From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org X-Spam-Level: X-Spam-Status: No, score=-7.2 required=3.0 tests=HEADER_FROM_DIFFERENT_DOMAINS, MAILING_LIST_MULTI,MENTIONS_GIT_HOSTING,SPF_HELO_NONE,SPF_PASS,URIBL_BLOCKED, USER_AGENT_SANE_1 autolearn=ham autolearn_force=no version=3.4.0 Received: from mail.kernel.org (mail.kernel.org [198.145.29.99]) by smtp.lore.kernel.org (Postfix) with ESMTP id 7BB89C433FF for ; Wed, 7 Aug 2019 18:01:51 +0000 (UTC) Received: from vger.kernel.org (vger.kernel.org [209.132.180.67]) by mail.kernel.org (Postfix) with ESMTP id 4FEF62231F for ; Wed, 7 Aug 2019 18:01:51 +0000 (UTC) Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S2389067AbfHGSBu (ORCPT ); Wed, 7 Aug 2019 14:01:50 -0400 Received: from mga12.intel.com ([192.55.52.136]:7143 "EHLO mga12.intel.com" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S2388163AbfHGSBu (ORCPT ); Wed, 7 Aug 2019 14:01:50 -0400 X-Amp-Result: UNKNOWN X-Amp-Original-Verdict: FILE UNKNOWN X-Amp-File-Uploaded: False Received: from fmsmga007.fm.intel.com ([10.253.24.52]) by fmsmga106.fm.intel.com with ESMTP/TLS/DHE-RSA-AES256-GCM-SHA384; 07 Aug 2019 11:01:48 -0700 X-ExtLoop1: 1 X-IronPort-AV: E=Sophos;i="5.64,358,1559545200"; d="gz'50?scan'50,208,50";a="176266147" Received: from lkp-server01.sh.intel.com (HELO lkp-server01) ([10.239.97.150]) by fmsmga007.fm.intel.com with ESMTP; 07 Aug 2019 11:01:46 -0700 Received: from kbuild by lkp-server01 with local (Exim 4.89) (envelope-from ) id 1hvQFt-000Dru-TM; Thu, 08 Aug 2019 02:01:45 +0800 Date: Thu, 8 Aug 2019 02:00:48 +0800 From: kbuild test robot To: Dave Chinner Cc: kbuild-all@01.org, linux-xfs@vger.kernel.org, linux-mm@kvack.org, linux-fsdevel@vger.kernel.org Subject: Re: [PATCH 04/24] shrinker: defer work only to kswapd Message-ID: <201908080157.6xAysUVU%lkp@intel.com> References: <20190801021752.4986-5-david@fromorbit.com> MIME-Version: 1.0 Content-Type: multipart/mixed; boundary="htu7lpwfht3g3r4g" Content-Disposition: inline In-Reply-To: <20190801021752.4986-5-david@fromorbit.com> X-Patchwork-Hint: ignore User-Agent: NeoMutt/20170113 (1.7.2) Sender: linux-fsdevel-owner@vger.kernel.org Precedence: bulk List-ID: X-Mailing-List: linux-fsdevel@vger.kernel.org --htu7lpwfht3g3r4g Content-Type: text/plain; charset=us-ascii Content-Disposition: inline Hi Dave, Thank you for the patch! Perhaps something to improve: [auto build test WARNING on linus/master] [cannot apply to v5.3-rc3 next-20190807] [if your patch is applied to the wrong git tree, please drop us a note to help improve the system] url: https://github.com/0day-ci/linux/commits/Dave-Chinner/mm-xfs-non-blocking-inode-reclaim/20190804-042311 config: i386-randconfig-a003-201931 (attached as .config) compiler: gcc-4.9 (Debian 4.9.2-10+deb8u1) 4.9.2 reproduce: # save the attached .config to linux build tree make ARCH=i386 If you fix the issue, kindly add following tag Reported-by: kbuild test robot All warnings (new ones prefixed by >>): mm/vmscan.c: In function 'do_shrink_slab': >> mm/vmscan.c:539:34: warning: passing argument 1 of 'atomic64_xchg' from incompatible pointer type deferred_count = atomic64_xchg(&shrinker->nr_deferred[nid], 0); ^ In file included from arch/x86/include/asm/atomic.h:265:0, from include/linux/atomic.h:7, from include/linux/jump_label.h:249, from include/linux/static_key.h:1, from arch/x86/include/asm/nospec-branch.h:6, from arch/x86/include/asm/paravirt_types.h:46, from arch/x86/include/asm/ptrace.h:94, from arch/x86/include/asm/math_emu.h:5, from arch/x86/include/asm/processor.h:12, from arch/x86/include/asm/cpufeature.h:5, from arch/x86/include/asm/thread_info.h:53, from include/linux/thread_info.h:38, from arch/x86/include/asm/preempt.h:7, from include/linux/preempt.h:78, from include/linux/spinlock.h:51, from include/linux/mmzone.h:8, from include/linux/gfp.h:6, from include/linux/mm.h:10, from mm/vmscan.c:17: include/asm-generic/atomic-instrumented.h:1421:1: note: expected 'struct atomic64_t *' but argument is of type 'struct atomic_long_t *' atomic64_xchg(atomic64_t *v, s64 i) ^ vim +/atomic64_xchg +539 mm/vmscan.c 498 499 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 500 struct shrinker *shrinker, int priority) 501 { 502 unsigned long freed = 0; 503 int64_t freeable_objects = 0; 504 int64_t scan_count; 505 int64_t scanned_objects = 0; 506 int64_t next_deferred = 0; 507 int64_t deferred_count = 0; 508 long new_nr; 509 int nid = shrinkctl->nid; 510 long batch_size = shrinker->batch ? shrinker->batch 511 : SHRINK_BATCH; 512 513 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 514 nid = 0; 515 516 scan_count = shrink_scan_count(shrinkctl, shrinker, priority, 517 &freeable_objects); 518 if (scan_count == 0 || scan_count == SHRINK_EMPTY) 519 return scan_count; 520 521 /* 522 * If kswapd, we take all the deferred work and do it here. We don't let 523 * direct reclaim do this, because then it means some poor sod is going 524 * to have to do somebody else's GFP_NOFS reclaim, and it hides the real 525 * amount of reclaim work from concurrent kswapd operations. Hence we do 526 * the work in the wrong place, at the wrong time, and it's largely 527 * unpredictable. 528 * 529 * By doing the deferred work only in kswapd, we can schedule the work 530 * according the the reclaim priority - low priority reclaim will do 531 * less deferred work, hence we'll do more of the deferred work the more 532 * desperate we become for free memory. This avoids the need for needing 533 * to specifically avoid deferred work windup as low amount os memory 534 * pressure won't excessive trim caches anymore. 535 */ 536 if (current_is_kswapd()) { 537 int64_t deferred_scan; 538 > 539 deferred_count = atomic64_xchg(&shrinker->nr_deferred[nid], 0); 540 541 /* we want to scan 5-10% of the deferred work here at minimum */ 542 deferred_scan = deferred_count; 543 if (priority) 544 do_div(deferred_scan, priority); 545 scan_count += deferred_scan; 546 547 /* 548 * If there is more deferred work than the number of freeable 549 * items in the cache, limit the amount of work we will carry 550 * over to the next kswapd run on this cache. This prevents 551 * deferred work windup. 