Related to "toggle screen expansion" key press/function
+ - 12 - Related to "ThinkLight on"
+ - 13 - Related to "ThinkLight off"
+ - 14 - Related to "ThinkLight" key press (toggle ThinkLight)
The cmos command interface is prone to firmware split-brain problems, as
in newer ThinkPads it is just a compatibility layer. Do not use it, it is
@@ -748,9 +786,10 @@ are aware of the consequences are welcome to enabling it.
Audio mute and microphone mute LEDs are supported, but currently not
visible to userspace. They are used by the snd-hda-intel audio driver.
-procfs notes:
+procfs notes
+^^^^^^^^^^^^
-The available commands are:
+The available commands are::
echo '<LED number> on' >/proc/acpi/ibm/led
echo '<LED number> off' >/proc/acpi/ibm/led
@@ -760,23 +799,24 @@ The <LED number> range is 0 to 15. The set of LEDs that can be
controlled varies from model to model. Here is the common ThinkPad
mapping:
- 0 - power
- 1 - battery (orange)
- 2 - battery (green)
- 3 - UltraBase/dock
- 4 - UltraBay
- 5 - UltraBase battery slot
- 6 - (unknown)
- 7 - standby
- 8 - dock status 1
- 9 - dock status 2
- 10, 11 - (unknown)
- 12 - thinkvantage
- 13, 14, 15 - (unknown)
+ - 0 - power
+ - 1 - battery (orange)
+ - 2 - battery (green)
+ - 3 - UltraBase/dock
+ - 4 - UltraBay
+ - 5 - UltraBase battery slot
+ - 6 - (unknown)
+ - 7 - standby
+ - 8 - dock status 1
+ - 9 - dock status 2
+ - 10, 11 - (unknown)
+ - 12 - thinkvantage
+ - 13, 14, 15 - (unknown)
All of the above can be turned on and off and can be made to blink.
-sysfs notes:
+sysfs notes
+^^^^^^^^^^^
The ThinkPad LED sysfs interface is described in detail by the LED class
documentation, in Documentation/leds/leds-class.rst.
@@ -815,7 +855,7 @@ The BEEP method is used internally by the ACPI firmware to provide
audible alerts in various situations. This feature allows the same
sounds to be triggered manually.
-The commands are non-negative integer numbers:
+The commands are non-negative integer numbers::
echo <number> >/proc/acpi/ibm/beep
@@ -823,25 +863,26 @@ The valid <number> range is 0 to 17. Not all numbers trigger sounds
and the sounds vary from model to model. Here is the behavior on the
X40:
- 0 - stop a sound in progress (but use 17 to stop 16)
- 2 - two beeps, pause, third beep ("low battery")
- 3 - single beep
- 4 - high, followed by low-pitched beep ("unable")
- 5 - single beep
- 6 - very high, followed by high-pitched beep ("AC/DC")
- 7 - high-pitched beep
- 9 - three short beeps
- 10 - very long beep
- 12 - low-pitched beep
- 15 - three high-pitched beeps repeating constantly, stop with 0
- 16 - one medium-pitched beep repeating constantly, stop with 17
- 17 - stop 16
+ - 0 - stop a sound in progress (but use 17 to stop 16)
+ - 2 - two beeps, pause, third beep ("low battery")
+ - 3 - single beep
+ - 4 - high, followed by low-pitched beep ("unable")
+ - 5 - single beep
+ - 6 - very high, followed by high-pitched beep ("AC/DC")
+ - 7 - high-pitched beep
+ - 9 - three short beeps
+ - 10 - very long beep
+ - 12 - low-pitched beep
+ - 15 - three high-pitched beeps repeating constantly, stop with 0
+ - 16 - one medium-pitched beep repeating constantly, stop with 17
+ - 17 - stop 16
Temperature sensors
-------------------
procfs: /proc/acpi/ibm/thermal
+
sysfs device attributes: (hwmon "thinkpad") temp*_input
Most ThinkPads include six or more separate temperature sensors but only
@@ -850,10 +891,14 @@ feature shows readings from up to eight different sensors on older
ThinkPads, and up to sixteen different sensors on newer ThinkPads.
For example, on the X40, a typical output may be:
-temperatures: 42 42 45 41 36 -128 33 -128
+
+temperatures:
+ 42 42 45 41 36 -128 33 -128
On the T43/p, a typical output may be:
-temperatures: 48 48 36 52 38 -128 31 -128 48 52 48 -128 -128 -128 -128 -128
+
+temperatures:
+ 48 48 36 52 38 -128 31 -128 48 52 48 -128 -128 -128 -128 -128
The mapping of thermal sensors to physical locations varies depending on
system-board model (and thus, on ThinkPad model).
@@ -863,46 +908,53 @@ tries to track down these locations for various models.
Most (newer?) models seem to follow this pattern:
-1: CPU
-2: (depends on model)
-3: (depends on model)
-4: GPU
-5: Main battery: main sensor
-6: Bay battery: main sensor
-7: Main battery: secondary sensor
-8: Bay battery: secondary sensor
-9-15: (depends on model)
+- 1: CPU
+- 2: (depends on model)
+- 3: (depends on model)
+- 4: GPU
+- 5: Main battery: main sensor
+- 6: Bay battery: main sensor
+- 7: Main battery: secondary sensor
+- 8: Bay battery: secondary sensor
+- 9-15: (depends on model)
For the R51 (source: Thomas Gruber):
-2: Mini-PCI
-3: Internal HDD
+
+- 2: Mini-PCI
+- 3: Internal HDD
For the T43, T43/p (source: Shmidoax/Thinkwiki.org)
http://thinkwiki.org/wiki/Thermal_Sensors#ThinkPad_T43.2C_T43p
-2: System board, left side (near PCMCIA slot), reported as HDAPS temp
-3: PCMCIA slot
-9: MCH (northbridge) to DRAM Bus
-10: Clock-generator, mini-pci card and ICH (southbridge), under Mini-PCI
- card, under touchpad
-11: Power regulator, underside of system board, below F2 key
+
+- 2: System board, left side (near PCMCIA slot), reported as HDAPS temp
+- 3: PCMCIA slot
+- 9: MCH (northbridge) to DRAM Bus
+- 10: Clock-generator, mini-pci card and ICH (southbridge), under Mini-PCI
+ card, under touchpad
+- 11: Power regulator, underside of system board, below F2 key
The A31 has a very atypical layout for the thermal sensors
(source: Milos Popovic, http://thinkwiki.org/wiki/Thermal_Sensors#ThinkPad_A31)
-1: CPU
-2: Main Battery: main sensor
-3: Power Converter
-4: Bay Battery: main sensor
-5: MCH (northbridge)
-6: PCMCIA/ambient
-7: Main Battery: secondary sensor
-8: Bay Battery: secondary sensor
+- 1: CPU
+- 2: Main Battery: main sensor
+- 3: Power Converter
+- 4: Bay Battery: main sensor
+- 5: MCH (northbridge)
+- 6: PCMCIA/ambient
+- 7: Main Battery: secondary sensor
+- 8: Bay Battery: secondary sensor
+
+
+Procfs notes
+^^^^^^^^^^^^
-Procfs notes:
Readings from sensors that are not available return -128.
No commands can be written to this file.
-Sysfs notes:
+Sysfs notes
+^^^^^^^^^^^
+
Sensors that are not available return the ENXIO error. This
status may change at runtime, as there are hotplug thermal
sensors, like those inside the batteries and docks.
@@ -921,6 +973,7 @@ ftp://ftp.suse.com/pub/people/trenn/sources/ec
Use it to determine the register holding the fan
speed on some models. To do that, do the following:
+
- make sure the battery is fully charged
- make sure the fan is running
- use above mentioned tool to read out the EC
@@ -941,6 +994,7 @@ LCD brightness control
----------------------
procfs: /proc/acpi/ibm/brightness
+
sysfs backlight device "thinkpad_screen"
This feature allows software control of the LCD brightness on ThinkPad
@@ -985,15 +1039,17 @@ brightness_enable=0 forces it to be disabled. brightness_enable=1
forces it to be enabled when available, even if the standard ACPI
interface is also available.
-Procfs notes:
+Procfs notes
+^^^^^^^^^^^^
- The available commands are:
+The available commands are::
echo up >/proc/acpi/ibm/brightness
echo down >/proc/acpi/ibm/brightness
echo 'level <level>' >/proc/acpi/ibm/brightness
-Sysfs notes:
+Sysfs notes
+^^^^^^^^^^^
The interface is implemented through the backlight sysfs class, which is
poorly documented at this time.
@@ -1038,6 +1094,7 @@ Volume control (Console Audio control)
--------------------------------------
procfs: /proc/acpi/ibm/volume
+
ALSA: "ThinkPad Console Audio Control", default ID: "ThinkPadEC"
NOTE: by default, the volume control interface operates in read-only
@@ -1053,7 +1110,8 @@ Software volume control should be done only in the main AC97/HDA
mixer.
-About the ThinkPad Console Audio control:
+About the ThinkPad Console Audio control
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ThinkPads have a built-in amplifier and muting circuit that drives the
console headphone and speakers. This circuit is after the main AC97
@@ -1092,13 +1150,14 @@ normal key presses to the operating system (thinkpad-acpi is not
involved).
-The ThinkPad-ACPI volume control:
+The ThinkPad-ACPI volume control
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The preferred way to interact with the Console Audio control is the
ALSA interface.
The legacy procfs interface allows one to read the current state,
-and if volume control is enabled, accepts the following commands:
+and if volume control is enabled, accepts the following commands::
echo up >/proc/acpi/ibm/volume
echo down >/proc/acpi/ibm/volume
@@ -1137,13 +1196,15 @@ Fan control and monitoring: fan speed, fan enable/disable
---------------------------------------------------------
procfs: /proc/acpi/ibm/fan
-sysfs device attributes: (hwmon "thinkpad") fan1_input, pwm1,
- pwm1_enable, fan2_input
+
+sysfs device attributes: (hwmon "thinkpad") fan1_input, pwm1, pwm1_enable, fan2_input
+
sysfs hwmon driver attributes: fan_watchdog
-NOTE NOTE NOTE: fan control operations are disabled by default for
-safety reasons. To enable them, the module parameter "fan_control=1"
-must be given to thinkpad-acpi.
+NOTE NOTE NOTE:
+ fan control operations are disabled by default for
+ safety reasons. To enable them, the module parameter "fan_control=1"
+ must be given to thinkpad-acpi.
This feature attempts to show the current fan speed, control mode and
other fan data that might be available. The speed is read directly
@@ -1154,7 +1215,8 @@ value on other models.
Some Lenovo ThinkPads support a secondary fan. This fan cannot be
controlled separately, it shares the main fan control.
-Fan levels:
+Fan levels
+^^^^^^^^^^
Most ThinkPad fans work in "levels" at the firmware interface. Level 0
stops the fan. The higher the level, the higher the fan speed, although
@@ -1209,9 +1271,10 @@ therefore, not suitable to protect against fan mode changes made through
means other than the "enable", "disable", and "level" procfs fan
commands, or the hwmon fan control sysfs interface.
-Procfs notes:
+Procfs notes
+^^^^^^^^^^^^
-The fan may be enabled or disabled with the following commands:
+The fan may be enabled or disabled with the following commands::
echo enable >/proc/acpi/ibm/fan
echo disable >/proc/acpi/ibm/fan
@@ -1219,7 +1282,7 @@ The fan may be enabled or disabled with the following commands:
Placing a fan on level 0 is the same as disabling it. Enabling a fan
will try to place it in a safe level if it is too slow or disabled.
-The fan level can be controlled with the command:
+The fan level can be controlled with the command::
echo 'level <level>' > /proc/acpi/ibm/fan
@@ -1231,7 +1294,7 @@ compatibility.
On the X31 and X40 (and ONLY on those models), the fan speed can be
controlled to a certain degree. Once the fan is running, it can be
-forced to run faster or slower with the following command:
+forced to run faster or slower with the following command::
echo 'speed <speed>' > /proc/acpi/ibm/fan
@@ -1241,13 +1304,14 @@ effect or the fan speed eventually settles somewhere in that range. The
fan cannot be stopped or started with this command. This functionality
is incomplete, and not available through the sysfs interface.
-To program the safety watchdog, use the "watchdog" command.
+To program the safety watchdog, use the "watchdog" command::
echo 'watchdog <interval in seconds>' > /proc/acpi/ibm/fan
If you want to disable the watchdog, use 0 as the interval.
-Sysfs notes:
+Sysfs notes
+^^^^^^^^^^^
The sysfs interface follows the hwmon subsystem guidelines for the most
part, and the exception is the fan safety watchdog.
@@ -1261,10 +1325,10 @@ to the firmware).
Features not yet implemented by the driver return ENOSYS.
hwmon device attribute pwm1_enable:
- 0: PWM offline (fan is set to full-speed mode)
- 1: Manual PWM control (use pwm1 to set fan level)
- 2: Hardware PWM control (EC "auto" mode)
- 3: reserved (Software PWM control, not implemented yet)
+ - 0: PWM offline (fan is set to full-speed mode)
+ - 1: Manual PWM control (use pwm1 to set fan level)
+ - 2: Hardware PWM control (EC "auto" mode)
+ - 3: reserved (Software PWM control, not implemented yet)
Modes 0 and 2 are not supported by all ThinkPads, and the
driver is not always able to detect this. If it does know a
@@ -1304,7 +1368,9 @@ WAN
---
procfs: /proc/acpi/ibm/wan
+
sysfs device attribute: wwan_enable (deprecated)
+
sysfs rfkill class: switch "tpacpi_wwan_sw"
This feature shows the presence and current state of the built-in
@@ -1316,22 +1382,24 @@ so it is kept across reboots and power-off.
It was tested on a Lenovo ThinkPad X60. It should probably work on other
ThinkPad models which come with this module installed.
-Procfs notes:
+Procfs notes
+^^^^^^^^^^^^
-If the W-WAN card is installed, the following commands can be used:
+If the W-WAN card is installed, the following commands can be used::
echo enable > /proc/acpi/ibm/wan
echo disable > /proc/acpi/ibm/wan
-Sysfs notes:
+Sysfs notes
+^^^^^^^^^^^
If the W-WAN card is installed, it can be enabled /
disabled through the "wwan_enable" thinkpad-acpi device
attribute, and its current status can also be queried.
enable:
- 0: disables WWAN card / WWAN card is disabled
- 1: enables WWAN card / WWAN card is enabled.
+ - 0: disables WWAN card / WWAN card is disabled
+ - 1: enables WWAN card / WWAN card is enabled.
Note: this interface has been superseded by the generic rfkill
class. It has been deprecated, and it will be removed in year
@@ -1354,7 +1422,8 @@ sysfs rfkill class: switch "tpacpi_uwb_sw"
This feature exports an rfkill controller for the UWB device, if one is
present and enabled in the BIOS.
-Sysfs notes:
+Sysfs notes
+^^^^^^^^^^^
rfkill controller switch "tpacpi_uwb_sw": refer to
Documentation/rfkill.rst for details.
@@ -1368,11 +1437,11 @@ This sysfs attribute controls the keyboard "face" that will be shown on the
Lenovo X1 Carbon 2nd gen (2014)'s adaptive keyboard. The value can be read
and set.
-1 = Home mode
-2 = Web-browser mode
-3 = Web-conference mode
-4 = Function mode
-5 = Layflat mode
+- 1 = Home mode
+- 2 = Web-browser mode
+- 3 = Web-conference mode
+- 4 = Function mode
+- 5 = Layflat mode
For more details about which buttons will appear depending on the mode, please
review the laptop's user guide:
@@ -1382,13 +1451,13 @@ Multiple Commands, Module Parameters
------------------------------------
Multiple commands can be written to the proc files in one shot by
-separating them with commas, for example:
+separating them with commas, for example::
echo enable,0xffff > /proc/acpi/ibm/hotkey
echo lcd_disable,crt_enable > /proc/acpi/ibm/video
Commands can also be specified when loading the thinkpad-acpi module,
-for example:
+for example::
modprobe thinkpad_acpi hotkey=enable,0xffff video=auto_disable
@@ -1397,14 +1466,16 @@ Enabling debugging output
-------------------------
The module takes a debug parameter which can be used to selectively
-enable various classes of debugging output, for example:
+enable various classes of debugging output, for example::
modprobe thinkpad_acpi debug=0xffff
will enable all debugging output classes. It takes a bitmask, so
to enable more than one output class, just add their values.
+ ============= ======================================
Debug bitmask Description
+ ============= ======================================
0x8000 Disclose PID of userspace programs
accessing some functions of the driver
0x0001 Initialization and probing
@@ -1415,6 +1486,7 @@ to enable more than one output class, just add their values.
0x0010 Fan control
0x0020 Backlight brightness
0x0040 Audio mixer/volume control
+ ============= ======================================
There is also a kernel build option to enable more debugging
information, which may be necessary to debug driver problems.
@@ -1432,8 +1504,10 @@ the module parameter force_load=1. Regardless of whether this works or
not, please contact ibm-acpi-devel@lists.sourceforge.net with a report.
-Sysfs interface changelog:
+Sysfs interface changelog
+^^^^^^^^^^^^^^^^^^^^^^^^^
+========= ===============================================================
0x000100: Initial sysfs support, as a single platform driver and
device.
0x000200: Hot key support for 32 hot keys, and radio slider switch
@@ -1485,3 +1559,4 @@ Sysfs interface changelog:
0x030000: Thermal and fan sysfs attributes were moved to the hwmon
device instead of being attached to the backing platform
device.
+========= ===============================================================
diff --git a/Documentation/laptops/toshiba_haps.txt b/Documentation/laptops/toshiba_haps.rst
similarity index 60%
rename from Documentation/laptops/toshiba_haps.txt
rename to Documentation/laptops/toshiba_haps.rst
index 0c1d88dedbde..11dfc428c080 100644
--- a/Documentation/laptops/toshiba_haps.txt
+++ b/Documentation/laptops/toshiba_haps.rst
@@ -1,18 +1,19 @@
-Kernel driver toshiba_haps
+====================================
Toshiba HDD Active Protection Sensor
====================================
+Kernel driver: toshiba_haps
+
Author: Azael Avalos <coproscefalo@gmail.com>
-0. Contents
------------
+.. 0. Contents
-1. Description
-2. Interface
-3. Accelerometer axes
-4. Supported devices
-5. Usage
+ 1. Description
+ 2. Interface
+ 3. Accelerometer axes
+ 4. Supported devices
+ 5. Usage
1. Description
@@ -32,17 +33,20 @@ file to set the desired protection level or sensor sensibility.
------------
This device comes with 3 methods:
-_STA - Checks existence of the device, returning Zero if the device does not
+
+==== =====================================================================
+_STA Checks existence of the device, returning Zero if the device does not
exists or is not supported.
-PTLV - Sets the desired protection level.
-RSSS - Shuts down the HDD protection interface for a few seconds,
+PTLV Sets the desired protection level.
+RSSS Shuts down the HDD protection interface for a few seconds,
then restores normal operation.
+==== =====================================================================
Note:
-The presence of Solid State Drives (SSD) can make this driver to fail loading,
-given the fact that such drives have no movable parts, and thus, not requiring
-any "protection" as well as failing during the evaluation of the _STA method
-found under this device.
+ The presence of Solid State Drives (SSD) can make this driver to fail loading,
+ given the fact that such drives have no movable parts, and thus, not requiring
+ any "protection" as well as failing during the evaluation of the _STA method
+ found under this device.
3. Accelerometer axes
@@ -66,11 +70,18 @@ conventional HDD and not only SSD, or a combination of both HDD and SSD.
--------
The sysfs files under /sys/devices/LNXSYSTM:00/LNXSYBUS:00/TOS620A:00/ are:
-protection_level - The protection_level is readable and writeable, and
+
+================ ============================================================
+protection_level The protection_level is readable and writeable, and
provides a way to let userspace query the current protection
level, as well as set the desired protection level, the
available protection levels are:
- 0 - Disabled | 1 - Low | 2 - Medium | 3 - High
-reset_protection - The reset_protection entry is writeable only, being "1"
+
+ ============ ======= ========== ========
+ 0 - Disabled 1 - Low 2 - Medium 3 - High
+ ============ ======= ========== ========
+
+reset_protection The reset_protection entry is writeable only, being "1"
the only parameter it accepts, it is used to trigger
a reset of the protection interface.
+================ ============================================================
diff --git a/Documentation/sysctl/vm.txt b/Documentation/sysctl/vm.txt
index 6758767c85a8..f10245b06b0e 100644
--- a/Documentation/sysctl/vm.txt
+++ b/Documentation/sysctl/vm.txt
@@ -102,7 +102,7 @@ Changing this takes effect whenever an application requests memory.
block_dump
block_dump enables block I/O debugging when set to a nonzero value. More
-information on block I/O debugging is in Documentation/laptops/laptop-mode.txt.
+information on block I/O debugging is in Documentation/laptops/laptop-mode.rst.
==============================================================
@@ -286,7 +286,7 @@ shared memory segment using hugetlb page.
laptop_mode
laptop_mode is a knob that controls "laptop mode". All the things that are
-controlled by this knob are discussed in Documentation/laptops/laptop-mode.txt.
+controlled by this knob are discussed in Documentation/laptops/laptop-mode.rst.
==============================================================
diff --git a/MAINTAINERS b/MAINTAINERS
index 6696779c0826..262dab70cbbf 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -14565,7 +14565,7 @@ M: Mattia Dongili <malattia@linux.it>
L: platform-driver-x86@vger.kernel.org
W: http://www.linux.it/~malattia/wiki/index.php/Sony_drivers
S: Maintained
-F: Documentation/laptops/sony-laptop.txt
+F: Documentation/laptops/sony-laptop.rst
F: drivers/char/sonypi.c
F: drivers/platform/x86/sony-laptop.c
F: include/linux/sony-laptop.h
diff --git a/drivers/char/Kconfig b/drivers/char/Kconfig
index 110824a27510..ba90034f5b8f 100644
--- a/drivers/char/Kconfig
+++ b/drivers/char/Kconfig
@@ -382,7 +382,7 @@ config SONYPI
Device which can be found in many (all ?) Sony Vaio laptops.
If you have one of those laptops, read
- <file:Documentation/laptops/sonypi.txt>, and say Y or M here.
+ <file:Documentation/laptops/sonypi.rst>, and say Y or M here.
To compile this driver as a module, choose M here: the
module will be called sonypi.
diff --git a/drivers/platform/x86/Kconfig b/drivers/platform/x86/Kconfig
index 91b63cd4d48d..aa620324b1d9 100644
--- a/drivers/platform/x86/Kconfig
+++ b/drivers/platform/x86/Kconfig
@@ -450,7 +450,7 @@ config SONY_LAPTOP
screen brightness control, Fn keys and allows powering on/off some
devices.
- Read <file:Documentation/laptops/sony-laptop.txt> for more information.
+ Read <file:Documentation/laptops/sony-laptop.rst> for more information.
config SONYPI_COMPAT
bool "Sonypi compatibility"
@@ -502,7 +502,7 @@ config THINKPAD_ACPI
support for Fn-Fx key combinations, Bluetooth control, video
output switching, ThinkLight control, UltraBay eject and more.
For more information about this driver see
- <file:Documentation/laptops/thinkpad-acpi.txt> and
+ <file:Documentation/laptops/thinkpad-acpi.rst> and
<http://ibm-acpi.sf.net/> .
This driver was formerly known as ibm-acpi.
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* Re: [PATCH v2 62/79] docs: laptops: convert to ReST
2019-04-22 13:27 ` [PATCH v2 62/79] docs: laptops: " Mauro Carvalho Chehab
@ 2019-05-06 8:59 ` Andy Shevchenko
0 siblings, 0 replies; 115+ messages in thread
From: Andy Shevchenko @ 2019-05-06 8:59 UTC (permalink / raw)
To: Mauro Carvalho Chehab
Cc: Linux Doc Mailing List, Mauro Carvalho Chehab,
Linux Kernel Mailing List, Jonathan Corbet, Mattia Dongili,
Arnd Bergmann, Greg Kroah-Hartman, Darren Hart, Andy Shevchenko,
Platform Driver
On Mon, Apr 22, 2019 at 4:28 PM Mauro Carvalho Chehab
<mchehab+samsung@kernel.org> wrote:
>
> Rename the laptops documentation files to ReST, add an
> index for them and adjust in order to produce a nice html
> output via the Sphinx build system.
>
> At its new index.rst, let's add a :orphan: while this is not linked to
> the main index.rst file, in order to avoid build warnings.
>
Acked-by: Andy Shevchenko <andy.shevchenko@gmail.com>
> Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
> ---
> Documentation/ABI/testing/sysfs-block-device | 2 +-
> .../ABI/testing/sysfs-platform-asus-laptop | 2 +-
> .../admin-guide/kernel-parameters.txt | 2 +-
> .../{asus-laptop.txt => asus-laptop.rst} | 91 ++--
> ...otection.txt => disk-shock-protection.rst} | 32 +-
> Documentation/laptops/index.rst | 17 +
> .../{laptop-mode.txt => laptop-mode.rst} | 509 +++++++++---------
> .../{sony-laptop.txt => sony-laptop.rst} | 58 +-
> .../laptops/{sonypi.txt => sonypi.rst} | 28 +-
> .../{thinkpad-acpi.txt => thinkpad-acpi.rst} | 363 ++++++++-----
> .../{toshiba_haps.txt => toshiba_haps.rst} | 47 +-
> Documentation/sysctl/vm.txt | 4 +-
> MAINTAINERS | 2 +-
> drivers/char/Kconfig | 2 +-
> drivers/platform/x86/Kconfig | 4 +-
> 15 files changed, 660 insertions(+), 503 deletions(-)
> rename Documentation/laptops/{asus-laptop.txt => asus-laptop.rst} (84%)
> rename Documentation/laptops/{disk-shock-protection.txt => disk-shock-protection.rst} (91%)
> create mode 100644 Documentation/laptops/index.rst
> rename Documentation/laptops/{laptop-mode.txt => laptop-mode.rst} (62%)
> rename Documentation/laptops/{sony-laptop.txt => sony-laptop.rst} (85%)
> rename Documentation/laptops/{sonypi.txt => sonypi.rst} (87%)
> rename Documentation/laptops/{thinkpad-acpi.txt => thinkpad-acpi.rst} (89%)
> rename Documentation/laptops/{toshiba_haps.txt => toshiba_haps.rst} (60%)
>
> diff --git a/Documentation/ABI/testing/sysfs-block-device b/Documentation/ABI/testing/sysfs-block-device
> index 82ef6eab042d..0d57bbb4fddc 100644
> --- a/Documentation/ABI/testing/sysfs-block-device
> +++ b/Documentation/ABI/testing/sysfs-block-device
> @@ -45,7 +45,7 @@ Description:
> - Values below -2 are rejected with -EINVAL
>
> For more information, see
> - Documentation/laptops/disk-shock-protection.txt
> + Documentation/laptops/disk-shock-protection.rst
>
>
> What: /sys/block/*/device/ncq_prio_enable
> diff --git a/Documentation/ABI/testing/sysfs-platform-asus-laptop b/Documentation/ABI/testing/sysfs-platform-asus-laptop
> index cd9d667c3da2..d67fa4bafa70 100644
> --- a/Documentation/ABI/testing/sysfs-platform-asus-laptop
> +++ b/Documentation/ABI/testing/sysfs-platform-asus-laptop
> @@ -31,7 +31,7 @@ Description:
> To control the LED display, use the following :
> echo 0x0T000DDD > /sys/devices/platform/asus_laptop/
> where T control the 3 letters display, and DDD the 3 digits display.
> - The DDD table can be found in Documentation/laptops/asus-laptop.txt
> + The DDD table can be found in Documentation/laptops/asus-laptop.rst
>
> What: /sys/devices/platform/asus_laptop/bluetooth
> Date: January 2007
> diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
> index bf6d34fb7180..65d66010b134 100644
> --- a/Documentation/admin-guide/kernel-parameters.txt
> +++ b/Documentation/admin-guide/kernel-parameters.txt
> @@ -4268,7 +4268,7 @@
> Format: <integer>
>
> sonypi.*= [HW] Sony Programmable I/O Control Device driver
> - See Documentation/laptops/sonypi.txt
> + See Documentation/laptops/sonypi.rst
>
> spectre_v2= [X86] Control mitigation of Spectre variant 2
> (indirect branch speculation) vulnerability.
> diff --git a/Documentation/laptops/asus-laptop.txt b/Documentation/laptops/asus-laptop.rst
> similarity index 84%
> rename from Documentation/laptops/asus-laptop.txt
> rename to Documentation/laptops/asus-laptop.rst
> index 5f2858712aa0..4c263f89a22b 100644
> --- a/Documentation/laptops/asus-laptop.txt
> +++ b/Documentation/laptops/asus-laptop.rst
> @@ -1,6 +1,9 @@
> +==================
> Asus Laptop Extras
> +==================
>
> Version 0.1
> +
> August 6, 2009
>
> Corentin Chary <corentincj@iksaif.net>
> @@ -10,11 +13,12 @@ http://acpi4asus.sf.net/
> It may also support some MEDION, JVC or VICTOR laptops (such as MEDION 9675 or
> VICTOR XP7210 for example). It makes all the extra buttons generate input
> events (like keyboards).
> +
> On some models adds support for changing the display brightness and output,
> switching the LCD backlight on and off, and most importantly, allows you to
> blink those fancy LEDs intended for reporting mail and wireless status.
>
> -This driver supercedes the old asus_acpi driver.
> +This driver supersedes the old asus_acpi driver.
>
> Requirements
> ------------
> @@ -49,7 +53,7 @@ Usage
> see some lines like this :
>
> Asus Laptop Extras version 0.42
> - L2D model detected.
> + - L2D model detected.
>
> If it is not the output you have on your laptop, send it (and the laptop's
> DSDT) to me.
> @@ -68,9 +72,12 @@ Usage
> LEDs
> ----
>
> - You can modify LEDs be echoing values to /sys/class/leds/asus::*/brightness :
> + You can modify LEDs be echoing values to `/sys/class/leds/asus/*/brightness`::
> +
> echo 1 > /sys/class/leds/asus::mail/brightness
> +
> will switch the mail LED on.
> +
> You can also know if they are on/off by reading their content and use
> kernel triggers like disk-activity or heartbeat.
>
> @@ -81,7 +88,7 @@ Backlight
> /sys/class/backlight/asus-laptop/. Brightness Values are between 0 and 15.
>
> Wireless devices
> ----------------
> +----------------
>
> You can turn the internal Bluetooth adapter on/off with the bluetooth entry
> (only on models with Bluetooth). This usually controls the associated LED.
> @@ -93,18 +100,20 @@ Display switching
> Note: the display switching code is currently considered EXPERIMENTAL.
>
> Switching works for the following models:
> - L3800C
> - A2500H
> - L5800C
> - M5200N
> - W1000N (albeit with some glitches)
> - M6700R
> - A6JC
> - F3J
> +
> + - L3800C
> + - A2500H
> + - L5800C
> + - M5200N
> + - W1000N (albeit with some glitches)
> + - M6700R
> + - A6JC
> + - F3J
>
> Switching doesn't work for the following:
> - M3700N
> - L2X00D (locks the laptop under certain conditions)
> +
> + - M3700N
> + - L2X00D (locks the laptop under certain conditions)
>
> To switch the displays, echo values from 0 to 15 to
> /sys/devices/platform/asus-laptop/display. The significance of those values
> @@ -113,48 +122,51 @@ Display switching
> +-------+-----+-----+-----+-----+-----+
> | Bin | Val | DVI | TV | CRT | LCD |
> +-------+-----+-----+-----+-----+-----+
> - + 0000 + 0 + + + + +
> + | 0000 | 0 | | | | |
> +-------+-----+-----+-----+-----+-----+
> - + 0001 + 1 + + + + X +
> + | 0001 | 1 | | | | X |
> +-------+-----+-----+-----+-----+-----+
> - + 0010 + 2 + + + X + +
> + | 0010 | 2 | | | X | |
> +-------+-----+-----+-----+-----+-----+
> - + 0011 + 3 + + + X + X +
> + | 0011 | 3 | | | X | X |
> +-------+-----+-----+-----+-----+-----+
> - + 0100 + 4 + + X + + +
> + | 0100 | 4 | | X | | |
> +-------+-----+-----+-----+-----+-----+
> - + 0101 + 5 + + X + + X +
> + | 0101 | 5 | | X | | X |
> +-------+-----+-----+-----+-----+-----+
> - + 0110 + 6 + + X + X + +
> + | 0110 | 6 | | X | X | |
> +-------+-----+-----+-----+-----+-----+
> - + 0111 + 7 + + X + X + X +
> + | 0111 | 7 | | X | X | X |
> +-------+-----+-----+-----+-----+-----+
> - + 1000 + 8 + X + + + +
> + | 1000 | 8 | X | | | |
> +-------+-----+-----+-----+-----+-----+
> - + 1001 + 9 + X + + + X +
> + | 1001 | 9 | X | | | X |
> +-------+-----+-----+-----+-----+-----+
> - + 1010 + 10 + X + + X + +
> + | 1010 | 10 | X | | X | |
> +-------+-----+-----+-----+-----+-----+
> - + 1011 + 11 + X + + X + X +
> + | 1011 | 11 | X | | X | X |
> +-------+-----+-----+-----+-----+-----+
> - + 1100 + 12 + X + X + + +
> + | 1100 | 12 | X | X | | |
> +-------+-----+-----+-----+-----+-----+
> - + 1101 + 13 + X + X + + X +
> + | 1101 | 13 | X | X | | X |
> +-------+-----+-----+-----+-----+-----+
> - + 1110 + 14 + X + X + X + +
> + | 1110 | 14 | X | X | X | |
> +-------+-----+-----+-----+-----+-----+
> - + 1111 + 15 + X + X + X + X +
> + | 1111 | 15 | X | X | X | X |
> +-------+-----+-----+-----+-----+-----+
>
> In most cases, the appropriate displays must be plugged in for the above
> combinations to work. TV-Out may need to be initialized at boot time.
>
> Debugging:
> +
> 1) Check whether the Fn+F8 key:
> +
> a) does not lock the laptop (try a boot with noapic / nolapic if it does)
> b) generates events (0x6n, where n is the value corresponding to the
> configuration above)
> c) actually works
> +
> Record the disp value at every configuration.
> 2) Echo values from 0 to 15 to /sys/devices/platform/asus-laptop/display.
> Record its value, note any change. If nothing changes, try a broader range,
> @@ -164,7 +176,7 @@ Display switching
>
> Note: on some machines (e.g. L3C), after the module has been loaded, only 0x6n
> events are generated and no actual switching occurs. In such a case, a line
> - like:
> + like::
>
> echo $((10#$arg-60)) > /sys/devices/platform/asus-laptop/display
>
> @@ -180,15 +192,16 @@ LED display
> several items of information.
>
> LED display works for the following models:
> - W1000N
> - W1J
>
> - To control the LED display, use the following :
> + - W1000N
> + - W1J
> +
> + To control the LED display, use the following::
>
> echo 0x0T000DDD > /sys/devices/platform/asus-laptop/
>
> where T control the 3 letters display, and DDD the 3 digits display,
> - according to the tables below.
> + according to the tables below::
>
> DDD (digits)
> 000 to 999 = display digits
> @@ -208,8 +221,8 @@ LED display
> For example "echo 0x01000001 >/sys/devices/platform/asus-laptop/ledd"
> would display "DVD001".
>
> -Driver options:
> ----------------
> +Driver options
> +--------------
>
> Options can be passed to the asus-laptop driver using the standard
> module argument syntax (<param>=<value> when passing the option to the
> @@ -219,6 +232,7 @@ Driver options:
> wapf: WAPF defines the behavior of the Fn+Fx wlan key
> The significance of values is yet to be found, but
> most of the time:
> +
> - 0x0 should do nothing
> - 0x1 should allow to control the device with Fn+Fx key.
> - 0x4 should send an ACPI event (0x88) while pressing the Fn+Fx key
> @@ -237,7 +251,7 @@ Unsupported models
> - ASUS L7300G
> - ASUS L8400
>
> -Patches, Errors, Questions:
> +Patches, Errors, Questions
> --------------------------
>
> I appreciate any success or failure
> @@ -253,5 +267,6 @@ Patches, Errors, Questions:
> Any other comments or patches are also more than welcome.
>
> acpi4asus-user@lists.sourceforge.net
> +
> http://sourceforge.net/projects/acpi4asus
>
> diff --git a/Documentation/laptops/disk-shock-protection.txt b/Documentation/laptops/disk-shock-protection.rst
> similarity index 91%
> rename from Documentation/laptops/disk-shock-protection.txt
> rename to Documentation/laptops/disk-shock-protection.rst
> index 0e6ba2663834..e97c5f78d8c3 100644
> --- a/Documentation/laptops/disk-shock-protection.txt
> +++ b/Documentation/laptops/disk-shock-protection.rst
> @@ -1,17 +1,18 @@
> +==========================
> Hard disk shock protection
> ==========================
>
> Author: Elias Oltmanns <eo@nebensachen.de>
> +
> Last modified: 2008-10-03
>
>
> -0. Contents
> ------------
> +.. 0. Contents
>
> -1. Intro
> -2. The interface
> -3. References
> -4. CREDITS
> + 1. Intro
> + 2. The interface
> + 3. References
> + 4. CREDITS
>
>
> 1. Intro
> @@ -36,8 +37,8 @@ that).
> ----------------
>
> For each ATA device, the kernel exports the file
> -block/*/device/unload_heads in sysfs (here assumed to be mounted under
> -/sys). Access to /sys/block/*/device/unload_heads is denied with
> +`block/*/device/unload_heads` in sysfs (here assumed to be mounted under
> +/sys). Access to `/sys/block/*/device/unload_heads` is denied with
> -EOPNOTSUPP if the device does not support the unload feature.
> Otherwise, writing an integer value to this file will take the heads
> of the respective drive off the platter and block all I/O operations
> @@ -54,18 +55,18 @@ cancel a previously set timeout and resume normal operation
> immediately by specifying a timeout of 0. Values below -2 are rejected
> with -EINVAL (see below for the special meaning of -1 and -2). If the
> timeout specified for a recent head park request has not yet expired,
> -reading from /sys/block/*/device/unload_heads will report the number
> +reading from `/sys/block/*/device/unload_heads` will report the number
> of milliseconds remaining until normal operation will be resumed;
> otherwise, reading the unload_heads attribute will return 0.
>
> For example, do the following in order to park the heads of drive
> -/dev/sda and stop all I/O operations for five seconds:
> +/dev/sda and stop all I/O operations for five seconds::
>
> -# echo 5000 > /sys/block/sda/device/unload_heads
> + # echo 5000 > /sys/block/sda/device/unload_heads
>
> -A simple
> +A simple::
>
> -# cat /sys/block/sda/device/unload_heads
> + # cat /sys/block/sda/device/unload_heads
>
> will show you how many milliseconds are left before normal operation
> will be resumed.
> @@ -112,9 +113,9 @@ unload_heads attribute. If you know that your device really does
> support the unload feature (for instance, because the vendor of your
> laptop or the hard drive itself told you so), then you can tell the
> kernel to enable the usage of this feature for that drive by writing
> -the special value -1 to the unload_heads attribute:
> +the special value -1 to the unload_heads attribute::
>
> -# echo -1 > /sys/block/sda/device/unload_heads
> + # echo -1 > /sys/block/sda/device/unload_heads
>
> will enable the feature for /dev/sda, and giving -2 instead of -1 will
> disable it again.
> @@ -135,6 +136,7 @@ for use. Please feel free to add projects that have been the victims
> of my ignorance.
>
> - http://www.thinkwiki.org/wiki/HDAPS
> +
> See this page for information about Linux support of the hard disk
> active protection system as implemented in IBM/Lenovo Thinkpads.
>
> diff --git a/Documentation/laptops/index.rst b/Documentation/laptops/index.rst
> new file mode 100644
> index 000000000000..001a30910d09
> --- /dev/null
> +++ b/Documentation/laptops/index.rst
> @@ -0,0 +1,17 @@
> +:orphan:
> +
> +==============
> +Laptop Drivers
> +==============
> +
> +.. toctree::
> + :maxdepth: 1
> +
> + asus-laptop
> + disk-shock-protection
> + laptop-mode
> + lg-laptop
> + sony-laptop
> + sonypi
> + thinkpad-acpi
> + toshiba_haps
> diff --git a/Documentation/laptops/laptop-mode.txt b/Documentation/laptops/laptop-mode.rst
> similarity index 62%
> rename from Documentation/laptops/laptop-mode.txt
> rename to Documentation/laptops/laptop-mode.rst
> index 1c707fc9b141..c984c4262f2e 100644
> --- a/Documentation/laptops/laptop-mode.txt
> +++ b/Documentation/laptops/laptop-mode.rst
> @@ -1,8 +1,11 @@
> +===============================================
> How to conserve battery power using laptop-mode
> ------------------------------------------------
> +===============================================
>
> Document Author: Bart Samwel (bart@samwel.tk)
> +
> Date created: January 2, 2004
> +
> Last modified: December 06, 2004
>
> Introduction
> @@ -12,17 +15,16 @@ Laptop mode is used to minimize the time that the hard disk needs to be spun up,
> to conserve battery power on laptops. It has been reported to cause significant
> power savings.
>
> -Contents
> ---------
> +.. Contents
>
> -* Introduction
> -* Installation
> -* Caveats
> -* The Details
> -* Tips & Tricks
> -* Control script
> -* ACPI integration
> -* Monitoring tool
> + * Introduction
> + * Installation
> + * Caveats
> + * The Details
> + * Tips & Tricks
> + * Control script
> + * ACPI integration
> + * Monitoring tool
>
>
> Installation
> @@ -33,7 +35,7 @@ or anything. Simply install all the files included in this document, and
> laptop mode will automatically be started when you're on battery. For
> your convenience, a tarball containing an installer can be downloaded at:
>
> -http://www.samwel.tk/laptop_mode/laptop_mode/
> + http://www.samwel.tk/laptop_mode/laptop_mode/
>
> To configure laptop mode, you need to edit the configuration file, which is
> located in /etc/default/laptop-mode on Debian-based systems, or in
> @@ -209,7 +211,7 @@ Tips & Tricks
> this on powerbooks too. I hope that this is a piece of information that
> might be useful to the Laptop Mode patch or its users."
>
> -* In syslog.conf, you can prefix entries with a dash ``-'' to omit syncing the
> +* In syslog.conf, you can prefix entries with a dash `-` to omit syncing the
> file after every logging. When you're using laptop-mode and your disk doesn't
> spin down, this is a likely culprit.
>
> @@ -233,83 +235,82 @@ configuration file
> It should be installed as /etc/default/laptop-mode on Debian, and as
> /etc/sysconfig/laptop-mode on Red Hat, SUSE, Mandrake, and other work-alikes.
>
> ---------------------CONFIG FILE BEGIN-------------------------------------------
> -# Maximum time, in seconds, of hard drive spindown time that you are
> -# comfortable with. Worst case, it's possible that you could lose this
> -# amount of work if your battery fails you while in laptop mode.
> -#MAX_AGE=600
> +Config file::
>
> -# Automatically disable laptop mode when the number of minutes of battery
> -# that you have left goes below this threshold.
> -MINIMUM_BATTERY_MINUTES=10
> + # Maximum time, in seconds, of hard drive spindown time that you are
> + # comfortable with. Worst case, it's possible that you could lose this
> + # amount of work if your battery fails you while in laptop mode.
> + #MAX_AGE=600
>
> -# Read-ahead, in 512-byte sectors. You can spin down the disk while playing MP3/OGG
> -# by setting the disk readahead to 8MB (READAHEAD=16384). Effectively, the disk
> -# will read a complete MP3 at once, and will then spin down while the MP3/OGG is
> -# playing.
> -#READAHEAD=4096
> + # Automatically disable laptop mode when the number of minutes of battery
> + # that you have left goes below this threshold.
> + MINIMUM_BATTERY_MINUTES=10
>
> -# Shall we remount journaled fs. with appropriate commit interval? (1=yes)
> -#DO_REMOUNTS=1
> + # Read-ahead, in 512-byte sectors. You can spin down the disk while playing MP3/OGG
> + # by setting the disk readahead to 8MB (READAHEAD=16384). Effectively, the disk
> + # will read a complete MP3 at once, and will then spin down while the MP3/OGG is
> + # playing.
> + #READAHEAD=4096
>
> -# And shall we add the "noatime" option to that as well? (1=yes)
> -#DO_REMOUNT_NOATIME=1
> + # Shall we remount journaled fs. with appropriate commit interval? (1=yes)
> + #DO_REMOUNTS=1
>
> -# Dirty synchronous ratio. At this percentage of dirty pages the process
> -# which
> -# calls write() does its own writeback
> -#DIRTY_RATIO=40
> + # And shall we add the "noatime" option to that as well? (1=yes)
> + #DO_REMOUNT_NOATIME=1
>
> -#
> -# Allowed dirty background ratio, in percent. Once DIRTY_RATIO has been
> -# exceeded, the kernel will wake flusher threads which will then reduce the
> -# amount of dirty memory to dirty_background_ratio. Set this nice and low,
> -# so once some writeout has commenced, we do a lot of it.
> -#
> -#DIRTY_BACKGROUND_RATIO=5
> + # Dirty synchronous ratio. At this percentage of dirty pages the process
> + # which
> + # calls write() does its own writeback
> + #DIRTY_RATIO=40
>
> -# kernel default dirty buffer age
> -#DEF_AGE=30
> -#DEF_UPDATE=5
> -#DEF_DIRTY_BACKGROUND_RATIO=10
> -#DEF_DIRTY_RATIO=40
> -#DEF_XFS_AGE_BUFFER=15
> -#DEF_XFS_SYNC_INTERVAL=30
> -#DEF_XFS_BUFD_INTERVAL=1
> + #
> + # Allowed dirty background ratio, in percent. Once DIRTY_RATIO has been
> + # exceeded, the kernel will wake flusher threads which will then reduce the
> + # amount of dirty memory to dirty_background_ratio. Set this nice and low,
> + # so once some writeout has commenced, we do a lot of it.
> + #
> + #DIRTY_BACKGROUND_RATIO=5
>
> -# This must be adjusted manually to the value of HZ in the running kernel
> -# on 2.4, until the XFS people change their 2.4 external interfaces to work in
> -# centisecs. This can be automated, but it's a work in progress that still
> -# needs# some fixes. On 2.6 kernels, XFS uses USER_HZ instead of HZ for
> -# external interfaces, and that is currently always set to 100. So you don't
> -# need to change this on 2.6.
> -#XFS_HZ=100
> + # kernel default dirty buffer age
> + #DEF_AGE=30
> + #DEF_UPDATE=5
> + #DEF_DIRTY_BACKGROUND_RATIO=10
> + #DEF_DIRTY_RATIO=40
> + #DEF_XFS_AGE_BUFFER=15
> + #DEF_XFS_SYNC_INTERVAL=30
> + #DEF_XFS_BUFD_INTERVAL=1
>
> -# Should the maximum CPU frequency be adjusted down while on battery?
> -# Requires CPUFreq to be setup.
> -# See Documentation/admin-guide/pm/cpufreq.rst for more info
> -#DO_CPU=0
> + # This must be adjusted manually to the value of HZ in the running kernel
> + # on 2.4, until the XFS people change their 2.4 external interfaces to work in
> + # centisecs. This can be automated, but it's a work in progress that still
> + # needs# some fixes. On 2.6 kernels, XFS uses USER_HZ instead of HZ for
> + # external interfaces, and that is currently always set to 100. So you don't
> + # need to change this on 2.6.
> + #XFS_HZ=100
>
> -# When on battery what is the maximum CPU speed that the system should
> -# use? Legal values are "slowest" for the slowest speed that your
> -# CPU is able to operate at, or a value listed in:
> -# /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies
> -# Only applicable if DO_CPU=1.
> -#CPU_MAXFREQ=slowest
> + # Should the maximum CPU frequency be adjusted down while on battery?
> + # Requires CPUFreq to be setup.
> + # See Documentation/admin-guide/pm/cpufreq.rst for more info
> + #DO_CPU=0
>
> -# Idle timeout for your hard drive (man hdparm for valid values, -S option)
> -# Default is 2 hours on AC (AC_HD=244) and 20 seconds for battery (BATT_HD=4).
> -#AC_HD=244
> -#BATT_HD=4
> + # When on battery what is the maximum CPU speed that the system should
> + # use? Legal values are "slowest" for the slowest speed that your
> + # CPU is able to operate at, or a value listed in:
> + # /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies
> + # Only applicable if DO_CPU=1.
> + #CPU_MAXFREQ=slowest
>
> -# The drives for which to adjust the idle timeout. Separate them by a space,
> -# e.g. HD="/dev/hda /dev/hdb".
> -#HD="/dev/hda"
> + # Idle timeout for your hard drive (man hdparm for valid values, -S option)
> + # Default is 2 hours on AC (AC_HD=244) and 20 seconds for battery (BATT_HD=4).
> + #AC_HD=244
> + #BATT_HD=4
>
> -# Set the spindown timeout on a hard drive?
> -#DO_HD=1
> + # The drives for which to adjust the idle timeout. Separate them by a space,
> + # e.g. HD="/dev/hda /dev/hdb".
> + #HD="/dev/hda"
>
> ---------------------CONFIG FILE END---------------------------------------------
> + # Set the spindown timeout on a hard drive?
> + #DO_HD=1
>
>
> Control script
> @@ -318,125 +319,126 @@ Control script
> Please note that this control script works for the Linux 2.4 and 2.6 series (thanks
> to Kiko Piris).
>
> ---------------------CONTROL SCRIPT BEGIN----------------------------------------
> -#!/bin/bash
> +Control script::
>
> -# start or stop laptop_mode, best run by a power management daemon when
> -# ac gets connected/disconnected from a laptop
> -#
> -# install as /sbin/laptop_mode
> -#
> -# Contributors to this script: Kiko Piris
> -# Bart Samwel
> -# Micha Feigin
> -# Andrew Morton
> -# Herve Eychenne
> -# Dax Kelson
> -#
> -# Original Linux 2.4 version by: Jens Axboe
> + #!/bin/bash
>
> -#############################################################################
> + # start or stop laptop_mode, best run by a power management daemon when
> + # ac gets connected/disconnected from a laptop
> + #
> + # install as /sbin/laptop_mode
> + #
> + # Contributors to this script: Kiko Piris
> + # Bart Samwel
> + # Micha Feigin
> + # Andrew Morton
> + # Herve Eychenne
> + # Dax Kelson
> + #
> + # Original Linux 2.4 version by: Jens Axboe
>
> -# Source config
> -if [ -f /etc/default/laptop-mode ] ; then
> + #############################################################################
> +
> + # Source config
> + if [ -f /etc/default/laptop-mode ] ; then
> # Debian
> . /etc/default/laptop-mode
> -elif [ -f /etc/sysconfig/laptop-mode ] ; then
> + elif [ -f /etc/sysconfig/laptop-mode ] ; then
> # Others
> - . /etc/sysconfig/laptop-mode
> -fi
> + . /etc/sysconfig/laptop-mode
> + fi
>
> -# Don't raise an error if the config file is incomplete
> -# set defaults instead:
> + # Don't raise an error if the config file is incomplete
> + # set defaults instead:
>
> -# Maximum time, in seconds, of hard drive spindown time that you are
> -# comfortable with. Worst case, it's possible that you could lose this
> -# amount of work if your battery fails you while in laptop mode.
> -MAX_AGE=${MAX_AGE:-'600'}
> + # Maximum time, in seconds, of hard drive spindown time that you are
> + # comfortable with. Worst case, it's possible that you could lose this
> + # amount of work if your battery fails you while in laptop mode.
> + MAX_AGE=${MAX_AGE:-'600'}
>
> -# Read-ahead, in kilobytes
> -READAHEAD=${READAHEAD:-'4096'}
> + # Read-ahead, in kilobytes
> + READAHEAD=${READAHEAD:-'4096'}
>
> -# Shall we remount journaled fs. with appropriate commit interval? (1=yes)
> -DO_REMOUNTS=${DO_REMOUNTS:-'1'}
> + # Shall we remount journaled fs. with appropriate commit interval? (1=yes)
> + DO_REMOUNTS=${DO_REMOUNTS:-'1'}
>
> -# And shall we add the "noatime" option to that as well? (1=yes)
> -DO_REMOUNT_NOATIME=${DO_REMOUNT_NOATIME:-'1'}
> + # And shall we add the "noatime" option to that as well? (1=yes)
> + DO_REMOUNT_NOATIME=${DO_REMOUNT_NOATIME:-'1'}
>
> -# Shall we adjust the idle timeout on a hard drive?
> -DO_HD=${DO_HD:-'1'}
> + # Shall we adjust the idle timeout on a hard drive?
> + DO_HD=${DO_HD:-'1'}
>
> -# Adjust idle timeout on which hard drive?
> -HD="${HD:-'/dev/hda'}"
> + # Adjust idle timeout on which hard drive?
> + HD="${HD:-'/dev/hda'}"
>
> -# spindown time for HD (hdparm -S values)
> -AC_HD=${AC_HD:-'244'}
> -BATT_HD=${BATT_HD:-'4'}
> + # spindown time for HD (hdparm -S values)
> + AC_HD=${AC_HD:-'244'}
> + BATT_HD=${BATT_HD:-'4'}
>
> -# Dirty synchronous ratio. At this percentage of dirty pages the process which
> -# calls write() does its own writeback
> -DIRTY_RATIO=${DIRTY_RATIO:-'40'}
> + # Dirty synchronous ratio. At this percentage of dirty pages the process which
> + # calls write() does its own writeback
> + DIRTY_RATIO=${DIRTY_RATIO:-'40'}
>
> -# cpu frequency scaling
> -# See Documentation/admin-guide/pm/cpufreq.rst for more info
> -DO_CPU=${CPU_MANAGE:-'0'}
> -CPU_MAXFREQ=${CPU_MAXFREQ:-'slowest'}
> + # cpu frequency scaling
> + # See Documentation/admin-guide/pm/cpufreq.rst for more info
> + DO_CPU=${CPU_MANAGE:-'0'}
> + CPU_MAXFREQ=${CPU_MAXFREQ:-'slowest'}
>
> -#
> -# Allowed dirty background ratio, in percent. Once DIRTY_RATIO has been
> -# exceeded, the kernel will wake flusher threads which will then reduce the
> -# amount of dirty memory to dirty_background_ratio. Set this nice and low,
> -# so once some writeout has commenced, we do a lot of it.
> -#
> -DIRTY_BACKGROUND_RATIO=${DIRTY_BACKGROUND_RATIO:-'5'}
> + #
> + # Allowed dirty background ratio, in percent. Once DIRTY_RATIO has been
> + # exceeded, the kernel will wake flusher threads which will then reduce the
> + # amount of dirty memory to dirty_background_ratio. Set this nice and low,
> + # so once some writeout has commenced, we do a lot of it.
> + #
> + DIRTY_BACKGROUND_RATIO=${DIRTY_BACKGROUND_RATIO:-'5'}
>
> -# kernel default dirty buffer age
> -DEF_AGE=${DEF_AGE:-'30'}
> -DEF_UPDATE=${DEF_UPDATE:-'5'}
> -DEF_DIRTY_BACKGROUND_RATIO=${DEF_DIRTY_BACKGROUND_RATIO:-'10'}
> -DEF_DIRTY_RATIO=${DEF_DIRTY_RATIO:-'40'}
> -DEF_XFS_AGE_BUFFER=${DEF_XFS_AGE_BUFFER:-'15'}
> -DEF_XFS_SYNC_INTERVAL=${DEF_XFS_SYNC_INTERVAL:-'30'}
> -DEF_XFS_BUFD_INTERVAL=${DEF_XFS_BUFD_INTERVAL:-'1'}
> + # kernel default dirty buffer age
> + DEF_AGE=${DEF_AGE:-'30'}
> + DEF_UPDATE=${DEF_UPDATE:-'5'}
> + DEF_DIRTY_BACKGROUND_RATIO=${DEF_DIRTY_BACKGROUND_RATIO:-'10'}
> + DEF_DIRTY_RATIO=${DEF_DIRTY_RATIO:-'40'}
> + DEF_XFS_AGE_BUFFER=${DEF_XFS_AGE_BUFFER:-'15'}
> + DEF_XFS_SYNC_INTERVAL=${DEF_XFS_SYNC_INTERVAL:-'30'}
> + DEF_XFS_BUFD_INTERVAL=${DEF_XFS_BUFD_INTERVAL:-'1'}
>
> -# This must be adjusted manually to the value of HZ in the running kernel
> -# on 2.4, until the XFS people change their 2.4 external interfaces to work in
> -# centisecs. This can be automated, but it's a work in progress that still needs
> -# some fixes. On 2.6 kernels, XFS uses USER_HZ instead of HZ for external
> -# interfaces, and that is currently always set to 100. So you don't need to
> -# change this on 2.6.
> -XFS_HZ=${XFS_HZ:-'100'}
> + # This must be adjusted manually to the value of HZ in the running kernel
> + # on 2.4, until the XFS people change their 2.4 external interfaces to work in
> + # centisecs. This can be automated, but it's a work in progress that still needs
> + # some fixes. On 2.6 kernels, XFS uses USER_HZ instead of HZ for external
> + # interfaces, and that is currently always set to 100. So you don't need to
> + # change this on 2.6.
> + XFS_HZ=${XFS_HZ:-'100'}
>
> -#############################################################################
> + #############################################################################
>
> -KLEVEL="$(uname -r |
> - {
> + KLEVEL="$(uname -r |
> + {
> IFS='.' read a b c
> echo $a.$b
> }
> -)"
> -case "$KLEVEL" in
> + )"
> + case "$KLEVEL" in
> "2.4"|"2.6")
> ;;
> *)
> echo "Unhandled kernel version: $KLEVEL ('uname -r' = '$(uname -r)')" >&2
> exit 1
> ;;
> -esac
> + esac
>
> -if [ ! -e /proc/sys/vm/laptop_mode ] ; then
> + if [ ! -e /proc/sys/vm/laptop_mode ] ; then
> echo "Kernel is not patched with laptop_mode patch." >&2
> exit 1
> -fi
> + fi
>
> -if [ ! -w /proc/sys/vm/laptop_mode ] ; then
> + if [ ! -w /proc/sys/vm/laptop_mode ] ; then
> echo "You do not have enough privileges to enable laptop_mode." >&2
> exit 1
> -fi
> + fi
>
> -# Remove an option (the first parameter) of the form option=<number> from
> -# a mount options string (the rest of the parameters).
> -parse_mount_opts () {
> + # Remove an option (the first parameter) of the form option=<number> from
> + # a mount options string (the rest of the parameters).
> + parse_mount_opts () {
> OPT="$1"
> shift
> echo ",$*," | sed \
> @@ -444,11 +446,11 @@ parse_mount_opts () {
> -e 's/,,*/,/g' \
> -e 's/^,//' \
> -e 's/,$//'
> -}
> + }
>
> -# Remove an option (the first parameter) without any arguments from
> -# a mount option string (the rest of the parameters).
> -parse_nonumber_mount_opts () {
> + # Remove an option (the first parameter) without any arguments from
> + # a mount option string (the rest of the parameters).
> + parse_nonumber_mount_opts () {
> OPT="$1"
> shift
> echo ",$*," | sed \
> @@ -456,20 +458,20 @@ parse_nonumber_mount_opts () {
> -e 's/,,*/,/g' \
> -e 's/^,//' \
> -e 's/,$//'
> -}
> + }
>
> -# Find out the state of a yes/no option (e.g. "atime"/"noatime") in
> -# fstab for a given filesystem, and use this state to replace the
> -# value of the option in another mount options string. The device
> -# is the first argument, the option name the second, and the default
> -# value the third. The remainder is the mount options string.
> -#
> -# Example:
> -# parse_yesno_opts_wfstab /dev/hda1 atime atime defaults,noatime
> -#
> -# If fstab contains, say, "rw" for this filesystem, then the result
> -# will be "defaults,atime".
> -parse_yesno_opts_wfstab () {
> + # Find out the state of a yes/no option (e.g. "atime"/"noatime") in
> + # fstab for a given filesystem, and use this state to replace the
> + # value of the option in another mount options string. The device
> + # is the first argument, the option name the second, and the default
> + # value the third. The remainder is the mount options string.
> + #
> + # Example:
> + # parse_yesno_opts_wfstab /dev/hda1 atime atime defaults,noatime
> + #
> + # If fstab contains, say, "rw" for this filesystem, then the result
> + # will be "defaults,atime".
> + parse_yesno_opts_wfstab () {
> L_DEV="$1"
> OPT="$2"
> DEF_OPT="$3"
> @@ -491,21 +493,21 @@ parse_yesno_opts_wfstab () {
> # option not specified in fstab -- choose the default.
> echo "$PARSEDOPTS1,$DEF_OPT"
> fi
> -}
> + }
>
> -# Find out the state of a numbered option (e.g. "commit=NNN") in
> -# fstab for a given filesystem, and use this state to replace the
> -# value of the option in another mount options string. The device
> -# is the first argument, and the option name the second. The
> -# remainder is the mount options string in which the replacement
> -# must be done.
> -#
> -# Example:
> -# parse_mount_opts_wfstab /dev/hda1 commit defaults,commit=7
> -#
> -# If fstab contains, say, "commit=3,rw" for this filesystem, then the
> -# result will be "rw,commit=3".
> -parse_mount_opts_wfstab () {
> + # Find out the state of a numbered option (e.g. "commit=NNN") in
> + # fstab for a given filesystem, and use this state to replace the
> + # value of the option in another mount options string. The device
> + # is the first argument, and the option name the second. The
> + # remainder is the mount options string in which the replacement
> + # must be done.
> + #
> + # Example:
> + # parse_mount_opts_wfstab /dev/hda1 commit defaults,commit=7
> + #
> + # If fstab contains, say, "commit=3,rw" for this filesystem, then the
> + # result will be "rw,commit=3".
> + parse_mount_opts_wfstab () {
> L_DEV="$1"
> OPT="$2"
> shift 2
> @@ -523,9 +525,9 @@ parse_mount_opts_wfstab () {
> # option not specified in fstab: set it to 0
> echo "$PARSEDOPTS1,$OPT=0"
> fi
> -}
> + }
>
> -deduce_fstype () {
> + deduce_fstype () {
> MP="$1"
> # My root filesystem unfortunately has
> # type "unknown" in /etc/mtab. If we encounter
> @@ -538,13 +540,13 @@ deduce_fstype () {
> exit 0
> fi
> done
> -}
> + }
>
> -if [ $DO_REMOUNT_NOATIME -eq 1 ] ; then
> + if [ $DO_REMOUNT_NOATIME -eq 1 ] ; then
> NOATIME_OPT=",noatime"
> -fi
> + fi
>
> -case "$1" in
> + case "$1" in
> start)
> AGE=$((100*$MAX_AGE))
> XFS_AGE=$(($XFS_HZ*$MAX_AGE))
> @@ -687,10 +689,9 @@ case "$1" in
> exit 1
> ;;
>
> -esac
> + esac
>
> -exit 0
> ---------------------CONTROL SCRIPT END------------------------------------------
> + exit 0
>
>
> ACPI integration
> @@ -701,78 +702,76 @@ kick off the laptop_mode script and run hdparm. The part that
> automatically disables laptop mode when the battery is low was
> written by Jan Topinski.
>
> ------------------/etc/acpi/events/ac_adapter BEGIN------------------------------
> -event=ac_adapter
> -action=/etc/acpi/actions/ac.sh %e
> -----------------/etc/acpi/events/ac_adapter END---------------------------------
> +/etc/acpi/events/ac_adapter::
>
> + event=ac_adapter
> + action=/etc/acpi/actions/ac.sh %e
>
> ------------------/etc/acpi/events/battery BEGIN---------------------------------
> -event=battery.*
> -action=/etc/acpi/actions/battery.sh %e
> -----------------/etc/acpi/events/battery END------------------------------------
> +/etc/acpi/events/battery::
>
> + event=battery.*
> + action=/etc/acpi/actions/battery.sh %e
>
> -----------------/etc/acpi/actions/ac.sh BEGIN-----------------------------------
> -#!/bin/bash
> +/etc/acpi/actions/ac.sh::
>
> -# ac on/offline event handler
> + #!/bin/bash
>
> -status=`awk '/^state: / { print $2 }' /proc/acpi/ac_adapter/$2/state`
> + # ac on/offline event handler
>
> -case $status in
> - "on-line")
> - /sbin/laptop_mode stop
> - exit 0
> - ;;
> - "off-line")
> - /sbin/laptop_mode start
> - exit 0
> - ;;
> -esac
> ----------------------------/etc/acpi/actions/ac.sh END--------------------------
> + status=`awk '/^state: / { print $2 }' /proc/acpi/ac_adapter/$2/state`
>
> + case $status in
> + "on-line")
> + /sbin/laptop_mode stop
> + exit 0
> + ;;
> + "off-line")
> + /sbin/laptop_mode start
> + exit 0
> + ;;
> + esac
>
> ----------------------------/etc/acpi/actions/battery.sh BEGIN-------------------
> -#! /bin/bash
>
> -# Automatically disable laptop mode when the battery almost runs out.
> +/etc/acpi/actions/battery.sh::
>
> -BATT_INFO=/proc/acpi/battery/$2/state
> + #! /bin/bash
>
> -if [[ -f /proc/sys/vm/laptop_mode ]]
> -then
> - LM=`cat /proc/sys/vm/laptop_mode`
> - if [[ $LM -gt 0 ]]
> - then
> - if [[ -f $BATT_INFO ]]
> + # Automatically disable laptop mode when the battery almost runs out.
> +
> + BATT_INFO=/proc/acpi/battery/$2/state
> +
> + if [[ -f /proc/sys/vm/laptop_mode ]]
> + then
> + LM=`cat /proc/sys/vm/laptop_mode`
> + if [[ $LM -gt 0 ]]
> then
> - # Source the config file only now that we know we need
> - if [ -f /etc/default/laptop-mode ] ; then
> - # Debian
> - . /etc/default/laptop-mode
> - elif [ -f /etc/sysconfig/laptop-mode ] ; then
> - # Others
> - . /etc/sysconfig/laptop-mode
> - fi
> - MINIMUM_BATTERY_MINUTES=${MINIMUM_BATTERY_MINUTES:-'10'}
> + if [[ -f $BATT_INFO ]]
> + then
> + # Source the config file only now that we know we need
> + if [ -f /etc/default/laptop-mode ] ; then
> + # Debian
> + . /etc/default/laptop-mode
> + elif [ -f /etc/sysconfig/laptop-mode ] ; then
> + # Others
> + . /etc/sysconfig/laptop-mode
> + fi
> + MINIMUM_BATTERY_MINUTES=${MINIMUM_BATTERY_MINUTES:-'10'}
>
> - ACTION="`cat $BATT_INFO | grep charging | cut -c 26-`"
> - if [[ ACTION -eq "discharging" ]]
> - then
> - PRESENT_RATE=`cat $BATT_INFO | grep "present rate:" | sed "s/.* \([0-9][0-9]* \).*/\1/" `
> - REMAINING=`cat $BATT_INFO | grep "remaining capacity:" | sed "s/.* \([0-9][0-9]* \).*/\1/" `
> - fi
> - if (($REMAINING * 60 / $PRESENT_RATE < $MINIMUM_BATTERY_MINUTES))
> - then
> - /sbin/laptop_mode stop
> - fi
> - else
> - logger -p daemon.warning "You are using laptop mode and your battery interface $BATT_INFO is missing. This may lead to loss of data when the battery runs out. Check kernel ACPI support and /proc/acpi/battery folder, and edit /etc/acpi/battery.sh to set BATT_INFO to the correct path."
> + ACTION="`cat $BATT_INFO | grep charging | cut -c 26-`"
> + if [[ ACTION -eq "discharging" ]]
> + then
> + PRESENT_RATE=`cat $BATT_INFO | grep "present rate:" | sed "s/.* \([0-9][0-9]* \).*/\1/" `
> + REMAINING=`cat $BATT_INFO | grep "remaining capacity:" | sed "s/.* \([0-9][0-9]* \).*/\1/" `
> + fi
> + if (($REMAINING * 60 / $PRESENT_RATE < $MINIMUM_BATTERY_MINUTES))
> + then
> + /sbin/laptop_mode stop
> + fi
> + else
> + logger -p daemon.warning "You are using laptop mode and your battery interface $BATT_INFO is missing. This may lead to loss of data when the battery runs out. Check kernel ACPI support and /proc/acpi/battery folder, and edit /etc/acpi/battery.sh to set BATT_INFO to the correct path."
> + fi
> fi
> - fi
> -fi
> ----------------------------/etc/acpi/actions/battery.sh END--------------------
> + fi
>
>
> Monitoring tool
> diff --git a/Documentation/laptops/sony-laptop.txt b/Documentation/laptops/sony-laptop.rst
> similarity index 85%
> rename from Documentation/laptops/sony-laptop.txt
> rename to Documentation/laptops/sony-laptop.rst
> index 978b1e615155..9edcc7f6612f 100644
> --- a/Documentation/laptops/sony-laptop.txt
> +++ b/Documentation/laptops/sony-laptop.rst
> @@ -1,7 +1,9 @@
> +=========================================
> Sony Notebook Control Driver (SNC) Readme
> ------------------------------------------
> - Copyright (C) 2004- 2005 Stelian Pop <stelian@popies.net>
> - Copyright (C) 2007 Mattia Dongili <malattia@linux.it>
> +=========================================
> +
> + - Copyright (C) 2004- 2005 Stelian Pop <stelian@popies.net>
> + - Copyright (C) 2007 Mattia Dongili <malattia@linux.it>
>
> This mini-driver drives the SNC and SPIC device present in the ACPI BIOS of the
> Sony Vaio laptops. This driver mixes both devices functions under the same
> @@ -10,6 +12,7 @@ obsoleted by sony-laptop now.
>
> Fn keys (hotkeys):
> ------------------
> +
> Some models report hotkeys through the SNC or SPIC devices, such events are
> reported both through the ACPI subsystem as acpi events and through the INPUT
> subsystem. See the logs of /proc/bus/input/devices to find out what those
> @@ -28,11 +31,14 @@ If your laptop model supports it, you will find sysfs files in the
> /sys/class/backlight/sony/
> directory. You will be able to query and set the current screen
> brightness:
> +
> + ====================== =========================================
> brightness get/set screen brightness (an integer
> between 0 and 7)
> actual_brightness reading from this file will query the HW
> to get real brightness value
> max_brightness the maximum brightness value
> + ====================== =========================================
>
>
> Platform specific:
> @@ -45,6 +51,8 @@ You then read/write integer values from/to those files by using
> standard UNIX tools.
>
> The files are:
> +
> + ====================== ==========================================
> brightness_default screen brightness which will be set
> when the laptop will be rebooted
> cdpower power on/off the internal CD drive
> @@ -53,21 +61,39 @@ The files are:
> (only in debug mode)
> bluetoothpower power on/off the internal bluetooth device
> fanspeed get/set the fan speed
> + ====================== ==========================================
>
> Note that some files may be missing if they are not supported
> by your particular laptop model.
>
> -Example usage:
> +Example usage::
> +
> # echo "1" > /sys/devices/platform/sony-laptop/brightness_default
> -sets the lowest screen brightness for the next and later reboots,
> +
> +sets the lowest screen brightness for the next and later reboots
> +
> +::
> +
> # echo "8" > /sys/devices/platform/sony-laptop/brightness_default
> -sets the highest screen brightness for the next and later reboots,
> +
> +sets the highest screen brightness for the next and later reboots
> +
> +::
> +
> # cat /sys/devices/platform/sony-laptop/brightness_default
> -retrieves the value.
> +
> +retrieves the value
> +
> +::
>
> # echo "0" > /sys/devices/platform/sony-laptop/audiopower
> -powers off the sound card,
> +
> +powers off the sound card
> +
> +::
> +
> # echo "1" > /sys/devices/platform/sony-laptop/audiopower
> +
> powers on the sound card.
>
>
> @@ -76,7 +102,8 @@ RFkill control:
> More recent Vaio models expose a consistent set of ACPI methods to
> control radio frequency emitting devices. If you are a lucky owner of
> such a laptop you will find the necessary rfkill devices under
> -/sys/class/rfkill. Check those starting with sony-* in
> +/sys/class/rfkill. Check those starting with sony-* in::
> +
> # grep . /sys/class/rfkill/*/{state,name}
>
>
> @@ -88,26 +115,29 @@ you are not afraid of any side effects doing strange things with
> your ACPI BIOS could have on your laptop), load the driver and
> pass the option 'debug=1'.
>
> -REPEAT: DON'T DO THIS IF YOU DON'T LIKE RISKY BUSINESS.
> +REPEAT:
> + **DON'T DO THIS IF YOU DON'T LIKE RISKY BUSINESS.**
>
> In your kernel logs you will find the list of all ACPI methods
> the SNC device has on your laptop.
>
> * For new models you will see a long list of meaningless method names,
> -reading the DSDT table source should reveal that:
> + reading the DSDT table source should reveal that:
> +
> (1) the SNC device uses an internal capability lookup table
> (2) SN00 is used to find values in the lookup table
> (3) SN06 and SN07 are used to call into the real methods based on
> offsets you can obtain iterating the table using SN00
> (4) SN02 used to enable events.
> +
> Some values in the capability lookup table are more or less known, see
> the code for all sony_call_snc_handle calls, others are more obscure.
>
> * For old models you can see the GCDP/GCDP methods used to pwer on/off
> -the CD drive, but there are others and they are usually different from
> -model to model.
> + the CD drive, but there are others and they are usually different from
> + model to model.
>
> -I HAVE NO IDEA WHAT THOSE METHODS DO.
> +**I HAVE NO IDEA WHAT THOSE METHODS DO.**
>
> The sony-laptop driver creates, for some of those methods (the most
> current ones found on several Vaio models), an entry under
> diff --git a/Documentation/laptops/sonypi.txt b/Documentation/laptops/sonypi.rst
> similarity index 87%
> rename from Documentation/laptops/sonypi.txt
> rename to Documentation/laptops/sonypi.rst
> index 606bdb9ce036..2a1975ed7ee4 100644
> --- a/Documentation/laptops/sonypi.txt
> +++ b/Documentation/laptops/sonypi.rst
> @@ -1,11 +1,13 @@
> +==================================================
> Sony Programmable I/O Control Device Driver Readme
> ---------------------------------------------------
> - Copyright (C) 2001-2004 Stelian Pop <stelian@popies.net>
> - Copyright (C) 2001-2002 Alcôve <www.alcove.com>
> - Copyright (C) 2001 Michael Ashley <m.ashley@unsw.edu.au>
> - Copyright (C) 2001 Junichi Morita <jun1m@mars.dti.ne.jp>
> - Copyright (C) 2000 Takaya Kinjo <t-kinjo@tc4.so-net.ne.jp>
> - Copyright (C) 2000 Andrew Tridgell <tridge@samba.org>
> +==================================================
> +
> + - Copyright (C) 2001-2004 Stelian Pop <stelian@popies.net>
> + - Copyright (C) 2001-2002 Alcôve <www.alcove.com>
> + - Copyright (C) 2001 Michael Ashley <m.ashley@unsw.edu.au>
> + - Copyright (C) 2001 Junichi Morita <jun1m@mars.dti.ne.jp>
> + - Copyright (C) 2000 Takaya Kinjo <t-kinjo@tc4.so-net.ne.jp>
> + - Copyright (C) 2000 Andrew Tridgell <tridge@samba.org>
>
> This driver enables access to the Sony Programmable I/O Control Device which
> can be found in many Sony Vaio laptops. Some newer Sony laptops (seems to be
> @@ -14,6 +16,7 @@ sonypi device and are not supported at all by this driver.
>
> It will give access (through a user space utility) to some events those laptops
> generate, like:
> +
> - jogdial events (the small wheel on the side of Vaios)
> - capture button events (only on Vaio Picturebook series)
> - Fn keys
> @@ -49,6 +52,7 @@ module argument syntax (<param>=<value> when passing the option to the
> module or sonypi.<param>=<value> on the kernel boot line when sonypi is
> statically linked into the kernel). Those options are:
>
> + =============== =======================================================
> minor: minor number of the misc device /dev/sonypi,
> default is -1 (automatic allocation, see /proc/misc
> or kernel logs)
> @@ -86,6 +90,8 @@ statically linked into the kernel). Those options are:
> will be tried. You can use the following bits to
> construct your own event mask (from
> drivers/char/sonypi.h):
> +
> + ======================== ======
> SONYPI_JOGGER_MASK 0x0001
> SONYPI_CAPTURE_MASK 0x0002
> SONYPI_FNKEY_MASK 0x0004
> @@ -100,22 +106,24 @@ statically linked into the kernel). Those options are:
> SONYPI_MEMORYSTICK_MASK 0x0800
> SONYPI_BATTERY_MASK 0x1000
> SONYPI_WIRELESS_MASK 0x2000
> + ======================== ======
>
> useinput: if set (which is the default) two input devices are
> created, one which interprets the jogdial events as
> mouse events, the other one which acts like a
> keyboard reporting the pressing of the special keys.
> + =============== =======================================================
>
> Module use:
> -----------
>
> In order to automatically load the sonypi module on use, you can put those
> -lines a configuration file in /etc/modprobe.d/:
> +lines a configuration file in /etc/modprobe.d/::
>
> alias char-major-10-250 sonypi
> options sonypi minor=250
>
> -This supposes the use of minor 250 for the sonypi device:
> +This supposes the use of minor 250 for the sonypi device::
>
> # mknod /dev/sonypi c 10 250
>
> @@ -148,5 +156,5 @@ Bugs:
> http://www.acc.umu.se/~erikw/program/smartdimmer-0.1.tar.bz2
>
> - since all development was done by reverse engineering, there is
> - _absolutely no guarantee_ that this driver will not crash your
> + *absolutely no guarantee* that this driver will not crash your
> laptop. Permanently.
> diff --git a/Documentation/laptops/thinkpad-acpi.txt b/Documentation/laptops/thinkpad-acpi.rst
> similarity index 89%
> rename from Documentation/laptops/thinkpad-acpi.txt
> rename to Documentation/laptops/thinkpad-acpi.rst
> index 65719384fc36..d0f0d16c21b9 100644
> --- a/Documentation/laptops/thinkpad-acpi.txt
> +++ b/Documentation/laptops/thinkpad-acpi.rst
> @@ -1,12 +1,15 @@
> - ThinkPad ACPI Extras Driver
> +===========================
> +ThinkPad ACPI Extras Driver
> +===========================
>
> - Version 0.25
> - October 16th, 2013
> +Version 0.25
>
> - Borislav Deianov <borislav@users.sf.net>
> - Henrique de Moraes Holschuh <hmh@hmh.eng.br>
> - http://ibm-acpi.sf.net/
> +October 16th, 2013
>
> +- Borislav Deianov <borislav@users.sf.net>
> +- Henrique de Moraes Holschuh <hmh@hmh.eng.br>
> +
> +http://ibm-acpi.sf.net/
>
> This is a Linux driver for the IBM and Lenovo ThinkPad laptops. It
> supports various features of these laptops which are accessible
> @@ -91,7 +94,8 @@ yet ready or stabilized, it is expected that this interface will change,
> and any and all userspace programs must deal with it.
>
>
> -Notes about the sysfs interface:
> +Notes about the sysfs interface
> +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
>
> Unlike what was done with the procfs interface, correctness when talking
> to the sysfs interfaces will be enforced, as will correctness in the
> @@ -129,6 +133,7 @@ Driver version
> --------------
>
> procfs: /proc/acpi/ibm/driver
> +
> sysfs driver attribute: version
>
> The driver name and version. No commands can be written to this file.
> @@ -141,9 +146,13 @@ sysfs driver attribute: interface_version
>
> Version of the thinkpad-acpi sysfs interface, as an unsigned long
> (output in hex format: 0xAAAABBCC), where:
> - AAAA - major revision
> - BB - minor revision
> - CC - bugfix revision
> +
> + AAAA
> + - major revision
> + BB
> + - minor revision
> + CC
> + - bugfix revision
>
> The sysfs interface version changelog for the driver can be found at the
> end of this document. Changes to the sysfs interface done by the kernel
> @@ -170,6 +179,7 @@ Hot keys
> --------
>
> procfs: /proc/acpi/ibm/hotkey
> +
> sysfs device attribute: hotkey_*
>
> In a ThinkPad, the ACPI HKEY handler is responsible for communicating
> @@ -181,7 +191,7 @@ firmware will behave in many situations.
> The driver enables the HKEY ("hot key") event reporting automatically
> when loaded, and disables it when it is removed.
>
> -The driver will report HKEY events in the following format:
> +The driver will report HKEY events in the following format::
>
> ibm/hotkey HKEY 00000080 0000xxxx
>
> @@ -217,9 +227,10 @@ ThinkPads, it is still possible to support some extra hotkeys by
> polling the "CMOS NVRAM" at least 10 times per second. The driver
> attempts to enables this functionality automatically when required.
>
> -procfs notes:
> +procfs notes
> +^^^^^^^^^^^^
>
> -The following commands can be written to the /proc/acpi/ibm/hotkey file:
> +The following commands can be written to the /proc/acpi/ibm/hotkey file::
>
> echo 0xffffffff > /proc/acpi/ibm/hotkey -- enable all hot keys
> echo 0 > /proc/acpi/ibm/hotkey -- disable all possible hot keys
> @@ -227,7 +238,7 @@ The following commands can be written to the /proc/acpi/ibm/hotkey file:
> echo reset > /proc/acpi/ibm/hotkey -- restore the recommended mask
>
> The following commands have been deprecated and will cause the kernel
> -to log a warning:
> +to log a warning::
>
> echo enable > /proc/acpi/ibm/hotkey -- does nothing
> echo disable > /proc/acpi/ibm/hotkey -- returns an error
> @@ -237,7 +248,8 @@ maintain maximum bug-to-bug compatibility, it does not report any masks,
> nor does it allow one to manipulate the hot key mask when the firmware
> does not support masks at all, even if NVRAM polling is in use.
>
> -sysfs notes:
> +sysfs notes
> +^^^^^^^^^^^
>
> hotkey_bios_enabled:
> DEPRECATED, WILL BE REMOVED SOON.
> @@ -349,7 +361,8 @@ sysfs notes:
>
> This attribute has poll()/select() support.
>
> -input layer notes:
> +input layer notes
> +^^^^^^^^^^^^^^^^^
>
> A Hot key is mapped to a single input layer EV_KEY event, possibly
> followed by an EV_MSC MSC_SCAN event that shall contain that key's scan
> @@ -362,11 +375,13 @@ remapping KEY_UNKNOWN keys.
>
> The events are available in an input device, with the following id:
>
> - Bus: BUS_HOST
> - vendor: 0x1014 (PCI_VENDOR_ID_IBM) or
> + ============== ==============================
> + Bus BUS_HOST
> + vendor 0x1014 (PCI_VENDOR_ID_IBM) or
> 0x17aa (PCI_VENDOR_ID_LENOVO)
> - product: 0x5054 ("TP")
> - version: 0x4101
> + product 0x5054 ("TP")
> + version 0x4101
> + ============== ==============================
>
> The version will have its LSB incremented if the keymap changes in a
> backwards-compatible way. The MSB shall always be 0x41 for this input
> @@ -380,9 +395,10 @@ backwards-compatible change for this input device.
>
> Thinkpad-acpi Hot Key event map (version 0x4101):
>
> +======= ======= ============== ==============================================
> ACPI Scan
> event code Key Notes
> -
> +======= ======= ============== ==============================================
> 0x1001 0x00 FN+F1 -
>
> 0x1002 0x01 FN+F2 IBM: battery (rare)
> @@ -426,7 +442,9 @@ event code Key Notes
> or toggle screen expand
>
> 0x1009 0x08 FN+F9 -
> - .. .. ..
> +
> +... ... ... ...
> +
> 0x100B 0x0A FN+F11 -
>
> 0x100C 0x0B FN+F12 Sleep to disk. You are always
> @@ -480,8 +498,11 @@ event code Key Notes
> 0x1018 0x17 THINKPAD ThinkPad/Access IBM/Lenovo key
>
> 0x1019 0x18 unknown
> -.. .. ..
> +
> +... ... ...
> +
> 0x1020 0x1F unknown
> +======= ======= ============== ==============================================
>
> The ThinkPad firmware does not allow one to differentiate when most hot
> keys are pressed or released (either that, or we don't know how to, yet).
> @@ -499,14 +520,17 @@ generate input device EV_KEY events.
> In addition to the EV_KEY events, thinkpad-acpi may also issue EV_SW
> events for switches:
>
> +============== ==============================================
> SW_RFKILL_ALL T60 and later hardware rfkill rocker switch
> SW_TABLET_MODE Tablet ThinkPads HKEY events 0x5009 and 0x500A
> +============== ==============================================
>
> -Non hotkey ACPI HKEY event map:
> --------------------------------
> +Non hotkey ACPI HKEY event map
> +------------------------------
>
> Events that are never propagated by the driver:
>
> +====== ==================================================
> 0x2304 System is waking up from suspend to undock
> 0x2305 System is waking up from suspend to eject bay
> 0x2404 System is waking up from hibernation to undock
> @@ -519,10 +543,12 @@ Events that are never propagated by the driver:
> 0x6000 KEYBOARD: Numlock key pressed
> 0x6005 KEYBOARD: Fn key pressed (TO BE VERIFIED)
> 0x7000 Radio Switch may have changed state
> +====== ==================================================
>
>
> Events that are propagated by the driver to userspace:
>
> +====== =====================================================
> 0x2313 ALARM: System is waking up from suspend because
> the battery is nearly empty
> 0x2413 ALARM: System is waking up from hibernation because
> @@ -544,6 +570,7 @@ Events that are propagated by the driver to userspace:
> 0x6040 Nvidia Optimus/AC adapter related (TO BE VERIFIED)
> 0x60C0 X1 Yoga 2016, Tablet mode status changed
> 0x60F0 Thermal Transformation changed (GMTS, Windows)
> +====== =====================================================
>
> Battery nearly empty alarms are a last resort attempt to get the
> operating system to hibernate or shutdown cleanly (0x2313), or shutdown
> @@ -562,7 +589,8 @@ cycle, or a system shutdown. Obviously, something is very wrong if this
> happens.
>
>
> -Brightness hotkey notes:
> +Brightness hotkey notes
> +^^^^^^^^^^^^^^^^^^^^^^^
>
> Don't mess with the brightness hotkeys in a Thinkpad. If you want
> notifications for OSD, use the sysfs backlight class event support.
> @@ -579,7 +607,9 @@ Bluetooth
> ---------
>
> procfs: /proc/acpi/ibm/bluetooth
> +
> sysfs device attribute: bluetooth_enable (deprecated)
> +
> sysfs rfkill class: switch "tpacpi_bluetooth_sw"
>
> This feature shows the presence and current state of a ThinkPad
> @@ -588,22 +618,25 @@ Bluetooth device in the internal ThinkPad CDC slot.
> If the ThinkPad supports it, the Bluetooth state is stored in NVRAM,
> so it is kept across reboots and power-off.
>
> -Procfs notes:
> +Procfs notes
> +^^^^^^^^^^^^
>
> -If Bluetooth is installed, the following commands can be used:
> +If Bluetooth is installed, the following commands can be used::
>
> echo enable > /proc/acpi/ibm/bluetooth
> echo disable > /proc/acpi/ibm/bluetooth
>
> -Sysfs notes:
> +Sysfs notes
> +^^^^^^^^^^^
>
> If the Bluetooth CDC card is installed, it can be enabled /
> disabled through the "bluetooth_enable" thinkpad-acpi device
> attribute, and its current status can also be queried.
>
> enable:
> - 0: disables Bluetooth / Bluetooth is disabled
> - 1: enables Bluetooth / Bluetooth is enabled.
> +
> + - 0: disables Bluetooth / Bluetooth is disabled
> + - 1: enables Bluetooth / Bluetooth is enabled.
>
> Note: this interface has been superseded by the generic rfkill
> class. It has been deprecated, and it will be removed in year
> @@ -617,7 +650,7 @@ Video output control -- /proc/acpi/ibm/video
> --------------------------------------------
>
> This feature allows control over the devices used for video output -
> -LCD, CRT or DVI (if available). The following commands are available:
> +LCD, CRT or DVI (if available). The following commands are available::
>
> echo lcd_enable > /proc/acpi/ibm/video
> echo lcd_disable > /proc/acpi/ibm/video
> @@ -630,9 +663,10 @@ LCD, CRT or DVI (if available). The following commands are available:
> echo expand_toggle > /proc/acpi/ibm/video
> echo video_switch > /proc/acpi/ibm/video
>
> -NOTE: Access to this feature is restricted to processes owning the
> -CAP_SYS_ADMIN capability for safety reasons, as it can interact badly
> -enough with some versions of X.org to crash it.
> +NOTE:
> + Access to this feature is restricted to processes owning the
> + CAP_SYS_ADMIN capability for safety reasons, as it can interact badly
> + enough with some versions of X.org to crash it.
>
> Each video output device can be enabled or disabled individually.
> Reading /proc/acpi/ibm/video shows the status of each device.
> @@ -665,18 +699,21 @@ ThinkLight control
> ------------------
>
> procfs: /proc/acpi/ibm/light
> +
> sysfs attributes: as per LED class, for the "tpacpi::thinklight" LED
>
> -procfs notes:
> +procfs notes
> +^^^^^^^^^^^^
>
> The ThinkLight status can be read and set through the procfs interface. A
> few models which do not make the status available will show the ThinkLight
> -status as "unknown". The available commands are:
> +status as "unknown". The available commands are::
>
> echo on > /proc/acpi/ibm/light
> echo off > /proc/acpi/ibm/light
>
> -sysfs notes:
> +sysfs notes
> +^^^^^^^^^^^
>
> The ThinkLight sysfs interface is documented by the LED class
> documentation, in Documentation/leds/leds-class.rst. The ThinkLight LED name
> @@ -691,6 +728,7 @@ CMOS/UCMS control
> -----------------
>
> procfs: /proc/acpi/ibm/cmos
> +
> sysfs device attribute: cmos_command
>
> This feature is mostly used internally by the ACPI firmware to keep the legacy
> @@ -707,16 +745,16 @@ The range of valid cmos command numbers is 0 to 21, but not all have an
> effect and the behavior varies from model to model. Here is the behavior
> on the X40 (tpb is the ThinkPad Buttons utility):
>
> - 0 - Related to "Volume down" key press
> - 1 - Related to "Volume up" key press
> - 2 - Related to "Mute on" key press
> - 3 - Related to "Access IBM" key press
> - 4 - Related to "LCD brightness up" key press
> - 5 - Related to "LCD brightness down" key press
> - 11 - Related to "toggle screen expansion" key press/function
> - 12 - Related to "ThinkLight on"
> - 13 - Related to "ThinkLight off"
> - 14 - Related to "ThinkLight" key press (toggle ThinkLight)
> + - 0 - Related to "Volume down" key press
> + - 1 - Related to "Volume up" key press
> + - 2 - Related to "Mute on" key press
> + - 3 - Related to "Access IBM" key press
> + - 4 - Related to "LCD brightness up" key press
> + - 5 - Related to "LCD brightness down" key press
> + - 11 - Related to "toggle screen expansion" key press/function
> + - 12 - Related to "ThinkLight on"
> + - 13 - Related to "ThinkLight off"
> + - 14 - Related to "ThinkLight" key press (toggle ThinkLight)
>
> The cmos command interface is prone to firmware split-brain problems, as
> in newer ThinkPads it is just a compatibility layer. Do not use it, it is
> @@ -748,9 +786,10 @@ are aware of the consequences are welcome to enabling it.
> Audio mute and microphone mute LEDs are supported, but currently not
> visible to userspace. They are used by the snd-hda-intel audio driver.
