From: Dave Chinner <david@fromorbit.com>
To: Martin Boutin <martboutin@gmail.com>
Cc: Eric Sandeen <sandeen@redhat.com>,
"Kernel.org-Linux-RAID" <linux-raid@vger.kernel.org>,
xfs-oss <xfs@oss.sgi.com>,
"Kernel.org-Linux-EXT4" <linux-ext4@vger.kernel.org>
Subject: Re: Filesystem writes on RAID5 too slow
Date: Thu, 21 Nov 2013 20:26:06 +1100 [thread overview]
Message-ID: <20131121092606.GU11434@dastard> (raw)
In-Reply-To: <CACtJ3Ha3C7JNi5VZRnNMn+-okNheygmbj=j9AnUMvfzfZjNwug@mail.gmail.com>
On Thu, Nov 21, 2013 at 04:11:41AM -0500, Martin Boutin wrote:
> On Mon, Nov 18, 2013 at 7:57 PM, Dave Chinner <david@fromorbit.com> wrote:
> > On Mon, Nov 18, 2013 at 12:28:21PM -0600, Eric Sandeen wrote:
> >> On 11/18/13, 10:02 AM, Martin Boutin wrote:
> >> > Dear list,
> >> >
> >> > I am writing about an apparent issue (or maybe it is normal, that's my
> >> > question) regarding filesystem write speed in in a linux raid device.
> >> > More specifically, I have linux-3.10.10 running in an Intel Haswell
> >> > embedded system with 3 HDDs in a RAID-5 configuration.
> >> > The hard disks have 4k physical sectors which are reported as 512
> >> > logical size. I made sure the partitions underlying the raid device
> >> > start at sector 2048.
> >>
> >> (fixed cc: to xfs list)
> >>
> >> > The RAID device has version 1.2 metadata and 4k (bytes) of data
> >> > offset, therefore the data should also be 4k aligned. The raid chunk
> >> > size is 512K.
> >> >
> >> > I have the md0 raid device formatted as ext3 with a 4k block size, and
> >> > stride and stripes correctly chosen to match the raid chunk size, that
> >> > is, stride=128,stripe-width=256.
> >> >
> >> > While I was working in a small university project, I just noticed that
> >> > the write speeds when using a filesystem over raid are *much* slower
> >> > than when writing directly to the raid device (or even compared to
> >> > filesystem read speeds).
> >> >
> >> > The command line for measuring filesystem read and write speeds was:
> >> >
> >> > $ dd if=/tmp/diskmnt/filerd.zero of=/dev/null bs=1M count=1000 iflag=direct
> >> > $ dd if=/dev/zero of=/tmp/diskmnt/filewr.zero bs=1M count=1000 oflag=direct
> >> >
> >> > The command line for measuring raw read and write speeds was:
> >> >
> >> > $ dd if=/dev/md0 of=/dev/null bs=1M count=1000 iflag=direct
> >> > $ dd if=/dev/zero of=/dev/md0 bs=1M count=1000 oflag=direct
> >> >
> >> > Here are some speed measures using dd (an average of 20 runs).:
> >> >
> >> > device raw/fs mode speed (MB/s) slowdown (%)
> >> > /dev/md0 raw read 207
> >> > /dev/md0 raw write 209
> >> > /dev/md1 raw read 214
> >> > /dev/md1 raw write 212
> >
> > So, that's writing to the first 1GB of /dev/md0, and all the writes
> > are going to be aligned to the MD stripe.
> >
> >> > /dev/md0 xfs read 188 9
> >> > /dev/md0 xfs write 35 83o
> >
> > And these will not be written to the first 1GB of the block device
> > but somewhere else. Most likely a region that hasn't otherwise been
> > used, and so isn't going to be overwriting the same blocks like the
> > /dev/md0 case is going to be. Perhaps there's some kind of stripe
> > caching effect going on here? Was the md device fully initialised
> > before you ran these tests?