552 */ 553 if (deferred_count > freeable_objects * 2) 554 deferred_count = freeable_objects * 2; 555 556 } 557 558 /* 559 * Avoid risking looping forever due to too large nr value: 560 * never try to free more than twice the estimate number of 561 * freeable entries. 562 */ 563 if (scan_count > freeable_objects * 2) 564 scan_count = freeable_objects * 2; 565 566 trace_mm_shrink_slab_start(shrinker, shrinkctl, deferred_count, 567 freeable_objects, scan_count, 568 scan_count, priority); 569 570 /* 571 * If the shrinker can't run (e.g. due to gfp_mask constraints), then 572 * defer the work to a context that can scan the cache. 573 */ 574 if (shrinkctl->will_defer) 575 goto done; 576 577 /* 578 * Normally, we should not scan less than batch_size objects in one 579 * pass to avoid too frequent shrinker calls, but if the slab has less 580 * than batch_size objects in total and we are really tight on memory, 581 * we will try to reclaim all available objects, otherwise we can end 582 * up failing allocations although there are plenty of reclaimable 583 * objects spread over several slabs with usage less than the 584 * batch_size. 585 * 586 * We detect the "tight on memory" situations by looking at the total 587 * number of objects we want to scan (total_scan). If it is greater 588 * than the total number of objects on slab (freeable), we must be 589 * scanning at high prio and therefore should try to reclaim as much as 590 * possible. 591 */ 592 while (scan_count >= batch_size || 593 scan_count >= freeable_objects) { 594 unsigned long ret; 595 unsigned long nr_to_scan = min_t(long, batch_size, scan_count); 596 597 shrinkctl->nr_to_scan = nr_to_scan; 598 shrinkctl->nr_scanned = nr_to_scan; 599 ret = shrinker->scan_objects(shrinker, shrinkctl); 600 if (ret == SHRINK_STOP) 601 break; 602 freed += ret; 603 604 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 605 scan_count -= shrinkctl->nr_scanned; 606 scanned_objects += shrinkctl->nr_scanned; 607 608 cond_resched(); 609 } 610 611 done: 612 if (deferred_count) 613 next_deferred = deferred_count - scanned_objects; 614 else if (scan_count > 0) 615 next_deferred = scan_count; 616 /* 617 * move the unused scan count back into the shrinker in a 618 * manner that handles concurrent updates. If we exhausted the 619 * scan, there is no need to do an update. 620 */ 621 if (next_deferred > 0) 622 new_nr = atomic_long_add_return(next_deferred, 623 &shrinker->nr_deferred[nid]); 624 else 625 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 626 627 trace_mm_shrink_slab_end(shrinker, nid, freed, deferred_count, new_nr, 628 scan_count); 629 return freed; 630 } 631 --- 0-DAY kernel test infrastructure Open Source Technology Center https://lists.01.org/pipermail/kbuild-all Intel Corporation --htu7lpwfht3g3r4g Content-Type: application/gzip Content-Disposition: attachment; filename=".config.gz" Content-Transfer-Encoding: base64 H4sICKMBS10AAy5jb25maWcAjFzbc9w2r3/vX7GTvrTTSetb3PSc8QNFUVp2JVEhqfWuXzSO s8nnqS85vrTNf38AUlqRErT5Op3WIsA7CPwAgvvjDz8u2OvL4/31y+3N9d3dt8WX3cPu6fpl 92nx+fZu97+LVC0qZRcilfZXYC5uH17//e329P354t2vp78evX26OVmsdk8Pu7sFf3z4fPvl FWrfPj788OMP8O+PUHj/FRp6+p/Fl5ubt2e//rH4Kd19vL1+WMDfv568PT765dPu4/vX4599 AVTiqspk3nLeStPmnF9864vgo10LbaSqLs6O/jg62fMWrMr3pKOgCc6qtpDVamgECpfMtMyU ba6smhAuma7akm0T0TaVrKSVrJBXIh0Ypf7QXiodtJk0skitLEUrNpYlhWiN0nag26UWLG1l lSn4T2uZwcpugXK34HeL593L69dh9olWK1G1qmpNWQddw3haUa1bpnOYVyntxekJLnM3BVXW Enq3wtjF7fPi4fEFGx4YljAMoSf0jloozop+Fd+8oYpb1oRr5ibeGlbYgH/J1qJdCV2Jos2v ZDD8kJIA5YQmFVcloymbq7kaao5wNhDiMe0XJRwQuWrBsA7RN1eHa6vD5DNiR1KRsaaw7VIZ W7FSXLz56eHxYffzm6G+2Zq1rDnZdq2M3LTlh0Y0gmida2VMW4pS6W3LrGV8OSxWY0Qhk3Cd WANagGjGrTfTfOk5YEAgL0Uv4HBaFs+vH5+/Pb/s7gcBz0UltOTuMNVaJSI45gHJLNUlTeHL ULKwJFUlkxVV1i6l0DjCLd1WyayGhYJRg6hbpWkuLYzQa2bxGJQqFXFPmdJcpN1Rl1U+UE3N tBHIRLebiqTJM+OWevfwafH4ebRog5pTfGVUAx2BmrJ8maqgG7cDIUvKLDtARl0SaL+AsgaN B5VFWzBjW77lBbE7Tt2th80ekV17Yi0qaw4SUdOxlENHh9lK2EWW/tmQfKUybVPjkHups7f3 u6dnSvCs5CvQqwIkK2iqUu3yCvVnqapQ5qGwhj5UKjkh+b6WTN367Ou4Ulr9ynyJYuQWT5uY p9v6ycj7zmotRFlbaL6KuuvL16poKsv0llYFnouYRF+fK6jerx+vm9/s9fNfixcYzuIahvb8 cv3yvLi+uXl8fXi5ffgyWlGo0DLu2vDCv+8ZRdwJy0AmR5iYFDUBF6CTgJU2YGg6jWXWUBMx cthQ+Nhrz1QaNMppeML+iwm6hdC8WRhKiqptC7RwovAJ9h/EhVpl45nD6qMinNm+yW6Uce97 dbPyfwQKaLXfTMWjxV95k0+tV6HQgGegY2VmL06OBoGQlV2BVc/EiOf4NNL5TWU6tMOXoPrc ce0FyNz8Z/fpFZDf4vPu+uX1affsirt5EdRIT12yyrYJqjhot6lKVre2SNqsaExgoniuVVOb cL5gzHhOmTrH6gca8mdM6jagkUKn7XdZuvZrmZpDdJ3GECKmZnASr4QOx9dRUrGWXBxqGeR5 fGhGQxM6I1pO6uxQs842kQwIR8CywXGl6y8FX9UKJAkVHthUevRechBUuv5onq3JDIwEFBVY 53gD+h0SBQtse1KscMmcidMhcsdvVkJr3tIFoFWnI6wKBSOICiUxMoUCB0gHQUlnYZ4jURAP 3A5Vg34EHwMxhNsnpUtW8UjLj9kM/EGpGbDHNjDH/pzK9Pg8wCOOB1QVF7UDM7AmXIzq1NzU KxhNwSwOJ1jbOhs+vLoLQGPcUwnaVwKQjETa5MKWoOzaDjvQs8A92mOLUBRw6PM1syWr0hCu eAjs7W1Q6lTc+LutysCCgOAHDLPLwQDaZU0IgbLGis3oEzRDsGq1CvmNzCtWZIGcuuFmkaJy MCijZN8sQelFOF3SIihV2+g568vStYSZdCtLmQvoJWFaSxHA4xXybkszLWkjVLgvdcuFp9XK tYiEqp1ASRQcZ8DDpXHmAf30YThQswIQCComOotGfCBnCvVEmpJqxEs+9NqOkasrhAG169J5 CREA48dH0cl2lq6LitS7p8+PT/fXDze7hfh79wAQg4EN5AgyAOcNiILs1qlfuvPOkv6X3Qyj XZe+F4/3Jii0VzeqrBmYYL2iVXLBkhlCk1AyWqjIlcT6sIM6Fz1Io1tbNlkG+KJmwLj3zmbw rcpkMZLu/jihfnO2KHKy4tBLz7x5f96eBlofvkMDYqxuuNOaqeDgBAaHQTW2bmzrtLe9eLO7 +3x68hZjZW8i4YUJd/DtzfXTzX9++/f9+W83Lnb27CJr7afdZ/8dRmBWYP9a09R1FFgC/MVX bnpTWlk2o2NTIo7SFRg26T2qi/eH6GxzcXxOM/Ti8Z12Iraoub3/a1ibhja1J0Ta17fKtr1p arOUT6uA9pCJRr81jeHAXmegk4LKZ0PRGEARjBUKZ1sJDpAvOC9tnYOsBevsxmSE9RjLO0Ja BFOqBECcnuS0DzSl0bNeNmFkMuJzIk+y+fHIROjKxyLAxBmZFOMhm8bUAjZhhuwgtls6VrTL BoxykUxacCJlejUEQ+r1D8nWuEBOoL4yML2C6WLLMWQiArNZ595zKEAXFeZiiOT6IKxhuA0o 3LjWgvuYjNOr9dPjze75+fFp8fLtq/fcAg+ja+YKfOROrgZlUtaEbsDjnglmGy08pA2rILGs XfiGqJqrIs2kc0gGqyMsGHcQopmuvAQCiNHFuCOxsbBdKAIdyCD1HHKCIsOIYW1o3Y0srBza OeQ9SGWytkzkzHBPT8B9l+bifozYVSlB0wGWhuOIilVoypxuQZoBVgBczRsRRm5gSdlaOm01 aPCubOpzBANarvGYFwlIRrvu5aIHGWDa+n6GVtdLOuy6LjuxzuhV3A/nQOxizNp7wIM7evb+ nGy9fHeAYA0dzkVaWW5o2vlcg6AEAISXktrjgSijYXfFtAj21DOaupoZx+r3mfL3dDnXjVG0 