>
> -procfs notes:
> +procfs notes
> +^^^^^^^^^^^^
>
> -The available commands are:
> +The available commands are::
>
> echo '<LED number> on' >/proc/acpi/ibm/led
> echo '<LED number> off' >/proc/acpi/ibm/led
> @@ -760,23 +799,24 @@ The <LED number> range is 0 to 15. The set of LEDs that can be
> controlled varies from model to model. Here is the common ThinkPad
> mapping:
>
> - 0 - power
> - 1 - battery (orange)
> - 2 - battery (green)
> - 3 - UltraBase/dock
> - 4 - UltraBay
> - 5 - UltraBase battery slot
> - 6 - (unknown)
> - 7 - standby
> - 8 - dock status 1
> - 9 - dock status 2
> - 10, 11 - (unknown)
> - 12 - thinkvantage
> - 13, 14, 15 - (unknown)
> + - 0 - power
> + - 1 - battery (orange)
> + - 2 - battery (green)
> + - 3 - UltraBase/dock
> + - 4 - UltraBay
> + - 5 - UltraBase battery slot
> + - 6 - (unknown)
> + - 7 - standby
> + - 8 - dock status 1
> + - 9 - dock status 2
> + - 10, 11 - (unknown)
> + - 12 - thinkvantage
> + - 13, 14, 15 - (unknown)
>
> All of the above can be turned on and off and can be made to blink.
>
> -sysfs notes:
> +sysfs notes
> +^^^^^^^^^^^
>
> The ThinkPad LED sysfs interface is described in detail by the LED class
> documentation, in Documentation/leds/leds-class.rst.
> @@ -815,7 +855,7 @@ The BEEP method is used internally by the ACPI firmware to provide
> audible alerts in various situations. This feature allows the same
> sounds to be triggered manually.
>
> -The commands are non-negative integer numbers:
> +The commands are non-negative integer numbers::
>
> echo <number> >/proc/acpi/ibm/beep
>
> @@ -823,25 +863,26 @@ The valid <number> range is 0 to 17. Not all numbers trigger sounds
> and the sounds vary from model to model. Here is the behavior on the
> X40:
>
> - 0 - stop a sound in progress (but use 17 to stop 16)
> - 2 - two beeps, pause, third beep ("low battery")
> - 3 - single beep
> - 4 - high, followed by low-pitched beep ("unable")
> - 5 - single beep
> - 6 - very high, followed by high-pitched beep ("AC/DC")
> - 7 - high-pitched beep
> - 9 - three short beeps
> - 10 - very long beep
> - 12 - low-pitched beep
> - 15 - three high-pitched beeps repeating constantly, stop with 0
> - 16 - one medium-pitched beep repeating constantly, stop with 17
> - 17 - stop 16
> + - 0 - stop a sound in progress (but use 17 to stop 16)
> + - 2 - two beeps, pause, third beep ("low battery")
> + - 3 - single beep
> + - 4 - high, followed by low-pitched beep ("unable")
> + - 5 - single beep
> + - 6 - very high, followed by high-pitched beep ("AC/DC")
> + - 7 - high-pitched beep
> + - 9 - three short beeps
> + - 10 - very long beep
> + - 12 - low-pitched beep
> + - 15 - three high-pitched beeps repeating constantly, stop with 0
> + - 16 - one medium-pitched beep repeating constantly, stop with 17
> + - 17 - stop 16
>
>
> Temperature sensors
> -------------------
>
> procfs: /proc/acpi/ibm/thermal
> +
> sysfs device attributes: (hwmon "thinkpad") temp*_input
>
> Most ThinkPads include six or more separate temperature sensors but only
> @@ -850,10 +891,14 @@ feature shows readings from up to eight different sensors on older
> ThinkPads, and up to sixteen different sensors on newer ThinkPads.
>
> For example, on the X40, a typical output may be:
> -temperatures: 42 42 45 41 36 -128 33 -128
> +
> +temperatures:
> + 42 42 45 41 36 -128 33 -128
>
> On the T43/p, a typical output may be:
> -temperatures: 48 48 36 52 38 -128 31 -128 48 52 48 -128 -128 -128 -128 -128
> +
> +temperatures:
> + 48 48 36 52 38 -128 31 -128 48 52 48 -128 -128 -128 -128 -128
>
> The mapping of thermal sensors to physical locations varies depending on
> system-board model (and thus, on ThinkPad model).
> @@ -863,46 +908,53 @@ tries to track down these locations for various models.
>
> Most (newer?) models seem to follow this pattern:
>
> -1: CPU
> -2: (depends on model)
> -3: (depends on model)
> -4: GPU
> -5: Main battery: main sensor
> -6: Bay battery: main sensor
> -7: Main battery: secondary sensor
> -8: Bay battery: secondary sensor
> -9-15: (depends on model)
> +- 1: CPU
> +- 2: (depends on model)
> +- 3: (depends on model)
> +- 4: GPU
> +- 5: Main battery: main sensor
> +- 6: Bay battery: main sensor
> +- 7: Main battery: secondary sensor
> +- 8: Bay battery: secondary sensor
> +- 9-15: (depends on model)
>
> For the R51 (source: Thomas Gruber):
> -2: Mini-PCI
> -3: Internal HDD
> +
> +- 2: Mini-PCI
> +- 3: Internal HDD
>
> For the T43, T43/p (source: Shmidoax/Thinkwiki.org)
> http://thinkwiki.org/wiki/Thermal_Sensors#ThinkPad_T43.2C_T43p
> -2: System board, left side (near PCMCIA slot), reported as HDAPS temp
> -3: PCMCIA slot
> -9: MCH (northbridge) to DRAM Bus
> -10: Clock-generator, mini-pci card and ICH (southbridge), under Mini-PCI
> - card, under touchpad
> -11: Power regulator, underside of system board, below F2 key
> +
> +- 2: System board, left side (near PCMCIA slot), reported as HDAPS temp
> +- 3: PCMCIA slot
> +- 9: MCH (northbridge) to DRAM Bus
> +- 10: Clock-generator, mini-pci card and ICH (southbridge), under Mini-PCI
> + card, under touchpad
> +- 11: Power regulator, underside of system board, below F2 key
>
> The A31 has a very atypical layout for the thermal sensors
> (source: Milos Popovic, http://thinkwiki.org/wiki/Thermal_Sensors#ThinkPad_A31)
> -1: CPU
> -2: Main Battery: main sensor
> -3: Power Converter
> -4: Bay Battery: main sensor
> -5: MCH (northbridge)
> -6: PCMCIA/ambient
> -7: Main Battery: secondary sensor
> -8: Bay Battery: secondary sensor
>
> +- 1: CPU
> +- 2: Main Battery: main sensor
> +- 3: Power Converter
> +- 4: Bay Battery: main sensor
> +- 5: MCH (northbridge)
> +- 6: PCMCIA/ambient
> +- 7: Main Battery: secondary sensor
> +- 8: Bay Battery: secondary sensor
> +
> +
> +Procfs notes
> +^^^^^^^^^^^^
>
> -Procfs notes:
> Readings from sensors that are not available return -128.
> No commands can be written to this file.
>
> -Sysfs notes:
> +Sysfs notes
> +^^^^^^^^^^^
> +
> Sensors that are not available return the ENXIO error. This
> status may change at runtime, as there are hotplug thermal
> sensors, like those inside the batteries and docks.
> @@ -921,6 +973,7 @@ ftp://ftp.suse.com/pub/people/trenn/sources/ec
>
> Use it to determine the register holding the fan
> speed on some models. To do that, do the following:
> +
> - make sure the battery is fully charged
> - make sure the fan is running
> - use above mentioned tool to read out the EC
> @@ -941,6 +994,7 @@ LCD brightness control
> ----------------------
>
> procfs: /proc/acpi/ibm/brightness
> +
> sysfs backlight device "thinkpad_screen"
>
> This feature allows software control of the LCD brightness on ThinkPad
> @@ -985,15 +1039,17 @@ brightness_enable=0 forces it to be disabled. brightness_enable=1
> forces it to be enabled when available, even if the standard ACPI
> interface is also available.
>
> -Procfs notes:
> +Procfs notes
> +^^^^^^^^^^^^
>
> - The available commands are:
> +The available commands are::
>
> echo up >/proc/acpi/ibm/brightness
> echo down >/proc/acpi/ibm/brightness
> echo 'level <level>' >/proc/acpi/ibm/brightness
>
> -Sysfs notes:
> +Sysfs notes
> +^^^^^^^^^^^
>
> The interface is implemented through the backlight sysfs class, which is
> poorly documented at this time.
> @@ -1038,6 +1094,7 @@ Volume control (Console Audio control)
> --------------------------------------
>
> procfs: /proc/acpi/ibm/volume
> +
> ALSA: "ThinkPad Console Audio Control", default ID: "ThinkPadEC"
>
> NOTE: by default, the volume control interface operates in read-only
> @@ -1053,7 +1110,8 @@ Software volume control should be done only in the main AC97/HDA
> mixer.
>
>
> -About the ThinkPad Console Audio control:
> +About the ThinkPad Console Audio control
> +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
>
> ThinkPads have a built-in amplifier and muting circuit that drives the
> console headphone and speakers. This circuit is after the main AC97
> @@ -1092,13 +1150,14 @@ normal key presses to the operating system (thinkpad-acpi is not
> involved).
>
>
> -The ThinkPad-ACPI volume control:
> +The ThinkPad-ACPI volume control
> +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
>
> The preferred way to interact with the Console Audio control is the
> ALSA interface.
>
> The legacy procfs interface allows one to read the current state,
> -and if volume control is enabled, accepts the following commands:
> +and if volume control is enabled, accepts the following commands::
>
> echo up >/proc/acpi/ibm/volume
> echo down >/proc/acpi/ibm/volume
> @@ -1137,13 +1196,15 @@ Fan control and monitoring: fan speed, fan enable/disable
> ---------------------------------------------------------
>
> procfs: /proc/acpi/ibm/fan
> -sysfs device attributes: (hwmon "thinkpad") fan1_input, pwm1,
> - pwm1_enable, fan2_input
> +
> +sysfs device attributes: (hwmon "thinkpad") fan1_input, pwm1, pwm1_enable, fan2_input
> +
> sysfs hwmon driver attributes: fan_watchdog
>
> -NOTE NOTE NOTE: fan control operations are disabled by default for
> -safety reasons. To enable them, the module parameter "fan_control=1"
> -must be given to thinkpad-acpi.
> +NOTE NOTE NOTE:
> + fan control operations are disabled by default for
> + safety reasons. To enable them, the module parameter "fan_control=1"
> + must be given to thinkpad-acpi.
>
> This feature attempts to show the current fan speed, control mode and
> other fan data that might be available. The speed is read directly
> @@ -1154,7 +1215,8 @@ value on other models.
> Some Lenovo ThinkPads support a secondary fan. This fan cannot be
> controlled separately, it shares the main fan control.
>
> -Fan levels:
> +Fan levels
> +^^^^^^^^^^
>
> Most ThinkPad fans work in "levels" at the firmware interface. Level 0
> stops the fan. The higher the level, the higher the fan speed, although
> @@ -1209,9 +1271,10 @@ therefore, not suitable to protect against fan mode changes made through
> means other than the "enable", "disable", and "level" procfs fan
> commands, or the hwmon fan control sysfs interface.
>
> -Procfs notes:
> +Procfs notes
> +^^^^^^^^^^^^
>
> -The fan may be enabled or disabled with the following commands:
> +The fan may be enabled or disabled with the following commands::
>
> echo enable >/proc/acpi/ibm/fan
> echo disable >/proc/acpi/ibm/fan
> @@ -1219,7 +1282,7 @@ The fan may be enabled or disabled with the following commands:
> Placing a fan on level 0 is the same as disabling it. Enabling a fan
> will try to place it in a safe level if it is too slow or disabled.
>
> -The fan level can be controlled with the command:
> +The fan level can be controlled with the command::
>
> echo 'level <level>' > /proc/acpi/ibm/fan
>
> @@ -1231,7 +1294,7 @@ compatibility.
>
> On the X31 and X40 (and ONLY on those models), the fan speed can be
> controlled to a certain degree. Once the fan is running, it can be
> -forced to run faster or slower with the following command:
> +forced to run faster or slower with the following command::
>
> echo 'speed <speed>' > /proc/acpi/ibm/fan
>
> @@ -1241,13 +1304,14 @@ effect or the fan speed eventually settles somewhere in that range. The
> fan cannot be stopped or started with this command. This functionality
> is incomplete, and not available through the sysfs interface.
>
> -To program the safety watchdog, use the "watchdog" command.
> +To program the safety watchdog, use the "watchdog" command::
>
> echo 'watchdog <interval in seconds>' > /proc/acpi/ibm/fan
>
> If you want to disable the watchdog, use 0 as the interval.
>
> -Sysfs notes:
> +Sysfs notes
> +^^^^^^^^^^^
>
> The sysfs interface follows the hwmon subsystem guidelines for the most
> part, and the exception is the fan safety watchdog.
> @@ -1261,10 +1325,10 @@ to the firmware).
> Features not yet implemented by the driver return ENOSYS.
>
> hwmon device attribute pwm1_enable:
> - 0: PWM offline (fan is set to full-speed mode)
> - 1: Manual PWM control (use pwm1 to set fan level)
> - 2: Hardware PWM control (EC "auto" mode)
> - 3: reserved (Software PWM control, not implemented yet)
> + - 0: PWM offline (fan is set to full-speed mode)
> + - 1: Manual PWM control (use pwm1 to set fan level)
> + - 2: Hardware PWM control (EC "auto" mode)
> + - 3: reserved (Software PWM control, not implemented yet)
>
> Modes 0 and 2 are not supported by all ThinkPads, and the
> driver is not always able to detect this. If it does know a
> @@ -1304,7 +1368,9 @@ WAN
> ---
>
> procfs: /proc/acpi/ibm/wan
> +
> sysfs device attribute: wwan_enable (deprecated)
> +
> sysfs rfkill class: switch "tpacpi_wwan_sw"
>
> This feature shows the presence and current state of the built-in
> @@ -1316,22 +1382,24 @@ so it is kept across reboots and power-off.
> It was tested on a Lenovo ThinkPad X60. It should probably work on other
> ThinkPad models which come with this module installed.
>
> -Procfs notes:
> +Procfs notes
> +^^^^^^^^^^^^
>
> -If the W-WAN card is installed, the following commands can be used:
> +If the W-WAN card is installed, the following commands can be used::
>
> echo enable > /proc/acpi/ibm/wan
> echo disable > /proc/acpi/ibm/wan
>
> -Sysfs notes:
> +Sysfs notes
> +^^^^^^^^^^^
>
> If the W-WAN card is installed, it can be enabled /
> disabled through the "wwan_enable" thinkpad-acpi device
> attribute, and its current status can also be queried.
>
> enable:
> - 0: disables WWAN card / WWAN card is disabled
> - 1: enables WWAN card / WWAN card is enabled.
> + - 0: disables WWAN card / WWAN card is disabled
> + - 1: enables WWAN card / WWAN card is enabled.
>
> Note: this interface has been superseded by the generic rfkill
> class. It has been deprecated, and it will be removed in year
> @@ -1354,7 +1422,8 @@ sysfs rfkill class: switch "tpacpi_uwb_sw"
> This feature exports an rfkill controller for the UWB device, if one is
> present and enabled in the BIOS.
>
> -Sysfs notes:
> +Sysfs notes
> +^^^^^^^^^^^
>
> rfkill controller switch "tpacpi_uwb_sw": refer to
> Documentation/rfkill.rst for details.
> @@ -1368,11 +1437,11 @@ This sysfs attribute controls the keyboard "face" that will be shown on the
> Lenovo X1 Carbon 2nd gen (2014)'s adaptive keyboard. The value can be read
> and set.
>
> -1 = Home mode
> -2 = Web-browser mode
> -3 = Web-conference mode
> -4 = Function mode
> -5 = Layflat mode
> +- 1 = Home mode
> +- 2 = Web-browser mode
> +- 3 = Web-conference mode
> +- 4 = Function mode
> +- 5 = Layflat mode
>
> For more details about which buttons will appear depending on the mode, please
> review the laptop's user guide:
> @@ -1382,13 +1451,13 @@ Multiple Commands, Module Parameters
> ------------------------------------
>
> Multiple commands can be written to the proc files in one shot by
> -separating them with commas, for example:
> +separating them with commas, for example::
>
> echo enable,0xffff > /proc/acpi/ibm/hotkey
> echo lcd_disable,crt_enable > /proc/acpi/ibm/video
>
> Commands can also be specified when loading the thinkpad-acpi module,
> -for example:
> +for example::
>
> modprobe thinkpad_acpi hotkey=enable,0xffff video=auto_disable
>
> @@ -1397,14 +1466,16 @@ Enabling debugging output
> -------------------------
>
> The module takes a debug parameter which can be used to selectively
> -enable various classes of debugging output, for example:
> +enable various classes of debugging output, for example::
>
> modprobe thinkpad_acpi debug=0xffff
>
> will enable all debugging output classes. It takes a bitmask, so
> to enable more than one output class, just add their values.
>
> + ============= ======================================
> Debug bitmask Description
> + ============= ======================================
> 0x8000 Disclose PID of userspace programs
> accessing some functions of the driver
> 0x0001 Initialization and probing
> @@ -1415,6 +1486,7 @@ to enable more than one output class, just add their values.
> 0x0010 Fan control
> 0x0020 Backlight brightness
> 0x0040 Audio mixer/volume control
> + ============= ======================================
>
> There is also a kernel build option to enable more debugging
> information, which may be necessary to debug driver problems.
> @@ -1432,8 +1504,10 @@ the module parameter force_load=1. Regardless of whether this works or
> not, please contact ibm-acpi-devel@lists.sourceforge.net with a report.
>
>
> -Sysfs interface changelog:
> +Sysfs interface changelog
> +^^^^^^^^^^^^^^^^^^^^^^^^^
>
> +========= ===============================================================
> 0x000100: Initial sysfs support, as a single platform driver and
> device.
> 0x000200: Hot key support for 32 hot keys, and radio slider switch
> @@ -1485,3 +1559,4 @@ Sysfs interface changelog:
> 0x030000: Thermal and fan sysfs attributes were moved to the hwmon
> device instead of being attached to the backing platform
> device.
> +========= ===============================================================
> diff --git a/Documentation/laptops/toshiba_haps.txt b/Documentation/laptops/toshiba_haps.rst
> similarity index 60%
> rename from Documentation/laptops/toshiba_haps.txt
> rename to Documentation/laptops/toshiba_haps.rst
> index 0c1d88dedbde..11dfc428c080 100644
> --- a/Documentation/laptops/toshiba_haps.txt
> +++ b/Documentation/laptops/toshiba_haps.rst
> @@ -1,18 +1,19 @@
> -Kernel driver toshiba_haps
> +====================================
> Toshiba HDD Active Protection Sensor
> ====================================
>
> +Kernel driver: toshiba_haps
> +
> Author: Azael Avalos <coproscefalo@gmail.com>
>
>
> -0. Contents
> ------------
> +.. 0. Contents
>
> -1. Description
> -2. Interface
> -3. Accelerometer axes
> -4. Supported devices
> -5. Usage
> + 1. Description
> + 2. Interface
> + 3. Accelerometer axes
> + 4. Supported devices
> + 5. Usage
>
>
> 1. Description
> @@ -32,17 +33,20 @@ file to set the desired protection level or sensor sensibility.
> ------------
>
> This device comes with 3 methods:
> -_STA - Checks existence of the device, returning Zero if the device does not
> +
> +==== =====================================================================
> +_STA Checks existence of the device, returning Zero if the device does not
> exists or is not supported.
> -PTLV - Sets the desired protection level.
> -RSSS - Shuts down the HDD protection interface for a few seconds,
> +PTLV Sets the desired protection level.
> +RSSS Shuts down the HDD protection interface for a few seconds,
> then restores normal operation.
> +==== =====================================================================
>
> Note:
> -The presence of Solid State Drives (SSD) can make this driver to fail loading,
> -given the fact that such drives have no movable parts, and thus, not requiring
> -any "protection" as well as failing during the evaluation of the _STA method
> -found under this device.
> + The presence of Solid State Drives (SSD) can make this driver to fail loading,
> + given the fact that such drives have no movable parts, and thus, not requiring
> + any "protection" as well as failing during the evaluation of the _STA method
> + found under this device.
>
>
> 3. Accelerometer axes
> @@ -66,11 +70,18 @@ conventional HDD and not only SSD, or a combination of both HDD and SSD.
> --------
>
> The sysfs files under /sys/devices/LNXSYSTM:00/LNXSYBUS:00/TOS620A:00/ are:
> -protection_level - The protection_level is readable and writeable, and
> +
> +================ ============================================================
> +protection_level The protection_level is readable and writeable, and
> provides a way to let userspace query the current protection
> level, as well as set the desired protection level, the
> available protection levels are:
> - 0 - Disabled | 1 - Low | 2 - Medium | 3 - High
> -reset_protection - The reset_protection entry is writeable only, being "1"
> +
> + ============ ======= ========== ========
> + 0 - Disabled 1 - Low 2 - Medium 3 - High
> + ============ ======= ========== ========
> +
> +reset_protection The reset_protection entry is writeable only, being "1"
> the only parameter it accepts, it is used to trigger
> a reset of the protection interface.
> +================ ============================================================
> diff --git a/Documentation/sysctl/vm.txt b/Documentation/sysctl/vm.txt
> index 6758767c85a8..f10245b06b0e 100644
> --- a/Documentation/sysctl/vm.txt
> +++ b/Documentation/sysctl/vm.txt
> @@ -102,7 +102,7 @@ Changing this takes effect whenever an application requests memory.
> block_dump
>
> block_dump enables block I/O debugging when set to a nonzero value. More
> -information on block I/O debugging is in Documentation/laptops/laptop-mode.txt.
> +information on block I/O debugging is in Documentation/laptops/laptop-mode.rst.
>
> ==============================================================
>
> @@ -286,7 +286,7 @@ shared memory segment using hugetlb page.
> laptop_mode
>
> laptop_mode is a knob that controls "laptop mode". All the things that are
> -controlled by this knob are discussed in Documentation/laptops/laptop-mode.txt.
> +controlled by this knob are discussed in Documentation/laptops/laptop-mode.rst.
>
> ==============================================================
>
> diff --git a/MAINTAINERS b/MAINTAINERS
> index 6696779c0826..262dab70cbbf 100644
> --- a/MAINTAINERS
> +++ b/MAINTAINERS
> @@ -14565,7 +14565,7 @@ M: Mattia Dongili <malattia@linux.it>
> L: platform-driver-x86@vger.kernel.org
> W: http://www.linux.it/~malattia/wiki/index.php/Sony_drivers
> S: Maintained
> -F: Documentation/laptops/sony-laptop.txt
> +F: Documentation/laptops/sony-laptop.rst
> F: drivers/char/sonypi.c
> F: drivers/platform/x86/sony-laptop.c
> F: include/linux/sony-laptop.h
> diff --git a/drivers/char/Kconfig b/drivers/char/Kconfig
> index 110824a27510..ba90034f5b8f 100644
> --- a/drivers/char/Kconfig
> +++ b/drivers/char/Kconfig
> @@ -382,7 +382,7 @@ config SONYPI
> Device which can be found in many (all ?) Sony Vaio laptops.
>
> If you have one of those laptops, read
> - <file:Documentation/laptops/sonypi.txt>, and say Y or M here.
> + <file:Documentation/laptops/sonypi.rst>, and say Y or M here.
>
> To compile this driver as a module, choose M here: the
> module will be called sonypi.
> diff --git a/drivers/platform/x86/Kconfig b/drivers/platform/x86/Kconfig
> index 91b63cd4d48d..aa620324b1d9 100644
> --- a/drivers/platform/x86/Kconfig
> +++ b/drivers/platform/x86/Kconfig
> @@ -450,7 +450,7 @@ config SONY_LAPTOP
> screen brightness control, Fn keys and allows powering on/off some
> devices.
>
> - Read <file:Documentation/laptops/sony-laptop.txt> for more information.
> + Read <file:Documentation/laptops/sony-laptop.rst> for more information.
>
> config SONYPI_COMPAT
> bool "Sonypi compatibility"
> @@ -502,7 +502,7 @@ config THINKPAD_ACPI
> support for Fn-Fx key combinations, Bluetooth control, video
> output switching, ThinkLight control, UltraBay eject and more.
> For more information about this driver see
> - <file:Documentation/laptops/thinkpad-acpi.txt> and
> + <file:Documentation/laptops/thinkpad-acpi.rst> and
> <http://ibm-acpi.sf.net/> .
>
> This driver was formerly known as ibm-acpi.
> --
> 2.20.1
>
--
With Best Regards,
Andy Shevchenko
^ permalink raw reply [flat|nested] 115+ messages in thread
* [PATCH v2 63/79] docs: iio: convert to ReST
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (52 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 62/79] docs: laptops: " Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 14:25 ` Jonathan Cameron
2019-04-22 13:27 ` [PATCH v2 64/79] docs: ioctl-number.txt: convert it to ReST format Mauro Carvalho Chehab
` (19 subsequent siblings)
73 siblings, 1 reply; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Jonathan Cameron, Hartmut Knaack,
Lars-Peter Clausen, Peter Meerwald-Stadler, linux-iio
Rename the iio documentation files to ReST, add an
index for them and adjust in order to produce a nice html
output via the Sphinx build system.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
.../iio/{ep93xx_adc.txt => ep93xx_adc.rst} | 15 +++++-
.../{iio_configfs.txt => iio_configfs.rst} | 52 +++++++++++--------
Documentation/iio/index.rst | 12 +++++
drivers/iio/Kconfig | 2 +-
4 files changed, 56 insertions(+), 25 deletions(-)
rename Documentation/iio/{ep93xx_adc.txt => ep93xx_adc.rst} (71%)
rename Documentation/iio/{iio_configfs.txt => iio_configfs.rst} (73%)
create mode 100644 Documentation/iio/index.rst
diff --git a/Documentation/iio/ep93xx_adc.txt b/Documentation/iio/ep93xx_adc.rst
similarity index 71%
rename from Documentation/iio/ep93xx_adc.txt
rename to Documentation/iio/ep93xx_adc.rst
index 23053e7817bd..4fd8dea3f6b8 100644
--- a/Documentation/iio/ep93xx_adc.txt
+++ b/Documentation/iio/ep93xx_adc.rst
@@ -1,12 +1,16 @@
-Cirrus Logic EP93xx ADC driver.
+==============================
+Cirrus Logic EP93xx ADC driver
+==============================
1. Overview
+===========
The driver is intended to work on both low-end (EP9301, EP9302) devices with
5-channel ADC and high-end (EP9307, EP9312, EP9315) devices with 10-channel
touchscreen/ADC module.
2. Channel numbering
+====================
Numbering scheme for channels 0..4 is defined in EP9301 and EP9302 datasheets.
EP9307, EP9312 and EP9312 have 3 channels more (total 8), but the numbering is
@@ -17,13 +21,20 @@ Assuming ep93xx_adc is IIO device0, you'd find the following entries under
+-----------------+---------------+
| sysfs entry | ball/pin name |
- +-----------------+---------------+
+ +=================+===============+
| in_voltage0_raw | YM |
+ +-----------------+---------------+
| in_voltage1_raw | SXP |
+ +-----------------+---------------+
| in_voltage2_raw | SXM |
+ +-----------------+---------------+
| in_voltage3_raw | SYP |
+ +-----------------+---------------+
| in_voltage4_raw | SYM |
+ +-----------------+---------------+
| in_voltage5_raw | XP |
+ +-----------------+---------------+
| in_voltage6_raw | XM |
+ +-----------------+---------------+
| in_voltage7_raw | YP |
+-----------------+---------------+
diff --git a/Documentation/iio/iio_configfs.txt b/Documentation/iio/iio_configfs.rst
similarity index 73%
rename from Documentation/iio/iio_configfs.txt
rename to Documentation/iio/iio_configfs.rst
index 4e5f101837a8..ecbfdb3afef7 100644
--- a/Documentation/iio/iio_configfs.txt
+++ b/Documentation/iio/iio_configfs.rst
@@ -1,6 +1,9 @@
+===============================
Industrial IIO configfs support
+===============================
1. Overview
+===========
Configfs is a filesystem-based manager of kernel objects. IIO uses some
objects that could be easily configured using configfs (e.g.: devices,
@@ -10,20 +13,22 @@ See Documentation/filesystems/configfs/configfs.txt for more information
about how configfs works.
2. Usage
+========
In order to use configfs support in IIO we need to select it at compile
time via CONFIG_IIO_CONFIGFS config option.
-Then, mount the configfs filesystem (usually under /config directory):
+Then, mount the configfs filesystem (usually under /config directory)::
-$ mkdir /config
-$ mount -t configfs none /config
+ $ mkdir /config
+ $ mount -t configfs none /config
At this point, all default IIO groups will be created and can be accessed
under /config/iio. Next chapters will describe available IIO configuration
objects.
3. Software triggers
+====================
One of the IIO default configfs groups is the "triggers" group. It is
automagically accessible when the configfs is mounted and can be found
@@ -31,40 +36,40 @@ under /config/iio/triggers.
IIO software triggers implementation offers support for creating multiple
trigger types. A new trigger type is usually implemented as a separate
-kernel module following the interface in include/linux/iio/sw_trigger.h:
+kernel module following the interface in include/linux/iio/sw_trigger.h::
-/*
- * drivers/iio/trigger/iio-trig-sample.c
- * sample kernel module implementing a new trigger type
- */
-#include <linux/iio/sw_trigger.h>
+ /*
+ * drivers/iio/trigger/iio-trig-sample.c
+ * sample kernel module implementing a new trigger type
+ */
+ #include <linux/iio/sw_trigger.h>
-static struct iio_sw_trigger *iio_trig_sample_probe(const char *name)
-{
+ static struct iio_sw_trigger *iio_trig_sample_probe(const char *name)
+ {
/*
* This allocates and registers an IIO trigger plus other
* trigger type specific initialization.
*/
-}
+ }
-static int iio_trig_hrtimer_remove(struct iio_sw_trigger *swt)
-{
+ static int iio_trig_hrtimer_remove(struct iio_sw_trigger *swt)
+ {
/*
* This undoes the actions in iio_trig_sample_probe
*/
-}
+ }
-static const struct iio_sw_trigger_ops iio_trig_sample_ops = {
+ static const struct iio_sw_trigger_ops iio_trig_sample_ops = {
.probe = iio_trig_sample_probe,
.remove = iio_trig_sample_remove,
-};
+ };
-static struct iio_sw_trigger_type iio_trig_sample = {
+ static struct iio_sw_trigger_type iio_trig_sample = {
.name = "trig-sample",
.owner = THIS_MODULE,
.ops = &iio_trig_sample_ops,
-};
+ };
module_iio_sw_trigger_driver(iio_trig_sample);
@@ -73,21 +78,24 @@ iio-trig-sample module will create 'trig-sample' trigger type directory
/config/iio/triggers/trig-sample.
We support the following interrupt sources (trigger types):
+
* hrtimer, uses high resolution timers as interrupt source
3.1 Hrtimer triggers creation and destruction
+---------------------------------------------
Loading iio-trig-hrtimer module will register hrtimer trigger types allowing
users to create hrtimer triggers under /config/iio/triggers/hrtimer.
-e.g:
+e.g::
-$ mkdir /config/iio/triggers/hrtimer/instance1
-$ rmdir /config/iio/triggers/hrtimer/instance1
+ $ mkdir /config/iio/triggers/hrtimer/instance1
+ $ rmdir /config/iio/triggers/hrtimer/instance1
Each trigger can have one or more attributes specific to the trigger type.
3.2 "hrtimer" trigger types attributes
+--------------------------------------
"hrtimer" trigger type doesn't have any configurable attribute from /config dir.
It does introduce the sampling_frequency attribute to trigger directory.
diff --git a/Documentation/iio/index.rst b/Documentation/iio/index.rst
new file mode 100644
index 000000000000..0593dca89a94
--- /dev/null
+++ b/Documentation/iio/index.rst
@@ -0,0 +1,12 @@
+:orphan:
+
+==============
+Industrial I/O
+==============
+
+.. toctree::
+ :maxdepth: 1
+
+ iio_configfs
+
+ ep93xx_adc
diff --git a/drivers/iio/Kconfig b/drivers/iio/Kconfig
index 014006d1cbb6..c1aa87db19ff 100644
--- a/drivers/iio/Kconfig
+++ b/drivers/iio/Kconfig
@@ -28,7 +28,7 @@ config IIO_CONFIGFS
help
This allows configuring various IIO bits through configfs
(e.g. software triggers). For more info see
- Documentation/iio/iio_configfs.txt.
+ Documentation/iio/iio_configfs.rst.
config IIO_TRIGGER
bool "Enable triggered sampling support"
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* Re: [PATCH v2 63/79] docs: iio: convert to ReST
2019-04-22 13:27 ` [PATCH v2 63/79] docs: iio: " Mauro Carvalho Chehab
@ 2019-04-22 14:25 ` Jonathan Cameron
0 siblings, 0 replies; 115+ messages in thread
From: Jonathan Cameron @ 2019-04-22 14:25 UTC (permalink / raw)
To: Mauro Carvalho Chehab
Cc: Linux Doc Mailing List, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Hartmut Knaack, Lars-Peter Clausen,
Peter Meerwald-Stadler, linux-iio
On Mon, 22 Apr 2019 10:27:52 -0300
Mauro Carvalho Chehab <mchehab+samsung@kernel.org> wrote:
> Rename the iio documentation files to ReST, add an
> index for them and adjust in order to produce a nice html
> output via the Sphinx build system.
>
> At its new index.rst, let's add a :orphan: while this is not linked to
> the main index.rst file, in order to avoid build warnings.
>
> Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Thanks Mauro,
Looks good to me.
At somepoint, we should figure out how to fit these elements into
the main IIO docs, but this is a good intermediate step.
Acked-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
> ---
> .../iio/{ep93xx_adc.txt => ep93xx_adc.rst} | 15 +++++-
> .../{iio_configfs.txt => iio_configfs.rst} | 52 +++++++++++--------
> Documentation/iio/index.rst | 12 +++++
> drivers/iio/Kconfig | 2 +-
> 4 files changed, 56 insertions(+), 25 deletions(-)
> rename Documentation/iio/{ep93xx_adc.txt => ep93xx_adc.rst} (71%)
> rename Documentation/iio/{iio_configfs.txt => iio_configfs.rst} (73%)
> create mode 100644 Documentation/iio/index.rst
>
> diff --git a/Documentation/iio/ep93xx_adc.txt b/Documentation/iio/ep93xx_adc.rst
> similarity index 71%
> rename from Documentation/iio/ep93xx_adc.txt
> rename to Documentation/iio/ep93xx_adc.rst
> index 23053e7817bd..4fd8dea3f6b8 100644
> --- a/Documentation/iio/ep93xx_adc.txt
> +++ b/Documentation/iio/ep93xx_adc.rst
> @@ -1,12 +1,16 @@
> -Cirrus Logic EP93xx ADC driver.
> +==============================
> +Cirrus Logic EP93xx ADC driver
> +==============================
>
> 1. Overview
> +===========
>
> The driver is intended to work on both low-end (EP9301, EP9302) devices with
> 5-channel ADC and high-end (EP9307, EP9312, EP9315) devices with 10-channel
> touchscreen/ADC module.
>
> 2. Channel numbering
> +====================
>
> Numbering scheme for channels 0..4 is defined in EP9301 and EP9302 datasheets.
> EP9307, EP9312 and EP9312 have 3 channels more (total 8), but the numbering is
> @@ -17,13 +21,20 @@ Assuming ep93xx_adc is IIO device0, you'd find the following entries under
>
> +-----------------+---------------+
> | sysfs entry | ball/pin name |
> - +-----------------+---------------+
> + +=================+===============+
> | in_voltage0_raw | YM |
> + +-----------------+---------------+
> | in_voltage1_raw | SXP |
> + +-----------------+---------------+
> | in_voltage2_raw | SXM |
> + +-----------------+---------------+
> | in_voltage3_raw | SYP |
> + +-----------------+---------------+
> | in_voltage4_raw | SYM |
> + +-----------------+---------------+
> | in_voltage5_raw | XP |
> + +-----------------+---------------+
> | in_voltage6_raw | XM |
> + +-----------------+---------------+
> | in_voltage7_raw | YP |
> +-----------------+---------------+
> diff --git a/Documentation/iio/iio_configfs.txt b/Documentation/iio/iio_configfs.rst
> similarity index 73%
> rename from Documentation/iio/iio_configfs.txt
> rename to Documentation/iio/iio_configfs.rst
> index 4e5f101837a8..ecbfdb3afef7 100644
> --- a/Documentation/iio/iio_configfs.txt
> +++ b/Documentation/iio/iio_configfs.rst
> @@ -1,6 +1,9 @@
> +===============================
> Industrial IIO configfs support
> +===============================
>
> 1. Overview
> +===========
>
> Configfs is a filesystem-based manager of kernel objects. IIO uses some
> objects that could be easily configured using configfs (e.g.: devices,
> @@ -10,20 +13,22 @@ See Documentation/filesystems/configfs/configfs.txt for more information
> about how configfs works.
>
> 2. Usage
> +========
>
> In order to use configfs support in IIO we need to select it at compile
> time via CONFIG_IIO_CONFIGFS config option.
>
> -Then, mount the configfs filesystem (usually under /config directory):
> +Then, mount the configfs filesystem (usually under /config directory)::
>
> -$ mkdir /config
> -$ mount -t configfs none /config
> + $ mkdir /config
> + $ mount -t configfs none /config
>
> At this point, all default IIO groups will be created and can be accessed
> under /config/iio. Next chapters will describe available IIO configuration
> objects.
>
> 3. Software triggers
> +====================
>
> One of the IIO default configfs groups is the "triggers" group. It is
> automagically accessible when the configfs is mounted and can be found
> @@ -31,40 +36,40 @@ under /config/iio/triggers.
>
> IIO software triggers implementation offers support for creating multiple
> trigger types. A new trigger type is usually implemented as a separate
> -kernel module following the interface in include/linux/iio/sw_trigger.h:
> +kernel module following the interface in include/linux/iio/sw_trigger.h::
>
> -/*
> - * drivers/iio/trigger/iio-trig-sample.c
> - * sample kernel module implementing a new trigger type
> - */
> -#include <linux/iio/sw_trigger.h>
> + /*
> + * drivers/iio/trigger/iio-trig-sample.c
> + * sample kernel module implementing a new trigger type
> + */
> + #include <linux/iio/sw_trigger.h>
>
>
> -static struct iio_sw_trigger *iio_trig_sample_probe(const char *name)
> -{
> + static struct iio_sw_trigger *iio_trig_sample_probe(const char *name)
> + {
> /*
> * This allocates and registers an IIO trigger plus other
> * trigger type specific initialization.
> */
> -}
> + }
>
> -static int iio_trig_hrtimer_remove(struct iio_sw_trigger *swt)
> -{
> + static int iio_trig_hrtimer_remove(struct iio_sw_trigger *swt)
> + {
> /*
> * This undoes the actions in iio_trig_sample_probe
> */
> -}
> + }
>
> -static const struct iio_sw_trigger_ops iio_trig_sample_ops = {
> + static const struct iio_sw_trigger_ops iio_trig_sample_ops = {
> .probe = iio_trig_sample_probe,
> .remove = iio_trig_sample_remove,
> -};
> + };
>
> -static struct iio_sw_trigger_type iio_trig_sample = {
> + static struct iio_sw_trigger_type iio_trig_sample = {
> .name = "trig-sample",
> .owner = THIS_MODULE,
> .ops = &iio_trig_sample_ops,
> -};
> + };
>
> module_iio_sw_trigger_driver(iio_trig_sample);
>
> @@ -73,21 +78,24 @@ iio-trig-sample module will create 'trig-sample' trigger type directory
> /config/iio/triggers/trig-sample.
>
> We support the following interrupt sources (trigger types):
> +
> * hrtimer, uses high resolution timers as interrupt source
>
> 3.1 Hrtimer triggers creation and destruction
> +---------------------------------------------
>
> Loading iio-trig-hrtimer module will register hrtimer trigger types allowing
> users to create hrtimer triggers under /config/iio/triggers/hrtimer.
>
> -e.g:
> +e.g::
>
> -$ mkdir /config/iio/triggers/hrtimer/instance1
> -$ rmdir /config/iio/triggers/hrtimer/instance1
> + $ mkdir /config/iio/triggers/hrtimer/instance1
> + $ rmdir /config/iio/triggers/hrtimer/instance1
>
> Each trigger can have one or more attributes specific to the trigger type.
>
> 3.2 "hrtimer" trigger types attributes
> +--------------------------------------
>
> "hrtimer" trigger type doesn't have any configurable attribute from /config dir.
> It does introduce the sampling_frequency attribute to trigger directory.
> diff --git a/Documentation/iio/index.rst b/Documentation/iio/index.rst
> new file mode 100644
> index 000000000000..0593dca89a94
> --- /dev/null
> +++ b/Documentation/iio/index.rst
> @@ -0,0 +1,12 @@
> +:orphan:
> +
> +==============
> +Industrial I/O
> +==============
> +
> +.. toctree::
> + :maxdepth: 1
> +
> + iio_configfs
> +
> + ep93xx_adc
> diff --git a/drivers/iio/Kconfig b/drivers/iio/Kconfig
> index 014006d1cbb6..c1aa87db19ff 100644
> --- a/drivers/iio/Kconfig
> +++ b/drivers/iio/Kconfig
> @@ -28,7 +28,7 @@ config IIO_CONFIGFS
> help
> This allows configuring various IIO bits through configfs
> (e.g. software triggers). For more info see
> - Documentation/iio/iio_configfs.txt.
> + Documentation/iio/iio_configfs.rst.
>
> config IIO_TRIGGER
> bool "Enable triggered sampling support"
^ permalink raw reply [flat|nested] 115+ messages in thread
* [PATCH v2 64/79] docs: ioctl-number.txt: convert it to ReST format
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (53 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 63/79] docs: iio: " Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 14:05 ` Doug Ledford
2019-04-22 13:27 ` [PATCH v2 65/79] docs: ioctl: convert to ReST Mauro Carvalho Chehab
` (18 subsequent siblings)
73 siblings, 1 reply; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Federico Vaga, Harry Wei, Alex Shi, Doug Ledford,
Jason Gunthorpe, linux-rdma
The conversion itself is simple: add a markup for the
title of this file and add markups for both tables.
Yet, the big table here with IOCTL numbers is badly formatted:
on several lines, the "Include File" column has some values that
are bigger than the reserved space there.
Also, on several places, a comment was misplaced at the "Include
File" space.
So, most of the work here is to actually ensure that each field
will be properly fixed.
Also worth to mention that some URLs have the asterisk character
on it. Well, Sphinx has an issue with asterisks in the middle
of an string. As this is URL, use the alternate format: %2A.
As a side effect of this patch, it is now a lot easier to see that
some reserved ioctl numbers are missing the include files
where it is supposed to be used.
PS.: While this is part of a subdir, I opted to convert this
single file alone, as this file has a potential of conflicts,
as most subsystem maintainers touch it.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/ioctl/ioctl-number.rst | 360 ++++++++++++++++++
Documentation/ioctl/ioctl-number.txt | 350 -----------------
Documentation/process/submit-checklist.rst | 2 +-
.../it_IT/process/submit-checklist.rst | 2 +-
.../zh_CN/process/submit-checklist.rst | 2 +-
include/uapi/rdma/rdma_user_ioctl_cmds.h | 2 +-
6 files changed, 364 insertions(+), 354 deletions(-)
create mode 100644 Documentation/ioctl/ioctl-number.rst
delete mode 100644 Documentation/ioctl/ioctl-number.txt
diff --git a/Documentation/ioctl/ioctl-number.rst b/Documentation/ioctl/ioctl-number.rst
new file mode 100644
index 000000000000..597111dcca0c
--- /dev/null
+++ b/Documentation/ioctl/ioctl-number.rst
@@ -0,0 +1,360 @@
+=============
+Ioctl Numbers
+=============
+
+19 October 1999
+
+Michael Elizabeth Chastain
+<mec@shout.net>
+
+If you are adding new ioctl's to the kernel, you should use the _IO
+macros defined in <linux/ioctl.h>:
+
+ ====== == ============================================
+ _IO an ioctl with no parameters
+ _IOW an ioctl with write parameters (copy_from_user)
+ _IOR an ioctl with read parameters (copy_to_user)
+ _IOWR an ioctl with both write and read parameters.
+ ====== == ============================================
+
+'Write' and 'read' are from the user's point of view, just like the
+system calls 'write' and 'read'. For example, a SET_FOO ioctl would
+be _IOW, although the kernel would actually read data from user space;
+a GET_FOO ioctl would be _IOR, although the kernel would actually write
+data to user space.
+
+The first argument to _IO, _IOW, _IOR, or _IOWR is an identifying letter
+or number from the table below. Because of the large number of drivers,
+many drivers share a partial letter with other drivers.
+
+If you are writing a driver for a new device and need a letter, pick an
+unused block with enough room for expansion: 32 to 256 ioctl commands.
+You can register the block by patching this file and submitting the
+patch to Linus Torvalds. Or you can e-mail me at <mec@shout.net> and
+I'll register one for you.
+
+The second argument to _IO, _IOW, _IOR, or _IOWR is a sequence number
+to distinguish ioctls from each other. The third argument to _IOW,
+_IOR, or _IOWR is the type of the data going into the kernel or coming
+out of the kernel (e.g. 'int' or 'struct foo'). NOTE! Do NOT use
+sizeof(arg) as the third argument as this results in your ioctl thinking
+it passes an argument of type size_t.
+
+Some devices use their major number as the identifier; this is OK, as
+long as it is unique. Some devices are irregular and don't follow any
+convention at all.
+
+Following this convention is good because:
+
+(1) Keeping the ioctl's globally unique helps error checking:
+ if a program calls an ioctl on the wrong device, it will get an
+ error rather than some unexpected behaviour.
+
+(2) The 'strace' build procedure automatically finds ioctl numbers
+ defined with _IO, _IOW, _IOR, or _IOWR.
+
+(3) 'strace' can decode numbers back into useful names when the
+ numbers are unique.
+
+(4) People looking for ioctls can grep for them more easily when
+ this convention is used to define the ioctl numbers.
+
+(5) When following the convention, the driver code can use generic
+ code to copy the parameters between user and kernel space.
+
+This table lists ioctls visible from user land for Linux/x86. It contains
+most drivers up to 2.6.31, but I know I am missing some. There has been
+no attempt to list non-X86 architectures or ioctls from drivers/staging/.
+
+==== ===== ======================================================= ================================================================
+Code Seq# Include File Comments
+ (hex)
+==== ===== ======================================================= ================================================================
+0x00 00-1F linux/fs.h conflict!
+0x00 00-1F scsi/scsi_ioctl.h conflict!
+0x00 00-1F linux/fb.h conflict!
+0x00 00-1F linux/wavefront.h conflict!
+0x02 all linux/fd.h
+0x03 all linux/hdreg.h
+0x04 D2-DC linux/umsdos_fs.h Dead since 2.6.11, but don't reuse these.
+0x06 all linux/lp.h
+0x09 all linux/raid/md_u.h
+0x10 00-0F drivers/char/s390/vmcp.h
+0x10 10-1F arch/s390/include/uapi/sclp_ctl.h
+0x10 20-2F arch/s390/include/uapi/asm/hypfs.h
+0x12 all linux/fs.h
+ linux/blkpg.h
+0x1b all InfiniBand Subsystem
+ <http://infiniband.sourceforge.net/>
+0x20 all drivers/cdrom/cm206.h
+0x22 all scsi/sg.h
+'!' 00-1F uapi/linux/seccomp.h
+'#' 00-3F IEEE 1394 Subsystem
+ Block for the entire subsystem
+'$' 00-0F linux/perf_counter.h, linux/perf_event.h
+'%' 00-0F include/uapi/linux/stm.h System Trace Module subsystem
+ <mailto:alexander.shishkin@linux.intel.com>
+'&' 00-07 drivers/firewire/nosy-user.h
+'1' 00-1F linux/timepps.h PPS kit from Ulrich Windl
+ <ftp://ftp.de.kernel.org/pub/linux/daemons/ntp/PPS/>
+'2' 01-04 linux/i2o.h
+'3' 00-0F drivers/s390/char/raw3270.h conflict!
+'3' 00-1F linux/suspend_ioctls.h, conflict!
+ kernel/power/user.c
+'8' all SNP8023 advanced NIC card
+ <mailto:mcr@solidum.com>
+';' 64-7F linux/vfio.h
+'@' 00-0F linux/radeonfb.h conflict!
+'@' 00-0F drivers/video/aty/aty128fb.c conflict!
+'A' 00-1F linux/apm_bios.h conflict!
+'A' 00-0F linux/agpgart.h, conflict!
+ drivers/char/agp/compat_ioctl.h
+'A' 00-7F sound/asound.h conflict!
+'B' 00-1F linux/cciss_ioctl.h conflict!
+'B' 00-0F include/linux/pmu.h conflict!
+'B' C0-FF advanced bbus <mailto:maassen@uni-freiburg.de>
+'C' all linux/soundcard.h conflict!
+'C' 01-2F linux/capi.h conflict!
+'C' F0-FF drivers/net/wan/cosa.h conflict!
+'D' all arch/s390/include/asm/dasd.h
+'D' 40-5F drivers/scsi/dpt/dtpi_ioctl.h
+'D' 05 drivers/scsi/pmcraid.h
+'E' all linux/input.h conflict!
+'E' 00-0F xen/evtchn.h conflict!
+'F' all linux/fb.h conflict!
+'F' 01-02 drivers/scsi/pmcraid.h conflict!
+'F' 20 drivers/video/fsl-diu-fb.h conflict!
+'F' 20 drivers/video/intelfb/intelfb.h conflict!
+'F' 20 linux/ivtvfb.h conflict!
+'F' 20 linux/matroxfb.h conflict!
+'F' 20 drivers/video/aty/atyfb_base.c conflict!
+'F' 00-0F video/da8xx-fb.h conflict!
+'F' 80-8F linux/arcfb.h conflict!
+'F' DD video/sstfb.h conflict!
+'G' 00-3F drivers/misc/sgi-gru/grulib.h conflict!
+'G' 00-0F linux/gigaset_dev.h conflict!
+'H' 00-7F linux/hiddev.h conflict!
+'H' 00-0F linux/hidraw.h conflict!
+'H' 01 linux/mei.h conflict!
+'H' 02 linux/mei.h conflict!
+'H' 03 linux/mei.h conflict!
+'H' 00-0F sound/asound.h conflict!
+'H' 20-40 sound/asound_fm.h conflict!
+'H' 80-8F sound/sfnt_info.h conflict!
+'H' 10-8F sound/emu10k1.h conflict!
+'H' 10-1F sound/sb16_csp.h conflict!
+'H' 10-1F sound/hda_hwdep.h conflict!
+'H' 40-4F sound/hdspm.h conflict!
+'H' 40-4F sound/hdsp.h conflict!
+'H' 90 sound/usb/usx2y/usb_stream.h
+'H' A0 uapi/linux/usb/cdc-wdm.h
+'H' C0-F0 net/bluetooth/hci.h conflict!
+'H' C0-DF net/bluetooth/hidp/hidp.h conflict!
+'H' C0-DF net/bluetooth/cmtp/cmtp.h conflict!
+'H' C0-DF net/bluetooth/bnep/bnep.h conflict!
+'H' F1 linux/hid-roccat.h <mailto:erazor_de@users.sourceforge.net>
+'H' F8-FA sound/firewire.h
+'I' all linux/isdn.h conflict!
+'I' 00-0F drivers/isdn/divert/isdn_divert.h conflict!
+'I' 40-4F linux/mISDNif.h conflict!
+'J' 00-1F drivers/scsi/gdth_ioctl.h
+'K' all linux/kd.h
+'L' 00-1F linux/loop.h conflict!
+'L' 10-1F drivers/scsi/mpt3sas/mpt3sas_ctl.h conflict!
+'L' 20-2F linux/lightnvm.h
+'L' E0-FF linux/ppdd.h encrypted disk device driver
+ <http://linux01.gwdg.de/~alatham/ppdd.html>
+'M' all linux/soundcard.h conflict!
+'M' 01-16 mtd/mtd-abi.h conflict!
+ and drivers/mtd/mtdchar.c
+'M' 01-03 drivers/scsi/megaraid/megaraid_sas.h
+'M' 00-0F drivers/video/fsl-diu-fb.h conflict!
+'N' 00-1F drivers/usb/scanner.h
+'N' 40-7F drivers/block/nvme.c
+'O' 00-06 mtd/ubi-user.h UBI
+'P' all linux/soundcard.h conflict!
+'P' 60-6F sound/sscape_ioctl.h conflict!
+'P' 00-0F drivers/usb/class/usblp.c conflict!
+'P' 01-09 drivers/misc/pci_endpoint_test.c conflict!
+'Q' all linux/soundcard.h
+'R' 00-1F linux/random.h conflict!
+'R' 01 linux/rfkill.h conflict!
+'R' C0-DF net/bluetooth/rfcomm.h
+'S' all linux/cdrom.h conflict!
+'S' 80-81 scsi/scsi_ioctl.h conflict!
+'S' 82-FF scsi/scsi.h conflict!
+'S' 00-7F sound/asequencer.h conflict!
+'T' all linux/soundcard.h conflict!
+'T' 00-AF sound/asound.h conflict!
+'T' all arch/x86/include/asm/ioctls.h conflict!
+'T' C0-DF linux/if_tun.h conflict!
+'U' all sound/asound.h conflict!
+'U' 00-CF linux/uinput.h conflict!
+'U' 00-EF linux/usbdevice_fs.h
+'U' C0-CF drivers/bluetooth/hci_uart.h
+'V' all linux/vt.h conflict!
+'V' all linux/videodev2.h conflict!
+'V' C0 linux/ivtvfb.h conflict!
+'V' C0 linux/ivtv.h conflict!
+'V' C0 media/davinci/vpfe_capture.h conflict!
+'V' C0 media/si4713.h conflict!
+'W' 00-1F linux/watchdog.h conflict!
+'W' 00-1F linux/wanrouter.h conflict! (pre 3.9)
+'W' 00-3F sound/asound.h conflict!
+'W' 40-5F drivers/pci/switch/switchtec.c
+'X' all fs/xfs/xfs_fs.h, conflict!
+ fs/xfs/linux-2.6/xfs_ioctl32.h,
+ include/linux/falloc.h,
+ linux/fs.h,
+'X' all fs/ocfs2/ocfs_fs.h conflict!
+'X' 01 linux/pktcdvd.h conflict!
+'Y' all linux/cyclades.h
+'Z' 14-15 drivers/message/fusion/mptctl.h
+'[' 00-3F linux/usb/tmc.h USB Test and Measurement Devices
+ <mailto:gregkh@linuxfoundation.org>
+'a' all linux/atm*.h, linux/sonet.h ATM on linux
+ <http://lrcwww.epfl.ch/>
+'a' 00-0F drivers/crypto/qat/qat_common/adf_cfg_common.h conflict! qat driver
+'b' 00-FF conflict! bit3 vme host bridge
+ <mailto:natalia@nikhefk.nikhef.nl>
+'c' all linux/cm4000_cs.h conflict!
+'c' 00-7F linux/comstats.h conflict!
+'c' 00-7F linux/coda.h conflict!
+'c' 00-1F linux/chio.h conflict!
+'c' 80-9F arch/s390/include/asm/chsc.h conflict!
+'c' A0-AF arch/x86/include/asm/msr.h conflict!
+'d' 00-FF linux/char/drm/drm.h conflict!
+'d' 02-40 pcmcia/ds.h conflict!
+'d' F0-FF linux/digi1.h
+'e' all linux/digi1.h conflict!
+'f' 00-1F linux/ext2_fs.h conflict!
+'f' 00-1F linux/ext3_fs.h conflict!
+'f' 00-0F fs/jfs/jfs_dinode.h conflict!
+'f' 00-0F fs/ext4/ext4.h conflict!
+'f' 00-0F linux/fs.h conflict!
+'f' 00-0F fs/ocfs2/ocfs2_fs.h conflict!
+'g' 00-0F linux/usb/gadgetfs.h
+'g' 20-2F linux/usb/g_printer.h
+'h' 00-7F conflict! Charon filesystem
+ <mailto:zapman@interlan.net>
+'h' 00-1F linux/hpet.h conflict!
+'h' 80-8F fs/hfsplus/ioctl.c
+'i' 00-3F linux/i2o-dev.h conflict!
+'i' 0B-1F linux/ipmi.h conflict!
+'i' 80-8F linux/i8k.h
+'j' 00-3F linux/joystick.h
+'k' 00-0F linux/spi/spidev.h conflict!
+'k' 00-05 video/kyro.h conflict!
+'k' 10-17 linux/hsi/hsi_char.h HSI character device
+'l' 00-3F linux/tcfs_fs.h transparent cryptographic file system
+ <http://web.archive.org/web/%2A/http://mikonos.dia.unisa.it/tcfs>
+'l' 40-7F linux/udf_fs_i.h in development:
+ <http://sourceforge.net/projects/linux-udf/>
+'m' 00-09 linux/mmtimer.h conflict!
+'m' all linux/mtio.h conflict!
+'m' all linux/soundcard.h conflict!
+'m' all linux/synclink.h conflict!
+'m' 00-19 drivers/message/fusion/mptctl.h conflict!
+'m' 00 drivers/scsi/megaraid/megaraid_ioctl.h conflict!
+'n' 00-7F linux/ncp_fs.h and fs/ncpfs/ioctl.c
+'n' 80-8F uapi/linux/nilfs2_api.h NILFS2
+'n' E0-FF linux/matroxfb.h matroxfb
+'o' 00-1F fs/ocfs2/ocfs2_fs.h OCFS2
+'o' 00-03 mtd/ubi-user.h conflict! (OCFS2 and UBI overlaps)
+'o' 40-41 mtd/ubi-user.h UBI
+'o' 01-A1 `linux/dvb/*.h` DVB
+'p' 00-0F linux/phantom.h conflict! (OpenHaptics needs this)
+'p' 00-1F linux/rtc.h conflict!
+'p' 00-3F linux/mc146818rtc.h conflict!
+'p' 40-7F linux/nvram.h
+'p' 80-9F linux/ppdev.h user-space parport
+ <mailto:tim@cyberelk.net>
+'p' A1-A5 linux/pps.h LinuxPPS
+ <mailto:giometti@linux.it>
+'q' 00-1F linux/serio.h
+'q' 80-FF linux/telephony.h Internet PhoneJACK, Internet LineJACK
+ linux/ixjuser.h <http://web.archive.org/web/%2A/http://www.quicknet.net>
+'r' 00-1F linux/msdos_fs.h and fs/fat/dir.c
+'s' all linux/cdk.h
+'t' 00-7F linux/ppp-ioctl.h
+'t' 80-8F linux/isdn_ppp.h
+'t' 90-91 linux/toshiba.h toshiba and toshiba_acpi SMM
+'u' 00-1F linux/smb_fs.h gone
+'u' 20-3F linux/uvcvideo.h USB video class host driver
+'u' 40-4f linux/udmabuf.h userspace dma-buf misc device
+'v' 00-1F linux/ext2_fs.h conflict!
+'v' 00-1F linux/fs.h conflict!
+'v' 00-0F linux/sonypi.h conflict!
+'v' 00-0F media/v4l2-subdev.h conflict!
+'v' C0-FF linux/meye.h conflict!
+'w' all CERN SCI driver
+'y' 00-1F packet based user level communications
+ <mailto:zapman@interlan.net>
+'z' 00-3F CAN bus card conflict!
+ <mailto:hdstich@connectu.ulm.circular.de>
+'z' 40-7F CAN bus card conflict!
+ <mailto:oe@port.de>
+'z' 10-4F drivers/s390/crypto/zcrypt_api.h conflict!
+'|' 00-7F linux/media.h
+0x80 00-1F linux/fb.h
+0x89 00-06 arch/x86/include/asm/sockios.h
+0x89 0B-DF linux/sockios.h
+0x89 E0-EF linux/sockios.h SIOCPROTOPRIVATE range
+0x89 E0-EF linux/dn.h PROTOPRIVATE range
+0x89 F0-FF linux/sockios.h SIOCDEVPRIVATE range
+0x8B all linux/wireless.h
+0x8C 00-3F WiNRADiO driver
+ <http://www.winradio.com.au/>
+0x90 00 drivers/cdrom/sbpcd.h
+0x92 00-0F drivers/usb/mon/mon_bin.c
+0x93 60-7F linux/auto_fs.h
+0x94 all fs/btrfs/ioctl.h Btrfs filesystem
+ and linux/fs.h some lifted to vfs/generic
+0x97 00-7F fs/ceph/ioctl.h Ceph file system
+0x99 00-0F 537-Addinboard driver
+ <mailto:buk@buks.ipn.de>
+0xA0 all linux/sdp/sdp.h Industrial Device Project
+ <mailto:kenji@bitgate.com>
+0xA1 0 linux/vtpm_proxy.h TPM Emulator Proxy Driver
+0xA3 80-8F Port ACL in development:
+ <mailto:tlewis@mindspring.com>
+0xA3 90-9F linux/dtlk.h
+0xA4 00-1F uapi/linux/tee.h Generic TEE subsystem
+0xAA 00-3F linux/uapi/linux/userfaultfd.h
+0xAB 00-1F linux/nbd.h
+0xAC 00-1F linux/raw.h
+0xAD 00 Netfilter device in development:
+ <mailto:rusty@rustcorp.com.au>
+0xAE all linux/kvm.h Kernel-based Virtual Machine
+ <mailto:kvm@vger.kernel.org>
+0xAF 00-1F linux/fsl_hypervisor.h Freescale hypervisor
+0xB0 all RATIO devices in development:
+ <mailto:vgo@ratio.de>
+0xB1 00-1F PPPoX
+ <mailto:mostrows@styx.uwaterloo.ca>
+0xB3 00 linux/mmc/ioctl.h
+0xB4 00-0F linux/gpio.h <mailto:linux-gpio@vger.kernel.org>
+0xB5 00-0F uapi/linux/rpmsg.h <mailto:linux-remoteproc@vger.kernel.org>
+0xB6 all linux/fpga-dfl.h
+0xC0 00-0F linux/usb/iowarrior.h
+0xCA 00-0F uapi/misc/cxl.h
+0xCA 10-2F uapi/misc/ocxl.h
+0xCA 80-BF uapi/scsi/cxlflash_ioctl.h
+0xCB 00-1F CBM serial IEC bus in development:
+ <mailto:michael.klein@puffin.lb.shuttle.de>
+0xCC 00-0F drivers/misc/ibmvmc.h pseries VMC driver
+0xCD 01 linux/reiserfs_fs.h
+0xCF 02 fs/cifs/ioctl.c
+0xDB 00-0F drivers/char/mwave/mwavepub.h
+0xDD 00-3F ZFCP device driver see drivers/s390/scsi/
+ <mailto:aherrman@de.ibm.com>
+0xE5 00-3F linux/fuse.h
+0xEC 00-01 drivers/platform/chrome/cros_ec_dev.h ChromeOS EC driver
+0xF3 00-3F drivers/usb/misc/sisusbvga/sisusb.h sisfb (in development)
+ <mailto:thomas@winischhofer.net>
+0xF4 00-1F video/mbxfb.h mbxfb
+ <mailto:raph@8d.com>
+0xF6 all LTTng Linux Trace Toolkit Next Generation
+ <mailto:mathieu.desnoyers@efficios.com>
+0xFD all linux/dm-ioctl.h
+==== ===== ======================================================= ================================================================
diff --git a/Documentation/ioctl/ioctl-number.txt b/Documentation/ioctl/ioctl-number.txt
deleted file mode 100644
index c9558146ac58..000000000000
--- a/Documentation/ioctl/ioctl-number.txt
+++ /dev/null
@@ -1,350 +0,0 @@
-Ioctl Numbers
-19 October 1999
-Michael Elizabeth Chastain
-<mec@shout.net>
-
-If you are adding new ioctl's to the kernel, you should use the _IO
-macros defined in <linux/ioctl.h>:
-
- _IO an ioctl with no parameters
- _IOW an ioctl with write parameters (copy_from_user)
- _IOR an ioctl with read parameters (copy_to_user)
- _IOWR an ioctl with both write and read parameters.
-
-'Write' and 'read' are from the user's point of view, just like the
-system calls 'write' and 'read'. For example, a SET_FOO ioctl would
-be _IOW, although the kernel would actually read data from user space;
-a GET_FOO ioctl would be _IOR, although the kernel would actually write
-data to user space.
-
-The first argument to _IO, _IOW, _IOR, or _IOWR is an identifying letter
-or number from the table below. Because of the large number of drivers,
-many drivers share a partial letter with other drivers.
-
-If you are writing a driver for a new device and need a letter, pick an
-unused block with enough room for expansion: 32 to 256 ioctl commands.
-You can register the block by patching this file and submitting the
-patch to Linus Torvalds. Or you can e-mail me at <mec@shout.net> and
-I'll register one for you.
-
-The second argument to _IO, _IOW, _IOR, or _IOWR is a sequence number
-to distinguish ioctls from each other. The third argument to _IOW,
-_IOR, or _IOWR is the type of the data going into the kernel or coming
-out of the kernel (e.g. 'int' or 'struct foo'). NOTE! Do NOT use
-sizeof(arg) as the third argument as this results in your ioctl thinking
-it passes an argument of type size_t.
-
-Some devices use their major number as the identifier; this is OK, as
-long as it is unique. Some devices are irregular and don't follow any
-convention at all.
-
-Following this convention is good because:
-
-(1) Keeping the ioctl's globally unique helps error checking:
- if a program calls an ioctl on the wrong device, it will get an
- error rather than some unexpected behaviour.
-
-(2) The 'strace' build procedure automatically finds ioctl numbers
- defined with _IO, _IOW, _IOR, or _IOWR.
-
-(3) 'strace' can decode numbers back into useful names when the
- numbers are unique.
-
-(4) People looking for ioctls can grep for them more easily when
- this convention is used to define the ioctl numbers.
-
-(5) When following the convention, the driver code can use generic
- code to copy the parameters between user and kernel space.
-
-This table lists ioctls visible from user land for Linux/x86. It contains
-most drivers up to 2.6.31, but I know I am missing some. There has been
-no attempt to list non-X86 architectures or ioctls from drivers/staging/.
-
-Code Seq#(hex) Include File Comments
-========================================================
-0x00 00-1F linux/fs.h conflict!
-0x00 00-1F scsi/scsi_ioctl.h conflict!
-0x00 00-1F linux/fb.h conflict!
-0x00 00-1F linux/wavefront.h conflict!
-0x02 all linux/fd.h
-0x03 all linux/hdreg.h
-0x04 D2-DC linux/umsdos_fs.h Dead since 2.6.11, but don't reuse these.
-0x06 all linux/lp.h
-0x09 all linux/raid/md_u.h
-0x10 00-0F drivers/char/s390/vmcp.h
-0x10 10-1F arch/s390/include/uapi/sclp_ctl.h
-0x10 20-2F arch/s390/include/uapi/asm/hypfs.h
-0x12 all linux/fs.h
- linux/blkpg.h
-0x1b all InfiniBand Subsystem <http://infiniband.sourceforge.net/>
-0x20 all drivers/cdrom/cm206.h
-0x22 all scsi/sg.h
-'!' 00-1F uapi/linux/seccomp.h
-'#' 00-3F IEEE 1394 Subsystem Block for the entire subsystem
-'$' 00-0F linux/perf_counter.h, linux/perf_event.h
-'%' 00-0F include/uapi/linux/stm.h
- System Trace Module subsystem
- <mailto:alexander.shishkin@linux.intel.com>
-'&' 00-07 drivers/firewire/nosy-user.h
-'1' 00-1F <linux/timepps.h> PPS kit from Ulrich Windl
- <ftp://ftp.de.kernel.org/pub/linux/daemons/ntp/PPS/>
-'2' 01-04 linux/i2o.h
-'3' 00-0F drivers/s390/char/raw3270.h conflict!
-'3' 00-1F linux/suspend_ioctls.h conflict!
- and kernel/power/user.c
-'8' all SNP8023 advanced NIC card
- <mailto:mcr@solidum.com>
-';' 64-7F linux/vfio.h
-'@' 00-0F linux/radeonfb.h conflict!
-'@' 00-0F drivers/video/aty/aty128fb.c conflict!
-'A' 00-1F linux/apm_bios.h conflict!
-'A' 00-0F linux/agpgart.h conflict!
- and drivers/char/agp/compat_ioctl.h
-'A' 00-7F sound/asound.h conflict!
-'B' 00-1F linux/cciss_ioctl.h conflict!
-'B' 00-0F include/linux/pmu.h conflict!
-'B' C0-FF advanced bbus
- <mailto:maassen@uni-freiburg.de>
-'C' all linux/soundcard.h conflict!
-'C' 01-2F linux/capi.h conflict!
-'C' F0-FF drivers/net/wan/cosa.h conflict!
-'D' all arch/s390/include/asm/dasd.h
-'D' 40-5F drivers/scsi/dpt/dtpi_ioctl.h
-'D' 05 drivers/scsi/pmcraid.h
-'E' all linux/input.h conflict!
-'E' 00-0F xen/evtchn.h conflict!
-'F' all linux/fb.h conflict!
-'F' 01-02 drivers/scsi/pmcraid.h conflict!
-'F' 20 drivers/video/fsl-diu-fb.h conflict!
-'F' 20 drivers/video/intelfb/intelfb.h conflict!
-'F' 20 linux/ivtvfb.h conflict!
-'F' 20 linux/matroxfb.h conflict!
-'F' 20 drivers/video/aty/atyfb_base.c conflict!
-'F' 00-0F video/da8xx-fb.h conflict!
-'F' 80-8F linux/arcfb.h conflict!
-'F' DD video/sstfb.h conflict!
-'G' 00-3F drivers/misc/sgi-gru/grulib.h conflict!
-'G' 00-0F linux/gigaset_dev.h conflict!
-'H' 00-7F linux/hiddev.h conflict!
-'H' 00-0F linux/hidraw.h conflict!
-'H' 01 linux/mei.h conflict!
-'H' 02 linux/mei.h conflict!
-'H' 03 linux/mei.h conflict!
-'H' 00-0F sound/asound.h conflict!
-'H' 20-40 sound/asound_fm.h conflict!
-'H' 80-8F sound/sfnt_info.h conflict!
-'H' 10-8F sound/emu10k1.h conflict!
-'H' 10-1F sound/sb16_csp.h conflict!
-'H' 10-1F sound/hda_hwdep.h conflict!
-'H' 40-4F sound/hdspm.h conflict!
-'H' 40-4F sound/hdsp.h conflict!
-'H' 90 sound/usb/usx2y/usb_stream.h
-'H' A0 uapi/linux/usb/cdc-wdm.h
-'H' C0-F0 net/bluetooth/hci.h conflict!
-'H' C0-DF net/bluetooth/hidp/hidp.h conflict!
-'H' C0-DF net/bluetooth/cmtp/cmtp.h conflict!
-'H' C0-DF net/bluetooth/bnep/bnep.h conflict!
-'H' F1 linux/hid-roccat.h <mailto:erazor_de@users.sourceforge.net>
-'H' F8-FA sound/firewire.h
-'I' all linux/isdn.h conflict!
-'I' 00-0F drivers/isdn/divert/isdn_divert.h conflict!
-'I' 40-4F linux/mISDNif.h conflict!
-'J' 00-1F drivers/scsi/gdth_ioctl.h
-'K' all linux/kd.h
-'L' 00-1F linux/loop.h conflict!
-'L' 10-1F drivers/scsi/mpt3sas/mpt3sas_ctl.h conflict!
-'L' 20-2F linux/lightnvm.h
-'L' E0-FF linux/ppdd.h encrypted disk device driver
- <http://linux01.gwdg.de/~alatham/ppdd.html>
-'M' all linux/soundcard.h conflict!
-'M' 01-16 mtd/mtd-abi.h conflict!
- and drivers/mtd/mtdchar.c
-'M' 01-03 drivers/scsi/megaraid/megaraid_sas.h
-'M' 00-0F drivers/video/fsl-diu-fb.h conflict!
-'N' 00-1F drivers/usb/scanner.h
-'N' 40-7F drivers/block/nvme.c
-'O' 00-06 mtd/ubi-user.h UBI
-'P' all linux/soundcard.h conflict!
-'P' 60-6F sound/sscape_ioctl.h conflict!
-'P' 00-0F drivers/usb/class/usblp.c conflict!
-'P' 01-09 drivers/misc/pci_endpoint_test.c conflict!
-'Q' all linux/soundcard.h
-'R' 00-1F linux/random.h conflict!
-'R' 01 linux/rfkill.h conflict!
-'R' C0-DF net/bluetooth/rfcomm.h
-'S' all linux/cdrom.h conflict!
-'S' 80-81 scsi/scsi_ioctl.h conflict!
-'S' 82-FF scsi/scsi.h conflict!
-'S' 00-7F sound/asequencer.h conflict!
-'T' all linux/soundcard.h conflict!
-'T' 00-AF sound/asound.h conflict!
-'T' all arch/x86/include/asm/ioctls.h conflict!
-'T' C0-DF linux/if_tun.h conflict!
-'U' all sound/asound.h conflict!
-'U' 00-CF linux/uinput.h conflict!
-'U' 00-EF linux/usbdevice_fs.h
-'U' C0-CF drivers/bluetooth/hci_uart.h
-'V' all linux/vt.h conflict!
-'V' all linux/videodev2.h conflict!
-'V' C0 linux/ivtvfb.h conflict!
-'V' C0 linux/ivtv.h conflict!
-'V' C0 media/davinci/vpfe_capture.h conflict!
-'V' C0 media/si4713.h conflict!
-'W' 00-1F linux/watchdog.h conflict!
-'W' 00-1F linux/wanrouter.h conflict! (pre 3.9)
-'W' 00-3F sound/asound.h conflict!
-'W' 40-5F drivers/pci/switch/switchtec.c
-'X' all fs/xfs/xfs_fs.h conflict!
- and fs/xfs/linux-2.6/xfs_ioctl32.h
- and include/linux/falloc.h
- and linux/fs.h
-'X' all fs/ocfs2/ocfs_fs.h conflict!
-'X' 01 linux/pktcdvd.h conflict!
-'Y' all linux/cyclades.h
-'Z' 14-15 drivers/message/fusion/mptctl.h
-'[' 00-3F linux/usb/tmc.h USB Test and Measurement Devices
- <mailto:gregkh@linuxfoundation.org>
-'a' all linux/atm*.h, linux/sonet.h ATM on linux
- <http://lrcwww.epfl.ch/>
-'a' 00-0F drivers/crypto/qat/qat_common/adf_cfg_common.h conflict! qat driver
-'b' 00-FF conflict! bit3 vme host bridge
- <mailto:natalia@nikhefk.nikhef.nl>
-'c' all linux/cm4000_cs.h conflict!
-'c' 00-7F linux/comstats.h conflict!
-'c' 00-7F linux/coda.h conflict!
-'c' 00-1F linux/chio.h conflict!
-'c' 80-9F arch/s390/include/asm/chsc.h conflict!
-'c' A0-AF arch/x86/include/asm/msr.h conflict!
-'d' 00-FF linux/char/drm/drm.h conflict!
-'d' 02-40 pcmcia/ds.h conflict!
-'d' F0-FF linux/digi1.h
-'e' all linux/digi1.h conflict!
-'f' 00-1F linux/ext2_fs.h conflict!
-'f' 00-1F linux/ext3_fs.h conflict!
-'f' 00-0F fs/jfs/jfs_dinode.h conflict!
-'f' 00-0F fs/ext4/ext4.h conflict!
-'f' 00-0F linux/fs.h conflict!
-'f' 00-0F fs/ocfs2/ocfs2_fs.h conflict!
-'g' 00-0F linux/usb/gadgetfs.h
-'g' 20-2F linux/usb/g_printer.h
-'h' 00-7F conflict! Charon filesystem
- <mailto:zapman@interlan.net>
-'h' 00-1F linux/hpet.h conflict!
-'h' 80-8F fs/hfsplus/ioctl.c
-'i' 00-3F linux/i2o-dev.h conflict!
-'i' 0B-1F linux/ipmi.h conflict!
-'i' 80-8F linux/i8k.h
-'j' 00-3F linux/joystick.h
-'k' 00-0F linux/spi/spidev.h conflict!
-'k' 00-05 video/kyro.h conflict!
-'k' 10-17 linux/hsi/hsi_char.h HSI character device
-'l' 00-3F linux/tcfs_fs.h transparent cryptographic file system
- <http://web.archive.org/web/*/http://mikonos.dia.unisa.it/tcfs>
-'l' 40-7F linux/udf_fs_i.h in development:
- <http://sourceforge.net/projects/linux-udf/>
-'m' 00-09 linux/mmtimer.h conflict!
-'m' all linux/mtio.h conflict!
-'m' all linux/soundcard.h conflict!
-'m' all linux/synclink.h conflict!
-'m' 00-19 drivers/message/fusion/mptctl.h conflict!
-'m' 00 drivers/scsi/megaraid/megaraid_ioctl.h conflict!
-'n' 00-7F linux/ncp_fs.h and fs/ncpfs/ioctl.c
-'n' 80-8F uapi/linux/nilfs2_api.h NILFS2
-'n' E0-FF linux/matroxfb.h matroxfb
-'o' 00-1F fs/ocfs2/ocfs2_fs.h OCFS2
-'o' 00-03 mtd/ubi-user.h conflict! (OCFS2 and UBI overlaps)
-'o' 40-41 mtd/ubi-user.h UBI
-'o' 01-A1 linux/dvb/*.h DVB
-'p' 00-0F linux/phantom.h conflict! (OpenHaptics needs this)
-'p' 00-1F linux/rtc.h conflict!
-'p' 00-3F linux/mc146818rtc.h conflict!
-'p' 40-7F linux/nvram.h
-'p' 80-9F linux/ppdev.h user-space parport
- <mailto:tim@cyberelk.net>
-'p' A1-A5 linux/pps.h LinuxPPS
- <mailto:giometti@linux.it>
-'q' 00-1F linux/serio.h
-'q' 80-FF linux/telephony.h Internet PhoneJACK, Internet LineJACK
- linux/ixjuser.h <http://web.archive.org/web/*/http://www.quicknet.net>
-'r' 00-1F linux/msdos_fs.h and fs/fat/dir.c
-'s' all linux/cdk.h
-'t' 00-7F linux/ppp-ioctl.h
-'t' 80-8F linux/isdn_ppp.h
-'t' 90-91 linux/toshiba.h toshiba and toshiba_acpi SMM
-'u' 00-1F linux/smb_fs.h gone
-'u' 20-3F linux/uvcvideo.h USB video class host driver
-'u' 40-4f linux/udmabuf.h userspace dma-buf misc device
-'v' 00-1F linux/ext2_fs.h conflict!
-'v' 00-1F linux/fs.h conflict!
-'v' 00-0F linux/sonypi.h conflict!
-'v' 00-0F media/v4l2-subdev.h conflict!
-'v' C0-FF linux/meye.h conflict!
-'w' all CERN SCI driver
-'y' 00-1F packet based user level communications
- <mailto:zapman@interlan.net>
-'z' 00-3F CAN bus card conflict!
- <mailto:hdstich@connectu.ulm.circular.de>
-'z' 40-7F CAN bus card conflict!
- <mailto:oe@port.de>
-'z' 10-4F drivers/s390/crypto/zcrypt_api.h conflict!
-'|' 00-7F linux/media.h
-0x80 00-1F linux/fb.h
-0x89 00-06 arch/x86/include/asm/sockios.h
-0x89 0B-DF linux/sockios.h
-0x89 E0-EF linux/sockios.h SIOCPROTOPRIVATE range
-0x89 E0-EF linux/dn.h PROTOPRIVATE range
-0x89 F0-FF linux/sockios.h SIOCDEVPRIVATE range
-0x8B all linux/wireless.h
-0x8C 00-3F WiNRADiO driver
- <http://www.winradio.com.au/>
-0x90 00 drivers/cdrom/sbpcd.h
-0x92 00-0F drivers/usb/mon/mon_bin.c
-0x93 60-7F linux/auto_fs.h
-0x94 all fs/btrfs/ioctl.h Btrfs filesystem
- and linux/fs.h some lifted to vfs/generic
-0x97 00-7F fs/ceph/ioctl.h Ceph file system
-0x99 00-0F 537-Addinboard driver
- <mailto:buk@buks.ipn.de>
-0xA0 all linux/sdp/sdp.h Industrial Device Project
- <mailto:kenji@bitgate.com>
-0xA1 0 linux/vtpm_proxy.h TPM Emulator Proxy Driver
-0xA3 80-8F Port ACL in development:
- <mailto:tlewis@mindspring.com>
-0xA3 90-9F linux/dtlk.h
-0xA4 00-1F uapi/linux/tee.h Generic TEE subsystem
-0xAA 00-3F linux/uapi/linux/userfaultfd.h
-0xAB 00-1F linux/nbd.h
-0xAC 00-1F linux/raw.h
-0xAD 00 Netfilter device in development:
- <mailto:rusty@rustcorp.com.au>
-0xAE all linux/kvm.h Kernel-based Virtual Machine
- <mailto:kvm@vger.kernel.org>
-0xAF 00-1F linux/fsl_hypervisor.h Freescale hypervisor
-0xB0 all RATIO devices in development:
- <mailto:vgo@ratio.de>
-0xB1 00-1F PPPoX <mailto:mostrows@styx.uwaterloo.ca>
-0xB3 00 linux/mmc/ioctl.h
-0xB4 00-0F linux/gpio.h <mailto:linux-gpio@vger.kernel.org>
-0xB5 00-0F uapi/linux/rpmsg.h <mailto:linux-remoteproc@vger.kernel.org>
-0xB6 all linux/fpga-dfl.h
-0xC0 00-0F linux/usb/iowarrior.h
-0xCA 00-0F uapi/misc/cxl.h
-0xCA 10-2F uapi/misc/ocxl.h
-0xCA 80-BF uapi/scsi/cxlflash_ioctl.h
-0xCB 00-1F CBM serial IEC bus in development:
- <mailto:michael.klein@puffin.lb.shuttle.de>
-0xCC 00-0F drivers/misc/ibmvmc.h pseries VMC driver
-0xCD 01 linux/reiserfs_fs.h
-0xCF 02 fs/cifs/ioctl.c
-0xDB 00-0F drivers/char/mwave/mwavepub.h
-0xDD 00-3F ZFCP device driver see drivers/s390/scsi/
- <mailto:aherrman@de.ibm.com>
-0xE5 00-3F linux/fuse.h
-0xEC 00-01 drivers/platform/chrome/cros_ec_dev.h ChromeOS EC driver
-0xF3 00-3F drivers/usb/misc/sisusbvga/sisusb.h sisfb (in development)
- <mailto:thomas@winischhofer.net>
-0xF4 00-1F video/mbxfb.h mbxfb
- <mailto:raph@8d.com>
-0xF6 all LTTng Linux Trace Toolkit Next Generation
- <mailto:mathieu.desnoyers@efficios.com>
-0xFD all linux/dm-ioctl.h
diff --git a/Documentation/process/submit-checklist.rst b/Documentation/process/submit-checklist.rst
index 365efc9e4aa8..8e56337d422d 100644
--- a/Documentation/process/submit-checklist.rst
+++ b/Documentation/process/submit-checklist.rst
@@ -107,7 +107,7 @@ and elsewhere regarding submitting Linux kernel patches.
and why.
26) If any ioctl's are added by the patch, then also update
- ``Documentation/ioctl/ioctl-number.txt``.
+ ``Documentation/ioctl/ioctl-number.rst``.
27) If your modified source code depends on or uses any of the kernel
APIs or features that are related to the following ``Kconfig`` symbols,
diff --git a/Documentation/translations/it_IT/process/submit-checklist.rst b/Documentation/translations/it_IT/process/submit-checklist.rst
index ea74cae958d7..995ee69fab11 100644
--- a/Documentation/translations/it_IT/process/submit-checklist.rst
+++ b/Documentation/translations/it_IT/process/submit-checklist.rst
@@ -117,7 +117,7 @@ sottomissione delle patch, in particolare
sorgenti che ne spieghi la logica: cosa fanno e perché.
25) Se la patch aggiunge nuove chiamate ioctl, allora aggiornate
- ``Documentation/ioctl/ioctl-number.txt``.
+ ``Documentation/ioctl/ioctl-number.rst``.
26) Se il codice che avete modificato dipende o usa una qualsiasi interfaccia o
funzionalità del kernel che è associata a uno dei seguenti simboli
diff --git a/Documentation/translations/zh_CN/process/submit-checklist.rst b/Documentation/translations/zh_CN/process/submit-checklist.rst
index f4785d2b0491..8738c55e42a2 100644
--- a/Documentation/translations/zh_CN/process/submit-checklist.rst
+++ b/Documentation/translations/zh_CN/process/submit-checklist.rst
@@ -97,7 +97,7 @@ Linux内核补丁提交清单
24) 所有内存屏障例如 ``barrier()``, ``rmb()``, ``wmb()`` 都需要源代码中的注
释来解释它们正在执行的操作及其原因的逻辑。
-25) 如果补丁添加了任何ioctl,那么也要更新 ``Documentation/ioctl/ioctl-number.txt``
+25) 如果补丁添加了任何ioctl,那么也要更新 ``Documentation/ioctl/ioctl-number.rst``
26) 如果修改后的源代码依赖或使用与以下 ``Kconfig`` 符号相关的任何内核API或
功能,则在禁用相关 ``Kconfig`` 符号和/或 ``=m`` (如果该选项可用)的情况
diff --git a/include/uapi/rdma/rdma_user_ioctl_cmds.h b/include/uapi/rdma/rdma_user_ioctl_cmds.h
index 06c34d99be85..ed93f22c4573 100644
--- a/include/uapi/rdma/rdma_user_ioctl_cmds.h
+++ b/include/uapi/rdma/rdma_user_ioctl_cmds.h
@@ -36,7 +36,7 @@
#include <linux/types.h>
#include <linux/ioctl.h>
-/* Documentation/ioctl/ioctl-number.txt */
+/* Documentation/ioctl/ioctl-number.rst */
#define RDMA_IOCTL_MAGIC 0x1b
#define RDMA_VERBS_IOCTL \
_IOWR(RDMA_IOCTL_MAGIC, 1, struct ib_uverbs_ioctl_hdr)
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* Re: [PATCH v2 64/79] docs: ioctl-number.txt: convert it to ReST format
2019-04-22 13:27 ` [PATCH v2 64/79] docs: ioctl-number.txt: convert it to ReST format Mauro Carvalho Chehab
@ 2019-04-22 14:05 ` Doug Ledford
2019-04-22 14:17 ` Mauro Carvalho Chehab
0 siblings, 1 reply; 115+ messages in thread
From: Doug Ledford @ 2019-04-22 14:05 UTC (permalink / raw)
To: Mauro Carvalho Chehab, Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, linux-kernel, Jonathan Corbet,
Federico Vaga, Harry Wei, Alex Shi, Jason Gunthorpe, linux-rdma
[-- Attachment #1: Type: text/plain, Size: 683 bytes --]
On Mon, 2019-04-22 at 10:27 -0300, Mauro Carvalho Chehab wrote:
> +0x1b all InfiniBand Subsystem
> + <http://infiniband.sourceforge.net/>
I did not know this link was in there. That sourceforge site is 15
years old and totally obsolete/irrelevant at this point. This patch
doesn't have the purpose of fixing this up, but now that it's pointed
out, we'll make a follow up patch to correct this.
--
Doug Ledford <dledford@redhat.com>
GPG KeyID: B826A3330E572FDD
Key fingerprint = AE6B 1BDA 122B 23B4 265B 1274 B826 A333 0E57 2FDD
[-- Attachment #2: This is a digitally signed message part --]
[-- Type: application/pgp-signature, Size: 833 bytes --]
^ permalink raw reply [flat|nested] 115+ messages in thread* Re: [PATCH v2 64/79] docs: ioctl-number.txt: convert it to ReST format
2019-04-22 14:05 ` Doug Ledford
@ 2019-04-22 14:17 ` Mauro Carvalho Chehab
0 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 14:17 UTC (permalink / raw)
To: Doug Ledford
Cc: Linux Doc Mailing List, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Federico Vaga, Harry Wei, Alex Shi,
Jason Gunthorpe, linux-rdma
Em Mon, 22 Apr 2019 10:05:39 -0400
Doug Ledford <dledford@redhat.com> escreveu:
> On Mon, 2019-04-22 at 10:27 -0300, Mauro Carvalho Chehab wrote:
> > +0x1b all InfiniBand Subsystem
> > + <http://infiniband.sourceforge.net/>
>
> I did not know this link was in there. That sourceforge site is 15
> years old and totally obsolete/irrelevant at this point. This patch
> doesn't have the purpose of fixing this up, but now that it's pointed
> out, we'll make a follow up patch to correct this.
Yeah, I suspect that there are lots of broken links over there.
It seems that some people ended by prepending some broken URLs with:
http://web.archive.org/web/%2A/
In order to use the web archive to get an old copy of such documents.
So, replacing the link with something like:
http://web.archive.org/web/%2A/http://infiniband.sourceforge.net/
Would allow retrieving pages. It seems that the last version is there
at:
https://web.archive.org/web/20190212201603/http://infiniband.sourceforge.net/
Yet, if are there any new repository with updated info, it would make sense
to replace it by the new stuff.
Alternatively, one could import existing docs (if license is compatible
with GPLv2) and add to the Kernel documentation.
Thanks,
Mauro
^ permalink raw reply [flat|nested] 115+ messages in thread
* [PATCH v2 65/79] docs: ioctl: convert to ReST
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (54 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 64/79] docs: ioctl-number.txt: convert it to ReST format Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 66/79] docs: namespaces: " Mauro Carvalho Chehab
` (17 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Maarten Lankhorst, Maxime Ripard, Sean Paul,
David Airlie, Daniel Vetter, dri-devel
Rename the iio documentation files to ReST, add an
index for them and adjust in order to produce a nice html
output via the Sphinx build system.
The cdrom.txt and hdio.txt have their own particular syntax.
In order to speedup the conversion, I used a small ancillary
perl script:
my $d;
$d .= $_ while(<>);
$d =~ s/(\nCDROM\S+)\s+(\w[^\n]*)/$1\n\t$2\n/g;
$d =~ s/(\nHDIO\S+)\s+(\w[^\n]*)/$1\n\t$2\n/g;
$d =~ s/(\n\s*usage:)[\s\n]*(\w[^\n]*)/$1:\n\n\t $2\n/g;
$d =~ s/(\n\s*)(E\w+[\s\n]*\w[^\n]*)/$1- $2/g;
$d =~ s/(\n\s*)(inputs|outputs|notes):\s*(\w[^\n]*)/$1$2:\n\t\t$3\n/g;
print $d;
It basically add blank lines on a few interesting places. The
script is not perfect: still several things require manual work,
but it saved quite some time doing some obvious stuff.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
...g-up-ioctls.txt => botching-up-ioctls.rst} | 1 +
Documentation/ioctl/cdrom.rst | 1233 +++++++++++++++++
Documentation/ioctl/cdrom.txt | 967 -------------
Documentation/ioctl/{hdio.txt => hdio.rst} | 835 +++++++----
Documentation/ioctl/index.rst | 16 +
...{ioctl-decoding.txt => ioctl-decoding.rst} | 13 +-
drivers/gpu/drm/drm_ioctl.c | 2 +-
7 files changed, 1814 insertions(+), 1253 deletions(-)
rename Documentation/ioctl/{botching-up-ioctls.txt => botching-up-ioctls.rst} (99%)
create mode 100644 Documentation/ioctl/cdrom.rst
delete mode 100644 Documentation/ioctl/cdrom.txt
rename Documentation/ioctl/{hdio.txt => hdio.rst} (54%)
create mode 100644 Documentation/ioctl/index.rst
rename Documentation/ioctl/{ioctl-decoding.txt => ioctl-decoding.rst} (54%)
diff --git a/Documentation/ioctl/botching-up-ioctls.txt b/Documentation/ioctl/botching-up-ioctls.rst
similarity index 99%
rename from Documentation/ioctl/botching-up-ioctls.txt
rename to Documentation/ioctl/botching-up-ioctls.rst
index 883fb034bd04..ac697fef3545 100644
--- a/Documentation/ioctl/botching-up-ioctls.txt
+++ b/Documentation/ioctl/botching-up-ioctls.rst
@@ -1,3 +1,4 @@
+=================================
(How to avoid) Botching up ioctls
=================================
diff --git a/Documentation/ioctl/cdrom.rst b/Documentation/ioctl/cdrom.rst
new file mode 100644
index 000000000000..3b4c0506de46
--- /dev/null
+++ b/Documentation/ioctl/cdrom.rst
@@ -0,0 +1,1233 @@
+============================
+Summary of CDROM ioctl calls
+============================
+
+- Edward A. Falk <efalk@google.com>
+
+November, 2004
+
+This document attempts to describe the ioctl(2) calls supported by
+the CDROM layer. These are by-and-large implemented (as of Linux 2.6)
+in drivers/cdrom/cdrom.c and drivers/block/scsi_ioctl.c
+
+ioctl values are listed in <linux/cdrom.h>. As of this writing, they
+are as follows:
+
+ ====================== ===============================================
+ CDROMPAUSE Pause Audio Operation
+ CDROMRESUME Resume paused Audio Operation
+ CDROMPLAYMSF Play Audio MSF (struct cdrom_msf)
+ CDROMPLAYTRKIND Play Audio Track/index (struct cdrom_ti)
+ CDROMREADTOCHDR Read TOC header (struct cdrom_tochdr)
+ CDROMREADTOCENTRY Read TOC entry (struct cdrom_tocentry)
+ CDROMSTOP Stop the cdrom drive
+ CDROMSTART Start the cdrom drive
+ CDROMEJECT Ejects the cdrom media
+ CDROMVOLCTRL Control output volume (struct cdrom_volctrl)
+ CDROMSUBCHNL Read subchannel data (struct cdrom_subchnl)
+ CDROMREADMODE2 Read CDROM mode 2 data (2336 Bytes)
+ (struct cdrom_read)
+ CDROMREADMODE1 Read CDROM mode 1 data (2048 Bytes)
+ (struct cdrom_read)
+ CDROMREADAUDIO (struct cdrom_read_audio)
+ CDROMEJECT_SW enable(1)/disable(0) auto-ejecting
+ CDROMMULTISESSION Obtain the start-of-last-session
+ address of multi session disks
+ (struct cdrom_multisession)
+ CDROM_GET_MCN Obtain the "Universal Product Code"
+ if available (struct cdrom_mcn)
+ CDROM_GET_UPC Deprecated, use CDROM_GET_MCN instead.
