linux-ext4.vger.kernel.org archive mirror
 help / color / mirror / Atom feed
From: Jan Kara <jack@suse.cz>
To: Andy Lutomirski <luto@amacapital.net>
Cc: Jan Kara <jack@suse.cz>, Andreas Dilger <adilger@dilger.ca>,
	"linux-kernel@vger.kernel.org" <linux-kernel@vger.kernel.org>,
	"linux-mm@kvack.org" <linux-mm@kvack.org>,
	"linux-ext4@vger.kernel.org" <linux-ext4@vger.kernel.org>
Subject: Re: Latency writing to an mlocked ext4 mapping
Date: Wed, 2 Nov 2011 00:03:20 +0100	[thread overview]
Message-ID: <20111101230320.GH18701@quack.suse.cz> (raw)
In-Reply-To: <CALCETrViG6t1forOFtO-R=bGABvtLcECxJ8m8Tenv6rwxLg_ew@mail.gmail.com>

On Mon 31-10-11 16:14:47, Andy Lutomirski wrote:
> On Mon, Oct 31, 2011 at 4:10 PM, Jan Kara <jack@suse.cz> wrote:
> > On Fri 28-10-11 16:37:03, Andy Lutomirski wrote:
> >> On Tue, Oct 25, 2011 at 5:26 AM, Jan Kara <jack@suse.cz> wrote:
> >> >>  - Why are we calling file_update_time at all?  Presumably we also
> >> >> update the time when the page is written back (if not, that sounds
> >> >> like a bug, since the contents may be changed after something saw the
> >> >> mtime update), and, if so, why bother updating it on the first write?
> >> >> Anything that relies on this behavior is, I think, unreliable, because
> >> >> the page could be made writable arbitrarily early by another program
> >> >> that changes nothing.
> >> >  We don't update timestamp when the page is written back. I believe this
> >> > is mostly because we don't know whether the data has been changed by a
> >> > write syscall, which already updated the timestamp, or by mmap. That is
> >> > also the reason why we update the timestamp at page fault time.
> >> >
> >> >  The reason why file_update_time() blocks for you is probably that it
> >> > needs to get access to buffer where inode is stored on disk and because a
> >> > transaction including this buffer is committing at the moment, your thread
> >> > has to wait until the transaction commit finishes. This is mostly a problem
> >> > specific to how ext4 works so e.g. xfs shouldn't have it.
> >> >
> >> >  Generally I believe the attempts to achieve any RT-like latencies when
> >> > writing to a filesystem are rather hopeless. How much hopeless depends on
> >> > the load of the filesystem (e.g., in your case of mostly idle filesystem I
> >> > can imagine some tweaks could reduce your latencies to an acceptable level
> >> > but once the disk gets loaded you'll be screwed). So I'd suggest that
> >> > having RT thread just store log in memory (or write to a pipe) and have
> >> > another non-RT thread write the data to disk would be a much more robust
> >> > design.
> >>
> >> Windows seems to do pretty well at this, and I think it should be fixable on
> >> Linux too.  "All" that needs to be done is to remove the pte_wrprotect from
> >> page_mkclean_one.  The fallout from that might be unpleasant, though, but
> >> it would probably speed up a number of workloads.
> >  Well, but Linux's mm pretty much depends the pte_wrprotect() so that's
> > unlikely to go away in a forseeable future. The reason is that we need to
> > reliably account the number of dirty pages so that we can throttle
> > processes that dirty too much of memory and also protect agaist system
> > going into out-of-memory problems when too many pages would be dirty (and
> > thus hard to reclaim). Thus we create clean pages as write-protected, when
> > they are first written to, we account them as dirtied and unprotect them.
> > When pages are cleaned by writeback, we decrement number of dirty pages
> > accordingly and write-protect them again.
> 
> What about skipping pte_wrprotect for mlocked pages and continuing to
> account them dirty even if they're actually clean?  This should be a
> straightforward patch except for the effect on stable pages for
> writeback.  (It would also have unfortunate side effects on
> ctime/mtime without my other patch to rearrange that code.)
  Well, doing proper dirty accounting would be a mess (you'd have to
unaccount dirty pages during munlock etc.) and I'm not sure what all would
break when page writes would not be coupled with page faults. So I don't
think it's really worth it.

Avoiding IO during a minor fault would be a decent thing which might be
worth pursuing. As you properly noted "stable pages during writeback"
requirement is one obstacle which won't be that trivial to avoid though...

								Honza
-- 
Jan Kara <jack@suse.cz>
SUSE Labs, CR
--
To unsubscribe from this list: send the line "unsubscribe linux-ext4" in
the body of a message to majordomo@vger.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html

  reply	other threads:[~2011-11-01 23:03 UTC|newest]

Thread overview: 19+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2011-10-20  0:39 Latency writing to an mlocked ext4 mapping Andy Lutomirski
2011-10-20  1:02 ` Andreas Dilger
2011-10-20  1:15   ` Andy Lutomirski
2011-10-20  2:17     ` Andy Lutomirski
2011-10-20  5:59       ` Andy Lutomirski
2011-10-25 12:26         ` Jan Kara
2011-10-28 23:37           ` Andy Lutomirski
2011-10-28 23:39             ` [PATCH] mm: Improve cmtime update on shared writable mmaps Andy Lutomirski
2011-11-01 22:53               ` Jan Kara
2011-11-01 23:02                 ` Andy Lutomirski
2011-11-02  7:38                   ` Christoph Hellwig
2011-11-02 15:02                   ` Jan Kara
2011-11-02 15:19                     ` Ted Ts'o
2011-10-31 23:10             ` Latency writing to an mlocked ext4 mapping Jan Kara
2011-10-31 23:14               ` Andy Lutomirski
2011-11-01 23:03                 ` Jan Kara [this message]
2011-11-01 23:10                   ` Andy Lutomirski
2011-11-02  1:51                     ` Andy Lutomirski
2011-11-02 20:17                       ` Jan Kara

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=20111101230320.GH18701@quack.suse.cz \
    --to=jack@suse.cz \
    --cc=adilger@dilger.ca \
    --cc=linux-ext4@vger.kernel.org \
    --cc=linux-kernel@vger.kernel.org \
    --cc=linux-mm@kvack.org \
    --cc=luto@amacapital.net \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).