1JYiy0CiVUVTL2WF0WE+M5COfEp78iXYh5l2cwEGP98cH6C2xcz28K2WGxlvwkBdS8ZPW/r2 wRFn1g5B70wtQErlzCHqDGaEcZxS0RVOwVtCH/E5D1mK43ma10kI2bmqt3HTCF1rUOQ+KGCa MiaDuMcFvKw3fJmfn42L1TouAeghy6Z0WjVjpSy28aDcAQeHsTSBmuhijOhDiwJUSORlQ0Ng zvxsaGDccbj9BP1IefQdC+hgqu3lNp8R3H3bcL5YQ2nUngMgX2VKYZmHqpMWmpIfHtvVkqlN eFmyrIVXdXpUJsCJR0ylbbBLaegoVw6xmBbGBJglETm0e0wTwcBNSZ0HMCEMBTBgN4b4ysKJ FixzPRZl3EA1LXb3mAQ7+MXTQi004Hkfa+kuYxOlLEazzUgI40BNV4SB00LkjG9nDmHprmBA zCatjQXH2fOKS3TaSj6HLLAiXj6ZJcCSaZuy+tPLenjwlgJclWIwpB5gBa7k/ePD7cvjUxTu DxxVDzPUZRfg6fyqmQairXArA75o6FzFX1aBlkkiBCff096o3y/cHgCcTU0GLySHYx9d2u2L 9tswKM89CSZIq9c9B6y2150Zm8FYbgsMdZw7RCiD/aoUXhKNIjpd0Rkduumo5zPkdWnqAtDa 6ffIGGA8yHJCgZ+BiPXDUfeUYxozgTpQWQaO08XRv7+/P3L/xItWs3kYzdA9sNJYyYPzGEaH QNlwva3tiJqBJvFURvhMDuvPk53B6G/M8Q44OL2yQKkuejyMt6iNGJJR3LDR/oE7rAyGq3Tj wq/xmUQpRjxZ9r0MjL76WE3hnTTe01xenJ/tRdvqQI3jF3pU0sorMVvezXivjY9m2HCJMITn 1PSgukcbRwuSW0SwBKmad25MyehrAJFRCNYIjlGG6LRctcdHR5Q/ctWevDsasZ7GrKNW6GYu oJkwg2MjqNvherk1Ek0OSKpGKT8eC7kWLqSF636oPitkXkH9E1+9N+U+uLJOjYogQJm6IAYI Eo1gQGxltm2L1FJx9EGLH/CzvZ14/Gf3tAA1f/1ld797eHEsjNdy8fgVU8D8hV+/TT4YQXta FE6NIwvYbHAWJ1+9QXFLaeA0qFVTjw5vCWrSdskqWKUOY0iuBJbDwtF3Bs2pF2hqElZznA5Y 5vG9RkRwSJialuun5toPdVIfwWlm/BDmqmuxbtVaaC1TQUV3kEfwfVrJfURg40knzIK22o7Y ksZaUE33o+GtoUs1N66MVdP1AId4jt+hdi0+tLUxo0ENGJ27fZgly3Qy9T1xNCVZA2gdT2ho ieU5KLVxfDnk7eBS0GxvbTzZqc+mzjVLx2M6RHP7NBUELjFqPqNH3fIp8BLgpM+OdwmWpGjy CRb2MpiYSZ9L8lLEd9YY8CfBJtmlSicVtUgbTH5aMp1eonlQVUHh3uHwsVoERzgu767h4i6Q QK5FWtts9rzAluO9KWxsZGg5KIIUU5jmGPoFhr/DE+RsWzl2k0wmL4a0mUX2tPu/193DzbfF 8831nYfOkYOGMk+qXLr2vmH56W4X5MdCS7H09yVtrtbgL6XpKJUgJJeiambcwz2PFSqE9cMQ 9ibiuxbAjT15fe4LFj+BXC92Lze//hyuCgp7rhAX0QbCkcvSfx5gSaUWM4lDnkEVNWmpHZFV QdwCi3BAcYnvIC7rxxWXYk/xJSEIVJWcHMHifmikprQiXoYkTdBldzuC7mnkBxkqicRwBAiD sPrvpe7EdV8+Hhl+txt1/A5q0EcM8MeG6LAS9t27o+PwIiZcL/QNq+jWz8G7rckSUvpnxMSL 0O3D9dO3hbh/vbvusUUMg7o4SN/WhD9WNaDL8PJJAdbsj252+3T/z/XTbpE+3f4d3cyKNL6J T1N0XMiVyqQunQIE8D6HY9NSSkrPQrlPfBi2yhVhCnvJ+BJBXQVeAOBgMLU+Bh5ctVy2POsy J+jSHhmGc4ETkRdiP2xiVNhbf4XTL5XdfXm6XnzuF+yTW7AwvWuGoSdPljranNU68n0xsN5g Cr677Jpcs/eXuHiVevuyu0GA+vbT7it0hRppgKJhF8rfFge6sy9B27PX7wPC9xdb5Hb+2ZQY nUoElY7ienPBahe9aSoH5THjiSPsGCFUjJNiRr2VVZuYSzbOnJdKC7xaJe4fV+OrN1+K11EU ATx1uoIvxXcHGZUVlDWVv/wG9InoywWVIsvp2KI8miE93LW4BGw+IqKKQzQj80Y1RLqwgRV2 VsknVxPufgYQHZ2aLq1rymBE77bPEL1mb8vJovuR+wcc/vK/vVxKKwppxqEFvFI1bbqtGGoX 63KcXI0R3+lJIi3qkHa8jYBDAE1Wqb/77KSkU/8RnxEf5rYGn4bMVuTFePGXl20Ck/O5eiNa KTcgqwPZuAGOmNDTwXvPRlegn2AbogyhcUoNIRuIGvHizKUb+svePltx0gjRf58do7tFS5uS 3MPhoB6mEulJfs150+F4zNOciJEXe581211gjNfel/o49AwtVc3MVb0EK+0fEvQvdIhZdNGQ LlUhgKgz5UFNXLsCNnpEnFzC92a3u6iPyH1uet/ruO4QDoirwSlR5M3qML5LacECdlvsLp7H ckDkmY/FWaG4lCl5wvFGBUNbsNSYDYHxSWobkIZttAbEdiwipUr7OKLgcBACpwtIDYYmUMeL AgW5mIiQ8RQXH4tSUIZhRik6IwaxAa1Cqsi41vtY8lS97fWbLUbgE9BorER4gZkVCD0AL6QB N4bBjcy7OM/phMBGduL8DHUg7lfQeA/lpqRBV1uwCLZ/NaUvN6G4zZLG1f1ukNUp0r66xtwt /0wiCOL5MpcFelCGwc0sTk/6qB8sBwUAwEpRVh4VZJi4Z3owlnO1fvvx+nn3afGXzwX8+vT4 +XbseCJbtzRz0TacoGPrsVCffNvnyx3oae/6FE2O762UsZxfvPnyyy/xs0B8wul5QjsfFXaz 4ouvd69fbuMw4sCJz5KcwBQo9vSbl4Abrw8rfDoJmqamQhMBLx7Avd2mGhsYwmxt0qmJ5jFO PPwOZu2HpkEoMYc41Hguj9ZgOmgQqPcqJhx0J8zubRqIEKP8jo6nqZA+VlhdVYLYWSGqO6P5 /rnoOLo84pxx5zsy7q8WhrzQ6/SpBVs8xHv3DSTFTODRVIHDig98fcZfDduKk+TjRLshBO19 RnCUiEPrXlimrhn3jm6eRV9SDE419VnMbSIy/B9imvid4fBAxB0K8e/u5vXl+uPdzr3WXrhb 15fA2UlklZUWrcrQBnx0qdIxk+FahpdlXXEpDQ+jplgXERYp7XMDcqMtd/eP4JOXQ7ho4pzR 92uDd91d3cFxA4+QCoHsr+88S6Dce8rYYvuuUMpECH+Hltw1I59WcxLWuoSZqdOQ4cPJPLyC 6DqSRhUstoT+krS2rj2X93A2qpRg1mX8LrEr8iaTjz3j0J6O7G4pcz0agHe92lFqp899U11A anCFDXVb07+0c0DDP9VMNb7R36fjzOCrfbsUHYZ0ybbU6Se5S/+GYZjCmMtdOrsMpoEnSrpd RZEHDnC4cuzU2sbJpfB54K3UnppRk0EqZgybi9/7oqtaqUB6r5ImDQ/h1WkGsIpo6sqUo23s E21hY+rRw8ye2Yk4ZRI799uFf/rgQxSHTPvcfPTsV3RypE8SHedqwoq7VCR8yhlZWXySJiq+ LBkZIt1ry9oKj7JZhFHmlcyw4ftHrtXu5Z/Hp78Av1BXlnB0VoJaF7AaATbEL1CekeS4slQy WhpsMZO3m+lycm+4p8K4Ab/RQGeT1q3Bt9Lku1jppzxsW+0fZuGjazopuMbnQIhpwF5hFhR1 tQJMdRW+wHffbbrk9agzLHZpDXOdIYNmmqbjvGUtDxFzjWkLZTMTpMYubFNVYvSUDLWnWsmZ uJ6vuLZ0SBypmWoO0YZu6Q5wW1pGZyc7mjAzK+aHhtp9ZreH6YaFKJCjIsvrvjhuvknreQF2 HJpdfocDqbAv6NzTYou9w5/5XtooTd/z8CYJzXBvcXr6xZub14+3N2/i1sv03Qhi7qVufR6L 6fq8k3UEA3R03zH5V5iYd9SmjE5owNmfH9ra84N7e05sbjyGUtZ0brOjjmQ2JBlpJ7OGsvZc U2vvyFUKCNDhHLutxaS2l7QDQ0VNU2Ps1qVmHGB0qz9PNyI/b4vL7/Xn2MB60Bn0sLr4yz0Y DxsbmAlPvdy6IATYqLKeezYJzD6mRlKT+gAR1EPK+axSNHxGYeqZJ+Z27ldgADST5cXJTA+J lmlOgR4f5cSjbSL00xXRyYMFq9r3RyfH9GvMVPBK0GaoKDid284sK2YyQU/e0U2xmn6vWC/V XPfnhbqsZ54CSCEEzukd/QYC12P+twJSTj2RTCsML4F7sHaXtQHSt+DMoIokG1O1qNbmUlpO q5s1gQvCceKPY83r8bKeMV44w8rQXS7NPILxI00FPRnkKE4BqxrUw4e4Km5ow9z9bgHy1Hrm IXTAwwtmDHkd62zcBt0fcA+j99rJhwhI4NvlP+MfRgrR5eJl9/wyCsa50a0sAOzZCaZagflS lZw8eO2Q7qT5ESFEtcHesFKzdG5dZqQ9mclCymCB9JzSydoVp1zFS6nByzcR6udZjqfpeLKG e8LDbvfpefHyuPi4g3lihOETRhcWoOgdwxBD6EvQt0BPAR+ObvyTziDz8lJCKa1es5Uk47i4 K3/UoeeI385PlmqsDf849NMZnMmZH90Q9bItJK2qqmzmR74MwyjoPIjNaBplS3tdhK9OYz85 x+c7oiiifcuYLDATcfbmuzsbvcOV7v6+vSEyLP6fsyfpbtxm8q/4NC85ZD6R2qhDDhAJSWxz a4KSqL7wOW1P2m/c7X628ybfv58qACQBsCBl5tCJVVVYiKVQKNSiiFP7UOG0mYt2ATZD/Tg/ dNAvq6cA5qjHg+1MDyIa8ghKbkKMNNhx67sywdJ4ryE94RGFmh7cAtrCzK03LWm+hzjgaX4c ozmZbFK/e46MQBsHVrbNj7LsBdjX1x8fb68vGKLncZgutScfHp/QtQOongwyDFn18+fr24dj 2IX+ZAnc6Ll8FCBZ2c0a7e/cNfDfwGO2jQTYUK+98BHxrsVwAe3k45On9+c/f5zRPAXHIX6F P4TxZbrPV8kGAzl6IIdB5j8ef74+/3CHDN2k5Hs7OVpWwaGq9/95/vj6jZ42e12e9SHc8Nhb v7+2cVHFzAytU8V5nLLRdEn9lm8OXZwa+m4spnSKuu+/fX14e7z74+358c8nq7cXdIOj5y9Z rcMNLZlF4WxDi401q1Ln6BtNiJ6/arZ0V7pa6aN6djvwrDLfzi0wujwcjHBCILs0ebWzeEYP g2P9WJAxwhpWJCyz3tDhMiqbGSzLZMjN312jtZdX2ENvY593Zzn0Zn8HkFTZJRjWy3gVaJua DY0YHzKWkiYWwyCMZwBFMBiokRMxFqEeeKZmYvrjBgkC3+ExvFP/FmE8pmQgtHtwDtSYFvQC T+qUPsg0mp9qLqbFMJKqLgvSOxoYUDoMJGLyfUeTqoiXw2YZIlhg7IhjU3oCYiL6dMwwZMMW mFeTmi+CNd9b7xDqd5eG8QQmlCW8DczztJyWNmNWopmWtHqQa2dnri1E7SST763G7MfO6e4a LIMfpUxgRYczwYZwVIK0Evviv+wLTzSEvCGNLU1v1nJn/o3a26axwhUAEN+eGsvuB4BKM06i YArzCfC+3H6yANpWzILh04llGwgwax7gt9Lojr+1G1hiB9lQCLxRWjCU2KbxUQz3GGVpZLu9 jABDQS5BnS/4rEazNorWmxUlmGiKIIwMV2+lVR6rKbQoDd8mBHAuMZVX3l4/Xr++vpjRlIpK ewmpu9gp59QpbsHVK+Xz+1djTfacmReirAXI5mKenWZhYjiBJMtw2XZwYDeWd8kIxj1ILcFj nl/0zI7H1zbH0NQeXQUwPo/nnNij3BjT6ogm3eWS9VE6vlhs5qFYzILxk2AjZ6XAiCi4qtLY