+ CDROMRESET hard-reset the drive
+ CDROMVOLREAD Get the drive's volume setting
+ (struct cdrom_volctrl)
+ CDROMREADRAW read data in raw mode (2352 Bytes)
+ (struct cdrom_read)
+ CDROMREADCOOKED read data in cooked mode
+ CDROMSEEK seek msf address
+ CDROMPLAYBLK scsi-cd only, (struct cdrom_blk)
+ CDROMREADALL read all 2646 bytes
+ CDROMGETSPINDOWN return 4-bit spindown value
+ CDROMSETSPINDOWN set 4-bit spindown value
+ CDROMCLOSETRAY pendant of CDROMEJECT
+ CDROM_SET_OPTIONS Set behavior options
+ CDROM_CLEAR_OPTIONS Clear behavior options
+ CDROM_SELECT_SPEED Set the CD-ROM speed
+ CDROM_SELECT_DISC Select disc (for juke-boxes)
+ CDROM_MEDIA_CHANGED Check is media changed
+ CDROM_DRIVE_STATUS Get tray position, etc.
+ CDROM_DISC_STATUS Get disc type, etc.
+ CDROM_CHANGER_NSLOTS Get number of slots
+ CDROM_LOCKDOOR lock or unlock door
+ CDROM_DEBUG Turn debug messages on/off
+ CDROM_GET_CAPABILITY get capabilities
+ CDROMAUDIOBUFSIZ set the audio buffer size
+ DVD_READ_STRUCT Read structure
+ DVD_WRITE_STRUCT Write structure
+ DVD_AUTH Authentication
+ CDROM_SEND_PACKET send a packet to the drive
+ CDROM_NEXT_WRITABLE get next writable block
+ CDROM_LAST_WRITTEN get last block written on disc
+ ====================== ===============================================
+
+
+The information that follows was determined from reading kernel source
+code. It is likely that some corrections will be made over time.
+
+------------------------------------------------------------------------------
+
+General:
+
+ Unless otherwise specified, all ioctl calls return 0 on success
+ and -1 with errno set to an appropriate value on error. (Some
+ ioctls return non-negative data values.)
+
+ Unless otherwise specified, all ioctl calls return -1 and set
+ errno to EFAULT on a failed attempt to copy data to or from user
+ address space.
+
+ Individual drivers may return error codes not listed here.
+
+ Unless otherwise specified, all data structures and constants
+ are defined in <linux/cdrom.h>
+
+------------------------------------------------------------------------------
+
+
+CDROMPAUSE
+ Pause Audio Operation
+
+
+ usage::
+
+ ioctl(fd, CDROMPAUSE, 0);
+
+
+ inputs:
+ none
+
+
+ outputs:
+ none
+
+
+ error return:
+ - ENOSYS cd drive not audio-capable.
+
+
+CDROMRESUME
+ Resume paused Audio Operation
+
+
+ usage::
+
+ ioctl(fd, CDROMRESUME, 0);
+
+
+ inputs:
+ none
+
+
+ outputs:
+ none
+
+
+ error return:
+ - ENOSYS cd drive not audio-capable.
+
+
+CDROMPLAYMSF
+ Play Audio MSF
+
+ (struct cdrom_msf)
+
+
+ usage::
+
+ struct cdrom_msf msf;
+
+ ioctl(fd, CDROMPLAYMSF, &msf);
+
+ inputs:
+ cdrom_msf structure, describing a segment of music to play
+
+
+ outputs:
+ none
+
+
+ error return:
+ - ENOSYS cd drive not audio-capable.
+
+ notes:
+ - MSF stands for minutes-seconds-frames
+ - LBA stands for logical block address
+ - Segment is described as start and end times, where each time
+ is described as minutes:seconds:frames.
+ A frame is 1/75 of a second.
+
+
+CDROMPLAYTRKIND
+ Play Audio Track/index
+
+ (struct cdrom_ti)
+
+
+ usage::
+
+ struct cdrom_ti ti;
+
+ ioctl(fd, CDROMPLAYTRKIND, &ti);
+
+ inputs:
+ cdrom_ti structure, describing a segment of music to play
+
+
+ outputs:
+ none
+
+
+ error return:
+ - ENOSYS cd drive not audio-capable.
+
+ notes:
+ - Segment is described as start and end times, where each time
+ is described as a track and an index.
+
+
+
+CDROMREADTOCHDR
+ Read TOC header
+
+ (struct cdrom_tochdr)
+
+
+ usage::
+
+ cdrom_tochdr header;
+
+ ioctl(fd, CDROMREADTOCHDR, &header);
+
+ inputs:
+ cdrom_tochdr structure
+
+
+ outputs:
+ cdrom_tochdr structure
+
+
+ error return:
+ - ENOSYS cd drive not audio-capable.
+
+
+
+CDROMREADTOCENTRY
+ Read TOC entry
+
+ (struct cdrom_tocentry)
+
+
+ usage::
+
+ struct cdrom_tocentry entry;
+
+ ioctl(fd, CDROMREADTOCENTRY, &entry);
+
+ inputs:
+ cdrom_tocentry structure
+
+
+ outputs:
+ cdrom_tocentry structure
+
+
+ error return:
+ - ENOSYS cd drive not audio-capable.
+ - EINVAL entry.cdte_format not CDROM_MSF or CDROM_LBA
+ - EINVAL requested track out of bounds
+ - EIO I/O error reading TOC
+
+ notes:
+ - TOC stands for Table Of Contents
+ - MSF stands for minutes-seconds-frames
+ - LBA stands for logical block address
+
+
+
+CDROMSTOP
+ Stop the cdrom drive
+
+
+ usage::
+
+ ioctl(fd, CDROMSTOP, 0);
+
+
+ inputs:
+ none
+
+
+ outputs:
+ none
+
+
+ error return:
+ - ENOSYS cd drive not audio-capable.
+
+ notes:
+ - Exact interpretation of this ioctl depends on the device,
+ but most seem to spin the drive down.
+
+
+CDROMSTART
+ Start the cdrom drive
+
+
+ usage::
+
+ ioctl(fd, CDROMSTART, 0);
+
+
+ inputs:
+ none
+
+
+ outputs:
+ none
+
+
+ error return:
+ - ENOSYS cd drive not audio-capable.
+
+ notes:
+ - Exact interpretation of this ioctl depends on the device,
+ but most seem to spin the drive up and/or close the tray.
+ Other devices ignore the ioctl completely.
+
+
+CDROMEJECT
+ - Ejects the cdrom media
+
+
+ usage::
+
+ ioctl(fd, CDROMEJECT, 0);
+
+
+ inputs:
+ none
+
+
+ outputs:
+ none
+
+
+ error returns:
+ - ENOSYS cd drive not capable of ejecting
+ - EBUSY other processes are accessing drive, or door is locked
+
+ notes:
+ - See CDROM_LOCKDOOR, below.
+
+
+
+
+CDROMCLOSETRAY
+ pendant of CDROMEJECT
+
+
+ usage::
+
+ ioctl(fd, CDROMCLOSETRAY, 0);
+
+
+ inputs:
+ none
+
+
+ outputs:
+ none
+
+
+ error returns:
+ - ENOSYS cd drive not capable of closing the tray
+ - EBUSY other processes are accessing drive, or door is locked
+
+ notes:
+ - See CDROM_LOCKDOOR, below.
+
+
+
+
+CDROMVOLCTRL
+ Control output volume (struct cdrom_volctrl)
+
+
+ usage::
+
+ struct cdrom_volctrl volume;
+
+ ioctl(fd, CDROMVOLCTRL, &volume);
+
+ inputs:
+ cdrom_volctrl structure containing volumes for up to 4
+ channels.
+
+ outputs:
+ none
+
+
+ error return:
+ - ENOSYS cd drive not audio-capable.
+
+
+
+CDROMVOLREAD
+ Get the drive's volume setting
+
+ (struct cdrom_volctrl)
+
+
+ usage::
+
+ struct cdrom_volctrl volume;
+
+ ioctl(fd, CDROMVOLREAD, &volume);
+
+ inputs:
+ none
+
+
+ outputs:
+ The current volume settings.
+
+
+ error return:
+ - ENOSYS cd drive not audio-capable.
+
+
+
+CDROMSUBCHNL
+ Read subchannel data
+
+ (struct cdrom_subchnl)
+
+
+ usage::
+
+ struct cdrom_subchnl q;
+
+ ioctl(fd, CDROMSUBCHNL, &q);
+
+ inputs:
+ cdrom_subchnl structure
+
+
+ outputs:
+ cdrom_subchnl structure
+
+
+ error return:
+ - ENOSYS cd drive not audio-capable.
+ - EINVAL format not CDROM_MSF or CDROM_LBA
+
+ notes:
+ - Format is converted to CDROM_MSF or CDROM_LBA
+ as per user request on return
+
+
+
+CDROMREADRAW
+ read data in raw mode (2352 Bytes)
+
+ (struct cdrom_read)
+
+ usage::
+
+ union {
+
+ struct cdrom_msf msf; /* input */
+ char buffer[CD_FRAMESIZE_RAW]; /* return */
+ } arg;
+ ioctl(fd, CDROMREADRAW, &arg);
+
+ inputs:
+ cdrom_msf structure indicating an address to read.
+
+ Only the start values are significant.
+
+ outputs:
+ Data written to address provided by user.
+
+
+ error return:
+ - EINVAL address less than 0, or msf less than 0:2:0
+ - ENOMEM out of memory
+
+ notes:
+ - As of 2.6.8.1, comments in <linux/cdrom.h> indicate that this
+ ioctl accepts a cdrom_read structure, but actual source code
+ reads a cdrom_msf structure and writes a buffer of data to
+ the same address.
+
+ - MSF values are converted to LBA values via this formula::
+
+ lba = (((m * CD_SECS) + s) * CD_FRAMES + f) - CD_MSF_OFFSET;
+
+
+
+
+CDROMREADMODE1
+ Read CDROM mode 1 data (2048 Bytes)
+
+ (struct cdrom_read)
+
+ notes:
+ Identical to CDROMREADRAW except that block size is
+ CD_FRAMESIZE (2048) bytes
+
+
+
+CDROMREADMODE2
+ Read CDROM mode 2 data (2336 Bytes)
+
+ (struct cdrom_read)
+
+ notes:
+ Identical to CDROMREADRAW except that block size is
+ CD_FRAMESIZE_RAW0 (2336) bytes
+
+
+
+CDROMREADAUDIO
+ (struct cdrom_read_audio)
+
+ usage::
+
+ struct cdrom_read_audio ra;
+
+ ioctl(fd, CDROMREADAUDIO, &ra);
+
+ inputs:
+ cdrom_read_audio structure containing read start
+ point and length
+
+ outputs:
+ audio data, returned to buffer indicated by ra
+
+
+ error return:
+ - EINVAL format not CDROM_MSF or CDROM_LBA
+ - EINVAL nframes not in range [1 75]
+ - ENXIO drive has no queue (probably means invalid fd)
+ - ENOMEM out of memory
+
+
+CDROMEJECT_SW
+ enable(1)/disable(0) auto-ejecting
+
+
+ usage::
+
+ int val;
+
+ ioctl(fd, CDROMEJECT_SW, val);
+
+ inputs:
+ Flag specifying auto-eject flag.
+
+
+ outputs:
+ none
+
+
+ error return:
+ - ENOSYS Drive is not capable of ejecting.
+ - EBUSY Door is locked
+
+
+
+
+CDROMMULTISESSION
+ Obtain the start-of-last-session address of multi session disks
+
+ (struct cdrom_multisession)
+
+ usage::
+
+ struct cdrom_multisession ms_info;
+
+ ioctl(fd, CDROMMULTISESSION, &ms_info);
+
+ inputs:
+ cdrom_multisession structure containing desired
+
+ format.
+
+ outputs:
+ cdrom_multisession structure is filled with last_session
+ information.
+
+ error return:
+ - EINVAL format not CDROM_MSF or CDROM_LBA
+
+
+CDROM_GET_MCN
+ Obtain the "Universal Product Code"
+ if available
+
+ (struct cdrom_mcn)
+
+
+ usage::
+
+ struct cdrom_mcn mcn;
+
+ ioctl(fd, CDROM_GET_MCN, &mcn);
+
+ inputs:
+ none
+
+
+ outputs:
+ Universal Product Code
+
+
+ error return:
+ - ENOSYS Drive is not capable of reading MCN data.
+
+ notes:
+ - Source code comments state::
+
+ The following function is implemented, although very few
+ audio discs give Universal Product Code information, which
+ should just be the Medium Catalog Number on the box. Note,
+ that the way the code is written on the CD is /not/ uniform
+ across all discs!
+
+
+
+
+CDROM_GET_UPC
+ CDROM_GET_MCN (deprecated)
+
+
+ Not implemented, as of 2.6.8.1
+
+
+
+CDROMRESET
+ hard-reset the drive
+
+
+ usage::
+
+ ioctl(fd, CDROMRESET, 0);
+
+
+ inputs:
+ none
+
+
+ outputs:
+ none
+
+
+ error return:
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+ - ENOSYS Drive is not capable of resetting.
+
+
+
+
+CDROMREADCOOKED
+ read data in cooked mode
+
+
+ usage::
+
+ u8 buffer[CD_FRAMESIZE]
+
+ ioctl(fd, CDROMREADCOOKED, buffer);
+
+ inputs:
+ none
+
+
+ outputs:
+ 2048 bytes of data, "cooked" mode.
+
+
+ notes:
+ Not implemented on all drives.
+
+
+
+
+
+CDROMREADALL
+ read all 2646 bytes
+
+
+ Same as CDROMREADCOOKED, but reads 2646 bytes.
+
+
+
+CDROMSEEK
+ seek msf address
+
+
+ usage::
+
+ struct cdrom_msf msf;
+
+ ioctl(fd, CDROMSEEK, &msf);
+
+ inputs:
+ MSF address to seek to.
+
+
+ outputs:
+ none
+
+
+
+
+CDROMPLAYBLK
+ scsi-cd only
+
+ (struct cdrom_blk)
+
+
+ usage::
+
+ struct cdrom_blk blk;
+
+ ioctl(fd, CDROMPLAYBLK, &blk);
+
+ inputs:
+ Region to play
+
+
+ outputs:
+ none
+
+
+
+
+CDROMGETSPINDOWN
+ usage::
+
+ char spindown;
+
+ ioctl(fd, CDROMGETSPINDOWN, &spindown);
+
+ inputs:
+ none
+
+
+ outputs:
+ The value of the current 4-bit spindown value.
+
+
+
+
+
+CDROMSETSPINDOWN
+ usage::
+
+ char spindown
+
+ ioctl(fd, CDROMSETSPINDOWN, &spindown);
+
+ inputs:
+ 4-bit value used to control spindown (TODO: more detail here)
+
+
+ outputs:
+ none
+
+
+
+
+
+
+CDROM_SET_OPTIONS
+ Set behavior options
+
+
+ usage::
+
+ int options;
+
+ ioctl(fd, CDROM_SET_OPTIONS, options);
+
+ inputs:
+ New values for drive options. The logical 'or' of:
+
+ ============== ==================================
+ CDO_AUTO_CLOSE close tray on first open(2)
+ CDO_AUTO_EJECT open tray on last release
+ CDO_USE_FFLAGS use O_NONBLOCK information on open
+ CDO_LOCK lock tray on open files
+ CDO_CHECK_TYPE check type on open for data
+ ============== ==================================
+
+ outputs:
+ Returns the resulting options settings in the
+ ioctl return value. Returns -1 on error.
+
+ error return:
+ - ENOSYS selected option(s) not supported by drive.
+
+
+
+
+CDROM_CLEAR_OPTIONS
+ Clear behavior options
+
+
+ Same as CDROM_SET_OPTIONS, except that selected options are
+ turned off.
+
+
+
+CDROM_SELECT_SPEED
+ Set the CD-ROM speed
+
+
+ usage::
+
+ int speed;
+
+ ioctl(fd, CDROM_SELECT_SPEED, speed);
+
+ inputs:
+ New drive speed.
+
+
+ outputs:
+ none
+
+
+ error return:
+ - ENOSYS speed selection not supported by drive.
+
+
+
+CDROM_SELECT_DISC
+ Select disc (for juke-boxes)
+
+
+ usage::
+
+ int disk;
+
+ ioctl(fd, CDROM_SELECT_DISC, disk);
+
+ inputs:
+ Disk to load into drive.
+
+
+ outputs:
+ none
+
+
+ error return:
+ - EINVAL Disk number beyond capacity of drive
+
+
+
+CDROM_MEDIA_CHANGED
+ Check is media changed
+
+
+ usage::
+
+ int slot;
+
+ ioctl(fd, CDROM_MEDIA_CHANGED, slot);
+
+ inputs:
+ Slot number to be tested, always zero except for jukeboxes.
+
+ May also be special values CDSL_NONE or CDSL_CURRENT
+
+ outputs:
+ Ioctl return value is 0 or 1 depending on whether the media
+
+ has been changed, or -1 on error.
+
+ error returns:
+ - ENOSYS Drive can't detect media change
+ - EINVAL Slot number beyond capacity of drive
+ - ENOMEM Out of memory
+
+
+
+CDROM_DRIVE_STATUS
+ Get tray position, etc.
+
+
+ usage::
+
+ int slot;
+
+ ioctl(fd, CDROM_DRIVE_STATUS, slot);
+
+ inputs:
+ Slot number to be tested, always zero except for jukeboxes.
+
+ May also be special values CDSL_NONE or CDSL_CURRENT
+
+ outputs:
+ Ioctl return value will be one of the following values
+
+ from <linux/cdrom.h>:
+
+ =================== ==========================
+ CDS_NO_INFO Information not available.
+ CDS_NO_DISC
+ CDS_TRAY_OPEN
+ CDS_DRIVE_NOT_READY
+ CDS_DISC_OK
+ -1 error
+ =================== ==========================
+
+ error returns:
+ - ENOSYS Drive can't detect drive status
+ - EINVAL Slot number beyond capacity of drive
+ - ENOMEM Out of memory
+
+
+
+
+CDROM_DISC_STATUS
+ Get disc type, etc.
+
+
+ usage::
+
+ ioctl(fd, CDROM_DISC_STATUS, 0);
+
+
+ inputs:
+ none
+
+
+ outputs:
+ Ioctl return value will be one of the following values
+
+ from <linux/cdrom.h>:
+
+ - CDS_NO_INFO
+ - CDS_AUDIO
+ - CDS_MIXED
+ - CDS_XA_2_2
+ - CDS_XA_2_1
+ - CDS_DATA_1
+
+ error returns:
+ none at present
+
+ notes:
+ - Source code comments state::
+
+
+ Ok, this is where problems start. The current interface for
+ the CDROM_DISC_STATUS ioctl is flawed. It makes the false
+ assumption that CDs are all CDS_DATA_1 or all CDS_AUDIO, etc.
+ Unfortunately, while this is often the case, it is also
+ very common for CDs to have some tracks with data, and some
+ tracks with audio. Just because I feel like it, I declare
+ the following to be the best way to cope. If the CD has
+ ANY data tracks on it, it will be returned as a data CD.
+ If it has any XA tracks, I will return it as that. Now I
+ could simplify this interface by combining these returns with
+ the above, but this more clearly demonstrates the problem
+ with the current interface. Too bad this wasn't designed
+ to use bitmasks... -Erik
+
+ Well, now we have the option CDS_MIXED: a mixed-type CD.
+ User level programmers might feel the ioctl is not very
+ useful.
+ ---david
+
+
+
+
+CDROM_CHANGER_NSLOTS
+ Get number of slots
+
+
+ usage::
+
+ ioctl(fd, CDROM_CHANGER_NSLOTS, 0);
+
+
+ inputs:
+ none
+
+
+ outputs:
+ The ioctl return value will be the number of slots in a
+ CD changer. Typically 1 for non-multi-disk devices.
+
+ error returns:
+ none
+
+
+
+CDROM_LOCKDOOR
+ lock or unlock door
+
+
+ usage::
+
+ int lock;
+
+ ioctl(fd, CDROM_LOCKDOOR, lock);
+
+ inputs:
+ Door lock flag, 1=lock, 0=unlock
+
+
+ outputs:
+ none
+
+
+ error returns:
+ - EDRIVE_CANT_DO_THIS
+
+ Door lock function not supported.
+ - EBUSY
+
+ Attempt to unlock when multiple users
+ have the drive open and not CAP_SYS_ADMIN
+
+ notes:
+ As of 2.6.8.1, the lock flag is a global lock, meaning that
+ all CD drives will be locked or unlocked together. This is
+ probably a bug.
+
+ The EDRIVE_CANT_DO_THIS value is defined in <linux/cdrom.h>
+ and is currently (2.6.8.1) the same as EOPNOTSUPP
+
+
+
+CDROM_DEBUG
+ Turn debug messages on/off
+
+
+ usage::
+
+ int debug;
+
+ ioctl(fd, CDROM_DEBUG, debug);
+
+ inputs:
+ Cdrom debug flag, 0=disable, 1=enable
+
+
+ outputs:
+ The ioctl return value will be the new debug flag.
+
+
+ error return:
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+
+
+
+CDROM_GET_CAPABILITY
+ get capabilities
+
+
+ usage::
+
+ ioctl(fd, CDROM_GET_CAPABILITY, 0);
+
+
+ inputs:
+ none
+
+
+ outputs:
+ The ioctl return value is the current device capability
+ flags. See CDC_CLOSE_TRAY, CDC_OPEN_TRAY, etc.
+
+
+
+CDROMAUDIOBUFSIZ
+ set the audio buffer size
+
+
+ usage::
+
+ int arg;
+
+ ioctl(fd, CDROMAUDIOBUFSIZ, val);
+
+ inputs:
+ New audio buffer size
+
+
+ outputs:
+ The ioctl return value is the new audio buffer size, or -1
+ on error.
+
+ error return:
+ - ENOSYS Not supported by this driver.
+
+ notes:
+ Not supported by all drivers.
+
+
+
+
+DVD_READ_STRUCT Read structure
+
+ usage::
+
+ dvd_struct s;
+
+ ioctl(fd, DVD_READ_STRUCT, &s);
+
+ inputs:
+ dvd_struct structure, containing:
+
+ =================== ==========================================
+ type specifies the information desired, one of
+ DVD_STRUCT_PHYSICAL, DVD_STRUCT_COPYRIGHT,
+ DVD_STRUCT_DISCKEY, DVD_STRUCT_BCA,
+ DVD_STRUCT_MANUFACT
+ physical.layer_num desired layer, indexed from 0
+ copyright.layer_num desired layer, indexed from 0
+ disckey.agid
+ =================== ==========================================
+
+ outputs:
+ dvd_struct structure, containing:
+
+ =================== ================================
+ physical for type == DVD_STRUCT_PHYSICAL
+ copyright for type == DVD_STRUCT_COPYRIGHT
+ disckey.value for type == DVD_STRUCT_DISCKEY
+ bca.{len,value} for type == DVD_STRUCT_BCA
+ manufact.{len,valu} for type == DVD_STRUCT_MANUFACT
+ =================== ================================
+
+ error returns:
+ - EINVAL physical.layer_num exceeds number of layers
+ - EIO Received invalid response from drive
+
+
+
+DVD_WRITE_STRUCT Write structure
+
+ Not implemented, as of 2.6.8.1
+
+
+
+DVD_AUTH Authentication
+
+ usage::
+
+ dvd_authinfo ai;
+
+ ioctl(fd, DVD_AUTH, &ai);
+
+ inputs:
+ dvd_authinfo structure. See <linux/cdrom.h>
+
+
+ outputs:
+ dvd_authinfo structure.
+
+
+ error return:
+ - ENOTTY ai.type not recognized.
+
+
+
+CDROM_SEND_PACKET
+ send a packet to the drive
+
+
+ usage::
+
+ struct cdrom_generic_command cgc;
+
+ ioctl(fd, CDROM_SEND_PACKET, &cgc);
+
+ inputs:
+ cdrom_generic_command structure containing the packet to send.
+
+
+ outputs:
+ none
+
+ cdrom_generic_command structure containing results.
+
+ error return:
+ - EIO
+
+ command failed.
+ - EPERM
+
+ Operation not permitted, either because a
+ write command was attempted on a drive which
+ is opened read-only, or because the command
+ requires CAP_SYS_RAWIO
+ - EINVAL
+
+ cgc.data_direction not set
+
+
+
+CDROM_NEXT_WRITABLE
+ get next writable block
+
+
+ usage::
+
+ long next;
+
+ ioctl(fd, CDROM_NEXT_WRITABLE, &next);
+
+ inputs:
+ none
+
+
+ outputs:
+ The next writable block.
+
+
+ notes:
+ If the device does not support this ioctl directly, the
+
+ ioctl will return CDROM_LAST_WRITTEN + 7.
+
+
+
+CDROM_LAST_WRITTEN
+ get last block written on disc
+
+
+ usage::
+
+ long last;
+
+ ioctl(fd, CDROM_LAST_WRITTEN, &last);
+
+ inputs:
+ none
+
+
+ outputs:
+ The last block written on disc
+
+
+ notes:
+ If the device does not support this ioctl directly, the
+ result is derived from the disc's table of contents. If the
+ table of contents can't be read, this ioctl returns an
+ error.
diff --git a/Documentation/ioctl/cdrom.txt b/Documentation/ioctl/cdrom.txt
deleted file mode 100644
index a4d62a9d6771..000000000000
--- a/Documentation/ioctl/cdrom.txt
+++ /dev/null
@@ -1,967 +0,0 @@
- Summary of CDROM ioctl calls.
- ============================
-
- Edward A. Falk <efalk@google.com>
-
- November, 2004
-
-This document attempts to describe the ioctl(2) calls supported by
-the CDROM layer. These are by-and-large implemented (as of Linux 2.6)
-in drivers/cdrom/cdrom.c and drivers/block/scsi_ioctl.c
-
-ioctl values are listed in <linux/cdrom.h>. As of this writing, they
-are as follows:
-
- CDROMPAUSE Pause Audio Operation
- CDROMRESUME Resume paused Audio Operation
- CDROMPLAYMSF Play Audio MSF (struct cdrom_msf)
- CDROMPLAYTRKIND Play Audio Track/index (struct cdrom_ti)
- CDROMREADTOCHDR Read TOC header (struct cdrom_tochdr)
- CDROMREADTOCENTRY Read TOC entry (struct cdrom_tocentry)
- CDROMSTOP Stop the cdrom drive
- CDROMSTART Start the cdrom drive
- CDROMEJECT Ejects the cdrom media
- CDROMVOLCTRL Control output volume (struct cdrom_volctrl)
- CDROMSUBCHNL Read subchannel data (struct cdrom_subchnl)
- CDROMREADMODE2 Read CDROM mode 2 data (2336 Bytes)
- (struct cdrom_read)
- CDROMREADMODE1 Read CDROM mode 1 data (2048 Bytes)
- (struct cdrom_read)
- CDROMREADAUDIO (struct cdrom_read_audio)
- CDROMEJECT_SW enable(1)/disable(0) auto-ejecting
- CDROMMULTISESSION Obtain the start-of-last-session
- address of multi session disks
- (struct cdrom_multisession)
- CDROM_GET_MCN Obtain the "Universal Product Code"
- if available (struct cdrom_mcn)
- CDROM_GET_UPC Deprecated, use CDROM_GET_MCN instead.
- CDROMRESET hard-reset the drive
- CDROMVOLREAD Get the drive's volume setting
- (struct cdrom_volctrl)
- CDROMREADRAW read data in raw mode (2352 Bytes)
- (struct cdrom_read)
- CDROMREADCOOKED read data in cooked mode
- CDROMSEEK seek msf address
- CDROMPLAYBLK scsi-cd only, (struct cdrom_blk)
- CDROMREADALL read all 2646 bytes
- CDROMGETSPINDOWN return 4-bit spindown value
- CDROMSETSPINDOWN set 4-bit spindown value
- CDROMCLOSETRAY pendant of CDROMEJECT
- CDROM_SET_OPTIONS Set behavior options
- CDROM_CLEAR_OPTIONS Clear behavior options
- CDROM_SELECT_SPEED Set the CD-ROM speed
- CDROM_SELECT_DISC Select disc (for juke-boxes)
- CDROM_MEDIA_CHANGED Check is media changed
- CDROM_DRIVE_STATUS Get tray position, etc.
- CDROM_DISC_STATUS Get disc type, etc.
- CDROM_CHANGER_NSLOTS Get number of slots
- CDROM_LOCKDOOR lock or unlock door
- CDROM_DEBUG Turn debug messages on/off
- CDROM_GET_CAPABILITY get capabilities
- CDROMAUDIOBUFSIZ set the audio buffer size
- DVD_READ_STRUCT Read structure
- DVD_WRITE_STRUCT Write structure
- DVD_AUTH Authentication
- CDROM_SEND_PACKET send a packet to the drive
- CDROM_NEXT_WRITABLE get next writable block
- CDROM_LAST_WRITTEN get last block written on disc
-
-
-The information that follows was determined from reading kernel source
-code. It is likely that some corrections will be made over time.
-
-
-
-
-
-
-
-General:
-
- Unless otherwise specified, all ioctl calls return 0 on success
- and -1 with errno set to an appropriate value on error. (Some
- ioctls return non-negative data values.)
-
- Unless otherwise specified, all ioctl calls return -1 and set
- errno to EFAULT on a failed attempt to copy data to or from user
- address space.
-
- Individual drivers may return error codes not listed here.
-
- Unless otherwise specified, all data structures and constants
- are defined in <linux/cdrom.h>
-
-
-
-
-CDROMPAUSE Pause Audio Operation
-
- usage:
-
- ioctl(fd, CDROMPAUSE, 0);
-
- inputs: none
-
- outputs: none
-
- error return:
- ENOSYS cd drive not audio-capable.
-
-
-CDROMRESUME Resume paused Audio Operation
-
- usage:
-
- ioctl(fd, CDROMRESUME, 0);
-
- inputs: none
-
- outputs: none
-
- error return:
- ENOSYS cd drive not audio-capable.
-
-
-CDROMPLAYMSF Play Audio MSF (struct cdrom_msf)
-
- usage:
-
- struct cdrom_msf msf;
- ioctl(fd, CDROMPLAYMSF, &msf);
-
- inputs:
- cdrom_msf structure, describing a segment of music to play
-
- outputs: none
-
- error return:
- ENOSYS cd drive not audio-capable.
-
- notes:
- MSF stands for minutes-seconds-frames
- LBA stands for logical block address
-
- Segment is described as start and end times, where each time
- is described as minutes:seconds:frames. A frame is 1/75 of
- a second.
-
-
-CDROMPLAYTRKIND Play Audio Track/index (struct cdrom_ti)
-
- usage:
-
- struct cdrom_ti ti;
- ioctl(fd, CDROMPLAYTRKIND, &ti);
-
- inputs:
- cdrom_ti structure, describing a segment of music to play
-
- outputs: none
-
- error return:
- ENOSYS cd drive not audio-capable.
-
- notes:
- Segment is described as start and end times, where each time
- is described as a track and an index.
-
-
-
-CDROMREADTOCHDR Read TOC header (struct cdrom_tochdr)
-
- usage:
-
- cdrom_tochdr header;
- ioctl(fd, CDROMREADTOCHDR, &header);
-
- inputs:
- cdrom_tochdr structure
-
- outputs:
- cdrom_tochdr structure
-
- error return:
- ENOSYS cd drive not audio-capable.
-
-
-
-CDROMREADTOCENTRY Read TOC entry (struct cdrom_tocentry)
-
- usage:
-
- struct cdrom_tocentry entry;
- ioctl(fd, CDROMREADTOCENTRY, &entry);
-
- inputs:
- cdrom_tocentry structure
-
- outputs:
- cdrom_tocentry structure
-
- error return:
- ENOSYS cd drive not audio-capable.
- EINVAL entry.cdte_format not CDROM_MSF or CDROM_LBA
- EINVAL requested track out of bounds
- EIO I/O error reading TOC
-
- notes:
- TOC stands for Table Of Contents
- MSF stands for minutes-seconds-frames
- LBA stands for logical block address
-
-
-
-CDROMSTOP Stop the cdrom drive
-
- usage:
-
- ioctl(fd, CDROMSTOP, 0);
-
- inputs: none
-
- outputs: none
-
- error return:
- ENOSYS cd drive not audio-capable.
-
- notes:
- Exact interpretation of this ioctl depends on the device,
- but most seem to spin the drive down.
-
-
-CDROMSTART Start the cdrom drive
-
- usage:
-
- ioctl(fd, CDROMSTART, 0);
-
- inputs: none
-
- outputs: none
-
- error return:
- ENOSYS cd drive not audio-capable.
-
- notes:
- Exact interpretation of this ioctl depends on the device,
- but most seem to spin the drive up and/or close the tray.
- Other devices ignore the ioctl completely.
-
-
-CDROMEJECT Ejects the cdrom media
-
- usage:
-
- ioctl(fd, CDROMEJECT, 0);
-
- inputs: none
-
- outputs: none
-
- error returns:
- ENOSYS cd drive not capable of ejecting
- EBUSY other processes are accessing drive, or door is locked
-
- notes:
- See CDROM_LOCKDOOR, below.
-
-
-
-CDROMCLOSETRAY pendant of CDROMEJECT
-
- usage:
-
- ioctl(fd, CDROMCLOSETRAY, 0);
-
- inputs: none
-
- outputs: none
-
- error returns:
- ENOSYS cd drive not capable of closing the tray
- EBUSY other processes are accessing drive, or door is locked
-
- notes:
- See CDROM_LOCKDOOR, below.
-
-
-
-CDROMVOLCTRL Control output volume (struct cdrom_volctrl)
-
- usage:
-
- struct cdrom_volctrl volume;
- ioctl(fd, CDROMVOLCTRL, &volume);
-
- inputs:
- cdrom_volctrl structure containing volumes for up to 4
- channels.
-
- outputs: none
-
- error return:
- ENOSYS cd drive not audio-capable.
-
-
-
-CDROMVOLREAD Get the drive's volume setting
- (struct cdrom_volctrl)
-
- usage:
-
- struct cdrom_volctrl volume;
- ioctl(fd, CDROMVOLREAD, &volume);
-
- inputs: none
-
- outputs:
- The current volume settings.
-
- error return:
- ENOSYS cd drive not audio-capable.
-
-
-
-CDROMSUBCHNL Read subchannel data (struct cdrom_subchnl)
-
- usage:
-
- struct cdrom_subchnl q;
- ioctl(fd, CDROMSUBCHNL, &q);
-
- inputs:
- cdrom_subchnl structure
-
- outputs:
- cdrom_subchnl structure
-
- error return:
- ENOSYS cd drive not audio-capable.
- EINVAL format not CDROM_MSF or CDROM_LBA
-
- notes:
- Format is converted to CDROM_MSF or CDROM_LBA
- as per user request on return
-
-
-
-CDROMREADRAW read data in raw mode (2352 Bytes)
- (struct cdrom_read)
-
- usage:
-
- union {
- struct cdrom_msf msf; /* input */
- char buffer[CD_FRAMESIZE_RAW]; /* return */
- } arg;
- ioctl(fd, CDROMREADRAW, &arg);
-
- inputs:
- cdrom_msf structure indicating an address to read.
- Only the start values are significant.
-
- outputs:
- Data written to address provided by user.
-
- error return:
- EINVAL address less than 0, or msf less than 0:2:0
- ENOMEM out of memory
-
- notes:
- As of 2.6.8.1, comments in <linux/cdrom.h> indicate that this
- ioctl accepts a cdrom_read structure, but actual source code
- reads a cdrom_msf structure and writes a buffer of data to
- the same address.
-
- MSF values are converted to LBA values via this formula:
-
- lba = (((m * CD_SECS) + s) * CD_FRAMES + f) - CD_MSF_OFFSET;
-
-
-
-
-CDROMREADMODE1 Read CDROM mode 1 data (2048 Bytes)
- (struct cdrom_read)
-
- notes:
- Identical to CDROMREADRAW except that block size is
- CD_FRAMESIZE (2048) bytes
-
-
-
-CDROMREADMODE2 Read CDROM mode 2 data (2336 Bytes)
- (struct cdrom_read)
-
- notes:
- Identical to CDROMREADRAW except that block size is
- CD_FRAMESIZE_RAW0 (2336) bytes
-
-
-
-CDROMREADAUDIO (struct cdrom_read_audio)
-
- usage:
-
- struct cdrom_read_audio ra;
- ioctl(fd, CDROMREADAUDIO, &ra);
-
- inputs:
- cdrom_read_audio structure containing read start
- point and length
-
- outputs:
- audio data, returned to buffer indicated by ra
-
- error return:
- EINVAL format not CDROM_MSF or CDROM_LBA
- EINVAL nframes not in range [1 75]
- ENXIO drive has no queue (probably means invalid fd)
- ENOMEM out of memory
-
-
-CDROMEJECT_SW enable(1)/disable(0) auto-ejecting
-
- usage:
-
- int val;
- ioctl(fd, CDROMEJECT_SW, val);
-
- inputs:
- Flag specifying auto-eject flag.
-
- outputs: none
-
- error return:
- ENOSYS Drive is not capable of ejecting.
- EBUSY Door is locked
-
-
-
-
-CDROMMULTISESSION Obtain the start-of-last-session
- address of multi session disks
- (struct cdrom_multisession)
- usage:
-
- struct cdrom_multisession ms_info;
- ioctl(fd, CDROMMULTISESSION, &ms_info);
-
- inputs:
- cdrom_multisession structure containing desired
- format.
-
- outputs:
- cdrom_multisession structure is filled with last_session
- information.
-
- error return:
- EINVAL format not CDROM_MSF or CDROM_LBA
-
-
-CDROM_GET_MCN Obtain the "Universal Product Code"
- if available (struct cdrom_mcn)
-
- usage:
-
- struct cdrom_mcn mcn;
- ioctl(fd, CDROM_GET_MCN, &mcn);
-
- inputs: none
-
- outputs:
- Universal Product Code
-
- error return:
- ENOSYS Drive is not capable of reading MCN data.
-
- notes:
- Source code comments state:
-
- The following function is implemented, although very few
- audio discs give Universal Product Code information, which
- should just be the Medium Catalog Number on the box. Note,
- that the way the code is written on the CD is /not/ uniform
- across all discs!
-
-
-
-
-CDROM_GET_UPC CDROM_GET_MCN (deprecated)
-
- Not implemented, as of 2.6.8.1
-
-
-
-CDROMRESET hard-reset the drive
-
- usage:
-
- ioctl(fd, CDROMRESET, 0);
-
- inputs: none
-
- outputs: none
-
- error return:
- EACCES Access denied: requires CAP_SYS_ADMIN
- ENOSYS Drive is not capable of resetting.
-
-
-
-
-CDROMREADCOOKED read data in cooked mode
-
- usage:
-
- u8 buffer[CD_FRAMESIZE]
- ioctl(fd, CDROMREADCOOKED, buffer);
-
- inputs: none
-
- outputs:
- 2048 bytes of data, "cooked" mode.
-
- notes:
- Not implemented on all drives.
-
-
-
-
-CDROMREADALL read all 2646 bytes
-
- Same as CDROMREADCOOKED, but reads 2646 bytes.
-
-
-
-CDROMSEEK seek msf address
-
- usage:
-
- struct cdrom_msf msf;
- ioctl(fd, CDROMSEEK, &msf);
-
- inputs:
- MSF address to seek to.
-
- outputs: none
-
-
-
-CDROMPLAYBLK scsi-cd only, (struct cdrom_blk)
-
- usage:
-
- struct cdrom_blk blk;
- ioctl(fd, CDROMPLAYBLK, &blk);
-
- inputs:
- Region to play
-
- outputs: none
-
-
-
-CDROMGETSPINDOWN
-
- usage:
-
- char spindown;
- ioctl(fd, CDROMGETSPINDOWN, &spindown);
-
- inputs: none
-
- outputs:
- The value of the current 4-bit spindown value.
-
-
-
-
-CDROMSETSPINDOWN
-
- usage:
-
- char spindown
- ioctl(fd, CDROMSETSPINDOWN, &spindown);
-
- inputs:
- 4-bit value used to control spindown (TODO: more detail here)
-
- outputs: none
-
-
-
-
-
-CDROM_SET_OPTIONS Set behavior options
-
- usage:
-
- int options;
- ioctl(fd, CDROM_SET_OPTIONS, options);
-
- inputs:
- New values for drive options. The logical 'or' of:
- CDO_AUTO_CLOSE close tray on first open(2)
- CDO_AUTO_EJECT open tray on last release
- CDO_USE_FFLAGS use O_NONBLOCK information on open
- CDO_LOCK lock tray on open files
- CDO_CHECK_TYPE check type on open for data
-
- outputs:
- Returns the resulting options settings in the
- ioctl return value. Returns -1 on error.
-
- error return:
- ENOSYS selected option(s) not supported by drive.
-
-
-
-
-CDROM_CLEAR_OPTIONS Clear behavior options
-
- Same as CDROM_SET_OPTIONS, except that selected options are
- turned off.
-
-
-
-CDROM_SELECT_SPEED Set the CD-ROM speed
-
- usage:
-
- int speed;
- ioctl(fd, CDROM_SELECT_SPEED, speed);
-
- inputs:
- New drive speed.
-
- outputs: none
-
- error return:
- ENOSYS speed selection not supported by drive.
-
-
-
-CDROM_SELECT_DISC Select disc (for juke-boxes)
-
- usage:
-
- int disk;
- ioctl(fd, CDROM_SELECT_DISC, disk);
-
- inputs:
- Disk to load into drive.
-
- outputs: none
-
- error return:
- EINVAL Disk number beyond capacity of drive
-
-
-
-CDROM_MEDIA_CHANGED Check is media changed
-
- usage:
-
- int slot;
- ioctl(fd, CDROM_MEDIA_CHANGED, slot);
-
- inputs:
- Slot number to be tested, always zero except for jukeboxes.
- May also be special values CDSL_NONE or CDSL_CURRENT
-
- outputs:
- Ioctl return value is 0 or 1 depending on whether the media
- has been changed, or -1 on error.
-
- error returns:
- ENOSYS Drive can't detect media change
- EINVAL Slot number beyond capacity of drive
- ENOMEM Out of memory
-
-
-
-CDROM_DRIVE_STATUS Get tray position, etc.
-
- usage:
-
- int slot;
- ioctl(fd, CDROM_DRIVE_STATUS, slot);
-
- inputs:
- Slot number to be tested, always zero except for jukeboxes.
- May also be special values CDSL_NONE or CDSL_CURRENT
-
- outputs:
- Ioctl return value will be one of the following values
- from <linux/cdrom.h>:
-
- CDS_NO_INFO Information not available.
- CDS_NO_DISC
- CDS_TRAY_OPEN
- CDS_DRIVE_NOT_READY
- CDS_DISC_OK
- -1 error
-
- error returns:
- ENOSYS Drive can't detect drive status
- EINVAL Slot number beyond capacity of drive
- ENOMEM Out of memory
-
-
-
-
-CDROM_DISC_STATUS Get disc type, etc.
-
- usage:
-
- ioctl(fd, CDROM_DISC_STATUS, 0);
-
- inputs: none
-
- outputs:
- Ioctl return value will be one of the following values
- from <linux/cdrom.h>:
- CDS_NO_INFO
- CDS_AUDIO
- CDS_MIXED
- CDS_XA_2_2
- CDS_XA_2_1
- CDS_DATA_1
-
- error returns: none at present
-
- notes:
- Source code comments state:
-
- Ok, this is where problems start. The current interface for
- the CDROM_DISC_STATUS ioctl is flawed. It makes the false
- assumption that CDs are all CDS_DATA_1 or all CDS_AUDIO, etc.
- Unfortunately, while this is often the case, it is also
- very common for CDs to have some tracks with data, and some
- tracks with audio. Just because I feel like it, I declare
- the following to be the best way to cope. If the CD has
- ANY data tracks on it, it will be returned as a data CD.
- If it has any XA tracks, I will return it as that. Now I
- could simplify this interface by combining these returns with
- the above, but this more clearly demonstrates the problem
- with the current interface. Too bad this wasn't designed
- to use bitmasks... -Erik
-
- Well, now we have the option CDS_MIXED: a mixed-type CD.
- User level programmers might feel the ioctl is not very
- useful.
- ---david
-
-
-
-
-CDROM_CHANGER_NSLOTS Get number of slots
-
- usage:
-
- ioctl(fd, CDROM_CHANGER_NSLOTS, 0);
-
- inputs: none
-
- outputs:
- The ioctl return value will be the number of slots in a
- CD changer. Typically 1 for non-multi-disk devices.
-
- error returns: none
-
-
-
-CDROM_LOCKDOOR lock or unlock door
-
- usage:
-
- int lock;
- ioctl(fd, CDROM_LOCKDOOR, lock);
-
- inputs:
- Door lock flag, 1=lock, 0=unlock
-
- outputs: none
-
- error returns:
- EDRIVE_CANT_DO_THIS Door lock function not supported.
- EBUSY Attempt to unlock when multiple users
- have the drive open and not CAP_SYS_ADMIN
-
- notes:
- As of 2.6.8.1, the lock flag is a global lock, meaning that
- all CD drives will be locked or unlocked together. This is
- probably a bug.
-
- The EDRIVE_CANT_DO_THIS value is defined in <linux/cdrom.h>
- and is currently (2.6.8.1) the same as EOPNOTSUPP
-
-
-
-CDROM_DEBUG Turn debug messages on/off
-
- usage:
-
- int debug;
- ioctl(fd, CDROM_DEBUG, debug);
-
- inputs:
- Cdrom debug flag, 0=disable, 1=enable
-
- outputs:
- The ioctl return value will be the new debug flag.
-
- error return:
- EACCES Access denied: requires CAP_SYS_ADMIN
-
-
-
-CDROM_GET_CAPABILITY get capabilities
-
- usage:
-
- ioctl(fd, CDROM_GET_CAPABILITY, 0);
-
- inputs: none
-
- outputs:
- The ioctl return value is the current device capability
- flags. See CDC_CLOSE_TRAY, CDC_OPEN_TRAY, etc.
-
-
-
-CDROMAUDIOBUFSIZ set the audio buffer size
-
- usage:
-
- int arg;
- ioctl(fd, CDROMAUDIOBUFSIZ, val);
-
- inputs:
- New audio buffer size
-
- outputs:
- The ioctl return value is the new audio buffer size, or -1
- on error.
-
- error return:
- ENOSYS Not supported by this driver.
-
- notes:
- Not supported by all drivers.
-
-
-
-DVD_READ_STRUCT Read structure
-
- usage:
-
- dvd_struct s;
- ioctl(fd, DVD_READ_STRUCT, &s);
-
- inputs:
- dvd_struct structure, containing:
- type specifies the information desired, one of
- DVD_STRUCT_PHYSICAL, DVD_STRUCT_COPYRIGHT,
- DVD_STRUCT_DISCKEY, DVD_STRUCT_BCA,
- DVD_STRUCT_MANUFACT
- physical.layer_num desired layer, indexed from 0
- copyright.layer_num desired layer, indexed from 0
- disckey.agid
-
- outputs:
- dvd_struct structure, containing:
- physical for type == DVD_STRUCT_PHYSICAL
- copyright for type == DVD_STRUCT_COPYRIGHT
- disckey.value for type == DVD_STRUCT_DISCKEY
- bca.{len,value} for type == DVD_STRUCT_BCA
- manufact.{len,valu} for type == DVD_STRUCT_MANUFACT
-
- error returns:
- EINVAL physical.layer_num exceeds number of layers
- EIO Received invalid response from drive
-
-
-
-DVD_WRITE_STRUCT Write structure
-
- Not implemented, as of 2.6.8.1
-
-
-
-DVD_AUTH Authentication
-
- usage:
-
- dvd_authinfo ai;
- ioctl(fd, DVD_AUTH, &ai);
-
- inputs:
- dvd_authinfo structure. See <linux/cdrom.h>
-
- outputs:
- dvd_authinfo structure.
-
- error return:
- ENOTTY ai.type not recognized.
-
-
-
-CDROM_SEND_PACKET send a packet to the drive
-
- usage:
-
- struct cdrom_generic_command cgc;
- ioctl(fd, CDROM_SEND_PACKET, &cgc);
-
- inputs:
- cdrom_generic_command structure containing the packet to send.
-
- outputs: none
- cdrom_generic_command structure containing results.
-
- error return:
- EIO command failed.
- EPERM Operation not permitted, either because a
- write command was attempted on a drive which
- is opened read-only, or because the command
- requires CAP_SYS_RAWIO
- EINVAL cgc.data_direction not set
-
-
-
-CDROM_NEXT_WRITABLE get next writable block
-
- usage:
-
- long next;
- ioctl(fd, CDROM_NEXT_WRITABLE, &next);
-
- inputs: none
-
- outputs:
- The next writable block.
-
- notes:
- If the device does not support this ioctl directly, the
- ioctl will return CDROM_LAST_WRITTEN + 7.
-
-
-
-CDROM_LAST_WRITTEN get last block written on disc
-
- usage:
-
- long last;
- ioctl(fd, CDROM_LAST_WRITTEN, &last);
-
- inputs: none
-
- outputs:
- The last block written on disc
-
- notes:
- If the device does not support this ioctl directly, the
- result is derived from the disc's table of contents. If the
- table of contents can't be read, this ioctl returns an
- error.
diff --git a/Documentation/ioctl/hdio.txt b/Documentation/ioctl/hdio.rst
similarity index 54%
rename from Documentation/ioctl/hdio.txt
rename to Documentation/ioctl/hdio.rst
index 18eb98c44ffe..e822e3dff176 100644
--- a/Documentation/ioctl/hdio.txt
+++ b/Documentation/ioctl/hdio.rst
@@ -1,9 +1,10 @@
- Summary of HDIO_ ioctl calls.
- ============================
+==============================
+Summary of `HDIO_` ioctl calls
+==============================
- Edward A. Falk <efalk@google.com>
+- Edward A. Falk <efalk@google.com>
- November, 2004
+November, 2004
This document attempts to describe the ioctl(2) calls supported by
the HD/IDE layer. These are by-and-large implemented (as of Linux 2.6)
@@ -14,6 +15,7 @@ are as follows:
ioctls that pass argument pointers to user space:
+ ======================= =======================================
HDIO_GETGEO get device geometry
HDIO_GET_UNMASKINTR get current unmask setting
HDIO_GET_MULTCOUNT get current IDE blockmode setting
@@ -36,9 +38,11 @@ are as follows:
HDIO_DRIVE_TASK execute task and special drive command
HDIO_DRIVE_CMD execute a special drive command
HDIO_DRIVE_CMD_AEB HDIO_DRIVE_TASK
+ ======================= =======================================
ioctls that pass non-pointer values:
+ ======================= =======================================
HDIO_SET_MULTCOUNT change IDE blockmode
HDIO_SET_UNMASKINTR permit other irqs during I/O
HDIO_SET_KEEPSETTINGS keep ioctl settings on reset
@@ -57,16 +61,13 @@ are as follows:
HDIO_SET_IDE_SCSI Set scsi emulation mode on/off
HDIO_SET_SCSI_IDE not implemented yet
+ ======================= =======================================
The information that follows was determined from reading kernel source
code. It is likely that some corrections will be made over time.
-
-
-
-
-
+------------------------------------------------------------------------------
General:
@@ -80,459 +81,610 @@ General:
Unless otherwise specified, all data structures and constants
are defined in <linux/hdreg.h>
+------------------------------------------------------------------------------
+HDIO_GETGEO
+ get device geometry
-HDIO_GETGEO get device geometry
- usage:
+ usage::
struct hd_geometry geom;
+
ioctl(fd, HDIO_GETGEO, &geom);
- inputs: none
+ inputs:
+ none
+
+
outputs:
+ hd_geometry structure containing:
- hd_geometry structure containing:
+ ========= ==================================
heads number of heads
sectors number of sectors/track
cylinders number of cylinders, mod 65536
start starting sector of this partition.
+ ========= ==================================
error returns:
- EINVAL if the device is not a disk drive or floppy drive,
- or if the user passes a null pointer
+ - EINVAL
+
+ if the device is not a disk drive or floppy drive,
+ or if the user passes a null pointer
notes:
+ Not particularly useful with modern disk drives, whose geometry
+ is a polite fiction anyway. Modern drives are addressed
+ purely by sector number nowadays (lba addressing), and the
+ drive geometry is an abstraction which is actually subject
+ to change. Currently (as of Nov 2004), the geometry values
+ are the "bios" values -- presumably the values the drive had
+ when Linux first booted.
- Not particularly useful with modern disk drives, whose geometry
- is a polite fiction anyway. Modern drives are addressed
- purely by sector number nowadays (lba addressing), and the
- drive geometry is an abstraction which is actually subject
- to change. Currently (as of Nov 2004), the geometry values
- are the "bios" values -- presumably the values the drive had
- when Linux first booted.
+ In addition, the cylinders field of the hd_geometry is an
+ unsigned short, meaning that on most architectures, this
+ ioctl will not return a meaningful value on drives with more
+ than 65535 tracks.
- In addition, the cylinders field of the hd_geometry is an
- unsigned short, meaning that on most architectures, this
- ioctl will not return a meaningful value on drives with more
- than 65535 tracks.
+ The start field is unsigned long, meaning that it will not
+ contain a meaningful value for disks over 219 Gb in size.
- The start field is unsigned long, meaning that it will not
- contain a meaningful value for disks over 219 Gb in size.
+HDIO_GET_UNMASKINTR
+ get current unmask setting
-HDIO_GET_UNMASKINTR get current unmask setting
- usage:
+ usage::
long val;
+
ioctl(fd, HDIO_GET_UNMASKINTR, &val);
- inputs: none
+ inputs:
+ none
+
+
outputs:
- The value of the drive's current unmask setting
+ The value of the drive's current unmask setting
-HDIO_SET_UNMASKINTR permit other irqs during I/O
- usage:
+
+HDIO_SET_UNMASKINTR
+ permit other irqs during I/O
+
+
+ usage::
unsigned long val;
+
ioctl(fd, HDIO_SET_UNMASKINTR, val);
inputs:
- New value for unmask flag
+ New value for unmask flag
+
+
+
+ outputs:
+ none
+
- outputs: none
error return:
- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range [0 1]
- EBUSY Controller busy
+ - EINVAL (bdev != bdev->bd_contains) (not sure what this means)
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+ - EINVAL value out of range [0 1]
+ - EBUSY Controller busy
-HDIO_GET_MULTCOUNT get current IDE blockmode setting
+HDIO_GET_MULTCOUNT
+ get current IDE blockmode setting
- usage:
+
+ usage::
long val;
+
ioctl(fd, HDIO_GET_MULTCOUNT, &val);
- inputs: none
+ inputs:
+ none
+
+
outputs:
- The value of the current IDE block mode setting. This
- controls how many sectors the drive will transfer per
- interrupt.
+ The value of the current IDE block mode setting. This
+ controls how many sectors the drive will transfer per
+ interrupt.
-HDIO_SET_MULTCOUNT change IDE blockmode
+HDIO_SET_MULTCOUNT
+ change IDE blockmode
- usage:
+
+ usage::
int val;
+
ioctl(fd, HDIO_SET_MULTCOUNT, val);
inputs:
- New value for IDE block mode setting. This controls how many
- sectors the drive will transfer per interrupt.
+ New value for IDE block mode setting. This controls how many
+ sectors the drive will transfer per interrupt.
+
+ outputs:
+ none
+
- outputs: none
error return:
- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range supported by disk.
- EBUSY Controller busy or blockmode already set.
- EIO Drive did not accept new block mode.
+ - EINVAL (bdev != bdev->bd_contains) (not sure what this means)
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+ - EINVAL value out of range supported by disk.
+ - EBUSY Controller busy or blockmode already set.
+ - EIO Drive did not accept new block mode.
notes:
-
- Source code comments read:
+ Source code comments read::
This is tightly woven into the driver->do_special cannot
touch. DON'T do it again until a total personality rewrite
is committed.
If blockmode has already been set, this ioctl will fail with
- EBUSY
+ -EBUSY
-HDIO_GET_QDMA get use-qdma flag
+HDIO_GET_QDMA
+ get use-qdma flag
+
Not implemented, as of 2.6.8.1
-HDIO_SET_XFER set transfer rate via proc
+HDIO_SET_XFER
+ set transfer rate via proc
+
Not implemented, as of 2.6.8.1
-HDIO_OBSOLETE_IDENTITY OBSOLETE, DO NOT USE
+HDIO_OBSOLETE_IDENTITY
+ OBSOLETE, DO NOT USE
+
Same as HDIO_GET_IDENTITY (see below), except that it only
returns the first 142 bytes of drive identity information.
-HDIO_GET_IDENTITY get IDE identification info
+HDIO_GET_IDENTITY
+ get IDE identification info
- usage:
+
+ usage::
unsigned char identity[512];
+
ioctl(fd, HDIO_GET_IDENTITY, identity);
- inputs: none
+ inputs:
+ none
+
+
outputs:
-
- ATA drive identity information. For full description, see
- the IDENTIFY DEVICE and IDENTIFY PACKET DEVICE commands in
- the ATA specification.
+ ATA drive identity information. For full description, see
+ the IDENTIFY DEVICE and IDENTIFY PACKET DEVICE commands in
+ the ATA specification.
error returns:
- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- ENOMSG IDENTIFY DEVICE information not available
+ - EINVAL (bdev != bdev->bd_contains) (not sure what this means)
+ - ENOMSG IDENTIFY DEVICE information not available
notes:
+ Returns information that was obtained when the drive was
+ probed. Some of this information is subject to change, and
+ this ioctl does not re-probe the drive to update the
+ information.
- Returns information that was obtained when the drive was
- probed. Some of this information is subject to change, and
- this ioctl does not re-probe the drive to update the
- information.
+ This information is also available from /proc/ide/hdX/identify
- This information is also available from /proc/ide/hdX/identify
+HDIO_GET_KEEPSETTINGS
+ get keep-settings-on-reset flag
-HDIO_GET_KEEPSETTINGS get keep-settings-on-reset flag
- usage:
+ usage::
long val;
+
ioctl(fd, HDIO_GET_KEEPSETTINGS, &val);
- inputs: none
+ inputs:
+ none
+
+
outputs:
- The value of the current "keep settings" flag
+ The value of the current "keep settings" flag
+
+
notes:
+ When set, indicates that kernel should restore settings
+ after a drive reset.
- When set, indicates that kernel should restore settings
- after a drive reset.
+HDIO_SET_KEEPSETTINGS
+ keep ioctl settings on reset
-HDIO_SET_KEEPSETTINGS keep ioctl settings on reset
- usage:
+ usage::
long val;
+
ioctl(fd, HDIO_SET_KEEPSETTINGS, val);
inputs:
- New value for keep_settings flag
+ New value for keep_settings flag
+
+
+
+ outputs:
+ none
+
- outputs: none
error return:
- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range [0 1]
- EBUSY Controller busy
+ - EINVAL (bdev != bdev->bd_contains) (not sure what this means)
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+ - EINVAL value out of range [0 1]
+ - EBUSY Controller busy
-HDIO_GET_32BIT get current io_32bit setting
+HDIO_GET_32BIT
+ get current io_32bit setting
- usage:
+
+ usage::
long val;
+
ioctl(fd, HDIO_GET_32BIT, &val);
- inputs: none
+ inputs:
+ none
+
+
outputs:
- The value of the current io_32bit setting
+ The value of the current io_32bit setting
+
+
notes:
+ 0=16-bit, 1=32-bit, 2,3 = 32bit+sync
- 0=16-bit, 1=32-bit, 2,3 = 32bit+sync
-HDIO_GET_NOWERR get ignore-write-error flag
- usage:
+HDIO_GET_NOWERR
+ get ignore-write-error flag
+
+
+ usage::
long val;
+
ioctl(fd, HDIO_GET_NOWERR, &val);
- inputs: none
+ inputs:
+ none
+
+
outputs:
- The value of the current ignore-write-error flag
+ The value of the current ignore-write-error flag
-HDIO_GET_DMA get use-dma flag
- usage:
+
+HDIO_GET_DMA
+ get use-dma flag
+
+
+ usage::
long val;
+
ioctl(fd, HDIO_GET_DMA, &val);
- inputs: none
+ inputs:
+ none
+
+
outputs:
- The value of the current use-dma flag
+ The value of the current use-dma flag
-HDIO_GET_NICE get nice flags
- usage:
+
+HDIO_GET_NICE
+ get nice flags
+
+
+ usage::
long nice;
+
ioctl(fd, HDIO_GET_NICE, &nice);
- inputs: none
+ inputs:
+ none
+
+
outputs:
+ The drive's "nice" values.
+
- The drive's "nice" values.
notes:
+ Per-drive flags which determine when the system will give more
+ bandwidth to other devices sharing the same IDE bus.
- Per-drive flags which determine when the system will give more
- bandwidth to other devices sharing the same IDE bus.
- See <linux/hdreg.h>, near symbol IDE_NICE_DSC_OVERLAP.
+ See <linux/hdreg.h>, near symbol IDE_NICE_DSC_OVERLAP.
-HDIO_SET_NICE set nice flags
+HDIO_SET_NICE
+ set nice flags
- usage:
+
+ usage::
unsigned long nice;
+
...
ioctl(fd, HDIO_SET_NICE, nice);
inputs:
- bitmask of nice flags.
+ bitmask of nice flags.
+
+
+
+ outputs:
+ none
+
- outputs: none
error returns:
- EACCES Access denied: requires CAP_SYS_ADMIN
- EPERM Flags other than DSC_OVERLAP and NICE_1 set.
- EPERM DSC_OVERLAP specified but not supported by drive
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+ - EPERM Flags other than DSC_OVERLAP and NICE_1 set.
+ - EPERM DSC_OVERLAP specified but not supported by drive
notes:
+ This ioctl sets the DSC_OVERLAP and NICE_1 flags from values
+ provided by the user.
- This ioctl sets the DSC_OVERLAP and NICE_1 flags from values
- provided by the user.
+ Nice flags are listed in <linux/hdreg.h>, starting with
+ IDE_NICE_DSC_OVERLAP. These values represent shifts.
- Nice flags are listed in <linux/hdreg.h>, starting with
- IDE_NICE_DSC_OVERLAP. These values represent shifts.
+HDIO_GET_WCACHE
+ get write cache mode on|off
-HDIO_GET_WCACHE get write cache mode on|off
- usage:
+ usage::
long val;
+
ioctl(fd, HDIO_GET_WCACHE, &val);
- inputs: none
+ inputs:
+ none
+
+
outputs:
- The value of the current write cache mode
+ The value of the current write cache mode
-HDIO_GET_ACOUSTIC get acoustic value
- usage:
+
+HDIO_GET_ACOUSTIC
+ get acoustic value
+
+
+ usage::
long val;
+
ioctl(fd, HDIO_GET_ACOUSTIC, &val);
- inputs: none
+ inputs:
+ none
+
+
outputs:
- The value of the current acoustic settings
+ The value of the current acoustic settings
+
+
notes:
+ See HDIO_SET_ACOUSTIC
+
- See HDIO_SET_ACOUSTIC
HDIO_GET_ADDRESS
+ usage::
- usage:
long val;
+
ioctl(fd, HDIO_GET_ADDRESS, &val);
- inputs: none
+ inputs:
+ none
+
+
outputs:
- The value of the current addressing mode:
- 0 = 28-bit
- 1 = 48-bit
- 2 = 48-bit doing 28-bit
- 3 = 64-bit
+ The value of the current addressing mode:
+ = ===================
+ 0 28-bit
+ 1 48-bit
+ 2 48-bit doing 28-bit
+ 3 64-bit
+ = ===================
-HDIO_GET_BUSSTATE get the bus state of the hwif
- usage:
+HDIO_GET_BUSSTATE
+ get the bus state of the hwif
+
+
+ usage::
long state;
+
ioctl(fd, HDIO_SCAN_HWIF, &state);
- inputs: none
+ inputs:
+ none
+
+
outputs:
- Current power state of the IDE bus. One of BUSSTATE_OFF,
- BUSSTATE_ON, or BUSSTATE_TRISTATE
+ Current power state of the IDE bus. One of BUSSTATE_OFF,
+ BUSSTATE_ON, or BUSSTATE_TRISTATE
error returns:
- EACCES Access denied: requires CAP_SYS_ADMIN
+ - EACCES Access denied: requires CAP_SYS_ADMIN
-HDIO_SET_BUSSTATE set the bus state of the hwif
+HDIO_SET_BUSSTATE
+ set the bus state of the hwif
- usage:
+
+ usage::
int state;
+
...
ioctl(fd, HDIO_SCAN_HWIF, state);
inputs:
- Desired IDE power state. One of BUSSTATE_OFF, BUSSTATE_ON,
- or BUSSTATE_TRISTATE
+ Desired IDE power state. One of BUSSTATE_OFF, BUSSTATE_ON,
+ or BUSSTATE_TRISTATE
+
+ outputs:
+ none
+
- outputs: none
error returns:
- EACCES Access denied: requires CAP_SYS_RAWIO
- EOPNOTSUPP Hardware interface does not support bus power control
+ - EACCES Access denied: requires CAP_SYS_RAWIO
+ - EOPNOTSUPP Hardware interface does not support bus power control
-HDIO_TRISTATE_HWIF execute a channel tristate
+HDIO_TRISTATE_HWIF
+ execute a channel tristate
+
Not implemented, as of 2.6.8.1. See HDIO_SET_BUSSTATE
-HDIO_DRIVE_RESET execute a device reset
+HDIO_DRIVE_RESET
+ execute a device reset
- usage:
+
+ usage::
int args[3]
+
...
ioctl(fd, HDIO_DRIVE_RESET, args);
- inputs: none
+ inputs:
+ none
+
+
+
+ outputs:
+ none
+
- outputs: none
error returns:
- EACCES Access denied: requires CAP_SYS_ADMIN
- ENXIO No such device: phy dead or ctl_addr == 0
- EIO I/O error: reset timed out or hardware error
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+ - ENXIO No such device: phy dead or ctl_addr == 0
+ - EIO I/O error: reset timed out or hardware error
notes:
- Execute a reset on the device as soon as the current IO
- operation has completed.
+ - Execute a reset on the device as soon as the current IO
+ operation has completed.
- Executes an ATAPI soft reset if applicable, otherwise
- executes an ATA soft reset on the controller.
+ - Executes an ATAPI soft reset if applicable, otherwise
+ executes an ATA soft reset on the controller.
-HDIO_DRIVE_TASKFILE execute raw taskfile
+HDIO_DRIVE_TASKFILE
+ execute raw taskfile
- Note: If you don't have a copy of the ANSI ATA specification
- handy, you should probably ignore this ioctl.
- Execute an ATA disk command directly by writing the "taskfile"
- registers of the drive. Requires ADMIN and RAWIO access
- privileges.
+ Note:
+ If you don't have a copy of the ANSI ATA specification
+ handy, you should probably ignore this ioctl.
- usage:
+ - Execute an ATA disk command directly by writing the "taskfile"
+ registers of the drive. Requires ADMIN and RAWIO access
+ privileges.
+
+ usage::
struct {
+
ide_task_request_t req_task;
u8 outbuf[OUTPUT_SIZE];
u8 inbuf[INPUT_SIZE];
@@ -548,6 +700,7 @@ HDIO_DRIVE_TASKFILE execute raw taskfile
(See below for details on memory area passed to ioctl.)
+ ============ ===================================================
io_ports[8] values to be written to taskfile registers
hob_ports[8] high-order bytes, for extended commands.
out_flags flags indicating which registers are valid
@@ -557,24 +710,29 @@ HDIO_DRIVE_TASKFILE execute raw taskfile
out_size size of output buffer
outbuf buffer of data to be transmitted to disk
inbuf buffer of data to be received from disk (see [1])
+ ============ ===================================================
outputs:
+ =========== ====================================================
io_ports[] values returned in the taskfile registers
hob_ports[] high-order bytes, for extended commands.
out_flags flags indicating which registers are valid (see [2])
in_flags flags indicating which registers should be returned
outbuf buffer of data to be transmitted to disk (see [1])
inbuf buffer of data to be received from disk
+ =========== ====================================================
error returns:
- EACCES CAP_SYS_ADMIN or CAP_SYS_RAWIO privilege not set.
- ENOMSG Device is not a disk drive.
- ENOMEM Unable to allocate memory for task
- EFAULT req_cmd == TASKFILE_IN_OUT (not implemented as of 2.6.8)
- EPERM req_cmd == TASKFILE_MULTI_OUT and drive
- multi-count not yet set.
- EIO Drive failed the command.
+ - EACCES CAP_SYS_ADMIN or CAP_SYS_RAWIO privilege not set.
+ - ENOMSG Device is not a disk drive.
+ - ENOMEM Unable to allocate memory for task
+ - EFAULT req_cmd == TASKFILE_IN_OUT (not implemented as of 2.6.8)
+ - EPERM
+
+ req_cmd == TASKFILE_MULTI_OUT and drive
+ multi-count not yet set.
+ - EIO Drive failed the command.
notes:
@@ -615,22 +773,25 @@ HDIO_DRIVE_TASKFILE execute raw taskfile
Command is passed to the disk drive via the ide_task_request_t
structure, which contains these fields:
+ ============ ===============================================
io_ports[8] values for the taskfile registers
hob_ports[8] high-order bytes, for extended commands
out_flags flags indicating which entries in the
- io_ports[] and hob_ports[] arrays
+ io_ports[] and hob_ports[] arrays
contain valid values. Type ide_reg_valid_t.
in_flags flags indicating which entries in the
- io_ports[] and hob_ports[] arrays
+ io_ports[] and hob_ports[] arrays
are expected to contain valid values
on return.
data_phase See below
req_cmd Command type, see below
out_size output (user->drive) buffer size, bytes
in_size input (drive->user) buffer size, bytes
+ ============ ===============================================
When out_flags is zero, the following registers are loaded.
+ ============ ===============================================
HOB_FEATURE If the drive supports LBA48
HOB_NSECTOR If the drive supports LBA48
HOB_SECTOR If the drive supports LBA48
@@ -644,9 +805,11 @@ HDIO_DRIVE_TASKFILE execute raw taskfile
SELECT First, masked with 0xE0 if LBA48, 0xEF
otherwise; then, or'ed with the default
value of SELECT.
+ ============ ===============================================
If any bit in out_flags is set, the following registers are loaded.
+ ============ ===============================================
HOB_DATA If out_flags.b.data is set. HOB_DATA will
travel on DD8-DD15 on little endian machines
and on DD0-DD7 on big endian machines.
@@ -664,6 +827,7 @@ HDIO_DRIVE_TASKFILE execute raw taskfile
HCYL If out_flags.b.hcyl is set
SELECT Or'ed with the default value of SELECT and
loaded regardless of out_flags.b.select.
+ ============ ===============================================
Taskfile registers are read back from the drive into
{io|hob}_ports[] after the command completes iff one of the
@@ -674,6 +838,7 @@ HDIO_DRIVE_TASKFILE execute raw taskfile
2. One or more than one bits are set in out_flags.
3. The requested data_phase is TASKFILE_NO_DATA.
+ ============ ===============================================
HOB_DATA If in_flags.b.data is set. It will contain
DD8-DD15 on little endian machines and
DD0-DD7 on big endian machines.
@@ -689,10 +854,12 @@ HDIO_DRIVE_TASKFILE execute raw taskfile
SECTOR
LCYL
HCYL
+ ============ ===============================================
The data_phase field describes the data transfer to be
performed. Value is one of:
+ =================== ========================================
TASKFILE_IN
TASKFILE_MULTI_IN
TASKFILE_OUT
@@ -708,15 +875,18 @@ HDIO_DRIVE_TASKFILE execute raw taskfile
TASKFILE_P_OUT unimplemented
TASKFILE_P_OUT_DMA unimplemented
TASKFILE_P_OUT_DMAQ unimplemented
+ =================== ========================================
The req_cmd field classifies the command type. It may be
one of:
+ ======================== =======================================
IDE_DRIVE_TASK_NO_DATA
IDE_DRIVE_TASK_SET_XFER unimplemented
IDE_DRIVE_TASK_IN
IDE_DRIVE_TASK_OUT unimplemented
IDE_DRIVE_TASK_RAW_WRITE
+ ======================== =======================================
[6] Do not access {in|out}_flags->all except for resetting
all the bits. Always access individual bit fields. ->all
@@ -726,45 +896,57 @@ HDIO_DRIVE_TASKFILE execute raw taskfile
-HDIO_DRIVE_CMD execute a special drive command
+HDIO_DRIVE_CMD
+ execute a special drive command
+
Note: If you don't have a copy of the ANSI ATA specification
handy, you should probably ignore this ioctl.
- usage:
+ usage::
u8 args[4+XFER_SIZE];
+
...
ioctl(fd, HDIO_DRIVE_CMD, args);
inputs:
+ Commands other than WIN_SMART:
- Commands other than WIN_SMART
+ ======= =======
args[0] COMMAND
args[1] NSECTOR
args[2] FEATURE
args[3] NSECTOR
+ ======= =======
- WIN_SMART
+ WIN_SMART:
+
+ ======= =======
args[0] COMMAND
args[1] SECTOR
args[2] FEATURE
args[3] NSECTOR
+ ======= =======
outputs:
+ args[] buffer is filled with register values followed by any
+
- args[] buffer is filled with register values followed by any
data returned by the disk.
+
+ ======== ====================================================
args[0] status
args[1] error
args[2] NSECTOR
args[3] undefined
args[4+] NSECTOR * 512 bytes of data returned by the command.
+ ======== ====================================================
error returns:
- EACCES Access denied: requires CAP_SYS_RAWIO
- ENOMEM Unable to allocate memory for task
- EIO Drive reports error
+ - EACCES Access denied: requires CAP_SYS_RAWIO
+ - ENOMEM Unable to allocate memory for task
+ - EIO Drive reports error
notes:
@@ -789,20 +971,24 @@ HDIO_DRIVE_CMD execute a special drive command
-HDIO_DRIVE_TASK execute task and special drive command
+HDIO_DRIVE_TASK
+ execute task and special drive command
+
Note: If you don't have a copy of the ANSI ATA specification
handy, you should probably ignore this ioctl.
- usage:
+ usage::
u8 args[7];
+
...
ioctl(fd, HDIO_DRIVE_TASK, args);
inputs:
+ Taskfile register values:
- Taskfile register values:
+ ======= =======
args[0] COMMAND
args[1] FEATURE
args[2] NSECTOR
@@ -810,10 +996,13 @@ HDIO_DRIVE_TASK execute task and special drive command
args[4] LCYL
args[5] HCYL
args[6] SELECT
+ ======= =======
outputs:
+ Taskfile register values:
- Taskfile register values:
+
+ ======= =======
args[0] status
args[1] error
args[2] NSECTOR
@@ -821,12 +1010,13 @@ HDIO_DRIVE_TASK execute task and special drive command
args[4] LCYL
args[5] HCYL
args[6] SELECT
+ ======= =======
error returns:
- EACCES Access denied: requires CAP_SYS_RAWIO
- ENOMEM Unable to allocate memory for task
- ENOMSG Device is not a disk drive.
- EIO Drive failed the command.
+ - EACCES Access denied: requires CAP_SYS_RAWIO
+ - ENOMEM Unable to allocate memory for task
+ - ENOMSG Device is not a disk drive.
+ - EIO Drive failed the command.
notes:
@@ -836,236 +1026,317 @@ HDIO_DRIVE_TASK execute task and special drive command
-HDIO_DRIVE_CMD_AEB HDIO_DRIVE_TASK
+HDIO_DRIVE_CMD_AEB
+ HDIO_DRIVE_TASK
+
Not implemented, as of 2.6.8.1
-HDIO_SET_32BIT change io_32bit flags
+HDIO_SET_32BIT
+ change io_32bit flags
- usage:
+
+ usage::
int val;
+
ioctl(fd, HDIO_SET_32BIT, val);
inputs:
- New value for io_32bit flag
+ New value for io_32bit flag
+
+
+
+ outputs:
+ none
+
- outputs: none
error return:
- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range [0 3]
- EBUSY Controller busy
+ - EINVAL (bdev != bdev->bd_contains) (not sure what this means)
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+ - EINVAL value out of range [0 3]
+ - EBUSY Controller busy
-HDIO_SET_NOWERR change ignore-write-error flag
+HDIO_SET_NOWERR
+ change ignore-write-error flag
- usage:
+
+ usage::
int val;
+
ioctl(fd, HDIO_SET_NOWERR, val);
inputs:
- New value for ignore-write-error flag. Used for ignoring
+ New value for ignore-write-error flag. Used for ignoring
+
+
WRERR_STAT
- outputs: none
+ outputs:
+ none
+
+
error return:
- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range [0 1]
- EBUSY Controller busy
+ - EINVAL (bdev != bdev->bd_contains) (not sure what this means)
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+ - EINVAL value out of range [0 1]
+ - EBUSY Controller busy
-HDIO_SET_DMA change use-dma flag
+HDIO_SET_DMA
+ change use-dma flag
- usage:
+
+ usage::
long val;
+
ioctl(fd, HDIO_SET_DMA, val);
inputs:
- New value for use-dma flag
+ New value for use-dma flag
+
+
+
+ outputs:
+ none
+
- outputs: none
error return:
- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range [0 1]
- EBUSY Controller busy
+ - EINVAL (bdev != bdev->bd_contains) (not sure what this means)
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+ - EINVAL value out of range [0 1]
+ - EBUSY Controller busy
-HDIO_SET_PIO_MODE reconfig interface to new speed
+HDIO_SET_PIO_MODE
+ reconfig interface to new speed
- usage:
+
+ usage::
long val;
+
ioctl(fd, HDIO_SET_PIO_MODE, val);
inputs:
- New interface speed.
+ New interface speed.
+
+
+
+ outputs:
+ none
+
- outputs: none
error return:
- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range [0 255]
- EBUSY Controller busy
+ - EINVAL (bdev != bdev->bd_contains) (not sure what this means)
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+ - EINVAL value out of range [0 255]
+ - EBUSY Controller busy
-HDIO_SCAN_HWIF register and (re)scan interface
+HDIO_SCAN_HWIF
+ register and (re)scan interface
- usage:
+
+ usage::
int args[3]
+
...
ioctl(fd, HDIO_SCAN_HWIF, args);
inputs:
+
+ ======= =========================
args[0] io address to probe
+
+
args[1] control address to probe
args[2] irq number
+ ======= =========================
+
+ outputs:
+ none
+
- outputs: none
error returns:
- EACCES Access denied: requires CAP_SYS_RAWIO
- EIO Probe failed.
+ - EACCES Access denied: requires CAP_SYS_RAWIO
+ - EIO Probe failed.
notes:
+ This ioctl initializes the addresses and irq for a disk
+ controller, probes for drives, and creates /proc/ide
+ interfaces as appropriate.
- This ioctl initializes the addresses and irq for a disk
- controller, probes for drives, and creates /proc/ide
- interfaces as appropriate.
+HDIO_UNREGISTER_HWIF
+ unregister interface
-HDIO_UNREGISTER_HWIF unregister interface
- usage:
+ usage::
int index;
+
ioctl(fd, HDIO_UNREGISTER_HWIF, index);
inputs:
- index index of hardware interface to unregister
+ index index of hardware interface to unregister
+
+
+
+ outputs:
+ none
+
- outputs: none
error returns:
- EACCES Access denied: requires CAP_SYS_RAWIO
+ - EACCES Access denied: requires CAP_SYS_RAWIO
notes:
+ This ioctl removes a hardware interface from the kernel.
- This ioctl removes a hardware interface from the kernel.
+ Currently (2.6.8) this ioctl silently fails if any drive on
+ the interface is busy.
- Currently (2.6.8) this ioctl silently fails if any drive on
- the interface is busy.
+HDIO_SET_WCACHE
+ change write cache enable-disable
-HDIO_SET_WCACHE change write cache enable-disable
- usage:
+ usage::
int val;
+
ioctl(fd, HDIO_SET_WCACHE, val);
inputs:
- New value for write cache enable
+ New value for write cache enable
+
+
+
+ outputs:
+ none
+
- outputs: none
error return:
- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range [0 1]
- EBUSY Controller busy
+ - EINVAL (bdev != bdev->bd_contains) (not sure what this means)
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+ - EINVAL value out of range [0 1]
+ - EBUSY Controller busy
-HDIO_SET_ACOUSTIC change acoustic behavior
+HDIO_SET_ACOUSTIC
+ change acoustic behavior
- usage:
+
+ usage::
int val;
+
ioctl(fd, HDIO_SET_ACOUSTIC, val);
inputs:
- New value for drive acoustic settings
+ New value for drive acoustic settings
+
+
+
+ outputs:
+ none
+
- outputs: none
error return:
- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range [0 254]
- EBUSY Controller busy
+ - EINVAL (bdev != bdev->bd_contains) (not sure what this means)
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+ - EINVAL value out of range [0 254]
+ - EBUSY Controller busy
-HDIO_SET_QDMA change use-qdma flag
+HDIO_SET_QDMA
+ change use-qdma flag
+
Not implemented, as of 2.6.8.1
-HDIO_SET_ADDRESS change lba addressing modes
+HDIO_SET_ADDRESS
+ change lba addressing modes
- usage:
+
+ usage::
int val;
+
ioctl(fd, HDIO_SET_ADDRESS, val);
inputs:
- New value for addressing mode
- 0 = 28-bit
- 1 = 48-bit
- 2 = 48-bit doing 28-bit
+ New value for addressing mode
+
+ = ===================
+ 0 28-bit
+ 1 48-bit
+ 2 48-bit doing 28-bit
+ = ===================
+
+ outputs:
+ none
+
- outputs: none
error return:
- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range [0 2]
- EBUSY Controller busy
- EIO Drive does not support lba48 mode.
+ - EINVAL (bdev != bdev->bd_contains) (not sure what this means)
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+ - EINVAL value out of range [0 2]
+ - EBUSY Controller busy
+ - EIO Drive does not support lba48 mode.
HDIO_SET_IDE_SCSI
+ usage::
- usage:
long val;
+
ioctl(fd, HDIO_SET_IDE_SCSI, val);
inputs:
- New value for scsi emulation mode (?)
+ New value for scsi emulation mode (?)
+
+
+
+ outputs:
+ none
+
- outputs: none
error return:
- EINVAL (bdev != bdev->bd_contains) (not sure what this means)
- EACCES Access denied: requires CAP_SYS_ADMIN
- EINVAL value out of range [0 1]
- EBUSY Controller busy
+ - EINVAL (bdev != bdev->bd_contains) (not sure what this means)
+ - EACCES Access denied: requires CAP_SYS_ADMIN
+ - EINVAL value out of range [0 1]
+ - EBUSY Controller busy
HDIO_SET_SCSI_IDE
-
Not implemented, as of 2.6.8.1
-
-
diff --git a/Documentation/ioctl/index.rst b/Documentation/ioctl/index.rst
new file mode 100644
index 000000000000..1a6f437566e3
--- /dev/null
+++ b/Documentation/ioctl/index.rst
@@ -0,0 +1,16 @@
+:orphan:
+
+======
+IOCTLs
+======
+
+.. toctree::
+ :maxdepth: 1
+
+ ioctl-number
+
+ botching-up-ioctls
+ ioctl-decoding
+
+ cdrom
+ hdio
diff --git a/Documentation/ioctl/ioctl-decoding.txt b/Documentation/ioctl/ioctl-decoding.rst
similarity index 54%
rename from Documentation/ioctl/ioctl-decoding.txt
rename to Documentation/ioctl/ioctl-decoding.rst
index e35efb0cec2e..380d6bb3e3ea 100644
--- a/Documentation/ioctl/ioctl-decoding.txt
+++ b/Documentation/ioctl/ioctl-decoding.rst
@@ -1,10 +1,16 @@
+==============================
+Decoding an IOCTL Magic Number
+==============================
+
To decode a hex IOCTL code:
Most architectures use this generic format, but check
include/ARCH/ioctl.h for specifics, e.g. powerpc
uses 3 bits to encode read/write and 13 bits for size.
- bits meaning
+ ====== ==================================
+ bits meaning
+ ====== ==================================
31-30 00 - no parameters: uses _IO macro
10 - read: _IOR
01 - write: _IOW
@@ -16,9 +22,10 @@ uses 3 bits to encode read/write and 13 bits for size.
unique to each driver
7-0 function #
+ ====== ==================================
So for example 0x82187201 is a read with arg length of 0x218,
-character 'r' function 1. Grepping the source reveals this is:
+character 'r' function 1. Grepping the source reveals this is::
-#define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct dirent [2])
+ #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct dirent [2])
diff --git a/drivers/gpu/drm/drm_ioctl.c b/drivers/gpu/drm/drm_ioctl.c
index ce8a70875bd5..ae44a1a31d9f 100644
--- a/drivers/gpu/drm/drm_ioctl.c
+++ b/drivers/gpu/drm/drm_ioctl.c
@@ -720,7 +720,7 @@ static const struct drm_ioctl_desc drm_ioctls[] = {
* };
*
* Please make sure that you follow all the best practices from
- * ``Documentation/ioctl/botching-up-ioctls.txt``. Note that drm_ioctl()
+ * ``Documentation/ioctl/botching-up-ioctls.rst``. Note that drm_ioctl()
* automatically zero-extends structures, hence make sure you can add more stuff
* at the end, i.e. don't put a variable sized array there.
*
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 66/79] docs: namespaces: convert to ReST
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (55 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 65/79] docs: ioctl: convert to ReST Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 67/79] docs: nfc: " Mauro Carvalho Chehab
` (16 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet
Rename the namespaces documentation files to ReST, add an
index for them and adjust in order to produce a nice html
output via the Sphinx build system.
There are two upper case file names. Rename them to
lower case, as we're working to avoid upper case file
names at Documentation.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
...{compatibility-list.txt => compatibility-list.rst} | 9 +++++++--
Documentation/namespaces/index.rst | 11 +++++++++++
.../{resource-control.txt => resource-control.rst} | 4 ++++
3 files changed, 22 insertions(+), 2 deletions(-)
rename Documentation/namespaces/{compatibility-list.txt => compatibility-list.rst} (86%)
create mode 100644 Documentation/namespaces/index.rst
rename Documentation/namespaces/{resource-control.txt => resource-control.rst} (89%)
diff --git a/Documentation/namespaces/compatibility-list.txt b/Documentation/namespaces/compatibility-list.rst
similarity index 86%
rename from Documentation/namespaces/compatibility-list.txt
rename to Documentation/namespaces/compatibility-list.rst
index defc5589bfcd..3af5b05156e7 100644
--- a/Documentation/namespaces/compatibility-list.txt
+++ b/Documentation/namespaces/compatibility-list.rst
@@ -1,4 +1,6 @@
- Namespaces compatibility list
+=============================
+Namespaces compatibility list
+=============================
This document contains the information about the problems user
may have when creating tasks living in different namespaces.
@@ -7,13 +9,16 @@ Here's the summary. This matrix shows the known problems, that
occur when tasks share some namespace (the columns) while living
in different other namespaces (the rows):
- UTS IPC VFS PID User Net
+==== === === === === ==== ===
+- UTS IPC VFS PID User Net
+==== === === === === ==== ===
UTS X
IPC X 1
VFS X
PID 1 1 X
User 2 2 X
Net X
+==== === === === === ==== ===
1. Both the IPC and the PID namespaces provide IDs to address
object inside the kernel. E.g. semaphore with IPCID or
diff --git a/Documentation/namespaces/index.rst b/Documentation/namespaces/index.rst
new file mode 100644
index 000000000000..bf40625dd11a
--- /dev/null
+++ b/Documentation/namespaces/index.rst
@@ -0,0 +1,11 @@
+:orphan:
+
+==========
+Namespaces
+==========
+
+.. toctree::
+ :maxdepth: 1
+
+ compatibility-list
+ resource-control
diff --git a/Documentation/namespaces/resource-control.txt b/Documentation/namespaces/resource-control.rst
similarity index 89%
rename from Documentation/namespaces/resource-control.txt
rename to Documentation/namespaces/resource-control.rst
index abc13c394738..369556e00f0c 100644
--- a/Documentation/namespaces/resource-control.txt
+++ b/Documentation/namespaces/resource-control.rst
@@ -1,3 +1,7 @@
+===========================
+Namespaces research control
+===========================
+
There are a lot of kinds of objects in the kernel that don't have
individual limits or that have limits that are ineffective when a set
of processes is allowed to switch user ids. With user namespaces
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 67/79] docs: nfc: convert to ReST
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (56 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 66/79] docs: namespaces: " Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 68/79] docs: md: " Mauro Carvalho Chehab
` (15 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet
Rename the nfc documentation files to ReST, add an
index for them and adjust in order to produce a nice html
output via the Sphinx build system.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/nfc/index.rst | 11 ++
.../nfc/{nfc-hci.txt => nfc-hci.rst} | 163 ++++++++++--------
.../nfc/{nfc-pn544.txt => nfc-pn544.rst} | 6 +-
3 files changed, 107 insertions(+), 73 deletions(-)
create mode 100644 Documentation/nfc/index.rst
rename Documentation/nfc/{nfc-hci.txt => nfc-hci.rst} (71%)
rename Documentation/nfc/{nfc-pn544.txt => nfc-pn544.rst} (82%)
diff --git a/Documentation/nfc/index.rst b/Documentation/nfc/index.rst
new file mode 100644
index 000000000000..4f4947fce80d
--- /dev/null
+++ b/Documentation/nfc/index.rst
@@ -0,0 +1,11 @@
+:orphan:
+
+========================
+Near Field Communication
+========================
+
+.. toctree::
+ :maxdepth: 1
+
+ nfc-hci
+ nfc-pn544
diff --git a/Documentation/nfc/nfc-hci.txt b/Documentation/nfc/nfc-hci.rst
similarity index 71%
rename from Documentation/nfc/nfc-hci.txt
rename to Documentation/nfc/nfc-hci.rst
index 0dc078cab972..eb8a1a14e919 100644
--- a/Documentation/nfc/nfc-hci.txt
+++ b/Documentation/nfc/nfc-hci.rst
@@ -1,7 +1,9 @@
+========================
HCI backend for NFC Core
+========================
-Author: Eric Lapuyade, Samuel Ortiz
-Contact: eric.lapuyade@intel.com, samuel.ortiz@intel.com
+- Author: Eric Lapuyade, Samuel Ortiz
+- Contact: eric.lapuyade@intel.com, samuel.ortiz@intel.com
General
-------
@@ -24,12 +26,13 @@ HCI events can also be received from the host controller. They will be handled
and a translation will be forwarded to NFC Core as needed. There are hooks to
let the HCI driver handle proprietary events or override standard behavior.
HCI uses 2 execution contexts:
+
- one for executing commands : nfc_hci_msg_tx_work(). Only one command
-can be executing at any given moment.