> >
> >> >
> >> > /dev/md1 ext3 read 199 7
> >> > /dev/md1 ext3 write 36 83
> >> >
> >> > /dev/md0 ufs read 212 0
> >> > /dev/md0 ufs write 53 75
> >> >
> >> > /dev/md0 ext2 read 202 2
> >> > /dev/md0 ext2 write 34 84
> >
> > I suspect what you are seeing here is either the latency introduced
> > by having to allocate blocks before issuing the IO, or the file
> > layout due to allocation is not idea. Single threaded direct IO is
> > latency bound, not bandwidth bound and, as such, is IO size
> > sensitive. Allocation for direct IO is also IO size sensitive -
> > there's typically an allocation per IO, so the more IO you have to
> > do, the more allocation that occurs.
>
> I just did a few more tests, this time with ext4:
>
> device raw/fs mode speed (MB/s) slowdown (%)
> /dev/md0 ext4 read 199 4%
> /dev/md0 ext4 write 210 0%
>
> This time, no slowdown at all on ext4. I believe this is due to the
> multiblock allocation feature of ext4 (I'm using O_DIRECT, so it
> should be it). So I guess for the other filesystems, it was indeed
> the latency introduced by block allocation.
Except that XFS does extent based allocation as well, so that's not
likely the reason. The fact that ext4 doesn't see a slowdown like
every other filesystem really doesn't make a lot of sense to
me, either from an IO dispatch point of view or an IO alignment
point of view.
Why? Because all the filesystems align identically to the underlying
device and all should be doing 4k block aligned IO, and XFS has
roughly the same allocation overhead for this workload as ext4.
Did you retest XFS or any of the other filesystems directly after
running the ext4 tests (i.e. confirm you are testing apples to
apples)?
What we need to determine why other filesystems are slow (and why
ext4 is fast) is more information about your configuration and block
traces showing what is happening at the IO level, like was requested
in a previous email....
Cheers,
Dave.
--
Dave Chinner
david@fromorbit.com
next prev parent reply other threads:[~2013-11-21 9:26 UTC|newest]
Thread overview: 19+ messages / expand[flat|nested] mbox.gz Atom feed top
2013-11-18 16:02 Filesystem writes on RAID5 too slow Martin Boutin
2013-11-18 18:28 ` Eric Sandeen
2013-11-19 0:57 ` Dave Chinner
2013-11-21 9:11 ` Martin Boutin
2013-11-21 9:26 ` Dave Chinner [this message]
2013-11-21 9:50 ` Martin Boutin
2013-11-21 13:31 ` Martin Boutin
2013-11-21 16:35 ` Martin Boutin
2013-11-21 23:41 ` Dave Chinner
2013-11-22 9:21 ` Christoph Hellwig
2013-11-22 22:40 ` Dave Chinner
2013-11-23 8:41 ` Christoph Hellwig
2013-11-24 23:21 ` Dave Chinner
2013-11-22 13:33 ` Martin Boutin
2013-12-10 19:18 ` Christoph Hellwig
2013-12-11 0:27 ` Dave Chinner
2013-12-11 19:09 ` Ben Myers
2013-11-18 18:41 ` Roman Mamedov
2013-11-18 19:25 ` Roman Mamedov
Reply instructions:
You may reply publicly to this message via plain-text email
using any one of the following methods:
* Save the following mbox file, import it into your mail client,
and reply-to-all from there: mbox
Avoid top-posting and favor interleaved quoting:
https://en.wikipedia.org/wiki/Posting_style#Interleaved_style
* Reply using the --to, --cc, and --in-reply-to
switches of git-send-email(1):
git send-email \
--in-reply-to=20131121092606.GU11434@dastard \
--to=david@fromorbit.com \
--cc=linux-ext4@vger.kernel.org \
--cc=linux-raid@vger.kernel.org \
--cc=martboutin@gmail.com \
--cc=sandeen@redhat.com \
--cc=xfs@oss.sgi.com \
/path/to/YOUR_REPLY
https://kernel.org/pub/software/scm/git/docs/git-send-email.html
* If your mail client supports setting the In-Reply-To header
via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line
before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).