ZnwHYAsZ6QRUJWIDdy9mXxJSkYWb2WxONS5R4cx4DNUD3QBmuZxZgUc0ansI1mvKL68nkP3Y zFqz8CGPV/MlLRckIlhFNKpCq53D0RPrqmaeiTJEOH8sbiV/diLZ0d6Dp4oVaTzOShzKDWi+ xUsILCToCKu7MFjOJnuDc+REhmzez7GEd6wJF9alS4G9nusaD5fnVbReGvKDgm/mcbuaQNOk 6aLNoeKiNRaZwnEOkvxCflVvRGD32Pjc7TqYTdaxtkj/++H9Lv3x/vH213cZ/ez9G0gOj3cf bw8/3rGeu5fnH093j7C7n3/in6ag2eBtjRRB/h/1UixDnsIjx0CVsPRfrqwrmQqhkXv8nAYs /LtB0LQ0xUlJkKecuPOlPz6eXu7gLLr7j7u3pxeZAmBcNA4JHtBJb/Wvwr3G6Y4An8rKho59 KavOuYw7jRxe3z+c6kZkjHcGogte+tefgz+r+ICvM5+If4lLkf9qqCWGvicT14Zr42Rso/hA q9jQnAYWQIwmzh5vG0lSN6L9BxRHQbOmA9uygnUsJVe1dcZZepU0GSJoC9SwKqIp90Ak2ueY gh5VwJD5j4Jy30BF+l0w3yzufgFx/+kM/36lFAlwM+GoOaTvExrZFaW4kF98tRlDcwh7qBQH LaXbpm0sxlAocHUTfNtQ1jYgk6lAW4boJlXMTmDKbVkkvuckKROQGP5ZOsFcMQ5ouOc4gq6f fDGN0sqLOrU+DN5HTvRU7D1PStAH4eobxr7DXyCm0jU2R7oTAO9OcnxlFgNP6RNvPO8iUm3b +R5/iiz3BOkBYdkppNYp6nTHU8HRmSXPcII8//EXcguhdCvMMP60dDW9gukfFhnOU3RPtu4F ODgnkEOA18zhom2rGaV2Zh4v17TIOBJEtJ7lBJIHpzXozaU6lKRBmtEjlrCq4ZYjogbJcAm7 lJRWzQr23N5XvAnmgc8EpC+UsbhOoREraJ/IUjgBKNMZq2jDS8fBnRceBaM+4hsybqBZac6+ mKZ4Fsr2s86TKAiCzreeK1yVc58UKyezyGPfjkZfzXa/vdVb4EFFkzK6v3VMw3FdlrazeZP5 HnYzOrgaIugNjhjfHNxaDMe6rK0nBwXpim0UkZE/jMIqbYW9q7YLejNt4xxZJs1ptkVLD0bs W1xNui+LubcyelOq2BZ4X/AVpDSS9gfHKniBUYh6oDHKaM2/c45SzyJWoVNqhogzUQeeCfux TYO6hl44A5oerwFNT9yIPu1udBpEMqtfLmsgiqDPYmGtvz3HiHYDK6f71HYYBp8WHwrSYNFo NLFZrrIVy1LKkMwspVNojQ1loScw9LFIXGeIaX0YU06GSB+XEg9v9p1/0Tl/xkGWkK6oMLxw ASdCrpw8btW0O35KG3EkTsRdfvoURDcYh/KaJlfowY5EVNGBiMwCR3Y2Q2EYqDQKl21Lo9yI ZZxuCMEzl27muT/u6bsEwE8ee7jWV8Q9S0bMwts6zew+5TfWUs7qE7ezBOSn3GfiIO73dPvi /kLFSzQbglZYUVrLNs/aReex4gDccqKtMLHifBW9O9/oTxrX9iK4F1G08KQwA9QygGpp07l7 8QWKTm6cdKOluw1hWNaL+Y1NI0sKntNrPb/UdgRa+B3MPHO14ywrbjRXsEY3NjI7BaLlfRHN o/DGXoU/MReUJQSK0LPSTi1pQmdXV5dFmdOcpLD7noJ8xv9vXC6ab2YEi2Ot99LDw3uv0kGX rtzbD9HzU5qk1rmmcqM5ouu0YHmf2v09dD4+gnGIbpyvyn4fxmmfFo4Gm8l4GmTFF45PiLv0 xvXlc1buU+so/ZyxedvSwtfnzCvMfc48ixwaa3nRecuR1tJmD4+oZsotAfVzjBpXn3Fsnd+c 2jqxvrlezRY39kzN8S5kCQ/MoyOIgvnGYw+LqKb0ZNaJgtXmVidgBTBB7rMa7SNrEiVYDvKM ZZ8j8GRzL2FESW7GZzARZQaXW/hnCcXCY9oFcHxJj29dpkWa2bHXRLwJZ/PgVilrV8DPjceo BlDB5sZEi1zEBLcRebwJYo9FBq/S2GfIg/VtgsBzm0Hk4ha/FmUM3Jq3tE5ENPJIsoagyaWe 7+b0Hu0kgayqLjln9NmKS4jTmrkYjU8Lz4mUUgG6zE5cirKCa50ll5/jrs32zg6flm344dhY zFZBbpSyS2AEP5Bh0E5eeEzyG0fhMK3zZJ8U8LOrD07+BAt7Qu95x+N7Wu05/eJ4PSlId176 FtxAML8ls6uXO7Ny/ZbH2tTPXjVNlsFY35ygNq1plR0iwoo2ddglCb2WQF6r/H5MYusGOh3F MJCjr6WPgLn3matWmcdnq6o8ad7oa+hRbLVB9EQnjyi4CtPDjch7uFt59GWIrvieCY9BKOLr JoucN1UCT7M2xKNcHHlEAsTDP58ohui0OtCc6Oxw+96kujsnlBITyUe1a65OYwrXHOxj+nDF xBWwy4mwSFaam45oJspQoRHYXqNCoJyw6S6qhuPQYs8lPrXSa7FORW47cRCVjldMCslB2PWO ac3s7OMWbhCNKKSZzNREmHZJJrzx0H+5JKbkY6KkOpcXtg5K85maXeLp6yyXpvd352e0nv9l 6mnwK5rovz893X1866kIM9Sz78Upx6sJranTKpvO40KmUs34n3Pk25xI6WMY2Qtlyj4qJ0RC PF3++PnXh/eFNC2qozFT8meX8cSI7qdgux0abUmPCAeDXifQaxesQhPco7Gfg1FprDVG9vH4 /vT2glE5nzEN3H89WEZNuhC+aBLN9HD0Lzi27pcMWBHXHK4p7e/BLFxcp7n8vl5FNsmn8qKa HodawvnJcf5xsBgx97s5DT7PAlXgnl+2pTJXHlUeGgYskT5ADIJquYzoLDUOEXUPGUma+y3d hc9NMPOcMxbN+iZNGKxu0CTa46teRbSv3ECZ3UN/r5PsK4/2w6KQK9njDDcQNjFbLQLardUk ihbBjalQ2+DGt+XRPKQ5jUUzv0EDHG49X9JPpCNRTDOtkaCqg5B+wBhoCn5uPE/SAw06A6JK 8UZz+l57Y+J0djMdt+9GjU15ZmdGmy6MVMfi5orCkKz0Y8y4CPKwa8pjfPCFQxgo2+Zme6iU 7DyWCSMRq+AmemNJbWP6dBlnubmX8aa9fE0yzJHTyp/AfkOTPw7AjmWea8BIsr3QAZ96PCqx 4P9VRTSK90tW6fQaRN0DGi7jjiHXhDa+VLXj8md0It1h7hb6PWkkkyFGCK+YCSHm78IX/htk GO+HZx7tmtGsXGjprUY9gaVHgh0GfXQND0b0KZd/e6sQvE7N0PMKyqoq47KHLgYW43KzXkxX TnxhFfVqq7A4draxog233QkcnFwHLvYk2rZlbNoR9+iwP3dYXERnRiTcklyxBSQKjM1gSNU9 pGMFgwU/FhgR84SCJla6gAEel9uadksaSPa7kApeM+LrtCJaRDCcBRTmiNllcmli7uLklYfF FEqkCT+nRWKG/x6QTZ7EVHVSWU9+eaqDwXmMDl26kMxANlCdMXtzWZMt5WwvX9uutyPTz5f1 jd5Iqi2dLnwkwnChnO5Mc06TT54QJgPRlwMvDscb6yLZ0pLCOM8s57HnlB/7c6y35b5mO+oJ bFy+YjkLAmKCUeY+ylU2rbqtyBCBA75q63gqrcvQHp5QQooAWZS6BfgPv9RMA6hgUVTl0WrW dmUBp6i71VmyDhbttDsK7vG60CSolcBj3WGeCrvNWbCcuVA+b2dEXhTde5F3J5l9mMwfoi90 Mok8URiEyPVqM0dFcnNNPmBttNmsNdnkwhYH83U076pz7e1lDuLzktJu6mGpGIYNcireVyGb 1iUF+y3nle/OPFLpTNneZiWRHD236XMqQwN326aYXI9ZkzHRY9wl0KTSHa/hFAsaLoXAGgpN 59Z+3zafNtOKJVjfZ2SAwivfLpOSwGXkGs2FSwWRt5NxHsyIbtR8j1kZ0X7k+pLBuNzWirD3 ZSVWyzCIrq0Z1lYh7MCK0wKaIjrK/11Z+LvlbDWHtZkfpy0ANvLZoWqKc04stQkJuYTq+2i2 xA8kOIhceHXZsPqCTk+ldVAqkoRtZsslzYDOcEEMkDlNOVObzRetB2zLNAqV5gLGgRicOGdz Og2ZLphw2LUJas8TOOWm/a9PIXLQg5blKfRqaaCd9hVBz3N8kcykXqrBy02ghorob52nC2UM /90CWaMhISBImh2RsN2MvokrZEBfnjWS4gEKNbcMJDSMXokKSeqKNWrZu04cHt4epeNy+q/y DtWClidhbfrZEq6XDoX82aXRbBG6QPiv65OpEHEThfE6oJ3kkKBiNeqivrsFqxjvg95iWbrF 6+ikvZqdyTFTWG0Mfa1iwGGgsGmHYHyuFmTVVl2QNVTrgQeF33ebXGmj7E84ShTRAgpjrstd D+sKsVxGVwp12YIsx/NjMLunl+tAtMujmUOivQKopTW6JhEKaaV3//bw9vD1A8M4uJ6tTXOx 3l99AS83cEg0F+N6pzPu+YAqSvnv4XJlzgDLMEWAinNgq2OlGUbjtU+OL3HGEo9iKy9bph6F Mo86UlKInKHPB71SL0XsHsQTpCckX4/u9p7Hh/JL6TE7S8mQM0V3SDJLzi66PRl3V3rb67iF 41pXUGE9PBVHfHhuDK/vQcHnhWr/9lh55xizLEMCYqACOyp4wk9O4lqA3Oe28YNyLnt6e354 Md6G7DViJByyEZHK3zkFQktVjXbRPJERGp3A5CZlVVDPzCbFDtfSPd3OOBhk5UlOpuYymzej FZkI3rLaV21M6ddMgpwXcAHY2vyuRxZ1d4SlbwSWNrE15srI+TUS3ja8SHhCdzxnBYZIqxvv kDNRYZjlEzZx40NkgAnXK96eaEwaghTeI2f4Mk9IQqs6ysrWqqQJo6ilvzyzMldaY5Imvg9A XuRvE0NHgGSPSQV6caJ4/fEblgRquWukg9nUJVOVxyHO0oZaoD2qX8P+TgyUw8oJHAo7hLwB vLJBPpEsTCNFurNS7ljgKQvq0XFctNVk1Ys4WKVi3bZELwacqyBwCWFTbHmdMI9noabSws2n hu2vr25NiEST/ho4vOSrveTuRJNoy45JjXlRg2AZmhmFNS2azl7vjrZGqoTqkTuwNvrKpIKA dm146sonuwFyJzLYQnpE3JIxWu7JSD/pPo3hpKHufpoWud+XYL40wwg4R4xbIm7qTIqDxDfh mzX9pIGHYlXD8WCcDiMMxJ8Tz35fjRVKOJ2ZtMKH7zFrwKmPDTTCtIvqZO1jIlu4LRRJZl1X EYoJA5W2xSFHngJ32Ya5cIwxoZ74zIEwcJgWx/NWqJqU1mFKC71jpOePpBOWNl2BREq5VUnc mWGcUFNdr/qEOpVyt3Pq2v6TbhzOOreScV3oQSrnX1qi/EJglcURgUAvTQK85zgFBOJkxkgz wTKIpCnxnXzRRfDRBzaEJw5MWVwqKqIfGvXcffXfAwYh1tQRYKw2DD67mJmJRUfowko3WoeO NrbqDdPIq4y3T32N+ZlZJ4LMZ6r2rNFKFUfr+epv33tSAZKqLtKPemU6SeMvmbaCAA3p7Y3k HsU+PnBUwrs5IpsY/pGpzGHpxDKzzJjXk5/s6ErAbrMLvp59dyEYnMrgatOb3KCE0Ou4PmLw zurYSw94yk2tk0I3HzQ+4E3zICNUXqTTYmdxSkSodF3UBkYkZvUzORwCc2lIpOIs/fXy8fzz 5elv+BTsYvzt+SfZTzhhtureDlVmGS/2pq5WVTph5CPcyQowociaeDGfUdGpeooqZpvlIph8 iUb8TbVbpQUeMFdqhZG29koYqxQG/6BonrVxlVmxN66Opt2KDtCHtzdPG/077rB82Mufr2/P H9++vzszk2HS5sYdAARXscdlcMAzkik4zQ1dGPQeGE3GiUtTxXfQZYB/w4gx1yNgqvbTYDmn