+ can be executing at any given moment.
- one for dispatching received events and commands : nfc_hci_msg_rx_work().
-HCI Session initialization:
----------------------------
+HCI Session initialization
+--------------------------
The Session initialization is an HCI standard which must unfortunately
support proprietary gates. This is the reason why the driver will pass a list
@@ -58,9 +61,9 @@ HCI Management
--------------
A driver would normally register itself with HCI and provide the following
-entry points:
+entry points::
-struct nfc_hci_ops {
+ struct nfc_hci_ops {
int (*open)(struct nfc_hci_dev *hdev);
void (*close)(struct nfc_hci_dev *hdev);
int (*hci_ready) (struct nfc_hci_dev *hdev);
@@ -82,38 +85,38 @@ struct nfc_hci_ops {
struct nfc_target *target);
int (*event_received)(struct nfc_hci_dev *hdev, u8 gate, u8 event,
struct sk_buff *skb);
-};
+ };
- open() and close() shall turn the hardware on and off.
- hci_ready() is an optional entry point that is called right after the hci
-session has been set up. The driver can use it to do additional initialization
-that must be performed using HCI commands.
+ session has been set up. The driver can use it to do additional initialization
+ that must be performed using HCI commands.
- xmit() shall simply write a frame to the physical link.
- start_poll() is an optional entrypoint that shall set the hardware in polling
-mode. This must be implemented only if the hardware uses proprietary gates or a
-mechanism slightly different from the HCI standard.
+ mode. This must be implemented only if the hardware uses proprietary gates or a
+ mechanism slightly different from the HCI standard.
- dep_link_up() is called after a p2p target has been detected, to finish
-the p2p connection setup with hardware parameters that need to be passed back
-to nfc core.
+ the p2p connection setup with hardware parameters that need to be passed back
+ to nfc core.
- dep_link_down() is called to bring the p2p link down.
- target_from_gate() is an optional entrypoint to return the nfc protocols
-corresponding to a proprietary gate.
+ corresponding to a proprietary gate.
- complete_target_discovered() is an optional entry point to let the driver
-perform additional proprietary processing necessary to auto activate the
-discovered target.
+ perform additional proprietary processing necessary to auto activate the
+ discovered target.
- im_transceive() must be implemented by the driver if proprietary HCI commands
-are required to send data to the tag. Some tag types will require custom
-commands, others can be written to using the standard HCI commands. The driver
-can check the tag type and either do proprietary processing, or return 1 to ask
-for standard processing. The data exchange command itself must be sent
-asynchronously.
+ are required to send data to the tag. Some tag types will require custom
+ commands, others can be written to using the standard HCI commands. The driver
+ can check the tag type and either do proprietary processing, or return 1 to ask
+ for standard processing. The data exchange command itself must be sent
+ asynchronously.
- tm_send() is called to send data in the case of a p2p connection
- check_presence() is an optional entry point that will be called regularly
-by the core to check that an activated tag is still in the field. If this is
-not implemented, the core will not be able to push tag_lost events to the user
-space
+ by the core to check that an activated tag is still in the field. If this is
+ not implemented, the core will not be able to push tag_lost events to the user
+ space
- event_received() is called to handle an event coming from the chip. Driver
-can handle the event or return 1 to let HCI attempt standard processing.
+ can handle the event or return 1 to let HCI attempt standard processing.
On the rx path, the driver is responsible to push incoming HCP frames to HCI
using nfc_hci_recv_frame(). HCI will take care of re-aggregation and handling
@@ -122,20 +125,23 @@ This must be done from a context that can sleep.
PHY Management
--------------
-The physical link (i2c, ...) management is defined by the following structure:
+The physical link (i2c, ...) management is defined by the following structure::
-struct nfc_phy_ops {
+ struct nfc_phy_ops {
int (*write)(void *dev_id, struct sk_buff *skb);
int (*enable)(void *dev_id);
void (*disable)(void *dev_id);
-};
+ };
-enable(): turn the phy on (power on), make it ready to transfer data
-disable(): turn the phy off
-write(): Send a data frame to the chip. Note that to enable higher
-layers such as an llc to store the frame for re-emission, this function must
-not alter the skb. It must also not return a positive result (return 0 for
-success, negative for failure).
+enable():
+ turn the phy on (power on), make it ready to transfer data
+disable():
+ turn the phy off
+write():
+ Send a data frame to the chip. Note that to enable higher
+ layers such as an llc to store the frame for re-emission, this
+ function must not alter the skb. It must also not return a positive
+ result (return 0 for success, negative for failure).
Data coming from the chip shall be sent directly to nfc_hci_recv_frame().
@@ -145,9 +151,9 @@ LLC
Communication between the CPU and the chip often requires some link layer
protocol. Those are isolated as modules managed by the HCI layer. There are
currently two modules : nop (raw transfert) and shdlc.
-A new llc must implement the following functions:
+A new llc must implement the following functions::
-struct nfc_llc_ops {
+ struct nfc_llc_ops {
void *(*init) (struct nfc_hci_dev *hdev, xmit_to_drv_t xmit_to_drv,
rcv_to_hci_t rcv_to_hci, int tx_headroom,
int tx_tailroom, int *rx_headroom, int *rx_tailroom,
@@ -157,17 +163,25 @@ struct nfc_llc_ops {
int (*stop) (struct nfc_llc *llc);
void (*rcv_from_drv) (struct nfc_llc *llc, struct sk_buff *skb);
int (*xmit_from_hci) (struct nfc_llc *llc, struct sk_buff *skb);
-};
+ };
-- init() : allocate and init your private storage
-- deinit() : cleanup
-- start() : establish the logical connection
-- stop () : terminate the logical connection
-- rcv_from_drv() : handle data coming from the chip, going to HCI
-- xmit_from_hci() : handle data sent by HCI, going to the chip
+init():
+ allocate and init your private storage
+deinit():
+ cleanup
+start():
+ establish the logical connection
+stop ():
+ terminate the logical connection
+rcv_from_drv():
+ handle data coming from the chip, going to HCI
+xmit_from_hci():
+ handle data sent by HCI, going to the chip
The llc must be registered with nfc before it can be used. Do that by
-calling nfc_llc_register(const char *name, struct nfc_llc_ops *ops);
+calling::
+
+ nfc_llc_register(const char *name, struct nfc_llc_ops *ops);
Again, note that the llc does not handle the physical link. It is thus very
easy to mix any physical link with any llc for a given chip driver.
@@ -187,26 +201,32 @@ fast, cannot sleep. sends incoming frames to HCI where they are passed to
the current llc. In case of shdlc, the frame is queued in shdlc rx queue.
- SHDLC State Machine worker (SMW)
-Only when llc_shdlc is used: handles shdlc rx & tx queues.
-Dispatches HCI cmd responses.
+
+ Only when llc_shdlc is used: handles shdlc rx & tx queues.
+
+ Dispatches HCI cmd responses.
- HCI Tx Cmd worker (MSGTXWQ)
-Serializes execution of HCI commands. Completes execution in case of response
-timeout.
+
+ Serializes execution of HCI commands.
+
+ Completes execution in case of response timeout.
- HCI Rx worker (MSGRXWQ)
-Dispatches incoming HCI commands or events.
+
+ Dispatches incoming HCI commands or events.
- Syscall context from a userspace call (SYSCALL)
-Any entrypoint in HCI called from NFC Core
+
+ Any entrypoint in HCI called from NFC Core
Workflow executing an HCI command (using shdlc)
-----------------------------------------------
Executing an HCI command can easily be performed synchronously using the
-following API:
+following API::
-int nfc_hci_send_cmd (struct nfc_hci_dev *hdev, u8 gate, u8 cmd,
+ int nfc_hci_send_cmd (struct nfc_hci_dev *hdev, u8 gate, u8 cmd,
const u8 *param, size_t param_len, struct sk_buff **skb)
The API must be invoked from a context that can sleep. Most of the time, this
@@ -234,11 +254,11 @@ waiting command execution. Response processing involves invoking the completion
callback that was provided by nfc_hci_msg_tx_work() when it sent the command.
The completion callback will then wake the syscall context.
-It is also possible to execute the command asynchronously using this API:
+It is also possible to execute the command asynchronously using this API::
-static int nfc_hci_execute_cmd_async(struct nfc_hci_dev *hdev, u8 pipe, u8 cmd,
- const u8 *param, size_t param_len,
- data_exchange_cb_t cb, void *cb_context)
+ static int nfc_hci_execute_cmd_async(struct nfc_hci_dev *hdev, u8 pipe, u8 cmd,
+ const u8 *param, size_t param_len,
+ data_exchange_cb_t cb, void *cb_context)
The workflow is the same, except that the API call returns immediately, and
the callback will be called with the result from the SMW context.
@@ -268,23 +288,24 @@ went wrong below and know that expected events will probably never happen.
Handling of these errors is done as follows:
- driver (pn544) fails to deliver an incoming frame: it stores the error such
-that any subsequent call to the driver will result in this error. Then it calls
-the standard nfc_shdlc_recv_frame() with a NULL argument to report the problem
-above. shdlc stores a EREMOTEIO sticky status, which will trigger SMW to
-report above in turn.
+ that any subsequent call to the driver will result in this error. Then it
+ calls the standard nfc_shdlc_recv_frame() with a NULL argument to report the
+ problem above. shdlc stores a EREMOTEIO sticky status, which will trigger
+ SMW to report above in turn.
- SMW is basically a background thread to handle incoming and outgoing shdlc
-frames. This thread will also check the shdlc sticky status and report to HCI
-when it discovers it is not able to run anymore because of an unrecoverable
-error that happened within shdlc or below. If the problem occurs during shdlc
-connection, the error is reported through the connect completion.
+ frames. This thread will also check the shdlc sticky status and report to HCI
+ when it discovers it is not able to run anymore because of an unrecoverable
+ error that happened within shdlc or below. If the problem occurs during shdlc
+ connection, the error is reported through the connect completion.
- HCI: if an internal HCI error happens (frame is lost), or HCI is reported an
-error from a lower layer, HCI will either complete the currently executing
-command with that error, or notify NFC Core directly if no command is executing.
+ error from a lower layer, HCI will either complete the currently executing
+ command with that error, or notify NFC Core directly if no command is
+ executing.
- NFC Core: when NFC Core is notified of an error from below and polling is
-active, it will send a tag discovered event with an empty tag list to the user
-space to let it know that the poll operation will never be able to detect a tag.
-If polling is not active and the error was sticky, lower levels will return it
-at next invocation.
+ active, it will send a tag discovered event with an empty tag list to the user
+ space to let it know that the poll operation will never be able to detect a
+ tag. If polling is not active and the error was sticky, lower levels will
+ return it at next invocation.
diff --git a/Documentation/nfc/nfc-pn544.txt b/Documentation/nfc/nfc-pn544.rst
similarity index 82%
rename from Documentation/nfc/nfc-pn544.txt
rename to Documentation/nfc/nfc-pn544.rst
index b36ca14ca2d6..6b2d8aae0c4e 100644
--- a/Documentation/nfc/nfc-pn544.txt
+++ b/Documentation/nfc/nfc-pn544.rst
@@ -1,5 +1,7 @@
-Kernel driver for the NXP Semiconductors PN544 Near Field
-Communication chip
+============================================================================
+Kernel driver for the NXP Semiconductors PN544 Near Field Communication chip
+============================================================================
+
General
-------
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 68/79] docs: md: convert to ReST
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (57 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 67/79] docs: nfc: " Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 69/79] docs: mtd: " Mauro Carvalho Chehab
` (14 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet
Rename the md documentation files to ReST, add an
index for them and adjust in order to produce a nice html
output via the Sphinx build system.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/md/index.rst | 12 ++
.../md/{md-cluster.txt => md-cluster.rst} | 188 ++++++++++++------
.../md/{raid5-cache.txt => raid5-cache.rst} | 28 +--
.../md/{raid5-ppl.txt => raid5-ppl.rst} | 2 +
4 files changed, 153 insertions(+), 77 deletions(-)
create mode 100644 Documentation/md/index.rst
rename Documentation/md/{md-cluster.txt => md-cluster.rst} (68%)
rename Documentation/md/{raid5-cache.txt => raid5-cache.rst} (92%)
rename Documentation/md/{raid5-ppl.txt => raid5-ppl.rst} (98%)
diff --git a/Documentation/md/index.rst b/Documentation/md/index.rst
new file mode 100644
index 000000000000..c4db34ed327d
--- /dev/null
+++ b/Documentation/md/index.rst
@@ -0,0 +1,12 @@
+:orphan:
+
+====
+RAID
+====
+
+.. toctree::
+ :maxdepth: 1
+
+ md-cluster
+ raid5-cache
+ raid5-ppl
diff --git a/Documentation/md/md-cluster.txt b/Documentation/md/md-cluster.rst
similarity index 68%
rename from Documentation/md/md-cluster.txt
rename to Documentation/md/md-cluster.rst
index e1055f105cf5..96eb52cec7eb 100644
--- a/Documentation/md/md-cluster.txt
+++ b/Documentation/md/md-cluster.rst
@@ -1,19 +1,24 @@
+==========
+MD Cluster
+==========
+
The cluster MD is a shared-device RAID for a cluster, it supports
two levels: raid1 and raid10 (limited support).
1. On-disk format
+=================
Separate write-intent-bitmaps are used for each cluster node.
The bitmaps record all writes that may have been started on that node,
-and may not yet have finished. The on-disk layout is:
+and may not yet have finished. The on-disk layout is::
-0 4k 8k 12k
--------------------------------------------------------------------
-| idle | md super | bm super [0] + bits |
-| bm bits[0, contd] | bm super[1] + bits | bm bits[1, contd] |
-| bm super[2] + bits | bm bits [2, contd] | bm super[3] + bits |
-| bm bits [3, contd] | | |
+ 0 4k 8k 12k
+ -------------------------------------------------------------------
+ | idle | md super | bm super [0] + bits |
+ | bm bits[0, contd] | bm super[1] + bits | bm bits[1, contd] |
+ | bm super[2] + bits | bm bits [2, contd] | bm super[3] + bits |
+ | bm bits [3, contd] | | |
During "normal" functioning we assume the filesystem ensures that only
one node writes to any given block at a time, so a write request will
@@ -28,10 +33,12 @@ node) is writing.
2. DLM Locks for management
+===========================
There are three groups of locks for managing the device:
2.1 Bitmap lock resource (bm_lockres)
+-------------------------------------
The bm_lockres protects individual node bitmaps. They are named in
the form bitmap000 for node 1, bitmap001 for node 2 and so on. When a
@@ -48,6 +55,7 @@ There are three groups of locks for managing the device:
joins the cluster.
2.2 Message passing locks
+-------------------------
Each node has to communicate with other nodes when starting or ending
resync, and for metadata superblock updates. This communication is
@@ -55,116 +63,155 @@ There are three groups of locks for managing the device:
with the Lock Value Block (LVB) of one of the "message" lock.
2.3 new-device management
+-------------------------
A single lock: "no-new-dev" is used to co-ordinate the addition of
new devices - this must be synchronized across the array.
Normally all nodes hold a concurrent-read lock on this device.
3. Communication
+================
Messages can be broadcast to all nodes, and the sender waits for all
other nodes to acknowledge the message before proceeding. Only one
message can be processed at a time.
3.1 Message Types
+-----------------
There are six types of messages which are passed:
- 3.1.1 METADATA_UPDATED: informs other nodes that the metadata has
+3.1.1 METADATA_UPDATED
+^^^^^^^^^^^^^^^^^^^^^^
+
+ informs other nodes that the metadata has
been updated, and the node must re-read the md superblock. This is
performed synchronously. It is primarily used to signal device
failure.
- 3.1.2 RESYNCING: informs other nodes that a resync is initiated or
+3.1.2 RESYNCING
+^^^^^^^^^^^^^^^
+ informs other nodes that a resync is initiated or
ended so that each node may suspend or resume the region. Each
RESYNCING message identifies a range of the devices that the
sending node is about to resync. This overrides any previous
notification from that node: only one ranged can be resynced at a
time per-node.
- 3.1.3 NEWDISK: informs other nodes that a device is being added to
+3.1.3 NEWDISK
+^^^^^^^^^^^^^
+
+ informs other nodes that a device is being added to
the array. Message contains an identifier for that device. See
below for further details.
- 3.1.4 REMOVE: A failed or spare device is being removed from the
+3.1.4 REMOVE
+^^^^^^^^^^^^
+
+ A failed or spare device is being removed from the
array. The slot-number of the device is included in the message.
- 3.1.5 RE_ADD: A failed device is being re-activated - the assumption
+ 3.1.5 RE_ADD:
+
+ A failed device is being re-activated - the assumption
is that it has been determined to be working again.
- 3.1.6 BITMAP_NEEDS_SYNC: if a node is stopped locally but the bitmap
+ 3.1.6 BITMAP_NEEDS_SYNC:
+
+ If a node is stopped locally but the bitmap
isn't clean, then another node is informed to take the ownership of
resync.
3.2 Communication mechanism
+---------------------------
The DLM LVB is used to communicate within nodes of the cluster. There
are three resources used for the purpose:
- 3.2.1 token: The resource which protects the entire communication
+3.2.1 token
+^^^^^^^^^^^
+ The resource which protects the entire communication
system. The node having the token resource is allowed to
communicate.
- 3.2.2 message: The lock resource which carries the data to
- communicate.
+3.2.2 message
+^^^^^^^^^^^^^
+ The lock resource which carries the data to communicate.
- 3.2.3 ack: The resource, acquiring which means the message has been
+3.2.3 ack
+^^^^^^^^^
+
+ The resource, acquiring which means the message has been
acknowledged by all nodes in the cluster. The BAST of the resource
is used to inform the receiving node that a node wants to
communicate.
The algorithm is:
- 1. receive status - all nodes have concurrent-reader lock on "ack".
+ 1. receive status - all nodes have concurrent-reader lock on "ack"::
- sender receiver receiver
- "ack":CR "ack":CR "ack":CR
+ sender receiver receiver
+ "ack":CR "ack":CR "ack":CR
- 2. sender get EX on "token"
- sender get EX on "message"
- sender receiver receiver
- "token":EX "ack":CR "ack":CR
- "message":EX
- "ack":CR
+ 2. sender get EX on "token",
+ sender get EX on "message"::
+
+ sender receiver receiver
+ "token":EX "ack":CR "ack":CR
+ "message":EX
+ "ack":CR
Sender checks that it still needs to send a message. Messages
received or other events that happened while waiting for the
"token" may have made this message inappropriate or redundant.
- 3. sender writes LVB.
+ 3. sender writes LVB
+
sender down-convert "message" from EX to CW
+
sender try to get EX of "ack"
- [ wait until all receivers have *processed* the "message" ]
-
- [ triggered by bast of "ack" ]
- receiver get CR on "message"
- receiver read LVB
- receiver processes the message
- [ wait finish ]
- receiver releases "ack"
- receiver tries to get PR on "message"
-
- sender receiver receiver
- "token":EX "message":CR "message":CR
- "message":CW
- "ack":EX
+
+ ::
+
+ [ wait until all receivers have *processed* the "message" ]
+
+ [ triggered by bast of "ack" ]
+ receiver get CR on "message"
+ receiver read LVB
+ receiver processes the message
+ [ wait finish ]
+ receiver releases "ack"
+ receiver tries to get PR on "message"
+
+ sender receiver receiver
+ "token":EX "message":CR "message":CR
+ "message":CW
+ "ack":EX
4. triggered by grant of EX on "ack" (indicating all receivers
have processed message)
+
sender down-converts "ack" from EX to CR
+
sender releases "message"
+
sender releases "token"
- receiver upconvert to PR on "message"
- receiver get CR of "ack"
- receiver release "message"
- sender receiver receiver
- "ack":CR "ack":CR "ack":CR
+ ::
+
+ receiver upconvert to PR on "message"
+ receiver get CR of "ack"
+ receiver release "message"
+
+ sender receiver receiver
+ "ack":CR "ack":CR "ack":CR
4. Handling Failures
+====================
4.1 Node Failure
+----------------
When a node fails, the DLM informs the cluster with the slot
number. The node starts a cluster recovery thread. The cluster
@@ -177,11 +224,11 @@ The algorithm is:
- cleans the bitmap of the failed node
- releases bitmap<number> lock of the failed node
- initiates resync of the bitmap on the current node
- md_check_recovery is invoked within recover_bitmaps,
- then md_check_recovery -> metadata_update_start/finish,
- it will lock the communication by lock_comm.
- Which means when one node is resyncing it blocks all
- other nodes from writing anywhere on the array.
+ md_check_recovery is invoked within recover_bitmaps,
+ then md_check_recovery -> metadata_update_start/finish,
+ it will lock the communication by lock_comm.
+ Which means when one node is resyncing it blocks all
+ other nodes from writing anywhere on the array.
The resync process is the regular md resync. However, in a clustered
environment when a resync is performed, it needs to tell other nodes
@@ -198,6 +245,7 @@ The algorithm is:
particular I/O range should be suspended or not.
4.2 Device Failure
+==================
Device failures are handled and communicated with the metadata update
routine. When a node detects a device failure it does not allow
@@ -205,38 +253,41 @@ The algorithm is:
acknowledged by all other nodes.
5. Adding a new Device
+----------------------
For adding a new device, it is necessary that all nodes "see" the new
device to be added. For this, the following algorithm is used:
- 1. Node 1 issues mdadm --manage /dev/mdX --add /dev/sdYY which issues
+ 1. Node 1 issues mdadm --manage /dev/mdX --add /dev/sdYY which issues
ioctl(ADD_NEW_DISK with disc.state set to MD_DISK_CLUSTER_ADD)
- 2. Node 1 sends a NEWDISK message with uuid and slot number
- 3. Other nodes issue kobject_uevent_env with uuid and slot number
+ 2. Node 1 sends a NEWDISK message with uuid and slot number
+ 3. Other nodes issue kobject_uevent_env with uuid and slot number
(Steps 4,5 could be a udev rule)
- 4. In userspace, the node searches for the disk, perhaps
+ 4. In userspace, the node searches for the disk, perhaps
using blkid -t SUB_UUID=""
- 5. Other nodes issue either of the following depending on whether
+ 5. Other nodes issue either of the following depending on whether
the disk was found:
ioctl(ADD_NEW_DISK with disc.state set to MD_DISK_CANDIDATE and
- disc.number set to slot number)
+ disc.number set to slot number)
ioctl(CLUSTERED_DISK_NACK)
- 6. Other nodes drop lock on "no-new-devs" (CR) if device is found
- 7. Node 1 attempts EX lock on "no-new-dev"
- 8. If node 1 gets the lock, it sends METADATA_UPDATED after
+ 6. Other nodes drop lock on "no-new-devs" (CR) if device is found
+ 7. Node 1 attempts EX lock on "no-new-dev"
+ 8. If node 1 gets the lock, it sends METADATA_UPDATED after
unmarking the disk as SpareLocal
- 9. If not (get "no-new-dev" lock), it fails the operation and sends
+ 9. If not (get "no-new-dev" lock), it fails the operation and sends
METADATA_UPDATED.
10. Other nodes get the information whether a disk is added or not
by the following METADATA_UPDATED.
-6. Module interface.
+6. Module interface
+===================
There are 17 call-backs which the md core can make to the cluster
module. Understanding these can give a good overview of the whole
process.
6.1 join(nodes) and leave()
+---------------------------
These are called when an array is started with a clustered bitmap,
and when the array is stopped. join() ensures the cluster is
@@ -244,11 +295,13 @@ The algorithm is:
Only the first 'nodes' nodes in the cluster can use the array.
6.2 slot_number()
+-----------------
Reports the slot number advised by the cluster infrastructure.
Range is from 0 to nodes-1.
6.3 resync_info_update()
+------------------------
This updates the resync range that is stored in the bitmap lock.
The starting point is updated as the resync progresses. The
@@ -256,6 +309,7 @@ The algorithm is:
It does *not* send a RESYNCING message.
6.4 resync_start(), resync_finish()
+-----------------------------------
These are called when resync/recovery/reshape starts or stops.
They update the resyncing range in the bitmap lock and also
@@ -265,8 +319,8 @@ The algorithm is:
resync_finish() also sends a BITMAP_NEEDS_SYNC message which
allows some other node to take over.
-6.5 metadata_update_start(), metadata_update_finish(),
- metadata_update_cancel().
+6.5 metadata_update_start(), metadata_update_finish(), metadata_update_cancel()
+-------------------------------------------------------------------------------
metadata_update_start is used to get exclusive access to
the metadata. If a change is still needed once that access is
@@ -275,6 +329,7 @@ The algorithm is:
can be used to release the lock.
6.6 area_resyncing()
+--------------------
This combines two elements of functionality.
@@ -289,6 +344,7 @@ The algorithm is:
a node failure.
6.7 add_new_disk_start(), add_new_disk_finish(), new_disk_ack()
+---------------------------------------------------------------
These are used to manage the new-disk protocol described above.
When a new device is added, add_new_disk_start() is called before
@@ -300,17 +356,20 @@ The algorithm is:
new_disk_ack() is called.
6.8 remove_disk()
+-----------------
This is called when a spare or failed device is removed from
the array. It causes a REMOVE message to be send to other nodes.
6.9 gather_bitmaps()
+--------------------
This sends a RE_ADD message to all other nodes and then
gathers bitmap information from all bitmaps. This combined
bitmap is then used to recovery the re-added device.
6.10 lock_all_bitmaps() and unlock_all_bitmaps()
+------------------------------------------------
These are called when change bitmap to none. If a node plans
to clear the cluster raid's bitmap, it need to make sure no other
@@ -319,6 +378,7 @@ The algorithm is:
accordingly.
7. Unsupported features
+=======================
There are somethings which are not supported by cluster MD yet.
diff --git a/Documentation/md/raid5-cache.txt b/Documentation/md/raid5-cache.rst
similarity index 92%
rename from Documentation/md/raid5-cache.txt
rename to Documentation/md/raid5-cache.rst
index 2b210f295786..d7a15f44a7c3 100644
--- a/Documentation/md/raid5-cache.txt
+++ b/Documentation/md/raid5-cache.rst
@@ -1,4 +1,6 @@
-RAID5 cache
+================
+RAID 4/5/6 cache
+================
Raid 4/5/6 could include an extra disk for data cache besides normal RAID
disks. The role of RAID disks isn't changed with the cache disk. The cache disk
@@ -6,19 +8,19 @@ caches data to the RAID disks. The cache can be in write-through (supported
since 4.4) or write-back mode (supported since 4.10). mdadm (supported since
3.4) has a new option '--write-journal' to create array with cache. Please
refer to mdadm manual for details. By default (RAID array starts), the cache is
-in write-through mode. A user can switch it to write-back mode by:
+in write-through mode. A user can switch it to write-back mode by::
-echo "write-back" > /sys/block/md0/md/journal_mode
+ echo "write-back" > /sys/block/md0/md/journal_mode
-And switch it back to write-through mode by:
+And switch it back to write-through mode by::
-echo "write-through" > /sys/block/md0/md/journal_mode
+ echo "write-through" > /sys/block/md0/md/journal_mode
In both modes, all writes to the array will hit cache disk first. This means
the cache disk must be fast and sustainable.
--------------------------------------
-write-through mode:
+write-through mode
+==================
This mode mainly fixes the 'write hole' issue. For RAID 4/5/6 array, an unclean
shutdown can cause data in some stripes to not be in consistent state, eg, data
@@ -42,8 +44,8 @@ exposed to 'write hole' again.
In write-through mode, the cache disk isn't required to be big. Several
hundreds megabytes are enough.
---------------------------------------
-write-back mode:
+write-back mode
+===============
write-back mode fixes the 'write hole' issue too, since all write data is
cached on cache disk. But the main goal of 'write-back' cache is to speed up
@@ -64,16 +66,16 @@ data loss.
In write-back mode, MD also caches data in memory. The memory cache includes
the same data stored on cache disk, so a power loss doesn't cause data loss.
The memory cache size has performance impact for the array. It's recommended
-the size is big. A user can configure the size by:
+the size is big. A user can configure the size by::
-echo "2048" > /sys/block/md0/md/stripe_cache_size
+ echo "2048" > /sys/block/md0/md/stripe_cache_size
Too small cache disk will make the write aggregation less efficient in this
mode depending on the workloads. It's recommended to use a cache disk with at
least several gigabytes size in write-back mode.
---------------------------------------
-The implementation:
+The implementation
+==================
The write-through and write-back cache use the same disk format. The cache disk
is organized as a simple write log. The log consists of 'meta data' and 'data'
diff --git a/Documentation/md/raid5-ppl.txt b/Documentation/md/raid5-ppl.rst
similarity index 98%
rename from Documentation/md/raid5-ppl.txt
rename to Documentation/md/raid5-ppl.rst
index bfa092589e00..357e5515bc55 100644
--- a/Documentation/md/raid5-ppl.txt
+++ b/Documentation/md/raid5-ppl.rst
@@ -1,4 +1,6 @@
+==================
Partial Parity Log
+==================
Partial Parity Log (PPL) is a feature available for RAID5 arrays. The issue
addressed by PPL is that after a dirty shutdown, parity of a particular stripe
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 69/79] docs: mtd: convert to ReST
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (58 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 68/79] docs: md: " Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:27 ` [PATCH v2 70/79] docs: nvdimm: " Mauro Carvalho Chehab
` (13 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Boris Brezillon, Miquel Raynal,
Richard Weinberger, David Woodhouse, Brian Norris, Marek Vasut,
linux-mtd
Rename the mtd documentation files to ReST, add an
index for them and adjust in order to produce a nice html
output via the Sphinx build system.
It should be noticed that Sphinx doesn't handle very well
URLs with dots in the middle. Thankfully, internally, the '.'
char is translated to %2E, so we can jus use %2E instead of
dots, and this will work fine on both text and processed files.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/mtd/index.rst | 12 +
.../mtd/{intel-spi.txt => intel-spi.rst} | 46 +-
.../mtd/{nand_ecc.txt => nand_ecc.rst} | 481 ++++++++++--------
.../mtd/{spi-nor.txt => spi-nor.rst} | 7 +-
drivers/mtd/nand/raw/nand_ecc.c | 2 +-
5 files changed, 306 insertions(+), 242 deletions(-)
create mode 100644 Documentation/mtd/index.rst
rename Documentation/mtd/{intel-spi.txt => intel-spi.rst} (71%)
rename Documentation/mtd/{nand_ecc.txt => nand_ecc.rst} (67%)
rename Documentation/mtd/{spi-nor.txt => spi-nor.rst} (94%)
diff --git a/Documentation/mtd/index.rst b/Documentation/mtd/index.rst
new file mode 100644
index 000000000000..4fdae418ac97
--- /dev/null
+++ b/Documentation/mtd/index.rst
@@ -0,0 +1,12 @@
+:orphan:
+
+==============================
+Memory Technology Device (MTD)
+==============================
+
+.. toctree::
+ :maxdepth: 1
+
+ intel-spi
+ nand_ecc
+ spi-nor
diff --git a/Documentation/mtd/intel-spi.txt b/Documentation/mtd/intel-spi.rst
similarity index 71%
rename from Documentation/mtd/intel-spi.txt
rename to Documentation/mtd/intel-spi.rst
index bc357729c2cb..0e6d9cd5388d 100644
--- a/Documentation/mtd/intel-spi.txt
+++ b/Documentation/mtd/intel-spi.rst
@@ -1,5 +1,6 @@
+==============================
Upgrading BIOS using intel-spi
-------------------------------
+==============================
Many Intel CPUs like Baytrail and Braswell include SPI serial flash host
controller which is used to hold BIOS and other platform specific data.
@@ -36,45 +37,45 @@ Linux.
module parameter to modprobe).
4) Once the board is up and running again, find the right MTD partition
- (it is named as "BIOS"):
+ (it is named as "BIOS")::
- # cat /proc/mtd
- dev: size erasesize name
- mtd0: 00800000 00001000 "BIOS"
+ # cat /proc/mtd
+ dev: size erasesize name
+ mtd0: 00800000 00001000 "BIOS"
So here it will be /dev/mtd0 but it may vary.
- 5) Make backup of the existing image first:
+ 5) Make backup of the existing image first::
- # dd if=/dev/mtd0ro of=bios.bak
- 16384+0 records in
- 16384+0 records out
- 8388608 bytes (8.4 MB) copied, 10.0269 s, 837 kB/s
+ # dd if=/dev/mtd0ro of=bios.bak
+ 16384+0 records in
+ 16384+0 records out
+ 8388608 bytes (8.4 MB) copied, 10.0269 s, 837 kB/s
- 6) Verify the backup
+ 6) Verify the backup:
- # sha1sum /dev/mtd0ro bios.bak
- fdbb011920572ca6c991377c4b418a0502668b73 /dev/mtd0ro
- fdbb011920572ca6c991377c4b418a0502668b73 bios.bak
+ # sha1sum /dev/mtd0ro bios.bak
+ fdbb011920572ca6c991377c4b418a0502668b73 /dev/mtd0ro
+ fdbb011920572ca6c991377c4b418a0502668b73 bios.bak
The SHA1 sums must match. Otherwise do not continue any further!
7) Erase the SPI serial flash. After this step, do not reboot the
- board! Otherwise it will not start anymore.
+ board! Otherwise it will not start anymore::
- # flash_erase /dev/mtd0 0 0
- Erasing 4 Kibyte @ 7ff000 -- 100 % complete
+ # flash_erase /dev/mtd0 0 0
+ Erasing 4 Kibyte @ 7ff000 -- 100 % complete
8) Once completed without errors you can write the new BIOS image:
# dd if=MNW2MAX1.X64.0092.R01.1605221712.bin of=/dev/mtd0
9) Verify that the new content of the SPI serial flash matches the new
- BIOS image:
+ BIOS image::
- # sha1sum /dev/mtd0ro MNW2MAX1.X64.0092.R01.1605221712.bin
- 9b4df9e4be2057fceec3a5529ec3d950836c87a2 /dev/mtd0ro
- 9b4df9e4be2057fceec3a5529ec3d950836c87a2 MNW2MAX1.X64.0092.R01.1605221712.bin
+ # sha1sum /dev/mtd0ro MNW2MAX1.X64.0092.R01.1605221712.bin
+ 9b4df9e4be2057fceec3a5529ec3d950836c87a2 /dev/mtd0ro
+ 9b4df9e4be2057fceec3a5529ec3d950836c87a2 MNW2MAX1.X64.0092.R01.1605221712.bin
The SHA1 sums should match.
@@ -84,5 +85,6 @@ Linux.
References
----------
-[1] https://firmware.intel.com/sites/default/files/MinnowBoard.MAX_.X64.92.R01.zip
+[1] https://firmware.intel.com/sites/default/files/MinnowBoard%2EMAX_%2EX64%2E92%2ER01%2Ezip
+
[2] http://www.linux-mtd.infradead.org/
diff --git a/Documentation/mtd/nand_ecc.txt b/Documentation/mtd/nand_ecc.rst
similarity index 67%
rename from Documentation/mtd/nand_ecc.txt
rename to Documentation/mtd/nand_ecc.rst
index f8c3284bf6a7..e8d3c53a5056 100644
--- a/Documentation/mtd/nand_ecc.txt
+++ b/Documentation/mtd/nand_ecc.rst
@@ -1,3 +1,7 @@
+==========================
+NAND Error-correction Code
+==========================
+
Introduction
============
@@ -37,63 +41,79 @@ sometimes also referred to as xor. In C the operator for xor is ^
Back to ecc.
Let's give a small figure:
+========= ==== ==== ==== ==== ==== ==== ==== ==== === === === === ====
byte 0: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp2 rp4 ... rp14
byte 1: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp2 rp4 ... rp14
byte 2: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp3 rp4 ... rp14
byte 3: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp3 rp4 ... rp14
byte 4: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp2 rp5 ... rp14
-....
+...
byte 254: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp3 rp5 ... rp15
byte 255: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp3 rp5 ... rp15
cp1 cp0 cp1 cp0 cp1 cp0 cp1 cp0
cp3 cp3 cp2 cp2 cp3 cp3 cp2 cp2
cp5 cp5 cp5 cp5 cp4 cp4 cp4 cp4
+========= ==== ==== ==== ==== ==== ==== ==== ==== === === === === ====
This figure represents a sector of 256 bytes.
cp is my abbreviation for column parity, rp for row parity.
Let's start to explain column parity.
-cp0 is the parity that belongs to all bit0, bit2, bit4, bit6.
-so the sum of all bit0, bit2, bit4 and bit6 values + cp0 itself is even.
+
+- cp0 is the parity that belongs to all bit0, bit2, bit4, bit6.
+
+ so the sum of all bit0, bit2, bit4 and bit6 values + cp0 itself is even.
+
Similarly cp1 is the sum of all bit1, bit3, bit5 and bit7.
-cp2 is the parity over bit0, bit1, bit4 and bit5
-cp3 is the parity over bit2, bit3, bit6 and bit7.
-cp4 is the parity over bit0, bit1, bit2 and bit3.
-cp5 is the parity over bit4, bit5, bit6 and bit7.
+
+- cp2 is the parity over bit0, bit1, bit4 and bit5
+- cp3 is the parity over bit2, bit3, bit6 and bit7.
+- cp4 is the parity over bit0, bit1, bit2 and bit3.
+- cp5 is the parity over bit4, bit5, bit6 and bit7.
+
Note that each of cp0 .. cp5 is exactly one bit.
Row parity actually works almost the same.
-rp0 is the parity of all even bytes (0, 2, 4, 6, ... 252, 254)
-rp1 is the parity of all odd bytes (1, 3, 5, 7, ..., 253, 255)
-rp2 is the parity of all bytes 0, 1, 4, 5, 8, 9, ...
-(so handle two bytes, then skip 2 bytes).
-rp3 is covers the half rp2 does not cover (bytes 2, 3, 6, 7, 10, 11, ...)
-for rp4 the rule is cover 4 bytes, skip 4 bytes, cover 4 bytes, skip 4 etc.
-so rp4 calculates parity over bytes 0, 1, 2, 3, 8, 9, 10, 11, 16, ...)
-and rp5 covers the other half, so bytes 4, 5, 6, 7, 12, 13, 14, 15, 20, ..
+
+- rp0 is the parity of all even bytes (0, 2, 4, 6, ... 252, 254)
+- rp1 is the parity of all odd bytes (1, 3, 5, 7, ..., 253, 255)
+- rp2 is the parity of all bytes 0, 1, 4, 5, 8, 9, ...
+ (so handle two bytes, then skip 2 bytes).
+- rp3 is covers the half rp2 does not cover (bytes 2, 3, 6, 7, 10, 11, ...)
+- for rp4 the rule is cover 4 bytes, skip 4 bytes, cover 4 bytes, skip 4 etc.
+
+ so rp4 calculates parity over bytes 0, 1, 2, 3, 8, 9, 10, 11, 16, ...)
+- and rp5 covers the other half, so bytes 4, 5, 6, 7, 12, 13, 14, 15, 20, ..
+
The story now becomes quite boring. I guess you get the idea.
-rp6 covers 8 bytes then skips 8 etc
-rp7 skips 8 bytes then covers 8 etc
-rp8 covers 16 bytes then skips 16 etc
-rp9 skips 16 bytes then covers 16 etc
-rp10 covers 32 bytes then skips 32 etc
-rp11 skips 32 bytes then covers 32 etc
-rp12 covers 64 bytes then skips 64 etc
-rp13 skips 64 bytes then covers 64 etc
-rp14 covers 128 bytes then skips 128
-rp15 skips 128 bytes then covers 128
+
+- rp6 covers 8 bytes then skips 8 etc
+- rp7 skips 8 bytes then covers 8 etc
+- rp8 covers 16 bytes then skips 16 etc
+- rp9 skips 16 bytes then covers 16 etc
+- rp10 covers 32 bytes then skips 32 etc
+- rp11 skips 32 bytes then covers 32 etc
+- rp12 covers 64 bytes then skips 64 etc
+- rp13 skips 64 bytes then covers 64 etc
+- rp14 covers 128 bytes then skips 128
+- rp15 skips 128 bytes then covers 128
In the end the parity bits are grouped together in three bytes as
follows:
+
+===== ===== ===== ===== ===== ===== ===== ===== =====
ECC Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
+===== ===== ===== ===== ===== ===== ===== ===== =====
ECC 0 rp07 rp06 rp05 rp04 rp03 rp02 rp01 rp00
ECC 1 rp15 rp14 rp13 rp12 rp11 rp10 rp09 rp08
ECC 2 cp5 cp4 cp3 cp2 cp1 cp0 1 1
+===== ===== ===== ===== ===== ===== ===== ===== =====
I detected after writing this that ST application note AN1823
(http://www.st.com/stonline/) gives a much
nicer picture.(but they use line parity as term where I use row parity)
Oh well, I'm graphically challenged, so suffer with me for a moment :-)
+
And I could not reuse the ST picture anyway for copyright reasons.
@@ -101,9 +121,10 @@ Attempt 0
=========
Implementing the parity calculation is pretty simple.
-In C pseudocode:
-for (i = 0; i < 256; i++)
-{
+In C pseudocode::
+
+ for (i = 0; i < 256; i++)
+ {
if (i & 0x01)
rp1 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp1;
else
@@ -142,7 +163,7 @@ for (i = 0; i < 256; i++)
cp3 = bit7 ^ bit6 ^ bit3 ^ bit2 ^ cp3
cp4 = bit3 ^ bit2 ^ bit1 ^ bit0 ^ cp4
cp5 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ cp5
-}
+ }
Analysis 0
@@ -167,82 +188,84 @@ This leads to:
Attempt 1
=========
-const char parity[256] = {
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0
-};
+::
-void ecc1(const unsigned char *buf, unsigned char *code)
-{
- int i;
- const unsigned char *bp = buf;
- unsigned char cur;
- unsigned char rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
- unsigned char rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
- unsigned char par;
+ const char parity[256] = {
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0
+ };
- par = 0;
- rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
- rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0;
- rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0;
- rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0;
+ void ecc1(const unsigned char *buf, unsigned char *code)
+ {
+ int i;
+ const unsigned char *bp = buf;
+ unsigned char cur;
+ unsigned char rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
+ unsigned char rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
+ unsigned char par;
- for (i = 0; i < 256; i++)
- {
- cur = *bp++;
- par ^= cur;
- if (i & 0x01) rp1 ^= cur; else rp0 ^= cur;
- if (i & 0x02) rp3 ^= cur; else rp2 ^= cur;
- if (i & 0x04) rp5 ^= cur; else rp4 ^= cur;
- if (i & 0x08) rp7 ^= cur; else rp6 ^= cur;
- if (i & 0x10) rp9 ^= cur; else rp8 ^= cur;
- if (i & 0x20) rp11 ^= cur; else rp10 ^= cur;
- if (i & 0x40) rp13 ^= cur; else rp12 ^= cur;
- if (i & 0x80) rp15 ^= cur; else rp14 ^= cur;
- }
- code[0] =
- (parity[rp7] << 7) |
- (parity[rp6] << 6) |
- (parity[rp5] << 5) |
- (parity[rp4] << 4) |
- (parity[rp3] << 3) |
- (parity[rp2] << 2) |
- (parity[rp1] << 1) |
- (parity[rp0]);
- code[1] =
- (parity[rp15] << 7) |
- (parity[rp14] << 6) |
- (parity[rp13] << 5) |
- (parity[rp12] << 4) |
- (parity[rp11] << 3) |
- (parity[rp10] << 2) |
- (parity[rp9] << 1) |
- (parity[rp8]);
- code[2] =
- (parity[par & 0xf0] << 7) |
- (parity[par & 0x0f] << 6) |
- (parity[par & 0xcc] << 5) |
- (parity[par & 0x33] << 4) |
- (parity[par & 0xaa] << 3) |
- (parity[par & 0x55] << 2);
- code[0] = ~code[0];
- code[1] = ~code[1];
- code[2] = ~code[2];
-}
+ par = 0;
+ rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
+ rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0;
+ rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0;
+ rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0;
+
+ for (i = 0; i < 256; i++)
+ {
+ cur = *bp++;
+ par ^= cur;
+ if (i & 0x01) rp1 ^= cur; else rp0 ^= cur;
+ if (i & 0x02) rp3 ^= cur; else rp2 ^= cur;
+ if (i & 0x04) rp5 ^= cur; else rp4 ^= cur;
+ if (i & 0x08) rp7 ^= cur; else rp6 ^= cur;
+ if (i & 0x10) rp9 ^= cur; else rp8 ^= cur;
+ if (i & 0x20) rp11 ^= cur; else rp10 ^= cur;
+ if (i & 0x40) rp13 ^= cur; else rp12 ^= cur;
+ if (i & 0x80) rp15 ^= cur; else rp14 ^= cur;
+ }
+ code[0] =
+ (parity[rp7] << 7) |
+ (parity[rp6] << 6) |
+ (parity[rp5] << 5) |
+ (parity[rp4] << 4) |
+ (parity[rp3] << 3) |
+ (parity[rp2] << 2) |
+ (parity[rp1] << 1) |
+ (parity[rp0]);
+ code[1] =
+ (parity[rp15] << 7) |
+ (parity[rp14] << 6) |
+ (parity[rp13] << 5) |
+ (parity[rp12] << 4) |
+ (parity[rp11] << 3) |
+ (parity[rp10] << 2) |
+ (parity[rp9] << 1) |
+ (parity[rp8]);
+ code[2] =
+ (parity[par & 0xf0] << 7) |
+ (parity[par & 0x0f] << 6) |
+ (parity[par & 0xcc] << 5) |
+ (parity[par & 0x33] << 4) |
+ (parity[par & 0xaa] << 3) |
+ (parity[par & 0x55] << 2);
+ code[0] = ~code[0];
+ code[1] = ~code[1];
+ code[2] = ~code[2];
+ }
Still pretty straightforward. The last three invert statements are there to
give a checksum of 0xff 0xff 0xff for an empty flash. In an empty flash
@@ -293,88 +316,90 @@ Let's give it a try...
Attempt 2
=========
-extern const char parity[256];
+::
-void ecc2(const unsigned char *buf, unsigned char *code)
-{
- int i;
- const unsigned long *bp = (unsigned long *)buf;
- unsigned long cur;
- unsigned long rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
- unsigned long rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
- unsigned long par;
+ extern const char parity[256];
- par = 0;
- rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
- rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0;
- rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0;
- rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0;
+ void ecc2(const unsigned char *buf, unsigned char *code)
+ {
+ int i;
+ const unsigned long *bp = (unsigned long *)buf;
+ unsigned long cur;
+ unsigned long rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
+ unsigned long rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
+ unsigned long par;
- for (i = 0; i < 64; i++)
- {
- cur = *bp++;
- par ^= cur;
- if (i & 0x01) rp5 ^= cur; else rp4 ^= cur;
- if (i & 0x02) rp7 ^= cur; else rp6 ^= cur;
- if (i & 0x04) rp9 ^= cur; else rp8 ^= cur;
- if (i & 0x08) rp11 ^= cur; else rp10 ^= cur;
- if (i & 0x10) rp13 ^= cur; else rp12 ^= cur;
- if (i & 0x20) rp15 ^= cur; else rp14 ^= cur;
- }
- /*
- we need to adapt the code generation for the fact that rp vars are now
- long; also the column parity calculation needs to be changed.
- we'll bring rp4 to 15 back to single byte entities by shifting and
- xoring
- */
- rp4 ^= (rp4 >> 16); rp4 ^= (rp4 >> 8); rp4 &= 0xff;
- rp5 ^= (rp5 >> 16); rp5 ^= (rp5 >> 8); rp5 &= 0xff;
- rp6 ^= (rp6 >> 16); rp6 ^= (rp6 >> 8); rp6 &= 0xff;
- rp7 ^= (rp7 >> 16); rp7 ^= (rp7 >> 8); rp7 &= 0xff;
- rp8 ^= (rp8 >> 16); rp8 ^= (rp8 >> 8); rp8 &= 0xff;
- rp9 ^= (rp9 >> 16); rp9 ^= (rp9 >> 8); rp9 &= 0xff;
- rp10 ^= (rp10 >> 16); rp10 ^= (rp10 >> 8); rp10 &= 0xff;
- rp11 ^= (rp11 >> 16); rp11 ^= (rp11 >> 8); rp11 &= 0xff;
- rp12 ^= (rp12 >> 16); rp12 ^= (rp12 >> 8); rp12 &= 0xff;
- rp13 ^= (rp13 >> 16); rp13 ^= (rp13 >> 8); rp13 &= 0xff;
- rp14 ^= (rp14 >> 16); rp14 ^= (rp14 >> 8); rp14 &= 0xff;
- rp15 ^= (rp15 >> 16); rp15 ^= (rp15 >> 8); rp15 &= 0xff;
- rp3 = (par >> 16); rp3 ^= (rp3 >> 8); rp3 &= 0xff;
- rp2 = par & 0xffff; rp2 ^= (rp2 >> 8); rp2 &= 0xff;
- par ^= (par >> 16);
- rp1 = (par >> 8); rp1 &= 0xff;
- rp0 = (par & 0xff);
- par ^= (par >> 8); par &= 0xff;
+ par = 0;
+ rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
+ rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0;
+ rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0;
+ rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0;
- code[0] =
- (parity[rp7] << 7) |
- (parity[rp6] << 6) |
- (parity[rp5] << 5) |
- (parity[rp4] << 4) |
- (parity[rp3] << 3) |
- (parity[rp2] << 2) |
- (parity[rp1] << 1) |
- (parity[rp0]);
- code[1] =
- (parity[rp15] << 7) |
- (parity[rp14] << 6) |
- (parity[rp13] << 5) |
- (parity[rp12] << 4) |
- (parity[rp11] << 3) |
- (parity[rp10] << 2) |
- (parity[rp9] << 1) |
- (parity[rp8]);
- code[2] =
- (parity[par & 0xf0] << 7) |
- (parity[par & 0x0f] << 6) |
- (parity[par & 0xcc] << 5) |
- (parity[par & 0x33] << 4) |
- (parity[par & 0xaa] << 3) |
- (parity[par & 0x55] << 2);
- code[0] = ~code[0];
- code[1] = ~code[1];
- code[2] = ~code[2];
-}
+ for (i = 0; i < 64; i++)
+ {
+ cur = *bp++;
+ par ^= cur;
+ if (i & 0x01) rp5 ^= cur; else rp4 ^= cur;
+ if (i & 0x02) rp7 ^= cur; else rp6 ^= cur;
+ if (i & 0x04) rp9 ^= cur; else rp8 ^= cur;
+ if (i & 0x08) rp11 ^= cur; else rp10 ^= cur;
+ if (i & 0x10) rp13 ^= cur; else rp12 ^= cur;
+ if (i & 0x20) rp15 ^= cur; else rp14 ^= cur;
+ }
+ /*
+ we need to adapt the code generation for the fact that rp vars are now
+ long; also the column parity calculation needs to be changed.
+ we'll bring rp4 to 15 back to single byte entities by shifting and
+ xoring
+ */
+ rp4 ^= (rp4 >> 16); rp4 ^= (rp4 >> 8); rp4 &= 0xff;
+ rp5 ^= (rp5 >> 16); rp5 ^= (rp5 >> 8); rp5 &= 0xff;
+ rp6 ^= (rp6 >> 16); rp6 ^= (rp6 >> 8); rp6 &= 0xff;
+ rp7 ^= (rp7 >> 16); rp7 ^= (rp7 >> 8); rp7 &= 0xff;
+ rp8 ^= (rp8 >> 16); rp8 ^= (rp8 >> 8); rp8 &= 0xff;
+ rp9 ^= (rp9 >> 16); rp9 ^= (rp9 >> 8); rp9 &= 0xff;
+ rp10 ^= (rp10 >> 16); rp10 ^= (rp10 >> 8); rp10 &= 0xff;
+ rp11 ^= (rp11 >> 16); rp11 ^= (rp11 >> 8); rp11 &= 0xff;
+ rp12 ^= (rp12 >> 16); rp12 ^= (rp12 >> 8); rp12 &= 0xff;
+ rp13 ^= (rp13 >> 16); rp13 ^= (rp13 >> 8); rp13 &= 0xff;
+ rp14 ^= (rp14 >> 16); rp14 ^= (rp14 >> 8); rp14 &= 0xff;
+ rp15 ^= (rp15 >> 16); rp15 ^= (rp15 >> 8); rp15 &= 0xff;
+ rp3 = (par >> 16); rp3 ^= (rp3 >> 8); rp3 &= 0xff;
+ rp2 = par & 0xffff; rp2 ^= (rp2 >> 8); rp2 &= 0xff;
+ par ^= (par >> 16);
+ rp1 = (par >> 8); rp1 &= 0xff;
+ rp0 = (par & 0xff);
+ par ^= (par >> 8); par &= 0xff;
+
+ code[0] =
+ (parity[rp7] << 7) |
+ (parity[rp6] << 6) |
+ (parity[rp5] << 5) |
+ (parity[rp4] << 4) |
+ (parity[rp3] << 3) |
+ (parity[rp2] << 2) |
+ (parity[rp1] << 1) |
+ (parity[rp0]);
+ code[1] =
+ (parity[rp15] << 7) |
+ (parity[rp14] << 6) |
+ (parity[rp13] << 5) |
+ (parity[rp12] << 4) |
+ (parity[rp11] << 3) |
+ (parity[rp10] << 2) |
+ (parity[rp9] << 1) |
+ (parity[rp8]);
+ code[2] =
+ (parity[par & 0xf0] << 7) |
+ (parity[par & 0x0f] << 6) |
+ (parity[par & 0xcc] << 5) |
+ (parity[par & 0x33] << 4) |
+ (parity[par & 0xaa] << 3) |
+ (parity[par & 0x55] << 2);
+ code[0] = ~code[0];
+ code[1] = ~code[1];
+ code[2] = ~code[2];
+ }
The parity array is not shown any more. Note also that for these
examples I kinda deviated from my regular programming style by allowing
@@ -403,28 +428,32 @@ lookups
Attempt 3
=========
-Odd replaced:
- if (i & 0x01) rp5 ^= cur; else rp4 ^= cur;
- if (i & 0x02) rp7 ^= cur; else rp6 ^= cur;
- if (i & 0x04) rp9 ^= cur; else rp8 ^= cur;
- if (i & 0x08) rp11 ^= cur; else rp10 ^= cur;
- if (i & 0x10) rp13 ^= cur; else rp12 ^= cur;
- if (i & 0x20) rp15 ^= cur; else rp14 ^= cur;
-with
- if (i & 0x01) rp5 ^= cur;
- if (i & 0x02) rp7 ^= cur;
- if (i & 0x04) rp9 ^= cur;
- if (i & 0x08) rp11 ^= cur;
- if (i & 0x10) rp13 ^= cur;
- if (i & 0x20) rp15 ^= cur;
+Odd replaced::
- and outside the loop added:
- rp4 = par ^ rp5;
- rp6 = par ^ rp7;
- rp8 = par ^ rp9;
- rp10 = par ^ rp11;
- rp12 = par ^ rp13;
- rp14 = par ^ rp15;
+ if (i & 0x01) rp5 ^= cur; else rp4 ^= cur;
+ if (i & 0x02) rp7 ^= cur; else rp6 ^= cur;
+ if (i & 0x04) rp9 ^= cur; else rp8 ^= cur;
+ if (i & 0x08) rp11 ^= cur; else rp10 ^= cur;
+ if (i & 0x10) rp13 ^= cur; else rp12 ^= cur;
+ if (i & 0x20) rp15 ^= cur; else rp14 ^= cur;
+
+with::
+
+ if (i & 0x01) rp5 ^= cur;
+ if (i & 0x02) rp7 ^= cur;
+ if (i & 0x04) rp9 ^= cur;
+ if (i & 0x08) rp11 ^= cur;
+ if (i & 0x10) rp13 ^= cur;
+ if (i & 0x20) rp15 ^= cur;
+
+and outside the loop added::
+
+ rp4 = par ^ rp5;
+ rp6 = par ^ rp7;
+ rp8 = par ^ rp9;
+ rp10 = par ^ rp11;
+ rp12 = par ^ rp13;
+ rp14 = par ^ rp15;
And after that the code takes about 30% more time, although the number of
statements is reduced. This is also reflected in the assembly code.
@@ -448,7 +477,7 @@ Attempt 4
=========
Unrolled the loop 1, 2, 3 and 4 times.
-For 4 the code starts with:
+For 4 the code starts with::
for (i = 0; i < 4; i++)
{
@@ -471,8 +500,11 @@ Analysis 4
==========
Unrolling once gains about 15%
+
Unrolling twice keeps the gain at about 15%
+
Unrolling three times gives a gain of 30% compared to attempt 2.
+
Unrolling four times gives a marginal improvement compared to unrolling
three times.
@@ -492,8 +524,10 @@ Attempt 5
Effectively so all odd digit rp assignments in the loop were removed.
This included the else clause of the if statements.
-Of course after the loop we need to correct things by adding code like:
+Of course after the loop we need to correct things by adding code like::
+
rp5 = par ^ rp4;
+
Also the initial assignments (rp5 = 0; etc) could be removed.
Along the line I also removed the initialisation of rp0/1/2/3.
@@ -513,7 +547,7 @@ statement. Time for yet another version!
Attempt 6
=========
-THe code within the for loop was changed to:
+THe code within the for loop was changed to::
for (i = 0; i < 4; i++)
{
@@ -564,13 +598,17 @@ million iterations in order not to lose too much accuracy. This one
definitely seemed to be the jackpot!
There is a little bit more room for improvement though. There are three
-places with statements:
-rp4 ^= cur; rp6 ^= cur;
+places with statements::
+
+ rp4 ^= cur; rp6 ^= cur;
+
It seems more efficient to also maintain a variable rp4_6 in the while
loop; This eliminates 3 statements per loop. Of course after the loop we
-need to correct by adding:
- rp4 ^= rp4_6;
- rp6 ^= rp4_6
+need to correct by adding::
+
+ rp4 ^= rp4_6;
+ rp6 ^= rp4_6
+
Furthermore there are 4 sequential assignments to rp8. This can be
encoded slightly more efficiently by saving tmppar before those 4 lines
and later do rp8 = rp8 ^ tmppar ^ notrp8;
@@ -582,7 +620,7 @@ Time for a new test!
Attempt 7
=========
-The new code now looks like:
+The new code now looks like::
for (i = 0; i < 4; i++)
{
@@ -644,9 +682,12 @@ Although it seems that the code within the loop cannot be optimised
further there is still room to optimize the generation of the ecc codes.
We can simply calculate the total parity. If this is 0 then rp4 = rp5
etc. If the parity is 1, then rp4 = !rp5;
+
But if rp4 = rp5 we do not need rp5 etc. We can just write the even bits
-in the result byte and then do something like
+in the result byte and then do something like::
+
code[0] |= (code[0] << 1);
+
Lets test this.
@@ -657,11 +698,13 @@ Changed the code but again this slightly degrades performance. Tried all
kind of other things, like having dedicated parity arrays to avoid the
shift after parity[rp7] << 7; No gain.
Change the lookup using the parity array by using shift operators (e.g.
-replace parity[rp7] << 7 with:
-rp7 ^= (rp7 << 4);
-rp7 ^= (rp7 << 2);
-rp7 ^= (rp7 << 1);
-rp7 &= 0x80;
+replace parity[rp7] << 7 with::
+
+ rp7 ^= (rp7 << 4);
+ rp7 ^= (rp7 << 2);
+ rp7 ^= (rp7 << 1);
+ rp7 &= 0x80;
+
No gain.
The only marginal change was inverting the parity bits, so we can remove
@@ -683,13 +726,16 @@ Correcting errors
For correcting errors I again used the ST application note as a starter,
but I also peeked at the existing code.
+
The algorithm itself is pretty straightforward. Just xor the given and
the calculated ecc. If all bytes are 0 there is no problem. If 11 bits
are 1 we have one correctable bit error. If there is 1 bit 1, we have an
error in the given ecc code.
+
It proved to be fastest to do some table lookups. Performance gain
introduced by this is about a factor 2 on my system when a repair had to
be done, and 1% or so if no repair had to be done.
+
Code size increased from 330 bytes to 686 bytes for this function.
(gcc 4.2, -O3)
@@ -700,8 +746,10 @@ Conclusion
The gain when calculating the ecc is tremendous. Om my development hardware
a speedup of a factor of 18 for ecc calculation was achieved. On a test on an
embedded system with a MIPS core a factor 7 was obtained.
+
On a test with a Linksys NSLU2 (ARMv5TE processor) the speedup was a factor
5 (big endian mode, gcc 4.1.2, -O3)
+
For correction not much gain could be obtained (as bitflips are rare). Then
again there are also much less cycles spent there.
@@ -711,4 +759,5 @@ out of it with an assembler program, but due to pipeline behaviour etc
this is very tricky (at least for intel hw).
Author: Frans Meulenbroeks
+
Copyright (C) 2008 Koninklijke Philips Electronics NV.
diff --git a/Documentation/mtd/spi-nor.txt b/Documentation/mtd/spi-nor.rst
similarity index 94%
rename from Documentation/mtd/spi-nor.txt
rename to Documentation/mtd/spi-nor.rst
index da1fbff5a24c..f5333e3bf486 100644
--- a/Documentation/mtd/spi-nor.txt
+++ b/Documentation/mtd/spi-nor.rst
@@ -1,5 +1,6 @@
- SPI NOR framework
- ============================================
+=================
+SPI NOR framework
+=================
Part I - Why do we need this framework?
---------------------------------------
@@ -23,7 +24,7 @@ This framework just adds a new layer between the MTD and the SPI bus driver.
With this new layer, the SPI NOR controller driver does not depend on the
m25p80 code anymore.
- Before this framework, the layer is like:
+Before this framework, the layer is like::
MTD
------------------------
diff --git a/drivers/mtd/nand/raw/nand_ecc.c b/drivers/mtd/nand/raw/nand_ecc.c
index 4f4347533058..7d60e1e4ff4d 100644
--- a/drivers/mtd/nand/raw/nand_ecc.c
+++ b/drivers/mtd/nand/raw/nand_ecc.c
@@ -10,7 +10,7 @@
* Thomas Gleixner (tglx@linutronix.de)
*
* Information on how this algorithm works and how it was developed
- * can be found in Documentation/mtd/nand_ecc.txt
+ * can be found in Documentation/mtd/nand_ecc.rst
*
* This file is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 70/79] docs: nvdimm: convert to ReST
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (59 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 69/79] docs: mtd: " Mauro Carvalho Chehab
@ 2019-04-22 13:27 ` Mauro Carvalho Chehab
2019-04-22 13:28 ` [PATCH v2 71/79] docs: xtensa: " Mauro Carvalho Chehab
` (12 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:27 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Dan Williams, Vishal Verma, Dave Jiang,
Keith Busch, Ira Weiny, linux-nvdimm
Rename the mtd documentation files to ReST, add an
index for them and adjust in order to produce a nice html
output via the Sphinx build system.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/nvdimm/{btt.txt => btt.rst} | 139 ++---
Documentation/nvdimm/index.rst | 12 +
.../nvdimm/{nvdimm.txt => nvdimm.rst} | 518 ++++++++++--------
.../nvdimm/{security.txt => security.rst} | 4 +-
drivers/nvdimm/Kconfig | 2 +-
5 files changed, 388 insertions(+), 287 deletions(-)
rename Documentation/nvdimm/{btt.txt => btt.rst} (71%)
create mode 100644 Documentation/nvdimm/index.rst
rename Documentation/nvdimm/{nvdimm.txt => nvdimm.rst} (60%)
rename Documentation/nvdimm/{security.txt => security.rst} (99%)
diff --git a/Documentation/nvdimm/btt.txt b/Documentation/nvdimm/btt.rst
similarity index 71%
rename from Documentation/nvdimm/btt.txt
rename to Documentation/nvdimm/btt.rst
index e293fb664924..20727c9bbbe5 100644
--- a/Documentation/nvdimm/btt.txt
+++ b/Documentation/nvdimm/btt.rst
@@ -1,9 +1,10 @@
+=============================
BTT - Block Translation Table
=============================
1. Introduction
----------------
+===============
Persistent memory based storage is able to perform IO at byte (or more
accurately, cache line) granularity. However, we often want to expose such
@@ -25,7 +26,7 @@ provides atomic sector updates.
2. Static Layout
-----------------
+================
The underlying storage on which a BTT can be laid out is not limited in any way.
The BTT, however, splits the available space into chunks of up to 512 GiB,
@@ -33,43 +34,43 @@ called "Arenas".
Each arena follows the same layout for its metadata, and all references in an
arena are internal to it (with the exception of one field that points to the
-next arena). The following depicts the "On-disk" metadata layout:
+next arena). The following depicts the "On-disk" metadata layout::
- Backing Store +-------> Arena
-+---------------+ | +------------------+
-| | | | Arena info block |
-| Arena 0 +---+ | 4K |
-| 512G | +------------------+
-| | | |
-+---------------+ | |
-| | | |
-| Arena 1 | | Data Blocks |
-| 512G | | |
-| | | |
-+---------------+ | |
-| . | | |
-| . | | |
-| . | | |
-| | | |
-| | | |
-+---------------+ +------------------+
- | |
- | BTT Map |
- | |
- | |
- +------------------+
- | |
- | BTT Flog |
- | |
- +------------------+
- | Info block copy |
- | 4K |
- +------------------+
+ Backing Store +-------> Arena
+ +---------------+ | +------------------+
+ | | | | Arena info block |
+ | Arena 0 +---+ | 4K |
+ | 512G | +------------------+
+ | | | |
+ +---------------+ | |
+ | | | |
+ | Arena 1 | | Data Blocks |
+ | 512G | | |
+ | | | |
+ +---------------+ | |
+ | . | | |
+ | . | | |
+ | . | | |
+ | | | |
+ | | | |
+ +---------------+ +------------------+
+ | |
+ | BTT Map |
+ | |
+ | |
+ +------------------+
+ | |
+ | BTT Flog |
+ | |
+ +------------------+
+ | Info block copy |
+ | 4K |
+ +------------------+
3. Theory of Operation
-----------------------
+======================
a. The BTT Map
@@ -79,31 +80,37 @@ The map is a simple lookup/indirection table that maps an LBA to an internal
block. Each map entry is 32 bits. The two most significant bits are special
flags, and the remaining form the internal block number.
+======== =============================================================
Bit Description
-31 - 30 : Error and Zero flags - Used in the following way:
- Bit Description
- 31 30
- -----------------------------------------------------------------------
- 00 Initial state. Reads return zeroes; Premap = Postmap
- 01 Zero state: Reads return zeroes
- 10 Error state: Reads fail; Writes clear 'E' bit
- 11 Normal Block – has valid postmap
+======== =============================================================
+31 - 30 Error and Zero flags - Used in the following way:
+ == == ====================================================
+ 31 30 Description
+ == == ====================================================
+ 0 0 Initial state. Reads return zeroes; Premap = Postmap
+ 0 1 Zero state: Reads return zeroes
+ 1 0 Error state: Reads fail; Writes clear 'E' bit
+ 1 1 Normal Block – has valid postmap
+ == == ====================================================
-29 - 0 : Mappings to internal 'postmap' blocks
+29 - 0 Mappings to internal 'postmap' blocks
+======== =============================================================
Some of the terminology that will be subsequently used:
-External LBA : LBA as made visible to upper layers.
-ABA : Arena Block Address - Block offset/number within an arena
-Premap ABA : The block offset into an arena, which was decided upon by range
+============ ================================================================
+External LBA LBA as made visible to upper layers.
+ABA Arena Block Address - Block offset/number within an arena
+Premap ABA The block offset into an arena, which was decided upon by range
checking the External LBA
-Postmap ABA : The block number in the "Data Blocks" area obtained after
+Postmap ABA The block number in the "Data Blocks" area obtained after
indirection from the map
-nfree : The number of free blocks that are maintained at any given time.
+nfree The number of free blocks that are maintained at any given time.
This is the number of concurrent writes that can happen to the
arena.
+============ ================================================================
For example, after adding a BTT, we surface a disk of 1024G. We get a read for
@@ -121,19 +128,21 @@ i.e. Every write goes to a "free" block. A running list of free blocks is
maintained in the form of the BTT flog. 'Flog' is a combination of the words
"free list" and "log". The flog contains 'nfree' entries, and an entry contains:
-lba : The premap ABA that is being written to
-old_map : The old postmap ABA - after 'this' write completes, this will be a
+======== =====================================================================
+lba The premap ABA that is being written to
+old_map The old postmap ABA - after 'this' write completes, this will be a
free block.
-new_map : The new postmap ABA. The map will up updated to reflect this
+new_map The new postmap ABA. The map will up updated to reflect this
lba->postmap_aba mapping, but we log it here in case we have to
recover.
-seq : Sequence number to mark which of the 2 sections of this flog entry is
+seq Sequence number to mark which of the 2 sections of this flog entry is
valid/newest. It cycles between 01->10->11->01 (binary) under normal
operation, with 00 indicating an uninitialized state.
-lba' : alternate lba entry
-old_map': alternate old postmap entry
-new_map': alternate new postmap entry
-seq' : alternate sequence number.
+lba' alternate lba entry
+old_map' alternate old postmap entry
+new_map' alternate new postmap entry
+seq' alternate sequence number.
+======== =====================================================================
Each of the above fields is 32-bit, making one entry 32 bytes. Entries are also
padded to 64 bytes to avoid cache line sharing or aliasing. Flog updates are
@@ -147,8 +156,10 @@ c. The concept of lanes
While 'nfree' describes the number of concurrent IOs an arena can process
concurrently, 'nlanes' is the number of IOs the BTT device as a whole can
-process.
- nlanes = min(nfree, num_cpus)
+process::
+
+ nlanes = min(nfree, num_cpus)
+
A lane number is obtained at the start of any IO, and is used for indexing into
all the on-disk and in-memory data structures for the duration of the IO. If
there are more CPUs than the max number of available lanes, than lanes are
@@ -180,10 +191,10 @@ e. In-memory data structure: map locks
--------------------------------------
Consider a case where two writer threads are writing to the same LBA. There can
-be a race in the following sequence of steps:
+be a race in the following sequence of steps::
-free[lane] = map[premap_aba]
-map[premap_aba] = postmap_aba
+ free[lane] = map[premap_aba]
+ map[premap_aba] = postmap_aba
Both threads can update their respective free[lane] with the same old, freed
postmap_aba. This has made the layout inconsistent by losing a free entry, and
@@ -202,6 +213,7 @@ On startup, we analyze the BTT flog to create our list of free blocks. We walk
through all the entries, and for each lane, of the set of two possible
'sections', we always look at the most recent one only (based on the sequence
number). The reconstruction rules/steps are simple:
+
- Read map[log_entry.lba].
- If log_entry.new matches the map entry, then log_entry.old is free.
- If log_entry.new does not match the map entry, then log_entry.new is free.
@@ -228,7 +240,7 @@ Write:
1. Convert external LBA to Arena number + pre-map ABA
2. Get a lane (and take lane_lock)
3. Use lane to index into in-memory free list and obtain a new block, next flog
- index, next sequence number
+ index, next sequence number
4. Scan the RTT to check if free block is present, and spin/wait if it is.
5. Write data to this free block
6. Read map to get the existing post-map ABA entry for this pre-map ABA
@@ -245,6 +257,7 @@ Write:
An arena would be in an error state if any of the metadata is corrupted
irrecoverably, either due to a bug or a media error. The following conditions
indicate an error:
+
- Info block checksum does not match (and recovering from the copy also fails)
- All internal available blocks are not uniquely and entirely addressed by the
sum of mapped blocks and free blocks (from the BTT flog).
@@ -263,7 +276,7 @@ The BTT can be set up on any disk (namespace) exposed by the libnvdimm subsystem
(pmem, or blk mode). The easiest way to set up such a namespace is using the
'ndctl' utility [1]:
-For example, the ndctl command line to setup a btt with a 4k sector size is:
+For example, the ndctl command line to setup a btt with a 4k sector size is::
ndctl create-namespace -f -e namespace0.0 -m sector -l 4k
diff --git a/Documentation/nvdimm/index.rst b/Documentation/nvdimm/index.rst
new file mode 100644
index 000000000000..1a3402d3775e
--- /dev/null
+++ b/Documentation/nvdimm/index.rst
@@ -0,0 +1,12 @@
+:orphan:
+
+===================================
+Non-Volatile Memory Device (NVDIMM)
+===================================
+
+.. toctree::
+ :maxdepth: 1
+
+ nvdimm
+ btt
+ security
diff --git a/Documentation/nvdimm/nvdimm.txt b/Documentation/nvdimm/nvdimm.rst
similarity index 60%
rename from Documentation/nvdimm/nvdimm.txt
rename to Documentation/nvdimm/nvdimm.rst
index e894de69915a..e47da39c8e20 100644
--- a/Documentation/nvdimm/nvdimm.txt
+++ b/Documentation/nvdimm/nvdimm.rst
@@ -1,8 +1,14 @@
- LIBNVDIMM: Non-Volatile Devices
- libnvdimm - kernel / libndctl - userspace helper library
- linux-nvdimm@lists.01.org
- v13
+===============================
+LIBNVDIMM: Non-Volatile Devices
+===============================
+libnvdimm - kernel / libndctl - userspace helper library
+
+linux-nvdimm@lists.01.org
+
+Version 13
+
+.. contents:
Glossary
Overview
@@ -40,49 +46,57 @@
Glossary
---------
-
-PMEM: A system-physical-address range where writes are persistent. A
-block device composed of PMEM is capable of DAX. A PMEM address range
-may span an interleave of several DIMMs.
-
-BLK: A set of one or more programmable memory mapped apertures provided
-by a DIMM to access its media. This indirection precludes the
-performance benefit of interleaving, but enables DIMM-bounded failure
-modes.
-
-DPA: DIMM Physical Address, is a DIMM-relative offset. With one DIMM in
-the system there would be a 1:1 system-physical-address:DPA association.
-Once more DIMMs are added a memory controller interleave must be
-decoded to determine the DPA associated with a given
-system-physical-address. BLK capacity always has a 1:1 relationship
-with a single-DIMM's DPA range.
-
-DAX: File system extensions to bypass the page cache and block layer to
-mmap persistent memory, from a PMEM block device, directly into a
-process address space.
-
-DSM: Device Specific Method: ACPI method to to control specific
-device - in this case the firmware.
-
-DCR: NVDIMM Control Region Structure defined in ACPI 6 Section 5.2.25.5.
-It defines a vendor-id, device-id, and interface format for a given DIMM.
-
-BTT: Block Translation Table: Persistent memory is byte addressable.
-Existing software may have an expectation that the power-fail-atomicity
-of writes is at least one sector, 512 bytes. The BTT is an indirection
-table with atomic update semantics to front a PMEM/BLK block device
-driver and present arbitrary atomic sector sizes.
-
-LABEL: Metadata stored on a DIMM device that partitions and identifies
-(persistently names) storage between PMEM and BLK. It also partitions
-BLK storage to host BTTs with different parameters per BLK-partition.
-Note that traditional partition tables, GPT/MBR, are layered on top of a
-BLK or PMEM device.
+========
+
+PMEM:
+ A system-physical-address range where writes are persistent. A
+ block device composed of PMEM is capable of DAX. A PMEM address range
+ may span an interleave of several DIMMs.
+
+BLK:
+ A set of one or more programmable memory mapped apertures provided
+ by a DIMM to access its media. This indirection precludes the
+ performance benefit of interleaving, but enables DIMM-bounded failure
+ modes.
+
+DPA:
+ DIMM Physical Address, is a DIMM-relative offset. With one DIMM in
+ the system there would be a 1:1 system-physical-address:DPA association.
+ Once more DIMMs are added a memory controller interleave must be
+ decoded to determine the DPA associated with a given
+ system-physical-address. BLK capacity always has a 1:1 relationship
+ with a single-DIMM's DPA range.
+
+DAX:
+ File system extensions to bypass the page cache and block layer to
+ mmap persistent memory, from a PMEM block device, directly into a
+ process address space.
+
+DSM:
+ Device Specific Method: ACPI method to to control specific
+ device - in this case the firmware.
+
+DCR:
+ NVDIMM Control Region Structure defined in ACPI 6 Section 5.2.25.5.
+ It defines a vendor-id, device-id, and interface format for a given DIMM.
+
+BTT:
+ Block Translation Table: Persistent memory is byte addressable.
+ Existing software may have an expectation that the power-fail-atomicity
+ of writes is at least one sector, 512 bytes. The BTT is an indirection
+ table with atomic update semantics to front a PMEM/BLK block device
+ driver and present arbitrary atomic sector sizes.
+
+LABEL:
+ Metadata stored on a DIMM device that partitions and identifies
+ (persistently names) storage between PMEM and BLK. It also partitions
+ BLK storage to host BTTs with different parameters per BLK-partition.
+ Note that traditional partition tables, GPT/MBR, are layered on top of a
+ BLK or PMEM device.
Overview
---------
+========
The LIBNVDIMM subsystem provides support for three types of NVDIMMs, namely,
PMEM, BLK, and NVDIMM devices that can simultaneously support both PMEM
@@ -96,19 +110,30 @@ accessible via BLK. When that occurs a LABEL is needed to reserve DPA
for exclusive access via one mode a time.
Supporting Documents
-ACPI 6: http://www.uefi.org/sites/default/files/resources/ACPI_6.0.pdf
-NVDIMM Namespace: http://pmem.io/documents/NVDIMM_Namespace_Spec.pdf
-DSM Interface Example: http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
-Driver Writer's Guide: http://pmem.io/documents/NVDIMM_Driver_Writers_Guide.pdf
+--------------------
+
+ACPI 6:
+ http://www.uefi.org/sites/default/files/resources/ACPI_6.0.pdf
+NVDIMM Namespace:
+ http://pmem.io/documents/NVDIMM_Namespace_Spec.pdf
+DSM Interface Example:
+ http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
+Driver Writer's Guide:
+ http://pmem.io/documents/NVDIMM_Driver_Writers_Guide.pdf
Git Trees
-LIBNVDIMM: https://git.kernel.org/cgit/linux/kernel/git/djbw/nvdimm.git
-LIBNDCTL: https://github.com/pmem/ndctl.git
-PMEM: https://github.com/01org/prd
+---------
+
+LIBNVDIMM:
+ https://git.kernel.org/cgit/linux/kernel/git/djbw/nvdimm.git
+LIBNDCTL:
+ https://github.com/pmem/ndctl.git
+PMEM:
+ https://github.com/01org/prd
LIBNVDIMM PMEM and BLK
-------------------
+======================
Prior to the arrival of the NFIT, non-volatile memory was described to a
system in various ad-hoc ways. Usually only the bare minimum was
@@ -122,38 +147,39 @@ For each NVDIMM access method (PMEM, BLK), LIBNVDIMM provides a block
device driver:
1. PMEM (nd_pmem.ko): Drives a system-physical-address range. This
- range is contiguous in system memory and may be interleaved (hardware
- memory controller striped) across multiple DIMMs. When interleaved the
- platform may optionally provide details of which DIMMs are participating
- in the interleave.
+ range is contiguous in system memory and may be interleaved (hardware
+ memory controller striped) across multiple DIMMs. When interleaved the
+ platform may optionally provide details of which DIMMs are participating
+ in the interleave.
- Note that while LIBNVDIMM describes system-physical-address ranges that may
- alias with BLK access as ND_NAMESPACE_PMEM ranges and those without
- alias as ND_NAMESPACE_IO ranges, to the nd_pmem driver there is no
- distinction. The different device-types are an implementation detail
- that userspace can exploit to implement policies like "only interface
- with address ranges from certain DIMMs". It is worth noting that when
- aliasing is present and a DIMM lacks a label, then no block device can
- be created by default as userspace needs to do at least one allocation
- of DPA to the PMEM range. In contrast ND_NAMESPACE_IO ranges, once
- registered, can be immediately attached to nd_pmem.
+ Note that while LIBNVDIMM describes system-physical-address ranges that may
+ alias with BLK access as ND_NAMESPACE_PMEM ranges and those without
+ alias as ND_NAMESPACE_IO ranges, to the nd_pmem driver there is no
+ distinction. The different device-types are an implementation detail
+ that userspace can exploit to implement policies like "only interface
+ with address ranges from certain DIMMs". It is worth noting that when
+ aliasing is present and a DIMM lacks a label, then no block device can
+ be created by default as userspace needs to do at least one allocation
+ of DPA to the PMEM range. In contrast ND_NAMESPACE_IO ranges, once
+ registered, can be immediately attached to nd_pmem.
2. BLK (nd_blk.ko): This driver performs I/O using a set of platform
- defined apertures. A set of apertures will access just one DIMM.
- Multiple windows (apertures) allow multiple concurrent accesses, much like
- tagged-command-queuing, and would likely be used by different threads or
- different CPUs.
+ defined apertures. A set of apertures will access just one DIMM.
+ Multiple windows (apertures) allow multiple concurrent accesses, much like
+ tagged-command-queuing, and would likely be used by different threads or
+ different CPUs.
- The NFIT specification defines a standard format for a BLK-aperture, but
- the spec also allows for vendor specific layouts, and non-NFIT BLK
- implementations may have other designs for BLK I/O. For this reason
- "nd_blk" calls back into platform-specific code to perform the I/O.
- One such implementation is defined in the "Driver Writer's Guide" and "DSM
- Interface Example".
+ The NFIT specification defines a standard format for a BLK-aperture, but
+ the spec also allows for vendor specific layouts, and non-NFIT BLK
+ implementations may have other designs for BLK I/O. For this reason
+ "nd_blk" calls back into platform-specific code to perform the I/O.
+
+ One such implementation is defined in the "Driver Writer's Guide" and "DSM
+ Interface Example".
Why BLK?
---------
+========
While PMEM provides direct byte-addressable CPU-load/store access to
NVDIMM storage, it does not provide the best system RAS (recovery,
@@ -162,12 +188,15 @@ system-physical-address address causes a CPU exception while an access
to a corrupted address through an BLK-aperture causes that block window
to raise an error status in a register. The latter is more aligned with
the standard error model that host-bus-adapter attached disks present.
+
Also, if an administrator ever wants to replace a memory it is easier to
service a system at DIMM module boundaries. Compare this to PMEM where
data could be interleaved in an opaque hardware specific manner across
several DIMMs.
PMEM vs BLK
+-----------
+
BLK-apertures solve these RAS problems, but their presence is also the
major contributing factor to the complexity of the ND subsystem. They
complicate the implementation because PMEM and BLK alias in DPA space.
@@ -185,13 +214,14 @@ carved into an arbitrary number of BLK devices with discontiguous
extents.
BLK-REGIONs, PMEM-REGIONs, Atomic Sectors, and DAX
---------------------------------------------------
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
One of the few
reasons to allow multiple BLK namespaces per REGION is so that each
BLK-namespace can be configured with a BTT with unique atomic sector
sizes. While a PMEM device can host a BTT the LABEL specification does
not provide for a sector size to be specified for a PMEM namespace.
+
This is due to the expectation that the primary usage model for PMEM is
via DAX, and the BTT is incompatible with DAX. However, for the cases
where an application or filesystem still needs atomic sector update
@@ -200,52 +230,52 @@ LIBNVDIMM/NDCTL: Block Translation Table "btt"
Example NVDIMM Platform
------------------------
+=======================
For the remainder of this document the following diagram will be
-referenced for any example sysfs layouts.
+referenced for any example sysfs layouts::
- (a) (b) DIMM BLK-REGION
- +-------------------+--------+--------+--------+
-+------+ | pm0.0 | blk2.0 | pm1.0 | blk2.1 | 0 region2
-| imc0 +--+- - - region0- - - +--------+ +--------+
-+--+---+ | pm0.0 | blk3.0 | pm1.0 | blk3.1 | 1 region3
- | +-------------------+--------v v--------+
-+--+---+ | |
-| cpu0 | region1
-+--+---+ | |
- | +----------------------------^ ^--------+
-+--+---+ | blk4.0 | pm1.0 | blk4.0 | 2 region4
-| imc1 +--+----------------------------| +--------+
-+------+ | blk5.0 | pm1.0 | blk5.0 | 3 region5
- +----------------------------+--------+--------+
+ (a) (b) DIMM BLK-REGION
+ +-------------------+--------+--------+--------+
+ +------+ | pm0.0 | blk2.0 | pm1.0 | blk2.1 | 0 region2
+ | imc0 +--+- - - region0- - - +--------+ +--------+
+ +--+---+ | pm0.0 | blk3.0 | pm1.0 | blk3.1 | 1 region3
+ | +-------------------+--------v v--------+
+ +--+---+ | |
+ | cpu0 | region1
+ +--+---+ | |
+ | +----------------------------^ ^--------+
+ +--+---+ | blk4.0 | pm1.0 | blk4.0 | 2 region4
+ | imc1 +--+----------------------------| +--------+
+ +------+ | blk5.0 | pm1.0 | blk5.0 | 3 region5
+ +----------------------------+--------+--------+
In this platform we have four DIMMs and two memory controllers in one
socket. Each unique interface (BLK or PMEM) to DPA space is identified
by a region device with a dynamically assigned id (REGION0 - REGION5).
1. The first portion of DIMM0 and DIMM1 are interleaved as REGION0. A
- single PMEM namespace is created in the REGION0-SPA-range that spans most
- of DIMM0 and DIMM1 with a user-specified name of "pm0.0". Some of that
- interleaved system-physical-address range is reclaimed as BLK-aperture
- accessed space starting at DPA-offset (a) into each DIMM. In that
- reclaimed space we create two BLK-aperture "namespaces" from REGION2 and
- REGION3 where "blk2.0" and "blk3.0" are just human readable names that
- could be set to any user-desired name in the LABEL.
+ single PMEM namespace is created in the REGION0-SPA-range that spans most
+ of DIMM0 and DIMM1 with a user-specified name of "pm0.0". Some of that
+ interleaved system-physical-address range is reclaimed as BLK-aperture
+ accessed space starting at DPA-offset (a) into each DIMM. In that
+ reclaimed space we create two BLK-aperture "namespaces" from REGION2 and
+ REGION3 where "blk2.0" and "blk3.0" are just human readable names that
+ could be set to any user-desired name in the LABEL.
2. In the last portion of DIMM0 and DIMM1 we have an interleaved
- system-physical-address range, REGION1, that spans those two DIMMs as
- well as DIMM2 and DIMM3. Some of REGION1 is allocated to a PMEM namespace
- named "pm1.0", the rest is reclaimed in 4 BLK-aperture namespaces (for
- each DIMM in the interleave set), "blk2.1", "blk3.1", "blk4.0", and
- "blk5.0".
+ system-physical-address range, REGION1, that spans those two DIMMs as
+ well as DIMM2 and DIMM3. Some of REGION1 is allocated to a PMEM namespace
+ named "pm1.0", the rest is reclaimed in 4 BLK-aperture namespaces (for
+ each DIMM in the interleave set), "blk2.1", "blk3.1", "blk4.0", and
+ "blk5.0".
3. The portion of DIMM2 and DIMM3 that do not participate in the REGION1
- interleaved system-physical-address range (i.e. the DPA address past
- offset (b) are also included in the "blk4.0" and "blk5.0" namespaces.
- Note, that this example shows that BLK-aperture namespaces don't need to
- be contiguous in DPA-space.
+ interleaved system-physical-address range (i.e. the DPA address past
+ offset (b) are also included in the "blk4.0" and "blk5.0" namespaces.
+ Note, that this example shows that BLK-aperture namespaces don't need to
+ be contiguous in DPA-space.
This bus is provided by the kernel under the device
/sys/devices/platform/nfit_test.0 when CONFIG_NFIT_TEST is enabled and
@@ -254,7 +284,7 @@ by a region device with a dynamically assigned id (REGION0 - REGION5).
LIBNVDIMM Kernel Device Model and LIBNDCTL Userspace API
-----------------------------------------------------
+========================================================
What follows is a description of the LIBNVDIMM sysfs layout and a
corresponding object hierarchy diagram as viewed through the LIBNDCTL
@@ -263,12 +293,18 @@ NVDIMM Platform which is also the LIBNVDIMM bus used in the LIBNDCTL unit
test.
LIBNDCTL: Context
+-----------------
+
Every API call in the LIBNDCTL library requires a context that holds the
logging parameters and other library instance state. The library is
based on the libabc template:
-https://git.kernel.org/cgit/linux/kernel/git/kay/libabc.git
+
+ https://git.kernel.org/cgit/linux/kernel/git/kay/libabc.git
LIBNDCTL: instantiate a new library context example
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+::
struct ndctl_ctx *ctx;
@@ -278,7 +314,7 @@ LIBNDCTL: instantiate a new library context example
return NULL;
LIBNVDIMM/LIBNDCTL: Bus
--------------------
+-----------------------
A bus has a 1:1 relationship with an NFIT. The current expectation for
ACPI based systems is that there is only ever one platform-global NFIT.
@@ -288,9 +324,10 @@ we we use this capability to test multiple NFIT configurations in the
unit test.
LIBNVDIMM: control class device in /sys/class
+---------------------------------------------
This character device accepts DSM messages to be passed to DIMM
-identified by its NFIT handle.
+identified by its NFIT handle::
/sys/class/nd/ndctl0
|-- dev
@@ -300,10 +337,15 @@ identified by its NFIT handle.
LIBNVDIMM: bus
+--------------
+
+::
struct nvdimm_bus *nvdimm_bus_register(struct device *parent,
struct nvdimm_bus_descriptor *nfit_desc);
+::
+
/sys/devices/platform/nfit_test.0/ndbus0
|-- commands
|-- nd
@@ -324,7 +366,9 @@ LIBNVDIMM: bus
`-- wait_probe
LIBNDCTL: bus enumeration example
-Find the bus handle that describes the bus from Example NVDIMM Platform
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Find the bus handle that describes the bus from Example NVDIMM Platform::
static struct ndctl_bus *get_bus_by_provider(struct ndctl_ctx *ctx,
const char *provider)
@@ -342,7 +386,7 @@ Find the bus handle that describes the bus from Example NVDIMM Platform
LIBNVDIMM/LIBNDCTL: DIMM (NMEM)
----------------------------
+-------------------------------
The DIMM device provides a character device for sending commands to
hardware, and it is a container for LABELs. If the DIMM is defined by
@@ -355,11 +399,16 @@ Range Mapping Structure", and there is no requirement that they actually
be physical DIMMs, so we use a more generic name.
LIBNVDIMM: DIMM (NMEM)
+^^^^^^^^^^^^^^^^^^^^^^
+
+::
struct nvdimm *nvdimm_create(struct nvdimm_bus *nvdimm_bus, void *provider_data,
const struct attribute_group **groups, unsigned long flags,
unsigned long *dsm_mask);
+::
+
/sys/devices/platform/nfit_test.0/ndbus0
|-- nmem0
| |-- available_slots
@@ -384,15 +433,20 @@ LIBNVDIMM: DIMM (NMEM)
LIBNDCTL: DIMM enumeration example
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Note, in this example we are assuming NFIT-defined DIMMs which are
identified by an "nfit_handle" a 32-bit value where:
-Bit 3:0 DIMM number within the memory channel
-Bit 7:4 memory channel number
-Bit 11:8 memory controller ID
-Bit 15:12 socket ID (within scope of a Node controller if node controller is present)
-Bit 27:16 Node Controller ID
-Bit 31:28 Reserved
+
+ - Bit 3:0 DIMM number within the memory channel
+ - Bit 7:4 memory channel number
+ - Bit 11:8 memory controller ID
+ - Bit 15:12 socket ID (within scope of a Node controller if node
+ controller is present)
+ - Bit 27:16 Node Controller ID
+ - Bit 31:28 Reserved
+
+::
static struct ndctl_dimm *get_dimm_by_handle(struct ndctl_bus *bus,
unsigned int handle)
@@ -413,7 +467,7 @@ Bit 31:28 Reserved
dimm = get_dimm_by_handle(bus, DIMM_HANDLE(0, 0, 0, 0, 0));
LIBNVDIMM/LIBNDCTL: Region
-----------------------
+--------------------------
A generic REGION device is registered for each PMEM range or BLK-aperture
set. Per the example there are 6 regions: 2 PMEM and 4 BLK-aperture
@@ -435,13 +489,15 @@ emits, "devtype" duplicates the DEVTYPE variable stored by udev at the
at the 'add' event, and finally, the optional "spa_index" is provided in
the case where the region is defined by a SPA.
-LIBNVDIMM: region
+LIBNVDIMM: region::
struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
struct nd_region_desc *ndr_desc);
struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
struct nd_region_desc *ndr_desc);
+::
+
/sys/devices/platform/nfit_test.0/ndbus0
|-- region0
| |-- available_size
@@ -468,10 +524,11 @@ LIBNVDIMM: region
[..]
LIBNDCTL: region enumeration example
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Sample region retrieval routines based on NFIT-unique data like
"spa_index" (interleave set id) for PMEM and "nfit_handle" (dimm id) for
-BLK.
+BLK::
static struct ndctl_region *get_pmem_region_by_spa_index(struct ndctl_bus *bus,
unsigned int spa_index)
@@ -518,33 +575,33 @@ REGION name generic and expects userspace to always consider the
region-attributes for four reasons:
1. There are already more than two REGION and "namespace" types. For
- PMEM there are two subtypes. As mentioned previously we have PMEM where
- the constituent DIMM devices are known and anonymous PMEM. For BLK
- regions the NFIT specification already anticipates vendor specific
- implementations. The exact distinction of what a region contains is in
- the region-attributes not the region-name or the region-devtype.
+ PMEM there are two subtypes. As mentioned previously we have PMEM where
+ the constituent DIMM devices are known and anonymous PMEM. For BLK
+ regions the NFIT specification already anticipates vendor specific
+ implementations. The exact distinction of what a region contains is in
+ the region-attributes not the region-name or the region-devtype.
2. A region with zero child-namespaces is a possible configuration. For
- example, the NFIT allows for a DCR to be published without a
- corresponding BLK-aperture. This equates to a DIMM that can only accept
- control/configuration messages, but no i/o through a descendant block
- device. Again, this "type" is advertised in the attributes ('mappings'
- == 0) and the name does not tell you much.
+ example, the NFIT allows for a DCR to be published without a
+ corresponding BLK-aperture. This equates to a DIMM that can only accept
+ control/configuration messages, but no i/o through a descendant block
+ device. Again, this "type" is advertised in the attributes ('mappings'
+ == 0) and the name does not tell you much.
3. What if a third major interface type arises in the future? Outside
- of vendor specific implementations, it's not difficult to envision a
- third class of interface type beyond BLK and PMEM. With a generic name
- for the REGION level of the device-hierarchy old userspace
- implementations can still make sense of new kernel advertised
- region-types. Userspace can always rely on the generic region
- attributes like "mappings", "size", etc and the expected child devices
- named "namespace". This generic format of the device-model hierarchy
- allows the LIBNVDIMM and LIBNDCTL implementations to be more uniform and
- future-proof.
+ of vendor specific implementations, it's not difficult to envision a
+ third class of interface type beyond BLK and PMEM. With a generic name
+ for the REGION level of the device-hierarchy old userspace
+ implementations can still make sense of new kernel advertised
+ region-types. Userspace can always rely on the generic region
+ attributes like "mappings", "size", etc and the expected child devices
+ named "namespace". This generic format of the device-model hierarchy
+ allows the LIBNVDIMM and LIBNDCTL implementations to be more uniform and
+ future-proof.
4. There are more robust mechanisms for determining the major type of a
- region than a device name. See the next section, How Do I Determine the
- Major Type of a Region?
+ region than a device name. See the next section, How Do I Determine the
+ Major Type of a Region?
How Do I Determine the Major Type of a Region?
----------------------------------------------
@@ -553,7 +610,8 @@ Outside of the blanket recommendation of "use libndctl", or simply
looking at the kernel header (/usr/include/linux/ndctl.h) to decode the
"nstype" integer attribute, here are some other options.
- 1. module alias lookup:
+1. module alias lookup
+^^^^^^^^^^^^^^^^^^^^^^
The whole point of region/namespace device type differentiation is to
decide which block-device driver will attach to a given LIBNVDIMM namespace.
@@ -569,28 +627,31 @@ looking at the kernel header (/usr/include/linux/ndctl.h) to decode the
the resulting namespaces. The output from module resolution is more
accurate than a region-name or region-devtype.
- 2. udev:
+2. udev
+^^^^^^^
- The kernel "devtype" is registered in the udev database
- # udevadm info --path=/devices/platform/nfit_test.0/ndbus0/region0
- P: /devices/platform/nfit_test.0/ndbus0/region0
- E: DEVPATH=/devices/platform/nfit_test.0/ndbus0/region0
- E: DEVTYPE=nd_pmem
- E: MODALIAS=nd:t2
- E: SUBSYSTEM=nd
+ The kernel "devtype" is registered in the udev database::
- # udevadm info --path=/devices/platform/nfit_test.0/ndbus0/region4
- P: /devices/platform/nfit_test.0/ndbus0/region4
- E: DEVPATH=/devices/platform/nfit_test.0/ndbus0/region4
- E: DEVTYPE=nd_blk
- E: MODALIAS=nd:t3
- E: SUBSYSTEM=nd
+ # udevadm info --path=/devices/platform/nfit_test.0/ndbus0/region0
+ P: /devices/platform/nfit_test.0/ndbus0/region0
+ E: DEVPATH=/devices/platform/nfit_test.0/ndbus0/region0
+ E: DEVTYPE=nd_pmem
+ E: MODALIAS=nd:t2
+ E: SUBSYSTEM=nd
+
+ # udevadm info --path=/devices/platform/nfit_test.0/ndbus0/region4
+ P: /devices/platform/nfit_test.0/ndbus0/region4
+ E: DEVPATH=/devices/platform/nfit_test.0/ndbus0/region4
+ E: DEVTYPE=nd_blk
+ E: MODALIAS=nd:t3
+ E: SUBSYSTEM=nd
...and is available as a region attribute, but keep in mind that the
"devtype" does not indicate sub-type variations and scripts should
really be understanding the other attributes.
- 3. type specific attributes:
+3. type specific attributes
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
As it currently stands a BLK-aperture region will never have a
"nfit/spa_index" attribute, but neither will a non-NFIT PMEM region. A
@@ -600,7 +661,7 @@ looking at the kernel header (/usr/include/linux/ndctl.h) to decode the
LIBNVDIMM/LIBNDCTL: Namespace
--------------------------
+-----------------------------
A REGION, after resolving DPA aliasing and LABEL specified boundaries,
surfaces one or more "namespace" devices. The arrival of a "namespace"
@@ -608,12 +669,14 @@ device currently triggers either the nd_blk or nd_pmem driver to load
and register a disk/block device.
LIBNVDIMM: namespace
+^^^^^^^^^^^^^^^^^^^^
+
Here is a sample layout from the three major types of NAMESPACE where
namespace0.0 represents DIMM-info-backed PMEM (note that it has a 'uuid'
attribute), namespace2.0 represents a BLK namespace (note it has a
'sector_size' attribute) that, and namespace6.0 represents an anonymous
PMEM namespace (note that has no 'uuid' attribute due to not support a
-LABEL).
+LABEL)::
/sys/devices/platform/nfit_test.0/ndbus0/region0/namespace0.0
|-- alt_name
@@ -656,76 +719,84 @@ LABEL).
`-- uevent
LIBNDCTL: namespace enumeration example
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Namespaces are indexed relative to their parent region, example below.
These indexes are mostly static from boot to boot, but subsystem makes
no guarantees in this regard. For a static namespace identifier use its
'uuid' attribute.
-static struct ndctl_namespace *get_namespace_by_id(struct ndctl_region *region,
- unsigned int id)
-{
- struct ndctl_namespace *ndns;
+::
- ndctl_namespace_foreach(region, ndns)
- if (ndctl_namespace_get_id(ndns) == id)
- return ndns;
+ static struct ndctl_namespace
+ *get_namespace_by_id(struct ndctl_region *region, unsigned int id)
+ {
+ struct ndctl_namespace *ndns;
- return NULL;
-}
+ ndctl_namespace_foreach(region, ndns)
+ if (ndctl_namespace_get_id(ndns) == id)
+ return ndns;
+
+ return NULL;
+ }
LIBNDCTL: namespace creation example
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
Idle namespaces are automatically created by the kernel if a given
region has enough available capacity to create a new namespace.
Namespace instantiation involves finding an idle namespace and
configuring it. For the most part the setting of namespace attributes
can occur in any order, the only constraint is that 'uuid' must be set
before 'size'. This enables the kernel to track DPA allocations
-internally with a static identifier.
+internally with a static identifier::
-static int configure_namespace(struct ndctl_region *region,
- struct ndctl_namespace *ndns,
- struct namespace_parameters *parameters)
-{
- char devname[50];
+ static int configure_namespace(struct ndctl_region *region,
+ struct ndctl_namespace *ndns,
+ struct namespace_parameters *parameters)
+ {
+ char devname[50];
- snprintf(devname, sizeof(devname), "namespace%d.%d",
- ndctl_region_get_id(region), paramaters->id);
+ snprintf(devname, sizeof(devname), "namespace%d.%d",
+ ndctl_region_get_id(region), paramaters->id);
- ndctl_namespace_set_alt_name(ndns, devname);
- /* 'uuid' must be set prior to setting size! */
- ndctl_namespace_set_uuid(ndns, paramaters->uuid);
- ndctl_namespace_set_size(ndns, paramaters->size);
- /* unlike pmem namespaces, blk namespaces have a sector size */
- if (parameters->lbasize)
- ndctl_namespace_set_sector_size(ndns, parameters->lbasize);
- ndctl_namespace_enable(ndns);
-}
+ ndctl_namespace_set_alt_name(ndns, devname);
+ /* 'uuid' must be set prior to setting size! */
+ ndctl_namespace_set_uuid(ndns, paramaters->uuid);
+ ndctl_namespace_set_size(ndns, paramaters->size);
+ /* unlike pmem namespaces, blk namespaces have a sector size */
+ if (parameters->lbasize)
+ ndctl_namespace_set_sector_size(ndns, parameters->lbasize);
+ ndctl_namespace_enable(ndns);
+ }
Why the Term "namespace"?
+^^^^^^^^^^^^^^^^^^^^^^^^^
1. Why not "volume" for instance? "volume" ran the risk of confusing
- ND (libnvdimm subsystem) to a volume manager like device-mapper.
+ ND (libnvdimm subsystem) to a volume manager like device-mapper.
2. The term originated to describe the sub-devices that can be created
- within a NVME controller (see the nvme specification:
- http://www.nvmexpress.org/specifications/), and NFIT namespaces are
- meant to parallel the capabilities and configurability of
- NVME-namespaces.
+ within a NVME controller (see the nvme specification:
+ http://www.nvmexpress.org/specifications/), and NFIT namespaces are
+ meant to parallel the capabilities and configurability of
+ NVME-namespaces.
LIBNVDIMM/LIBNDCTL: Block Translation Table "btt"
----------------------------------------------
+-------------------------------------------------
A BTT (design document: http://pmem.io/2014/09/23/btt.html) is a stacked
block device driver that fronts either the whole block device or a
partition of a block device emitted by either a PMEM or BLK NAMESPACE.
LIBNVDIMM: btt layout
+^^^^^^^^^^^^^^^^^^^^^
+
Every region will start out with at least one BTT device which is the
seed device. To activate it set the "namespace", "uuid", and
"sector_size" attributes and then bind the device to the nd_pmem or
-nd_blk driver depending on the region type.
+nd_blk driver depending on the region type::
/sys/devices/platform/nfit_test.1/ndbus0/region0/btt0/
|-- namespace
@@ -739,10 +810,12 @@ nd_blk driver depending on the region type.
`-- uuid
LIBNDCTL: btt creation example
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
Similar to namespaces an idle BTT device is automatically created per
region. Each time this "seed" btt device is configured and enabled a new
seed is created. Creating a BTT configuration involves two steps of
-finding and idle BTT and assigning it to consume a PMEM or BLK namespace.
+finding and idle BTT and assigning it to consume a PMEM or BLK namespace::
static struct ndctl_btt *get_idle_btt(struct ndctl_region *region)
{
@@ -787,29 +860,30 @@ Summary LIBNDCTL Diagram
------------------------
For the given example above, here is the view of the objects as seen by the
-LIBNDCTL API:
- +---+
- |CTX| +---------+ +--------------+ +---------------+
- +-+-+ +-> REGION0 +---> NAMESPACE0.0 +--> PMEM8 "pm0.0" |
- | | +---------+ +--------------+ +---------------+
-+-------+ | | +---------+ +--------------+ +---------------+
-| DIMM0 <-+ | +-> REGION1 +---> NAMESPACE1.0 +--> PMEM6 "pm1.0" |
-+-------+ | | | +---------+ +--------------+ +---------------+
-| DIMM1 <-+ +-v--+ | +---------+ +--------------+ +---------------+
-+-------+ +-+BUS0+---> REGION2 +-+-> NAMESPACE2.0 +--> ND6 "blk2.0" |
-| DIMM2 <-+ +----+ | +---------+ | +--------------+ +----------------------+
-+-------+ | | +-> NAMESPACE2.1 +--> ND5 "blk2.1" | BTT2 |
-| DIMM3 <-+ | +--------------+ +----------------------+
-+-------+ | +---------+ +--------------+ +---------------+
- +-> REGION3 +-+-> NAMESPACE3.0 +--> ND4 "blk3.0" |
- | +---------+ | +--------------+ +----------------------+
- | +-> NAMESPACE3.1 +--> ND3 "blk3.1" | BTT1 |
- | +--------------+ +----------------------+
- | +---------+ +--------------+ +---------------+
- +-> REGION4 +---> NAMESPACE4.0 +--> ND2 "blk4.0" |
- | +---------+ +--------------+ +---------------+
- | +---------+ +--------------+ +----------------------+
- +-> REGION5 +---> NAMESPACE5.0 +--> ND1 "blk5.0" | BTT0 |
- +---------+ +--------------+ +---------------+------+
+LIBNDCTL API::
+
+ +---+
+ |CTX| +---------+ +--------------+ +---------------+
+ +-+-+ +-> REGION0 +---> NAMESPACE0.0 +--> PMEM8 "pm0.0" |
+ | | +---------+ +--------------+ +---------------+
+ +-------+ | | +---------+ +--------------+ +---------------+
+ | DIMM0 <-+ | +-> REGION1 +---> NAMESPACE1.0 +--> PMEM6 "pm1.0" |
+ +-------+ | | | +---------+ +--------------+ +---------------+
+ | DIMM1 <-+ +-v--+ | +---------+ +--------------+ +---------------+
+ +-------+ +-+BUS0+---> REGION2 +-+-> NAMESPACE2.0 +--> ND6 "blk2.0" |
+ | DIMM2 <-+ +----+ | +---------+ | +--------------+ +----------------------+
+ +-------+ | | +-> NAMESPACE2.1 +--> ND5 "blk2.1" | BTT2 |
+ | DIMM3 <-+ | +--------------+ +----------------------+
+ +-------+ | +---------+ +--------------+ +---------------+
+ +-> REGION3 +-+-> NAMESPACE3.0 +--> ND4 "blk3.0" |
+ | +---------+ | +--------------+ +----------------------+
+ | +-> NAMESPACE3.1 +--> ND3 "blk3.1" | BTT1 |
+ | +--------------+ +----------------------+
+ | +---------+ +--------------+ +---------------+
+ +-> REGION4 +---> NAMESPACE4.0 +--> ND2 "blk4.0" |
+ | +---------+ +--------------+ +---------------+
+ | +---------+ +--------------+ +----------------------+
+ +-> REGION5 +---> NAMESPACE5.0 +--> ND1 "blk5.0" | BTT0 |
+ +---------+ +--------------+ +---------------+------+
diff --git a/Documentation/nvdimm/security.txt b/Documentation/nvdimm/security.rst
similarity index 99%
rename from Documentation/nvdimm/security.txt
rename to Documentation/nvdimm/security.rst
index 4c36c05ca98e..ad9dea099b34 100644
--- a/Documentation/nvdimm/security.txt
+++ b/Documentation/nvdimm/security.rst
@@ -1,4 +1,5 @@
-NVDIMM SECURITY
+===============
+NVDIMM Security
===============
1. Introduction
@@ -138,4 +139,5 @@ This command is only available when the master security is enabled, indicated
by the extended security status.
[1]: http://pmem.io/documents/NVDIMM_DSM_Interface-V1.8.pdf
+
[2]: http://www.t13.org/documents/UploadedDocuments/docs2006/e05179r4-ACS-SecurityClarifications.pdf
diff --git a/drivers/nvdimm/Kconfig b/drivers/nvdimm/Kconfig
index 5e27918e4624..3ff6a22173fe 100644
--- a/drivers/nvdimm/Kconfig
+++ b/drivers/nvdimm/Kconfig
@@ -32,7 +32,7 @@ config BLK_DEV_PMEM
Documentation/admin-guide/kernel-parameters.rst). This driver converts
these persistent memory ranges into block devices that are
capable of DAX (direct-access) file system mappings. See
- Documentation/nvdimm/nvdimm.txt for more details.
+ Documentation/nvdimm/nvdimm.rst for more details.
Say Y if you want to use an NVDIMM
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 71/79] docs: xtensa: convert to ReST
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (60 preceding siblings ...)
2019-04-22 13:27 ` [PATCH v2 70/79] docs: nvdimm: " Mauro Carvalho Chehab
@ 2019-04-22 13:28 ` Mauro Carvalho Chehab
2019-04-22 13:28 ` [PATCH v2 72/79] docs: mmc: " Mauro Carvalho Chehab
` (11 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:28 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Chris Zankel, Max Filippov, linux-xtensa
Rename the xtensa documentation files to ReST, add an
index for them and adjust in order to produce a nice html
output via the Sphinx build system.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
.../xtensa/{atomctl.txt => atomctl.rst} | 13 +-
.../xtensa/{booting.txt => booting.rst} | 5 +-
Documentation/xtensa/index.rst | 12 ++
Documentation/xtensa/mmu.rst | 195 ++++++++++++++++++
Documentation/xtensa/mmu.txt | 189 -----------------
arch/xtensa/include/asm/initialize_mmu.h | 2 +-
6 files changed, 222 insertions(+), 194 deletions(-)
rename Documentation/xtensa/{atomctl.txt => atomctl.rst} (81%)
rename Documentation/xtensa/{booting.txt => booting.rst} (91%)
create mode 100644 Documentation/xtensa/index.rst
create mode 100644 Documentation/xtensa/mmu.rst
delete mode 100644 Documentation/xtensa/mmu.txt
diff --git a/Documentation/xtensa/atomctl.txt b/Documentation/xtensa/atomctl.rst
similarity index 81%
rename from Documentation/xtensa/atomctl.txt
rename to Documentation/xtensa/atomctl.rst
index 1da783ac200c..1ecbd0ba9a2e 100644
--- a/Documentation/xtensa/atomctl.txt
+++ b/Documentation/xtensa/atomctl.rst
@@ -1,3 +1,7 @@
+===========================================
+Atomic Operation Control (ATOMCTL) Register
+===========================================
+
We Have Atomic Operation Control (ATOMCTL) Register.
This register determines the effect of using a S32C1I instruction
with various combinations of:
@@ -8,7 +12,7 @@ with various combinations of:
2. With and without An Intelligent Memory Controller which
can do Atomic Transactions itself.
-The Core comes up with a default value of for the three types of cache ops:
+The Core comes up with a default value of for the three types of cache ops::
0x28: (WB: Internal, WT: Internal, BY:Exception)
@@ -30,15 +34,18 @@ CUSTOMER-WARNING:
Developers might find using RCW in Bypass mode convenient when testing
with the cache being bypassed; for example studying cache alias problems.
-See Section 4.3.12.4 of ISA; Bits:
+See Section 4.3.12.4 of ISA; Bits::
WB WT BY
5 4 | 3 2 | 1 0
+
+========= ================== ================== ===============
2 Bit
Field
Values WB - Write Back WT - Write Thru BY - Bypass
---------- --------------- ----------------- ----------------
+========= ================== ================== ===============
0 Exception Exception Exception
1 RCW Transaction RCW Transaction RCW Transaction
2 Internal Operation Internal Operation Reserved
3 Reserved Reserved Reserved
+========= ================== ================== ===============
diff --git a/Documentation/xtensa/booting.txt b/Documentation/xtensa/booting.rst
similarity index 91%
rename from Documentation/xtensa/booting.txt
rename to Documentation/xtensa/booting.rst
index 402b33a2619f..e1b83707e5b6 100644
--- a/Documentation/xtensa/booting.txt
+++ b/Documentation/xtensa/booting.rst
@@ -1,10 +1,13 @@
-Passing boot parameters to the kernel.
+=====================================
+Passing boot parameters to the kernel
+=====================================
Boot parameters are represented as a TLV list in the memory. Please see
arch/xtensa/include/asm/bootparam.h for definition of the bp_tag structure and
tag value constants. First entry in the list must have type BP_TAG_FIRST, last
entry must have type BP_TAG_LAST. The address of the first list entry is
passed to the kernel in the register a2. The address type depends on MMU type:
+
- For configurations without MMU, with region protection or with MPU the
address must be the physical address.
- For configurations with region translarion MMU or with MMUv3 and CONFIG_MMU=n
diff --git a/Documentation/xtensa/index.rst b/Documentation/xtensa/index.rst
new file mode 100644
index 000000000000..5a24e365e35f
--- /dev/null
+++ b/Documentation/xtensa/index.rst
@@ -0,0 +1,12 @@
+:orphan:
+
+===================
+Xtensa Architecture
+===================
+
+.. toctree::
+ :maxdepth: 1
+
+ atomctl
+ booting
+ mmu
diff --git a/Documentation/xtensa/mmu.rst b/Documentation/xtensa/mmu.rst
new file mode 100644
index 000000000000..e52a12960fdc
--- /dev/null
+++ b/Documentation/xtensa/mmu.rst
@@ -0,0 +1,195 @@
+=============================
+MMUv3 initialization sequence
+=============================
+
+The code in the initialize_mmu macro sets up MMUv3 memory mapping
+identically to MMUv2 fixed memory mapping. Depending on
+CONFIG_INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX symbol this code is
+located in addresses it was linked for (symbol undefined), or not
+(symbol defined), so it needs to be position-independent.
+
+The code has the following assumptions:
+
+ - This code fragment is run only on an MMU v3.
+ - TLBs are in their reset state.
+ - ITLBCFG and DTLBCFG are zero (reset state).
+ - RASID is 0x04030201 (reset state).
+ - PS.RING is zero (reset state).
+ - LITBASE is zero (reset state, PC-relative literals); required to be PIC.
+
+TLB setup proceeds along the following steps.
+
+ Legend:
+
+ - VA = virtual address (two upper nibbles of it);
+ - PA = physical address (two upper nibbles of it);
+ - pc = physical range that contains this code;
+
+After step 2, we jump to virtual address in the range 0x40000000..0x5fffffff
+or 0x00000000..0x1fffffff, depending on whether the kernel was loaded below
+0x40000000 or above. That address corresponds to next instruction to execute
+in this code. After step 4, we jump to intended (linked) address of this code.
+The scheme below assumes that the kernel is loaded below 0x40000000.
+
+ ====== ===== ===== ===== ===== ====== ===== =====
+ - Step0 Step1 Step2 Step3 Step4 Step5
+
+ VA PA PA PA PA VA PA PA
+ ====== ===== ===== ===== ===== ====== ===== =====
+ E0..FF -> E0 -> E0 -> E0 F0..FF -> F0 -> F0
+ C0..DF -> C0 -> C0 -> C0 E0..EF -> F0 -> F0
+ A0..BF -> A0 -> A0 -> A0 D8..DF -> 00 -> 00
+ 80..9F -> 80 -> 80 -> 80 D0..D7 -> 00 -> 00
+ 60..7F -> 60 -> 60 -> 60
+ 40..5F -> 40 -> pc -> pc 40..5F -> pc
+ 20..3F -> 20 -> 20 -> 20
+ 00..1F -> 00 -> 00 -> 00
+ ====== ===== ===== ===== ===== ====== ===== =====
+
+The default location of IO peripherals is above 0xf0000000. This may be changed
+using a "ranges" property in a device tree simple-bus node. See the Devicetree
+Specification, section 4.5 for details on the syntax and semantics of
+simple-bus nodes. The following limitations apply:
+
+1. Only top level simple-bus nodes are considered
+
+2. Only one (first) simple-bus node is considered
+
+3. Empty "ranges" properties are not supported
+
+4. Only the first triplet in the "ranges" property is considered
+
+5. The parent-bus-address value is rounded down to the nearest 256MB boundary
+
+6. The IO area covers the entire 256MB segment of parent-bus-address; the
+ "ranges" triplet length field is ignored
+
+
+MMUv3 address space layouts.
+============================
+
+Default MMUv2-compatible layout::
+
+ Symbol VADDR Size
+ +------------------+
+ | Userspace | 0x00000000 TASK_SIZE
+ +------------------+ 0x40000000
+ +------------------+
+ | Page table | XCHAL_PAGE_TABLE_VADDR 0x80000000 XCHAL_PAGE_TABLE_SIZE
+ +------------------+
+ | KASAN shadow map | KASAN_SHADOW_START 0x80400000 KASAN_SHADOW_SIZE
+ +------------------+ 0x8e400000
+ +------------------+
+ | VMALLOC area | VMALLOC_START 0xc0000000 128MB - 64KB
+ +------------------+ VMALLOC_END
+ | Cache aliasing | TLBTEMP_BASE_1 0xc7ff0000 DCACHE_WAY_SIZE
+ | remap area 1 |
+ +------------------+
+ | Cache aliasing | TLBTEMP_BASE_2 DCACHE_WAY_SIZE
+ | remap area 2 |
+ +------------------+
+ +------------------+
+ | KMAP area | PKMAP_BASE PTRS_PER_PTE *
+ | | DCACHE_N_COLORS *
+ | | PAGE_SIZE
+ | | (4MB * DCACHE_N_COLORS)
+ +------------------+
+ | Atomic KMAP area | FIXADDR_START KM_TYPE_NR *
+ | | NR_CPUS *
+ | | DCACHE_N_COLORS *
+ | | PAGE_SIZE
+ +------------------+ FIXADDR_TOP 0xcffff000
+ +------------------+
+ | Cached KSEG | XCHAL_KSEG_CACHED_VADDR 0xd0000000 128MB
+ +------------------+
+ | Uncached KSEG | XCHAL_KSEG_BYPASS_VADDR 0xd8000000 128MB
+ +------------------+
+ | Cached KIO | XCHAL_KIO_CACHED_VADDR 0xe0000000 256MB
+ +------------------+
+ | Uncached KIO | XCHAL_KIO_BYPASS_VADDR 0xf0000000 256MB
+ +------------------+
+
+
+256MB cached + 256MB uncached layout::
+
+ Symbol VADDR Size
+ +------------------+
+ | Userspace | 0x00000000 TASK_SIZE
+ +------------------+ 0x40000000
+ +------------------+
+ | Page table | XCHAL_PAGE_TABLE_VADDR 0x80000000 XCHAL_PAGE_TABLE_SIZE
+ +------------------+
+ | KASAN shadow map | KASAN_SHADOW_START 0x80400000 KASAN_SHADOW_SIZE
+ +------------------+ 0x8e400000
+ +------------------+
+ | VMALLOC area | VMALLOC_START 0xa0000000 128MB - 64KB
+ +------------------+ VMALLOC_END
+ | Cache aliasing | TLBTEMP_BASE_1 0xa7ff0000 DCACHE_WAY_SIZE
+ | remap area 1 |
+ +------------------+
+ | Cache aliasing | TLBTEMP_BASE_2 DCACHE_WAY_SIZE
+ | remap area 2 |
+ +------------------+
+ +------------------+
+ | KMAP area | PKMAP_BASE PTRS_PER_PTE *
+ | | DCACHE_N_COLORS *
+ | | PAGE_SIZE
+ | | (4MB * DCACHE_N_COLORS)
+ +------------------+
+ | Atomic KMAP area | FIXADDR_START KM_TYPE_NR *
+ | | NR_CPUS *
+ | | DCACHE_N_COLORS *
+ | | PAGE_SIZE
+ +------------------+ FIXADDR_TOP 0xaffff000
+ +------------------+
+ | Cached KSEG | XCHAL_KSEG_CACHED_VADDR 0xb0000000 256MB
+ +------------------+
+ | Uncached KSEG | XCHAL_KSEG_BYPASS_VADDR 0xc0000000 256MB
+ +------------------+
+ +------------------+
+ | Cached KIO | XCHAL_KIO_CACHED_VADDR 0xe0000000 256MB
+ +------------------+
+ | Uncached KIO | XCHAL_KIO_BYPASS_VADDR 0xf0000000 256MB
+ +------------------+
+
+
+512MB cached + 512MB uncached layout::
+
+ Symbol VADDR Size
+ +------------------+
+ | Userspace | 0x00000000 TASK_SIZE
+ +------------------+ 0x40000000
+ +------------------+
+ | Page table | XCHAL_PAGE_TABLE_VADDR 0x80000000 XCHAL_PAGE_TABLE_SIZE
+ +------------------+
+ | KASAN shadow map | KASAN_SHADOW_START 0x80400000 KASAN_SHADOW_SIZE
+ +------------------+ 0x8e400000
+ +------------------+
+ | VMALLOC area | VMALLOC_START 0x90000000 128MB - 64KB
+ +------------------+ VMALLOC_END
+ | Cache aliasing | TLBTEMP_BASE_1 0x97ff0000 DCACHE_WAY_SIZE
+ | remap area 1 |
+ +------------------+
+ | Cache aliasing | TLBTEMP_BASE_2 DCACHE_WAY_SIZE
+ | remap area 2 |
+ +------------------+
+ +------------------+
+ | KMAP area | PKMAP_BASE PTRS_PER_PTE *
+ | | DCACHE_N_COLORS *
+ | | PAGE_SIZE
+ | | (4MB * DCACHE_N_COLORS)
+ +------------------+
+ | Atomic KMAP area | FIXADDR_START KM_TYPE_NR *
+ | | NR_CPUS *
+ | | DCACHE_N_COLORS *
+ | | PAGE_SIZE
+ +------------------+ FIXADDR_TOP 0x9ffff000
+ +------------------+
+ | Cached KSEG | XCHAL_KSEG_CACHED_VADDR 0xa0000000 512MB
+ +------------------+
+ | Uncached KSEG | XCHAL_KSEG_BYPASS_VADDR 0xc0000000 512MB
+ +------------------+
+ | Cached KIO | XCHAL_KIO_CACHED_VADDR 0xe0000000 256MB
+ +------------------+
+ | Uncached KIO | XCHAL_KIO_BYPASS_VADDR 0xf0000000 256MB
+ +------------------+
diff --git a/Documentation/xtensa/mmu.txt b/Documentation/xtensa/mmu.txt
deleted file mode 100644
index 318114de63f3..000000000000
--- a/Documentation/xtensa/mmu.txt
+++ /dev/null
@@ -1,189 +0,0 @@
-MMUv3 initialization sequence.
-
-The code in the initialize_mmu macro sets up MMUv3 memory mapping
-identically to MMUv2 fixed memory mapping. Depending on
-CONFIG_INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX symbol this code is
-located in addresses it was linked for (symbol undefined), or not
-(symbol defined), so it needs to be position-independent.
-
-The code has the following assumptions:
- This code fragment is run only on an MMU v3.
- TLBs are in their reset state.
- ITLBCFG and DTLBCFG are zero (reset state).
- RASID is 0x04030201 (reset state).
- PS.RING is zero (reset state).
- LITBASE is zero (reset state, PC-relative literals); required to be PIC.
-
-TLB setup proceeds along the following steps.
-
- Legend:
- VA = virtual address (two upper nibbles of it);
- PA = physical address (two upper nibbles of it);
- pc = physical range that contains this code;
-
-After step 2, we jump to virtual address in the range 0x40000000..0x5fffffff
-or 0x00000000..0x1fffffff, depending on whether the kernel was loaded below
-0x40000000 or above. That address corresponds to next instruction to execute
-in this code. After step 4, we jump to intended (linked) address of this code.
-The scheme below assumes that the kernel is loaded below 0x40000000.
-
- Step0 Step1 Step2 Step3 Step4 Step5
- ===== ===== ===== ===== ===== =====
- VA PA PA PA PA VA PA PA
- ------ -- -- -- -- ------ -- --
- E0..FF -> E0 -> E0 -> E0 F0..FF -> F0 -> F0
- C0..DF -> C0 -> C0 -> C0 E0..EF -> F0 -> F0
- A0..BF -> A0 -> A0 -> A0 D8..DF -> 00 -> 00
- 80..9F -> 80 -> 80 -> 80 D0..D7 -> 00 -> 00
- 60..7F -> 60 -> 60 -> 60
- 40..5F -> 40 -> pc -> pc 40..5F -> pc
- 20..3F -> 20 -> 20 -> 20
- 00..1F -> 00 -> 00 -> 00
-
-The default location of IO peripherals is above 0xf0000000. This may be changed
-using a "ranges" property in a device tree simple-bus node. See the Devicetree
-Specification, section 4.5 for details on the syntax and semantics of
-simple-bus nodes. The following limitations apply:
-
-1. Only top level simple-bus nodes are considered
-
-2. Only one (first) simple-bus node is considered
-
-3. Empty "ranges" properties are not supported
-
-4. Only the first triplet in the "ranges" property is considered
-
-5. The parent-bus-address value is rounded down to the nearest 256MB boundary
-
-6. The IO area covers the entire 256MB segment of parent-bus-address; the
- "ranges" triplet length field is ignored
-
-
-MMUv3 address space layouts.
-============================
-
-Default MMUv2-compatible layout.
-
- Symbol VADDR Size
-+------------------+
-| Userspace | 0x00000000 TASK_SIZE
-+------------------+ 0x40000000
-+------------------+
-| Page table | XCHAL_PAGE_TABLE_VADDR 0x80000000 XCHAL_PAGE_TABLE_SIZE
-+------------------+
-| KASAN shadow map | KASAN_SHADOW_START 0x80400000 KASAN_SHADOW_SIZE
-+------------------+ 0x8e400000
-+------------------+
-| VMALLOC area | VMALLOC_START 0xc0000000 128MB - 64KB
-+------------------+ VMALLOC_END
-| Cache aliasing | TLBTEMP_BASE_1 0xc7ff0000 DCACHE_WAY_SIZE
-| remap area 1 |
-+------------------+
-| Cache aliasing | TLBTEMP_BASE_2 DCACHE_WAY_SIZE
-| remap area 2 |
-+------------------+
-+------------------+
-| KMAP area | PKMAP_BASE PTRS_PER_PTE *
-| | DCACHE_N_COLORS *
-| | PAGE_SIZE
-| | (4MB * DCACHE_N_COLORS)
-+------------------+
-| Atomic KMAP area | FIXADDR_START KM_TYPE_NR *
-| | NR_CPUS *
-| | DCACHE_N_COLORS *
-| | PAGE_SIZE
-+------------------+ FIXADDR_TOP 0xcffff000
-+------------------+
-| Cached KSEG | XCHAL_KSEG_CACHED_VADDR 0xd0000000 128MB
-+------------------+
-| Uncached KSEG | XCHAL_KSEG_BYPASS_VADDR 0xd8000000 128MB
-+------------------+
-| Cached KIO | XCHAL_KIO_CACHED_VADDR 0xe0000000 256MB
-+------------------+
-| Uncached KIO | XCHAL_KIO_BYPASS_VADDR 0xf0000000 256MB
-+------------------+
-
-
-256MB cached + 256MB uncached layout.
-
- Symbol VADDR Size
-+------------------+
-| Userspace | 0x00000000 TASK_SIZE
-+------------------+ 0x40000000
-+------------------+
-| Page table | XCHAL_PAGE_TABLE_VADDR 0x80000000 XCHAL_PAGE_TABLE_SIZE
-+------------------+
-| KASAN shadow map | KASAN_SHADOW_START 0x80400000 KASAN_SHADOW_SIZE
-+------------------+ 0x8e400000
-+------------------+
-| VMALLOC area | VMALLOC_START 0xa0000000 128MB - 64KB
-+------------------+ VMALLOC_END
-| Cache aliasing | TLBTEMP_BASE_1 0xa7ff0000 DCACHE_WAY_SIZE
-| remap area 1 |
-+------------------+
-| Cache aliasing | TLBTEMP_BASE_2 DCACHE_WAY_SIZE
-| remap area 2 |
-+------------------+
-+------------------+
-| KMAP area | PKMAP_BASE PTRS_PER_PTE *
-| | DCACHE_N_COLORS *
-| | PAGE_SIZE
-| | (4MB * DCACHE_N_COLORS)
-+------------------+
-| Atomic KMAP area | FIXADDR_START KM_TYPE_NR *
-| | NR_CPUS *
-| | DCACHE_N_COLORS *
-| | PAGE_SIZE
-+------------------+ FIXADDR_TOP 0xaffff000
-+------------------+
-| Cached KSEG | XCHAL_KSEG_CACHED_VADDR 0xb0000000 256MB
-+------------------+
-| Uncached KSEG | XCHAL_KSEG_BYPASS_VADDR 0xc0000000 256MB
-+------------------+
-+------------------+
-| Cached KIO | XCHAL_KIO_CACHED_VADDR 0xe0000000 256MB
-+------------------+
-| Uncached KIO | XCHAL_KIO_BYPASS_VADDR 0xf0000000 256MB
-+------------------+
-
-
-512MB cached + 512MB uncached layout.
-
- Symbol VADDR Size
-+------------------+
-| Userspace | 0x00000000 TASK_SIZE
-+------------------+ 0x40000000
-+------------------+
-| Page table | XCHAL_PAGE_TABLE_VADDR 0x80000000 XCHAL_PAGE_TABLE_SIZE
-+------------------+
-| KASAN shadow map | KASAN_SHADOW_START 0x80400000 KASAN_SHADOW_SIZE
-+------------------+ 0x8e400000
-+------------------+
-| VMALLOC area | VMALLOC_START 0x90000000 128MB - 64KB
-+------------------+ VMALLOC_END
-| Cache aliasing | TLBTEMP_BASE_1 0x97ff0000 DCACHE_WAY_SIZE
-| remap area 1 |
-+------------------+
-| Cache aliasing | TLBTEMP_BASE_2 DCACHE_WAY_SIZE
-| remap area 2 |
-+------------------+
-+------------------+
-| KMAP area | PKMAP_BASE PTRS_PER_PTE *
-| | DCACHE_N_COLORS *
-| | PAGE_SIZE
-| | (4MB * DCACHE_N_COLORS)
-+------------------+
-| Atomic KMAP area | FIXADDR_START KM_TYPE_NR *
-| | NR_CPUS *
-| | DCACHE_N_COLORS *
-| | PAGE_SIZE
-+------------------+ FIXADDR_TOP 0x9ffff000
-+------------------+
-| Cached KSEG | XCHAL_KSEG_CACHED_VADDR 0xa0000000 512MB
-+------------------+
-| Uncached KSEG | XCHAL_KSEG_BYPASS_VADDR 0xc0000000 512MB
-+------------------+
-| Cached KIO | XCHAL_KIO_CACHED_VADDR 0xe0000000 256MB
-+------------------+
-| Uncached KIO | XCHAL_KIO_BYPASS_VADDR 0xf0000000 256MB
-+------------------+
diff --git a/arch/xtensa/include/asm/initialize_mmu.h b/arch/xtensa/include/asm/initialize_mmu.h
index 10e9852b2fb4..f75f7f8fc93e 100644
--- a/arch/xtensa/include/asm/initialize_mmu.h
+++ b/arch/xtensa/include/asm/initialize_mmu.h
@@ -46,7 +46,7 @@
#if XCHAL_HAVE_S32C1I && (XCHAL_HW_MIN_VERSION >= XTENSA_HWVERSION_RC_2009_0)
/*
* We Have Atomic Operation Control (ATOMCTL) Register; Initialize it.
- * For details see Documentation/xtensa/atomctl.txt
+ * For details see Documentation/xtensa/atomctl.rst
*/
#if XCHAL_DCACHE_IS_COHERENT
movi a3, 0x25 /* For SMP/MX -- internal for writeback,
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 72/79] docs: mmc: convert to ReST
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (61 preceding siblings ...)
2019-04-22 13:28 ` [PATCH v2 71/79] docs: xtensa: " Mauro Carvalho Chehab
@ 2019-04-22 13:28 ` Mauro Carvalho Chehab
2019-04-22 13:28 ` [PATCH v2 73/79] docs: sparc: " Mauro Carvalho Chehab
` (10 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:28 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet
Rename the mmc documentation files to ReST, add an
index for them and adjust in order to produce a nice html
output via the Sphinx build system.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/mmc/index.rst | 13 +++++
.../{mmc-async-req.txt => mmc-async-req.rst} | 53 +++++++++++--------
.../{mmc-dev-attrs.txt => mmc-dev-attrs.rst} | 32 +++++++----
.../{mmc-dev-parts.txt => mmc-dev-parts.rst} | 13 ++---
.../mmc/{mmc-tools.txt => mmc-tools.rst} | 5 +-
5 files changed, 79 insertions(+), 37 deletions(-)
create mode 100644 Documentation/mmc/index.rst
rename Documentation/mmc/{mmc-async-req.txt => mmc-async-req.rst} (75%)
rename Documentation/mmc/{mmc-dev-attrs.txt => mmc-dev-attrs.rst} (73%)
rename Documentation/mmc/{mmc-dev-parts.txt => mmc-dev-parts.rst} (83%)
rename Documentation/mmc/{mmc-tools.txt => mmc-tools.rst} (92%)
diff --git a/Documentation/mmc/index.rst b/Documentation/mmc/index.rst
new file mode 100644
index 000000000000..3305478ddadb
--- /dev/null
+++ b/Documentation/mmc/index.rst
@@ -0,0 +1,13 @@
+:orphan:
+
+========================
+MMC/SD/SDIO card support
+========================
+
+.. toctree::
+ :maxdepth: 1
+
+ mmc-dev-attrs
+ mmc-dev-parts
+ mmc-async-req
+ mmc-tools
diff --git a/Documentation/mmc/mmc-async-req.txt b/Documentation/mmc/mmc-async-req.rst
similarity index 75%
rename from Documentation/mmc/mmc-async-req.txt
rename to Documentation/mmc/mmc-async-req.rst
index ae1907b10e4a..0f7197c9c3b5 100644
--- a/Documentation/mmc/mmc-async-req.txt
+++ b/Documentation/mmc/mmc-async-req.rst
@@ -1,13 +1,20 @@
+========================
+MMC Asynchronous Request
+========================
+
Rationale
=========
How significant is the cache maintenance overhead?
+
It depends. Fast eMMC and multiple cache levels with speculative cache
pre-fetch makes the cache overhead relatively significant. If the DMA
preparations for the next request are done in parallel with the current
transfer, the DMA preparation overhead would not affect the MMC performance.
+
The intention of non-blocking (asynchronous) MMC requests is to minimize the
time between when an MMC request ends and another MMC request begins.
+
Using mmc_wait_for_req(), the MMC controller is idle while dma_map_sg and
dma_unmap_sg are processing. Using non-blocking MMC requests makes it
possible to prepare the caches for next job in parallel with an active
@@ -17,6 +24,7 @@ MMC block driver
================
The mmc_blk_issue_rw_rq() in the MMC block driver is made non-blocking.
+
The increase in throughput is proportional to the time it takes to
prepare (major part of preparations are dma_map_sg() and dma_unmap_sg())
a request and how fast the memory is. The faster the MMC/SD is the
@@ -35,6 +43,7 @@ MMC core API extension
======================
There is one new public function mmc_start_req().
+
It starts a new MMC command request for a host. The function isn't
truly non-blocking. If there is an ongoing async request it waits
for completion of that request and starts the new one and returns. It
@@ -47,6 +56,7 @@ MMC host extensions
There are two optional members in the mmc_host_ops -- pre_req() and
post_req() -- that the host driver may implement in order to move work
to before and after the actual mmc_host_ops.request() function is called.
+
In the DMA case pre_req() may do dma_map_sg() and prepare the DMA
descriptor, and post_req() runs the dma_unmap_sg().
@@ -55,33 +65,34 @@ Optimize for the first request
The first request in a series of requests can't be prepared in parallel
with the previous transfer, since there is no previous request.
+
The argument is_first_req in pre_req() indicates that there is no previous
request. The host driver may optimize for this scenario to minimize
the performance loss. A way to optimize for this is to split the current
request in two chunks, prepare the first chunk and start the request,
and finally prepare the second chunk and start the transfer.
-Pseudocode to handle is_first_req scenario with minimal prepare overhead:
+Pseudocode to handle is_first_req scenario with minimal prepare overhead::
-if (is_first_req && req->size > threshold)
- /* start MMC transfer for the complete transfer size */
- mmc_start_command(MMC_CMD_TRANSFER_FULL_SIZE);
+ if (is_first_req && req->size > threshold)
+ /* start MMC transfer for the complete transfer size */
+ mmc_start_command(MMC_CMD_TRANSFER_FULL_SIZE);
- /*
- * Begin to prepare DMA while cmd is being processed by MMC.
- * The first chunk of the request should take the same time
- * to prepare as the "MMC process command time".
- * If prepare time exceeds MMC cmd time
- * the transfer is delayed, guesstimate max 4k as first chunk size.
- */
- prepare_1st_chunk_for_dma(req);
- /* flush pending desc to the DMAC (dmaengine.h) */
- dma_issue_pending(req->dma_desc);
+ /*
+ * Begin to prepare DMA while cmd is being processed by MMC.
+ * The first chunk of the request should take the same time
+ * to prepare as the "MMC process command time".
+ * If prepare time exceeds MMC cmd time
+ * the transfer is delayed, guesstimate max 4k as first chunk size.
+ */
+ prepare_1st_chunk_for_dma(req);
+ /* flush pending desc to the DMAC (dmaengine.h) */
+ dma_issue_pending(req->dma_desc);
- prepare_2nd_chunk_for_dma(req);
- /*
- * The second issue_pending should be called before MMC runs out
- * of the first chunk. If the MMC runs out of the first data chunk
- * before this call, the transfer is delayed.
- */
- dma_issue_pending(req->dma_desc);
+ prepare_2nd_chunk_for_dma(req);
+ /*
+ * The second issue_pending should be called before MMC runs out
+ * of the first chunk. If the MMC runs out of the first data chunk
+ * before this call, the transfer is delayed.
+ */
+ dma_issue_pending(req->dma_desc);
diff --git a/Documentation/mmc/mmc-dev-attrs.txt b/Documentation/mmc/mmc-dev-attrs.rst
similarity index 73%
rename from Documentation/mmc/mmc-dev-attrs.txt
rename to Documentation/mmc/mmc-dev-attrs.rst
index 4ad0bb17f343..4f44b1b730d6 100644
--- a/Documentation/mmc/mmc-dev-attrs.txt
+++ b/Documentation/mmc/mmc-dev-attrs.rst
@@ -1,3 +1,4 @@
+==================================
SD and MMC Block Device Attributes
==================================
@@ -6,23 +7,29 @@ SD or MMC device.
The following attributes are read/write.
- force_ro Enforce read-only access even if write protect switch is off.
+ ======== ===============================================
+ force_ro Enforce read-only access even if write protect switch is off.
+ ======== ===============================================
SD and MMC Device Attributes
============================
All attributes are read-only.
+ ====================== ===============================================
cid Card Identification Register
csd Card Specific Data Register
scr SD Card Configuration Register (SD only)
date Manufacturing Date (from CID Register)
- fwrev Firmware/Product Revision (from CID Register) (SD and MMCv1 only)
- hwrev Hardware/Product Revision (from CID Register) (SD and MMCv1 only)
+ fwrev Firmware/Product Revision (from CID Register)
+ (SD and MMCv1 only)
+ hwrev Hardware/Product Revision (from CID Register)
+ (SD and MMCv1 only)
manfid Manufacturer ID (from CID Register)
name Product Name (from CID Register)
oemid OEM/Application ID (from CID Register)
- prv Product Revision (from CID Register) (SD and MMCv4 only)
+ prv Product Revision (from CID Register)
+ (SD and MMCv4 only)
serial Product Serial Number (from CID Register)
erase_size Erase group size
preferred_erase_size Preferred erase size
@@ -30,7 +37,10 @@ All attributes are read-only.
rel_sectors Reliable write sector count
ocr Operation Conditions Register
dsr Driver Stage Register
- cmdq_en Command Queue enabled: 1 => enabled, 0 => not enabled
+ cmdq_en Command Queue enabled:
+
+ 1 => enabled, 0 => not enabled
+ ====================== ===============================================
Note on Erase Size and Preferred Erase Size:
@@ -44,14 +54,15 @@ Note on Erase Size and Preferred Erase Size:
SD/MMC cards can erase an arbitrarily large area up to and
including the whole card. When erasing a large area it may
be desirable to do it in smaller chunks for three reasons:
- 1. A single erase command will make all other I/O on
+
+ 1. A single erase command will make all other I/O on
the card wait. This is not a problem if the whole card
is being erased, but erasing one partition will make
I/O for another partition on the same card wait for the
duration of the erase - which could be a several
minutes.
- 2. To be able to inform the user of erase progress.
- 3. The erase timeout becomes too large to be very
+ 2. To be able to inform the user of erase progress.
+ 3. The erase timeout becomes too large to be very
useful. Because the erase timeout contains a margin
which is multiplied by the size of the erase area,
the value can end up being several minutes for large
@@ -72,6 +83,9 @@ Note on Erase Size and Preferred Erase Size:
"preferred_erase_size" is in bytes.
Note on raw_rpmb_size_mult:
+
"raw_rpmb_size_mult" is a multiple of 128kB block.
+
RPMB size in byte is calculated by using the following equation:
- RPMB partition size = 128kB x raw_rpmb_size_mult
+
+ RPMB partition size = 128kB x raw_rpmb_size_mult
diff --git a/Documentation/mmc/mmc-dev-parts.txt b/Documentation/mmc/mmc-dev-parts.rst
similarity index 83%
rename from Documentation/mmc/mmc-dev-parts.txt
rename to Documentation/mmc/mmc-dev-parts.rst
index f08d078d43cf..995922f1f744 100644
--- a/Documentation/mmc/mmc-dev-parts.txt
+++ b/Documentation/mmc/mmc-dev-parts.rst
@@ -1,3 +1,4 @@
+============================
SD and MMC Device Partitions
============================
@@ -18,18 +19,18 @@ platform, write access is disabled by default to reduce the chance of
accidental bricking.
To enable write access to /dev/mmcblkXbootY, disable the forced read-only
-access with:
+access with::
-echo 0 > /sys/block/mmcblkXbootY/force_ro
+ echo 0 > /sys/block/mmcblkXbootY/force_ro
-To re-enable read-only access:
+To re-enable read-only access::
-echo 1 > /sys/block/mmcblkXbootY/force_ro
+ echo 1 > /sys/block/mmcblkXbootY/force_ro
The boot partitions can also be locked read only until the next power on,
-with:
+with::
-echo 1 > /sys/block/mmcblkXbootY/ro_lock_until_next_power_on
+ echo 1 > /sys/block/mmcblkXbootY/ro_lock_until_next_power_on
This is a feature of the card and not of the kernel. If the card does
not support boot partition locking, the file will not exist. If the
diff --git a/Documentation/mmc/mmc-tools.txt b/Documentation/mmc/mmc-tools.rst
similarity index 92%
rename from Documentation/mmc/mmc-tools.txt
rename to Documentation/mmc/mmc-tools.rst
index 735509c165d5..54406093768b 100644
--- a/Documentation/mmc/mmc-tools.txt
+++ b/Documentation/mmc/mmc-tools.rst
@@ -1,14 +1,17 @@
+======================
MMC tools introduction
======================
There is one MMC test tools called mmc-utils, which is maintained by Chris Ball,
you can find it at the below public git repository:
-http://git.kernel.org/cgit/linux/kernel/git/cjb/mmc-utils.git/
+
+ http://git.kernel.org/cgit/linux/kernel/git/cjb/mmc-utils.git/
Functions
=========
The mmc-utils tools can do the following:
+
- Print and parse extcsd data.
- Determine the eMMC writeprotect status.
- Set the eMMC writeprotect status.
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 73/79] docs: sparc: convert to ReST
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (62 preceding siblings ...)
2019-04-22 13:28 ` [PATCH v2 72/79] docs: mmc: " Mauro Carvalho Chehab
@ 2019-04-22 13:28 ` Mauro Carvalho Chehab
2019-04-22 13:28 ` [PATCH v2 74/79] docs: thermal: " Mauro Carvalho Chehab
` (9 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:28 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, David S. Miller, sparclinux
Rename the sparc documentation files to ReST, add an
index for them and adjust in order to produce a nice html
output via the Sphinx build system.
There is an except from a document under oradax dir.
It doesn't seem to make much sense to convert this one
to ReST, so let's add it as an included document.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/sparc/{adi.txt => adi.rst} | 174 +++++++++---------
.../sparc/{console.txt => console.rst} | 4 +-
Documentation/sparc/index.rst | 13 ++
.../oradax/{oracle-dax.txt => oracle-dax.rst} | 58 +++---
drivers/sbus/char/oradax.c | 2 +-
5 files changed, 144 insertions(+), 107 deletions(-)
rename Documentation/sparc/{adi.txt => adi.rst} (70%)
rename Documentation/sparc/{console.txt => console.rst} (53%)
create mode 100644 Documentation/sparc/index.rst
rename Documentation/sparc/oradax/{oracle-dax.txt => oracle-dax.rst} (95%)
diff --git a/Documentation/sparc/adi.txt b/Documentation/sparc/adi.rst
similarity index 70%
rename from Documentation/sparc/adi.txt
rename to Documentation/sparc/adi.rst
index e1aed155fb89..857ad30f9569 100644
--- a/Documentation/sparc/adi.txt
+++ b/Documentation/sparc/adi.rst
@@ -1,3 +1,4 @@
+================================
Application Data Integrity (ADI)
================================
@@ -44,12 +45,15 @@ provided by the hypervisor to the kernel. Kernel returns the value of
ADI block size to userspace using auxiliary vector along with other ADI
info. Following auxiliary vectors are provided by the kernel:
+ ============ ===========================================
AT_ADI_BLKSZ ADI block size. This is the granularity and
alignment, in bytes, of ADI versioning.
AT_ADI_NBITS Number of ADI version bits in the VA
+ ============ ===========================================
-IMPORTANT NOTES:
+IMPORTANT NOTES
+===============
- Version tag values of 0x0 and 0xf are reserved. These values match any
tag in virtual address and never generate a mismatch exception.
@@ -86,11 +90,12 @@ IMPORTANT NOTES:
ADI related traps
------------------
+=================
With ADI enabled, following new traps may occur:
Disrupting memory corruption
+----------------------------
When a store accesses a memory localtion that has TTE.mcd=1,
the task is running with ADI enabled (PSTATE.mcde=1), and the ADI
@@ -100,7 +105,7 @@ Disrupting memory corruption
first. Hypervisor creates a sun4v error report and sends a
resumable error (TT=0x7e) trap to the kernel. The kernel sends
a SIGSEGV to the task that resulted in this trap with the following
- info:
+ info::
siginfo.si_signo = SIGSEGV;
siginfo.errno = 0;
@@ -110,6 +115,7 @@ Disrupting memory corruption
Precise memory corruption
+-------------------------
When a store accesses a memory location that has TTE.mcd=1,
the task is running with ADI enabled (PSTATE.mcde=1), and the ADI
@@ -118,7 +124,7 @@ Precise memory corruption
MCD precise exception is enabled (MCDPERR=1), a precise
exception is sent to the kernel with TT=0x1a. The kernel sends
a SIGSEGV to the task that resulted in this trap with the following
- info:
+ info::
siginfo.si_signo = SIGSEGV;
siginfo.errno = 0;
@@ -126,17 +132,19 @@ Precise memory corruption
siginfo.si_addr = addr; /* address that caused trap */
siginfo.si_trapno = 0;
- NOTE: ADI tag mismatch on a load always results in precise trap.
+ NOTE:
+ ADI tag mismatch on a load always results in precise trap.
MCD disabled
+------------
When a task has not enabled ADI and attempts to set ADI version
on a memory address, processor sends an MCD disabled trap. This
trap is handled by hypervisor first and the hypervisor vectors this
trap through to the kernel as Data Access Exception trap with
fault type set to 0xa (invalid ASI). When this occurs, the kernel
- sends the task SIGSEGV signal with following info:
+ sends the task SIGSEGV signal with following info::
siginfo.si_signo = SIGSEGV;
siginfo.errno = 0;
@@ -149,35 +157,35 @@ Sample program to use ADI
-------------------------
Following sample program is meant to illustrate how to use the ADI
-functionality.
+functionality::
-#include <unistd.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <elf.h>
-#include <sys/ipc.h>
-#include <sys/shm.h>
-#include <sys/mman.h>
-#include <asm/asi.h>
+ #include <unistd.h>
+ #include <stdio.h>
+ #include <stdlib.h>
+ #include <elf.h>
+ #include <sys/ipc.h>
+ #include <sys/shm.h>
+ #include <sys/mman.h>
+ #include <asm/asi.h>
-#ifndef AT_ADI_BLKSZ
-#define AT_ADI_BLKSZ 48
-#endif
-#ifndef AT_ADI_NBITS
-#define AT_ADI_NBITS 49
-#endif
+ #ifndef AT_ADI_BLKSZ
+ #define AT_ADI_BLKSZ 48
+ #endif
+ #ifndef AT_ADI_NBITS
+ #define AT_ADI_NBITS 49
+ #endif
-#ifndef PROT_ADI
-#define PROT_ADI 0x10
-#endif
+ #ifndef PROT_ADI
+ #define PROT_ADI 0x10
+ #endif
-#define BUFFER_SIZE 32*1024*1024UL
+ #define BUFFER_SIZE 32*1024*1024UL
-main(int argc, char* argv[], char* envp[])
-{
- unsigned long i, mcde, adi_blksz, adi_nbits;
- char *shmaddr, *tmp_addr, *end, *veraddr, *clraddr;
- int shmid, version;
+ main(int argc, char* argv[], char* envp[])
+ {
+ unsigned long i, mcde, adi_blksz, adi_nbits;
+ char *shmaddr, *tmp_addr, *end, *veraddr, *clraddr;
+ int shmid, version;
Elf64_auxv_t *auxv;
adi_blksz = 0;
@@ -202,77 +210,77 @@ main(int argc, char* argv[], char* envp[])
printf("\tBlock size = %ld\n", adi_blksz);
printf("\tNumber of bits = %ld\n", adi_nbits);
- if ((shmid = shmget(2, BUFFER_SIZE,
- IPC_CREAT | SHM_R | SHM_W)) < 0) {
- perror("shmget failed");
- exit(1);
- }
+ if ((shmid = shmget(2, BUFFER_SIZE,
+ IPC_CREAT | SHM_R | SHM_W)) < 0) {
+ perror("shmget failed");
+ exit(1);
+ }
- shmaddr = shmat(shmid, NULL, 0);
- if (shmaddr == (char *)-1) {
- perror("shm attach failed");
- shmctl(shmid, IPC_RMID, NULL);
- exit(1);
- }
+ shmaddr = shmat(shmid, NULL, 0);
+ if (shmaddr == (char *)-1) {
+ perror("shm attach failed");
+ shmctl(shmid, IPC_RMID, NULL);
+ exit(1);
+ }
if (mprotect(shmaddr, BUFFER_SIZE, PROT_READ|PROT_WRITE|PROT_ADI)) {
perror("mprotect failed");
goto err_out;
}
- /* Set the ADI version tag on the shm segment
- */
- version = 10;
- tmp_addr = shmaddr;
- end = shmaddr + BUFFER_SIZE;
- while (tmp_addr < end) {
- asm volatile(
- "stxa %1, [%0]0x90\n\t"
- :
- : "r" (tmp_addr), "r" (version));
- tmp_addr += adi_blksz;
- }
+ /* Set the ADI version tag on the shm segment
+ */
+ version = 10;
+ tmp_addr = shmaddr;
+ end = shmaddr + BUFFER_SIZE;
+ while (tmp_addr < end) {
+ asm volatile(
+ "stxa %1, [%0]0x90\n\t"
+ :
+ : "r" (tmp_addr), "r" (version));
+ tmp_addr += adi_blksz;
+ }
asm volatile("membar #Sync\n\t");
- /* Create a versioned address from the normal address by placing
+ /* Create a versioned address from the normal address by placing
* version tag in the upper adi_nbits bits
- */
- tmp_addr = (void *) ((unsigned long)shmaddr << adi_nbits);
- tmp_addr = (void *) ((unsigned long)tmp_addr >> adi_nbits);
- veraddr = (void *) (((unsigned long)version << (64-adi_nbits))
- | (unsigned long)tmp_addr);
+ */
+ tmp_addr = (void *) ((unsigned long)shmaddr << adi_nbits);
+ tmp_addr = (void *) ((unsigned long)tmp_addr >> adi_nbits);
+ veraddr = (void *) (((unsigned long)version << (64-adi_nbits))
+ | (unsigned long)tmp_addr);
- printf("Starting the writes:\n");
- for (i = 0; i < BUFFER_SIZE; i++) {
- veraddr[i] = (char)(i);
- if (!(i % (1024 * 1024)))
- printf(".");
- }
- printf("\n");
+ printf("Starting the writes:\n");
+ for (i = 0; i < BUFFER_SIZE; i++) {
+ veraddr[i] = (char)(i);
+ if (!(i % (1024 * 1024)))
+ printf(".");
+ }
+ printf("\n");
- printf("Verifying data...");
+ printf("Verifying data...");
fflush(stdout);
- for (i = 0; i < BUFFER_SIZE; i++)
- if (veraddr[i] != (char)i)
- printf("\nIndex %lu mismatched\n", i);
- printf("Done.\n");
+ for (i = 0; i < BUFFER_SIZE; i++)
+ if (veraddr[i] != (char)i)
+ printf("\nIndex %lu mismatched\n", i);
+ printf("Done.\n");
- /* Disable ADI and clean up
- */
+ /* Disable ADI and clean up
+ */
if (mprotect(shmaddr, BUFFER_SIZE, PROT_READ|PROT_WRITE)) {
perror("mprotect failed");
goto err_out;
}
- if (shmdt((const void *)shmaddr) != 0)
- perror("Detach failure");
- shmctl(shmid, IPC_RMID, NULL);
+ if (shmdt((const void *)shmaddr) != 0)
+ perror("Detach failure");
+ shmctl(shmid, IPC_RMID, NULL);
- exit(0);
+ exit(0);
-err_out:
- if (shmdt((const void *)shmaddr) != 0)
- perror("Detach failure");
- shmctl(shmid, IPC_RMID, NULL);
- exit(1);
-}
+ err_out:
+ if (shmdt((const void *)shmaddr) != 0)
+ perror("Detach failure");
+ shmctl(shmid, IPC_RMID, NULL);
+ exit(1);
+ }
diff --git a/Documentation/sparc/console.txt b/Documentation/sparc/console.rst
similarity index 53%
rename from Documentation/sparc/console.txt
rename to Documentation/sparc/console.rst
index 5aa735a44e02..73132db83ece 100644
--- a/Documentation/sparc/console.txt
+++ b/Documentation/sparc/console.rst
@@ -1,5 +1,5 @@
-Steps for sending 'break' on sunhv console:
-===========================================
+Steps for sending 'break' on sunhv console
+==========================================
On Baremetal:
1. press Esc + 'B'
diff --git a/Documentation/sparc/index.rst b/Documentation/sparc/index.rst
new file mode 100644
index 000000000000..91f7d6643dd5
--- /dev/null
+++ b/Documentation/sparc/index.rst
@@ -0,0 +1,13 @@
+:orphan:
+
+==================
+Sparc Architecture
+==================
+
+.. toctree::
+ :maxdepth: 1
+
+ console
+ adi
+
+ oradax/oracle-dax
diff --git a/Documentation/sparc/oradax/oracle-dax.txt b/Documentation/sparc/oradax/oracle-dax.rst
similarity index 95%
rename from Documentation/sparc/oradax/oracle-dax.txt
rename to Documentation/sparc/oradax/oracle-dax.rst
index 9d53ac93286f..d1e14d572918 100644
--- a/Documentation/sparc/oradax/oracle-dax.txt
+++ b/Documentation/sparc/oradax/oracle-dax.rst
@@ -1,5 +1,6 @@
+=======================================
Oracle Data Analytics Accelerator (DAX)
----------------------------------------
+=======================================
DAX is a coprocessor which resides on the SPARC M7 (DAX1) and M8
(DAX2) processor chips, and has direct access to the CPU's L3 caches
@@ -17,6 +18,7 @@ code sufficient to write user or kernel applications that use DAX
functionality.
The user library is open source and available at:
+
https://oss.oracle.com/git/gitweb.cgi?p=libdax.git
The Hypervisor interface to the coprocessor is described in detail in
@@ -26,7 +28,7 @@ Specification" version 3.0.20+15, dated 2017-09-25.
High Level Overview
--------------------
+===================
A coprocessor request is described by a Command Control Block
(CCB). The CCB contains an opcode and various parameters. The opcode
@@ -52,7 +54,7 @@ thread.
Addressing Memory
------------------
+=================
The kernel does not have access to physical memory in the Sun4v
architecture, as there is an additional level of memory virtualization
@@ -77,7 +79,7 @@ the request.
The Driver API
---------------
+==============
An application makes requests to the driver via the write() system
call, and gets results (if any) via read(). The completion areas are
@@ -108,6 +110,7 @@ equal to the number of bytes given in the call. Otherwise -1 is
returned and errno is set.
CCB_DEQUEUE
+-----------
Tells the driver to clean up resources associated with past
requests. Since no interrupt is generated upon the completion of a
@@ -116,12 +119,14 @@ further status information is returned, so the user should not
subsequently call read().
CCB_KILL
+--------
Kills a CCB during execution. The CCB is guaranteed to not continue
executing once this call returns successfully. On success, read() must
be called to retrieve the result of the action.
CCB_INFO
+--------
Retrieves information about a currently executing CCB. Note that some
Hypervisors might return 'notfound' when the CCB is in 'inprogress'
@@ -130,6 +135,7 @@ CCB_KILL must be invoked on that CCB. Upon success, read() must be
called to retrieve the details of the action.
Submission of an array of CCBs for execution
+---------------------------------------------
A write() whose length is a multiple of the CCB size is treated as a
submit operation. The file offset is treated as the index of the
@@ -146,6 +152,7 @@ status will reflect the error caused by the first CCB that was not
accepted, and status_data will provide additional data in some cases.
MMAP
+----
The mmap() function provides access to the completion area allocated
in the driver. Note that the completion area is not writeable by the
@@ -153,7 +160,7 @@ user process, and the mmap call must not specify PROT_WRITE.
Completion of a Request
------------------------
+=======================
The first byte in each completion area is the command status which is
updated by the coprocessor hardware. Software may take advantage of
@@ -172,7 +179,7 @@ and resumption of execution may be just a few nanoseconds.
Application Life Cycle of a DAX Submission
-------------------------------------------
+==========================================
- open dax device
- call mmap() to get the completion area address
@@ -187,7 +194,7 @@ Application Life Cycle of a DAX Submission
Memory Constraints
-------------------
+==================
The DAX hardware operates only on physical addresses. Therefore, it is
not aware of virtual memory mappings and the discontiguities that may
@@ -226,7 +233,7 @@ CCB Structure
-------------
A CCB is an array of 8 64-bit words. Several of these words provide
command opcodes, parameters, flags, etc., and the rest are addresses
-for the completion area, output buffer, and various inputs:
+for the completion area, output buffer, and various inputs::
struct ccb {
u64 control;
@@ -252,7 +259,7 @@ The first word (control) is examined by the driver for the following:
Example Code
-------------
+============
The DAX is accessible to both user and kernel code. The kernel code
can make hypercalls directly while the user code must use wrappers
@@ -265,7 +272,7 @@ arch/sparc/include/uapi/asm/oradax.h must be included.
First, the proper device must be opened. For M7 it will be
/dev/oradax1 and for M8 it will be /dev/oradax2. The simplest
-procedure is to attempt to open both, as only one will succeed:
+procedure is to attempt to open both, as only one will succeed::
fd = open("/dev/oradax1", O_RDWR);
if (fd < 0)
@@ -273,7 +280,7 @@ procedure is to attempt to open both, as only one will succeed:
if (fd < 0)
/* No DAX found */
-Next, the completion area must be mapped:
+Next, the completion area must be mapped::
completion_area = mmap(NULL, DAX_MMAP_LEN, PROT_READ, MAP_SHARED, fd, 0);
@@ -295,7 +302,7 @@ is the input bitmap inverted.
For details of all the parameters and bits used in this CCB, please
refer to section 36.2.1.3 of the DAX Hypervisor API document, which
-describes the Scan command in detail.
+describes the Scan command in detail::
ccb->control = /* Table 36.1, CCB Header Format */
(2L << 48) /* command = Scan Value */
@@ -326,7 +333,7 @@ describes the Scan command in detail.
The CCB submission is a write() or pwrite() system call to the
driver. If the call fails, then a read() must be used to retrieve the
-status:
+status::
if (pwrite(fd, ccb, 64, 0) != 64) {
struct ccb_exec_result status;
@@ -337,7 +344,7 @@ status:
After a successful submission of the CCB, the completion area may be
polled to determine when the DAX is finished. Detailed information on
the contents of the completion area can be found in section 36.2.2 of
-the DAX HV API document.
+the DAX HV API document::
while (1) {
/* Monitored Load */
@@ -355,7 +362,7 @@ the DAX HV API document.
A completion area status of 1 indicates successful completion of the
CCB and validity of the output bitmap, which may be used immediately.
All other non-zero values indicate error conditions which are
-described in section 36.2.2.
+described in section 36.2.2::
if (completion_area[0] != 1) { /* section 36.2.2, 1 = command ran and succeeded */
/* completion_area[0] contains the completion status */
@@ -364,7 +371,7 @@ described in section 36.2.2.
After the completion area has been processed, the driver must be
notified that it can release any resources associated with the
-request. This is done via the dequeue operation:
+request. This is done via the dequeue operation::
struct dax_command cmd;
cmd.command = CCB_DEQUEUE;
@@ -375,13 +382,14 @@ request. This is done via the dequeue operation:
Finally, normal program cleanup should be done, i.e., unmapping
completion area, closing the dax device, freeing memory etc.
-[Kernel example]
+Kernel example
+--------------
The only difference in using the DAX in kernel code is the treatment
of the completion area. Unlike user applications which mmap the
completion area allocated by the driver, kernel code must allocate its
own memory to use for the completion area, and this address and its
-type must be given in the CCB:
+type must be given in the CCB::
ccb->control |= /* Table 36.1, CCB Header Format */
(3L << 32); /* completion area address type = primary virtual */
@@ -389,9 +397,11 @@ type must be given in the CCB:
ccb->completion = (unsigned long) completion_area; /* Completion area address */
The dax submit hypercall is made directly. The flags used in the
-ccb_submit call are documented in the DAX HV API in section 36.3.1.
+ccb_submit call are documented in the DAX HV API in section 36.3.1/
-#include <asm/hypervisor.h>
+::
+
+ #include <asm/hypervisor.h>
hv_rv = sun4v_ccb_submit((unsigned long)ccb, 64,
HV_CCB_QUERY_CMD |
@@ -405,7 +415,7 @@ ccb_submit call are documented in the DAX HV API in section 36.3.1.
}
After the submission, the completion area polling code is identical to
-that in user land:
+that in user land::
while (1) {
/* Monitored Load */
@@ -427,3 +437,9 @@ that in user land:
The output bitmap is ready for consumption immediately after the
completion status indicates success.
+
+Excer[t from UltraSPARC Virtual Machine Specification
+=====================================================
+
+ .. include:: dax-hv-api.txt
+ :literal:
diff --git a/drivers/sbus/char/oradax.c b/drivers/sbus/char/oradax.c
index 790aa148670d..8090dc9a1514 100644
--- a/drivers/sbus/char/oradax.c
+++ b/drivers/sbus/char/oradax.c
@@ -30,7 +30,7 @@
* the recommended way for applications to use the coprocessor, and
* the driver interface is not intended for general use.
*
- * See Documentation/sparc/oradax/oracle-dax.txt for more details.
+ * See Documentation/sparc/oradax/oracle-dax.rst for more details.
*/
#include <linux/uaccess.h>
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 74/79] docs: thermal: convert to ReST
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (63 preceding siblings ...)
2019-04-22 13:28 ` [PATCH v2 73/79] docs: sparc: " Mauro Carvalho Chehab
@ 2019-04-22 13:28 ` Mauro Carvalho Chehab
2019-04-22 13:28 ` [PATCH v2 75/79] docs: rapidio: " Mauro Carvalho Chehab
` (8 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:28 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Amit Daniel Kachhap, Viresh Kumar, Javi Merino,
Kukjin Kim, Krzysztof Kozlowski, Zhang Rui, Eduardo Valentin,
Daniel Lezcano, linux-pm, linux-arm-kernel, linux-samsung-soc,
Arjan van de Ven
Rename the thermal documentation files to ReST, add an
index for them and adjust in order to produce a nice html
output via the Sphinx build system.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
...pu-cooling-api.txt => cpu-cooling-api.rst} | 39 +-
.../{exynos_thermal => exynos_thermal.rst} | 47 +-
.../thermal/exynos_thermal_emulation | 53 --
.../thermal/exynos_thermal_emulation.rst | 61 +++
Documentation/thermal/index.rst | 18 +
...el_powerclamp.txt => intel_powerclamp.rst} | 177 +++----
.../{nouveau_thermal => nouveau_thermal.rst} | 54 +-
...ower_allocator.txt => power_allocator.rst} | 140 ++---
.../thermal/{sysfs-api.txt => sysfs-api.rst} | 490 ++++++++++++------
...hermal => x86_pkg_temperature_thermal.rst} | 28 +-
MAINTAINERS | 2 +-
include/linux/thermal.h | 4 +-
12 files changed, 691 insertions(+), 422 deletions(-)
rename Documentation/thermal/{cpu-cooling-api.txt => cpu-cooling-api.rst} (82%)
rename Documentation/thermal/{exynos_thermal => exynos_thermal.rst} (67%)
delete mode 100644 Documentation/thermal/exynos_thermal_emulation
create mode 100644 Documentation/thermal/exynos_thermal_emulation.rst
create mode 100644 Documentation/thermal/index.rst
rename Documentation/thermal/{intel_powerclamp.txt => intel_powerclamp.rst} (76%)
rename Documentation/thermal/{nouveau_thermal => nouveau_thermal.rst} (64%)
rename Documentation/thermal/{power_allocator.txt => power_allocator.rst} (74%)
rename Documentation/thermal/{sysfs-api.txt => sysfs-api.rst} (66%)
rename Documentation/thermal/{x86_pkg_temperature_thermal => x86_pkg_temperature_thermal.rst} (80%)
diff --git a/Documentation/thermal/cpu-cooling-api.txt b/Documentation/thermal/cpu-cooling-api.rst
similarity index 82%
rename from Documentation/thermal/cpu-cooling-api.txt
rename to Documentation/thermal/cpu-cooling-api.rst
index 7df567eaea1a..645d914c45a6 100644
--- a/Documentation/thermal/cpu-cooling-api.txt
+++ b/Documentation/thermal/cpu-cooling-api.rst
@@ -1,5 +1,6 @@
+=======================
CPU cooling APIs How To
-===================================
+=======================
Written by Amit Daniel Kachhap <amit.kachhap@linaro.org>
@@ -8,40 +9,54 @@ Updated: 6 Jan 2015
Copyright (c) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
0. Introduction
+===============
The generic cpu cooling(freq clipping) provides registration/unregistration APIs
to the caller. The binding of the cooling devices to the trip point is left for
the user. The registration APIs returns the cooling device pointer.
1. cpu cooling APIs
+===================
1.1 cpufreq registration/unregistration APIs
-1.1.1 struct thermal_cooling_device *cpufreq_cooling_register(
- struct cpumask *clip_cpus)
+--------------------------------------------
+
+ ::
+
+ struct thermal_cooling_device
+ *cpufreq_cooling_register(struct cpumask *clip_cpus)
This interface function registers the cpufreq cooling device with the name
"thermal-cpufreq-%x". This api can support multiple instances of cpufreq
cooling devices.
- clip_cpus: cpumask of cpus where the frequency constraints will happen.
+ clip_cpus:
+ cpumask of cpus where the frequency constraints will happen.
-1.1.2 struct thermal_cooling_device *of_cpufreq_cooling_register(
- struct cpufreq_policy *policy)
+ ::
+
+ struct thermal_cooling_device
+ *of_cpufreq_cooling_register(struct cpufreq_policy *policy)
This interface function registers the cpufreq cooling device with
the name "thermal-cpufreq-%x" linking it with a device tree node, in
order to bind it via the thermal DT code. This api can support multiple
instances of cpufreq cooling devices.
- policy: CPUFreq policy.
+ policy:
+ CPUFreq policy.
-1.1.3 void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
+
+ ::
+
+ void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
This interface function unregisters the "thermal-cpufreq-%x" cooling device.
cdev: Cooling device pointer which has to be unregistered.
2. Power models
+===============
The power API registration functions provide a simple power model for
CPUs. The current power is calculated as dynamic power (static power isn't
@@ -65,9 +80,9 @@ For a given processor implementation the primary factors are:
variation. In pathological cases this variation can be significant,
but typically it is of a much lesser impact than the factors above.
-A high level dynamic power consumption model may then be represented as:
+A high level dynamic power consumption model may then be represented as::
-Pdyn = f(run) * Voltage^2 * Frequency * Utilisation
+ Pdyn = f(run) * Voltage^2 * Frequency * Utilisation
f(run) here represents the described execution behaviour and its
result has a units of Watts/Hz/Volt^2 (this often expressed in
@@ -80,9 +95,9 @@ factors. Therefore, in initial implementation that contribution is
represented as a constant coefficient. This is a simplification
consistent with the relative contribution to overall power variation.
-In this simplified representation our model becomes:
+In this simplified representation our model becomes::
-Pdyn = Capacitance * Voltage^2 * Frequency * Utilisation
+ Pdyn = Capacitance * Voltage^2 * Frequency * Utilisation
Where `capacitance` is a constant that represents an indicative
running time dynamic power coefficient in fundamental units of
diff --git a/Documentation/thermal/exynos_thermal b/Documentation/thermal/exynos_thermal.rst
similarity index 67%
rename from Documentation/thermal/exynos_thermal
rename to Documentation/thermal/exynos_thermal.rst
index 9010c4416967..5bd556566c70 100644
--- a/Documentation/thermal/exynos_thermal
+++ b/Documentation/thermal/exynos_thermal.rst
@@ -1,8 +1,11 @@
+========================
Kernel driver exynos_tmu
-=================
+========================
Supported chips:
+
* ARM SAMSUNG EXYNOS4, EXYNOS5 series of SoC
+
Datasheet: Not publicly available
Authors: Donggeun Kim <dg77.kim@samsung.com>
@@ -19,32 +22,39 @@ Temperature can be taken from the temperature code.
There are three equations converting from temperature to temperature code.
The three equations are:
- 1. Two point trimming
+ 1. Two point trimming::
+
Tc = (T - 25) * (TI2 - TI1) / (85 - 25) + TI1
- 2. One point trimming
+ 2. One point trimming::
+
Tc = T + TI1 - 25
- 3. No trimming
+ 3. No trimming::
+
Tc = T + 50
- Tc: Temperature code, T: Temperature,
- TI1: Trimming info for 25 degree Celsius (stored at TRIMINFO register)
+ Tc:
+ Temperature code, T: Temperature,
+ TI1:
+ Trimming info for 25 degree Celsius (stored at TRIMINFO register)
Temperature code measured at 25 degree Celsius which is unchanged
- TI2: Trimming info for 85 degree Celsius (stored at TRIMINFO register)
+ TI2:
+ Trimming info for 85 degree Celsius (stored at TRIMINFO register)
Temperature code measured at 85 degree Celsius which is unchanged
TMU(Thermal Management Unit) in EXYNOS4/5 generates interrupt
when temperature exceeds pre-defined levels.
The maximum number of configurable threshold is five.
-The threshold levels are defined as follows:
+The threshold levels are defined as follows::
+
Level_0: current temperature > trigger_level_0 + threshold
Level_1: current temperature > trigger_level_1 + threshold
Level_2: current temperature > trigger_level_2 + threshold
Level_3: current temperature > trigger_level_3 + threshold
- The threshold and each trigger_level are set
- through the corresponding registers.
+The threshold and each trigger_level are set
+through the corresponding registers.
When an interrupt occurs, this driver notify kernel thermal framework
with the function exynos_report_trigger.
@@ -54,24 +64,27 @@ it can be used to synchronize the cooling action.
TMU driver description:
-----------------------
-The exynos thermal driver is structured as,
+The exynos thermal driver is structured as::
Kernel Core thermal framework
(thermal_core.c, step_wise.c, cpu_cooling.c)
^
|
|
-TMU configuration data -------> TMU Driver <------> Exynos Core thermal wrapper
-(exynos_tmu_data.c) (exynos_tmu.c) (exynos_thermal_common.c)
-(exynos_tmu_data.h) (exynos_tmu.h) (exynos_thermal_common.h)
+ TMU configuration data -----> TMU Driver <----> Exynos Core thermal wrapper
+ (exynos_tmu_data.c) (exynos_tmu.c) (exynos_thermal_common.c)
+ (exynos_tmu_data.h) (exynos_tmu.h) (exynos_thermal_common.h)
-a) TMU configuration data: This consist of TMU register offsets/bitfields
+a) TMU configuration data:
+ This consist of TMU register offsets/bitfields
described through structure exynos_tmu_registers. Also several
other platform data (struct exynos_tmu_platform_data) members
are used to configure the TMU.
-b) TMU driver: This component initialises the TMU controller and sets different
+b) TMU driver:
+ This component initialises the TMU controller and sets different
thresholds. It invokes core thermal implementation with the call
exynos_report_trigger.
-c) Exynos Core thermal wrapper: This provides 3 wrapper function to use the
+c) Exynos Core thermal wrapper:
+ This provides 3 wrapper function to use the
Kernel core thermal framework. They are exynos_unregister_thermal,
exynos_register_thermal and exynos_report_trigger.
diff --git a/Documentation/thermal/exynos_thermal_emulation b/Documentation/thermal/exynos_thermal_emulation
deleted file mode 100644
index b15efec6ca28..000000000000
--- a/Documentation/thermal/exynos_thermal_emulation
+++ /dev/null
@@ -1,53 +0,0 @@
-EXYNOS EMULATION MODE
-========================
-
-Copyright (C) 2012 Samsung Electronics
-
-Written by Jonghwa Lee <jonghwa3.lee@samsung.com>
-
-Description
------------
-
-Exynos 4x12 (4212, 4412) and 5 series provide emulation mode for thermal management unit.
-Thermal emulation mode supports software debug for TMU's operation. User can set temperature
-manually with software code and TMU will read current temperature from user value not from
-sensor's value.
-
-Enabling CONFIG_THERMAL_EMULATION option will make this support available.
-When it's enabled, sysfs node will be created as
-/sys/devices/virtual/thermal/thermal_zone'zone id'/emul_temp.
-
-The sysfs node, 'emul_node', will contain value 0 for the initial state. When you input any
-temperature you want to update to sysfs node, it automatically enable emulation mode and
-current temperature will be changed into it.
-(Exynos also supports user changeable delay time which would be used to delay of
- changing temperature. However, this node only uses same delay of real sensing time, 938us.)
-
-Exynos emulation mode requires synchronous of value changing and enabling. It means when you
-want to update the any value of delay or next temperature, then you have to enable emulation
-mode at the same time. (Or you have to keep the mode enabling.) If you don't, it fails to
-change the value to updated one and just use last succeessful value repeatedly. That's why
-this node gives users the right to change termerpature only. Just one interface makes it more
-simply to use.
-
-Disabling emulation mode only requires writing value 0 to sysfs node.
-
-
-TEMP 120 |
- |
- 100 |
- |
- 80 |
- | +-----------
- 60 | | |
- | +-------------| |
- 40 | | | |
- | | | |
- 20 | | | +----------
- | | | | |
- 0 |______________|_____________|__________|__________|_________
- A A A A TIME
- |<----->| |<----->| |<----->| |
- | 938us | | | | | |
-emulation : 0 50 | 70 | 20 | 0
-current temp : sensor 50 70 20 sensor
diff --git a/Documentation/thermal/exynos_thermal_emulation.rst b/Documentation/thermal/exynos_thermal_emulation.rst
new file mode 100644
index 000000000000..c21d10838bc5
--- /dev/null
+++ b/Documentation/thermal/exynos_thermal_emulation.rst
@@ -0,0 +1,61 @@
+=====================
+Exynos Emulation Mode
+=====================
+
+Copyright (C) 2012 Samsung Electronics
+
+Written by Jonghwa Lee <jonghwa3.lee@samsung.com>
+
+Description
+-----------
+
+Exynos 4x12 (4212, 4412) and 5 series provide emulation mode for thermal
+management unit. Thermal emulation mode supports software debug for
+TMU's operation. User can set temperature manually with software code
+and TMU will read current temperature from user value not from sensor's
+value.
+
+Enabling CONFIG_THERMAL_EMULATION option will make this support
+available. When it's enabled, sysfs node will be created as
+/sys/devices/virtual/thermal/thermal_zone'zone id'/emul_temp.
+
+The sysfs node, 'emul_node', will contain value 0 for the initial state.
+When you input any temperature you want to update to sysfs node, it
+automatically enable emulation mode and current temperature will be
+changed into it.
+
+(Exynos also supports user changeable delay time which would be used to
+delay of changing temperature. However, this node only uses same delay
+of real sensing time, 938us.)
+
+Exynos emulation mode requires synchronous of value changing and
+enabling. It means when you want to update the any value of delay or
+next temperature, then you have to enable emulation mode at the same
+time. (Or you have to keep the mode enabling.) If you don't, it fails to
+change the value to updated one and just use last succeessful value
+repeatedly. That's why this node gives users the right to change
+termerpature only. Just one interface makes it more simply to use.
+
+Disabling emulation mode only requires writing value 0 to sysfs node.
+
+::
+
+
+ TEMP 120 |
+ |
+ 100 |
+ |
+ 80 |
+ | +-----------
+ 60 | | |
+ | +-------------| |
+ 40 | | | |
+ | | | |
+ 20 | | | +----------
+ | | | | |
+ 0 |______________|_____________|__________|__________|_________
+ A A A A TIME
+ |<----->| |<----->| |<----->| |
+ | 938us | | | | | |
+ emulation : 0 50 | 70 | 20 | 0
+ current temp: sensor 50 70 20 sensor
diff --git a/Documentation/thermal/index.rst b/Documentation/thermal/index.rst
new file mode 100644
index 000000000000..8c1c00146cad
--- /dev/null
+++ b/Documentation/thermal/index.rst
@@ -0,0 +1,18 @@
+:orphan:
+
+=======
+Thermal
+=======
+
+.. toctree::
+ :maxdepth: 1
+
+ cpu-cooling-api
+ sysfs-api
+ power_allocator
+
+ exynos_thermal
+ exynos_thermal_emulation
+ intel_powerclamp
+ nouveau_thermal
+ x86_pkg_temperature_thermal
diff --git a/Documentation/thermal/intel_powerclamp.txt b/Documentation/thermal/intel_powerclamp.rst
similarity index 76%
rename from Documentation/thermal/intel_powerclamp.txt
rename to Documentation/thermal/intel_powerclamp.rst
index b5df21168fbc..3f6dfb0b3ea6 100644
--- a/Documentation/thermal/intel_powerclamp.txt
+++ b/Documentation/thermal/intel_powerclamp.rst
@@ -1,10 +1,13 @@
- =======================
- INTEL POWERCLAMP DRIVER
- =======================
-By: Arjan van de Ven <arjan@linux.intel.com>
- Jacob Pan <jacob.jun.pan@linux.intel.com>
+=======================
+Intel Powerclamp Driver
+=======================
+
+By:
+ - Arjan van de Ven <arjan@linux.intel.com>
+ - Jacob Pan <jacob.jun.pan@linux.intel.com>
+
+.. Contents:
-Contents:
(*) Introduction
- Goals and Objectives
@@ -23,7 +26,6 @@ Contents:
- Generic Thermal Layer (sysfs)
- Kernel APIs (TBD)
-============
INTRODUCTION
============
@@ -47,7 +49,6 @@ scalability, and user experience. In many cases, clear advantage is
shown over taking the CPU offline or modulating the CPU clock.
-===================
THEORY OF OPERATION
===================
@@ -57,11 +58,12 @@ Idle Injection
On modern Intel processors (Nehalem or later), package level C-state
residency is available in MSRs, thus also available to the kernel.
-These MSRs are:
- #define MSR_PKG_C2_RESIDENCY 0x60D
- #define MSR_PKG_C3_RESIDENCY 0x3F8
- #define MSR_PKG_C6_RESIDENCY 0x3F9
- #define MSR_PKG_C7_RESIDENCY 0x3FA
+These MSRs are::
+
+ #define MSR_PKG_C2_RESIDENCY 0x60D
+ #define MSR_PKG_C3_RESIDENCY 0x3F8
+ #define MSR_PKG_C6_RESIDENCY 0x3F9
+ #define MSR_PKG_C7_RESIDENCY 0x3FA
If the kernel can also inject idle time to the system, then a
closed-loop control system can be established that manages package
@@ -96,19 +98,21 @@ are not masked. Tests show that the extra wakeups from scheduler tick
have a dramatic impact on the effectiveness of the powerclamp driver
on large scale systems (Westmere system with 80 processors).
-CPU0
- ____________ ____________
-kidle_inject/0 | sleep | mwait | sleep |
- _________| |________| |_______
- duration
-CPU1
- ____________ ____________
-kidle_inject/1 | sleep | mwait | sleep |
- _________| |________| |_______
- ^
- |
- |
- roundup(jiffies, interval)
+::
+
+ CPU0
+ ____________ ____________
+ kidle_inject/0 | sleep | mwait | sleep |
+ _________| |________| |_______
+ duration
+ CPU1
+ ____________ ____________
+ kidle_inject/1 | sleep | mwait | sleep |
+ _________| |________| |_______
+ ^
+ |
+ |
+ roundup(jiffies, interval)
Only one CPU is allowed to collect statistics and update global
control parameters. This CPU is referred to as the controlling CPU in
@@ -148,7 +152,7 @@ b) determine the amount of compensation needed at each target ratio
Compensation to each target ratio consists of two parts:
- a) steady state error compensation
+ a) steady state error compensation
This is to offset the error occurring when the system can
enter idle without extra wakeups (such as external interrupts).
@@ -158,41 +162,42 @@ Compensation to each target ratio consists of two parts:
slowing down CPU activities.
A debugfs file is provided for the user to examine compensation
-progress and results, such as on a Westmere system.
-[jacob@nex01 ~]$ cat
-/sys/kernel/debug/intel_powerclamp/powerclamp_calib
-controlling cpu: 0
-pct confidence steady dynamic (compensation)
-0 0 0 0
-1 1 0 0
-2 1 1 0
-3 3 1 0
-4 3 1 0
-5 3 1 0
-6 3 1 0
-7 3 1 0
-8 3 1 0
-...
-30 3 2 0
-31 3 2 0
-32 3 1 0
-33 3 2 0
-34 3 1 0
-35 3 2 0
-36 3 1 0
-37 3 2 0
-38 3 1 0
-39 3 2 0
-40 3 3 0
-41 3 1 0
-42 3 2 0
-43 3 1 0
-44 3 1 0
-45 3 2 0
-46 3 3 0
-47 3 0 0
-48 3 2 0
-49 3 3 0
+progress and results, such as on a Westmere system::
+
+ [jacob@nex01 ~]$ cat
+ /sys/kernel/debug/intel_powerclamp/powerclamp_calib
+ controlling cpu: 0
+ pct confidence steady dynamic (compensation)
+ 0 0 0 0
+ 1 1 0 0
+ 2 1 1 0
+ 3 3 1 0
+ 4 3 1 0
+ 5 3 1 0
+ 6 3 1 0
+ 7 3 1 0
+ 8 3 1 0
+ ...
+ 30 3 2 0
+ 31 3 2 0
+ 32 3 1 0
+ 33 3 2 0
+ 34 3 1 0
+ 35 3 2 0
+ 36 3 1 0
+ 37 3 2 0
+ 38 3 1 0
+ 39 3 2 0
+ 40 3 3 0
+ 41 3 1 0
+ 42 3 2 0
+ 43 3 1 0
+ 44 3 1 0
+ 45 3 2 0
+ 46 3 3 0
+ 47 3 0 0
+ 48 3 2 0
+ 49 3 3 0
Calibration occurs during runtime. No offline method is available.