jZ8G/IpWNw749go+T9ZLT3x+hUZP/mv4Lq9oq2L5BD/RDZlI4TF8UMjc80oHyCpNW48OHrCF fNL1d0r5fMF+o1NiyGWViuVy4x92wK/mtPGaRm9W/r0MB+s1XFVP437KTOUTFYRsK5YBEkf+ +e/3j6fvd39gXEJFf/fLd1hsL/++e/r+x9Pj49Pj3b801W9wW/sK2+9Xu8oYebl7dqldL9J9 IQMz9Rc/74eYtB43PSTj+3Dmn2ie85N/Ij3HqDwepGmZu9thJ9/ueNX6Z6e+J11H1ZznTowQ hHoC9/K/4Vj8ASI/0PxLMYSHx4efHxYjMAczLdFy5RhOGkiywj9AOmjhLXyXoVLf/9Hltmx2 xy9fulJ4goEjWcPQOu1ESRUSnRYXbQTjLHhg8fLcnoxS+fFNnRF6iIw17fJJbRp3LcWHlsmc mA4WNyc5t7O16VDZEpVZMuAA0uHjJjMnA0V6vapHEjyDbpBMQoUbH+WGjkrn1iKKMZkDwHQm A7Kh5HyLQlSUclgGbx0FUmH/sKQ19RglzBjUQ0QiCX55xph2Rhx2qAAFt7HKqrLeBOHn1CdE HcKV6OubinFYDG4X6LZ8rwRnp06NlIplciwMomsb0CBzGdnQyz9l9s2P17epINFU8A2vX/+b DGXeVF2wjKIudlNLmp4R2iEKTe69eWQMF4mHx8dndJwAriUbfv9Pf5Oo1KEvUpNuD+OuZElD u68jCWtEJxNhGCpMgOemsb9Bj5Jnn2PcLoF/0U1YCLWrxi6Nn6k7w8R8HVLqooEATRE2Rozx Hp5bT5k9OI+rcC5mtLV4TyRgRjwavoGkDZYzWvIYSJqctMbq8dIIYdrxMuaZmeS3h2/ZpalZ So4SXD/r+nJKOaW47okm8UGGmuuybUh34qF+VhRlkbF7TrbOE4YZb+mHsp4q4cWJ19fbUbFu ZDvE3KUwMoC6Uj7j51Rsj/V+OnziWNSp4E5G+2FZYORxNoXHYrHO5ksPIvIhNsaDFPIc2P4T gMwHihHiQSrI4cK0DMKeotz1l1ejSKdjFzu1pPVnHXrD2lLu5VfWIC6CTDYpkXqPOo1KXwYZ NtfM1/r94edPEG8lO53IUbLcetG2ffhwuxNKZe3rBWxbM+GsuuMPEaNMaHJm1XZSOz6Y0e/o iN01+L8ZaQRhDsL43PLdRtfkuB6yM+1RILGp5/YlkdmlaP0G7GoKttFKrClOotC8+BKEa8uw QE42y9kyCWFhllvKa1wRpWXrjCssktgOZ6JM8dpoufRVMzg/O1PZ7bRtu52Jk1o+6rCFg+o3 jUVjBmeBOZO5DqKIZsFq3Jto7cf67sQ9cv6/nF1Lc9w4kv4rOm10x/ZEE+CzDnNgkSwVLbKK LrKosi8VWlszrQhL6rDVM9376xcJ8IFHJqnZgy0J+eHJBJAJJDIZ6jdQku/LAzjstJjjvmVR FiR6fxf7M2mSMvXxz9+FgID1c+mp2QBAb68Vx95f4VjoGZnUHpbKLw4jySMtVB0byGCpZ3/8 rikznjBPP6dE+qoWlV3ujoHRwVP5+Wh5RZOWpvkmjFl9j4fGUauENNVboFtqnTE3myT23fFQ ewWV6ZSFXZj4TltHs0q6KRKxYfhph44gG9x9rC9J5DRYmSTSxQr6ZmMd84wT1v00U3SZNbZd ONJSX6+j3sGrYRYb/nFhjjqSr0ksrxDX5Uo8HhxBhUJx/JBLfdA88/nS8LXHPO3hKQZxo+GM lHqF227XRhDX2KeSkRLsIRQawhlbGu7ZuKGzv/37adDD64cfb/ajbDbG3YP3k0d8EGZQ3vIA dQljQhLj8ZpOY/dodLgJMZ2VDUOAtF7vVfvt4V+PdofUUQF4UyTqUoDWuPWbkqH9utRuEhKr YzoJnvbnZPgbA8zwc2SzQOx6wkBwH2+m0jrwUlH3QCaCKFUQrpnu7tUkJniuOPEoAiNaX8jI ACiFxQhzDEwwyelwWXxNezNym0yEgCnY1ZWituemqTSjOD1VCd0aLU8V3ViLB9kyzTMI4Cn4 GX8+NFiQA6uccePCASFrQAEyuJBDHohD3dNDmrnZcMxzC6MjJA4v0j7AmCXNumQThJqiNFLg k0VGaA6dkmCLggFAKpPpHCuyKm6FpN9j0UNGCLy9dItst63bWyNROdNTiU727UceXy4XkmCa rdvEff4R68xIzrvrWfCN+HTXQ0+4hhpaLIQahr7YmYZOArTb+fHDyncbyHe10sf3HQMLa6lw 8KQK0/syUHbnQujw6ZnwXjfWJgRNFuNO4iyIYZNt0KgdeezpyNxIHSNkfICid2SklW0D9S/k lu+uPN8dY5AapTpmpdv3PHNBkuMWqqo6PwqZcZY8N4IFYRwvZFamkccBG4WROwHGp2ZumwVv Biy8YM2WpA0urOoYHi61DhCxfr6iEcJEP0aZZmu99YMYm0iS8eDunm8CbBubcIM1s1v2qROL G9IYeekhxK0mx0binLXM8zChfH9f6++A5J9CqjNKUYnDHcXe9HalLD0f3oS+iGnBU2yjbdmd b88nTMt3MAa7T9Q8DhjG7QZA28Pn9Jp5nFGEkCJEeCuAhLlLMRA+Xt2GG5ZHE6GLL4wgBDQB rUMQIk4QYjQulSJh5yYTos3iSI6gk/kuAe/s+DXQCGHeKmaX1izck+LAHCGrqYq2zpD+SWdw aPekDfdSod2lQfuWtxHqqXGmswjjq7yoKrEG1AhFavpYXWV4J7RR7DZxGqKYCal4h2WWp0x8 d7uYO/TjsHWbNL6+TfMMLbrN9vXS6N1WIUvaGssrSNwjbKcHhJDHUjSr4LelfPJsLT1gWffl PmKEPcY02ts6LZYaJgBNcXFHq4ST1GHFRL5hiD54HOlwvQszAc1rHQRa5A9ZgExqMV1OjHNk gajKQ5HqBmcTQW49yJonCRt0BoGpGQux7UpHcIYytiSht2MGgmhSwCOsd5KAzDyQHyIvQsqS FLYhCBGybQBhE6PpEbEYSpK/tDlIBPYpJQGPGyhJmyXuEAifxRtkpOqs8T2isdXlVEAodOyy awpnmEVhgH7WmjA0mwHxKmBpzxFkZPBFKvKpqjrBuERooGgqxmp1EuPdRM+KNDLyLUUqKsGI 9JD7SyKMRATo51KkpRFTBsXIQAAh4Gj/Dl2mjpnKFncAMQGzTswSZDyBEMfIkAqC0KmR4QHC Rj8gmQhNVscXZNWVx/cbbb43tWFzPOHwZJDIONZECFqa7XYNkqc8+SHHJ44gJV6En8bOmKYN A8LecQK1VZSI3XdlmnChAWIHacbKHSco0yjS7HZhuRg/YdTSKTqMUrgXh/hCLFYkbKYBJQgw MRi01ShB+9FcCrF6L+/pXdMGQhvHDeA0UOhH8dISfc7yjfFsQCdwXMb8XEV4HJOpA/f1IK9Y hHbfYWMukjHJUiT7f2INEIRsmdmWrFgn8bQuWLzCj4UQGAM0KK6G4MxDV0BBiu65tyRKgIf0 IK7RmTfSCK/sJmzrL+6Zbde1inWR/LXYixdVvIzxJE9wbVNo2tgnFYQ44VgOMSgJ9rXLQ2qY Denp2DIp0n1izeqyeGnf6fZ1FiIs39UNw5ZwmY5sBjId6aJIV4Ga3YYJCuFBcoSA8/SsOa/q kAIXJRH+RHVAdIwztBl9l3B/uRn3iR/H/pKOBYiE5Vj5QNqwJT1KInjujp0kIGMt0xE+U+mw 2pgmdBq9Eitzh2x6ihQdblFSxOM9qn4qWrHH3sRNGHkd8PfnJQv2aULAux7namKidnceQ61j pCCTal0eEiAwY1e2g0tIi1bUxem2OIDzh+GJHujv6adr3f7ds8HHnVvA/amUfsSu3alskAqG t1jX22MvGlI04BvKMFHDgLu0PKkn5fjdCZIF3IEon3HvzjLcM1XVMSOEgzGX2Sa3k6udA8A2 PdzK/1YqmntClbTQ8PnoU9qeDrmQGvOi352KjxrXOFVBuLe0K1FzwBEz2I8NqR+Pp1IvUovm DPbrz5jvCCH1XJs7uBCrG6w1Kj52e8yueddiHZqnlID6gXdB6tJLAwhWznQruViW3TB4sr1U GN77sfP6hePYd/3id3hNi60sEAjh2Lbl1nhfr3vWBEg7mNvrubISXOvjuUeqnQhvPhdzjQAz Xb2NhkKlkwEt87ywOTB8H5phxFuXbVanSPMgWbtOA5DqSFYS6ImOJQtGtJLnxhtXYUBqd1Xa 4jYwelYI/HLNatx/pAGk/HYrEGrhL98Y/uOPly9gsD66GXJmYb3LnYjXMk2IzT4mDALRvWuW qa0fM+amceOqEJyOKbs59JBZZko7nsSe5bRCUqQfyF1VXKxoKzNxX2WEg3jASD+73gW7e5Tk 0WrNqta6g53TLH+3u8lBtVnA+DRnfGVr5LANnOe04d2v9WGCuGLUl3GMoqfEBEs0A87NyURc Yvh0cJbv4xe8kF8e9XPCmecECO1qITXCa53ImPI1EI0bdZlWHbg1yhnzDQMBLdH9ivsyEvK5 7LH2XqeD52JtmRkmhJAq8jcVbmcMpakd4+M5Pd2hj/YmcNVkpE0y0CzLWGenlF8o23ewq5T2 GCsY+MCRouZKayWOerUIsA/p4bNYvI5U6E7A3Im9fWFcpCUAeoAwUy22dS1j1HRRl+12l9X1 OcdPUGYAarAxk5PIqW28lHcLSwKKT5VZAtbGZMOpCT34kEUzbTCHdpLaRf4mdppXHHacbWtq Zs42jWZ3wSepmYKZZ0w+Q634HDbZtrWQNSzYcUp6F3o+NayzVa+eeJeYFn8y8RB2EaMGrYX1 2XB3KVPLII4uyFbU1qHH7M8iE0lX6QC4+5QITuV2WWYsvnR7CT1vIdos5OnqBvU/DzTnnQCk duU1rX0/FEJwm1FRVABYNf4mwG8xFDmJE2oURSVVfbarbtKqTnFngGA4zbwQ//jSqtojTkAV MabZRgES3Mx4BhCWMhOAM+xAbeysY4iuEUL0OE0rOHG+EaQnESWfjHboJvuMtud4qhUDQFHE qusb3NvdV4HnL/CcAED00GWmvK8Yj30HozNP7Ye+77Lmou8uCcn8MNmQA+OY18sVzX4YY/Lx Mdsf0tsUOwCQEt70tMFNJCUzwlxdDk4dMtQWaSQyRxqT5v/4wfRExp8tDOSA3F2Hk6m/3DSs b0AJvQWxTj1UMNfO03FfC5E6Zonp2U2nCWGRXJCVg2JnjbXfbppeVSiNZyx5uhPSy539c9MR 9GbMrryAd8Rj1aWEOeWMBU9RZ+UerT3XhE3wDIczIHkE9N4MQh66TQg/GwYKpCack2YY6HVJ hM8YEwXa3xosD32COTXQQfzAz7c1kNIH11BS/XwHiLgr00BStVsBDXy9ilp6BqWxHf0WygBx Yi+0QGvDsEsPQrtfrZDUUzR/9lJReheoDwnzpBlYttXG99aaBRfIPGZrDCi2mojQVDWQkHXi tfZL0BrXSOPi9epAXHgHaPXbVGpDfAcqinEJaEZhtsoELCTEKQOVRMFawySKiH1nojary5ZE EXFdLRRhnGOhiC3XQEm98F2wzTvqjMFmZA2mTBbfgUqIAxwd1TAh+q7ChCK5upgAiIjNZ4JW h3VUEtdgu/PnggoLrcH6JPFWWUyiknehCEVBQ93jj0NmxMfsWEuXMCu4QaldQ4GWu4Jped2k hEWOiWpXv3Qb1kkcrX3FUcddg1W3IRnIWoMpKXANJar0orUdAcxgWOSvtQw0J+6vco7SHlc5 f1FNtWDsXW0j3ypbMOrBsgN7R6VSYVyTdW1HiAhm4cGzAbJePQ+QbDyjmdSW03RoM5cDXpqw p7VVqT+CPGVjoCPt9ro8XQ/FRNBLLeWkXIqNBICIyPqhz7CsOgRcwS4X36aHT0eiArigbtaq qIVecbfNl2u51I1Wx5xeqscwLuGU1bVLkMPbl1nRGkM+R3qyOlAcUFfEIDxewn3OnbZY+WXz rMAmRs/N4IMiA3hWL82uDJEE9KTDuT/agZbgPSr488aOJOFbdKcirT8bAZ9Po2eKoU6j6bfH