Steady state compensation is used only when confidence levels of all
@@ -217,9 +222,8 @@ keeps track of clamping kernel threads, even after they are migrated
to other CPUs, after a CPU offline event.
-=====================
Performance Analysis
-=====================
+====================
This section describes the general performance data collected on
multiple systems, including Westmere (80P) and Ivy Bridge (4P, 8P).
@@ -257,16 +261,15 @@ achieve up to 40% better performance per watt. (measured by a spin
counter summed over per CPU counting threads spawned for all running
CPUs).
-====================
Usage and Interfaces
====================
The powerclamp driver is registered to the generic thermal layer as a
-cooling device. Currently, it’s not bound to any thermal zones.
+cooling device. Currently, it’s not bound to any thermal zones::
-jacob@chromoly:/sys/class/thermal/cooling_device14$ grep . *
-cur_state:0
-max_state:50
-type:intel_powerclamp
+ jacob@chromoly:/sys/class/thermal/cooling_device14$ grep . *
+ cur_state:0
+ max_state:50
+ type:intel_powerclamp
cur_state allows user to set the desired idle percentage. Writing 0 to
cur_state will stop idle injection. Writing a value between 1 and
@@ -278,9 +281,9 @@ cur_state returns value -1 instead of 0 which is to avoid confusing
100% busy state with the disabled state.
Example usage:
-- To inject 25% idle time
-$ sudo sh -c "echo 25 > /sys/class/thermal/cooling_device80/cur_state
-"
+- To inject 25% idle time::
+
+ $ sudo sh -c "echo 25 > /sys/class/thermal/cooling_device80/cur_state
If the system is not busy and has more than 25% idle time already,
then the powerclamp driver will not start idle injection. Using Top
@@ -292,23 +295,23 @@ idle time is accounted as normal idle in that common code path is
taken as the idle task.
In this example, 24.1% idle is shown. This helps the system admin or
-user determine the cause of slowdown, when a powerclamp driver is in action.
+user determine the cause of slowdown, when a powerclamp driver is in action::
-Tasks: 197 total, 1 running, 196 sleeping, 0 stopped, 0 zombie
-Cpu(s): 71.2%us, 4.7%sy, 0.0%ni, 24.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
-Mem: 3943228k total, 1689632k used, 2253596k free, 74960k buffers
-Swap: 4087804k total, 0k used, 4087804k free, 945336k cached
+ Tasks: 197 total, 1 running, 196 sleeping, 0 stopped, 0 zombie
+ Cpu(s): 71.2%us, 4.7%sy, 0.0%ni, 24.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
+ Mem: 3943228k total, 1689632k used, 2253596k free, 74960k buffers
+ Swap: 4087804k total, 0k used, 4087804k free, 945336k cached
- PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
- 3352 jacob 20 0 262m 644 428 S 286 0.0 0:17.16 spin
- 3341 root -51 0 0 0 0 D 25 0.0 0:01.62 kidle_inject/0
- 3344 root -51 0 0 0 0 D 25 0.0 0:01.60 kidle_inject/3
- 3342 root -51 0 0 0 0 D 25 0.0 0:01.61 kidle_inject/1
- 3343 root -51 0 0 0 0 D 25 0.0 0:01.60 kidle_inject/2
- 2935 jacob 20 0 696m 125m 35m S 5 3.3 0:31.11 firefox
- 1546 root 20 0 158m 20m 6640 S 3 0.5 0:26.97 Xorg
- 2100 jacob 20 0 1223m 88m 30m S 3 2.3 0:23.68 compiz
+ PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
+ 3352 jacob 20 0 262m 644 428 S 286 0.0 0:17.16 spin
+ 3341 root -51 0 0 0 0 D 25 0.0 0:01.62 kidle_inject/0
+ 3344 root -51 0 0 0 0 D 25 0.0 0:01.60 kidle_inject/3
+ 3342 root -51 0 0 0 0 D 25 0.0 0:01.61 kidle_inject/1
+ 3343 root -51 0 0 0 0 D 25 0.0 0:01.60 kidle_inject/2
+ 2935 jacob 20 0 696m 125m 35m S 5 3.3 0:31.11 firefox
+ 1546 root 20 0 158m 20m 6640 S 3 0.5 0:26.97 Xorg
+ 2100 jacob 20 0 1223m 88m 30m S 3 2.3 0:23.68 compiz
Tests have shown that by using the powerclamp driver as a cooling
device, a PID based userspace thermal controller can manage to
diff --git a/Documentation/thermal/nouveau_thermal b/Documentation/thermal/nouveau_thermal.rst
similarity index 64%
rename from Documentation/thermal/nouveau_thermal
rename to Documentation/thermal/nouveau_thermal.rst
index 6e17a11efcb0..37255fd6735d 100644
--- a/Documentation/thermal/nouveau_thermal
+++ b/Documentation/thermal/nouveau_thermal.rst
@@ -1,13 +1,15 @@
+=====================
Kernel driver nouveau
-===================
+=====================
Supported chips:
+
* NV43+
Authors: Martin Peres (mupuf) <martin.peres@free.fr>
Description
----------
+-----------
This driver allows to read the GPU core temperature, drive the GPU fan and
set temperature alarms.
@@ -19,20 +21,25 @@ interface is likely not to work. This document may then not cover your situation
entirely.
Temperature management
---------------------
+----------------------
Temperature is exposed under as a read-only HWMON attribute temp1_input.
In order to protect the GPU from overheating, Nouveau supports 4 configurable
temperature thresholds:
- * Fan_boost: Fan speed is set to 100% when reaching this temperature;
- * Downclock: The GPU will be downclocked to reduce its power dissipation;
- * Critical: The GPU is put on hold to further lower power dissipation;
- * Shutdown: Shut the computer down to protect your GPU.
+ * Fan_boost:
+ Fan speed is set to 100% when reaching this temperature;
+ * Downclock:
+ The GPU will be downclocked to reduce its power dissipation;
+ * Critical:
+ The GPU is put on hold to further lower power dissipation;
+ * Shutdown:
+ Shut the computer down to protect your GPU.
-WARNING: Some of these thresholds may not be used by Nouveau depending
-on your chipset.
+WARNING:
+ Some of these thresholds may not be used by Nouveau depending
+ on your chipset.
The default value for these thresholds comes from the GPU's vbios. These
thresholds can be configured thanks to the following HWMON attributes:
@@ -46,19 +53,24 @@ NOTE: Remember that the values are stored as milli degrees Celsius. Don't forget
to multiply!
Fan management
-------------
+--------------
Not all cards have a drivable fan. If you do, then the following HWMON
attributes should be available:
- * pwm1_enable: Current fan management mode (NONE, MANUAL or AUTO);
- * pwm1: Current PWM value (power percentage);
- * pwm1_min: The minimum PWM speed allowed;
- * pwm1_max: The maximum PWM speed allowed (bypassed when hitting Fan_boost);
+ * pwm1_enable:
+ Current fan management mode (NONE, MANUAL or AUTO);
+ * pwm1:
+ Current PWM value (power percentage);
+ * pwm1_min:
+ The minimum PWM speed allowed;
+ * pwm1_max:
+ The maximum PWM speed allowed (bypassed when hitting Fan_boost);
You may also have the following attribute:
- * fan1_input: Speed in RPM of your fan.
+ * fan1_input:
+ Speed in RPM of your fan.
Your fan can be driven in different modes:
@@ -66,14 +78,16 @@ Your fan can be driven in different modes:
* 1: The fan can be driven in manual (use pwm1 to change the speed);
* 2; The fan is driven automatically depending on the temperature.
-NOTE: Be sure to use the manual mode if you want to drive the fan speed manually
+NOTE:
+ Be sure to use the manual mode if you want to drive the fan speed manually
-NOTE2: When operating in manual mode outside the vbios-defined
-[PWM_min, PWM_max] range, the reported fan speed (RPM) may not be accurate
-depending on your hardware.
+NOTE2:
+ When operating in manual mode outside the vbios-defined
+ [PWM_min, PWM_max] range, the reported fan speed (RPM) may not be accurate
+ depending on your hardware.
Bug reports
----------
+-----------
Thermal management on Nouveau is new and may not work on all cards. If you have
inquiries, please ping mupuf on IRC (#nouveau, freenode).
diff --git a/Documentation/thermal/power_allocator.txt b/Documentation/thermal/power_allocator.rst
similarity index 74%
rename from Documentation/thermal/power_allocator.txt
rename to Documentation/thermal/power_allocator.rst
index 9fb0ff06dca9..67b6a3297238 100644
--- a/Documentation/thermal/power_allocator.txt
+++ b/Documentation/thermal/power_allocator.rst
@@ -1,3 +1,4 @@
+=================================
Power allocator governor tunables
=================================
@@ -25,36 +26,36 @@ temperature as the control input and power as the controlled output:
P_max = k_p * e + k_i * err_integral + k_d * diff_err + sustainable_power
where
- e = desired_temperature - current_temperature
- err_integral is the sum of previous errors
- diff_err = e - previous_error
+ - e = desired_temperature - current_temperature
+ - err_integral is the sum of previous errors
+ - diff_err = e - previous_error
-It is similar to the one depicted below:
+It is similar to the one depicted below::
- k_d
- |
-current_temp |
- | v
- | +----------+ +---+
- | +----->| diff_err |-->| X |------+
- | | +----------+ +---+ |
- | | | tdp actor
- | | k_i | | get_requested_power()
- | | | | | | |
- | | | | | | | ...
- v | v v v v v
- +---+ | +-------+ +---+ +---+ +---+ +----------+
- | S |-------+----->| sum e |----->| X |--->| S |-->| S |-->|power |
- +---+ | +-------+ +---+ +---+ +---+ |allocation|
- ^ | ^ +----------+
- | | | | |
- | | +---+ | | |
- | +------->| X |-------------------+ v v
- | +---+ granted performance
-desired_temperature ^
- |
- |
- k_po/k_pu
+ k_d
+ |
+ current_temp |
+ | v
+ | +----------+ +---+
+ | +----->| diff_err |-->| X |------+
+ | | +----------+ +---+ |
+ | | | tdp actor
+ | | k_i | | get_requested_power()
+ | | | | | | |
+ | | | | | | | ...
+ v | v v v v v
+ +---+ | +-------+ +---+ +---+ +---+ +----------+
+ | S |-----+----->| sum e |----->| X |--->| S |-->| S |-->|power |
+ +---+ | +-------+ +---+ +---+ +---+ |allocation|
+ ^ | ^ +----------+
+ | | | | |
+ | | +---+ | | |
+ | +------->| X |-------------------+ v v
+ | +---+ granted performance
+ desired_temperature ^
+ |
+ |
+ k_po/k_pu
Sustainable power
-----------------
@@ -73,7 +74,7 @@ is typically 2000mW, while on a 10" tablet is around 4500mW (may vary
depending on screen size).
If you are using device tree, do add it as a property of the
-thermal-zone. For example:
+thermal-zone. For example::
thermal-zones {
soc_thermal {
@@ -85,7 +86,7 @@ thermal-zone. For example:
Instead, if the thermal zone is registered from the platform code, pass a
`thermal_zone_params` that has a `sustainable_power`. If no
`thermal_zone_params` were being passed, then something like below
-will suffice:
+will suffice::
static const struct thermal_zone_params tz_params = {
.sustainable_power = 3500,
@@ -112,18 +113,18 @@ available capacity at a low temperature. On the other hand, a high
value of `k_pu` will result in the governor granting very high power
while temperature is low, and may lead to temperature overshooting.
-The default value for `k_pu` is:
+The default value for `k_pu` is::
2 * sustainable_power / (desired_temperature - switch_on_temp)
This means that at `switch_on_temp` the output of the controller's
proportional term will be 2 * `sustainable_power`. The default value
-for `k_po` is:
+for `k_po` is::
sustainable_power / (desired_temperature - switch_on_temp)
Focusing on the proportional and feed forward values of the PID
-controller equation we have:
+controller equation we have::
P_max = k_p * e + sustainable_power
@@ -134,21 +135,23 @@ is the desired one, then the proportional component is zero and
thermal equilibrium under constant load. `sustainable_power` is only
an estimate, which is the reason for closed-loop control such as this.
-Expanding `k_pu` we get:
+Expanding `k_pu` we get::
+
P_max = 2 * sustainable_power * (T_set - T) / (T_set - T_on) +
- sustainable_power
+ sustainable_power
-where
- T_set is the desired temperature
- T is the current temperature
- T_on is the switch on temperature
+where:
+
+ - T_set is the desired temperature
+ - T is the current temperature
+ - T_on is the switch on temperature
When the current temperature is the switch_on temperature, the above
-formula becomes:
+formula becomes::
P_max = 2 * sustainable_power * (T_set - T_on) / (T_set - T_on) +
- sustainable_power = 2 * sustainable_power + sustainable_power =
- 3 * sustainable_power
+ sustainable_power = 2 * sustainable_power + sustainable_power =
+ 3 * sustainable_power
Therefore, the proportional term alone linearly decreases power from
3 * `sustainable_power` to `sustainable_power` as the temperature
@@ -178,11 +181,18 @@ Cooling device power API
Cooling devices controlled by this governor must supply the additional
"power" API in their `cooling_device_ops`. It consists on three ops:
-1. int get_requested_power(struct thermal_cooling_device *cdev,
- struct thermal_zone_device *tz, u32 *power);
-@cdev: The `struct thermal_cooling_device` pointer
-@tz: thermal zone in which we are currently operating
-@power: pointer in which to store the calculated power
+1. ::
+
+ int get_requested_power(struct thermal_cooling_device *cdev,
+ struct thermal_zone_device *tz, u32 *power);
+
+
+@cdev:
+ The `struct thermal_cooling_device` pointer
+@tz:
+ thermal zone in which we are currently operating
+@power:
+ pointer in which to store the calculated power
`get_requested_power()` calculates the power requested by the device
in milliwatts and stores it in @power . It should return 0 on
@@ -190,23 +200,37 @@ success, -E* on failure. This is currently used by the power
allocator governor to calculate how much power to give to each cooling
device.
-2. int state2power(struct thermal_cooling_device *cdev, struct
- thermal_zone_device *tz, unsigned long state, u32 *power);
-@cdev: The `struct thermal_cooling_device` pointer
-@tz: thermal zone in which we are currently operating
-@state: A cooling device state
-@power: pointer in which to store the equivalent power
+2. ::
+
+ int state2power(struct thermal_cooling_device *cdev, struct
+ thermal_zone_device *tz, unsigned long state,
+ u32 *power);
+
+@cdev:
+ The `struct thermal_cooling_device` pointer
+@tz:
+ thermal zone in which we are currently operating
+@state:
+ A cooling device state
+@power:
+ pointer in which to store the equivalent power
Convert cooling device state @state into power consumption in
milliwatts and store it in @power. It should return 0 on success, -E*
on failure. This is currently used by thermal core to calculate the
maximum power that an actor can consume.
-3. int power2state(struct thermal_cooling_device *cdev, u32 power,
- unsigned long *state);
-@cdev: The `struct thermal_cooling_device` pointer
-@power: power in milliwatts
-@state: pointer in which to store the resulting state
+3. ::
+
+ int power2state(struct thermal_cooling_device *cdev, u32 power,
+ unsigned long *state);
+
+@cdev:
+ The `struct thermal_cooling_device` pointer
+@power:
+ power in milliwatts
+@state:
+ pointer in which to store the resulting state
Calculate a cooling device state that would make the device consume at
most @power mW and store it in @state. It should return 0 on success,
diff --git a/Documentation/thermal/sysfs-api.txt b/Documentation/thermal/sysfs-api.rst
similarity index 66%
rename from Documentation/thermal/sysfs-api.txt
rename to Documentation/thermal/sysfs-api.rst
index c3fa500df92c..e4930761d3e5 100644
--- a/Documentation/thermal/sysfs-api.txt
+++ b/Documentation/thermal/sysfs-api.rst
@@ -1,3 +1,4 @@
+===================================
Generic Thermal Sysfs driver How To
===================================
@@ -9,6 +10,7 @@ Copyright (c) 2008 Intel Corporation
0. Introduction
+===============
The generic thermal sysfs provides a set of interfaces for thermal zone
devices (sensors) and thermal cooling devices (fan, processor...) to register
@@ -25,59 +27,90 @@ An intelligent thermal management application can make decisions based on
inputs from thermal zone attributes (the current temperature and trip point
temperature) and throttle appropriate devices.
-[0-*] denotes any positive number starting from 0
-[1-*] denotes any positive number starting from 1
+- `[0-*]` denotes any positive number starting from 0
+- `[1-*]` denotes any positive number starting from 1
1. thermal sysfs driver interface functions
+===========================================
1.1 thermal zone device interface
-1.1.1 struct thermal_zone_device *thermal_zone_device_register(char *type,
- int trips, int mask, void *devdata,
- struct thermal_zone_device_ops *ops,
- const struct thermal_zone_params *tzp,
- int passive_delay, int polling_delay))
+---------------------------------
+
+ ::
+
+ struct thermal_zone_device
+ *thermal_zone_device_register(char *type,
+ int trips, int mask, void *devdata,
+ struct thermal_zone_device_ops *ops,
+ const struct thermal_zone_params *tzp,
+ int passive_delay, int polling_delay))
This interface function adds a new thermal zone device (sensor) to
- /sys/class/thermal folder as thermal_zone[0-*]. It tries to bind all the
+ /sys/class/thermal folder as `thermal_zone[0-*]`. It tries to bind all the
thermal cooling devices registered at the same time.
- type: the thermal zone type.
- trips: the total number of trip points this thermal zone supports.
- mask: Bit string: If 'n'th bit is set, then trip point 'n' is writeable.
- devdata: device private data
- ops: thermal zone device call-backs.
- .bind: bind the thermal zone device with a thermal cooling device.
- .unbind: unbind the thermal zone device with a thermal cooling device.
- .get_temp: get the current temperature of the thermal zone.
- .set_trips: set the trip points window. Whenever the current temperature
+ type:
+ the thermal zone type.
+ trips:
+ the total number of trip points this thermal zone supports.
+ mask:
+ Bit string: If 'n'th bit is set, then trip point 'n' is writeable.
+ devdata:
+ device private data
+ ops:
+ thermal zone device call-backs.
+
+ .bind:
+ bind the thermal zone device with a thermal cooling device.
+ .unbind:
+ unbind the thermal zone device with a thermal cooling device.
+ .get_temp:
+ get the current temperature of the thermal zone.
+ .set_trips:
+ set the trip points window. Whenever the current temperature
is updated, the trip points immediately below and above the
current temperature are found.
- .get_mode: get the current mode (enabled/disabled) of the thermal zone.
- - "enabled" means the kernel thermal management is enabled.
- - "disabled" will prevent kernel thermal driver action upon trip points
- so that user applications can take charge of thermal management.
- .set_mode: set the mode (enabled/disabled) of the thermal zone.
- .get_trip_type: get the type of certain trip point.
- .get_trip_temp: get the temperature above which the certain trip point
+ .get_mode:
+ get the current mode (enabled/disabled) of the thermal zone.
+
+ - "enabled" means the kernel thermal management is
+ enabled.
+ - "disabled" will prevent kernel thermal driver action
+ upon trip points so that user applications can take
+ charge of thermal management.
+ .set_mode:
+ set the mode (enabled/disabled) of the thermal zone.
+ .get_trip_type:
+ get the type of certain trip point.
+ .get_trip_temp:
+ get the temperature above which the certain trip point
will be fired.
- .set_emul_temp: set the emulation temperature which helps in debugging
+ .set_emul_temp:
+ set the emulation temperature which helps in debugging
different threshold temperature points.
- tzp: thermal zone platform parameters.
- passive_delay: number of milliseconds to wait between polls when
+ tzp:
+ thermal zone platform parameters.
+ passive_delay:
+ number of milliseconds to wait between polls when
performing passive cooling.
- polling_delay: number of milliseconds to wait between polls when checking
+ polling_delay:
+ number of milliseconds to wait between polls when checking
whether trip points have been crossed (0 for interrupt driven systems).
+ ::
-1.1.2 void thermal_zone_device_unregister(struct thermal_zone_device *tz)
+ void thermal_zone_device_unregister(struct thermal_zone_device *tz)
This interface function removes the thermal zone device.
It deletes the corresponding entry from /sys/class/thermal folder and
unbinds all the thermal cooling devices it uses.
-1.1.3 struct thermal_zone_device *thermal_zone_of_sensor_register(
- struct device *dev, int sensor_id, void *data,
- const struct thermal_zone_of_device_ops *ops)
+ ::
+
+ struct thermal_zone_device
+ *thermal_zone_of_sensor_register(struct device *dev, int sensor_id,
+ void *data,
+ const struct thermal_zone_of_device_ops *ops)
This interface adds a new sensor to a DT thermal zone.
This function will search the list of thermal zones described in
@@ -87,25 +120,33 @@ temperature) and throttle appropriate devices.
thermal zone device.
The parameters for this interface are:
- dev: Device node of sensor containing valid node pointer in
+
+ dev:
+ Device node of sensor containing valid node pointer in
dev->of_node.
- sensor_id: a sensor identifier, in case the sensor IP has more
+ sensor_id:
+ a sensor identifier, in case the sensor IP has more
than one sensors
- data: a private pointer (owned by the caller) that will be
+ data:
+ a private pointer (owned by the caller) that will be
passed back, when a temperature reading is needed.
- ops: struct thermal_zone_of_device_ops *.
+ ops:
+ `struct thermal_zone_of_device_ops *`.
- get_temp: a pointer to a function that reads the
+ ============== =======================================
+ get_temp a pointer to a function that reads the
sensor temperature. This is mandatory
callback provided by sensor driver.
- set_trips: a pointer to a function that sets a
+ set_trips a pointer to a function that sets a
temperature window. When this window is
left the driver must inform the thermal
core via thermal_zone_device_update.
- get_trend: a pointer to a function that reads the
+ get_trend a pointer to a function that reads the
sensor temperature trend.
- set_emul_temp: a pointer to a function that sets
+ set_emul_temp a pointer to a function that sets
sensor emulated temperature.
+ ============== =======================================
+
The thermal zone temperature is provided by the get_temp() function
pointer of thermal_zone_of_device_ops. When called, it will
have the private pointer @data back.
@@ -114,8 +155,10 @@ temperature) and throttle appropriate devices.
handle. Caller should check the return handle with IS_ERR() for finding
whether success or not.
-1.1.4 void thermal_zone_of_sensor_unregister(struct device *dev,
- struct thermal_zone_device *tzd)
+ ::
+
+ void thermal_zone_of_sensor_unregister(struct device *dev,
+ struct thermal_zone_device *tzd)
This interface unregisters a sensor from a DT thermal zone which was
successfully added by interface thermal_zone_of_sensor_register().
@@ -124,21 +167,29 @@ temperature) and throttle appropriate devices.
interface. It will also silent the zone by remove the .get_temp() and
get_trend() thermal zone device callbacks.
-1.1.5 struct thermal_zone_device *devm_thermal_zone_of_sensor_register(
- struct device *dev, int sensor_id,
- void *data, const struct thermal_zone_of_device_ops *ops)
+ ::
+
+ struct thermal_zone_device
+ *devm_thermal_zone_of_sensor_register(struct device *dev,
+ int sensor_id,
+ void *data,
+ const struct thermal_zone_of_device_ops *ops)
This interface is resource managed version of
thermal_zone_of_sensor_register().
+
All details of thermal_zone_of_sensor_register() described in
section 1.1.3 is applicable here.
+
The benefit of using this interface to register sensor is that it
is not require to explicitly call thermal_zone_of_sensor_unregister()
in error path or during driver unbinding as this is done by driver
resource manager.
-1.1.6 void devm_thermal_zone_of_sensor_unregister(struct device *dev,
- struct thermal_zone_device *tzd)
+ ::
+
+ void devm_thermal_zone_of_sensor_unregister(struct device *dev,
+ struct thermal_zone_device *tzd)
This interface is resource managed version of
thermal_zone_of_sensor_unregister().
@@ -147,123 +198,186 @@ temperature) and throttle appropriate devices.
Normally this function will not need to be called and the resource
management code will ensure that the resource is freed.
-1.1.7 int thermal_zone_get_slope(struct thermal_zone_device *tz)
+ ::
+
+ int thermal_zone_get_slope(struct thermal_zone_device *tz)
This interface is used to read the slope attribute value
for the thermal zone device, which might be useful for platform
drivers for temperature calculations.
-1.1.8 int thermal_zone_get_offset(struct thermal_zone_device *tz)
+ ::
+
+ int thermal_zone_get_offset(struct thermal_zone_device *tz)
This interface is used to read the offset attribute value
for the thermal zone device, which might be useful for platform
drivers for temperature calculations.
1.2 thermal cooling device interface
-1.2.1 struct thermal_cooling_device *thermal_cooling_device_register(char *name,
- void *devdata, struct thermal_cooling_device_ops *)
+------------------------------------
+
+
+ ::
+
+ struct thermal_cooling_device
+ *thermal_cooling_device_register(char *name,
+ void *devdata, struct thermal_cooling_device_ops *)
This interface function adds a new thermal cooling device (fan/processor/...)
- to /sys/class/thermal/ folder as cooling_device[0-*]. It tries to bind itself
+ to /sys/class/thermal/ folder as `cooling_device[0-*]`. It tries to bind itself
to all the thermal zone devices registered at the same time.
- name: the cooling device name.
- devdata: device private data.
- ops: thermal cooling devices call-backs.
- .get_max_state: get the Maximum throttle state of the cooling device.
- .get_cur_state: get the Currently requested throttle state of the cooling device.
- .set_cur_state: set the Current throttle state of the cooling device.
-
-1.2.2 void thermal_cooling_device_unregister(struct thermal_cooling_device *cdev)
+
+ name:
+ the cooling device name.
+ devdata:
+ device private data.
+ ops:
+ thermal cooling devices call-backs.
+
+ .get_max_state:
+ get the Maximum throttle state of the cooling device.
+ .get_cur_state:
+ get the Currently requested throttle state of the
+ cooling device.
+ .set_cur_state:
+ set the Current throttle state of the cooling device.
+
+ ::
+
+ void thermal_cooling_device_unregister(struct thermal_cooling_device *cdev)
This interface function removes the thermal cooling device.
It deletes the corresponding entry from /sys/class/thermal folder and
unbinds itself from all the thermal zone devices using it.
1.3 interface for binding a thermal zone device with a thermal cooling device
-1.3.1 int thermal_zone_bind_cooling_device(struct thermal_zone_device *tz,
- int trip, struct thermal_cooling_device *cdev,
- unsigned long upper, unsigned long lower, unsigned int weight);
+-----------------------------------------------------------------------------
+
+ ::
+
+ int thermal_zone_bind_cooling_device(struct thermal_zone_device *tz,
+ int trip, struct thermal_cooling_device *cdev,
+ unsigned long upper, unsigned long lower, unsigned int weight);
This interface function binds a thermal cooling device to a particular trip
point of a thermal zone device.
+
This function is usually called in the thermal zone device .bind callback.
- tz: the thermal zone device
- cdev: thermal cooling device
- trip: indicates which trip point in this thermal zone the cooling device
- is associated with.
- upper:the Maximum cooling state for this trip point.
- THERMAL_NO_LIMIT means no upper limit,
+
+ tz:
+ the thermal zone device
+ cdev:
+ thermal cooling device
+ trip:
+ indicates which trip point in this thermal zone the cooling device
+ is associated with.
+ upper:
+ the Maximum cooling state for this trip point.
+ THERMAL_NO_LIMIT means no upper limit,
and the cooling device can be in max_state.
- lower:the Minimum cooling state can be used for this trip point.
- THERMAL_NO_LIMIT means no lower limit,
+ lower:
+ the Minimum cooling state can be used for this trip point.
+ THERMAL_NO_LIMIT means no lower limit,
and the cooling device can be in cooling state 0.
- weight: the influence of this cooling device in this thermal
- zone. See 1.4.1 below for more information.
+ weight:
+ the influence of this cooling device in this thermal
+ zone. See 1.4.1 below for more information.
-1.3.2 int thermal_zone_unbind_cooling_device(struct thermal_zone_device *tz,
- int trip, struct thermal_cooling_device *cdev);
+ ::
+
+ int thermal_zone_unbind_cooling_device(struct thermal_zone_device *tz,
+ int trip, struct thermal_cooling_device *cdev);
This interface function unbinds a thermal cooling device from a particular
trip point of a thermal zone device. This function is usually called in
the thermal zone device .unbind callback.
- tz: the thermal zone device
- cdev: thermal cooling device
- trip: indicates which trip point in this thermal zone the cooling device
- is associated with.
+
+ tz:
+ the thermal zone device
+ cdev:
+ thermal cooling device
+ trip:
+ indicates which trip point in this thermal zone the cooling device
+ is associated with.
1.4 Thermal Zone Parameters
-1.4.1 struct thermal_bind_params
+---------------------------
+
+ ::
+
+ struct thermal_bind_params
+
This structure defines the following parameters that are used to bind
a zone with a cooling device for a particular trip point.
- .cdev: The cooling device pointer
- .weight: The 'influence' of a particular cooling device on this
- zone. This is relative to the rest of the cooling
- devices. For example, if all cooling devices have a
- weight of 1, then they all contribute the same. You can
- use percentages if you want, but it's not mandatory. A
- weight of 0 means that this cooling device doesn't
- contribute to the cooling of this zone unless all cooling
- devices have a weight of 0. If all weights are 0, then
- they all contribute the same.
- .trip_mask:This is a bit mask that gives the binding relation between
- this thermal zone and cdev, for a particular trip point.
- If nth bit is set, then the cdev and thermal zone are bound
- for trip point n.
- .binding_limits: This is an array of cooling state limits. Must have
- exactly 2 * thermal_zone.number_of_trip_points. It is an
- array consisting of tuples <lower-state upper-state> of
- state limits. Each trip will be associated with one state
- limit tuple when binding. A NULL pointer means
- <THERMAL_NO_LIMITS THERMAL_NO_LIMITS> on all trips.
- These limits are used when binding a cdev to a trip point.
- .match: This call back returns success(0) if the 'tz and cdev' need to
+
+ .cdev:
+ The cooling device pointer
+ .weight:
+ The 'influence' of a particular cooling device on this
+ zone. This is relative to the rest of the cooling
+ devices. For example, if all cooling devices have a
+ weight of 1, then they all contribute the same. You can
+ use percentages if you want, but it's not mandatory. A
+ weight of 0 means that this cooling device doesn't
+ contribute to the cooling of this zone unless all cooling
+ devices have a weight of 0. If all weights are 0, then
+ they all contribute the same.
+ .trip_mask:
+ This is a bit mask that gives the binding relation between
+ this thermal zone and cdev, for a particular trip point.
+ If nth bit is set, then the cdev and thermal zone are bound
+ for trip point n.
+ .binding_limits:
+ This is an array of cooling state limits. Must have
+ exactly 2 * thermal_zone.number_of_trip_points. It is an
+ array consisting of tuples <lower-state upper-state> of
+ state limits. Each trip will be associated with one state
+ limit tuple when binding. A NULL pointer means
+ <THERMAL_NO_LIMITS THERMAL_NO_LIMITS> on all trips.
+ These limits are used when binding a cdev to a trip point.
+ .match:
+ This call back returns success(0) if the 'tz and cdev' need to
be bound, as per platform data.
-1.4.2 struct thermal_zone_params
+
+ ::
+
+ struct thermal_zone_params
+
This structure defines the platform level parameters for a thermal zone.
This data, for each thermal zone should come from the platform layer.
This is an optional feature where some platforms can choose not to
provide this data.
- .governor_name: Name of the thermal governor used for this zone
- .no_hwmon: a boolean to indicate if the thermal to hwmon sysfs interface
- is required. when no_hwmon == false, a hwmon sysfs interface
- will be created. when no_hwmon == true, nothing will be done.
- In case the thermal_zone_params is NULL, the hwmon interface
- will be created (for backward compatibility).
- .num_tbps: Number of thermal_bind_params entries for this zone
- .tbp: thermal_bind_params entries
+
+ .governor_name:
+ Name of the thermal governor used for this zone
+ .no_hwmon:
+ a boolean to indicate if the thermal to hwmon sysfs interface
+ is required. when no_hwmon == false, a hwmon sysfs interface
+ will be created. when no_hwmon == true, nothing will be done.
+ In case the thermal_zone_params is NULL, the hwmon interface
+ will be created (for backward compatibility).
+ .num_tbps:
+ Number of thermal_bind_params entries for this zone
+ .tbp:
+ thermal_bind_params entries
2. sysfs attributes structure
+=============================
+== ================
RO read only value
WO write only value
RW read/write value
+== ================
Thermal sysfs attributes will be represented under /sys/class/thermal.
Hwmon sysfs I/F extension is also available under /sys/class/hwmon
if hwmon is compiled in or built as a module.
-Thermal zone device sys I/F, created once it's registered:
-/sys/class/thermal/thermal_zone[0-*]:
+Thermal zone device sys I/F, created once it's registered::
+
+ /sys/class/thermal/thermal_zone[0-*]:
|---type: Type of the thermal zone
|---temp: Current temperature
|---mode: Working mode of the thermal zone
@@ -282,8 +396,9 @@ Thermal zone device sys I/F, created once it's registered:
|---slope: Slope constant applied as linear extrapolation
|---offset: Offset constant applied as linear extrapolation
-Thermal cooling device sys I/F, created once it's registered:
-/sys/class/thermal/cooling_device[0-*]:
+Thermal cooling device sys I/F, created once it's registered::
+
+ /sys/class/thermal/cooling_device[0-*]:
|---type: Type of the cooling device(processor/fan/...)
|---max_state: Maximum cooling state of the cooling device
|---cur_state: Current cooling state of the cooling device
@@ -299,11 +414,13 @@ the relationship between a thermal zone and its associated cooling device.
They are created/removed for each successful execution of
thermal_zone_bind_cooling_device/thermal_zone_unbind_cooling_device.
-/sys/class/thermal/thermal_zone[0-*]:
+::
+
+ /sys/class/thermal/thermal_zone[0-*]:
|---cdev[0-*]: [0-*]th cooling device in current thermal zone
|---cdev[0-*]_trip_point: Trip point that cdev[0-*] is associated with
|---cdev[0-*]_weight: Influence of the cooling device in
- this thermal zone
+ this thermal zone
Besides the thermal zone device sysfs I/F and cooling device sysfs I/F,
the generic thermal driver also creates a hwmon sysfs I/F for each _type_
@@ -311,16 +428,17 @@ of thermal zone device. E.g. the generic thermal driver registers one hwmon
class device and build the associated hwmon sysfs I/F for all the registered
ACPI thermal zones.
-/sys/class/hwmon/hwmon[0-*]:
+::
+
+ /sys/class/hwmon/hwmon[0-*]:
|---name: The type of the thermal zone devices
|---temp[1-*]_input: The current temperature of thermal zone [1-*]
|---temp[1-*]_critical: The critical trip point of thermal zone [1-*]
Please read Documentation/hwmon/sysfs-interface.rst for additional information.
-***************************
-* Thermal zone attributes *
-***************************
+Thermal zone attributes
+-----------------------
type
Strings which represent the thermal zone type.
@@ -340,54 +458,67 @@ mode
This file gives information about the algorithm that is currently
managing the thermal zone. It can be either default kernel based
algorithm or user space application.
- enabled = enable Kernel Thermal management.
- disabled = Preventing kernel thermal zone driver actions upon
+
+ enabled
+ enable Kernel Thermal management.
+ disabled
+ Preventing kernel thermal zone driver actions upon
trip points so that user application can take full
charge of the thermal management.
+
RW, Optional
policy
One of the various thermal governors used for a particular zone.
+
RW, Required
available_policies
Available thermal governors which can be used for a particular zone.
+
RO, Required
-trip_point_[0-*]_temp
+`trip_point_[0-*]_temp`
The temperature above which trip point will be fired.
+
Unit: millidegree Celsius
+
RO, Optional
-trip_point_[0-*]_type
+`trip_point_[0-*]_type`
Strings which indicate the type of the trip point.
- E.g. it can be one of critical, hot, passive, active[0-*] for ACPI
+
+ E.g. it can be one of critical, hot, passive, `active[0-*]` for ACPI
thermal zone.
+
RO, Optional
-trip_point_[0-*]_hyst
+`trip_point_[0-*]_hyst`
The hysteresis value for a trip point, represented as an integer
Unit: Celsius
RW, Optional
-cdev[0-*]
+`cdev[0-*]`
Sysfs link to the thermal cooling device node where the sys I/F
for cooling device throttling control represents.
+
RO, Optional
-cdev[0-*]_trip_point
- The trip point in this thermal zone which cdev[0-*] is associated
+`cdev[0-*]_trip_point`
+ The trip point in this thermal zone which `cdev[0-*]` is associated
with; -1 means the cooling device is not associated with any trip
point.
+
RO, Optional
-cdev[0-*]_weight
- The influence of cdev[0-*] in this thermal zone. This value
- is relative to the rest of cooling devices in the thermal
- zone. For example, if a cooling device has a weight double
- than that of other, it's twice as effective in cooling the
- thermal zone.
- RW, Optional
+`cdev[0-*]_weight`
+ The influence of `cdev[0-*]` in this thermal zone. This value
+ is relative to the rest of cooling devices in the thermal
+ zone. For example, if a cooling device has a weight double
+ than that of other, it's twice as effective in cooling the
+ thermal zone.
+
+ RW, Optional
passive
Attribute is only present for zones in which the passive cooling
@@ -395,8 +526,11 @@ passive
and can be set to a temperature (in millidegrees) to enable a
passive trip point for the zone. Activation is done by polling with
an interval of 1 second.
+
Unit: millidegrees Celsius
+
Valid values: 0 (disabled) or greater than 1000
+
RW, Optional
emul_temp
@@ -407,17 +541,21 @@ emul_temp
threshold and its associated cooling action. This is write only node
and writing 0 on this node should disable emulation.
Unit: millidegree Celsius
+
WO, Optional
- WARNING: Be careful while enabling this option on production systems,
- because userland can easily disable the thermal policy by simply
- flooding this sysfs node with low temperature values.
+ WARNING:
+ Be careful while enabling this option on production systems,
+ because userland can easily disable the thermal policy by simply
+ flooding this sysfs node with low temperature values.
sustainable_power
An estimate of the sustained power that can be dissipated by
the thermal zone. Used by the power allocator governor. For
- more information see Documentation/thermal/power_allocator.txt
+ more information see Documentation/thermal/power_allocator.rst
+
Unit: milliwatts
+
RW, Optional
k_po
@@ -425,7 +563,8 @@ k_po
controller during temperature overshoot. Temperature overshoot
is when the current temperature is above the "desired
temperature" trip point. For more information see
- Documentation/thermal/power_allocator.txt
+ Documentation/thermal/power_allocator.rst
+
RW, Optional
k_pu
@@ -433,20 +572,23 @@ k_pu
controller during temperature undershoot. Temperature undershoot
is when the current temperature is below the "desired
temperature" trip point. For more information see
- Documentation/thermal/power_allocator.txt
+ Documentation/thermal/power_allocator.rst
+
RW, Optional
k_i
The integral term of the power allocator governor's PID
controller. This term allows the PID controller to compensate
for long term drift. For more information see
- Documentation/thermal/power_allocator.txt
+ Documentation/thermal/power_allocator.rst
+
RW, Optional
k_d
The derivative term of the power allocator governor's PID
controller. For more information see
- Documentation/thermal/power_allocator.txt
+ Documentation/thermal/power_allocator.rst
+
RW, Optional
integral_cutoff
@@ -456,8 +598,10 @@ integral_cutoff
example, if integral_cutoff is 0, then the integral term only
accumulates error when temperature is above the desired
temperature trip point. For more information see
- Documentation/thermal/power_allocator.txt
+ Documentation/thermal/power_allocator.rst
+
Unit: millidegree Celsius
+
RW, Optional
slope
@@ -465,6 +609,7 @@ slope
to determine a hotspot temperature based off the sensor's
raw readings. It is up to the device driver to determine
the usage of these values.
+
RW, Optional
offset
@@ -472,28 +617,33 @@ offset
to determine a hotspot temperature based off the sensor's
raw readings. It is up to the device driver to determine
the usage of these values.
+
RW, Optional
-*****************************
-* Cooling device attributes *
-*****************************
+Cooling device attributes
+-------------------------
type
String which represents the type of device, e.g:
+
- for generic ACPI: should be "Fan", "Processor" or "LCD"
- for memory controller device on intel_menlow platform:
should be "Memory controller".
+
RO, Required
max_state
The maximum permissible cooling state of this cooling device.
+
RO, Required
cur_state
The current cooling state of this cooling device.
The value can any integer numbers between 0 and max_state:
+
- cur_state == 0 means no cooling
- cur_state == max_state means the maximum cooling.
+
RW, Required
stats/reset
@@ -508,9 +658,11 @@ stats/time_in_state_ms:
units here is 10mS (similar to other time exported in /proc).
RO, Required
+
stats/total_trans:
A single positive value showing the total number of times the state of a
cooling device is changed.
+
RO, Required
stats/trans_table:
@@ -522,6 +674,7 @@ stats/trans_table:
RO, Required
3. A simple implementation
+==========================
ACPI thermal zone may support multiple trip points like critical, hot,
passive, active. If an ACPI thermal zone supports critical, passive,
@@ -532,11 +685,10 @@ thermal_cooling_device. Both are considered to have the same
effectiveness in cooling the thermal zone.
If the processor is listed in _PSL method, and the fan is listed in _AL0
-method, the sys I/F structure will be built like this:
+method, the sys I/F structure will be built like this::
-/sys/class/thermal:
-
-|thermal_zone1:
+ /sys/class/thermal:
+ |thermal_zone1:
|---type: acpitz
|---temp: 37000
|---mode: enabled
@@ -557,24 +709,24 @@ method, the sys I/F structure will be built like this:
|---cdev1_trip_point: 2 /* cdev1 can be used for active[0]*/
|---cdev1_weight: 1024
-|cooling_device0:
+ |cooling_device0:
|---type: Processor
|---max_state: 8
|---cur_state: 0
-|cooling_device3:
+ |cooling_device3:
|---type: Fan
|---max_state: 2
|---cur_state: 0
-/sys/class/hwmon:
-
-|hwmon0:
+ /sys/class/hwmon:
+ |hwmon0:
|---name: acpitz
|---temp1_input: 37000
|---temp1_crit: 100000
4. Event Notification
+=====================
The framework includes a simple notification mechanism, in the form of a
netlink event. Netlink socket initialization is done during the _init_
@@ -587,21 +739,28 @@ event will be one of:{THERMAL_AUX0, THERMAL_AUX1, THERMAL_CRITICAL,
THERMAL_DEV_FAULT}. Notification can be sent when the current temperature
crosses any of the configured thresholds.
-5. Export Symbol APIs:
+5. Export Symbol APIs
+=====================
+
+5.1. get_tz_trend
+-----------------
-5.1: get_tz_trend:
This function returns the trend of a thermal zone, i.e the rate of change
of temperature of the thermal zone. Ideally, the thermal sensor drivers
are supposed to implement the callback. If they don't, the thermal
framework calculated the trend by comparing the previous and the current
temperature values.
-5.2:get_thermal_instance:
+5.2. get_thermal_instance
+-------------------------
+
This function returns the thermal_instance corresponding to a given
{thermal_zone, cooling_device, trip_point} combination. Returns NULL
if such an instance does not exist.
-5.3:thermal_notify_framework:
+5.3. thermal_notify_framework
+-----------------------------
+
This function handles the trip events from sensor drivers. It starts
throttling the cooling devices according to the policy configured.
For CRITICAL and HOT trip points, this notifies the respective drivers,
@@ -609,12 +768,15 @@ and does actual throttling for other trip points i.e ACTIVE and PASSIVE.
The throttling policy is based on the configured platform data; if no
platform data is provided, this uses the step_wise throttling policy.
-5.4:thermal_cdev_update:
+5.4. thermal_cdev_update
+------------------------
+
This function serves as an arbitrator to set the state of a cooling
device. It sets the cooling device to the deepest cooling state if
possible.
-6. thermal_emergency_poweroff:
+6. thermal_emergency_poweroff
+=============================
On an event of critical trip temperature crossing. Thermal framework
allows the system to shutdown gracefully by calling orderly_poweroff().
diff --git a/Documentation/thermal/x86_pkg_temperature_thermal b/Documentation/thermal/x86_pkg_temperature_thermal.rst
similarity index 80%
rename from Documentation/thermal/x86_pkg_temperature_thermal
rename to Documentation/thermal/x86_pkg_temperature_thermal.rst
index 17a3a4c0a0ca..1bbef29df47d 100644
--- a/Documentation/thermal/x86_pkg_temperature_thermal
+++ b/Documentation/thermal/x86_pkg_temperature_thermal.rst
@@ -1,19 +1,23 @@
+===================================
Kernel driver: x86_pkg_temp_thermal
-===================
+===================================
Supported chips:
+
* x86: with package level thermal management
+
(Verify using: CPUID.06H:EAX[bit 6] =1)
Authors: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Reference
----
+---------
+
Intel® 64 and IA-32 Architectures Software Developer’s Manual (Jan, 2013):
Chapter 14.6: PACKAGE LEVEL THERMAL MANAGEMENT
Description
----------
+-----------
This driver register CPU digital temperature package level sensor as a thermal
zone with maximum two user mode configurable trip points. Number of trip points
@@ -25,22 +29,30 @@ take any action to control temperature.
Threshold management
--------------------
Each package will register as a thermal zone under /sys/class/thermal.
-Example:
-/sys/class/thermal/thermal_zone1
+
+Example::
+
+ /sys/class/thermal/thermal_zone1
This contains two trip points:
+
- trip_point_0_temp
- trip_point_1_temp
User can set any temperature between 0 to TJ-Max temperature. Temperature units
-are in milli-degree Celsius. Refer to "Documentation/thermal/sysfs-api.txt" for
+are in milli-degree Celsius. Refer to "Documentation/thermal/sysfs-api.rst" for
thermal sys-fs details.
Any value other than 0 in these trip points, can trigger thermal notifications.
Setting 0, stops sending thermal notifications.
-Thermal notifications: To get kobject-uevent notifications, set the thermal zone
-policy to "user_space". For example: echo -n "user_space" > policy
+Thermal notifications:
+To get kobject-uevent notifications, set the thermal zone
+policy to "user_space".
+
+For example::
+
+ echo -n "user_space" > policy
diff --git a/MAINTAINERS b/MAINTAINERS
index 262dab70cbbf..ca1d09d0c44b 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -15473,7 +15473,7 @@ M: Viresh Kumar <viresh.kumar@linaro.org>
M: Javi Merino <javi.merino@kernel.org>
L: linux-pm@vger.kernel.org
S: Supported
-F: Documentation/thermal/cpu-cooling-api.txt
+F: Documentation/thermal/cpu-cooling-api.rst
F: drivers/thermal/cpu_cooling.c
F: include/linux/cpu_cooling.h
diff --git a/include/linux/thermal.h b/include/linux/thermal.h
index 5f4705f46c2f..b9a7a327f304 100644
--- a/include/linux/thermal.h
+++ b/include/linux/thermal.h
@@ -251,7 +251,7 @@ struct thermal_bind_params {
* platform characterization. This value is relative to the
* rest of the weights so a cooling device whose weight is
* double that of another cooling device is twice as
- * effective. See Documentation/thermal/sysfs-api.txt for more
+ * effective. See Documentation/thermal/sysfs-api.rst for more
* information.
*/
int weight;
@@ -259,7 +259,7 @@ struct thermal_bind_params {
/*
* This is a bit mask that gives the binding relation between this
* thermal zone and cdev, for a particular trip point.
- * See Documentation/thermal/sysfs-api.txt for more information.
+ * See Documentation/thermal/sysfs-api.rst for more information.
*/
int trip_mask;
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 75/79] docs: rapidio: convert to ReST
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (64 preceding siblings ...)
2019-04-22 13:28 ` [PATCH v2 74/79] docs: thermal: " Mauro Carvalho Chehab
@ 2019-04-22 13:28 ` Mauro Carvalho Chehab
2019-04-22 13:28 ` [PATCH v2 76/79] docs: blockdev: " Mauro Carvalho Chehab
` (7 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:28 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Matt Porter, Alexandre Bounine
Rename the rapidio documentation files to ReST, add an
index for them and adjust in order to produce a nice html
output via the Sphinx build system.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/rapidio/index.rst | 15 +++++
.../{mport_cdev.txt => mport_cdev.rst} | 47 ++++++-------
.../rapidio/{rapidio.txt => rapidio.rst} | 39 +++++++----
.../rapidio/{rio_cm.txt => rio_cm.rst} | 66 ++++++++++++-------
.../rapidio/{sysfs.txt => sysfs.rst} | 4 ++
.../rapidio/{tsi721.txt => tsi721.rst} | 45 ++++++++-----
drivers/rapidio/Kconfig | 2 +-
7 files changed, 141 insertions(+), 77 deletions(-)
create mode 100644 Documentation/rapidio/index.rst
rename Documentation/rapidio/{mport_cdev.txt => mport_cdev.rst} (84%)
rename Documentation/rapidio/{rapidio.txt => rapidio.rst} (97%)
rename Documentation/rapidio/{rio_cm.txt => rio_cm.rst} (76%)
rename Documentation/rapidio/{sysfs.txt => sysfs.rst} (75%)
rename Documentation/rapidio/{tsi721.txt => tsi721.rst} (79%)
diff --git a/Documentation/rapidio/index.rst b/Documentation/rapidio/index.rst
new file mode 100644
index 000000000000..ab7b5541b346
--- /dev/null
+++ b/Documentation/rapidio/index.rst
@@ -0,0 +1,15 @@
+:orphan:
+
+===========================
+The Linux RapidIO Subsystem
+===========================
+
+.. toctree::
+ :maxdepth: 1
+
+ rapidio
+ sysfs
+
+ tsi721
+ mport_cdev
+ rio_cm
diff --git a/Documentation/rapidio/mport_cdev.txt b/Documentation/rapidio/mport_cdev.rst
similarity index 84%
rename from Documentation/rapidio/mport_cdev.txt
rename to Documentation/rapidio/mport_cdev.rst
index a53f786ee2e9..df77a7f7be7d 100644
--- a/Documentation/rapidio/mport_cdev.txt
+++ b/Documentation/rapidio/mport_cdev.rst
@@ -1,13 +1,9 @@
+==================================================================
RapidIO subsystem mport character device driver (rio_mport_cdev.c)
==================================================================
-Version History:
-----------------
- 1.0.0 - Initial driver release.
-
-==================================================================
-
-I. Overview
+1. Overview
+===========
This device driver is the result of collaboration within the RapidIO.org
Software Task Group (STG) between Texas Instruments, Freescale,
@@ -29,40 +25,41 @@ Using available set of ioctl commands user-space applications can perform
following RapidIO bus and subsystem operations:
- Reads and writes from/to configuration registers of mport devices
- (RIO_MPORT_MAINT_READ_LOCAL/RIO_MPORT_MAINT_WRITE_LOCAL)
+ (RIO_MPORT_MAINT_READ_LOCAL/RIO_MPORT_MAINT_WRITE_LOCAL)
- Reads and writes from/to configuration registers of remote RapidIO devices.
This operations are defined as RapidIO Maintenance reads/writes in RIO spec.
- (RIO_MPORT_MAINT_READ_REMOTE/RIO_MPORT_MAINT_WRITE_REMOTE)
+ (RIO_MPORT_MAINT_READ_REMOTE/RIO_MPORT_MAINT_WRITE_REMOTE)
- Set RapidIO Destination ID for mport devices (RIO_MPORT_MAINT_HDID_SET)
- Set RapidIO Component Tag for mport devices (RIO_MPORT_MAINT_COMPTAG_SET)
- Query logical index of mport devices (RIO_MPORT_MAINT_PORT_IDX_GET)
- Query capabilities and RapidIO link configuration of mport devices
- (RIO_MPORT_GET_PROPERTIES)
+ (RIO_MPORT_GET_PROPERTIES)
- Enable/Disable reporting of RapidIO doorbell events to user-space applications
- (RIO_ENABLE_DOORBELL_RANGE/RIO_DISABLE_DOORBELL_RANGE)
+ (RIO_ENABLE_DOORBELL_RANGE/RIO_DISABLE_DOORBELL_RANGE)
- Enable/Disable reporting of RIO port-write events to user-space applications
- (RIO_ENABLE_PORTWRITE_RANGE/RIO_DISABLE_PORTWRITE_RANGE)
+ (RIO_ENABLE_PORTWRITE_RANGE/RIO_DISABLE_PORTWRITE_RANGE)
- Query/Control type of events reported through this driver: doorbells,
port-writes or both (RIO_SET_EVENT_MASK/RIO_GET_EVENT_MASK)
- Configure/Map mport's outbound requests window(s) for specific size,
RapidIO destination ID, hopcount and request type
- (RIO_MAP_OUTBOUND/RIO_UNMAP_OUTBOUND)
+ (RIO_MAP_OUTBOUND/RIO_UNMAP_OUTBOUND)
- Configure/Map mport's inbound requests window(s) for specific size,
RapidIO base address and local memory base address
- (RIO_MAP_INBOUND/RIO_UNMAP_INBOUND)
+ (RIO_MAP_INBOUND/RIO_UNMAP_INBOUND)
- Allocate/Free contiguous DMA coherent memory buffer for DMA data transfers
to/from remote RapidIO devices (RIO_ALLOC_DMA/RIO_FREE_DMA)
- Initiate DMA data transfers to/from remote RapidIO devices (RIO_TRANSFER).
Supports blocking, asynchronous and posted (a.k.a 'fire-and-forget') data
transfer modes.
- Check/Wait for completion of asynchronous DMA data transfer
- (RIO_WAIT_FOR_ASYNC)
+ (RIO_WAIT_FOR_ASYNC)
- Manage device objects supported by RapidIO subsystem (RIO_DEV_ADD/RIO_DEV_DEL).
This allows implementation of various RapidIO fabric enumeration algorithms
as user-space applications while using remaining functionality provided by
kernel RapidIO subsystem.
-II. Hardware Compatibility
+2. Hardware Compatibility
+=========================
This device driver uses standard interfaces defined by kernel RapidIO subsystem
and therefore it can be used with any mport device driver registered by RapidIO
@@ -78,29 +75,35 @@ functionality of their platform when planning to use this driver:
specific DMA engine support and therefore DMA data transfers mport_cdev driver
are not available.
-III. Module parameters
+3. Module parameters
+====================
-- 'dma_timeout' - DMA transfer completion timeout (in msec, default value 3000).
+- 'dma_timeout'
+ - DMA transfer completion timeout (in msec, default value 3000).
This parameter set a maximum completion wait time for SYNC mode DMA
transfer requests and for RIO_WAIT_FOR_ASYNC ioctl requests.
-- 'dbg_level' - This parameter allows to control amount of debug information
+- 'dbg_level'
+ - This parameter allows to control amount of debug information
generated by this device driver. This parameter is formed by set of
bit masks that correspond to the specific functional blocks.
For mask definitions see 'drivers/rapidio/devices/rio_mport_cdev.c'
This parameter can be changed dynamically.
Use CONFIG_RAPIDIO_DEBUG=y to enable debug output at the top level.
-IV. Known problems
+4. Known problems
+=================
None.
-V. User-space Applications and API
+5. User-space Applications and API
+==================================
API library and applications that use this device driver are available from
RapidIO.org.
-VI. TODO List
+6. TODO List
+============
- Add support for sending/receiving "raw" RapidIO messaging packets.
- Add memory mapped DMA data transfers as an option when RapidIO-specific DMA
diff --git a/Documentation/rapidio/rapidio.txt b/Documentation/rapidio/rapidio.rst
similarity index 97%
rename from Documentation/rapidio/rapidio.txt
rename to Documentation/rapidio/rapidio.rst
index 28fbd877f85a..fb8942d3ba85 100644
--- a/Documentation/rapidio/rapidio.txt
+++ b/Documentation/rapidio/rapidio.rst
@@ -1,6 +1,6 @@
- The Linux RapidIO Subsystem
-
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+============
+Introduction
+============
The RapidIO standard is a packet-based fabric interconnect standard designed for
use in embedded systems. Development of the RapidIO standard is directed by the
@@ -11,7 +11,7 @@ This document describes the basics of the Linux RapidIO subsystem and provides
information on its major components.
1 Overview
-----------
+==========
Because the RapidIO subsystem follows the Linux device model it is integrated
into the kernel similarly to other buses by defining RapidIO-specific device and
@@ -22,7 +22,7 @@ architecture-specific interfaces that provide support for common RapidIO
subsystem operations.
2. Core Components
-------------------
+==================
A typical RapidIO network is a combination of endpoints and switches.
Each of these components is represented in the subsystem by an associated data
@@ -30,6 +30,7 @@ structure. The core logical components of the RapidIO subsystem are defined
in include/linux/rio.h file.
2.1 Master Port
+---------------
A master port (or mport) is a RapidIO interface controller that is local to the
processor executing the Linux code. A master port generates and receives RapidIO
@@ -46,6 +47,7 @@ includes rio_ops data structure which contains pointers to hardware specific
implementations of RapidIO functions.
2.2 Device
+----------
A RapidIO device is any endpoint (other than mport) or switch in the network.
All devices are presented in the RapidIO subsystem by corresponding rio_dev data
@@ -53,6 +55,7 @@ structure. Devices form one global device list and per-network device lists
(depending on number of available mports and networks).
2.3 Switch
+----------
A RapidIO switch is a special class of device that routes packets between its
ports towards their final destination. The packet destination port within a
@@ -66,6 +69,7 @@ specific switch drivers that are designed to provide hardware-specific
implementation of common switch management routines.
2.4 Network
+-----------
A RapidIO network is a combination of interconnected endpoint and switch devices.
Each RapidIO network known to the system is represented by corresponding rio_net
@@ -74,11 +78,13 @@ ports that form the same network. It also contains a pointer to the default
master port that is used to communicate with devices within the network.
2.5 Device Drivers
+------------------
RapidIO device-specific drivers follow Linux Kernel Driver Model and are
intended to support specific RapidIO devices attached to the RapidIO network.
2.6 Subsystem Interfaces
+------------------------
RapidIO interconnect specification defines features that may be used to provide
one or more common service layers for all participating RapidIO devices. These
@@ -90,7 +96,7 @@ subsystem interfaces. This allows to have multiple common services attached to
the same device without blocking attachment of a device-specific driver.
3. Subsystem Initialization
----------------------------
+===========================
In order to initialize the RapidIO subsystem, a platform must initialize and
register at least one master port within the RapidIO network. To register mport
@@ -105,7 +111,7 @@ RapidIO subsystem can be configured to be built as a statically linked or
modular component of the kernel (see details below).
4. Enumeration and Discovery
-----------------------------
+============================
4.1 Overview
------------
@@ -168,14 +174,16 @@ on RapidIO subsystem build configuration:
(b) If the RapidIO subsystem core is built as a loadable module, in addition
to the method shown above, the host destination ID(s) can be specified using
traditional methods of passing module parameter "hdid=" during its loading:
+
- from command line: "modprobe rapidio hdid=-1,7", or
- from modprobe configuration file using configuration command "options",
like in this example: "options rapidio hdid=-1,7". An example of modprobe
configuration file is provided in the section below.
- NOTES:
+NOTES:
(i) if "hdid=" parameter is omitted all available mport will be assigned
destination ID = -1;
+
(ii) the "hdid=" parameter in systems with multiple mports can have
destination ID assignments omitted from the end of list (default = -1).
@@ -317,8 +325,7 @@ must ensure that they are loaded before the enumeration/discovery starts.
This process can be automated by specifying pre- or post- dependencies in the
RapidIO-specific modprobe configuration file as shown in the example below.
- File /etc/modprobe.d/rapidio.conf:
- ----------------------------------
+File /etc/modprobe.d/rapidio.conf::
# Configure RapidIO subsystem modules
@@ -335,17 +342,21 @@ RapidIO-specific modprobe configuration file as shown in the example below.
--------------------------
-NOTE: In the example above, one of "softdep" commands must be removed or
-commented out to keep required module loading sequence.
+NOTE:
+ In the example above, one of "softdep" commands must be removed or
+ commented out to keep required module loading sequence.
-A. References
--------------
+5. References
+=============
[1] RapidIO Trade Association. RapidIO Interconnect Specifications.
http://www.rapidio.org.
+
[2] Rapidio TA. Technology Comparisons.
http://www.rapidio.org/education/technology_comparisons/
+
[3] RapidIO support for Linux.
http://lwn.net/Articles/139118/
+
[4] Matt Porter. RapidIO for Linux. Ottawa Linux Symposium, 2005
http://www.kernel.org/doc/ols/2005/ols2005v2-pages-43-56.pdf
diff --git a/Documentation/rapidio/rio_cm.txt b/Documentation/rapidio/rio_cm.rst
similarity index 76%
rename from Documentation/rapidio/rio_cm.txt
rename to Documentation/rapidio/rio_cm.rst
index 27aa401f1126..5294430a7a74 100644
--- a/Documentation/rapidio/rio_cm.txt
+++ b/Documentation/rapidio/rio_cm.rst
@@ -1,13 +1,10 @@
+==========================================================================
RapidIO subsystem Channelized Messaging character device driver (rio_cm.c)
==========================================================================
-Version History:
-----------------
- 1.0.0 - Initial driver release.
-==========================================================================
-
-I. Overview
+1. Overview
+===========
This device driver is the result of collaboration within the RapidIO.org
Software Task Group (STG) between Texas Instruments, Prodrive Technologies,
@@ -41,79 +38,98 @@ in /dev directory common for all registered RapidIO mport devices.
Following ioctl commands are available to user-space applications:
-- RIO_CM_MPORT_GET_LIST : Returns to caller list of local mport devices that
+- RIO_CM_MPORT_GET_LIST:
+ Returns to caller list of local mport devices that
support messaging operations (number of entries up to RIO_MAX_MPORTS).
Each list entry is combination of mport's index in the system and RapidIO
destination ID assigned to the port.
-- RIO_CM_EP_GET_LIST_SIZE : Returns number of messaging capable remote endpoints
+- RIO_CM_EP_GET_LIST_SIZE:
+ Returns number of messaging capable remote endpoints
in a RapidIO network associated with the specified mport device.
-- RIO_CM_EP_GET_LIST : Returns list of RapidIO destination IDs for messaging
+- RIO_CM_EP_GET_LIST:
+ Returns list of RapidIO destination IDs for messaging
capable remote endpoints (peers) available in a RapidIO network associated
with the specified mport device.
-- RIO_CM_CHAN_CREATE : Creates RapidIO message exchange channel data structure
+- RIO_CM_CHAN_CREATE:
+ Creates RapidIO message exchange channel data structure
with channel ID assigned automatically or as requested by a caller.
-- RIO_CM_CHAN_BIND : Binds the specified channel data structure to the specified
+- RIO_CM_CHAN_BIND:
+ Binds the specified channel data structure to the specified
mport device.
-- RIO_CM_CHAN_LISTEN : Enables listening for connection requests on the specified
+- RIO_CM_CHAN_LISTEN:
+ Enables listening for connection requests on the specified
channel.
-- RIO_CM_CHAN_ACCEPT : Accepts a connection request from peer on the specified
+- RIO_CM_CHAN_ACCEPT:
+ Accepts a connection request from peer on the specified
channel. If wait timeout for this request is specified by a caller it is
a blocking call. If timeout set to 0 this is non-blocking call - ioctl
handler checks for a pending connection request and if one is not available
exits with -EGAIN error status immediately.
-- RIO_CM_CHAN_CONNECT : Sends a connection request to a remote peer/channel.
-- RIO_CM_CHAN_SEND : Sends a data message through the specified channel.
+- RIO_CM_CHAN_CONNECT:
+ Sends a connection request to a remote peer/channel.
+- RIO_CM_CHAN_SEND:
+ Sends a data message through the specified channel.
The handler for this request assumes that message buffer specified by
a caller includes the reserved space for a packet header required by
this driver.
-- RIO_CM_CHAN_RECEIVE : Receives a data message through a connected channel.
+- RIO_CM_CHAN_RECEIVE:
+ Receives a data message through a connected channel.
If the channel does not have an incoming message ready to return this ioctl
handler will wait for new message until timeout specified by a caller
expires. If timeout value is set to 0, ioctl handler uses a default value
defined by MAX_SCHEDULE_TIMEOUT.
-- RIO_CM_CHAN_CLOSE : Closes a specified channel and frees associated buffers.
+- RIO_CM_CHAN_CLOSE:
+ Closes a specified channel and frees associated buffers.
If the specified channel is in the CONNECTED state, sends close notification
to the remote peer.
The ioctl command codes and corresponding data structures intended for use by
user-space applications are defined in 'include/uapi/linux/rio_cm_cdev.h'.
-II. Hardware Compatibility
+2. Hardware Compatibility
+=========================
This device driver uses standard interfaces defined by kernel RapidIO subsystem
and therefore it can be used with any mport device driver registered by RapidIO
subsystem with limitations set by available mport HW implementation of messaging
mailboxes.
-III. Module parameters
+3. Module parameters
+====================
-- 'dbg_level' - This parameter allows to control amount of debug information
+- 'dbg_level'
+ - This parameter allows to control amount of debug information
generated by this device driver. This parameter is formed by set of
bit masks that correspond to the specific functional block.
For mask definitions see 'drivers/rapidio/devices/rio_cm.c'
This parameter can be changed dynamically.
Use CONFIG_RAPIDIO_DEBUG=y to enable debug output at the top level.
-- 'cmbox' - Number of RapidIO mailbox to use (default value is 1).
+- 'cmbox'
+ - Number of RapidIO mailbox to use (default value is 1).
This parameter allows to set messaging mailbox number that will be used
within entire RapidIO network. It can be used when default mailbox is
used by other device drivers or is not supported by some nodes in the
RapidIO network.
-- 'chstart' - Start channel number for dynamic assignment. Default value - 256.
+- 'chstart'
+ - Start channel number for dynamic assignment. Default value - 256.
Allows to exclude channel numbers below this parameter from dynamic
allocation to avoid conflicts with software components that use
reserved predefined channel numbers.
-IV. Known problems
+4. Known problems
+=================
None.
-V. User-space Applications and API Library
+5. User-space Applications and API Library
+==========================================
Messaging API library and applications that use this device driver are available
from RapidIO.org.
-VI. TODO List
+6. TODO List
+============
- Add support for system notification messages (reserved channel 0).
diff --git a/Documentation/rapidio/sysfs.txt b/Documentation/rapidio/sysfs.rst
similarity index 75%
rename from Documentation/rapidio/sysfs.txt
rename to Documentation/rapidio/sysfs.rst
index a1adac888e6e..540f72683496 100644
--- a/Documentation/rapidio/sysfs.txt
+++ b/Documentation/rapidio/sysfs.rst
@@ -1,3 +1,7 @@
+=============
+Sysfs entries
+=============
+
The RapidIO sysfs files have moved to:
Documentation/ABI/testing/sysfs-bus-rapidio and
Documentation/ABI/testing/sysfs-class-rapidio
diff --git a/Documentation/rapidio/tsi721.txt b/Documentation/rapidio/tsi721.rst
similarity index 79%
rename from Documentation/rapidio/tsi721.txt
rename to Documentation/rapidio/tsi721.rst
index cd2a2935d51d..42aea438cd20 100644
--- a/Documentation/rapidio/tsi721.txt
+++ b/Documentation/rapidio/tsi721.rst
@@ -1,7 +1,9 @@
+=========================================================================
RapidIO subsystem mport driver for IDT Tsi721 PCI Express-to-SRIO bridge.
=========================================================================
-I. Overview
+1. Overview
+===========
This driver implements all currently defined RapidIO mport callback functions.
It supports maintenance read and write operations, inbound and outbound RapidIO
@@ -17,7 +19,9 @@ into the corresponding message queue. Messaging callbacks are implemented to be
fully compatible with RIONET driver (Ethernet over RapidIO messaging services).
1. Module parameters:
-- 'dbg_level' - This parameter allows to control amount of debug information
+
+- 'dbg_level'
+ - This parameter allows to control amount of debug information
generated by this device driver. This parameter is formed by set of
This parameter can be changed bit masks that correspond to the specific
functional block.
@@ -25,37 +29,44 @@ fully compatible with RIONET driver (Ethernet over RapidIO messaging services).
This parameter can be changed dynamically.
Use CONFIG_RAPIDIO_DEBUG=y to enable debug output at the top level.
-- 'dma_desc_per_channel' - This parameter defines number of hardware buffer
+- 'dma_desc_per_channel'
+ - This parameter defines number of hardware buffer
descriptors allocated for each registered Tsi721 DMA channel.
Its default value is 128.
-- 'dma_txqueue_sz' - DMA transactions queue size. Defines number of pending
+- 'dma_txqueue_sz'
+ - DMA transactions queue size. Defines number of pending
transaction requests that can be accepted by each DMA channel.
Default value is 16.
-- 'dma_sel' - DMA channel selection mask. Bitmask that defines which hardware
+- 'dma_sel'
+ - DMA channel selection mask. Bitmask that defines which hardware
DMA channels (0 ... 6) will be registered with DmaEngine core.
If bit is set to 1, the corresponding DMA channel will be registered.
DMA channels not selected by this mask will not be used by this device
driver. Default value is 0x7f (use all channels).
-- 'pcie_mrrs' - override value for PCIe Maximum Read Request Size (MRRS).
+- 'pcie_mrrs'
+ - override value for PCIe Maximum Read Request Size (MRRS).
This parameter gives an ability to override MRRS value set during PCIe
configuration process. Tsi721 supports read request sizes up to 4096B.
Value for this parameter must be set as defined by PCIe specification:
0 = 128B, 1 = 256B, 2 = 512B, 3 = 1024B, 4 = 2048B and 5 = 4096B.
Default value is '-1' (= keep platform setting).
-- 'mbox_sel' - RIO messaging MBOX selection mask. This is a bitmask that defines
+- 'mbox_sel'
+ - RIO messaging MBOX selection mask. This is a bitmask that defines
messaging MBOXes are managed by this device driver. Mask bits 0 - 3
correspond to MBOX0 - MBOX3. MBOX is under driver's control if the
corresponding bit is set to '1'. Default value is 0x0f (= all).
-II. Known problems
+2. Known problems
+=================
None.
-III. DMA Engine Support
+3. DMA Engine Support
+=====================
Tsi721 mport driver supports DMA data transfers between local system memory and
remote RapidIO devices. This functionality is implemented according to SLAVE
@@ -68,17 +79,21 @@ One BDMA channel is reserved for generation of maintenance read/write requests.
If Tsi721 mport driver have been built with RAPIDIO_DMA_ENGINE support included,
this driver will accept DMA-specific module parameter:
- "dma_desc_per_channel" - defines number of hardware buffer descriptors used by
+
+ "dma_desc_per_channel"
+ - defines number of hardware buffer descriptors used by
each BDMA channel of Tsi721 (by default - 128).
-IV. Version History
+4. Version History
- 1.1.0 - DMA operations re-worked to support data scatter/gather lists larger
+ ===== ====================================================================
+ 1.1.0 DMA operations re-worked to support data scatter/gather lists larger
than hardware buffer descriptors ring.
- 1.0.0 - Initial driver release.
+ 1.0.0 Initial driver release.
+ ===== ====================================================================
-V. License
------------------------------------------------
+5. License
+===========
Copyright(c) 2011 Integrated Device Technology, Inc. All rights reserved.
diff --git a/drivers/rapidio/Kconfig b/drivers/rapidio/Kconfig
index e3d8fe41b50c..2f82bb50f8db 100644
--- a/drivers/rapidio/Kconfig
+++ b/drivers/rapidio/Kconfig
@@ -85,7 +85,7 @@ config RAPIDIO_CHMAN
This option includes RapidIO channelized messaging driver which
provides socket-like interface to allow sharing of single RapidIO
messaging mailbox between multiple user-space applications.
- See "Documentation/rapidio/rio_cm.txt" for driver description.
+ See "Documentation/rapidio/rio_cm.rst" for driver description.
config RAPIDIO_MPORT_CDEV
tristate "RapidIO /dev mport device driver"
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 76/79] docs: blockdev: convert to ReST
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (65 preceding siblings ...)
2019-04-22 13:28 ` [PATCH v2 75/79] docs: rapidio: " Mauro Carvalho Chehab
@ 2019-04-22 13:28 ` Mauro Carvalho Chehab
2019-04-22 13:28 ` [PATCH v2 77/79] docs: perf: " Mauro Carvalho Chehab
` (6 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:28 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Philipp Reisner, Lars Ellenberg, Josef Bacik,
Tim Waugh, Jens Axboe, Minchan Kim, Nitin Gupta,
Sergey Senozhatsky, Jiri Kosina, Shuah Khan, drbd-dev,
linux-block, nbd, linux-kselftest
Rename the blockdev documentation files to ReST, add an
index for them and adjust in order to produce a nice html
output via the Sphinx build system.
The drbd sub-directory contains some graphs and data flows.
Add those too to the documentation.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
.../admin-guide/kernel-parameters.txt | 18 +-
...structure-v9.txt => data-structure-v9.rst} | 6 +-
Documentation/blockdev/drbd/figures.rst | 28 +++
.../blockdev/drbd/{README.txt => index.rst} | 15 +-
.../blockdev/{floppy.txt => floppy.rst} | 88 ++++----
Documentation/blockdev/index.rst | 16 ++
Documentation/blockdev/{nbd.txt => nbd.rst} | 1 +
.../blockdev/{paride.txt => paride.rst} | 144 +++++++------
.../blockdev/{ramdisk.txt => ramdisk.rst} | 55 ++---
Documentation/blockdev/{zram.txt => zram.rst} | 195 ++++++++++++------
MAINTAINERS | 8 +-
drivers/block/Kconfig | 8 +-
drivers/block/floppy.c | 2 +-
drivers/block/zram/Kconfig | 6 +-
tools/testing/selftests/zram/README | 2 +-
15 files changed, 374 insertions(+), 218 deletions(-)
rename Documentation/blockdev/drbd/{data-structure-v9.txt => data-structure-v9.rst} (94%)
create mode 100644 Documentation/blockdev/drbd/figures.rst
rename Documentation/blockdev/drbd/{README.txt => index.rst} (55%)
rename Documentation/blockdev/{floppy.txt => floppy.rst} (81%)
create mode 100644 Documentation/blockdev/index.rst
rename Documentation/blockdev/{nbd.txt => nbd.rst} (96%)
rename Documentation/blockdev/{paride.txt => paride.rst} (85%)
rename Documentation/blockdev/{ramdisk.txt => ramdisk.rst} (84%)
rename Documentation/blockdev/{zram.txt => zram.rst} (76%)
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index 65d66010b134..a6297aff5598 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -1248,7 +1248,7 @@
See also Documentation/fault-injection/.
floppy= [HW]
- See Documentation/blockdev/floppy.txt.
+ See Documentation/blockdev/floppy.rst.
force_pal_cache_flush
[IA-64] Avoid check_sal_cache_flush which may hang on
@@ -2227,7 +2227,7 @@
memblock=debug [KNL] Enable memblock debug messages.
load_ramdisk= [RAM] List of ramdisks to load from floppy
- See Documentation/blockdev/ramdisk.txt.
+ See Documentation/blockdev/ramdisk.rst.
lockd.nlm_grace_period=P [NFS] Assign grace period.
Format: <integer>
@@ -3197,7 +3197,7 @@
pcd. [PARIDE]
See header of drivers/block/paride/pcd.c.
- See also Documentation/blockdev/paride.txt.
+ See also Documentation/blockdev/paride.rst.
pci=option[,option...] [PCI] various PCI subsystem options.
@@ -3439,7 +3439,7 @@
needed on a platform with proper driver support.
pd. [PARIDE]
- See Documentation/blockdev/paride.txt.
+ See Documentation/blockdev/paride.rst.
pdcchassis= [PARISC,HW] Disable/Enable PDC Chassis Status codes at
boot time.
@@ -3454,10 +3454,10 @@
and performance comparison.
pf. [PARIDE]
- See Documentation/blockdev/paride.txt.
+ See Documentation/blockdev/paride.rst.
pg. [PARIDE]
- See Documentation/blockdev/paride.txt.
+ See Documentation/blockdev/paride.rst.
pirq= [SMP,APIC] Manual mp-table setup
See Documentation/x86/i386/IO-APIC.txt.
@@ -3569,7 +3569,7 @@
prompt_ramdisk= [RAM] List of RAM disks to prompt for floppy disk
before loading.
- See Documentation/blockdev/ramdisk.txt.
+ See Documentation/blockdev/ramdisk.rst.
psi= [KNL] Enable or disable pressure stall information
tracking.
@@ -3591,7 +3591,7 @@
pstore.backend= Specify the name of the pstore backend to use
pt. [PARIDE]
- See Documentation/blockdev/paride.txt.
+ See Documentation/blockdev/paride.rst.
pti= [X86_64] Control Page Table Isolation of user and
kernel address spaces. Disabling this feature
@@ -3620,7 +3620,7 @@
See Documentation/admin-guide/md.rst.
ramdisk_size= [RAM] Sizes of RAM disks in kilobytes
- See Documentation/blockdev/ramdisk.txt.
+ See Documentation/blockdev/ramdisk.rst.
random.trust_cpu={on,off}
[KNL] Enable or disable trusting the use of the
diff --git a/Documentation/blockdev/drbd/data-structure-v9.txt b/Documentation/blockdev/drbd/data-structure-v9.rst
similarity index 94%
rename from Documentation/blockdev/drbd/data-structure-v9.txt
rename to Documentation/blockdev/drbd/data-structure-v9.rst
index 1e52a0e32624..66036b901644 100644
--- a/Documentation/blockdev/drbd/data-structure-v9.txt
+++ b/Documentation/blockdev/drbd/data-structure-v9.rst
@@ -1,3 +1,7 @@
+================================
+kernel data structure for DRBD-9
+================================
+
This describes the in kernel data structure for DRBD-9. Starting with
Linux v3.14 we are reorganizing DRBD to use this data structure.
@@ -10,7 +14,7 @@ device is represented by a block device locally.
The DRBD objects are interconnected to form a matrix as depicted below; a
drbd_peer_device object sits at each intersection between a drbd_device and a
-drbd_connection:
+drbd_connection::
/--------------+---------------+.....+---------------\
| resource | device | | device |
diff --git a/Documentation/blockdev/drbd/figures.rst b/Documentation/blockdev/drbd/figures.rst
new file mode 100644
index 000000000000..3e3fd4b8a478
--- /dev/null
+++ b/Documentation/blockdev/drbd/figures.rst
@@ -0,0 +1,28 @@
+.. The here included files are intended to help understand the implementation
+
+Data flows that Relate some functions, and write packets
+========================================================
+
+.. kernel-figure:: DRBD-8.3-data-packets.svg
+ :alt: DRBD-8.3-data-packets.svg
+ :align: center
+
+.. kernel-figure:: DRBD-data-packets.svg
+ :alt: DRBD-data-packets.svg
+ :align: center
+
+
+Sub graphs of DRBD's state transitions
+======================================
+
+.. kernel-figure:: conn-states-8.dot
+ :alt: conn-states-8.dot
+ :align: center
+
+.. kernel-figure:: disk-states-8.dot
+ :alt: disk-states-8.dot
+ :align: center
+
+.. kernel-figure:: node-states-8.dot
+ :alt: node-states-8.dot
+ :align: center
diff --git a/Documentation/blockdev/drbd/README.txt b/Documentation/blockdev/drbd/index.rst
similarity index 55%
rename from Documentation/blockdev/drbd/README.txt
rename to Documentation/blockdev/drbd/index.rst
index 627b0a1bf35e..68ecd5c113e9 100644
--- a/Documentation/blockdev/drbd/README.txt
+++ b/Documentation/blockdev/drbd/index.rst
@@ -1,4 +1,9 @@
+==========================================
+Distributed Replicated Block Device - DRBD
+==========================================
+
Description
+===========
DRBD is a shared-nothing, synchronously replicated block device. It
is designed to serve as a building block for high availability
@@ -7,10 +12,8 @@ Description
Please visit http://www.drbd.org to find out more.
-The here included files are intended to help understand the implementation
+.. toctree::
+ :maxdepth: 1
-DRBD-8.3-data-packets.svg, DRBD-data-packets.svg
- relates some functions, and write packets.
-
-conn-states-8.dot, disk-states-8.dot, node-states-8.dot
- The sub graphs of DRBD's state transitions
+ data-structure-v9
+ figures
diff --git a/Documentation/blockdev/floppy.txt b/Documentation/blockdev/floppy.rst
similarity index 81%
rename from Documentation/blockdev/floppy.txt
rename to Documentation/blockdev/floppy.rst
index e2240f5ab64d..4a8f31cf4139 100644
--- a/Documentation/blockdev/floppy.txt
+++ b/Documentation/blockdev/floppy.rst
@@ -1,35 +1,37 @@
-This file describes the floppy driver.
+=============
+Floppy Driver
+=============
FAQ list:
=========
- A FAQ list may be found in the fdutils package (see below), and also
+A FAQ list may be found in the fdutils package (see below), and also
at <http://fdutils.linux.lu/faq.html>.
LILO configuration options (Thinkpad users, read this)
======================================================
- The floppy driver is configured using the 'floppy=' option in
+The floppy driver is configured using the 'floppy=' option in
lilo. This option can be typed at the boot prompt, or entered in the
lilo configuration file.
- Example: If your kernel is called linux-2.6.9, type the following line
-at the lilo boot prompt (if you have a thinkpad):
+Example: If your kernel is called linux-2.6.9, type the following line
+at the lilo boot prompt (if you have a thinkpad)::
linux-2.6.9 floppy=thinkpad
You may also enter the following line in /etc/lilo.conf, in the description
-of linux-2.6.9:
+of linux-2.6.9::
append = "floppy=thinkpad"
- Several floppy related options may be given, example:
+Several floppy related options may be given, example::
linux-2.6.9 floppy=daring floppy=two_fdc
append = "floppy=daring floppy=two_fdc"
- If you give options both in the lilo config file and on the boot
+If you give options both in the lilo config file and on the boot
prompt, the option strings of both places are concatenated, the boot
prompt options coming last. That's why there are also options to
restore the default behavior.
@@ -38,21 +40,23 @@ restore the default behavior.
Module configuration options
============================
- If you use the floppy driver as a module, use the following syntax:
-modprobe floppy floppy="<options>"
+If you use the floppy driver as a module, use the following syntax::
-Example:
- modprobe floppy floppy="omnibook messages"
+ modprobe floppy floppy="<options>"
- If you need certain options enabled every time you load the floppy driver,
-you can put:
+Example::
- options floppy floppy="omnibook messages"
+ modprobe floppy floppy="omnibook messages"
+
+If you need certain options enabled every time you load the floppy driver,
+you can put::
+
+ options floppy floppy="omnibook messages"
in a configuration file in /etc/modprobe.d/.
- The floppy driver related options are:
+The floppy driver related options are:
floppy=asus_pci
Sets the bit mask to allow only units 0 and 1. (default)
@@ -70,8 +74,7 @@ in a configuration file in /etc/modprobe.d/.
Tells the floppy driver that you have only one floppy controller.
(default)
- floppy=two_fdc
- floppy=<address>,two_fdc
+ floppy=two_fdc / floppy=<address>,two_fdc
Tells the floppy driver that you have two floppy controllers.
The second floppy controller is assumed to be at <address>.
This option is not needed if the second controller is at address
@@ -84,8 +87,7 @@ in a configuration file in /etc/modprobe.d/.
floppy=0,thinkpad
Tells the floppy driver that you don't have a Thinkpad.
- floppy=omnibook
- floppy=nodma
+ floppy=omnibook / floppy=nodma
Tells the floppy driver not to use Dma for data transfers.
This is needed on HP Omnibooks, which don't have a workable
DMA channel for the floppy driver. This option is also useful
@@ -144,14 +146,16 @@ in a configuration file in /etc/modprobe.d/.
described in the physical CMOS), or if your BIOS uses
non-standard CMOS types. The CMOS types are:
- 0 - Use the value of the physical CMOS
- 1 - 5 1/4 DD
- 2 - 5 1/4 HD
- 3 - 3 1/2 DD
- 4 - 3 1/2 HD
- 5 - 3 1/2 ED
- 6 - 3 1/2 ED
- 16 - unknown or not installed
+ == ==================================
+ 0 Use the value of the physical CMOS
+ 1 5 1/4 DD
+ 2 5 1/4 HD
+ 3 3 1/2 DD
+ 4 3 1/2 HD
+ 5 3 1/2 ED
+ 6 3 1/2 ED
+ 16 unknown or not installed
+ == ==================================
(Note: there are two valid types for ED drives. This is because 5 was
initially chosen to represent floppy *tapes*, and 6 for ED drives.
@@ -162,8 +166,7 @@ in a configuration file in /etc/modprobe.d/.
Print a warning message when an unexpected interrupt is received.
(default)
- floppy=no_unexpected_interrupts
- floppy=L40SX
+ floppy=no_unexpected_interrupts / floppy=L40SX
Don't print a message when an unexpected interrupt is received. This
is needed on IBM L40SX laptops in certain video modes. (There seems
to be an interaction between video and floppy. The unexpected
@@ -199,47 +202,54 @@ in a configuration file in /etc/modprobe.d/.
Sets the floppy DMA channel to <nr> instead of 2.
floppy=slow
- Use PS/2 stepping rate:
- " PS/2 floppies have much slower step rates than regular floppies.
+ Use PS/2 stepping rate::
+
+ PS/2 floppies have much slower step rates than regular floppies.
It's been recommended that take about 1/4 of the default speed
- in some more extreme cases."
+ in some more extreme cases.
Supporting utilities and additional documentation:
==================================================
- Additional parameters of the floppy driver can be configured at
+Additional parameters of the floppy driver can be configured at
runtime. Utilities which do this can be found in the fdutils package.
This package also contains a new version of mtools which allows to
access high capacity disks (up to 1992K on a high density 3 1/2 disk!).
It also contains additional documentation about the floppy driver.
The latest version can be found at fdutils homepage:
+
http://fdutils.linux.lu
The fdutils releases can be found at:
+
http://fdutils.linux.lu/download.html
+
http://www.tux.org/pub/knaff/fdutils/
+
ftp://metalab.unc.edu/pub/Linux/utils/disk-management/
Reporting problems about the floppy driver
==========================================
- If you have a question or a bug report about the floppy driver, mail
+If you have a question or a bug report about the floppy driver, mail
me at Alain.Knaff@poboxes.com . If you post to Usenet, preferably use
comp.os.linux.hardware. As the volume in these groups is rather high,
be sure to include the word "floppy" (or "FLOPPY") in the subject
line. If the reported problem happens when mounting floppy disks, be
sure to mention also the type of the filesystem in the subject line.
- Be sure to read the FAQ before mailing/posting any bug reports!
+Be sure to read the FAQ before mailing/posting any bug reports!
- Alain
+Alain
Changelog
=========
-10-30-2004 : Cleanup, updating, add reference to module configuration.
+10-30-2004 :
+ Cleanup, updating, add reference to module configuration.
James Nelson <james4765@gmail.com>
-6-3-2000 : Original Document
+6-3-2000 :
+ Original Document
diff --git a/Documentation/blockdev/index.rst b/Documentation/blockdev/index.rst
new file mode 100644
index 000000000000..a9af6ed8b4aa
--- /dev/null
+++ b/Documentation/blockdev/index.rst
@@ -0,0 +1,16 @@
+:orphan:
+
+===========================
+The Linux RapidIO Subsystem
+===========================
+
+.. toctree::
+ :maxdepth: 1
+
+ floppy
+ nbd
+ paride
+ ramdisk
+ zram
+
+ drbd/index
diff --git a/Documentation/blockdev/nbd.txt b/Documentation/blockdev/nbd.rst
similarity index 96%
rename from Documentation/blockdev/nbd.txt
rename to Documentation/blockdev/nbd.rst
index db242ea2bce8..db0c96e46661 100644
--- a/Documentation/blockdev/nbd.txt
+++ b/Documentation/blockdev/nbd.rst
@@ -1,3 +1,4 @@
+==================================
Network Block Device (TCP version)
==================================
diff --git a/Documentation/blockdev/paride.txt b/Documentation/blockdev/paride.rst
similarity index 85%
rename from Documentation/blockdev/paride.txt
rename to Documentation/blockdev/paride.rst
index ee6717e3771d..b7fdd77513ab 100644
--- a/Documentation/blockdev/paride.txt
+++ b/Documentation/blockdev/paride.rst
@@ -1,9 +1,11 @@
-
- Linux and parallel port IDE devices
+===================================
+Linux and parallel port IDE devices
+===================================
PARIDE v1.03 (c) 1997-8 Grant Guenther <grant@torque.net>
1. Introduction
+===============
Owing to the simplicity and near universality of the parallel port interface
to personal computers, many external devices such as portable hard-disk,
@@ -35,17 +37,17 @@ devices. It does not cover parallel port SCSI devices, "ditto" tape
drives or scanners. Many different devices are supported by the
parallel port IDE subsystem, including:
- MicroSolutions backpack CD-ROM
- MicroSolutions backpack PD/CD
- MicroSolutions backpack hard-drives
- MicroSolutions backpack 8000t tape drive
- SyQuest EZ-135, EZ-230 & SparQ drives
- Avatar Shark
- Imation Superdisk LS-120
- Maxell Superdisk LS-120
- FreeCom Power CD
- Hewlett-Packard 5GB and 8GB tape drives
- Hewlett-Packard 7100 and 7200 CD-RW drives
+ - MicroSolutions backpack CD-ROM
+ - MicroSolutions backpack PD/CD
+ - MicroSolutions backpack hard-drives
+ - MicroSolutions backpack 8000t tape drive
+ - SyQuest EZ-135, EZ-230 & SparQ drives
+ - Avatar Shark
+ - Imation Superdisk LS-120
+ - Maxell Superdisk LS-120
+ - FreeCom Power CD
+ - Hewlett-Packard 5GB and 8GB tape drives
+ - Hewlett-Packard 7100 and 7200 CD-RW drives
as well as most of the clone and no-name products on the market.
@@ -55,11 +57,13 @@ paride module which provides a registry and some common methods for
accessing the parallel ports. The second component is a set of
high-level drivers for each of the different types of supported devices:
+ === =============
pd IDE disk
pcd ATAPI CD-ROM
pf ATAPI disk
pt ATAPI tape
pg ATAPI generic
+ === =============
(Currently, the pg driver is only used with CD-R drives).
@@ -69,6 +73,7 @@ for each of the parallel port IDE adapter chips. Thanks to the interest
and encouragement of Linux users from many parts of the world,
support is available for almost all known adapter protocols:
+ ==== ====================================== ====
aten ATEN EH-100 (HK)
bpck Microsolutions backpack (US)
comm DataStor (old-type) "commuter" adapter (TW)
@@ -83,9 +88,11 @@ support is available for almost all known adapter protocols:
ktti KT Technology PHd adapter (SG)
on20 OnSpec 90c20 (US)
on26 OnSpec 90c26 (US)
+ ==== ====================================== ====
2. Using the PARIDE subsystem
+=============================
While configuring the Linux kernel, you may choose either to build
the PARIDE drivers into your kernel, or to build them as modules.
@@ -105,8 +112,9 @@ subsystem to try them all for you.
For the "brand-name" products listed above, here are the protocol
and high-level drivers that you would use:
+ ================ ============ ====== ========
Manufacturer Model Driver Protocol
-
+ ================ ============ ====== ========
MicroSolutions CD-ROM pcd bpck
MicroSolutions PD drive pf bpck
MicroSolutions hard-drive pd bpck
@@ -119,8 +127,10 @@ and high-level drivers that you would use:
Hewlett-Packard 5GB Tape pt epat
Hewlett-Packard 7200e (CD) pcd epat
Hewlett-Packard 7200e (CD-R) pg epat
+ ================ ============ ====== ========
2.1 Configuring built-in drivers
+---------------------------------
We recommend that you get to know how the drivers work and how to
configure them as loadable modules, before attempting to compile a
@@ -143,7 +153,7 @@ protocol identification number and, for some devices, the drive's
chain ID. While your system is booting, a number of messages are
displayed on the console. Like all such messages, they can be
reviewed with the 'dmesg' command. Among those messages will be
-some lines like:
+some lines like::
paride: bpck registered as protocol 0
paride: epat registered as protocol 1
@@ -161,7 +171,7 @@ As an example, let's assume that you have a MicroSolutions PD/CD drive
with unit ID number 36 connected to the parallel port at 0x378, a SyQuest
EZ-135 connected to the chained port on the PD/CD drive and also an
Imation Superdisk connected to port 0x278. You could give the following
-options on your boot command:
+options on your boot command::
pd.drive0=0x378,1 pf.drive0=0x278,1 pf.drive1=0x378,0,36
@@ -175,18 +185,21 @@ PARPORT parallel port sharing system that is included by the
if you want to use chains of devices on the same parallel port.
2.2 Loading and configuring PARIDE as modules
+----------------------------------------------
It is much faster and simpler to get to understand the PARIDE drivers
if you use them as loadable kernel modules.
-Note 1: using these drivers with the "kerneld" automatic module loading
-system is not recommended for beginners, and is not documented here.
+Note 1:
+ using these drivers with the "kerneld" automatic module loading
+ system is not recommended for beginners, and is not documented here.
-Note 2: if you build PARPORT support as a loadable module, PARIDE must
-also be built as loadable modules, and PARPORT must be loaded before the
-PARIDE modules.
+Note 2:
+ if you build PARPORT support as a loadable module, PARIDE must
+ also be built as loadable modules, and PARPORT must be loaded before
+ the PARIDE modules.
-To use PARIDE, you must begin by
+To use PARIDE, you must begin by::
insmod paride
@@ -196,7 +209,7 @@ among other tasks.
Then, load as many of the protocol modules as you think you might need.
As you load each module, it will register the protocols that it supports,
and print a log message to your kernel log file and your console. For
-example:
+example::
# insmod epat
paride: epat registered as protocol 0
@@ -211,7 +224,7 @@ individual co-ordinates when you load the driver.
For example, if you had two no-name CD-ROM drives both using the
KingByte KBIC-951A adapter, one on port 0x378 and the other on 0x3bc
-you could give the following command:
+you could give the following command::
# insmod pcd drive0=0x378,1 drive1=0x3bc,1
@@ -220,7 +233,7 @@ but check the source files in linux/drivers/block/paride for more
information. (Hopefully someone will write some man pages one day !).
As another example, here's what happens when PARPORT is installed, and
-a SyQuest EZ-135 is attached to port 0x378:
+a SyQuest EZ-135 is attached to port 0x378::
# insmod paride
paride: version 1.0 installed
@@ -237,46 +250,47 @@ Note that the last line is the output from the generic partition table
scanner - in this case it reports that it has found a disk with one partition.
2.3 Using a PARIDE device
+--------------------------
Once the drivers have been loaded, you can access PARIDE devices in the
same way as their traditional counterparts. You will probably need to
create the device "special files". Here is a simple script that you can
-cut to a file and execute:
+cut to a file and execute::
-#!/bin/bash
-#
-# mkd -- a script to create the device special files for the PARIDE subsystem
-#
-function mkdev {
- mknod $1 $2 $3 $4 ; chmod 0660 $1 ; chown root:disk $1
-}
-#
-function pd {
- D=$( printf \\$( printf "x%03x" $[ $1 + 97 ] ) )
- mkdev pd$D b 45 $[ $1 * 16 ]
- for P in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
- do mkdev pd$D$P b 45 $[ $1 * 16 + $P ]
- done
-}
-#
-cd /dev
-#
-for u in 0 1 2 3 ; do pd $u ; done
-for u in 0 1 2 3 ; do mkdev pcd$u b 46 $u ; done
-for u in 0 1 2 3 ; do mkdev pf$u b 47 $u ; done
-for u in 0 1 2 3 ; do mkdev pt$u c 96 $u ; done
-for u in 0 1 2 3 ; do mkdev npt$u c 96 $[ $u + 128 ] ; done
-for u in 0 1 2 3 ; do mkdev pg$u c 97 $u ; done
-#
-# end of mkd
+ #!/bin/bash
+ #
+ # mkd -- a script to create the device special files for the PARIDE subsystem
+ #
+ function mkdev {
+ mknod $1 $2 $3 $4 ; chmod 0660 $1 ; chown root:disk $1
+ }
+ #
+ function pd {
+ D=$( printf \\$( printf "x%03x" $[ $1 + 97 ] ) )
+ mkdev pd$D b 45 $[ $1 * 16 ]
+ for P in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+ do mkdev pd$D$P b 45 $[ $1 * 16 + $P ]
+ done
+ }
+ #
+ cd /dev
+ #
+ for u in 0 1 2 3 ; do pd $u ; done
+ for u in 0 1 2 3 ; do mkdev pcd$u b 46 $u ; done
+ for u in 0 1 2 3 ; do mkdev pf$u b 47 $u ; done
+ for u in 0 1 2 3 ; do mkdev pt$u c 96 $u ; done
+ for u in 0 1 2 3 ; do mkdev npt$u c 96 $[ $u + 128 ] ; done
+ for u in 0 1 2 3 ; do mkdev pg$u c 97 $u ; done
+ #
+ # end of mkd
With the device files and drivers in place, you can access PARIDE devices
-like any other Linux device. For example, to mount a CD-ROM in pcd0, use:
+like any other Linux device. For example, to mount a CD-ROM in pcd0, use::
mount /dev/pcd0 /cdrom
If you have a fresh Avatar Shark cartridge, and the drive is pda, you
-might do something like:
+might do something like::
fdisk /dev/pda -- make a new partition table with
partition 1 of type 83
@@ -289,13 +303,14 @@ might do something like:
Devices like the Imation superdisk work in the same way, except that
they do not have a partition table. For example to make a 120MB
-floppy that you could share with a DOS system:
+floppy that you could share with a DOS system::
mkdosfs /dev/pf0
mount /dev/pf0 /mnt
2.4 The pf driver
+------------------
The pf driver is intended for use with parallel port ATAPI disk
devices. The most common devices in this category are PD drives
@@ -304,6 +319,7 @@ partitioned. Consequently, the pf driver does not support partitioned
media. This may be changed in a future version of the driver.
2.5 Using the pt driver
+------------------------
The pt driver for parallel port ATAPI tape drives is a minimal driver.
It does not yet support many of the standard tape ioctl operations.
@@ -311,6 +327,7 @@ For best performance, a block size of 32KB should be used. You will
probably want to set the parallel port delay to 0, if you can.
2.6 Using the pg driver
+------------------------
The pg driver can be used in conjunction with the cdrecord program
to create CD-ROMs. Please get cdrecord version 1.6.1 or later
@@ -322,8 +339,10 @@ in EPP mode, try to use "bidirectional" or "PS/2" mode and 1x speeds only.
3. Troubleshooting
+==================
3.1 Use EPP mode if you can
+----------------------------
The most common problems that people report with the PARIDE drivers
concern the parallel port CMOS settings. At this time, none of the
@@ -332,6 +351,7 @@ If you are able to do so, please set your parallel port into EPP mode
using your CMOS setup procedure.
3.2 Check the port delay
+-------------------------
Some parallel ports cannot reliably transfer data at full speed. To
offset the errors, the PARIDE protocol modules introduce a "port
@@ -347,6 +367,7 @@ read the comments at the beginning of the driver source files in
linux/drivers/block/paride.
3.3 Some drives need a printer reset
+-------------------------------------
There appear to be a number of "noname" external drives on the market
that do not always power up correctly. We have noticed this with some
@@ -354,7 +375,7 @@ drives based on OnSpec and older Freecom adapters. In these rare cases,
the adapter can often be reinitialised by issuing a "printer reset" on
the parallel port. As the reset operation is potentially disruptive in
multiple device environments, the PARIDE drivers will not do it
-automatically. You can however, force a printer reset by doing:
+automatically. You can however, force a printer reset by doing::
insmod lp reset=1
rmmod lp
@@ -364,6 +385,7 @@ your paride drivers as modules, and arrange to do the printer reset
before loading the PARIDE drivers.
3.4 Use the verbose option and dmesg if you need help
+------------------------------------------------------
While a lot of testing has gone into these drivers to make them work
as smoothly as possible, problems will arise. If you do have problems,
@@ -373,7 +395,7 @@ clues, then please make sure that only one drive is hooked to your system,
and that either (a) PARPORT is enabled or (b) no other device driver
is using your parallel port (check in /proc/ioports). Then, load the
appropriate drivers (you can load several protocol modules if you want)
-as in:
+as in::
# insmod paride
# insmod epat
@@ -394,12 +416,14 @@ by e-mail to grant@torque.net, or join the linux-parport mailing list
and post your report there.
3.5 For more information or help
+---------------------------------
You can join the linux-parport mailing list by sending a mail message
-to
+to:
+
linux-parport-request@torque.net
-with the single word
+with the single word::
subscribe
@@ -412,6 +436,6 @@ have in your mail headers, when sending mail to the list server.
You might also find some useful information on the linux-parport
web pages (although they are not always up to date) at
- http://web.archive.org/web/*/http://www.torque.net/parport/
+ http://web.archive.org/web/%2E/http://www.torque.net/parport/
diff --git a/Documentation/blockdev/ramdisk.txt b/Documentation/blockdev/ramdisk.rst
similarity index 84%
rename from Documentation/blockdev/ramdisk.txt
rename to Documentation/blockdev/ramdisk.rst
index 501e12e0323e..b7c2268f8dec 100644
--- a/Documentation/blockdev/ramdisk.txt
+++ b/Documentation/blockdev/ramdisk.rst
@@ -1,7 +1,8 @@
+==========================================
Using the RAM disk block device with Linux
-------------------------------------------
+==========================================
-Contents:
+.. Contents:
1) Overview
2) Kernel Command Line Parameters
@@ -42,7 +43,7 @@ rescue floppy disk.
2a) Kernel Command Line Parameters
ramdisk_size=N
- ==============
+ Size of the ramdisk.
This parameter tells the RAM disk driver to set up RAM disks of N k size. The
default is 4096 (4 MB).
@@ -50,16 +51,13 @@ default is 4096 (4 MB).
2b) Module parameters
rd_nr
- =====
- /dev/ramX devices created.
+ /dev/ramX devices created.
max_part
- ========
- Maximum partition number.
+ Maximum partition number.
rd_size
- =======
- See ramdisk_size.
+ See ramdisk_size.
3) Using "rdev -r"
------------------
@@ -71,11 +69,11 @@ to 2 MB (2^11) of where to find the RAM disk (this used to be the size). Bit
prompt/wait sequence is to be given before trying to read the RAM disk. Since
the RAM disk dynamically grows as data is being written into it, a size field
is not required. Bits 11 to 13 are not currently used and may as well be zero.
-These numbers are no magical secrets, as seen below:
+These numbers are no magical secrets, as seen below::
-./arch/x86/kernel/setup.c:#define RAMDISK_IMAGE_START_MASK 0x07FF
-./arch/x86/kernel/setup.c:#define RAMDISK_PROMPT_FLAG 0x8000
-./arch/x86/kernel/setup.c:#define RAMDISK_LOAD_FLAG 0x4000
+ ./arch/x86/kernel/setup.c:#define RAMDISK_IMAGE_START_MASK 0x07FF
+ ./arch/x86/kernel/setup.c:#define RAMDISK_PROMPT_FLAG 0x8000
+ ./arch/x86/kernel/setup.c:#define RAMDISK_LOAD_FLAG 0x4000
Consider a typical two floppy disk setup, where you will have the
kernel on disk one, and have already put a RAM disk image onto disk #2.
@@ -92,20 +90,23 @@ sequence so that you have a chance to switch floppy disks.
The command line equivalent is: "prompt_ramdisk=1"
Putting that together gives 2^15 + 2^14 + 0 = 49152 for an rdev word.
-So to create disk one of the set, you would do:
+So to create disk one of the set, you would do::
/usr/src/linux# cat arch/x86/boot/zImage > /dev/fd0
/usr/src/linux# rdev /dev/fd0 /dev/fd0
/usr/src/linux# rdev -r /dev/fd0 49152
-If you make a boot disk that has LILO, then for the above, you would use:
+If you make a boot disk that has LILO, then for the above, you would use::
+
append = "ramdisk_start=0 load_ramdisk=1 prompt_ramdisk=1"
-Since the default start = 0 and the default prompt = 1, you could use:
+
+Since the default start = 0 and the default prompt = 1, you could use::
+
append = "load_ramdisk=1"
4) An Example of Creating a Compressed RAM Disk
-----------------------------------------------
+-----------------------------------------------
To create a RAM disk image, you will need a spare block device to
construct it on. This can be the RAM disk device itself, or an
@@ -120,11 +121,11 @@ a) Decide on the RAM disk size that you want. Say 2 MB for this example.
Create it by writing to the RAM disk device. (This step is not currently
required, but may be in the future.) It is wise to zero out the
area (esp. for disks) so that maximal compression is achieved for
- the unused blocks of the image that you are about to create.
+ the unused blocks of the image that you are about to create::
dd if=/dev/zero of=/dev/ram0 bs=1k count=2048
-b) Make a filesystem on it. Say ext2fs for this example.
+b) Make a filesystem on it. Say ext2fs for this example::
mke2fs -vm0 /dev/ram0 2048
@@ -133,11 +134,11 @@ c) Mount it, copy the files you want to it (eg: /etc/* /dev/* ...)
d) Compress the contents of the RAM disk. The level of compression
will be approximately 50% of the space used by the files. Unused
- space on the RAM disk will compress to almost nothing.
+ space on the RAM disk will compress to almost nothing::
dd if=/dev/ram0 bs=1k count=2048 | gzip -v9 > /tmp/ram_image.gz
-e) Put the kernel onto the floppy
+e) Put the kernel onto the floppy::
dd if=zImage of=/dev/fd0 bs=1k
@@ -146,13 +147,13 @@ f) Put the RAM disk image onto the floppy, after the kernel. Use an offset
(possibly larger) kernel onto the same floppy later without overlapping
the RAM disk image. An offset of 400 kB for kernels about 350 kB in
size would be reasonable. Make sure offset+size of ram_image.gz is
- not larger than the total space on your floppy (usually 1440 kB).
+ not larger than the total space on your floppy (usually 1440 kB)::
dd if=/tmp/ram_image.gz of=/dev/fd0 bs=1k seek=400
g) Use "rdev" to set the boot device, RAM disk offset, prompt flag, etc.
For prompt_ramdisk=1, load_ramdisk=1, ramdisk_start=400, one would
- have 2^15 + 2^14 + 400 = 49552.
+ have 2^15 + 2^14 + 400 = 49552::
rdev /dev/fd0 /dev/fd0
rdev -r /dev/fd0 49552
@@ -160,15 +161,17 @@ g) Use "rdev" to set the boot device, RAM disk offset, prompt flag, etc.
That is it. You now have your boot/root compressed RAM disk floppy. Some
users may wish to combine steps (d) and (f) by using a pipe.
---------------------------------------------------------------------------
+
Paul Gortmaker 12/95
Changelog:
----------
-10-22-04 : Updated to reflect changes in command line options, remove
+10-22-04 :
+ Updated to reflect changes in command line options, remove
obsolete references, general cleanup.
James Nelson (james4765@gmail.com)
-12-95 : Original Document
+12-95 :
+ Original Document
diff --git a/Documentation/blockdev/zram.txt b/Documentation/blockdev/zram.rst
similarity index 76%
rename from Documentation/blockdev/zram.txt
rename to Documentation/blockdev/zram.rst
index 4df0ce271085..2111231c9c0f 100644
--- a/Documentation/blockdev/zram.txt
+++ b/Documentation/blockdev/zram.rst
@@ -1,7 +1,9 @@
+========================================
zram: Compressed RAM based block devices
-----------------------------------------
+========================================
-* Introduction
+Introduction
+============
The zram module creates RAM based block devices named /dev/zram<id>
(<id> = 0, 1, ...). Pages written to these disks are compressed and stored
@@ -12,9 +14,11 @@ use as swap disks, various caches under /var and maybe many more :)
Statistics for individual zram devices are exported through sysfs nodes at
/sys/block/zram<id>/
-* Usage
+Usage
+=====
There are several ways to configure and manage zram device(-s):
+
a) using zram and zram_control sysfs attributes
b) using zramctl utility, provided by util-linux (util-linux@vger.kernel.org).
@@ -22,7 +26,7 @@ In this document we will describe only 'manual' zram configuration steps,
IOW, zram and zram_control sysfs attributes.
In order to get a better idea about zramctl please consult util-linux
-documentation, zramctl man-page or `zramctl --help'. Please be informed
+documentation, zramctl man-page or `zramctl --help`. Please be informed
that zram maintainers do not develop/maintain util-linux or zramctl, should
you have any questions please contact util-linux@vger.kernel.org
@@ -30,19 +34,23 @@ Following shows a typical sequence of steps for using zram.
WARNING
=======
+
For the sake of simplicity we skip error checking parts in most of the
examples below. However, it is your sole responsibility to handle errors.
zram sysfs attributes always return negative values in case of errors.
The list of possible return codes:
--EBUSY -- an attempt to modify an attribute that cannot be changed once
-the device has been initialised. Please reset device first;
--ENOMEM -- zram was not able to allocate enough memory to fulfil your
-needs;
--EINVAL -- invalid input has been provided.
+
+======== =============================================================
+-EBUSY an attempt to modify an attribute that cannot be changed once
+ the device has been initialised. Please reset device first;
+-ENOMEM zram was not able to allocate enough memory to fulfil your
+ needs;
+-EINVAL invalid input has been provided.
+======== =============================================================
If you use 'echo', the returned value that is changed by 'echo' utility,
-and, in general case, something like:
+and, in general case, something like::
echo 3 > /sys/block/zram0/max_comp_streams
if [ $? -ne 0 ];
@@ -51,7 +59,11 @@ and, in general case, something like:
should suffice.
-1) Load Module:
+1) Load Module
+==============
+
+::
+
modprobe zram num_devices=4
This creates 4 devices: /dev/zram{0,1,2,3}
@@ -59,6 +71,8 @@ num_devices parameter is optional and tells zram how many devices should be
pre-created. Default: 1.
2) Set max number of compression streams
+========================================
+
Regardless the value passed to this attribute, ZRAM will always
allocate multiple compression streams - one per online CPUs - thus
allowing several concurrent compression operations. The number of
@@ -66,16 +80,20 @@ allocated compression streams goes down when some of the CPUs
become offline. There is no single-compression-stream mode anymore,
unless you are running a UP system or has only 1 CPU online.
-To find out how many streams are currently available:
+To find out how many streams are currently available::
+
cat /sys/block/zram0/max_comp_streams
3) Select compression algorithm
+===============================
+
Using comp_algorithm device attribute one can see available and
currently selected (shown in square brackets) compression algorithms,
change selected compression algorithm (once the device is initialised
there is no way to change compression algorithm).
-Examples:
+Examples::
+
#show supported compression algorithms
cat /sys/block/zram0/comp_algorithm
lzo [lz4]
@@ -83,20 +101,23 @@ Examples:
#select lzo compression algorithm
echo lzo > /sys/block/zram0/comp_algorithm
-For the time being, the `comp_algorithm' content does not necessarily
+For the time being, the `comp_algorithm` content does not necessarily
show every compression algorithm supported by the kernel. We keep this
list primarily to simplify device configuration and one can configure
a new device with a compression algorithm that is not listed in
-`comp_algorithm'. The thing is that, internally, ZRAM uses Crypto API
+`comp_algorithm`. The thing is that, internally, ZRAM uses Crypto API
and, if some of the algorithms were built as modules, it's impossible
to list all of them using, for instance, /proc/crypto or any other
method. This, however, has an advantage of permitting the usage of
custom crypto compression modules (implementing S/W or H/W compression).
4) Set Disksize
+===============
+
Set disk size by writing the value to sysfs node 'disksize'.
The value can be either in bytes or you can use mem suffixes.
-Examples:
+Examples::
+
# Initialize /dev/zram0 with 50MB disksize
echo $((50*1024*1024)) > /sys/block/zram0/disksize
@@ -111,10 +132,13 @@ since we expect a 2:1 compression ratio. Note that zram uses about 0.1% of the
size of the disk when not in use so a huge zram is wasteful.
5) Set memory limit: Optional
+=============================
+
Set memory limit by writing the value to sysfs node 'mem_limit'.
The value can be either in bytes or you can use mem suffixes.
In addition, you could change the value in runtime.
-Examples:
+Examples::
+
# limit /dev/zram0 with 50MB memory
echo $((50*1024*1024)) > /sys/block/zram0/mem_limit
@@ -126,7 +150,11 @@ Examples:
# To disable memory limit
echo 0 > /sys/block/zram0/mem_limit
-6) Activate:
+6) Activate
+===========
+
+::
+
mkswap /dev/zram0
swapon /dev/zram0
@@ -134,6 +162,7 @@ Examples:
mount /dev/zram1 /tmp
7) Add/remove zram devices
+==========================
zram provides a control interface, which enables dynamic (on-demand) device
addition and removal.
@@ -142,37 +171,44 @@ In order to add a new /dev/zramX device, perform read operation on hot_add
attribute. This will return either new device's device id (meaning that you
can use /dev/zram<id>) or error code.
-Example:
+Example::
+
cat /sys/class/zram-control/hot_add
1
To remove the existing /dev/zramX device (where X is a device id)
-execute
+execute::
+
echo X > /sys/class/zram-control/hot_remove
-8) Stats:
+8) Stats
+========
+
Per-device statistics are exported as various nodes under /sys/block/zram<id>/
A brief description of exported device attributes. For more details please
read Documentation/ABI/testing/sysfs-block-zram.
+====================== ====== ===============================================
Name access description
----- ------ -----------
+====================== ====== ===============================================
disksize RW show and set the device's disk size
initstate RO shows the initialization state of the device
reset WO trigger device reset
-mem_used_max WO reset the `mem_used_max' counter (see later)
-mem_limit WO specifies the maximum amount of memory ZRAM can use
- to store the compressed data
-writeback_limit WO specifies the maximum amount of write IO zram can
- write out to backing device as 4KB unit
+mem_used_max WO reset the `mem_used_max` counter (see later)
+mem_limit WO specifies the maximum amount of memory ZRAM can
+ use to store the compressed data
+writeback_limit WO specifies the maximum amount of write IO zram
+ can write out to backing device as 4KB unit
writeback_limit_enable RW show and set writeback_limit feature
-max_comp_streams RW the number of possible concurrent compress operations
+max_comp_streams RW the number of possible concurrent compress
+ operations
comp_algorithm RW show and change the compression algorithm
compact WO trigger memory compaction
debug_stat RO this file is used for zram debugging purposes
backing_dev RW set up backend storage for zram to write out
idle WO mark allocated slot as idle
+====================== ====== ===============================================
User space is advised to use the following files to read the device statistics.
@@ -188,23 +224,31 @@ The stat file represents device's I/O statistics not accounted by block
layer and, thus, not available in zram<id>/stat file. It consists of a
single line of text and contains the following stats separated by
whitespace:
- failed_reads the number of failed reads
- failed_writes the number of failed writes
- invalid_io the number of non-page-size-aligned I/O requests
+
+ ============= =============================================================
+ failed_reads The number of failed reads
+ failed_writes The number of failed writes
+ invalid_io The number of non-page-size-aligned I/O requests
notify_free Depending on device usage scenario it may account
+
a) the number of pages freed because of swap slot free
- notifications or b) the number of pages freed because of
- REQ_OP_DISCARD requests sent by bio. The former ones are
- sent to a swap block device when a swap slot is freed,
- which implies that this disk is being used as a swap disk.
+ notifications
+ b) the number of pages freed because of
+ REQ_OP_DISCARD requests sent by bio. The former ones are
+ sent to a swap block device when a swap slot is freed,
+ which implies that this disk is being used as a swap disk.
+
The latter ones are sent by filesystem mounted with
discard option, whenever some data blocks are getting
discarded.
+ ============= =============================================================
File /sys/block/zram<id>/mm_stat
The stat file represents device's mm statistics. It consists of a single
line of text and contains the following stats separated by whitespace:
+
+ ================ =============================================================
orig_data_size uncompressed size of data stored in this disk.
This excludes same-element-filled pages (same_pages) since
no memory is allocated for them.
@@ -223,58 +267,71 @@ line of text and contains the following stats separated by whitespace:
No memory is allocated for such pages.
pages_compacted the number of pages freed during compaction
huge_pages the number of incompressible pages
+ ================ =============================================================
File /sys/block/zram<id>/bd_stat
The stat file represents device's backing device statistics. It consists of
a single line of text and contains the following stats separated by whitespace:
+
+ ============== =============================================================
bd_count size of data written in backing device.
Unit: 4K bytes
bd_reads the number of reads from backing device
Unit: 4K bytes
bd_writes the number of writes to backing device
Unit: 4K bytes
+ ============== =============================================================
+
+9) Deactivate
+=============
+
+::
-9) Deactivate:
swapoff /dev/zram0
umount /dev/zram1
-10) Reset:
- Write any positive value to 'reset' sysfs node
- echo 1 > /sys/block/zram0/reset
- echo 1 > /sys/block/zram1/reset
+10) Reset
+=========
+
+ Write any positive value to 'reset' sysfs node::
+
+ echo 1 > /sys/block/zram0/reset
+ echo 1 > /sys/block/zram1/reset
This frees all the memory allocated for the given device and
resets the disksize to zero. You must set the disksize again
before reusing the device.
-* Optional Feature
+Optional Feature
+================
-= writeback
+writeback
+---------
With CONFIG_ZRAM_WRITEBACK, zram can write idle/incompressible page
to backing storage rather than keeping it in memory.
-To use the feature, admin should set up backing device via
+To use the feature, admin should set up backing device via::
- "echo /dev/sda5 > /sys/block/zramX/backing_dev"
+ echo /dev/sda5 > /sys/block/zramX/backing_dev
before disksize setting. It supports only partition at this moment.
-If admin want to use incompressible page writeback, they could do via
+If admin want to use incompressible page writeback, they could do via::
- "echo huge > /sys/block/zramX/write"
+ echo huge > /sys/block/zramX/write
To use idle page writeback, first, user need to declare zram pages
-as idle.
+as idle::
- "echo all > /sys/block/zramX/idle"
+ echo all > /sys/block/zramX/idle
From now on, any pages on zram are idle pages. The idle mark
will be removed until someone request access of the block.
IOW, unless there is access request, those pages are still idle pages.
-Admin can request writeback of those idle pages at right timing via
+Admin can request writeback of those idle pages at right timing via::
- "echo idle > /sys/block/zramX/writeback"
+ echo idle > /sys/block/zramX/writeback
With the command, zram writeback idle pages from memory to the storage.
@@ -285,7 +342,7 @@ to guarantee storage health for entire product life.
To overcome the concern, zram supports "writeback_limit" feature.
The "writeback_limit_enable"'s default value is 0 so that it doesn't limit
any writeback. IOW, if admin want to apply writeback budget, he should
-enable writeback_limit_enable via
+enable writeback_limit_enable via::
$ echo 1 > /sys/block/zramX/writeback_limit_enable
@@ -296,7 +353,7 @@ until admin set the budget via /sys/block/zramX/writeback_limit.
assigned via /sys/block/zramX/writeback_limit is meaninless.)
If admin want to limit writeback as per-day 400M, he could do it
-like below.
+like below::
$ MB_SHIFT=20
$ 4K_SHIFT=12
@@ -305,16 +362,16 @@ like below.
$ echo 1 > /sys/block/zram0/writeback_limit_enable
If admin want to allow further write again once the bugdet is exausted,
-he could do it like below
+he could do it like below::
$ echo $((400<<MB_SHIFT>>4K_SHIFT)) > \
/sys/block/zram0/writeback_limit
-If admin want to see remaining writeback budget since he set,
+If admin want to see remaining writeback budget since he set::
$ cat /sys/block/zramX/writeback_limit
-If admin want to disable writeback limit, he could do
+If admin want to disable writeback limit, he could do::
$ echo 0 > /sys/block/zramX/writeback_limit_enable
@@ -326,25 +383,35 @@ budget in next setting is user's job.
If admin want to measure writeback count in a certain period, he could
know it via /sys/block/zram0/bd_stat's 3rd column.
-= memory tracking
+memory tracking
+===============
With CONFIG_ZRAM_MEMORY_TRACKING, user can know information of the
zram block. It could be useful to catch cold or incompressible
pages of the process with*pagemap.
+
If you enable the feature, you could see block state via
-/sys/kernel/debug/zram/zram0/block_state". The output is as follows,
+/sys/kernel/debug/zram/zram0/block_state". The output is as follows::
300 75.033841 .wh.
301 63.806904 s...
302 63.806919 ..hi
-First column is zram's block index.
-Second column is access time since the system was booted
-Third column is state of the block.
-(s: same page
-w: written page to backing store
-h: huge page
-i: idle page)
+First column
+ zram's block index.
+Second column
+ access time since the system was booted
+Third column
+ state of the block:
+
+ s:
+ same page
+ w:
+ written page to backing store
+ h:
+ huge page
+ i:
+ idle page
First line of above example says 300th block is accessed at 75.033841sec
and the block's state is huge so it is written back to the backing
diff --git a/MAINTAINERS b/MAINTAINERS
index ca1d09d0c44b..3ed27c0c36d8 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -10823,7 +10823,7 @@ M: Josef Bacik <josef@toxicpanda.com>
S: Maintained
L: linux-block@vger.kernel.org
L: nbd@other.debian.org
-F: Documentation/blockdev/nbd.txt
+F: Documentation/blockdev/nbd.rst
F: drivers/block/nbd.c
F: include/uapi/linux/nbd.h
@@ -11801,7 +11801,7 @@ PARIDE DRIVERS FOR PARALLEL PORT IDE DEVICES
M: Tim Waugh <tim@cyberelk.net>
L: linux-parport@lists.infradead.org (subscribers-only)
S: Maintained
-F: Documentation/blockdev/paride.txt
+F: Documentation/blockdev/paride.rst
F: drivers/block/paride/
PARISC ARCHITECTURE
@@ -13077,7 +13077,7 @@ F: drivers/net/wireless/ralink/rt2x00/
RAMDISK RAM BLOCK DEVICE DRIVER
M: Jens Axboe <axboe@kernel.dk>
S: Maintained
-F: Documentation/blockdev/ramdisk.txt
+F: Documentation/blockdev/ramdisk.rst
F: drivers/block/brd.c
RANCHU VIRTUAL BOARD FOR MIPS
@@ -17360,7 +17360,7 @@ R: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
L: linux-kernel@vger.kernel.org
S: Maintained
F: drivers/block/zram/
-F: Documentation/blockdev/zram.txt
+F: Documentation/blockdev/zram.rst
ZS DECSTATION Z85C30 SERIAL DRIVER
M: "Maciej W. Rozycki" <macro@linux-mips.org>
diff --git a/drivers/block/Kconfig b/drivers/block/Kconfig
index 96ec7e0fc1ea..c43690b973d8 100644
--- a/drivers/block/Kconfig
+++ b/drivers/block/Kconfig
@@ -31,7 +31,7 @@ config BLK_DEV_FD
If you want to use the floppy disk drive(s) of your PC under Linux,
say Y. Information about this driver, especially important for IBM
Thinkpad users, is contained in
- <file:Documentation/blockdev/floppy.txt>.
+ <file:Documentation/blockdev/floppy.rst>.
That file also contains the location of the Floppy driver FAQ as
well as location of the fdutils package used to configure additional
parameters of the driver at run time.
@@ -96,7 +96,7 @@ config PARIDE
your computer's parallel port. Most of them are actually IDE devices
using a parallel port IDE adapter. This option enables the PARIDE
subsystem which contains drivers for many of these external drives.
- Read <file:Documentation/blockdev/paride.txt> for more information.
+ Read <file:Documentation/blockdev/paride.rst> for more information.
If you have said Y to the "Parallel-port support" configuration
option, you may share a single port between your printer and other
@@ -261,7 +261,7 @@ config BLK_DEV_NBD
userland (making server and client physically the same computer,
communicating using the loopback network device).
- Read <file:Documentation/blockdev/nbd.txt> for more information,
+ Read <file:Documentation/blockdev/nbd.rst> for more information,
especially about where to find the server code, which runs in user
space and does not need special kernel support.
@@ -303,7 +303,7 @@ config BLK_DEV_RAM
during the initial install of Linux.
Note that the kernel command line option "ramdisk=XX" is now obsolete.
- For details, read <file:Documentation/blockdev/ramdisk.txt>.
+ For details, read <file:Documentation/blockdev/ramdisk.rst>.
To compile this driver as a module, choose M here: the
module will be called brd. An alias "rd" has been defined
diff --git a/drivers/block/floppy.c b/drivers/block/floppy.c
index b8998abd86a5..14701be9f916 100644
--- a/drivers/block/floppy.c
+++ b/drivers/block/floppy.c
@@ -4423,7 +4423,7 @@ static int __init floppy_setup(char *str)
pr_cont("\n");
} else
DPRINT("botched floppy option\n");
- DPRINT("Read Documentation/blockdev/floppy.txt\n");
+ DPRINT("Read Documentation/blockdev/floppy.rst\n");
return 0;
}
diff --git a/drivers/block/zram/Kconfig b/drivers/block/zram/Kconfig
index 1ffc64770643..e06b99d54816 100644
--- a/drivers/block/zram/Kconfig
+++ b/drivers/block/zram/Kconfig
@@ -12,7 +12,7 @@ config ZRAM
It has several use cases, for example: /tmp storage, use as swap
disks and maybe many more.
- See Documentation/blockdev/zram.txt for more information.
+ See Documentation/blockdev/zram.rst for more information.
config ZRAM_WRITEBACK
bool "Write back incompressible or idle page to backing device"
@@ -26,7 +26,7 @@ config ZRAM_WRITEBACK
With /sys/block/zramX/{idle,writeback}, application could ask
idle page's writeback to the backing device to save in memory.
- See Documentation/blockdev/zram.txt for more information.
+ See Documentation/blockdev/zram.rst for more information.
config ZRAM_MEMORY_TRACKING
bool "Track zRam block status"
@@ -36,4 +36,4 @@ config ZRAM_MEMORY_TRACKING
of zRAM. Admin could see the information via
/sys/kernel/debug/zram/zramX/block_state.
- See Documentation/blockdev/zram.txt for more information.
+ See Documentation/blockdev/zram.rst for more information.
diff --git a/tools/testing/selftests/zram/README b/tools/testing/selftests/zram/README
index 7972cc512408..5fa378391d3b 100644
--- a/tools/testing/selftests/zram/README
+++ b/tools/testing/selftests/zram/README
@@ -37,4 +37,4 @@ Commands required for testing:
- mkfs/ mkfs.ext4
For more information please refer:
-kernel-source-tree/Documentation/blockdev/zram.txt
+kernel-source-tree/Documentation/blockdev/zram.rst
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 77/79] docs: perf: convert to ReST
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (66 preceding siblings ...)
2019-04-22 13:28 ` [PATCH v2 76/79] docs: blockdev: " Mauro Carvalho Chehab
@ 2019-04-22 13:28 ` Mauro Carvalho Chehab
2019-04-22 13:28 ` [PATCH v2 79/79] docs: block: " Mauro Carvalho Chehab
` (5 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:28 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Shaokun Zhang, Khuong Dinh, Andy Gross,
David Brown, Will Deacon, Mark Rutland, linux-arm-msm,
linux-arm-kernel
Rename the perf documentation files to ReST, add an
index for them and adjust in order to produce a nice html
output via the Sphinx build system.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
.../perf/{arm-ccn.txt => arm-ccn.rst} | 18 +++++-----
.../perf/{arm_dsu_pmu.txt => arm_dsu_pmu.rst} | 5 +--
.../perf/{hisi-pmu.txt => hisi-pmu.rst} | 35 +++++++++++--------
Documentation/perf/index.rst | 16 +++++++++
.../perf/{qcom_l2_pmu.txt => qcom_l2_pmu.rst} | 3 +-
.../perf/{qcom_l3_pmu.txt => qcom_l3_pmu.rst} | 3 +-
.../{thunderx2-pmu.txt => thunderx2-pmu.rst} | 25 ++++++-------
.../perf/{xgene-pmu.txt => xgene-pmu.rst} | 3 +-
MAINTAINERS | 4 +--
drivers/perf/qcom_l3_pmu.c | 2 +-
10 files changed, 72 insertions(+), 42 deletions(-)
rename Documentation/perf/{arm-ccn.txt => arm-ccn.rst} (86%)
rename Documentation/perf/{arm_dsu_pmu.txt => arm_dsu_pmu.rst} (92%)
rename Documentation/perf/{hisi-pmu.txt => hisi-pmu.rst} (73%)
create mode 100644 Documentation/perf/index.rst
rename Documentation/perf/{qcom_l2_pmu.txt => qcom_l2_pmu.rst} (94%)
rename Documentation/perf/{qcom_l3_pmu.txt => qcom_l3_pmu.rst} (93%)
rename Documentation/perf/{thunderx2-pmu.txt => thunderx2-pmu.rst} (73%)
rename Documentation/perf/{xgene-pmu.txt => xgene-pmu.rst} (96%)
diff --git a/Documentation/perf/arm-ccn.txt b/Documentation/perf/arm-ccn.rst
similarity index 86%
rename from Documentation/perf/arm-ccn.txt
rename to Documentation/perf/arm-ccn.rst
index 15cdb7bc57c3..832b0c64023a 100644
--- a/Documentation/perf/arm-ccn.txt
+++ b/Documentation/perf/arm-ccn.rst
@@ -1,3 +1,4 @@
+==========================
ARM Cache Coherent Network
==========================
@@ -29,6 +30,7 @@ Crosspoint watchpoint-based events (special "event" value 0xfe)
require "xp" and "vc" as as above plus "port" (device port index),
"dir" (transmit/receive direction), comparator values ("cmp_l"
and "cmp_h") and "mask", being index of the comparator mask.
+
Masks are defined separately from the event description
(due to limited number of the config values) in the "cmp_mask"
directory, with first 8 configurable by user and additional
@@ -44,16 +46,16 @@ request the events on this processor (if not, the perf_event->cpu value
will be overwritten anyway). In case of this processor being offlined,
the events are migrated to another one and the attribute is updated.
-Example of perf tool use:
+Example of perf tool use::
-/ # perf list | grep ccn
- ccn/cycles/ [Kernel PMU event]
-<...>
- ccn/xp_valid_flit,xp=?,port=?,vc=?,dir=?/ [Kernel PMU event]
-<...>
+ / # perf list | grep ccn
+ ccn/cycles/ [Kernel PMU event]
+ <...>
+ ccn/xp_valid_flit,xp=?,port=?,vc=?,dir=?/ [Kernel PMU event]
+ <...>
-/ # perf stat -a -e ccn/cycles/,ccn/xp_valid_flit,xp=1,port=0,vc=1,dir=1/ \
- sleep 1
+ / # perf stat -a -e ccn/cycles/,ccn/xp_valid_flit,xp=1,port=0,vc=1,dir=1/ \
+ sleep 1
The driver does not support sampling, therefore "perf record" will
not work. Per-task (without "-a") perf sessions are not supported.
diff --git a/Documentation/perf/arm_dsu_pmu.txt b/Documentation/perf/arm_dsu_pmu.rst
similarity index 92%
rename from Documentation/perf/arm_dsu_pmu.txt
rename to Documentation/perf/arm_dsu_pmu.rst
index d611e15f5add..7fd34db75d13 100644
--- a/Documentation/perf/arm_dsu_pmu.txt
+++ b/Documentation/perf/arm_dsu_pmu.rst
@@ -1,3 +1,4 @@
+==================================
ARM DynamIQ Shared Unit (DSU) PMU
==================================
@@ -13,7 +14,7 @@ PMU doesn't support process specific events and cannot be used in sampling mode.
The DSU provides a bitmap for a subset of implemented events via hardware
registers. There is no way for the driver to determine if the other events
are available or not. Hence the driver exposes only those events advertised
-by the DSU, in "events" directory under :
+by the DSU, in "events" directory under::
/sys/bus/event_sources/devices/arm_dsu_<N>/
@@ -23,6 +24,6 @@ and use the raw event code for the unlisted events.
The driver also exposes the CPUs connected to the DSU instance in "associated_cpus".
-e.g usage :
+e.g usage::
perf stat -a -e arm_dsu_0/cycles/
diff --git a/Documentation/perf/hisi-pmu.txt b/Documentation/perf/hisi-pmu.rst
similarity index 73%
rename from Documentation/perf/hisi-pmu.txt
rename to Documentation/perf/hisi-pmu.rst
index 267a028b2741..404a5c3d9d00 100644
--- a/Documentation/perf/hisi-pmu.txt
+++ b/Documentation/perf/hisi-pmu.rst
@@ -1,5 +1,7 @@
+======================================================
HiSilicon SoC uncore Performance Monitoring Unit (PMU)
======================================================
+
The HiSilicon SoC chip includes various independent system device PMUs
such as L3 cache (L3C), Hydra Home Agent (HHA) and DDRC. These PMUs are
independent and have hardware logic to gather statistics and performance
@@ -11,11 +13,13 @@ called Super CPU cluster (SCCL) and is made up of 6 CCLs. Each SCCL has
two HHAs (0 - 1) and four DDRCs (0 - 3), respectively.
HiSilicon SoC uncore PMU driver
----------------------------------------
+-------------------------------
+
Each device PMU has separate registers for event counting, control and
interrupt, and the PMU driver shall register perf PMU drivers like L3C,
HHA and DDRC etc. The available events and configuration options shall
-be described in the sysfs, see :
+be described in the sysfs, see:
+
/sys/devices/hisi_sccl{X}_<l3c{Y}/hha{Y}/ddrc{Y}>/, or
/sys/bus/event_source/devices/hisi_sccl{X}_<l3c{Y}/hha{Y}/ddrc{Y}>.
The "perf list" command shall list the available events from sysfs.
@@ -24,27 +28,30 @@ Each L3C, HHA and DDRC is registered as a separate PMU with perf. The PMU
name will appear in event listing as hisi_sccl<sccl-id>_module<index-id>.
where "sccl-id" is the identifier of the SCCL and "index-id" is the index of
module.
+
e.g. hisi_sccl3_l3c0/rd_hit_cpipe is READ_HIT_CPIPE event of L3C index #0 in
SCCL ID #3.
+
e.g. hisi_sccl1_hha0/rx_operations is RX_OPERATIONS event of HHA index #0 in
SCCL ID #1.
The driver also provides a "cpumask" sysfs attribute, which shows the CPU core
ID used to count the uncore PMU event.
-Example usage of perf:
-$# perf list
-hisi_sccl3_l3c0/rd_hit_cpipe/ [kernel PMU event]
-------------------------------------------
-hisi_sccl3_l3c0/wr_hit_cpipe/ [kernel PMU event]
-------------------------------------------
-hisi_sccl1_l3c0/rd_hit_cpipe/ [kernel PMU event]
-------------------------------------------
-hisi_sccl1_l3c0/wr_hit_cpipe/ [kernel PMU event]
-------------------------------------------
+Example usage of perf::
-$# perf stat -a -e hisi_sccl3_l3c0/rd_hit_cpipe/ sleep 5
-$# perf stat -a -e hisi_sccl3_l3c0/config=0x02/ sleep 5
+ $# perf list
+ hisi_sccl3_l3c0/rd_hit_cpipe/ [kernel PMU event]
+ ------------------------------------------
+ hisi_sccl3_l3c0/wr_hit_cpipe/ [kernel PMU event]
+ ------------------------------------------
+ hisi_sccl1_l3c0/rd_hit_cpipe/ [kernel PMU event]
+ ------------------------------------------
+ hisi_sccl1_l3c0/wr_hit_cpipe/ [kernel PMU event]
+ ------------------------------------------
+
+ $# perf stat -a -e hisi_sccl3_l3c0/rd_hit_cpipe/ sleep 5
+ $# perf stat -a -e hisi_sccl3_l3c0/config=0x02/ sleep 5
The current driver does not support sampling. So "perf record" is unsupported.
Also attach to a task is unsupported as the events are all uncore.
diff --git a/Documentation/perf/index.rst b/Documentation/perf/index.rst
new file mode 100644
index 000000000000..4bf848e27f26
--- /dev/null
+++ b/Documentation/perf/index.rst
@@ -0,0 +1,16 @@
+:orphan:
+
+===========================
+Performance monitor support
+===========================
+
+.. toctree::
+ :maxdepth: 1
+
+ hisi-pmu
+ qcom_l2_pmu
+ qcom_l3_pmu
+ arm-ccn
+ xgene-pmu
+ arm_dsu_pmu
+ thunderx2-pmu
diff --git a/Documentation/perf/qcom_l2_pmu.txt b/Documentation/perf/qcom_l2_pmu.rst
similarity index 94%
rename from Documentation/perf/qcom_l2_pmu.txt
rename to Documentation/perf/qcom_l2_pmu.rst
index b25b97659ab9..c130178a4a55 100644
--- a/Documentation/perf/qcom_l2_pmu.txt
+++ b/Documentation/perf/qcom_l2_pmu.rst
@@ -1,3 +1,4 @@
+=====================================================================
Qualcomm Technologies Level-2 Cache Performance Monitoring Unit (PMU)
=====================================================================
@@ -28,7 +29,7 @@ The driver provides a "cpumask" sysfs attribute which contains a mask
consisting of one CPU per cluster which will be used to handle all the PMU
events on that cluster.
-Examples for use with perf:
+Examples for use with perf::
perf stat -e l2cache_0/config=0x001/,l2cache_0/config=0x042/ -a sleep 1
diff --git a/Documentation/perf/qcom_l3_pmu.txt b/Documentation/perf/qcom_l3_pmu.rst
similarity index 93%
rename from Documentation/perf/qcom_l3_pmu.txt
rename to Documentation/perf/qcom_l3_pmu.rst
index 96b3a9444a0d..a3d014a46bfd 100644
--- a/Documentation/perf/qcom_l3_pmu.txt
+++ b/Documentation/perf/qcom_l3_pmu.rst
@@ -1,3 +1,4 @@
+===========================================================================
Qualcomm Datacenter Technologies L3 Cache Performance Monitoring Unit (PMU)
===========================================================================
@@ -17,7 +18,7 @@ The hardware implements 32bit event counters and has a flat 8bit event space
exposed via the "event" format attribute. In addition to the 32bit physical
counters the driver supports virtual 64bit hardware counters by using hardware
counter chaining. This feature is exposed via the "lc" (long counter) format
-flag. E.g.:
+flag. E.g.::
perf stat -e l3cache_0_0/read-miss,lc/
diff --git a/Documentation/perf/thunderx2-pmu.txt b/Documentation/perf/thunderx2-pmu.rst
similarity index 73%
rename from Documentation/perf/thunderx2-pmu.txt
rename to Documentation/perf/thunderx2-pmu.rst
index dffc57143736..08e33675853a 100644
--- a/Documentation/perf/thunderx2-pmu.txt
+++ b/Documentation/perf/thunderx2-pmu.rst
@@ -1,3 +1,4 @@
+=============================================================
Cavium ThunderX2 SoC Performance Monitoring Unit (PMU UNCORE)
=============================================================
@@ -24,18 +25,18 @@ and configuration options under sysfs, see
The driver does not support sampling, therefore "perf record" will not
work. Per-task perf sessions are also not supported.
-Examples:
+Examples::
-# perf stat -a -e uncore_dmc_0/cnt_cycles/ sleep 1
+ # perf stat -a -e uncore_dmc_0/cnt_cycles/ sleep 1
-# perf stat -a -e \
-uncore_dmc_0/cnt_cycles/,\
-uncore_dmc_0/data_transfers/,\
-uncore_dmc_0/read_txns/,\
-uncore_dmc_0/write_txns/ sleep 1
+ # perf stat -a -e \
+ uncore_dmc_0/cnt_cycles/,\
+ uncore_dmc_0/data_transfers/,\
+ uncore_dmc_0/read_txns/,\
+ uncore_dmc_0/write_txns/ sleep 1
-# perf stat -a -e \
-uncore_l3c_0/read_request/,\
-uncore_l3c_0/read_hit/,\
-uncore_l3c_0/inv_request/,\
-uncore_l3c_0/inv_hit/ sleep 1
+ # perf stat -a -e \
+ uncore_l3c_0/read_request/,\
+ uncore_l3c_0/read_hit/,\
+ uncore_l3c_0/inv_request/,\
+ uncore_l3c_0/inv_hit/ sleep 1
diff --git a/Documentation/perf/xgene-pmu.txt b/Documentation/perf/xgene-pmu.rst
similarity index 96%
rename from Documentation/perf/xgene-pmu.txt
rename to Documentation/perf/xgene-pmu.rst
index d7cff4454e5b..644f8ed89152 100644
--- a/Documentation/perf/xgene-pmu.txt
+++ b/Documentation/perf/xgene-pmu.rst
@@ -1,3 +1,4 @@
+================================================
APM X-Gene SoC Performance Monitoring Unit (PMU)
================================================
@@ -33,7 +34,7 @@ each PMU, please refer to APM X-Gene User Manual.
Each perf driver also provides a "cpumask" sysfs attribute, which contains a
single CPU ID of the processor which will be used to handle all the PMU events.
-Example for perf tool use:
+Example for perf tool use::
/ # perf list | grep -e l3c -e iob -e mcb -e mc
l3c0/ackq-full/ [Kernel PMU event]
diff --git a/MAINTAINERS b/MAINTAINERS
index 3ed27c0c36d8..68d0070d18b6 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -1102,7 +1102,7 @@ APPLIED MICRO (APM) X-GENE SOC PMU
M: Khuong Dinh <khuong@os.amperecomputing.com>
S: Supported
F: drivers/perf/xgene_pmu.c
-F: Documentation/perf/xgene-pmu.txt
+F: Documentation/perf/xgene-pmu.rst
F: Documentation/devicetree/bindings/perf/apm-xgene-pmu.txt
APTINA CAMERA SENSOR PLL
@@ -7082,7 +7082,7 @@ M: Shaokun Zhang <zhangshaokun@hisilicon.com>
W: http://www.hisilicon.com
S: Supported
F: drivers/perf/hisilicon
-F: Documentation/perf/hisi-pmu.txt
+F: Documentation/perf/hisi-pmu.rst
HISILICON ROCE DRIVER
M: Lijun Ou <oulijun@huawei.com>
diff --git a/drivers/perf/qcom_l3_pmu.c b/drivers/perf/qcom_l3_pmu.c
index 5d70646da8c7..bb5af9503084 100644
--- a/drivers/perf/qcom_l3_pmu.c
+++ b/drivers/perf/qcom_l3_pmu.c
@@ -7,7 +7,7 @@
* the slices. User space needs to aggregate to individual counts to provide
* a global picture.
*
- * See Documentation/perf/qcom_l3_pmu.txt for more details.
+ * See Documentation/perf/qcom_l3_pmu.rst for more details.
*
* Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
*
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread* [PATCH v2 79/79] docs: block: convert to ReST
[not found] <cover.1555938375.git.mchehab+samsung@kernel.org>
` (67 preceding siblings ...)
2019-04-22 13:28 ` [PATCH v2 77/79] docs: perf: " Mauro Carvalho Chehab
@ 2019-04-22 13:28 ` Mauro Carvalho Chehab
[not found] ` <7adf9035ae06ecc6c7e46b51cb677f0a8f61d19a.1555938376.git.mchehab+samsung@kernel.org>
` (4 subsequent siblings)
73 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 13:28 UTC (permalink / raw)
To: Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Paolo Valente, Jens Axboe, Minchan Kim,
Nitin Gupta, Sergey Senozhatsky, linux-block
Rename the block documentation files to ReST, add an
index for them and adjust in order to produce a nice html
output via the Sphinx build system.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
.../admin-guide/kernel-parameters.txt | 8 +-
.../{bfq-iosched.txt => bfq-iosched.rst} | 66 ++--
.../block/{biodoc.txt => biodoc.rst} | 363 +++++++++++-------
.../block/{biovecs.txt => biovecs.rst} | 20 +-
Documentation/block/capability.rst | 18 +
Documentation/block/capability.txt | 15 -
...ne-partition.txt => cmdline-partition.rst} | 13 +-
...{data-integrity.txt => data-integrity.rst} | 58 +--
...dline-iosched.txt => deadline-iosched.rst} | 19 +-
Documentation/block/index.rst | 25 ++
.../block/{ioprio.txt => ioprio.rst} | 95 +++--
.../{kyber-iosched.txt => kyber-iosched.rst} | 3 +-
.../block/{null_blk.txt => null_blk.rst} | 65 +++-
Documentation/block/{pr.txt => pr.rst} | 14 +-
.../{queue-sysfs.txt => queue-sysfs.rst} | 7 +-
.../block/{request.txt => request.rst} | 47 ++-
Documentation/block/{stat.txt => stat.rst} | 13 +-
...witching-sched.txt => switching-sched.rst} | 28 +-
...ontrol.txt => writeback_cache_control.rst} | 12 +-
Documentation/blockdev/zram.rst | 2 +-
MAINTAINERS | 2 +-
block/Kconfig | 2 +-
block/Kconfig.iosched | 2 +-
block/bfq-iosched.c | 2 +-
block/blk-integrity.c | 2 +-
block/ioprio.c | 2 +-
block/mq-deadline.c | 2 +-
block/partitions/cmdline.c | 2 +-
28 files changed, 555 insertions(+), 352 deletions(-)
rename Documentation/block/{bfq-iosched.txt => bfq-iosched.rst} (95%)
rename Documentation/block/{biodoc.txt => biodoc.rst} (83%)
rename Documentation/block/{biovecs.txt => biovecs.rst} (92%)
create mode 100644 Documentation/block/capability.rst
delete mode 100644 Documentation/block/capability.txt
rename Documentation/block/{cmdline-partition.txt => cmdline-partition.rst} (92%)
rename Documentation/block/{data-integrity.txt => data-integrity.rst} (92%)
rename Documentation/block/{deadline-iosched.txt => deadline-iosched.rst} (89%)
create mode 100644 Documentation/block/index.rst
rename Documentation/block/{ioprio.txt => ioprio.rst} (75%)
rename Documentation/block/{kyber-iosched.txt => kyber-iosched.rst} (86%)
rename Documentation/block/{null_blk.txt => null_blk.rst} (60%)
rename Documentation/block/{pr.txt => pr.rst} (95%)
rename Documentation/block/{queue-sysfs.txt => queue-sysfs.rst} (99%)
rename Documentation/block/{request.txt => request.rst} (59%)
rename Documentation/block/{stat.txt => stat.rst} (89%)
rename Documentation/block/{switching-sched.txt => switching-sched.rst} (71%)
rename Documentation/block/{writeback_cache_control.txt => writeback_cache_control.rst} (94%)
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index 30689c08bdc3..2849fbde8c8f 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -430,7 +430,7 @@
blkdevparts= Manual partition parsing of block device(s) for
embedded devices based on command line input.
- See Documentation/block/cmdline-partition.txt
+ See Documentation/block/cmdline-partition.rst
boot_delay= Milliseconds to delay each printk during boot.
Values larger than 10 seconds (10000) are changed to
@@ -1198,9 +1198,9 @@
elevator= [IOSCHED]
Format: { "mq-deadline" | "kyber" | "bfq" }
- See Documentation/block/deadline-iosched.txt,
- Documentation/block/kyber-iosched.txt and
- Documentation/block/bfq-iosched.txt for details.
+ See Documentation/block/deadline-iosched.rst,
+ Documentation/block/kyber-iosched.rst and
+ Documentation/block/bfq-iosched.rst for details.
elfcorehdr=[size[KMG]@]offset[KMG] [IA64,PPC,SH,X86,S390]
Specifies physical address of start of kernel core
diff --git a/Documentation/block/bfq-iosched.txt b/Documentation/block/bfq-iosched.rst
similarity index 95%
rename from Documentation/block/bfq-iosched.txt
rename to Documentation/block/bfq-iosched.rst
index b2265cf6c9c3..3fd9e8029347 100644
--- a/Documentation/block/bfq-iosched.txt
+++ b/Documentation/block/bfq-iosched.rst
@@ -1,9 +1,11 @@
+==========================
BFQ (Budget Fair Queueing)
==========================
BFQ is a proportional-share I/O scheduler, with some extra
low-latency capabilities. In addition to cgroups support (blkio or io
controllers), BFQ's main features are:
+
- BFQ guarantees a high system and application responsiveness, and a
low latency for time-sensitive applications, such as audio or video
players;
@@ -55,18 +57,18 @@ sustainable throughputs, on the same systems as above:
BFQ works for multi-queue devices too.
-The table of contents follow. Impatients can just jump to Section 3.
+.. The table of contents follow. Impatients can just jump to Section 3.
-CONTENTS
+.. CONTENTS
-1. When may BFQ be useful?
- 1-1 Personal systems
- 1-2 Server systems
-2. How does BFQ work?
-3. What are BFQ's tunables and how to properly configure BFQ?
-4. BFQ group scheduling
- 4-1 Service guarantees provided
- 4-2 Interface
+ 1. When may BFQ be useful?
+ 1-1 Personal systems
+ 1-2 Server systems
+ 2. How does BFQ work?
+ 3. What are BFQ's tunables and how to properly configure BFQ?
+ 4. BFQ group scheduling
+ 4-1 Service guarantees provided
+ 4-2 Interface
1. When may BFQ be useful?
==========================
@@ -77,17 +79,20 @@ BFQ provides the following benefits on personal and server systems.
--------------------
Low latency for interactive applications
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Regardless of the actual background workload, BFQ guarantees that, for
interactive tasks, the storage device is virtually as responsive as if
it was idle. For example, even if one or more of the following
background workloads are being executed:
+
- one or more large files are being read, written or copied,
- a tree of source files is being compiled,
- one or more virtual machines are performing I/O,
- a software update is in progress,
- indexing daemons are scanning filesystems and updating their
databases,
+
starting an application or loading a file from within an application
takes about the same time as if the storage device was idle. As a
comparison, with CFQ, NOOP or DEADLINE, and in the same conditions,
@@ -95,13 +100,14 @@ applications experience high latencies, or even become unresponsive
until the background workload terminates (also on SSDs).
Low latency for soft real-time applications
-
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Also soft real-time applications, such as audio and video
players/streamers, enjoy a low latency and a low drop rate, regardless
of the background I/O workload. As a consequence, these applications
do not suffer from almost any glitch due to the background workload.
Higher speed for code-development tasks
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If some additional workload happens to be executed in parallel, then
BFQ executes the I/O-related components of typical code-development
@@ -109,6 +115,7 @@ tasks (compilation, checkout, merge, ...) much more quickly than CFQ,
NOOP or DEADLINE.
High throughput
+^^^^^^^^^^^^^^^
On hard disks, BFQ achieves up to 30% higher throughput than CFQ, and
up to 150% higher throughput than DEADLINE and NOOP, with all the
@@ -117,6 +124,7 @@ and with all the workloads on flash-based devices, BFQ achieves,
instead, about the same throughput as the other schedulers.
Strong fairness, bandwidth and delay guarantees
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
BFQ distributes the device throughput, and not just the device time,
among I/O-bound applications in proportion their weights, with any
@@ -133,15 +141,15 @@ Most benefits for server systems follow from the same service
properties as above. In particular, regardless of whether additional,
possibly heavy workloads are being served, BFQ guarantees:
-. audio and video-streaming with zero or very low jitter and drop
+* audio and video-streaming with zero or very low jitter and drop
rate;
-. fast retrieval of WEB pages and embedded objects;
+* fast retrieval of WEB pages and embedded objects;
-. real-time recording of data in live-dumping applications (e.g.,
+* real-time recording of data in live-dumping applications (e.g.,
packet logging);
-. responsiveness in local and remote access to a server.
+* responsiveness in local and remote access to a server.
2. How does BFQ work?
@@ -151,7 +159,7 @@ BFQ is a proportional-share I/O scheduler, whose general structure,
plus a lot of code, are borrowed from CFQ.
- Each process doing I/O on a device is associated with a weight and a
- (bfq_)queue.
+ `(bfq_)queue`.
- BFQ grants exclusive access to the device, for a while, to one queue
(process) at a time, and implements this service model by
@@ -540,11 +548,12 @@ created, and kept up-to-date by bfq, depends on whether
CONFIG_DEBUG_BLK_CGROUP is set. If it is set, then bfq creates all
the stat files documented in
Documentation/cgroup-v1/blkio-controller.rst. If, instead,
-CONFIG_DEBUG_BLK_CGROUP is not set, then bfq creates only the files
-blkio.bfq.io_service_bytes
-blkio.bfq.io_service_bytes_recursive
-blkio.bfq.io_serviced
-blkio.bfq.io_serviced_recursive
+CONFIG_DEBUG_BLK_CGROUP is not set, then bfq creates only the files::
+
+ blkio.bfq.io_service_bytes
+ blkio.bfq.io_service_bytes_recursive
+ blkio.bfq.io_serviced
+ blkio.bfq.io_serviced_recursive
The value of CONFIG_DEBUG_BLK_CGROUP greatly influences the maximum
throughput sustainable with bfq, because updating the blkio.bfq.*
@@ -567,17 +576,22 @@ weight of the queues associated with interactive and soft real-time
applications. Unset this tunable if you need/want to control weights.
-[1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
+[1]
+ P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
Scheduler", Proceedings of the First Workshop on Mobile System
Technologies (MST-2015), May 2015.
+
http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
-[2] P. Valente and M. Andreolini, "Improving Application
+[2]
+ P. Valente and M. Andreolini, "Improving Application
Responsiveness with the BFQ Disk I/O Scheduler", Proceedings of
the 5th Annual International Systems and Storage Conference
(SYSTOR '12), June 2012.
+
Slightly extended version:
- http://algogroup.unimore.it/people/paolo/disk_sched/bfq-v1-suite-
- results.pdf
-[3] https://github.com/Algodev-github/S
+ http://algogroup.unimore.it/people/paolo/disk_sched/bfq-v1-suite-results.pdf
+
+[3]
+ https://github.com/Algodev-github/S
diff --git a/Documentation/block/biodoc.txt b/Documentation/block/biodoc.rst
similarity index 83%
rename from Documentation/block/biodoc.txt
rename to Documentation/block/biodoc.rst
index ac504de0cb93..f3ee3e298a0a 100644
--- a/Documentation/block/biodoc.txt
+++ b/Documentation/block/biodoc.rst
@@ -1,15 +1,24 @@
- Notes on the Generic Block Layer Rewrite in Linux 2.5
- =====================================================
+=====================================================
+Notes on the Generic Block Layer Rewrite in Linux 2.5
+=====================================================
+
+.. note::
+
+ It seems that there are lot of outdated stuff here. This seems
+ to be written somewhat as a task list. Yet, eventually, something
+ here might still be useful.
Notes Written on Jan 15, 2002:
- Jens Axboe <jens.axboe@oracle.com>
- Suparna Bhattacharya <suparna@in.ibm.com>
+ - Jens Axboe <jens.axboe@oracle.com>
+ - Suparna Bhattacharya <suparna@in.ibm.com>
Last Updated May 2, 2002
+
September 2003: Updated I/O Scheduler portions
- Nick Piggin <npiggin@kernel.dk>
+ - Nick Piggin <npiggin@kernel.dk>
-Introduction:
+Introduction
+============
These are some notes describing some aspects of the 2.5 block layer in the
context of the bio rewrite. The idea is to bring out some of the key
@@ -17,11 +26,11 @@ changes and a glimpse of the rationale behind those changes.
Please mail corrections & suggestions to suparna@in.ibm.com.
-Credits:
----------
+Credits
+=======
2.5 bio rewrite:
- Jens Axboe <jens.axboe@oracle.com>
+ - Jens Axboe <jens.axboe@oracle.com>
Many aspects of the generic block layer redesign were driven by and evolved
over discussions, prior patches and the collective experience of several
@@ -29,62 +38,63 @@ people. See sections 8 and 9 for a list of some related references.
The following people helped with review comments and inputs for this
document:
- Christoph Hellwig <hch@infradead.org>
- Arjan van de Ven <arjanv@redhat.com>
- Randy Dunlap <rdunlap@xenotime.net>
- Andre Hedrick <andre@linux-ide.org>
+
+ - Christoph Hellwig <hch@infradead.org>
+ - Arjan van de Ven <arjanv@redhat.com>
+ - Randy Dunlap <rdunlap@xenotime.net>
+ - Andre Hedrick <andre@linux-ide.org>
The following people helped with fixes/contributions to the bio patches
while it was still work-in-progress:
- David S. Miller <davem@redhat.com>
+ - David S. Miller <davem@redhat.com>
-Description of Contents:
-------------------------
-1. Scope for tuning of logic to various needs
- 1.1 Tuning based on device or low level driver capabilities
+.. Description of Contents:
+
+ 1. Scope for tuning of logic to various needs
+ 1.1 Tuning based on device or low level driver capabilities
- Per-queue parameters
- Highmem I/O support
- I/O scheduler modularization
- 1.2 Tuning based on high level requirements/capabilities
+ 1.2 Tuning based on high level requirements/capabilities
1.2.1 Request Priority/Latency
- 1.3 Direct access/bypass to lower layers for diagnostics and special
- device operations
+ 1.3 Direct access/bypass to lower layers for diagnostics and special
+ device operations
1.3.1 Pre-built commands
-2. New flexible and generic but minimalist i/o structure or descriptor
- (instead of using buffer heads at the i/o layer)
- 2.1 Requirements/Goals addressed
- 2.2 The bio struct in detail (multi-page io unit)
- 2.3 Changes in the request structure
-3. Using bios
- 3.1 Setup/teardown (allocation, splitting)
- 3.2 Generic bio helper routines
- 3.2.1 Traversing segments and completion units in a request
- 3.2.2 Setting up DMA scatterlists
- 3.2.3 I/O completion
- 3.2.4 Implications for drivers that do not interpret bios (don't handle
- multiple segments)
- 3.3 I/O submission
-4. The I/O scheduler
-5. Scalability related changes
- 5.1 Granular locking: Removal of io_request_lock
- 5.2 Prepare for transition to 64 bit sector_t
-6. Other Changes/Implications
- 6.1 Partition re-mapping handled by the generic block layer
-7. A few tips on migration of older drivers
-8. A list of prior/related/impacted patches/ideas
-9. Other References/Discussion Threads
+ 2. New flexible and generic but minimalist i/o structure or descriptor
+ (instead of using buffer heads at the i/o layer)
+ 2.1 Requirements/Goals addressed
+ 2.2 The bio struct in detail (multi-page io unit)
+ 2.3 Changes in the request structure
+ 3. Using bios
+ 3.1 Setup/teardown (allocation, splitting)
+ 3.2 Generic bio helper routines
+ 3.2.1 Traversing segments and completion units in a request
+ 3.2.2 Setting up DMA scatterlists
+ 3.2.3 I/O completion
+ 3.2.4 Implications for drivers that do not interpret bios (don't handle
+ multiple segments)
+ 3.3 I/O submission
+ 4. The I/O scheduler
+ 5. Scalability related changes
+ 5.1 Granular locking: Removal of io_request_lock
+ 5.2 Prepare for transition to 64 bit sector_t
+ 6. Other Changes/Implications
+ 6.1 Partition re-mapping handled by the generic block layer
+ 7. A few tips on migration of older drivers
+ 8. A list of prior/related/impacted patches/ideas
+ 9. Other References/Discussion Threads
----------------------------------------------------------------------------
Bio Notes
---------
+=========
Let us discuss the changes in the context of how some overall goals for the
block layer are addressed.
1. Scope for tuning the generic logic to satisfy various requirements
+=====================================================================
The block layer design supports adaptable abstractions to handle common
processing with the ability to tune the logic to an appropriate extent
@@ -97,6 +107,7 @@ and application/middleware software designed to take advantage of these
capabilities.
1.1 Tuning based on low level device / driver capabilities
+----------------------------------------------------------
Sophisticated devices with large built-in caches, intelligent i/o scheduling
optimizations, high memory DMA support, etc may find some of the
@@ -133,12 +144,12 @@ Some new queue property settings:
Sets two variables that limit the size of the request.
- The request queue's max_sectors, which is a soft size in
- units of 512 byte sectors, and could be dynamically varied
- by the core kernel.
+ units of 512 byte sectors, and could be dynamically varied
+ by the core kernel.
- The request queue's max_hw_sectors, which is a hard limit
- and reflects the maximum size request a driver can handle
- in units of 512 byte sectors.
+ and reflects the maximum size request a driver can handle
+ in units of 512 byte sectors.
The default for both max_sectors and max_hw_sectors is
255. The upper limit of max_sectors is 1024.
@@ -234,6 +245,7 @@ I/O scheduler wrappers are to be used instead of accessing the queue directly.
See section 4. The I/O scheduler for details.
1.2 Tuning Based on High level code capabilities
+------------------------------------------------
i. Application capabilities for raw i/o
@@ -258,9 +270,11 @@ would need an additional mechanism either via open flags or ioctls, or some
other upper level mechanism to communicate such settings to block.
1.2.1 Request Priority/Latency
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-Todo/Under discussion:
-Arjan's proposed request priority scheme allows higher levels some broad
+Todo/Under discussion::
+
+ Arjan's proposed request priority scheme allows higher levels some broad
control (high/med/low) over the priority of an i/o request vs other pending
requests in the queue. For example it allows reads for bringing in an
executable page on demand to be given a higher priority over pending write
@@ -272,7 +286,9 @@ Arjan's proposed request priority scheme allows higher levels some broad
1.3 Direct Access to Low level Device/Driver Capabilities (Bypass mode)
- (e.g Diagnostics, Systems Management)
+-----------------------------------------------------------------------
+
+(e.g Diagnostics, Systems Management)
There are situations where high-level code needs to have direct access to
the low level device capabilities or requires the ability to issue commands
@@ -308,28 +324,32 @@ involved. In the latter case, the driver would modify and manage the
request->buffer, request->sector and request->nr_sectors or
request->current_nr_sectors fields itself rather than using the block layer
end_request or end_that_request_first completion interfaces.
-(See 2.3 or Documentation/block/request.txt for a brief explanation of
+(See 2.3 or Documentation/block/request.rst for a brief explanation of
the request structure fields)
-[TBD: end_that_request_last should be usable even in this case;
-Perhaps an end_that_direct_request_first routine could be implemented to make
-handling direct requests easier for such drivers; Also for drivers that
-expect bios, a helper function could be provided for setting up a bio
-corresponding to a data buffer]
+::
-<JENS: I dont understand the above, why is end_that_request_first() not
-usable? Or _last for that matter. I must be missing something>
-<SUP: What I meant here was that if the request doesn't have a bio, then
- end_that_request_first doesn't modify nr_sectors or current_nr_sectors,
- and hence can't be used for advancing request state settings on the
- completion of partial transfers. The driver has to modify these fields
- directly by hand.
- This is because end_that_request_first only iterates over the bio list,
- and always returns 0 if there are none associated with the request.
- _last works OK in this case, and is not a problem, as I mentioned earlier
->
+ [TBD: end_that_request_last should be usable even in this case;
+ Perhaps an end_that_direct_request_first routine could be implemented to make
+ handling direct requests easier for such drivers; Also for drivers that
+ expect bios, a helper function could be provided for setting up a bio
+ corresponding to a data buffer]
+
+ <JENS: I dont understand the above, why is end_that_request_first() not
+ usable? Or _last for that matter. I must be missing something>
+
+ <SUP: What I meant here was that if the request doesn't have a bio, then
+ end_that_request_first doesn't modify nr_sectors or current_nr_sectors,
+ and hence can't be used for advancing request state settings on the
+ completion of partial transfers. The driver has to modify these fields
+ directly by hand.
+ This is because end_that_request_first only iterates over the bio list,
+ and always returns 0 if there are none associated with the request.
+ _last works OK in this case, and is not a problem, as I mentioned earlier
+ >
1.3.1 Pre-built Commands
+^^^^^^^^^^^^^^^^^^^^^^^^
A request can be created with a pre-built custom command to be sent directly
to the device. The cmd block in the request structure has room for filling
@@ -360,9 +380,11 @@ Aside:
the pre-builder hook can be invoked there.
-2. Flexible and generic but minimalist i/o structure/descriptor.
+2. Flexible and generic but minimalist i/o structure/descriptor
+===============================================================
2.1 Reason for a new structure and requirements addressed
+---------------------------------------------------------
Prior to 2.5, buffer heads were used as the unit of i/o at the generic block
layer, and the low level request structure was associated with a chain of
@@ -378,26 +400,26 @@ which were generated for each such chunk.
The following were some of the goals and expectations considered in the
redesign of the block i/o data structure in 2.5.
-i. Should be appropriate as a descriptor for both raw and buffered i/o -
+1. Should be appropriate as a descriptor for both raw and buffered i/o -
avoid cache related fields which are irrelevant in the direct/page i/o path,
or filesystem block size alignment restrictions which may not be relevant
for raw i/o.
-ii. Ability to represent high-memory buffers (which do not have a virtual
+2. Ability to represent high-memory buffers (which do not have a virtual
address mapping in kernel address space).
-iii.Ability to represent large i/os w/o unnecessarily breaking them up (i.e
+3. Ability to represent large i/os w/o unnecessarily breaking them up (i.e
greater than PAGE_SIZE chunks in one shot)
-iv. At the same time, ability to retain independent identity of i/os from
+4. At the same time, ability to retain independent identity of i/os from
different sources or i/o units requiring individual completion (e.g. for
latency reasons)
-v. Ability to represent an i/o involving multiple physical memory segments
+5. Ability to represent an i/o involving multiple physical memory segments
(including non-page aligned page fragments, as specified via readv/writev)
without unnecessarily breaking it up, if the underlying device is capable of
handling it.
-vi. Preferably should be based on a memory descriptor structure that can be
+6. Preferably should be based on a memory descriptor structure that can be
passed around different types of subsystems or layers, maybe even
networking, without duplication or extra copies of data/descriptor fields
themselves in the process
-vii.Ability to handle the possibility of splits/merges as the structure passes
+7. Ability to handle the possibility of splits/merges as the structure passes
through layered drivers (lvm, md, evms), with minimal overhead.
The solution was to define a new structure (bio) for the block layer,
@@ -408,6 +430,7 @@ bh structure for buffered i/o, and in the case of raw/direct i/o kiobufs are
mapped to bio structures.
2.2 The bio struct
+------------------
The bio structure uses a vector representation pointing to an array of tuples
of <page, offset, len> to describe the i/o buffer, and has various other
@@ -417,34 +440,36 @@ performing the i/o.
Notice that this representation means that a bio has no virtual address
mapping at all (unlike buffer heads).
-struct bio_vec {
- struct page *bv_page;
- unsigned short bv_len;
- unsigned short bv_offset;
-};
+::
-/*
- * main unit of I/O for the block layer and lower layers (ie drivers)
- */
-struct bio {
- struct bio *bi_next; /* request queue link */
- struct block_device *bi_bdev; /* target device */
- unsigned long bi_flags; /* status, command, etc */
- unsigned long bi_opf; /* low bits: r/w, high: priority */
+ struct bio_vec {
+ struct page *bv_page;
+ unsigned short bv_len;
+ unsigned short bv_offset;
+ };
- unsigned int bi_vcnt; /* how may bio_vec's */
- struct bvec_iter bi_iter; /* current index into bio_vec array */
+ /*
+ * main unit of I/O for the block layer and lower layers (ie drivers)
+ */
+ struct bio {
+ struct bio *bi_next; /* request queue link */
+ struct block_device *bi_bdev; /* target device */
+ unsigned long bi_flags; /* status, command, etc */
+ unsigned long bi_opf; /* low bits: r/w, high: priority */
- unsigned int bi_size; /* total size in bytes */
- unsigned short bi_phys_segments; /* segments after physaddr coalesce*/
- unsigned short bi_hw_segments; /* segments after DMA remapping */
- unsigned int bi_max; /* max bio_vecs we can hold
- used as index into pool */
- struct bio_vec *bi_io_vec; /* the actual vec list */
- bio_end_io_t *bi_end_io; /* bi_end_io (bio) */
- atomic_t bi_cnt; /* pin count: free when it hits zero */
- void *bi_private;
-};
+ unsigned int bi_vcnt; /* how may bio_vec's */
+ struct bvec_iter bi_iter; /* current index into bio_vec array */
+
+ unsigned int bi_size; /* total size in bytes */
+ unsigned short bi_phys_segments; /* segments after physaddr coalesce*/
+ unsigned short bi_hw_segments; /* segments after DMA remapping */
+ unsigned int bi_max; /* max bio_vecs we can hold
+ used as index into pool */
+ struct bio_vec *bi_io_vec; /* the actual vec list */
+ bio_end_io_t *bi_end_io; /* bi_end_io (bio) */
+ atomic_t bi_cnt; /* pin count: free when it hits zero */
+ void *bi_private;
+ };
With this multipage bio design:
@@ -454,7 +479,7 @@ With this multipage bio design:
- Splitting of an i/o request across multiple devices (as in the case of
lvm or raid) is achieved by cloning the bio (where the clone points to
the same bi_io_vec array, but with the index and size accordingly modified)
-- A linked list of bios is used as before for unrelated merges (*) - this
+- A linked list of bios is used as before for unrelated merges [*]_ - this
avoids reallocs and makes independent completions easier to handle.
- Code that traverses the req list can find all the segments of a bio
by using rq_for_each_segment. This handles the fact that a request
@@ -463,10 +488,12 @@ With this multipage bio design:
field to keep track of the next bio_vec entry to process.
(e.g a 1MB bio_vec needs to be handled in max 128kB chunks for IDE)
[TBD: Should preferably also have a bi_voffset and bi_vlen to avoid modifying
- bi_offset an len fields]
+ bi_offset an len fields]
-(*) unrelated merges -- a request ends up containing two or more bios that
- didn't originate from the same place.
+.. [*]
+
+ unrelated merges -- a request ends up containing two or more bios that
+ didn't originate from the same place.
bi_end_io() i/o callback gets called on i/o completion of the entire bio.
@@ -484,10 +511,11 @@ which in turn means that only raw I/O uses it (direct i/o may not work
right now). The intent however is to enable clustering of pages etc to
become possible. The pagebuf abstraction layer from SGI also uses multi-page
bios, but that is currently not included in the stock development kernels.
-The same is true of Andrew Morton's work-in-progress multipage bio writeout
+The same is true of Andrew Morton's work-in-progress multipage bio writeout
and readahead patches.
2.3 Changes in the Request Structure
+------------------------------------
The request structure is the structure that gets passed down to low level
drivers. The block layer make_request function builds up a request structure,
@@ -500,11 +528,11 @@ request structure.
Only some relevant fields (mainly those which changed or may be referred
to in some of the discussion here) are listed below, not necessarily in
the order in which they occur in the structure (see include/linux/blkdev.h)
-Refer to Documentation/block/request.txt for details about all the request
+Refer to Documentation/block/request.rst for details about all the request
structure fields and a quick reference about the layers which are
-supposed to use or modify those fields.
+supposed to use or modify those fields::
-struct request {
+ struct request {
struct list_head queuelist; /* Not meant to be directly accessed by
the driver.
Used by q->elv_next_request_fn
@@ -549,11 +577,11 @@ struct request {
.
struct bio *bio, *biotail; /* bio list instead of bh */
struct request_list *rl;
-}
-
+ }
+
See the req_ops and req_flag_bits definitions for an explanation of the various
flags available. Some bits are used by the block layer or i/o scheduler.
-
+
The behaviour of the various sector counts are almost the same as before,
except that since we have multi-segment bios, current_nr_sectors refers
to the numbers of sectors in the current segment being processed which could
@@ -579,8 +607,10 @@ a driver needs to be careful about interoperation with the block layer helper
functions which the driver uses. (Section 1.3)
3. Using bios
+=============
3.1 Setup/Teardown
+------------------
There are routines for managing the allocation, and reference counting, and
freeing of bios (bio_alloc, bio_get, bio_put).
@@ -607,10 +637,13 @@ case of bio, these routines make use of the standard slab allocator.
The caller of bio_alloc is expected to taken certain steps to avoid
deadlocks, e.g. avoid trying to allocate more memory from the pool while
already holding memory obtained from the pool.
-[TBD: This is a potential issue, though a rare possibility
- in the bounce bio allocation that happens in the current code, since
- it ends up allocating a second bio from the same pool while
- holding the original bio ]
+
+::
+
+ [TBD: This is a potential issue, though a rare possibility
+ in the bounce bio allocation that happens in the current code, since
+ it ends up allocating a second bio from the same pool while
+ holding the original bio ]
Memory allocated from the pool should be released back within a limited
amount of time (in the case of bio, that would be after the i/o is completed).
@@ -636,14 +669,18 @@ same bio_vec_list). This would typically be used for splitting i/o requests
in lvm or md.
3.2 Generic bio helper Routines
+-------------------------------
3.2.1 Traversing segments and completion units in a request
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The macro rq_for_each_segment() should be used for traversing the bios
in the request list (drivers should avoid directly trying to do it
themselves). Using these helpers should also make it easier to cope
with block changes in the future.
+::
+
struct req_iterator iter;
rq_for_each_segment(bio_vec, rq, iter)
/* bio_vec is now current segment */
@@ -654,6 +691,7 @@ which don't make a distinction between segments and completion units would
need to be reorganized to support multi-segment bios.
3.2.2 Setting up DMA scatterlists
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The blk_rq_map_sg() helper routine would be used for setting up scatter
gather lists from a request, so a driver need not do it on its own.
@@ -684,6 +722,7 @@ of physical data segments in a request (i.e. the largest sized scatter list
a driver could handle)
3.2.3 I/O completion
+^^^^^^^^^^^^^^^^^^^^
The existing generic block layer helper routines end_request,
end_that_request_first and end_that_request_last can be used for i/o
@@ -692,8 +731,10 @@ request can be kicked of) as before. With the introduction of multi-page
bio support, end_that_request_first requires an additional argument indicating
the number of sectors completed.
-3.2.4 Implications for drivers that do not interpret bios (don't handle
- multiple segments)
+3.2.4 Implications for drivers that do not interpret bios
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+(don't handle multiple segments)
Drivers that do not interpret bios e.g those which do not handle multiple
segments and do not support i/o into high memory addresses (require bounce
@@ -708,15 +749,18 @@ be used if only if the request has come down from block/bio path, not for
direct access requests which only specify rq->buffer without a valid rq->bio)
3.3 I/O Submission
+------------------
The routine submit_bio() is used to submit a single io. Higher level i/o
routines make use of this:
(a) Buffered i/o:
+
The routine submit_bh() invokes submit_bio() on a bio corresponding to the
bh, allocating the bio if required. ll_rw_block() uses submit_bh() as before.
(b) Kiobuf i/o (for raw/direct i/o):
+
The ll_rw_kio() routine breaks up the kiobuf into page sized chunks and
maps the array to one or more multi-page bios, issuing submit_bio() to
perform the i/o on each of these.
@@ -739,6 +783,7 @@ Todo/Observation:
(c) Page i/o:
+
Todo/Under discussion:
Andrew Morton's multi-page bio patches attempt to issue multi-page
@@ -754,6 +799,7 @@ Todo/Under discussion:
abstraction, but intended to be as lightweight as possible).
(d) Direct access i/o:
+
Direct access requests that do not contain bios would be submitted differently
as discussed earlier in section 1.3.
@@ -781,11 +827,13 @@ Aside:
4. The I/O scheduler
+====================
+
I/O scheduler, a.k.a. elevator, is implemented in two layers. Generic dispatch
queue and specific I/O schedulers. Unless stated otherwise, elevator is used
to refer to both parts and I/O scheduler to specific I/O schedulers.
-Block layer implements generic dispatch queue in block/*.c.
+Block layer implements generic dispatch queue in `block/*.c`.
The generic dispatch queue is responsible for requeueing, handling non-fs
requests and all other subtleties.
@@ -803,8 +851,11 @@ doesn't implement a function, the switch does nothing or some minimal house
keeping work.
4.1. I/O scheduler API
+----------------------
The functions an elevator may implement are: (* are mandatory)
+
+=============================== ================================================
elevator_merge_fn called to query requests for merge with a bio
elevator_merge_req_fn called when two requests get merged. the one
@@ -863,8 +914,11 @@ elevator_deactivate_req_fn Called when device driver decides to delay
elevator_init_fn*
elevator_exit_fn Allocate and free any elevator specific storage
for a queue.
+=============================== ================================================
4.2 Request flows seen by I/O schedulers
+----------------------------------------
+
All requests seen by I/O schedulers strictly follow one of the following three
flows.
@@ -878,9 +932,12 @@ flows.
-> put_req_fn
4.3 I/O scheduler implementation
+--------------------------------
+
The generic i/o scheduler algorithm attempts to sort/merge/batch requests for
optimal disk scan and request servicing performance (based on generic
principles and device capabilities), optimized for:
+
i. improved throughput
ii. improved latency
iii. better utilization of h/w & CPU time
@@ -934,15 +991,19 @@ Aside:
a big request from the broken up pieces coming by.
4.4 I/O contexts
+----------------
+
I/O contexts provide a dynamically allocated per process data area. They may
be used in I/O schedulers, and in the block layer (could be used for IO statis,
-priorities for example). See *io_context in block/ll_rw_blk.c, and as-iosched.c
+priorities for example). See `*io_context` in block/ll_rw_blk.c, and as-iosched.c
for an example of usage in an i/o scheduler.
5. Scalability related changes
+==============================
5.1 Granular Locking: io_request_lock replaced by a per-queue lock
+------------------------------------------------------------------
The global io_request_lock has been removed as of 2.5, to avoid
the scalability bottleneck it was causing, and has been replaced by more
@@ -957,20 +1018,23 @@ request_fn execution which it means that lots of older drivers
should still be SMP safe. Drivers are free to drop the queue
lock themselves, if required. Drivers that explicitly used the
io_request_lock for serialization need to be modified accordingly.
-Usually it's as easy as adding a global lock:
+Usually it's as easy as adding a global lock::
static DEFINE_SPINLOCK(my_driver_lock);
and passing the address to that lock to blk_init_queue().
5.2 64 bit sector numbers (sector_t prepares for 64 bit support)
+----------------------------------------------------------------
The sector number used in the bio structure has been changed to sector_t,
which could be defined as 64 bit in preparation for 64 bit sector support.
6. Other Changes/Implications
+=============================
6.1 Partition re-mapping handled by the generic block layer
+-----------------------------------------------------------
In 2.5 some of the gendisk/partition related code has been reorganized.
Now the generic block layer performs partition-remapping early and thus
@@ -985,6 +1049,7 @@ sent are offset from the beginning of the device.
7. A Few Tips on Migration of older drivers
+===========================================
Old-style drivers that just use CURRENT and ignores clustered requests,
may not need much change. The generic layer will automatically handle
@@ -1018,12 +1083,12 @@ blk_init_queue time.
Drivers no longer have to map a {partition, sector offset} into the
correct absolute location anymore, this is done by the block layer, so
-where a driver received a request ala this before:
+where a driver received a request ala this before::
rq->rq_dev = mk_kdev(3, 5); /* /dev/hda5 */
rq->sector = 0; /* first sector on hda5 */
- it will now see
+it will now see::
rq->rq_dev = mk_kdev(3, 0); /* /dev/hda */
rq->sector = 123128; /* offset from start of disk */
@@ -1040,38 +1105,66 @@ a bio into the virtual address space.
8. Prior/Related/Impacted patches
+=================================
8.1. Earlier kiobuf patches (sct/axboe/chait/hch/mkp)
+-----------------------------------------------------
+
- orig kiobuf & raw i/o patches (now in 2.4 tree)
- direct kiobuf based i/o to devices (no intermediate bh's)
- page i/o using kiobuf
- kiobuf splitting for lvm (mkp)
- elevator support for kiobuf request merging (axboe)
+
8.2. Zero-copy networking (Dave Miller)
+---------------------------------------
+
8.3. SGI XFS - pagebuf patches - use of kiobufs
+-----------------------------------------------
8.4. Multi-page pioent patch for bio (Christoph Hellwig)
+--------------------------------------------------------
8.5. Direct i/o implementation (Andrea Arcangeli) since 2.4.10-pre11
+--------------------------------------------------------------------
8.6. Async i/o implementation patch (Ben LaHaise)
+-------------------------------------------------
8.7. EVMS layering design (IBM EVMS team)
-8.8. Larger page cache size patch (Ben LaHaise) and
- Large page size (Daniel Phillips)
+-----------------------------------------
+8.8. Larger page cache size patch (Ben LaHaise) and Large page size (Daniel Phillips)
+-------------------------------------------------------------------------------------
+
=> larger contiguous physical memory buffers
+
8.9. VM reservations patch (Ben LaHaise)
+----------------------------------------
8.10. Write clustering patches ? (Marcelo/Quintela/Riel ?)
+----------------------------------------------------------
8.11. Block device in page cache patch (Andrea Archangeli) - now in 2.4.10+
-8.12. Multiple block-size transfers for faster raw i/o (Shailabh Nagar,
- Badari)
+---------------------------------------------------------------------------
+8.12. Multiple block-size transfers for faster raw i/o (Shailabh Nagar, Badari)
+-------------------------------------------------------------------------------
8.13 Priority based i/o scheduler - prepatches (Arjan van de Ven)
+------------------------------------------------------------------
8.14 IDE Taskfile i/o patch (Andre Hedrick)
+--------------------------------------------
8.15 Multi-page writeout and readahead patches (Andrew Morton)
+---------------------------------------------------------------
8.16 Direct i/o patches for 2.5 using kvec and bio (Badari Pulavarthy)
+-----------------------------------------------------------------------
-9. Other References:
+9. Other References
+===================
+
+9.1 The Splice I/O Model
+------------------------
+
+Larry McVoy (and subsequent discussions on lkml, and Linus' comments - Jan 2001
+
+9.2 Discussions about kiobuf and bh design
+------------------------------------------
+
+On lkml between sct, linus, alan et al - Feb-March 2001 (many of the
+initial thoughts that led to bio were brought up in this discussion thread)
-9.1 The Splice I/O Model - Larry McVoy (and subsequent discussions on lkml,
-and Linus' comments - Jan 2001)
-9.2 Discussions about kiobuf and bh design on lkml between sct, linus, alan
-et al - Feb-March 2001 (many of the initial thoughts that led to bio were
-brought up in this discussion thread)
9.3 Discussions on mempool on lkml - Dec 2001.
+----------------------------------------------
diff --git a/Documentation/block/biovecs.txt b/Documentation/block/biovecs.rst
similarity index 92%
rename from Documentation/block/biovecs.txt
rename to Documentation/block/biovecs.rst
index ce6eccaf5df7..86fa66c87172 100644
--- a/Documentation/block/biovecs.txt
+++ b/Documentation/block/biovecs.rst
@@ -1,6 +1,6 @@
-
-Immutable biovecs and biovec iterators:
-=======================================
+======================================
+Immutable biovecs and biovec iterators
+======================================
Kent Overstreet <kmo@daterainc.com>
@@ -121,10 +121,12 @@ Other implications:
Usage of helpers:
=================
-* The following helpers whose names have the suffix of "_all" can only be used
-on non-BIO_CLONED bio. They are usually used by filesystem code. Drivers
-shouldn't use them because the bio may have been split before it reached the
-driver.
+* The following helpers whose names have the suffix of `_all` can only be used
+ on non-BIO_CLONED bio. They are usually used by filesystem code. Drivers
+ shouldn't use them because the bio may have been split before it reached the
+ driver.
+
+::
bio_for_each_segment_all()
bio_first_bvec_all()
@@ -132,13 +134,13 @@ driver.
bio_last_bvec_all()
* The following helpers iterate over single-page segment. The passed 'struct
-bio_vec' will contain a single-page IO vector during the iteration
+ bio_vec' will contain a single-page IO vector during the iteration::
bio_for_each_segment()
bio_for_each_segment_all()
* The following helpers iterate over multi-page bvec. The passed 'struct
-bio_vec' will contain a multi-page IO vector during the iteration
+ bio_vec' will contain a multi-page IO vector during the iteration::
bio_for_each_bvec()
rq_for_each_bvec()
diff --git a/Documentation/block/capability.rst b/Documentation/block/capability.rst
new file mode 100644
index 000000000000..2cf258d64bbe
--- /dev/null
+++ b/Documentation/block/capability.rst
@@ -0,0 +1,18 @@
+===============================
+Generic Block Device Capability
+===============================
+
+This file documents the sysfs file block/<disk>/capability
+
+capability is a hex word indicating which capabilities a specific disk
+supports. For more information on bits not listed here, see
+include/linux/genhd.h
+
+GENHD_FL_MEDIA_CHANGE_NOTIFY
+----------------------------
+
+Value: 4
+
+When this bit is set, the disk supports Asynchronous Notification
+of media change events. These events will be broadcast to user
+space via kernel uevent.
diff --git a/Documentation/block/capability.txt b/Documentation/block/capability.txt
deleted file mode 100644
index 2f1729424ef4..000000000000
--- a/Documentation/block/capability.txt
+++ /dev/null
@@ -1,15 +0,0 @@
-Generic Block Device Capability
-===============================================================================
-This file documents the sysfs file block/<disk>/capability
-
-capability is a hex word indicating which capabilities a specific disk
-supports. For more information on bits not listed here, see
-include/linux/genhd.h
-
-Capability Value
--------------------------------------------------------------------------------
-GENHD_FL_MEDIA_CHANGE_NOTIFY 4
- When this bit is set, the disk supports Asynchronous Notification
- of media change events. These events will be broadcast to user
- space via kernel uevent.