U1Odb61AfTrgLBQlo7SuE+jSHO/qeGzgaaoBVG5anDqVUwLCP6PcySyq1r0xtqXBf4MT9lN6 aOuyw51oA85q82V7vFzzXjMAkgHa5eNd5XJ3vsx8fvz69HDz5fU7Er9b5crSGq7N5szzyYGk q5CS164fIdjRg0SCF/MOOtRrpRmIUwruCciq2vy0WgksZ0Tp4o/uBGHLTjRFjJvmu6gv8wJW h15vi0rsg4qLirbgKD1FvdTNOLvANO/tJ9SKoE5B6vIAgkh6uNUnukJ054O+IshW1EXNxb+r cQsq4dvzDswikNS+liYvM0X027m0hrQaX/eBdNCdSHcdGAEMLgmNUoUoLnqcNh3sCiwyi88/ HVK4YJN9xk+zJUz6BW4L6XpNTMq2hcC9JPxcFdQNvuR398pessEZjDzMSXL/+D9fHp5dX+EA VV8kq9LWcBBokVbCuQP6tm0ybSmCpDqMdGtJ2bKu96LLxa7qtkoIsWoq+rotDniokBmSQayB NUxTprjAMmPyLmvxi6UZU3THujU7pwhiryia8oKRPhTgdOkDSqq454XbLHeGRpLvRKEZGtNp hhwPZZbi2ev0hDkR0wAnoQIzL8WadrhPPPeLSdKxDxlmPG4g/AArVRKuG7zcJs24h92uGJDY 9ziZP7YUVAfTFsoG1yUcNqJ23TTZpqEfV8hp5WVLUj7gLYX/8GdyNgZvqySFS2VjbyVsDN5X IEWMLpvhZ/Qa6OOGbBuQsEsDA+ITQw02ryhXCQpTAUQQklh69IdRGul8EHIWOpu7iPl4D7qj 5YwaxZzFloGFBdUwfRL6BB/3mecTZ4caSEx77PHmjLiUJxUTouzwej5nPnFkDZjmHvtQw/Yg llNrjf988qPAXePFp7kvthkRDUMiOEf91amaBKLrJ4vpl4dvr//89evTP5/eHr7ddL10reTs cIOocvbUSwNL/FHpUv5A22SgiPg4wyhcuNBeMbl4kHjqyDOfyujp17RqMTt9AwMy3dD5fKXX UnrQtZohwZbXpuRyC7FJ68zNkSb60x8tg9zfsSpG0lXaVX9Ca5MI4321RvRidDkcEee6u3rM wzJnFyqk+YioN9QFztwAId9jMs4I6JvYC0KseqAQk3WE3DZJ02LLwQg4HHuxIsCv3B1bqdsh 6XnXCeHhjLXp2Ai9Bxd3pk+823geNu1GQJN1fRDyAqn4nhvvYaYPIaSV0+2na4c2tg8ZxlTp ZyEtxlgnuiLbH8o2VeOy2BnCIz6Q5ehdt+f8lohxPoPyggiGVbeqDyf83g5K2PKMD5aozRXX 3AGWtmrkNAH9F5jQPz0YK9vPS+uaUJkSc53V0511DcPAykMWINq5ll+GkZ+c4+3zurwRyuvo sN/SNZpz1RYJaLfmhnFKy0O7T/Pj/UCzVGZQymiVWXRz8v062EW3rqqbpbvimmXlwk5mu6wd ln/pL0NLDapZWZ1qM7LMuqwMY1XByw1Te722+2tfGDMWypU+wIZCSQaz+4oC4QRhCaiid6rD ksevN3Wd/dqCwab24eZzU3mgMWq/9D7V24pz9qk5FUJ53JWnGoJduCo8t05t53TkyEGmi3E9 NvaIS0peqzOQ0j6RUOVNZwWaCv3w8uXp27eH73/N4UDe/ngRP38R3Xv58Qq/PPEv4q/fn365 +cf315e3x5evP362dW44Qjn1MhZPW1RCUbPPZtKuS7O9zSdwgsenJoENTfHy5fWrrP/r4/jb 0BLpi/5VRn347fHb7+IHRCeZ4gCkf3x9etVy/f79VawYU8bnpz+trzp+tPRMGeoOiDyNA+L6 YUJskgBX3wdEkUYBC5ckKAkhDHKHWdU2fkBcCw0zuPV94t5rBAidE79AnwGVz/H7oqGhVe9z Ly0z7uOyxiCt5inzg6Vhu6+TOF5qDAB8/L58OJZreNzWDS5yDOsMXB5su93VgklOOOXtxDEu a7RpGlk+jCWof/r6+LqQL837mBFXlAqx7RK21C9BJ+IuTfRoiX7Xeozjt5EDK1VJ1McRcWM5 dT9mxEWZjlga/a5vQhasIsLFuQNiJXEhPyDueeLh5oUjYLPxlj6IBCyNKAAWx6JvLj43p6/G LLACPRgLFMpuMSNuQyclK7TWGa2Ox5fFkhf5QSKSpbkomZowNdMRa2X4hP20hiDMQgbEXZIs s9y+TbjnDlL28Pz4/WHYTDSB0sp+7Hm0uJQDIFyavAAgzCY0wNI4HfsoWpwSxz6MCNcNIyCm TK4mwFo342jxc0MVKyVslqvo2ygirIKHVarb1JQ37gnRMeKWfkL03loZ/XIt7cnzvSYjjPQU 5vQhDA7M4bpKsBv26nZk9zBB1ozdt4cfv9EsmuZgorQ0ScCWnLhOmABREBELydOzkJ3+9fj8 +PI2iVj25t7k4tv6hKWhjjH3wVlS+1XV9eVVVCbENLBLJuqCbTgO+R4R3/PTjRRXTUmwfvrx 5VFItS+PrxBL0ZQV3dUi9he3hjrkMWHfNAixdvRtLXLA/0OcVT1rSrfhYzxom2ZK2upucbj4 yv748fb6/PS/j6BZK8neFt0lHgLUNeYrZJ0qBFwmA7dT97UTLOG6/1OHqIdccCuIGUndJElM EIs0jCMqpyQSOeuOexeiQUAzXUM7VOIdkAnjhJxmwRjqw1wHfeyYp3v+1GkXdVuDduSShXDw StACRcObdalE1hDTd11Y3OFNq7MgaBPPJytJL5wRhvUugxDWXTpwl3nUcu/AiGe1Nmz9Qw+t Wy+vCCi7PrNWIeetw+okObVwNI6f5hkNPKcbj7B1NJcBzkLiWY0GK7sNo546a7BTQoXvtBjI 99gJjx1pTIGa5Ux8EEKpdKBbMTR4hBBsWdTXyx+PN3D0txvPO6adBYxtfryJlfvh+9ebn348 vIl95unt8ef5aMS8hGi7rZdsNuZZr0iMLN+0Krn3Nt6f5LGXpBM6yECPhL62WEBECTrSxEPM ZPQKRxKTJG995eQJG4svMmrgf9+8PX4X+/nb9yc4utVHxagqP13wkBLyCHrYDDKe4y+kZWdK ct2QzT0kSUC8TJjprmwiaH9ryS9rFCG0sYDSjyc6x2woZAM6n3GbBT5Xgi987L56pm4cvgn3 LEBdRoxcw5PE5UDPvoKQSJdXJVO5yI3LwLDDW/Ke9VU9z3yKOObiEc2VfdGyC6ESyvzDipST JtMzSn2yhRaKllycBp5TwpnfzAVOr1QyvpLOzEF+NMHcukcG2YxWbPLWhxAz0nO/A8ReS4kY QvOXiF1lBZi/u/npfVO4bRLq6dlEpu8CRf95vPC9FJ2ev5LpiUPZYYGh144qCuKE5jg1PsSp lTSZu3SRR3KEmNmhde0HM9cPfevjDZfOWzzZuR0WhBgIdJ8VAH80OAA2dLuHbid2vXA9SshA QC4y6sHJuFT4xDGj+s45F1ICEVl4BASMij0sEKeu4gmhm8/0BVaCnQQz45luKa+7wlmpcyaE FrBoPLqhqWEeZcOWuDCDYGVLiBP/+YNwTDPQyD4mR3DzRZFSu7tWNOrw+v3tt5v0+fH705eH l1/vXr8/PrzcdPOU/zWTO3ne9QtNFzOAewuGBMdTyKjHliOdetIh75Cz2g8X9tbqNu98f6EB A4AWEAYA8TJGIQRfLHA2rEAeZvsn+eachNxaBVQa3P87U0xR+gB/JDJVx9w1u2zz/2TR3hBP UoflIVnaQ+W+wj33HEa2wZSa/us/bFiXgXekFXkt8N0rnNEUSKvm5vXl21+DWP9rU1WmSC4S 3B0ehIP/o+xamtzGkfR9foViDhs9h4mRRD2o3ZgDSIISXHyZICXKF0a1LdsVXa7ylMvR63+/ SPAhAMxU9R78UH4JEASSiQSQyATPm/mNGc3g2k337CQPh+zkw87d7PPzS2dQIuavt2vO72jZ y4LD8obwAkyJngILM3rsSJuYm3BdeHXjG9H4DYHpcHpqgN0gGk320t8nt75QhRNOebr2KlCL khuKXynIzWZNr4dEs1zP15Srk15dLxHzCuZD4iYmwIe8rKVHqxUmw7xa4tERdHmeODd+Oul5 /vbt+UkHT3z5fP/xMvuNZ+v5crn4xyB2j5cXbKd5mETnO/zQojPWlpMHVs/Pjz8gxbuS5svj 8/fZ0+XPGwu6Ok3Pap68tdyerKp1JfuX++9fHz7+wFLVsz12a+G4Zy0rzQseHUHfUdgXtX0/ AUB5EhWkG8+x6ENRaYSDVD/aVBRCmdbCpkaFUtPNGKjOvGABqM6FlGJeqFdY8iQGDxe74rtU wqAXvHQrjfW9lFtBR4EryVnU8khEVzcTt+GhGXYPaFVlXu9QhD1PWx3RcWiI00AKOzp9J1U3 R2Oc02U4nErOnideG0YpCP0WHpTxurFbBXQpksVmZT8F6FlT6I3hnW+v2FzYPUgzdueptnXm UpliRzC6Q/KURwyt1ixlFypZxHM8oCXALI2U6E6NtrCY/da5toTPxeDS8g/14+nzw5efL/cQ 0cU8HfhrBexnZ3l95Kwm2yZ2aFhFPf577kjS8c68FaJfrRLgwbZn9m2wTnxOezdmjSmVKXE1 AMA6StyBZ5JwbISves/2S8q6UXgoSqW42/fqcyMeWIZMzf+nFpz87DfUSHKMpPt+7xvColNY kIcHbHNd94soK0iEXdT2gwqW8TGMcPTw4/vj/a9Zcf90eZwIqWZValFVxkupxiDBrpFeOXXz v2F1dGdDNwvHXJwhmHN8VhbUchWJ5YZ58wivTySi4nfwz873F5g/osGbZXmi1G4x3+4+2Jd7 rkzvItEmlXpyyudr0oId2e9Eto+ELCCo9100320jNGnitUCeiJQ3bRJG8N+sbkSW4y3JSyEh d+GhzSsI4Lgj7IBrARnBn8V8US3X/rZdexXh+DgWUX8zuFATtsdjs5jHc2+VkR9JV6Rksgh4 WZ7VxFbltZK7sOQ8c6V1YD5HolZCnW5cR4opbx7e6dd9d5ivt9m83xZE+LIgb0twbY+8ua3M eyFjqayVBMlNtNhEaCVXFu4d2JIQ1ivTxns3b9DMFCi7z9icqJOLu7xdeadjvCCuK1559XXz 5L0a0XIhGzS1xYRbzldetUi4ecXJ/P6qEi5QqZX9douzVGWdnNus8tbr3bY9vW/23afSTwqO pjDLB6WI9hwbkRGxlM3VAA1eHj59uTgzeXePWLWVZc3WN09XtY6NMolYVnUaaDMtYo6ZAjqp 5Vl3gd620fieQeZJyNsRFQ2Eqt3zNvDX86PXxie7j8AWKKrMW20mogezcltIf2Mt1sGQEdDx QgFzFxC7+XJicwAZz+Wk7a2DyCB/d7jx1DstlIp0y1e5PIiAddH8tkQ2IYQRuyOo2dSXHher hfPGiiyzzVqNgbMT35tN4IC1Ru8N6pEaJz/b+O3ILTvAVgblTWtyhu79AkdQp1JmNoNXGTuK o/1mPXGa9EGLZRkW+9rVdwchhfrLCfxqWw2NjIkbNbo3s3NUEjuyMPMGeaOdRCjTHaT47Dar im6YROViiR+C9zYO3RZBY5IdnYB92MzGs0qvQ9r3tSjvpPOpCrjGkEU6+njnxfRy/+0y+/3n 58/KsI7cCxyxWpWmEaQlvNYTw/WfSsRnk2T2zrDA0csdpLlQqfoTiyQpLSf0Hgjz4qyKswkg UvX+gbJLLESeJV4XAGhdAJh1XVuuWpWXXOwzpc8igebYG55ouffHcBknVnM3j1ozsYSip0ot 9osyuwDYetAAJZ57dDS+3r98+vP+BU3QCz2iTWFUWhRapPg2HRQ8KytjSVlgioERlwgBUhpX 9QtuwOshkhUJqtmDOPCK9T47LvogbytU2SnksDfugsf6IlkGdzXsrpaLqIuebo91pr564ntT aCmOJCYop0qFJdxXVhb++YM8MGUn4JoDHkqvP6H3qzOlWDqUgiS+EwbIRKlYqCAFjNJU0K88 V1+XIIXo7kzcSFaYR6lVeGSeR3mO73QCXCk7gHzRShlKnBZcVuKuDvpTIitVK8pUZGT37bn6 +Akdkq7t1FqaJsM6xnw7FNgtpA0RDNTKu6lWa9OWh2dOcpDrwdJhXB35TzmYrHlKth/OEpao swl8emel0o7Ws6f+iUCUcAqHHy7ql966Llm9mYFOTVoJBvcf/3h8+PL1dfZfM7XeG2LlTqLq wFqwCwzSxXK69gkgw8Wz6ytA9KFE7A+VW2ps8JWjT4GD9M2VZ4wWPUGKU4qRdaZslD/1d6tF e0p4hDVXMrVEYVjBMYPX9FlR4fu296QDEscsV64hm8EbbDfjIhrPvBEn1+rTjTfHdY/DhZ29 GCyFv16jPWNEuceaOQnUO5WNwjQCjEce18v5NinwPg+izQKNJmI8uwybMMvMVeMb38K4+w4G Lm6L6MWC8apqaZijH+TkEGCoQeZ1ZubAc35AmiWbcDhFvLBJJTulajo2uwbIuZSwtY4Od181 hF8nPA+A4y+EPQK2/uZuq9QnEWRKP67MwzY2Og+IR8g7IbkGaUxk1Z2NDXEO7ObqQ4i+2M3X bso6m4ZeMp+dMlmZa3JdP+R32gd17D5Y8vc13Cy+0ZPTC7pWk4RbJYsWPhHjV8MJeEbdgklH 3A4X69UaNwc0LsWByBOj4UqIhshNOcLafMeXjpqp9n0qwW0PE64jA0ylvAf4RCRMBexD5XmE KQh4UFF+XYCGbL4gLtJpOBVU5hz9STZnNfnRpeVqSfht9fCGOC/u4DUVZ3uE1/T2heapmphu fcTKhN0YlL3O30rCCTvfLN5VT6SZHqqn4a56Gk/zDJ/6NEiY5IDx8JB7+LYowEItd12tP4Fv 9HnHEOG+EmYN9MgPVdAcaiJYzO9o0erxGxVkcuERFsYVv/EAudh59EcH8IaG49SnUovDlBhJ WhkBSGshZaMuJka0i98QKp0xy2/ofhkY6Cbc5eV+Qd2t0IKdJ7RwJs1mtVlxenJOGZdqrYJb kJ3oN6zEF3cAZ+mSuKrdzVzNgZ71SlFUIqKn4jLlhI9cj+7oJ2uUCDXdzclEbgwNCrmdEzfU NQ7HT0cR3OjXW4tibUEI5i9vaOsef2OW1KvPXNLa49gsqQzwCj2nsTMd6UXgIfqnPkE3t8W6 b4V1AovasGOpvzlFipLr0BuqWz/wf29WJg5RqhzTRocCujkN6ShQbHHjk9ccslla2zYOHjLB 3rtG8Qh0AS9vFK/lYrlMbEsb6JtYmIFOBvJBxFYUGG1KhNHSuoYwMMO28GZKLvIIJR4QcpVn XIcAnSBHVgrWTJYRoWDuSBybIg/vONULRaSHKYzdTpQ5tngHpNEZ8zohE9F0W0ERzcrUT7VE g5jBZx07OdtXeApExYhHeK6RGpH9hc6F8fvlI7hPQssmsVWhIFvBWa9bHQvLGv+ONVoURO4q jcoaM/o1VMNncx0m3Rc8uROZ2wDw7CoxSe9AoX6d7XpCtVxjduTnjlw7Sa8sOGWh+o6pB6kl WiTu+FlOatUX06jmdRGC7OapsdznGbgSmEePA62NjaTjwM5TCTTnsRCGJ8f80TT4QbV0Khdp IErsXEWjsd7PskqoSrQ7AVHk7sztFzuxpMoLm3YU/KTnE5u8P5f6sMmmCohR5bZCVNhOKCDv WFAyl706ieyAHsB0r5RJob6zfCJmSaizjBPlrO2zjpDlx9yh5XvRf0IIFX4URu+MdHPAgVjW aZDwgkXLDjL3V8R+t5orMirFgJ8OnCeS4ujkfC/CNK8l1a2pGsbSHZqUnXVuZ5uqw8HvJ7wC 8v7mceWQc4gWxp2PNa2TSmgxc0ckq7DNFECU4jej1evvk2VwNJzkpTFQBtHpSl2EVyw5Z9gu tYaVZklCZ9h7YndwidDHHTcchvpwgNveZSYWCkoqi4Rl2nkkdFRMUYrUnASBplTipNd6/xi3 53VIOIioSjxXVpxNtIUiKslTUw+ndP41DK1VsCSywmg9AY5MTBLrU+DoThPaWwItU2Xiv8vP 7sNNuvPFmApFuN+5UnKS88nEC14ge0olV4eyllW/rzbWZlInir+GSb8tpOdoWSHcNBJAbkSW 4jYloB94mcNr0gznSM30qBey7kKlNyGhWR1Mhr1DQvUekOJH/6Lm/KSQ5g40ZpFcYy1aBtT4 yM7YpGaxQozeyUMdwbNiK16eX58/wt0N1/CB+u6CSVTyiTiNjX6jXpdt3PEePKZRwxB8cwZT zvBgtnjHhYhZq9Hk/BCKFtwCEt47IVzFyQ6abxCVDZHmDiMrYbJisj2Y2qpbyhhszratLpll eZ2FvM34aciCMrFD7fgt0E/P38Fr2RmUiOsAuy0cOQhZuY+iN+fNLqn27emg1F6C1ABgkGh9 LSuQbKISHfWwVipR77En7Pzv5d8sSXG672SFJh4obRiweMqoyeN+/lVwn3+8gk/3cPEjwsQ2 3Gyb+XwySm0DgtBRrRfW9CjYh2iyiJGjG9cJdXLmCRC/Psqllnmue7WtJj2v8aoCKdEXCojW cLQ1mhrLBKEe7LNZe7SbermYHwpgQpUgMAlZLBabxuUxOGIlNaqe6TvnaE/kY7Pc18jfanDd MxANkYm/WGCjPALqbTDHtCtPOMmIUfpwpWq3vdlJp9sNO5yYbpZTNTQoCFNsoTTAUgZYKR00 NnX8IcYvpTven4WP9z9+4NqdhamjuEodttb5RiNHtKt0jFyaqen2v2ddjPe8BK+XT5fvcMVp 9vw0k6EUs99/vs6C5A50Xiuj2bf7X0NMkfvHH8+z3y+zp8vl0+XT/6jGX6yaDpfH7/om4TdI 7/Pw9Pl5KAlvJ77df3l4+oLdVNG6Jwp94pxLwaKgElLrsrp/ozKcTH0ayCWVjUPjewZhpl3Z 01AEaX/LPJmOV/F4/6pe9dts//jzMkvuf11extAreiyVeHx7/nQxYljp8RJ5m2fJeTIFnEIq hYmClvagA0W/1aBm9/efvlxe/xX9vH/8p9KyF/3k2cvlPz8fXi7dvNSxDJMtXJZTA3l5ggvU n9yh0PU7u40uPDm2HRHk1NZlqUo1VanpTkoOW1DmcbH9AJgxRR6J0JnpD0JZR9zJgDJQ2zx2 5WCE6gh3yLKYbggMaNXtxklM0REXULnbIz2/rnIiSAhfJ4uak6qKlkkYZz26iK9ktw8qt2gg D/0RDxnBJrRhF84xwTqs93bCijFRhiygwPLO64KRTLHp3pkBhgdvRSWL6Vm0mXTgbJJAo8ch b4BSpSFPuBunHH1ioWZJbGVt8vThs1MffSOeFnyPInEVCdWJOdHUo8CXIAaLKOy9cRN6oyhX wmbvPCOgWjQS1cf+Ykmc+thcayIClylj2onwLS5RnN5kqfHbgQYLbH0WLINd8dv90zMSr3+X SEpFDhx5AHczQryD07Bq6+U0ncwAg2PiW6+S5nL71jetmfzVHG9EU5MSkLFjyjIUKpKlN/dQ KK/Exl/j38H7kNUNjiitBgs4ojNkERZ+g13tNJlYjCsbANqCRRGPCCXGy5KdRKk0gpR4Fec0 yHH1WAmUrD3M31mpHA20UcoxT1HodCJFLi+I29UmT5oJyJRH1xASztVm82Dzo02paXBoqZCH IM+ITpe1lTvEHOzKTTXX0esi2vrxfOvhxTqbw8hhYS+/iVmPp2KD5dboseXG2TGI6moqo0fp 6m9ll6ztiAtATfg+r4i9d41PVxPD1BGetyERqbNj09eFKPsh0rs8bt16dlHrfEpk9JFXf8HU +TKEVP8c95MkdQm1WIK0oSE/iqCE/L9uMZGfWKn6jOoYHWzAKcMPUtlCes0Ui6aqS/x0rjOO YKM6Rs8VFXxWZRtnlf1Bd1DjSCKs8tW/y/Wima7gpAjhP96aCMNrMq026FVd3YWQ30v1uI76 Kh3dGx5YLrsjr1HOi6+/fjx8vH/s1hn40rA4WIuKrMto0zYhF2QaSFiNHAMzmVrFDkedvst8 95HYmbHBedjQurn54LmH/sZuIvFCVuO6Vdm3KQ1fe/TYLZ9Rtwq4MUX4hUxZyZyM/XNVN8LJ 58neUevRfoXcZnXaBnUcg+vxlW+cMfJMdob/deQvLw/fv15eVFddt9DsgY9BIl1FO+ztwJLE zSJXuqsgU6v1uyZ2bUXDIB6yRUuPfeUOzYsc3ZkVQ3Zvh6qK6x0jpw54/sQmChTvrbUbS6P1 2tvcYlFz4nJJxNkccSKWre63/I62LPneiR87lYEG8ok6ndjFohm2mMwPBB13W4kEyoAocikq p2/jFrLVOvu2g5C5VO0X4pbPA964tJqFC4w23AydQssJ7Ri6pN7b3aJ1hwemStT/jSdbfAO9 fzV66hz4WEjNnyOLfvVfRPkspBMijkz8LzJBJiJJpDezeMssIm6g2VXyN18uVmKhhIN8v5hW cwaPloRfN8DrZWGSZ0mCWiIo8CAiutbjZPfFQPuNUuTtqnPBrZKa0FZhgfVnB9ahGRkAfrVh aB09axoL0TsU/QMKqTSd35jqvvr1/fLPsAtY/P3x8r+Xl39FF+PXTP758Prx6/TQrasSclYX wtMTwpCn1FAq/9/a3Waxx9fLy9P962WWwv4iYm93zYD4U0nlbnNjTSFqtGYkNSP2UbEmW/wK kp2boz7YIUS3TgrRWlZOfQqsH7DRb1V+6o4G8I9OgWKx8uf4bJCm2Nya8lSqhdedKWcDjcwc /u355Zd8ffj4B5Y/vC9bZ3pxq1YQdTpaDmZR+vht2pBKxGmb4rpmZHqnXWKy1vOpsOo9Y6nm caQr4Dy1dxHpKfCrT2tuegiN1FZ76+BuQsAUlGD8Z7CIOpzAgM72fBrqVLFiIqtruHmHT3Ow zJsv10SQnI6jwKIxdQ0M042n0x44DQf6GneW1wz67iS2u3NFLVPpSsYXKAO+IQLTj/iOSMmj GdJKvQ12XKFRZUetfDMktKaeSlY4pCJku679CHW4Pmg/GYhkbxTebrWaFAHyGpPDHl2vm2bi OjBiywVG9Jw2A3GznHD6cLt52h64cEq1J0y4WmqlTCSTYdUds74xLMCwIXZauzHQ12DVYoRV hPdMV88JN2A0WPI9xPhD1/GdTEfKiJ4KZaelpVxRgc26zqm8NRGHs5O8cOFt0bjtGq5CtlnP t87oVEm43i3swAddbazxdzv8Uvb4JRFROTWeVzffRkhvESfeYndjTHoe536Bo7D0oervjw9P f/y26LLMlvtA46rMzycIDIj4H81+u3pyGWkwu1GCPYh0MkryLENic7DrsaQJC3QHaICVfDjf QS3N25edihDh1g+mA1IJ1eV1/zWi/VG9PHz5gmnwSs0Be/xeJpz0SCkCCOZm7ZEI9XcmApZh L8QjFrZK0MExR4ZlbXgMaWjiglRWISzKbIIS2NXGX/hTZDLfAfEQVrkaA6Q5gCqkyg+hXU9P HK7p//3l9eP873atE/vCQrNjaq8cunyTlTJjhtBGdopZVUZ9zTE8GV0ujAxwFdh9Qw2othLl IDVrH3d09DKDpkwMoIF5mLmv3/yAsCBYf+DSs7urQ3j+YYeVaPx5g/BLb7tcum8CSCTJqA4m yxbbCTQYNltLYQ7I4Zz66w2m7QYOpcE2Vhw7A/B3pia0gN0We5yCttuNj1/UGpjKO59I2zpy yHXoEfssA4+QyWL5Rj0dD3ElymG63eZGsWBHRwNehLFvTeoWMN9QiLfxsH7U2M1h0xw+Ipnp alH5c3RwNNKeInzDYGALou18TVyJHnnee0vMG3r8/vTCdIE2Q2H+/7H2LMuN40je5yscdZqJ 6NoRSVGiDn2gSEpiiy8TlCzXheGW1VWKti2vLMe2++sXCfCRABNyzcaebGUmQDwSQCaQj9GI TAHWzX/gVtC5wZgxLpbORv4QsUgdyyGYuOTL0RpR645jXO9qI3hR26V6EKVckKcCTHRFt85I ldV7jOcZbv67Prq07NThQ75fDPP0QqI84zYngt2Br1YRt9si0ENSvk+3x5A52guziuEKU0o+ KCJWtS17Sg8HH6hZMIzH3dlGXW1akOZsOOd8N7S9yXBlcLhrWSS96zqGvXniufXCT2PSEwrR