-
diff --git a/Documentation/block/cmdline-partition.txt b/Documentation/block/cmdline-partition.rst
similarity index 92%
rename from Documentation/block/cmdline-partition.txt
rename to Documentation/block/cmdline-partition.rst
index 760a3f7c3ed4..530bedff548a 100644
--- a/Documentation/block/cmdline-partition.txt
+++ b/Documentation/block/cmdline-partition.rst
@@ -1,5 +1,6 @@
+==============================================
Embedded device command line partition parsing
-=====================================================================
+==============================================
The "blkdevparts" command line option adds support for reading the
block device partition table from the kernel command line.
@@ -22,12 +23,15 @@ blkdevparts=<blkdev-def>[;<blkdev-def>]
<size>
partition size, in bytes, such as: 512, 1m, 1G.
size may contain an optional suffix of (upper or lower case):
+
K, M, G, T, P, E.
+
"-" is used to denote all remaining space.
<offset>
partition start address, in bytes.
offset may contain an optional suffix of (upper or lower case):
+
K, M, G, T, P, E.
(part-name)
@@ -36,11 +40,14 @@ blkdevparts=<blkdev-def>[;<blkdev-def>]
User space application can access partition by partition name.
Example:
+
eMMC disk names are "mmcblk0" and "mmcblk0boot0".
- bootargs:
+ bootargs::
+
'blkdevparts=mmcblk0:1G(data0),1G(data1),-;mmcblk0boot0:1m(boot),-(kernel)'
- dmesg:
+ dmesg::
+
mmcblk0: p1(data0) p2(data1) p3()
mmcblk0boot0: p1(boot) p2(kernel)
diff --git a/Documentation/block/data-integrity.txt b/Documentation/block/data-integrity.rst
similarity index 92%
rename from Documentation/block/data-integrity.txt
rename to Documentation/block/data-integrity.rst
index 934c44ea0c57..4aa6da86ea34 100644
--- a/Documentation/block/data-integrity.txt
+++ b/Documentation/block/data-integrity.rst
@@ -1,5 +1,9 @@
-----------------------------------------------------------------------
-1. INTRODUCTION
+==============
+Data Integrity
+==============
+
+1. Introduction
+===============
Modern filesystems feature checksumming of data and metadata to
protect against data corruption. However, the detection of the
@@ -28,8 +32,8 @@ integrity of the I/O and reject it if corruption is detected. This
allows not only corruption prevention but also isolation of the point
of failure.
-----------------------------------------------------------------------
-2. THE DATA INTEGRITY EXTENSIONS
+2. The Data Integrity Extensions
+================================
As written, the protocol extensions only protect the path between
controller and storage device. However, many controllers actually
@@ -75,8 +79,8 @@ Extensions. As these extensions are outside the scope of the protocol
bodies (T10, T13), Oracle and its partners are trying to standardize
them within the Storage Networking Industry Association.
-----------------------------------------------------------------------
-3. KERNEL CHANGES
+3. Kernel Changes
+=================
The data integrity framework in Linux enables protection information
to be pinned to I/Os and sent to/received from controllers that
@@ -123,10 +127,11 @@ access to manipulate the tags from user space. A passthrough
interface for this is being worked on.
-----------------------------------------------------------------------
-4. BLOCK LAYER IMPLEMENTATION DETAILS
+4. Block Layer Implementation Details
+=====================================
-4.1 BIO
+4.1 Bio
+-------
The data integrity patches add a new field to struct bio when
CONFIG_BLK_DEV_INTEGRITY is enabled. bio_integrity(bio) returns a
@@ -145,7 +150,8 @@ attached using bio_integrity_add_page().
bio_free() will automatically free the bip.
-4.2 BLOCK DEVICE
+4.2 Block Device
+----------------
Because the format of the protection data is tied to the physical
disk, each block device has been extended with a block integrity
@@ -163,10 +169,11 @@ and MD linear, RAID0 and RAID1 are currently supported. RAID4/5/6
will require extra work due to the application tag.
-----------------------------------------------------------------------
-5.0 BLOCK LAYER INTEGRITY API
+5.0 Block Layer Integrity API
+=============================
-5.1 NORMAL FILESYSTEM
+5.1 Normal Filesystem
+---------------------
The normal filesystem is unaware that the underlying block device
is capable of sending/receiving integrity metadata. The IMD will
@@ -174,25 +181,26 @@ will require extra work due to the application tag.
in case of a WRITE. A READ request will cause the I/O integrity
to be verified upon completion.
- IMD generation and verification can be toggled using the
+ IMD generation and verification can be toggled using the::
/sys/block/<bdev>/integrity/write_generate
- and
+ and::
/sys/block/<bdev>/integrity/read_verify
flags.
-5.2 INTEGRITY-AWARE FILESYSTEM
+5.2 Integrity-Aware Filesystem
+------------------------------
A filesystem that is integrity-aware can prepare I/Os with IMD
attached. It can also use the application tag space if this is
supported by the block device.
- bool bio_integrity_prep(bio);
+ `bool bio_integrity_prep(bio);`
To generate IMD for WRITE and to set up buffers for READ, the
filesystem must call bio_integrity_prep(bio).
@@ -204,14 +212,15 @@ will require extra work due to the application tag.
Complete bio with error if prepare failed for some reson.
-5.3 PASSING EXISTING INTEGRITY METADATA
+5.3 Passing Existing Integrity Metadata
+---------------------------------------
Filesystems that either generate their own integrity metadata or
are capable of transferring IMD from user space can use the
following calls:
- struct bip * bio_integrity_alloc(bio, gfp_mask, nr_pages);
+ `struct bip * bio_integrity_alloc(bio, gfp_mask, nr_pages);`
Allocates the bio integrity payload and hangs it off of the bio.
nr_pages indicate how many pages of protection data need to be
@@ -220,7 +229,7 @@ will require extra work due to the application tag.
The integrity payload will be freed at bio_free() time.
- int bio_integrity_add_page(bio, page, len, offset);
+ `int bio_integrity_add_page(bio, page, len, offset);`
Attaches a page containing integrity metadata to an existing
bio. The bio must have an existing bip,
@@ -241,16 +250,16 @@ will require extra work due to the application tag.
integrity upon completion.
-5.4 REGISTERING A BLOCK DEVICE AS CAPABLE OF EXCHANGING INTEGRITY
- METADATA
+5.4 Registering A Block Device As Capable Of Exchanging Integrity Metadata
+--------------------------------------------------------------------------
To enable integrity exchange on a block device the gendisk must be
registered as capable:
- int blk_integrity_register(gendisk, blk_integrity);
+ `int blk_integrity_register(gendisk, blk_integrity);`
The blk_integrity struct is a template and should contain the
- following:
+ following::
static struct blk_integrity my_profile = {
.name = "STANDARDSBODY-TYPE-VARIANT-CSUM",
@@ -278,4 +287,5 @@ will require extra work due to the application tag.
0 depending on the value of the Control Mode Page ATO bit.
----------------------------------------------------------------------
+
2007-12-24 Martin K. Petersen <martin.petersen@oracle.com>
diff --git a/Documentation/block/deadline-iosched.txt b/Documentation/block/deadline-iosched.rst
similarity index 89%
rename from Documentation/block/deadline-iosched.txt
rename to Documentation/block/deadline-iosched.rst
index 2d82c80322cb..7346cc901234 100644
--- a/Documentation/block/deadline-iosched.txt
+++ b/Documentation/block/deadline-iosched.rst
@@ -1,3 +1,4 @@
+==============================
Deadline IO scheduler tunables
==============================
@@ -7,15 +8,13 @@ of interest to power users.
Selecting IO schedulers
-----------------------
-Refer to Documentation/block/switching-sched.txt for information on
+Refer to Documentation/block/switching-sched.rst for information on
selecting an io scheduler on a per-device basis.
-
-********************************************************************************
-
+------------------------------------------------------------------------------
read_expire (in ms)
------------
+-----------------------
The goal of the deadline io scheduler is to attempt to guarantee a start
service time for a request. As we focus mainly on read latencies, this is
@@ -25,15 +24,15 @@ milliseconds.
write_expire (in ms)
------------
+-----------------------
Similar to read_expire mentioned above, but for writes.
fifo_batch (number of requests)
-----------
+------------------------------------
-Requests are grouped into ``batches'' of a particular data direction (read or
+Requests are grouped into ``batches`` of a particular data direction (read or
write) which are serviced in increasing sector order. To limit extra seeking,
deadline expiries are only checked between batches. fifo_batch controls the
maximum number of requests per batch.
@@ -45,7 +44,7 @@ generally improves throughput, at the cost of latency variation.
writes_starved (number of dispatches)
---------------
+--------------------------------------
When we have to move requests from the io scheduler queue to the block
device dispatch queue, we always give a preference to reads. However, we
@@ -56,7 +55,7 @@ same criteria as reads.
front_merges (bool)
-------------
+----------------------
Sometimes it happens that a request enters the io scheduler that is contiguous
with a request that is already on the queue. Either it fits in the back of that
diff --git a/Documentation/block/index.rst b/Documentation/block/index.rst
new file mode 100644
index 000000000000..8cd226a0e86e
--- /dev/null
+++ b/Documentation/block/index.rst
@@ -0,0 +1,25 @@
+:orphan:
+
+=====
+Block
+=====
+
+.. toctree::
+ :maxdepth: 1
+
+ bfq-iosched
+ biodoc
+ biovecs
+ capability
+ cmdline-partition
+ data-integrity
+ deadline-iosched
+ ioprio
+ kyber-iosched
+ null_blk
+ pr
+ queue-sysfs
+ request
+ stat
+ switching-sched
+ writeback_cache_control
diff --git a/Documentation/block/ioprio.txt b/Documentation/block/ioprio.rst
similarity index 75%
rename from Documentation/block/ioprio.txt
rename to Documentation/block/ioprio.rst
index 8ed8c59380b4..f72b0de65af7 100644
--- a/Documentation/block/ioprio.txt
+++ b/Documentation/block/ioprio.rst
@@ -1,3 +1,4 @@
+===================
Block io priorities
===================
@@ -40,81 +41,81 @@ class data, since it doesn't really apply here.
Tools
-----
-See below for a sample ionice tool. Usage:
+See below for a sample ionice tool. Usage::
-# ionice -c<class> -n<level> -p<pid>
+ # ionice -c<class> -n<level> -p<pid>
If pid isn't given, the current process is assumed. IO priority settings
are inherited on fork, so you can use ionice to start the process at a given
-level:
+level::
-# ionice -c2 -n0 /bin/ls
+ # ionice -c2 -n0 /bin/ls
will run ls at the best-effort scheduling class at the highest priority.
-For a running process, you can give the pid instead:
+For a running process, you can give the pid instead::
-# ionice -c1 -n2 -p100
+ # ionice -c1 -n2 -p100
will change pid 100 to run at the realtime scheduling class, at priority 2.
----> snip ionice.c tool <---
+ionice.c tool::
-#include <stdio.h>
-#include <stdlib.h>
-#include <errno.h>
-#include <getopt.h>
-#include <unistd.h>
-#include <sys/ptrace.h>
-#include <asm/unistd.h>
+ #include <stdio.h>
+ #include <stdlib.h>
+ #include <errno.h>
+ #include <getopt.h>
+ #include <unistd.h>
+ #include <sys/ptrace.h>
+ #include <asm/unistd.h>
-extern int sys_ioprio_set(int, int, int);
-extern int sys_ioprio_get(int, int);
+ extern int sys_ioprio_set(int, int, int);
+ extern int sys_ioprio_get(int, int);
-#if defined(__i386__)
-#define __NR_ioprio_set 289
-#define __NR_ioprio_get 290
-#elif defined(__ppc__)
-#define __NR_ioprio_set 273
-#define __NR_ioprio_get 274
-#elif defined(__x86_64__)
-#define __NR_ioprio_set 251
-#define __NR_ioprio_get 252
-#elif defined(__ia64__)
-#define __NR_ioprio_set 1274
-#define __NR_ioprio_get 1275
-#else
-#error "Unsupported arch"
-#endif
+ #if defined(__i386__)
+ #define __NR_ioprio_set 289
+ #define __NR_ioprio_get 290
+ #elif defined(__ppc__)
+ #define __NR_ioprio_set 273
+ #define __NR_ioprio_get 274
+ #elif defined(__x86_64__)
+ #define __NR_ioprio_set 251
+ #define __NR_ioprio_get 252
+ #elif defined(__ia64__)
+ #define __NR_ioprio_set 1274
+ #define __NR_ioprio_get 1275
+ #else
+ #error "Unsupported arch"
+ #endif
-static inline int ioprio_set(int which, int who, int ioprio)
-{
+ static inline int ioprio_set(int which, int who, int ioprio)
+ {
return syscall(__NR_ioprio_set, which, who, ioprio);
-}
+ }
-static inline int ioprio_get(int which, int who)
-{
+ static inline int ioprio_get(int which, int who)
+ {
return syscall(__NR_ioprio_get, which, who);
-}
+ }
-enum {
+ enum {
IOPRIO_CLASS_NONE,
IOPRIO_CLASS_RT,
IOPRIO_CLASS_BE,
IOPRIO_CLASS_IDLE,
-};
+ };
-enum {
+ enum {
IOPRIO_WHO_PROCESS = 1,
IOPRIO_WHO_PGRP,
IOPRIO_WHO_USER,
-};
+ };
-#define IOPRIO_CLASS_SHIFT 13
+ #define IOPRIO_CLASS_SHIFT 13
-const char *to_prio[] = { "none", "realtime", "best-effort", "idle", };
+ const char *to_prio[] = { "none", "realtime", "best-effort", "idle", };
-int main(int argc, char *argv[])
-{
+ int main(int argc, char *argv[])
+ {
int ioprio = 4, set = 0, ioprio_class = IOPRIO_CLASS_BE;
int c, pid = 0;
@@ -175,9 +176,7 @@ int main(int argc, char *argv[])
}
return 0;
-}
-
----> snip ionice.c tool <---
+ }
March 11 2005, Jens Axboe <jens.axboe@oracle.com>
diff --git a/Documentation/block/kyber-iosched.txt b/Documentation/block/kyber-iosched.rst
similarity index 86%
rename from Documentation/block/kyber-iosched.txt
rename to Documentation/block/kyber-iosched.rst
index e94feacd7edc..3e164dd0617c 100644
--- a/Documentation/block/kyber-iosched.txt
+++ b/Documentation/block/kyber-iosched.rst
@@ -1,5 +1,6 @@
+============================
Kyber I/O scheduler tunables
-===========================
+============================
The only two tunables for the Kyber scheduler are the target latencies for
reads and synchronous writes. Kyber will throttle requests in order to meet
diff --git a/Documentation/block/null_blk.txt b/Documentation/block/null_blk.rst
similarity index 60%
rename from Documentation/block/null_blk.txt
rename to Documentation/block/null_blk.rst
index 41f0a3d33bbd..31451d80783c 100644
--- a/Documentation/block/null_blk.txt
+++ b/Documentation/block/null_blk.rst
@@ -1,33 +1,43 @@
+========================
Null block device driver
-================================================================================
+========================
-I. Overview
+1. Overview
+===========
The null block device (/dev/nullb*) is used for benchmarking the various
block-layer implementations. It emulates a block device of X gigabytes in size.
The following instances are possible:
Single-queue block-layer
+
- Request-based.
- Single submission queue per device.
- Implements IO scheduling algorithms (CFQ, Deadline, noop).
+
Multi-queue block-layer
+
- Request-based.
- Configurable submission queues per device.
+
No block-layer (Known as bio-based)
+
- Bio-based. IO requests are submitted directly to the device driver.
- Directly accepts bio data structure and returns them.
All of them have a completion queue for each core in the system.
-II. Module parameters applicable for all instances:
+2. Module parameters applicable for all instances
+=================================================
queue_mode=[0-2]: Default: 2-Multi-queue
Selects which block-layer the module should instantiate with.
- 0: Bio-based.
- 1: Single-queue.
- 2: Multi-queue.
+ = ============
+ 0 Bio-based
+ 1 Single-queue
+ 2 Multi-queue
+ = ============
home_node=[0--nr_nodes]: Default: NUMA_NO_NODE
Selects what CPU node the data structures are allocated from.
@@ -45,12 +55,14 @@ nr_devices=[Number of devices]: Default: 1
irqmode=[0-2]: Default: 1-Soft-irq
The completion mode used for completing IOs to the block-layer.
- 0: None.
- 1: Soft-irq. Uses IPI to complete IOs across CPU nodes. Simulates the overhead
+ = ===========================================================================
+ 0 None.
+ 1 Soft-irq. Uses IPI to complete IOs across CPU nodes. Simulates the overhead
when IOs are issued from another CPU node than the home the device is
connected to.
- 2: Timer: Waits a specific period (completion_nsec) for each IO before
+ 2 Timer: Waits a specific period (completion_nsec) for each IO before
completion.
+ = ===========================================================================
completion_nsec=[ns]: Default: 10,000ns
Combined with irqmode=2 (timer). The time each completion event must wait.
@@ -66,30 +78,45 @@ hw_queue_depth=[0..qdepth]: Default: 64
III: Multi-queue specific parameters
use_per_node_hctx=[0/1]: Default: 0
- 0: The number of submit queues are set to the value of the submit_queues
+
+ = =====================================================================
+ 0 The number of submit queues are set to the value of the submit_queues
parameter.
- 1: The multi-queue block layer is instantiated with a hardware dispatch
+ 1 The multi-queue block layer is instantiated with a hardware dispatch
queue for each CPU node in the system.
+ = =====================================================================
no_sched=[0/1]: Default: 0
- 0: nullb* use default blk-mq io scheduler.
- 1: nullb* doesn't use io scheduler.
+
+ = ======================================
+ 0 nullb* use default blk-mq io scheduler
+ 1 nullb* doesn't use io scheduler
+ = ======================================
blocking=[0/1]: Default: 0
- 0: Register as a non-blocking blk-mq driver device.
- 1: Register as a blocking blk-mq driver device, null_blk will set
+
+ = ===============================================================
+ 0 Register as a non-blocking blk-mq driver device.
+ 1 Register as a blocking blk-mq driver device, null_blk will set
the BLK_MQ_F_BLOCKING flag, indicating that it sometimes/always
needs to block in its ->queue_rq() function.
+ = ===============================================================
shared_tags=[0/1]: Default: 0
- 0: Tag set is not shared.
- 1: Tag set shared between devices for blk-mq. Only makes sense with
+
+ = ================================================================
+ 0 Tag set is not shared.
+ 1 Tag set shared between devices for blk-mq. Only makes sense with
nr_devices > 1, otherwise there's no tag set to share.
+ = ================================================================
zoned=[0/1]: Default: 0
- 0: Block device is exposed as a random-access block device.
- 1: Block device is exposed as a host-managed zoned block device. Requires
+
+ = ======================================================================
+ 0 Block device is exposed as a random-access block device.
+ 1 Block device is exposed as a host-managed zoned block device. Requires
CONFIG_BLK_DEV_ZONED.
+ = ======================================================================
zone_size=[MB]: Default: 256
Per zone size when exposed as a zoned block device. Must be a power of two.
diff --git a/Documentation/block/pr.txt b/Documentation/block/pr.rst
similarity index 95%
rename from Documentation/block/pr.txt
rename to Documentation/block/pr.rst
index ac9b8e70e64b..75b39052e7da 100644
--- a/Documentation/block/pr.txt
+++ b/Documentation/block/pr.rst
@@ -1,4 +1,4 @@
-
+===============================================
Block layer support for Persistent Reservations
===============================================
@@ -23,22 +23,18 @@ The following types of reservations are supported:
--------------------------------------------------
- PR_WRITE_EXCLUSIVE
-
Only the initiator that owns the reservation can write to the
device. Any initiator can read from the device.
- PR_EXCLUSIVE_ACCESS
-
Only the initiator that owns the reservation can access the
device.
- PR_WRITE_EXCLUSIVE_REG_ONLY
-
Only initiators with a registered key can write to the device,
Any initiator can read from the device.
- PR_EXCLUSIVE_ACCESS_REG_ONLY
-
Only initiators with a registered key can access the device.
- PR_WRITE_EXCLUSIVE_ALL_REGS
@@ -51,7 +47,6 @@ The following types of reservations are supported:
holder if you want to use this type.
- PR_EXCLUSIVE_ACCESS_ALL_REGS
-
Only initiators with a registered key can access the device.
All initiators with a registered key are considered reservation
holders.
@@ -63,6 +58,7 @@ The following ioctl are supported:
----------------------------------
1. IOC_PR_REGISTER
+^^^^^^^^^^^^^^^^^^
This ioctl command registers a new reservation if the new_key argument
is non-null. If no existing reservation exists old_key must be zero,
@@ -74,6 +70,7 @@ in old_key.
2. IOC_PR_RESERVE
+^^^^^^^^^^^^^^^^^
This ioctl command reserves the device and thus restricts access for other
devices based on the type argument. The key argument must be the existing
@@ -82,12 +79,14 @@ IOC_PR_REGISTER_IGNORE, IOC_PR_PREEMPT or IOC_PR_PREEMPT_ABORT commands.
3. IOC_PR_RELEASE
+^^^^^^^^^^^^^^^^^
This ioctl command releases the reservation specified by key and flags
and thus removes any access restriction implied by it.
4. IOC_PR_PREEMPT
+^^^^^^^^^^^^^^^^^
This ioctl command releases the existing reservation referred to by
old_key and replaces it with a new reservation of type for the
@@ -95,11 +94,13 @@ reservation key new_key.
5. IOC_PR_PREEMPT_ABORT
+^^^^^^^^^^^^^^^^^^^^^^^
This ioctl command works like IOC_PR_PREEMPT except that it also aborts
any outstanding command sent over a connection identified by old_key.
6. IOC_PR_CLEAR
+^^^^^^^^^^^^^^^
This ioctl command unregisters both key and any other reservation key
registered with the device and drops any existing reservation.
@@ -111,7 +112,6 @@ Flags
All the ioctls have a flag field. Currently only one flag is supported:
- PR_FL_IGNORE_KEY
-
Ignore the existing reservation key. This is commonly supported for
IOC_PR_REGISTER, and some implementation may support the flag for
IOC_PR_RESERVE.
diff --git a/Documentation/block/queue-sysfs.txt b/Documentation/block/queue-sysfs.rst
similarity index 99%
rename from Documentation/block/queue-sysfs.txt
rename to Documentation/block/queue-sysfs.rst
index 83b457e24bba..9022249208b5 100644
--- a/Documentation/block/queue-sysfs.txt
+++ b/Documentation/block/queue-sysfs.rst
@@ -1,3 +1,4 @@
+=================
Queue sysfs files
=================
@@ -10,7 +11,7 @@ Files denoted with a RO postfix are readonly and the RW postfix means
read-write.
add_random (RW)
-----------------
+---------------
This file allows to turn off the disk entropy contribution. Default
value of this file is '1'(on).
@@ -21,13 +22,13 @@ used by CPU-addressable storage to bypass the pagecache. It shows '1'
if true, '0' if not.
discard_granularity (RO)
------------------------
+------------------------
This shows the size of internal allocation of the device in bytes, if
reported by the device. A value of '0' means device does not support
the discard functionality.
discard_max_hw_bytes (RO)
-----------------------
+-------------------------
Devices that support discard functionality may have internal limits on
the number of bytes that can be trimmed or unmapped in a single operation.
The discard_max_bytes parameter is set by the device driver to the maximum
diff --git a/Documentation/block/request.txt b/Documentation/block/request.rst
similarity index 59%
rename from Documentation/block/request.txt
rename to Documentation/block/request.rst
index 754e104ed369..747021e1ffdb 100644
--- a/Documentation/block/request.txt
+++ b/Documentation/block/request.rst
@@ -1,26 +1,37 @@
-
+============================
struct request documentation
+============================
Jens Axboe <jens.axboe@oracle.com> 27/05/02
-1.0
-Index
-2.0 Struct request members classification
+.. FIXME:
+ No idea about what does mean - seems just some noise, so comment it
- 2.1 struct request members explanation
+ 1.0
+ Index
+
+ 2.0 Struct request members classification
+
+ 2.1 struct request members explanation
+
+ 3.0
+
+
+ 2.0
-3.0
-2.0
Short explanation of request members
+====================================
Classification flags:
+ = ====================
D driver member
B block layer member
I I/O scheduler member
+ = ====================
Unless an entry contains a D classification, a device driver must not access
this member. Some members may contain D classifications, but should only be
@@ -28,14 +39,13 @@ access through certain macros or functions (eg ->flags).
<linux/blkdev.h>
-2.1
+=============================== ======= =======================================
Member Flag Comment
------- ---- -------
-
+=============================== ======= =======================================
struct list_head queuelist BI Organization on various internal
queues
-void *elevator_private I I/O scheduler private data
+``void *elevator_private`` I I/O scheduler private data
unsigned char cmd[16] D Driver can use this for setting up
a cdb before execution, see
@@ -71,18 +81,19 @@ unsigned int hard_cur_sectors B Used to keep current_nr_sectors sane
int tag DB TCQ tag, if assigned
-void *special D Free to be used by driver
+``void *special`` D Free to be used by driver
-char *buffer D Map of first segment, also see
+``char *buffer`` D Map of first segment, also see
section on bouncing SECTION
-struct completion *waiting D Can be used by driver to get signalled
+``struct completion *waiting`` D Can be used by driver to get signalled
on request completion
-struct bio *bio DBI First bio in request
+``struct bio *bio`` DBI First bio in request
-struct bio *biotail DBI Last bio in request
+``struct bio *biotail`` DBI Last bio in request
-struct request_queue *q DB Request queue this request belongs to
+``struct request_queue *q`` DB Request queue this request belongs to
-struct request_list *rl B Request list this request came from
+``struct request_list *rl`` B Request list this request came from
+=============================== ======= =======================================
diff --git a/Documentation/block/stat.txt b/Documentation/block/stat.rst
similarity index 89%
rename from Documentation/block/stat.txt
rename to Documentation/block/stat.rst
index 0aace9cc536c..9c07bc22b0bc 100644
--- a/Documentation/block/stat.txt
+++ b/Documentation/block/stat.rst
@@ -1,3 +1,4 @@
+===============================================
Block layer statistics in /sys/block/<dev>/stat
===============================================
@@ -6,9 +7,12 @@ This file documents the contents of the /sys/block/<dev>/stat file.
The stat file provides several statistics about the state of block
device <dev>.
-Q. Why are there multiple statistics in a single file? Doesn't sysfs
+Q.
+ Why are there multiple statistics in a single file? Doesn't sysfs
normally contain a single value per file?
-A. By having a single file, the kernel can guarantee that the statistics
+
+A.
+ By having a single file, the kernel can guarantee that the statistics
represent a consistent snapshot of the state of the device. If the
statistics were exported as multiple files containing one statistic
each, it would be impossible to guarantee that a set of readings
@@ -18,8 +22,10 @@ The stat file consists of a single line of text containing 11 decimal
values separated by whitespace. The fields are summarized in the
following table, and described in more detail below.
+
+=============== ============= =================================================
Name units description
----- ----- -----------
+=============== ============= =================================================
read I/Os requests number of read I/Os processed
read merges requests number of read I/Os merged with in-queue I/O
read sectors sectors number of sectors read
@@ -35,6 +41,7 @@ discard I/Os requests number of discard I/Os processed
discard merges requests number of discard I/Os merged with in-queue I/O
discard sectors sectors number of sectors discarded
discard ticks milliseconds total wait time for discard requests
+=============== ============= =================================================
read I/Os, write I/Os, discard I/0s
===================================
diff --git a/Documentation/block/switching-sched.txt b/Documentation/block/switching-sched.rst
similarity index 71%
rename from Documentation/block/switching-sched.txt
rename to Documentation/block/switching-sched.rst
index 3b2612e342f1..bd535febb7bd 100644
--- a/Documentation/block/switching-sched.txt
+++ b/Documentation/block/switching-sched.rst
@@ -1,17 +1,21 @@
+===================
+Switching Scheduler
+===================
+
To choose IO schedulers at boot time, use the argument 'elevator=deadline'.
'noop' and 'cfq' (the default) are also available. IO schedulers are assigned
globally at boot time only presently.
Each io queue has a set of io scheduler tunables associated with it. These
tunables control how the io scheduler works. You can find these entries
-in:
+in::
-/sys/block/<device>/queue/iosched
+ /sys/block/<device>/queue/iosched
assuming that you have sysfs mounted on /sys. If you don't have sysfs mounted,
-you can do so by typing:
+you can do so by typing::
-# mount none /sys -t sysfs
+ # mount none /sys -t sysfs
As of the Linux 2.6.10 kernel, it is now possible to change the
IO scheduler for a given block device on the fly (thus making it possible,
@@ -19,19 +23,19 @@ for instance, to set the CFQ scheduler for the system default, but
set a specific device to use the deadline or noop schedulers - which
can improve that device's throughput).
-To set a specific scheduler, simply do this:
+To set a specific scheduler, simply do this::
-echo SCHEDNAME > /sys/block/DEV/queue/scheduler
+ echo SCHEDNAME > /sys/block/DEV/queue/scheduler
where SCHEDNAME is the name of a defined IO scheduler, and DEV is the
device name (hda, hdb, sga, or whatever you happen to have).
The list of defined schedulers can be found by simply doing
a "cat /sys/block/DEV/queue/scheduler" - the list of valid names
-will be displayed, with the currently selected scheduler in brackets:
+will be displayed, with the currently selected scheduler in brackets::
-# cat /sys/block/hda/queue/scheduler
-noop deadline [cfq]
-# echo deadline > /sys/block/hda/queue/scheduler
-# cat /sys/block/hda/queue/scheduler
-noop [deadline] cfq
+ # cat /sys/block/hda/queue/scheduler
+ noop deadline [cfq]
+ # echo deadline > /sys/block/hda/queue/scheduler
+ # cat /sys/block/hda/queue/scheduler
+ noop [deadline] cfq
diff --git a/Documentation/block/writeback_cache_control.txt b/Documentation/block/writeback_cache_control.rst
similarity index 94%
rename from Documentation/block/writeback_cache_control.txt
rename to Documentation/block/writeback_cache_control.rst
index 8a6bdada5f6b..2c752c57c14c 100644
--- a/Documentation/block/writeback_cache_control.txt
+++ b/Documentation/block/writeback_cache_control.rst
@@ -1,6 +1,6 @@
-
+==========================================
Explicit volatile write back cache control
-=====================================
+==========================================
Introduction
------------
@@ -31,7 +31,7 @@ the blkdev_issue_flush() helper for a pure cache flush.
Forced Unit Access
------------------
+------------------
The REQ_FUA flag can be OR ed into the r/w flags of a bio submitted from the
filesystem and will make sure that I/O completion for this request is only
@@ -62,14 +62,14 @@ flags themselves without any help from the block layer.
Implementation details for request_fn based block drivers
---------------------------------------------------------------
+---------------------------------------------------------
For devices that do not support volatile write caches there is no driver
support required, the block layer completes empty REQ_PREFLUSH requests before
entering the driver and strips off the REQ_PREFLUSH and REQ_FUA bits from
requests that have a payload. For devices with volatile write caches the
driver needs to tell the block layer that it supports flushing caches by
-doing:
+doing::
blk_queue_write_cache(sdkp->disk->queue, true, false);
@@ -77,7 +77,7 @@ and handle empty REQ_OP_FLUSH requests in its prep_fn/request_fn. Note that
REQ_PREFLUSH requests with a payload are automatically turned into a sequence
of an empty REQ_OP_FLUSH request followed by the actual write by the block
layer. For devices that also support the FUA bit the block layer needs
-to be told to pass through the REQ_FUA bit using:
+to be told to pass through the REQ_FUA bit using::
blk_queue_write_cache(sdkp->disk->queue, true, true);
diff --git a/Documentation/blockdev/zram.rst b/Documentation/blockdev/zram.rst
index 2111231c9c0f..6eccf13219ff 100644
--- a/Documentation/blockdev/zram.rst
+++ b/Documentation/blockdev/zram.rst
@@ -215,7 +215,7 @@ User space is advised to use the following files to read the device statistics.
File /sys/block/zram<id>/stat
-Represents block layer statistics. Read Documentation/block/stat.txt for
+Represents block layer statistics. Read Documentation/block/stat.rst for
details.
File /sys/block/zram<id>/io_stat
diff --git a/MAINTAINERS b/MAINTAINERS
index 68d0070d18b6..c2a62012dd55 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -2868,7 +2868,7 @@ M: Jens Axboe <axboe@kernel.dk>
L: linux-block@vger.kernel.org
S: Maintained
F: block/bfq-*
-F: Documentation/block/bfq-iosched.txt
+F: Documentation/block/bfq-iosched.rst
BFS FILE SYSTEM
M: "Tigran A. Aivazian" <aivazian.tigran@gmail.com>
diff --git a/block/Kconfig b/block/Kconfig
index 78374cb03114..2711d959ad2e 100644
--- a/block/Kconfig
+++ b/block/Kconfig
@@ -109,7 +109,7 @@ config BLK_CMDLINE_PARSER
which don't otherwise have any standardized method for listing the
partitions on a block device.
- See Documentation/block/cmdline-partition.txt for more information.
+ See Documentation/block/cmdline-partition.rst for more information.
config BLK_WBT
bool "Enable support for block device writeback throttling"
diff --git a/block/Kconfig.iosched b/block/Kconfig.iosched
index 4626b88b2d5a..eabd4328b228 100644
--- a/block/Kconfig.iosched
+++ b/block/Kconfig.iosched
@@ -26,7 +26,7 @@ config IOSCHED_BFQ
regardless of the device parameters and with any workload. It
also guarantees a low latency to interactive and soft
real-time applications. Details in
- Documentation/block/bfq-iosched.txt
+ Documentation/block/bfq-iosched.rst
config BFQ_GROUP_IOSCHED
bool "BFQ hierarchical scheduling support"
diff --git a/block/bfq-iosched.c b/block/bfq-iosched.c
index 3d64e0406675..d915fbfa5340 100644
--- a/block/bfq-iosched.c
+++ b/block/bfq-iosched.c
@@ -26,7 +26,7 @@
* low-latency capabilities. BFQ also supports full hierarchical
* scheduling through cgroups. Next paragraphs provide an introduction
* on BFQ inner workings. Details on BFQ benefits, usage and
- * limitations can be found in Documentation/block/bfq-iosched.txt.
+ * limitations can be found in Documentation/block/bfq-iosched.rst.
*
* BFQ is a proportional-share storage-I/O scheduling algorithm based
* on the slice-by-slice service scheme of CFQ. But BFQ assigns
diff --git a/block/blk-integrity.c b/block/blk-integrity.c
index d1ab089e0919..a6ee6b6db157 100644
--- a/block/blk-integrity.c
+++ b/block/blk-integrity.c
@@ -396,7 +396,7 @@ static const struct blk_integrity_profile nop_profile = {
* send/receive integrity metadata it must use this function to register
* the capability with the block layer. The template is a blk_integrity
* struct with values appropriate for the underlying hardware. See
- * Documentation/block/data-integrity.txt.
+ * Documentation/block/data-integrity.rst.
*/
void blk_integrity_register(struct gendisk *disk, struct blk_integrity *template)
{
diff --git a/block/ioprio.c b/block/ioprio.c
index f9821080c92c..35fed65d9bfd 100644
--- a/block/ioprio.c
+++ b/block/ioprio.c
@@ -16,7 +16,7 @@
*
* ioprio_set(PRIO_PROCESS, pid, prio);
*
- * See also Documentation/block/ioprio.txt
+ * See also Documentation/block/ioprio.rst
*
*/
#include <linux/gfp.h>
diff --git a/block/mq-deadline.c b/block/mq-deadline.c
index 14288f864e94..db69a02a6b3c 100644
--- a/block/mq-deadline.c
+++ b/block/mq-deadline.c
@@ -24,7 +24,7 @@
#include "blk-mq-sched.h"
/*
- * See Documentation/block/deadline-iosched.txt
+ * See Documentation/block/deadline-iosched.rst
*/
static const int read_expire = HZ / 2; /* max time before a read is submitted. */
static const int write_expire = 5 * HZ; /* ditto for writes, these limits are SOFT! */
diff --git a/block/partitions/cmdline.c b/block/partitions/cmdline.c
index 60fb3df9897c..f1edd5452249 100644
--- a/block/partitions/cmdline.c
+++ b/block/partitions/cmdline.c
@@ -11,7 +11,7 @@
*
* The format for the command line is just like mtdparts.
*
- * For further information, see "Documentation/block/cmdline-partition.txt"
+ * For further information, see "Documentation/block/cmdline-partition.rst"
*
*/
--
2.20.1
^ permalink raw reply related [flat|nested] 115+ messages in thread[parent not found: <7adf9035ae06ecc6c7e46b51cb677f0a8f61d19a.1555938376.git.mchehab+samsung@kernel.org>]
* Re: [PATCH v2 25/79] docs: convert docs to ReST and rename to *.rst
[not found] ` <7adf9035ae06ecc6c7e46b51cb677f0a8f61d19a.1555938376.git.mchehab+samsung@kernel.org>
@ 2019-04-22 13:48 ` Bjorn Helgaas
2019-04-22 14:07 ` Mauro Carvalho Chehab
2019-04-25 18:07 ` Mark Brown
1 sibling, 1 reply; 115+ messages in thread
From: Bjorn Helgaas @ 2019-04-22 13:48 UTC (permalink / raw)
To: Mauro Carvalho Chehab
Cc: Linux Doc Mailing List, Linux Kernel Mailing List,
Jonathan Corbet, Linux PCI, linux-wireless, Changbin Du
[+cc Changbin, -cc many others]
On Mon, Apr 22, 2019 at 8:28 AM Mauro Carvalho Chehab
<mchehab+samsung@kernel.org> wrote:
>
> Convert the PM documents to ReST, in order to allow them to
> build with Sphinx.
>
> The conversion is actually:
> - add blank lines and identation in order to identify paragraphs;
s/identation/indentation/
> - fix tables markups;
> - add some lists markups;
> - mark literal blocks;
> - adjust title markups.
>
> At its new index.rst, let's add a :orphan: while this is not linked to
> the main index.rst file, in order to avoid build warnings.
>
> Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
The PCI part of this is fine with me but may conflict with Changbin's work:
https://lore.kernel.org/lkml/20190409155626.6049-1-changbin.du@gmail.com
Since this doesn't look like it's targeting merge via the PCI tree,
I'll let you two work out any conflicts.
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Bjorn
^ permalink raw reply [flat|nested] 115+ messages in thread* Re: [PATCH v2 25/79] docs: convert docs to ReST and rename to *.rst
2019-04-22 13:48 ` [PATCH v2 25/79] docs: convert docs to ReST and rename to *.rst Bjorn Helgaas
@ 2019-04-22 14:07 ` Mauro Carvalho Chehab
0 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-22 14:07 UTC (permalink / raw)
To: Bjorn Helgaas
Cc: Linux Doc Mailing List, Linux Kernel Mailing List,
Jonathan Corbet, Linux PCI, linux-wireless, Changbin Du
Em Mon, 22 Apr 2019 08:48:10 -0500
Bjorn Helgaas <bhelgaas@google.com> escreveu:
> [+cc Changbin, -cc many others]
>
> On Mon, Apr 22, 2019 at 8:28 AM Mauro Carvalho Chehab
> <mchehab+samsung@kernel.org> wrote:
> >
> > Convert the PM documents to ReST, in order to allow them to
> > build with Sphinx.
> >
> > The conversion is actually:
> > - add blank lines and identation in order to identify paragraphs;
>
> s/identation/indentation/
>
> > - fix tables markups;
> > - add some lists markups;
> > - mark literal blocks;
> > - adjust title markups.
> >
> > At its new index.rst, let's add a :orphan: while this is not linked to
> > the main index.rst file, in order to avoid build warnings.
> >
> > Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
>
> The PCI part of this is fine with me but may conflict with Changbin's work:
>
> https://lore.kernel.org/lkml/20190409155626.6049-1-changbin.du@gmail.com
Yes it could generate a conflict, but it is a trivial change:
--- a/Documentation/PCI/pci.txt
+++ b/Documentation/PCI/pci.txt
@@ -110,7 +110,7 @@ initialization with a pointer to a structure describing the driver
resume_early Wake device from low power state.
resume Wake device from low power state.
- (Please see Documentation/power/pci.txt for descriptions
+ (Please see Documentation/power/pci.rst for descriptions
of PCI Power Management and the related functions.)
shutdown Hook into reboot_notifier_list (kernel/sys.c).
Looking at Changbin's patch 02/12 v3:
https://lore.kernel.org/lkml/20190409155626.6049-3-changbin.du@gmail.com/
It doesn't touch the above line, nor the context lines, and it doesn't
change more than 50% of the file. So, even if this patch gets merged
after the PCI changeset, git will very likely recognize it as a
rename and will apply it anyway.
> Since this doesn't look like it's targeting merge via the PCI tree,
> I'll let you two work out any conflicts.
>
> Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Thanks!
Mauro
^ permalink raw reply [flat|nested] 115+ messages in thread
* Re: [PATCH v2 25/79] docs: convert docs to ReST and rename to *.rst
[not found] ` <7adf9035ae06ecc6c7e46b51cb677f0a8f61d19a.1555938376.git.mchehab+samsung@kernel.org>
2019-04-22 13:48 ` [PATCH v2 25/79] docs: convert docs to ReST and rename to *.rst Bjorn Helgaas
@ 2019-04-25 18:07 ` Mark Brown
2019-04-26 9:46 ` Mauro Carvalho Chehab
1 sibling, 1 reply; 115+ messages in thread
From: Mark Brown @ 2019-04-25 18:07 UTC (permalink / raw)
To: Mauro Carvalho Chehab
Cc: Linux Doc Mailing List, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Sebastian Reichel, Bjorn Helgaas,
Rafael J. Wysocki, Viresh Kumar, Len Brown, Pavel Machek,
Nishanth Menon, Stephen Boyd, Liam Girdwood, Mathieu Poirier,
Suzuki K Poulose, Harry Wei, Alex Shi, Thomas Gleixner,
Ingo Molnar, Borislav Petkov, H. Peter Anvin, x86, Jani Nikula,
Joonas Lahtinen, Rodrigo Vivi, David Airlie, Daniel Vetter,
Johannes Berg, David S. Miller, linux-pm, linux-pci,
linux-arm-kernel, intel-gfx, dri-devel, linux-wireless, netdev
[-- Attachment #1: Type: text/plain, Size: 315 bytes --]
On Mon, Apr 22, 2019 at 10:27:14AM -0300, Mauro Carvalho Chehab wrote:
> Convert the PM documents to ReST, in order to allow them to
> build with Sphinx.
This is massively CCed covering a large range of subsystems and is patch
25 of a 79 patch series so I've no context for what's going on here or
why...
[-- Attachment #2: signature.asc --]
[-- Type: application/pgp-signature, Size: 488 bytes --]
^ permalink raw reply [flat|nested] 115+ messages in thread* Re: [PATCH v2 25/79] docs: convert docs to ReST and rename to *.rst
2019-04-25 18:07 ` Mark Brown
@ 2019-04-26 9:46 ` Mauro Carvalho Chehab
2019-04-27 17:25 ` Mark Brown
0 siblings, 1 reply; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-26 9:46 UTC (permalink / raw)
To: Mark Brown
Cc: Linux Doc Mailing List, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Sebastian Reichel, Bjorn Helgaas,
Rafael J. Wysocki, Viresh Kumar, Len Brown, Pavel Machek,
Nishanth Menon, Stephen Boyd, Liam Girdwood, Mathieu Poirier,
Suzuki K Poulose, Harry Wei, Alex Shi, Thomas Gleixner,
Ingo Molnar, Borislav Petkov, H. Peter Anvin, x86, Jani Nikula,
Joonas Lahtinen, Rodrigo Vivi, David Airlie, Daniel Vetter,
Johannes Berg, David S. Miller, linux-pm, linux-pci,
linux-arm-kernel, intel-gfx, dri-devel, linux-wireless, netdev
Hi Mark,
Em Thu, 25 Apr 2019 19:07:58 +0100
Mark Brown <broonie@kernel.org> escreveu:
> On Mon, Apr 22, 2019 at 10:27:14AM -0300, Mauro Carvalho Chehab wrote:
> > Convert the PM documents to ReST, in order to allow them to
> > build with Sphinx.
>
> This is massively CCed covering a large range of subsystems and is patch
> 25 of a 79 patch series so I've no context for what's going on here or
> why...
There are two goals of this series:
1) to prepare for placing the new *.rst files under Documentation/ into an
index file, being part of one of the books. Most of the stuff covered
on this series either fit at the system admin guide or at the
Kernel API documentation book;
2) to ensure that, if some edition on a file would cause warnings at
Sphinx build, someone will notice and submit a followup patch.
You can see more details at patch 00/79:
https://lore.kernel.org/lkml/20190422115110.26443b44@coco.lan/
In order to do that, this series has one patch per Documentation/*
sub-directory. This specific one is for the documents under
Documentation/power/ [1].
[1] btw, the title of this specific patch should be, instead:
docs: power: convert docs to ReST and rename to *.rst
The series is long because I'm trying to cover a significant part
of the documentation files. In any case, except if an eventual
conflict might rise on some file, this patch is independent from
all other files, and should be safe to apply directly via the
subsystem git tree.
I'm working on a follow-up patch series that should be adding the
power/index.rst file into another index file - probably at
Documentation/index.rst[1]. As such patch will be adding a lot of other
index files, the best would be to merge it via the docs tree, in
order to avoid conflicts.
[1] such patch will be removing the ":orphan:" meta-tag from it
(that basically tells the build system to not produce warnings if
the file is not directly or indirectly referenced by the main
index file).
Thanks,
Mauro
^ permalink raw reply [flat|nested] 115+ messages in thread
* Re: [PATCH v2 25/79] docs: convert docs to ReST and rename to *.rst
2019-04-26 9:46 ` Mauro Carvalho Chehab
@ 2019-04-27 17:25 ` Mark Brown
2019-04-27 18:13 ` Mauro Carvalho Chehab
0 siblings, 1 reply; 115+ messages in thread
From: Mark Brown @ 2019-04-27 17:25 UTC (permalink / raw)
To: Mauro Carvalho Chehab
Cc: Linux Doc Mailing List, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Sebastian Reichel, Bjorn Helgaas,
Rafael J. Wysocki, Viresh Kumar, Len Brown, Pavel Machek,
Nishanth Menon, Stephen Boyd, Liam Girdwood, Mathieu Poirier,
Suzuki K Poulose, Harry Wei, Alex Shi, Thomas Gleixner,
Ingo Molnar, Borislav Petkov, H. Peter Anvin, x86, Jani Nikula,
Joonas Lahtinen, Rodrigo Vivi, David Airlie, Daniel Vetter,
Johannes Berg, David S. Miller, linux-pm, linux-pci,
linux-arm-kernel, intel-gfx, dri-devel, linux-wireless, netdev
[-- Attachment #1: Type: text/plain, Size: 501 bytes --]
On Fri, Apr 26, 2019 at 06:46:09AM -0300, Mauro Carvalho Chehab wrote:
> Mark Brown <broonie@kernel.org> escreveu:
> > This is massively CCed covering a large range of subsystems and is patch
> > 25 of a 79 patch series so I've no context for what's going on here or
> > why...
> You can see more details at patch 00/79:
> https://lore.kernel.org/lkml/20190422115110.26443b44@coco.lan/
OK, it would've helped to CC people on that. Anyway
Acked-by: Mark Brown <broonie@kernel.org>
[-- Attachment #2: signature.asc --]
[-- Type: application/pgp-signature, Size: 488 bytes --]
^ permalink raw reply [flat|nested] 115+ messages in thread
* Re: [PATCH v2 25/79] docs: convert docs to ReST and rename to *.rst
2019-04-27 17:25 ` Mark Brown
@ 2019-04-27 18:13 ` Mauro Carvalho Chehab
0 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-27 18:13 UTC (permalink / raw)
To: Mark Brown
Cc: Linux Doc Mailing List, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Sebastian Reichel, Bjorn Helgaas,
Rafael J. Wysocki, Viresh Kumar, Len Brown, Pavel Machek,
Nishanth Menon, Stephen Boyd, Liam Girdwood, Mathieu Poirier,
Suzuki K Poulose, Harry Wei, Alex Shi, Thomas Gleixner,
Ingo Molnar, Borislav Petkov, H. Peter Anvin, x86, Jani Nikula,
Joonas Lahtinen, Rodrigo Vivi, David Airlie, Daniel Vetter,
Johannes Berg, David S. Miller, linux-pm, linux-pci,
linux-arm-kernel, intel-gfx, dri-devel, linux-wireless, netdev
Em Sun, 28 Apr 2019 02:25:51 +0900
Mark Brown <broonie@kernel.org> escreveu:
> On Fri, Apr 26, 2019 at 06:46:09AM -0300, Mauro Carvalho Chehab wrote:
> > Mark Brown <broonie@kernel.org> escreveu:
>
> > > This is massively CCed covering a large range of subsystems and is patch
> > > 25 of a 79 patch series so I've no context for what's going on here or
> > > why...
>
> > You can see more details at patch 00/79:
> > https://lore.kernel.org/lkml/20190422115110.26443b44@coco.lan/
>
> OK, it would've helped to CC people on that.
I know, but, due to bad experiences in the past, I had to actually
remove people from it, because several servers reject e-mails with
more than ~30 destination addresses, as they consider it to be spam.
> Anyway
>
> Acked-by: Mark Brown <broonie@kernel.org>
Thanks!
Thanks,
Mauro
^ permalink raw reply [flat|nested] 115+ messages in thread
[parent not found: <cda57849a6462ccc72dcd360b30068ab6a1021c4.1555938376.git.mchehab+samsung@kernel.org>]
[parent not found: <fb86b676b3b426732f1f11378868a9bd3b580b46.1555938376.git.mchehab+samsung@kernel.org>]
* Re: [PATCH v2 31/79] docs: s390: convert docs to ReST and rename to *.rst
[not found] ` <fb86b676b3b426732f1f11378868a9bd3b580b46.1555938376.git.mchehab+samsung@kernel.org>
@ 2019-04-23 16:12 ` Farhan Ali
2019-04-23 19:46 ` Mauro Carvalho Chehab
2019-04-24 11:41 ` Cornelia Huck
1 sibling, 1 reply; 115+ messages in thread
From: Farhan Ali @ 2019-04-23 16:12 UTC (permalink / raw)
To: Mauro Carvalho Chehab, Linux Doc Mailing List
Cc: Mauro Carvalho Chehab, linux-kernel, Jonathan Corbet,
Martin Schwidefsky, Heiko Carstens, Tony Krowiak, Pierre Morel,
Halil Pasic, Cornelia Huck, Eric Farman, linux-s390, kvm
On 04/22/2019 09:27 AM, Mauro Carvalho Chehab wrote:
> Convert all text files with s390 documentation to ReST format.
>
> Tried to preserve as much as possible the original document
> format. Still, some of the files required some work in order
> for it to be visible on both plain text and after converted
> to html.
>
> The conversion is actually:
> - add blank lines and identation in order to identify paragraphs;
> - fix tables markups;
> - add some lists markups;
> - mark literal blocks;
> - adjust title markups.
>
> At its new index.rst, let's add a :orphan: while this is not linked to
> the main index.rst file, in order to avoid build warnings.
>
> Signed-off-by: Mauro Carvalho Chehab<mchehab+samsung@kernel.org>
> ---
Hi Mauro,
How would the s390 rst files be accessed from a top level index.rst
file? Is there a view of the changes? I looked at a link you posted [1]
as a reply in another thread, but I couldn't find the s390 docs there.
[1] https://www.infradead.org/~mchehab/rst_conversion/
Thanks
Farhan
^ permalink raw reply [flat|nested] 115+ messages in thread* Re: [PATCH v2 31/79] docs: s390: convert docs to ReST and rename to *.rst
2019-04-23 16:12 ` [PATCH v2 31/79] docs: s390: convert docs to ReST and rename " Farhan Ali
@ 2019-04-23 19:46 ` Mauro Carvalho Chehab
0 siblings, 0 replies; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-23 19:46 UTC (permalink / raw)
To: Farhan Ali
Cc: Linux Doc Mailing List, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Martin Schwidefsky, Heiko Carstens, Tony Krowiak,
Pierre Morel, Halil Pasic, Cornelia Huck, Eric Farman, linux-s390,
kvm
Em Tue, 23 Apr 2019 12:12:41 -0400
Farhan Ali <alifm@linux.ibm.com> escreveu:
> On 04/22/2019 09:27 AM, Mauro Carvalho Chehab wrote:
> > Convert all text files with s390 documentation to ReST format.
> >
> > Tried to preserve as much as possible the original document
> > format. Still, some of the files required some work in order
> > for it to be visible on both plain text and after converted
> > to html.
> >
> > The conversion is actually:
> > - add blank lines and identation in order to identify paragraphs;
> > - fix tables markups;
> > - add some lists markups;
> > - mark literal blocks;
> > - adjust title markups.
> >
> > At its new index.rst, let's add a :orphan: while this is not linked to
> > the main index.rst file, in order to avoid build warnings.
> >
> > Signed-off-by: Mauro Carvalho Chehab<mchehab+samsung@kernel.org>
> > ---
>
> Hi Mauro,
>
> How would the s390 rst files be accessed from a top level index.rst
> file? Is there a view of the changes? I looked at a link you posted [1]
> as a reply in another thread, but I couldn't find the s390 docs there.
>
> [1] https://www.infradead.org/~mchehab/rst_conversion/
With just the patch I added on this series, you'll find the s390
index.html, and one file for each .rst at Documentation/output/s390/.
In order to have it linked to the main index, you need to add
s390/index to Documentation/index.rst, but, if you just want to
see the results, you can just call:
$ firefox file://`pwd`/Documentation/output/s390/index.html
I have a patch already that adds s390 to the main index, together with
other arch conversions:
https://git.linuxtv.org/mchehab/experimental.git/commit/?h=convert_rst_renames&id=d28c466a495488e5e57c7893123011342eea40b2
However, as subsystem maintainers may take a while to apply some of those
patches, and there's a patchset converting x86 arch too, I opted to do
such additions on a separate patch, in order to reduce merge conflicts.
Thanks,
Mauro
^ permalink raw reply [flat|nested] 115+ messages in thread
* Re: [PATCH v2 31/79] docs: s390: convert docs to ReST and rename to *.rst
[not found] ` <fb86b676b3b426732f1f11378868a9bd3b580b46.1555938376.git.mchehab+samsung@kernel.org>
2019-04-23 16:12 ` [PATCH v2 31/79] docs: s390: convert docs to ReST and rename " Farhan Ali
@ 2019-04-24 11:41 ` Cornelia Huck
2019-04-24 12:30 ` Heiko Carstens
2019-04-24 12:44 ` Mauro Carvalho Chehab
1 sibling, 2 replies; 115+ messages in thread
From: Cornelia Huck @ 2019-04-24 11:41 UTC (permalink / raw)
To: Mauro Carvalho Chehab
Cc: Linux Doc Mailing List, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Martin Schwidefsky, Heiko Carstens, Tony Krowiak,
Pierre Morel, Halil Pasic, Farhan Ali, Eric Farman, linux-s390,
kvm
On Mon, 22 Apr 2019 10:27:20 -0300
Mauro Carvalho Chehab <mchehab+samsung@kernel.org> wrote:
> Convert all text files with s390 documentation to ReST format.
>
> Tried to preserve as much as possible the original document
> format. Still, some of the files required some work in order
> for it to be visible on both plain text and after converted
> to html.
>
> The conversion is actually:
> - add blank lines and identation in order to identify paragraphs;
> - fix tables markups;
> - add some lists markups;
> - mark literal blocks;
> - adjust title markups.
>
> At its new index.rst, let's add a :orphan: while this is not linked to
> the main index.rst file, in order to avoid build warnings.
>
> Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
> ---
> .../admin-guide/kernel-parameters.txt | 4 +-
> Documentation/driver-api/s390-drivers.rst | 4 +-
> Documentation/s390/{3270.txt => 3270.rst} | 85 +-
> Documentation/s390/{cds.txt => cds.rst} | 354 ++-
> .../s390/{CommonIO => common_io.rst} | 49 +-
> Documentation/s390/{DASD => dasd.rst} | 33 +-
> .../{Debugging390.txt => debugging390.rst} | 2389 ++++++++++-------
> .../{driver-model.txt => driver-model.rst} | 179 +-
> Documentation/s390/index.rst | 30 +
> .../s390/{monreader.txt => monreader.rst} | 85 +-
> Documentation/s390/{qeth.txt => qeth.rst} | 36 +-
> Documentation/s390/s390dbf.rst | 803 ++++++
> Documentation/s390/s390dbf.txt | 667 -----
> Documentation/s390/text_files.rst | 11 +
> .../s390/{vfio-ap.txt => vfio-ap.rst} | 487 ++--
> .../s390/{vfio-ccw.txt => vfio-ccw.rst} | 90 +-
> .../s390/{zfcpdump.txt => zfcpdump.rst} | 2 +
> MAINTAINERS | 4 +-
> arch/s390/Kconfig | 4 +-
> arch/s390/include/asm/debug.h | 4 +-
> drivers/s390/char/zcore.c | 2 +-
> 21 files changed, 3089 insertions(+), 2233 deletions(-)
> rename Documentation/s390/{3270.txt => 3270.rst} (90%)
> rename Documentation/s390/{cds.txt => cds.rst} (64%)
> rename Documentation/s390/{CommonIO => common_io.rst} (87%)
> rename Documentation/s390/{DASD => dasd.rst} (92%)
> rename Documentation/s390/{Debugging390.txt => debugging390.rst} (53%)
> rename Documentation/s390/{driver-model.txt => driver-model.rst} (73%)
> create mode 100644 Documentation/s390/index.rst
> rename Documentation/s390/{monreader.txt => monreader.rst} (81%)
> rename Documentation/s390/{qeth.txt => qeth.rst} (62%)
> create mode 100644 Documentation/s390/s390dbf.rst
> delete mode 100644 Documentation/s390/s390dbf.txt
> create mode 100644 Documentation/s390/text_files.rst
> rename Documentation/s390/{vfio-ap.txt => vfio-ap.rst} (72%)
> rename Documentation/s390/{vfio-ccw.txt => vfio-ccw.rst} (89%)
> rename Documentation/s390/{zfcpdump.txt => zfcpdump.rst} (97%)
>
(...)
> diff --git a/Documentation/s390/3270.txt b/Documentation/s390/3270.rst
> similarity index 90%
> rename from Documentation/s390/3270.txt
> rename to Documentation/s390/3270.rst
> index 7c715de99774..e09e77954238 100644
> --- a/Documentation/s390/3270.txt
> +++ b/Documentation/s390/3270.rst
(...)
> @@ -17,12 +21,12 @@ twenty and thirty years ago.
> You may have 3270s in-house and not know it. If you're using the
> VM-ESA operating system, define a 3270 to your virtual machine by using
> the command "DEF GRAF <hex-address>" This paper presumes you will be
> -defining four 3270s with the CP/CMS commands
> +defining four 3270s with the CP/CMS commands:
>
> - DEF GRAF 620
> - DEF GRAF 621
> - DEF GRAF 622
> - DEF GRAF 623
> + - DEF GRAF 620
> + - DEF GRAF 621
> + - DEF GRAF 622
> + - DEF GRAF 623
IIUC, this makes this into a bulleted list... but the user is supposed
to enter these commands (similar to the shell commands further down in
this file).
>
> Your network connection from VM-ESA allows you to use x3270, tn3270, or
> another 3270 emulator, started from an xterm window on your PC or
(...)
> @@ -84,20 +92,22 @@ Here are the installation steps in detail:
> make modules_install
>
> 2. (Perform this step only if you have configured tub3270 as a
> - module.) Add a line to a file /etc/modprobe.d/*.conf to automatically
> + module.) Add a line to a file `/etc/modprobe.d/*.conf` to automatically
> load the driver when it's needed. With this line added, you will see
> login prompts appear on your 3270s as soon as boot is complete (or
> with emulated 3270s, as soon as you dial into your vm guest using the
> command "DIAL <vmguestname>"). Since the line-mode major number is
> - 227, the line to add should be:
> + 227, the line to add should be::
> +
> alias char-major-227 tub3270
>
> 3. Define graphic devices to your vm guest machine, if you
> haven't already. Define them before you reboot (reipl):
> - DEFINE GRAF 620
> - DEFINE GRAF 621
> - DEFINE GRAF 622
> - DEFINE GRAF 623
> +
> + - DEFINE GRAF 620
> + - DEFINE GRAF 621
> + - DEFINE GRAF 622
> + - DEFINE GRAF 623
Same here.
>
> 4. Reboot. The reboot process scans hardware devices, including
> 3270s, and this enables the tub3270 driver once loaded to respond
(...)
> diff --git a/Documentation/s390/CommonIO b/Documentation/s390/common_io.rst
> similarity index 87%
> rename from Documentation/s390/CommonIO
> rename to Documentation/s390/common_io.rst
> index 6e0f63f343b4..846485681ce7 100644
> --- a/Documentation/s390/CommonIO
> +++ b/Documentation/s390/common_io.rst
> @@ -1,5 +1,9 @@
> -S/390 common I/O-Layer - command line parameters, procfs and debugfs entries
> -============================================================================
> +======================
> +S/390 common I/O-Layer
> +======================
> +
> +command line parameters, procfs and debugfs entries
> +===================================================
I don't see why this should be split into two lines? If anything needs
to be changed, I'd drop the hyphen.
>
> Command line parameters
> -----------------------
> @@ -13,7 +17,7 @@ Command line parameters
> device := {all | [!]ipldev | [!]condev | [!]<devno> | [!]<devno>-<devno>}
>
> The given devices will be ignored by the common I/O-layer; no detection
> - and device sensing will be done on any of those devices. The subchannel to
> + and device sensing will be done on any of those devices. The subchannel to
> which the device in question is attached will be treated as if no device was
> attached.
>
> @@ -28,14 +32,20 @@ Command line parameters
> keywords can be used to refer to the CCW based boot device and CCW console
> device respectively (these are probably useful only when combined with the '!'
> operator). The '!' operator will cause the I/O-layer to _not_ ignore a device.
> - The command line is parsed from left to right.
> + The command line
> + is parsed from left to right.
Why this change?
> +
> + For example::
>
> - For example,
> cio_ignore=0.0.0023-0.0.0042,0.0.4711
> +
> will ignore all devices ranging from 0.0.0023 to 0.0.0042 and the device
> 0.0.4711, if detected.
> - As another example,
> +
> + As another example::
> +
> cio_ignore=all,!0.0.4711,!0.0.fd00-0.0.fd02
> +
> will ignore all devices but 0.0.4711, 0.0.fd00, 0.0.fd01, 0.0.fd02.
>
> By default, no devices are ignored.
(...)
> diff --git a/Documentation/s390/Debugging390.txt b/Documentation/s390/debugging390.rst
> similarity index 53%
> rename from Documentation/s390/Debugging390.txt
> rename to Documentation/s390/debugging390.rst
> index c35804c238ad..d49305fd5e1a 100644
> --- a/Documentation/s390/Debugging390.txt
> +++ b/Documentation/s390/debugging390.rst
I'll skip this one...
(Question for the s390 arch maintainers: I remember that there was some
interesting stuff in there, but I'm not sure how much of it is still
accurate/useful... is it worth spending time on trying to update this?)
(...)
> diff --git a/Documentation/s390/s390dbf.rst b/Documentation/s390/s390dbf.rst
> new file mode 100644
> index 000000000000..ec2a1faa414b
> --- /dev/null
> +++ b/Documentation/s390/s390dbf.rst
(...)
> diff --git a/Documentation/s390/s390dbf.txt b/Documentation/s390/s390dbf.txt
> deleted file mode 100644
> index 61329fd62e89..000000000000
> --- a/Documentation/s390/s390dbf.txt
> +++ /dev/null
I wonder why this does not show up as a rename?
(...)
> diff --git a/Documentation/s390/text_files.rst b/Documentation/s390/text_files.rst
> new file mode 100644
> index 000000000000..c94d05d4fa17
> --- /dev/null
> +++ b/Documentation/s390/text_files.rst
> @@ -0,0 +1,11 @@
> +ibm 3270 changelog
> +------------------
> +
> +.. include:: 3270.ChangeLog
> + :literal:
> +
> +ibm 3270 config3270.sh
> +----------------------
> +
> +.. literalinclude:: config3270.sh
> + :language: shell
Another question for the s390 arch maintainers: How valuable is this still?
(...)
> diff --git a/Documentation/s390/vfio-ccw.txt b/Documentation/s390/vfio-ccw.rst
> similarity index 89%
> rename from Documentation/s390/vfio-ccw.txt
> rename to Documentation/s390/vfio-ccw.rst
> index 2be11ad864ff..1f6d0b56d53e 100644
> --- a/Documentation/s390/vfio-ccw.txt
> +++ b/Documentation/s390/vfio-ccw.rst
(...)
> @@ -295,6 +321,6 @@ Reference
> 1. ESA/s390 Principles of Operation manual (IBM Form. No. SA22-7832)
> 2. ESA/390 Common I/O Device Commands manual (IBM Form. No. SA22-7204)
> 3. https://en.wikipedia.org/wiki/Channel_I/O
> -4. Documentation/s390/cds.txt
> +4. Documentation/s390/cds.rst
> 5. Documentation/vfio.txt
> 6. Documentation/vfio-mediated-device.txt
Are these two renamed in a later patch?
(...)
^ permalink raw reply [flat|nested] 115+ messages in thread* Re: [PATCH v2 31/79] docs: s390: convert docs to ReST and rename to *.rst
2019-04-24 11:41 ` Cornelia Huck
@ 2019-04-24 12:30 ` Heiko Carstens
2019-04-24 12:44 ` Mauro Carvalho Chehab
1 sibling, 0 replies; 115+ messages in thread
From: Heiko Carstens @ 2019-04-24 12:30 UTC (permalink / raw)
To: Cornelia Huck
Cc: Mauro Carvalho Chehab, Linux Doc Mailing List,
Mauro Carvalho Chehab, linux-kernel, Jonathan Corbet,
Martin Schwidefsky, Tony Krowiak, Pierre Morel, Halil Pasic,
Farhan Ali, Eric Farman, linux-s390, kvm
On Wed, Apr 24, 2019 at 01:41:09PM +0200, Cornelia Huck wrote:
> > diff --git a/Documentation/s390/Debugging390.txt b/Documentation/s390/debugging390.rst
> > similarity index 53%
> > rename from Documentation/s390/Debugging390.txt
> > rename to Documentation/s390/debugging390.rst
> > index c35804c238ad..d49305fd5e1a 100644
> > --- a/Documentation/s390/Debugging390.txt
> > +++ b/Documentation/s390/debugging390.rst
>
> I'll skip this one...
>
> (Question for the s390 arch maintainers: I remember that there was some
> interesting stuff in there, but I'm not sure how much of it is still
> accurate/useful... is it worth spending time on trying to update this?)
>
> > diff --git a/Documentation/s390/text_files.rst b/Documentation/s390/text_files.rst
> > new file mode 100644
> > index 000000000000..c94d05d4fa17
> > --- /dev/null
> > +++ b/Documentation/s390/text_files.rst
> > @@ -0,0 +1,11 @@
> > +ibm 3270 changelog
> > +------------------
> > +
> > +.. include:: 3270.ChangeLog
> > + :literal:
> > +
> > +ibm 3270 config3270.sh
> > +----------------------
> > +
> > +.. literalinclude:: config3270.sh
> > + :language: shell
>
>
> Another question for the s390 arch maintainers: How valuable is this still?
...to be honest I consider 80% within Documentation/s390 to be
completely outdated, partially wrong, or irrelevant in the meantime;
the vfio stuff seems to be pretty much up-to-date, and I like the
parts that move comments to code.
Cleaning this up can be done at a later time. I don't want to make
Mauro spend more time than necessary on this.
^ permalink raw reply [flat|nested] 115+ messages in thread
* Re: [PATCH v2 31/79] docs: s390: convert docs to ReST and rename to *.rst
2019-04-24 11:41 ` Cornelia Huck
2019-04-24 12:30 ` Heiko Carstens
@ 2019-04-24 12:44 ` Mauro Carvalho Chehab
2019-04-24 12:52 ` Cornelia Huck
1 sibling, 1 reply; 115+ messages in thread
From: Mauro Carvalho Chehab @ 2019-04-24 12:44 UTC (permalink / raw)
To: Cornelia Huck
Cc: Linux Doc Mailing List, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Martin Schwidefsky, Heiko Carstens, Tony Krowiak,
Pierre Morel, Halil Pasic, Farhan Ali, Eric Farman, linux-s390,
kvm
Em Wed, 24 Apr 2019 13:41:09 +0200
Cornelia Huck <cohuck@redhat.com> escreveu:
> On Mon, 22 Apr 2019 10:27:20 -0300
> Mauro Carvalho Chehab <mchehab+samsung@kernel.org> wrote:
>
> > Convert all text files with s390 documentation to ReST format.
> >
> > Tried to preserve as much as possible the original document
> > format. Still, some of the files required some work in order
> > for it to be visible on both plain text and after converted
> > to html.
> >
> > The conversion is actually:
> > - add blank lines and identation in order to identify paragraphs;
> > - fix tables markups;
> > - add some lists markups;
> > - mark literal blocks;
> > - adjust title markups.
> >
> > At its new index.rst, let's add a :orphan: while this is not linked to
> > the main index.rst file, in order to avoid build warnings.
> >
> > Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
> > ---
> > .../admin-guide/kernel-parameters.txt | 4 +-
> > Documentation/driver-api/s390-drivers.rst | 4 +-
> > Documentation/s390/{3270.txt => 3270.rst} | 85 +-
> > Documentation/s390/{cds.txt => cds.rst} | 354 ++-
> > .../s390/{CommonIO => common_io.rst} | 49 +-
> > Documentation/s390/{DASD => dasd.rst} | 33 +-
> > .../{Debugging390.txt => debugging390.rst} | 2389 ++++++++++-------
> > .../{driver-model.txt => driver-model.rst} | 179 +-
> > Documentation/s390/index.rst | 30 +
> > .../s390/{monreader.txt => monreader.rst} | 85 +-
> > Documentation/s390/{qeth.txt => qeth.rst} | 36 +-
> > Documentation/s390/s390dbf.rst | 803 ++++++
> > Documentation/s390/s390dbf.txt | 667 -----
> > Documentation/s390/text_files.rst | 11 +
> > .../s390/{vfio-ap.txt => vfio-ap.rst} | 487 ++--
> > .../s390/{vfio-ccw.txt => vfio-ccw.rst} | 90 +-
> > .../s390/{zfcpdump.txt => zfcpdump.rst} | 2 +
> > MAINTAINERS | 4 +-
> > arch/s390/Kconfig | 4 +-
> > arch/s390/include/asm/debug.h | 4 +-
> > drivers/s390/char/zcore.c | 2 +-
> > 21 files changed, 3089 insertions(+), 2233 deletions(-)
> > rename Documentation/s390/{3270.txt => 3270.rst} (90%)
> > rename Documentation/s390/{cds.txt => cds.rst} (64%)
> > rename Documentation/s390/{CommonIO => common_io.rst} (87%)
> > rename Documentation/s390/{DASD => dasd.rst} (92%)
> > rename Documentation/s390/{Debugging390.txt => debugging390.rst} (53%)
> > rename Documentation/s390/{driver-model.txt => driver-model.rst} (73%)
> > create mode 100644 Documentation/s390/index.rst
> > rename Documentation/s390/{monreader.txt => monreader.rst} (81%)
> > rename Documentation/s390/{qeth.txt => qeth.rst} (62%)
> > create mode 100644 Documentation/s390/s390dbf.rst
> > delete mode 100644 Documentation/s390/s390dbf.txt
> > create mode 100644 Documentation/s390/text_files.rst
> > rename Documentation/s390/{vfio-ap.txt => vfio-ap.rst} (72%)
> > rename Documentation/s390/{vfio-ccw.txt => vfio-ccw.rst} (89%)
> > rename Documentation/s390/{zfcpdump.txt => zfcpdump.rst} (97%)
> >
>
> (...)
>
> > diff --git a/Documentation/s390/3270.txt b/Documentation/s390/3270.rst
> > similarity index 90%
> > rename from Documentation/s390/3270.txt
> > rename to Documentation/s390/3270.rst
> > index 7c715de99774..e09e77954238 100644
> > --- a/Documentation/s390/3270.txt
> > +++ b/Documentation/s390/3270.rst
>
> (...)
>
> > @@ -17,12 +21,12 @@ twenty and thirty years ago.
> > You may have 3270s in-house and not know it. If you're using the
> > VM-ESA operating system, define a 3270 to your virtual machine by using
> > the command "DEF GRAF <hex-address>" This paper presumes you will be
> > -defining four 3270s with the CP/CMS commands
> > +defining four 3270s with the CP/CMS commands:
> >
> > - DEF GRAF 620
> > - DEF GRAF 621
> > - DEF GRAF 622
> > - DEF GRAF 623
> > + - DEF GRAF 620
> > + - DEF GRAF 621
> > + - DEF GRAF 622
> > + - DEF GRAF 623
>
> IIUC, this makes this into a bulleted list... but the user is supposed
> to enter these commands (similar to the shell commands further down in
> this file).
Ah, OK! I'll change it to use a literal block (::).
>
> >
> > Your network connection from VM-ESA allows you to use x3270, tn3270, or
> > another 3270 emulator, started from an xterm window on your PC or
>
> (...)
>
> > @@ -84,20 +92,22 @@ Here are the installation steps in detail:
> > make modules_install
> >
> > 2. (Perform this step only if you have configured tub3270 as a
> > - module.) Add a line to a file /etc/modprobe.d/*.conf to automatically
> > + module.) Add a line to a file `/etc/modprobe.d/*.conf` to automatically
> > load the driver when it's needed. With this line added, you will see
> > login prompts appear on your 3270s as soon as boot is complete (or
> > with emulated 3270s, as soon as you dial into your vm guest using the
> > command "DIAL <vmguestname>"). Since the line-mode major number is
> > - 227, the line to add should be:
> > + 227, the line to add should be::
> > +
> > alias char-major-227 tub3270
> >
> > 3. Define graphic devices to your vm guest machine, if you
> > haven't already. Define them before you reboot (reipl):
> > - DEFINE GRAF 620
> > - DEFINE GRAF 621
> > - DEFINE GRAF 622
> > - DEFINE GRAF 623
> > +
> > + - DEFINE GRAF 620
> > + - DEFINE GRAF 621
> > + - DEFINE GRAF 622
> > + - DEFINE GRAF 623
>
> Same here.
Ok.
>
> >
> > 4. Reboot. The reboot process scans hardware devices, including
> > 3270s, and this enables the tub3270 driver once loaded to respond
>
> (...)
>
>
> > diff --git a/Documentation/s390/CommonIO b/Documentation/s390/common_io.rst
> > similarity index 87%
> > rename from Documentation/s390/CommonIO
> > rename to Documentation/s390/common_io.rst
> > index 6e0f63f343b4..846485681ce7 100644
> > --- a/Documentation/s390/CommonIO
> > +++ b/Documentation/s390/common_io.rst
> > @@ -1,5 +1,9 @@
> > -S/390 common I/O-Layer - command line parameters, procfs and debugfs entries
> > -============================================================================
> > +======================
> > +S/390 common I/O-Layer
> > +======================
> > +
> > +command line parameters, procfs and debugfs entries
> > +===================================================
>
> I don't see why this should be split into two lines? If anything needs
> to be changed, I'd drop the hyphen.
No real need for html output. I suspect that a big title like the
above would cause troubles for pdf output. That's basically why I opted
to break it.
Yet, if you prefer, I'll keep it as-is.
>
> >
> > Command line parameters
> > -----------------------
> > @@ -13,7 +17,7 @@ Command line parameters
> > device := {all | [!]ipldev | [!]condev | [!]<devno> | [!]<devno>-<devno>}
> >
> > The given devices will be ignored by the common I/O-layer; no detection
> > - and device sensing will be done on any of those devices. The subchannel to
> > + and device sensing will be done on any of those devices. The subchannel to
> > which the device in question is attached will be treated as if no device was
> > attached.
> >
> > @@ -28,14 +32,20 @@ Command line parameters
> > keywords can be used to refer to the CCW based boot device and CCW console
> > device respectively (these are probably useful only when combined with the '!'
> > operator). The '!' operator will cause the I/O-layer to _not_ ignore a device.
> > - The command line is parsed from left to right.
> > + The command line
> > + is parsed from left to right.
>
> Why this change?
This was unintentional. I probably hit <enter> by mistake on that line.
I'll revert.
>
> > +
> > + For example::
> >
> > - For example,
> > cio_ignore=0.0.0023-0.0.0042,0.0.4711
> > +
> > will ignore all devices ranging from 0.0.0023 to 0.0.0042 and the device
> > 0.0.4711, if detected.
> > - As another example,
> > +
> > + As another example::
> > +
> > cio_ignore=all,!0.0.4711,!0.0.fd00-0.0.fd02
> > +
> > will ignore all devices but 0.0.4711, 0.0.fd00, 0.0.fd01, 0.0.fd02.
> >
> > By default, no devices are ignored.
>
> (...)
>
> > diff --git a/Documentation/s390/Debugging390.txt b/Documentation/s390/debugging390.rst
> > similarity index 53%
> > rename from Documentation/s390/Debugging390.txt
> > rename to Documentation/s390/debugging390.rst
> > index c35804c238ad..d49305fd5e1a 100644
> > --- a/Documentation/s390/Debugging390.txt
> > +++ b/Documentation/s390/debugging390.rst
>
> I'll skip this one...
>
> (Question for the s390 arch maintainers: I remember that there was some
> interesting stuff in there, but I'm not sure how much of it is still
> accurate/useful... is it worth spending time on trying to update this?)
>
> (...)
>
>
> > diff --git a/Documentation/s390/s390dbf.rst b/Documentation/s390/s390dbf.rst
> > new file mode 100644
> > index 000000000000..ec2a1faa414b
> > --- /dev/null
> > +++ b/Documentation/s390/s390dbf.rst
>
> (...)
>
> > diff --git a/Documentation/s390/s390dbf.txt b/Documentation/s390/s390dbf.txt
> > deleted file mode 100644
> > index 61329fd62e89..000000000000
> > --- a/Documentation/s390/s390dbf.txt
> > +++ /dev/null
>
> I wonder why this does not show up as a rename?
Probably because the number of changes were bigger than 50%. The algo
there seems to be dumb. I suspect that adding whitespace/tabs on lines
makes it to consider the entire line as different.
git log -M10 would change the threshold to 10% similarity and will
likely show it as a rename. I'll use -M on the next version for this
patch.
>
> (...)
>
> > diff --git a/Documentation/s390/text_files.rst b/Documentation/s390/text_files.rst
> > new file mode 100644
> > index 000000000000..c94d05d4fa17
> > --- /dev/null
> > +++ b/Documentation/s390/text_files.rst
> > @@ -0,0 +1,11 @@
> > +ibm 3270 changelog
> > +------------------
> > +
> > +.. include:: 3270.ChangeLog
> > + :literal:
> > +
> > +ibm 3270 config3270.sh
> > +----------------------
> > +
> > +.. literalinclude:: config3270.sh
> > + :language: shell
>
>
> Another question for the s390 arch maintainers: How valuable is this still?
>
> (...)
>
> > diff --git a/Documentation/s390/vfio-ccw.txt b/Documentation/s390/vfio-ccw.rst
> > similarity index 89%
> > rename from Documentation/s390/vfio-ccw.txt
> > rename to Documentation/s390/vfio-ccw.rst
> > index 2be11ad864ff..1f6d0b56d53e 100644
> > --- a/Documentation/s390/vfio-ccw.txt
> > +++ b/Documentation/s390/vfio-ccw.rst
>
> (...)
>
> > @@ -295,6 +321,6 @@ Reference
> > 1. ESA/s390 Principles of Operation manual (IBM Form. No. SA22-7832)
> > 2. ESA/390 Common I/O Device Commands manual (IBM Form. No. SA22-7204)
> > 3. https://en.wikipedia.org/wiki/Channel_I/O
> > -4. Documentation/s390/cds.txt
> > +4. Documentation/s390/cds.rst
> > 5. Documentation/vfio.txt
> > 6. Documentation/vfio-mediated-device.txt
>
> Are these two renamed in a later patch?
Yes. Patch 56 renames almost all Documentation/*.txt to .rst. Those files
are already parsed properly by Sphinx, so no changes there are needed.
I'm working on followup patches (not submitted yet), with moves all
ReST files under Documentation to some place.
In the specific case of those files, on the series I'm working,
I moved them to be part of the driver-api:
https://git.linuxtv.org/mchehab/experimental.git/commit/?h=convert_rst_renames&id=3387ab063cf43f91d5c0f79d741244e7dbcdec05
The results, when parsed, are at:
https://www.infradead.org/~mchehab/rst_conversion/driver-api/vfio.html
https://www.infradead.org/~mchehab/rst_conversion/driver-api/vfio-mediated-device.html
Thanks,
Mauro
^ permalink raw reply [flat|nested] 115+ messages in thread* Re: [PATCH v2 31/79] docs: s390: convert docs to ReST and rename to *.rst
2019-04-24 12:44 ` Mauro Carvalho Chehab
@ 2019-04-24 12:52 ` Cornelia Huck
0 siblings, 0 replies; 115+ messages in thread
From: Cornelia Huck @ 2019-04-24 12:52 UTC (permalink / raw)
To: Mauro Carvalho Chehab
Cc: Linux Doc Mailing List, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Martin Schwidefsky, Heiko Carstens, Tony Krowiak,
Pierre Morel, Halil Pasic, Farhan Ali, Eric Farman, linux-s390,
kvm
On Wed, 24 Apr 2019 09:44:50 -0300
Mauro Carvalho Chehab <mchehab+samsung@kernel.org> wrote:
> Em Wed, 24 Apr 2019 13:41:09 +0200
> Cornelia Huck <cohuck@redhat.com> escreveu:
>
> > On Mon, 22 Apr 2019 10:27:20 -0300
> > Mauro Carvalho Chehab <mchehab+samsung@kernel.org> wrote:
> >
> > > Convert all text files with s390 documentation to ReST format.
> > >
> > > Tried to preserve as much as possible the original document
> > > format. Still, some of the files required some work in order
> > > for it to be visible on both plain text and after converted
> > > to html.
> > >
> > > The conversion is actually:
> > > - add blank lines and identation in order to identify paragraphs;
> > > - fix tables markups;
> > > - add some lists markups;
> > > - mark literal blocks;
> > > - adjust title markups.
> > >
> > > At its new index.rst, let's add a :orphan: while this is not linked to
> > > the main index.rst file, in order to avoid build warnings.
> > >
> > > Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
> > > ---
> > > .../admin-guide/kernel-parameters.txt | 4 +-
> > > Documentation/driver-api/s390-drivers.rst | 4 +-
> > > Documentation/s390/{3270.txt => 3270.rst} | 85 +-
> > > Documentation/s390/{cds.txt => cds.rst} | 354 ++-
> > > .../s390/{CommonIO => common_io.rst} | 49 +-
> > > Documentation/s390/{DASD => dasd.rst} | 33 +-
> > > .../{Debugging390.txt => debugging390.rst} | 2389 ++++++++++-------
> > > .../{driver-model.txt => driver-model.rst} | 179 +-
> > > Documentation/s390/index.rst | 30 +
> > > .../s390/{monreader.txt => monreader.rst} | 85 +-
> > > Documentation/s390/{qeth.txt => qeth.rst} | 36 +-
> > > Documentation/s390/s390dbf.rst | 803 ++++++
> > > Documentation/s390/s390dbf.txt | 667 -----
> > > Documentation/s390/text_files.rst | 11 +
> > > .../s390/{vfio-ap.txt => vfio-ap.rst} | 487 ++--
> > > .../s390/{vfio-ccw.txt => vfio-ccw.rst} | 90 +-
> > > .../s390/{zfcpdump.txt => zfcpdump.rst} | 2 +
> > > MAINTAINERS | 4 +-
> > > arch/s390/Kconfig | 4 +-
> > > arch/s390/include/asm/debug.h | 4 +-
> > > drivers/s390/char/zcore.c | 2 +-
> > > 21 files changed, 3089 insertions(+), 2233 deletions(-)
> > > rename Documentation/s390/{3270.txt => 3270.rst} (90%)
> > > rename Documentation/s390/{cds.txt => cds.rst} (64%)
> > > rename Documentation/s390/{CommonIO => common_io.rst} (87%)
> > > rename Documentation/s390/{DASD => dasd.rst} (92%)
> > > rename Documentation/s390/{Debugging390.txt => debugging390.rst} (53%)
> > > rename Documentation/s390/{driver-model.txt => driver-model.rst} (73%)
> > > create mode 100644 Documentation/s390/index.rst
> > > rename Documentation/s390/{monreader.txt => monreader.rst} (81%)
> > > rename Documentation/s390/{qeth.txt => qeth.rst} (62%)
> > > create mode 100644 Documentation/s390/s390dbf.rst
> > > delete mode 100644 Documentation/s390/s390dbf.txt
> > > create mode 100644 Documentation/s390/text_files.rst
> > > rename Documentation/s390/{vfio-ap.txt => vfio-ap.rst} (72%)
> > > rename Documentation/s390/{vfio-ccw.txt => vfio-ccw.rst} (89%)
> > > rename Documentation/s390/{zfcpdump.txt => zfcpdump.rst} (97%)
> > >
> >
> > (...)
> >
> > > diff --git a/Documentation/s390/3270.txt b/Documentation/s390/3270.rst
> > > similarity index 90%
> > > rename from Documentation/s390/3270.txt
> > > rename to Documentation/s390/3270.rst
> > > index 7c715de99774..e09e77954238 100644
> > > --- a/Documentation/s390/3270.txt
> > > +++ b/Documentation/s390/3270.rst
> >
> > (...)
> >
> > > @@ -17,12 +21,12 @@ twenty and thirty years ago.
> > > You may have 3270s in-house and not know it. If you're using the
> > > VM-ESA operating system, define a 3270 to your virtual machine by using
> > > the command "DEF GRAF <hex-address>" This paper presumes you will be
> > > -defining four 3270s with the CP/CMS commands
> > > +defining four 3270s with the CP/CMS commands:
> > >
> > > - DEF GRAF 620
> > > - DEF GRAF 621
> > > - DEF GRAF 622
> > > - DEF GRAF 623
> > > + - DEF GRAF 620
> > > + - DEF GRAF 621
> > > + - DEF GRAF 622
> > > + - DEF GRAF 623
> >
> > IIUC, this makes this into a bulleted list... but the user is supposed
> > to enter these commands (similar to the shell commands further down in
> > this file).
>
> Ah, OK! I'll change it to use a literal block (::).
Sounds good.
> > > diff --git a/Documentation/s390/CommonIO b/Documentation/s390/common_io.rst
> > > similarity index 87%
> > > rename from Documentation/s390/CommonIO
> > > rename to Documentation/s390/common_io.rst
> > > index 6e0f63f343b4..846485681ce7 100644
> > > --- a/Documentation/s390/CommonIO
> > > +++ b/Documentation/s390/common_io.rst
> > > @@ -1,5 +1,9 @@
> > > -S/390 common I/O-Layer - command line parameters, procfs and debugfs entries
> > > -============================================================================
> > > +======================
> > > +S/390 common I/O-Layer
> > > +======================
> > > +
> > > +command line parameters, procfs and debugfs entries
> > > +===================================================
> >
> > I don't see why this should be split into two lines? If anything needs
> > to be changed, I'd drop the hyphen.
>
> No real need for html output. I suspect that a big title like the
> above would cause troubles for pdf output. That's basically why I opted
> to break it.
>
> Yet, if you prefer, I'll keep it as-is.
I basically find the short title confusing (the file is not about the
common I/O layer as a whole, but only about parameters etc.)
Maybe "S/390 common I/O layer user interface"?
But I don't care about this deeply :)
> > > diff --git a/Documentation/s390/vfio-ccw.txt b/Documentation/s390/vfio-ccw.rst
> > > similarity index 89%
> > > rename from Documentation/s390/vfio-ccw.txt
> > > rename to Documentation/s390/vfio-ccw.rst
> > > index 2be11ad864ff..1f6d0b56d53e 100644
> > > --- a/Documentation/s390/vfio-ccw.txt
> > > +++ b/Documentation/s390/vfio-ccw.rst
> >
> > (...)
> >
> > > @@ -295,6 +321,6 @@ Reference
> > > 1. ESA/s390 Principles of Operation manual (IBM Form. No. SA22-7832)
> > > 2. ESA/390 Common I/O Device Commands manual (IBM Form. No. SA22-7204)
> > > 3. https://en.wikipedia.org/wiki/Channel_I/O
> > > -4. Documentation/s390/cds.txt
> > > +4. Documentation/s390/cds.rst
>
> > > 5. Documentation/vfio.txt
> > > 6. Documentation/vfio-mediated-device.txt
> >
> > Are these two renamed in a later patch?
>
> Yes. Patch 56 renames almost all Documentation/*.txt to .rst. Those files
> are already parsed properly by Sphinx, so no changes there are needed.
>
> I'm working on followup patches (not submitted yet), with moves all
> ReST files under Documentation to some place.
>
> In the specific case of those files, on the series I'm working,
> I moved them to be part of the driver-api:
>
> https://git.linuxtv.org/mchehab/experimental.git/commit/?h=convert_rst_renames&id=3387ab063cf43f91d5c0f79d741244e7dbcdec05
>
> The results, when parsed, are at:
>
> https://www.infradead.org/~mchehab/rst_conversion/driver-api/vfio.html
> https://www.infradead.org/~mchehab/rst_conversion/driver-api/vfio-mediated-device.html
Sounds good!
^ permalink raw reply [flat|nested] 115+ messages in thread
[parent not found: <CGME20190422132822epcas1p4fbb9f0522bd66caf4a44ed9c49dfe9c7@epcas1p4.samsung.com>]
[parent not found: <c6e79690c038fc6bbf9265a065c1f861d6e156fa.1555938375.git.mchehab+samsung@kernel.org>]
* Re: [PATCH v2 08/79] docs: cgroup-v1: convert docs to ReST and rename to *.rst
[not found] ` <c6e79690c038fc6bbf9265a065c1f861d6e156fa.1555938375.git.mchehab+samsung@kernel.org>
@ 2019-05-06 15:47 ` Tejun Heo
0 siblings, 0 replies; 115+ messages in thread
From: Tejun Heo @ 2019-05-06 15:47 UTC (permalink / raw)
To: Mauro Carvalho Chehab
Cc: Linux Doc Mailing List, Mauro Carvalho Chehab, linux-kernel,
Jonathan Corbet, Thomas Gleixner, Ingo Molnar, Borislav Petkov,
H. Peter Anvin, x86, Jens Axboe, Li Zefan, Johannes Weiner,
Alexei Starovoitov, Daniel Borkmann, Martin KaFai Lau, Song Liu,
Yonghong Song, James Morris, Serge E. Hallyn, linux-block,
cgroups, netdev, bpf, linux-security-module
On Mon, Apr 22, 2019 at 10:26:57AM -0300, Mauro Carvalho Chehab wrote:
> Convert the cgroup-v1 files to ReST format, in order to
> allow a later addition to the admin-guide.
>
> The conversion is actually:
> - add blank lines and identation in order to identify paragraphs;
> - fix tables markups;
> - add some lists markups;
> - mark literal blocks;
> - adjust title markups.
>
> At its new index.rst, let's add a :orphan: while this is not linked to
> the main index.rst file, in order to avoid build warnings.
>
> Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Please feel free to route with other patches in the series.
Thanks.
--
tejun
^ permalink raw reply [flat|nested] 115+ messages in thread