Tcc2VbM9Ho0JuD8bue6whaxaW9PK94g9d+xV3oSGO0RNAHdn5C7A0olt0N365T32DOloupkr 3IAM99kSwMwSC7KJozNocBvbhmryt/vsNqWdujtOKHO4ER3w0enla8CV6utc5IcQr4PYVCr+ n5KHsBvEQMZBG25Q2ZYRs8G13RlxkpZTRwSv6lwkmczXqzZ30Nk2NBUx+mHqN4bmfSt6WPfs NcRsFaNrMD0cBDGEiCdRtlSCGAKsCYolbk2yKFG/LC4wVUiODL/9pIpKnzPlkmP6AQrvan8X A7Ui/S0Y2BSl9A2KVA9jjjbEEy2CVR2SJre3XF2Ai2HeuHSZotekHoG6cCfaJV+kdChubUtI OV1DO4Kn4+HlggbYZ/dZUFe7Wv1e6qtPvP081KXfe3hw8HyzGHoPiErhmVJx+L0TcOq6U9Yj iNs4pWrNXXM3u/7dv6t5FY7HU4+6nYhT6GIQx43fV1+ksiZrh5J2Cr8U9mNFEwm8A8vQ0AL5 60gDl7norauC5Z1enXI9zschgCV2Dub5Le7LlxYJ+Q+EH1vCuVbxmMMYWttFFIPLR/ztvilN CfQqoBn1xXkdxLQrI+AKsTlEWVzeUhPLKUKupzUUesW+HqQW4bj6HeSG2Ifiw0FM+VkrNFlU GSz4oIJywwzvUxybLkyZswG72l6JIQd7UxtvCU8fxKpdbiLSSFeGo+9noQlPn0aZElO3AdNG zg1yDqEQ8K1gAxfhBvoV3X4hVe8rEbgNH3vFjWh/Pr2d/rjcrD5eD+ev25vv74e3C+F0L8MN fqi/ZeyvAbRtP3oF+uxD3bZT+UsZkbXlbsgjgV5q5W/9SOqg0t2J7zsikES9nv9qj8beFTKu e2LKEVqJkjiNWUDF3tLpYub/DBkwvTmSV0cEoRY6DtQ7H8y5LMiFTM35pO2dz0YeR5mrz4Do tp6ORnQNDT6Mc3v8WUWJPy8CYzWCB6+Ox+3GF/7b/IPF1W8Jq4VuQAadrmaeRV22923hFUy0 qJ991aEhPINCsfDJla/QsHiZ+sQ3tunaG5HBPBsCz3bHg5nmQJeoDMA1o2SShmAt/8Ldn15l O2c9AgL3JnwSwyBX0h1geG3VdBaqsko8a2bTT5IcyZtAo7ypZQ9zucRxfvN2afx1OllWpnnZ 7w9Ph/Pp+XBpJdw2n4uKkdQvD0+n7yI3U5P9bH964dUNyl6jwzW16N+PXx+P58MepBq1zlbA Caupgx0MGgCo03hL/Ml6pSj/8Pqw52Qv+4OxS93XpparXKFwyHSsXVS1Wac+rbdJbAAN6/LI sY+Xy4/D21EZSCON9P46XP7ndP5TdPrj78P5l5v4+fXwKD4ckL1wZ41a19T/kzU0rHLhrMNL Hs7fP24EWwBDxYGSOCuMpp5LJ782VyDvqA9vpyd4HvmUvT6j7ByVCb5XViJLp2qWpjYczcOf 769Q5Ru4X729Hg77H7gBBgok08sTtx5EYGmY//F8Oj6qK0aChlXMc7+kXR65vlZzXW1qGzLG trrpMKhTS8DqRbH0QeBGBhRZzO4Z4xK9ImOLR5w6SNb1Lsl28M/dNzJkS5pjBQl+1QHkLUNr RwAzMryRQGmxVwVMBHvVYGGc2oN64RKNNGQAJDy2EeNQRvdgUfKhAeqI2UOgZmPXgmEUy1x5 hGtRWlSAAV6E5TC3C6Kn4LnowXkBUT2u1m0KHdPiwcZ10MXO7Jv4qszOEoKF8oCxlw9vfx4u ik9oG2dXxfTV7uIE7hcg38HCEEE9jpJQ2OOq70wdwboIjKH/d96k82OmBPZW+0vl6yAainbx FHERYb2Qz3HUVclUPRRwOZ8Yv6hyypO9oyjAhBhdc3WIaq7mX24u04xc3eK5SEF9r8FyPbxS 1BmBWM9FdJc+Msz1LwDF3BClqiXazq81Q+gXCyx6Nwjx9qiB+VItRIiiJXaITqMk8bN81zun YxMs8WBdr/KqSAxPpA0JuR0KuQwnLOSbHLhN83W23hRIIfO3kdgJizLi22SkaEzNLtneBDXZ M4On0/5PGf0dzlt8YqKdVV7I0gPM0SsW0msdVXH11U+lm409WvpEZOb3QUTEYldz4jRRGSIb q1QWfb+gEo1/hsgQFhURBWEQTQ1hgzWymSEtLiYTaVvrgL4fx22z04IZslQjMpPpDiLZBp+2 as5lV88Q8BKRLeId3wvggoMWamlG7tbEHSviLMmDnvMFJTu9n/eH4YU//yIr+bbGlS5HWXDR ttKh4mfd1N1TzpOwo+ybSX0VLX8/TuaGgL0xH4tNawgytKA4PJ8uh9fzaU8+B0QQ+AgsJMjB IwrLSl+f376T9RUpay+d6BqVkkhqBNEJXB+HUi1v2z/Zx9vl8HyT84n8cXz9Fwiu++Mfxz2y I5US6jPXojiYndTXj1ZaJdCyHEjCj8ZiQ6zMfXE+PTzuT8+mciReakC74t+L8+Hwtn/gYvjt 6Rzfmir5jFTQHv8r3ZkqGOCkbr0rxn/9NSjT8hTH7nb1bbqkz80GnxW0bTVRuaj99v3hiY+H ccBIPGaSoK6GDyG749PxRe9KL6bFXOzfBhu82qgSnY70U/zWC2AgnS3K6LZ7Q5E/b5YnTvhy 0nJLSySX0rZNzII6z8Io1Yy/SPoiKkFwAPfGz2lBemb8vP+UEuziuNIUkMnMcI0+Y/E2al8a 214Owij1A1JH2yhDlmnRrpJ3SqKC6K8L10LbYDODaiQxV8uDWnVebhG7wvY8LHE2iAXzuYBA vR01BMKiV6+uefjLKmc8m+hNBqHDGrvTKYVwHPEKrzdDyjMz6kGqpxAmUHqdRZW58s5GhZeV N5s6/oCepa47sgfkrWclhQhaARbLp2leIl+ZGJeM4RlC+AsqBA2sDuYUqTCCzzNwCChV/BpU JqBSwY3tJAj28lsKVv6LpW1URm1W+1UGS6YjsTEJa4OpYQ5qEE2B4e2HfuUYtFdHu8SZ2viK TwC6K74GPE99i2RMrjrxCZehQPpaMLSpql2Wvu3hHJu+g01SwtQvw5Gaq1KADNnsAWfIm4GC EcpmONTFiRjyRiGSZLovnhjYqq0DtGYDDmyMWnyvJu9YSKUPWu+C39bWyEI2Xmng2NiEK039 6VhcmqsAdTwBOJmoxTzIOYQBM9e1NA/SBqoDFPuTdBeMR6TZH8dMbNw2Vq25GqVcDAFo7hsS sv+fLro7Fp3aM1qO56jJaFKL6OMi32uSqPHbe7rZDJmvwI482sGOrVw3i30aoLQcH1hc87B0 fMfZM1gCy8LHLr5hktn6Z6JsGyV5AW+bVRTQfgGr3RSvE0j+sWvb28CSKrDHU0sDeK4GwHY4 cDY42DYTNNQJ/lAaFM4YZ8tNo6z+ZslRwZ3I/M1Us5lqMMKGZAuHYeMiolqXsCKN61jpSQ/f GuAcrLwmsVCctmkeGj0rKlFq5FlKswWU8YVIcfl2MbFGeke3cQH+8XzjMTJGI7ftBvj/9KVm cT69XG6il0dVvuW7ThmxwNdDravVo8KNevH6xMXAgVbRQeU3fhyeRVgBaYqFj4oq8fmptGp2 VfV0iCbk6RAEzFP41r9ttqF+6iAEdwmJZtmyIB21WMHwvrj95s12+D1l0GRqc5eNZtouSFDo h6peQQKRa7MlETtsdXxsDdjgEUQq7/9QYuo3B5I86NXFoKHbkx/1k64fdyVlXTPlISGVUFa0 5bo29RrDAKkdbmqFNK4Z1OaFTbI05+4HyYj02547mqBXYv7bwXIB/z0eKy+Prjuzy3ru4zD5 AuqUCmDiqcUms4na9gDsgHy8Jxd5pUHYeGyj1qUT28FednybdC3FAQAgnk3Zg/IddDxV7agr sEoIXNeQIUhuO5yCXN1Xx7d7eX58f37+aPRDfe9odDcROIHWgPUK/iFzCh/++/3wsv/oXkT/ Bg+pMGT/LpKkvcSQd0FLeG98uJzO/w6Pb5fz8fd3eAzGfHeVTppA/3h4O3xNONnh8SY5nV5v /sm/86+bP7p2vKF24Lr/05J9otCrPVTY+/vH+fS2P70e+NBpG+U8XVpYIpO/dYl6sfOZzQUI mxIe0GawvC/z2lFCHqXFxhm5I/19Ql2bshwprwoUFldbdLV07CYgk8Ztw+7KLe/w8HT5gc6K Fnq+3JTSJ/3leFGPkUU0VozCQQ8dWWocqAZG53Mlq0dI3CLZnvfn4+Px8jGcKj+1HUtZm+Gq MtwRr0KQ98y5T7qY6BB+oSITh1TMttFpKH+ru9Oq2tiKZQ+Lp5oMrqD0FHLtMOhdljsDX20X cHF8Pjy8vZ8PzwcuIbzzIVTki3kaN/xKKS7pbqIIoltgx4lgR0Xtxgji6EhYOgnZzgTXTUyu tFw6NorMpf389jJ8UMSQAZJUAn7js6bon37C93nsX+MXIZspoYEEZKas75U1Ve1UAELLQ6lj W55quZU6pgiQHOUYElFz1MTAFYCauNRRhMWZJqNumaMpWBa2X3CO8kcjdL3RCQAssWcjyzNh bOVGS8AsmxKrsWaeDNI/NJjClNz8N+YbE8SVRTlybUOirFZ+u+LaX5Uu6dORbPlmNMZZNfgG NR4r2awaCPKJzIuKcw7iroK33B6pMBZbluOov8eqblOtHcciBeOq3mxjZit6eANSF10VMGds jTUAvvdph6fi8+aqTnkCRHqMA2aKa+GAseso/L1hruXZ1N3LNsgSdQwlxFG6v43SZDKaUv3f JhNLdfX7xsecDzEdNU3dI6TV8MP3l8NF3kIQp8Pam03Hyo0AQOhl569Hs5nh6Giuw1J/mRm2 VY7iGxEaCrQUoFhU5WkEWUE0SSANHNce0zdgzY4qvipOeoqFmmlfpYHrjZ0hPzQIlZ1aZJk6 SnxKFa7v4eRgy2noA+gMNN1Ut2dta8NlmtNt/3R8GUwmtbvEWcBV9G5Ir29S8rK1LvOqzVGF jiXik+KbrZf9zVewhnt55JL6C4pkHgsjeP71clNUSNnDUwf2GZQeSFetSKevpws/II/Eda9r 4/UaMr6AlDvIYqxs8QDQFnRVJEbRzPB9sm287arckaTFzBrYFBlqlqWlonA+vIFMQCzgeTGa jFIlqtQ8LUwh6vD5OPcNkYPDgjmfXzmLeKQ0UWHwf+VKmWW5ZlO6IuE7BL33pMydGLYeQDmU r26zO2gJ6TBUO0LcMeaUVWGPJgj9rfC5GDMZAPRNYDBZvfj2AiajeN3ifVtBNtN++uv4DDIu uPE+Ht+k8e+ACYQkopnLJ3Hol5AdJ6q31J1lOrdsrPCXC7A8xi9VrFxgJYbtZlooWyCgrXi2 iesko91wprshutqx/1+7XblZHZ5fQQ8nFxHi6ipKUQSiNNnNRhNLOSAlzKHGtEqL0QgxiPiN LqMrvuFhyUj8tpWwjlQ70RV0RRvob9MIYpdRFoh3yPiQ/2hs4hRQ+9qoAMERc1Gh2NMATAo1 GkkLM7hI9WjCqg6QIhiRai4mz7ny9mb/4/hK5I0qbyEDA64IosfHtMQRgucpeMIh44JB3Wh3 LCDjBD2QfLuIKni7rMo8SSLFhlXiqpiIjCPX8er+hr3//iasFvq+ND5tTVDeIbBOY67ZhQp6 HqT1Os98EX5YD+cLZRpXZ16M5BSVZEXp8JhExjzH7A9Y4I043XnprW75rJCl8S5K+k4Y6Yqd X9teloqoyIYGdTTQ70GfOR8VBiNs0RC/KFZ5FtVpmE4mo5FePg+iJIe73jKkzXg5jXiZkaGb 0ZpQETjnJ6CaZIOyzQqm4iCu4ykXUSqXdNRgKsK7h97QwyTiktVvUYCsN9JACcbMfxrWJGCS ors5Lw5nCMIgtt9nedWkJKFr23aFDK0DnxYIqtUmC+FJKRkawGGnhXZBZ2GZ67btukNDK6vg pI9gVasARNSifpDEz24HlBdndzeX88NeHL3D3Husoi0lpT2Knru4vZgaVonuRIsl7du+INNE FCnXsdHcszhXAmLBb9iwBjHveookTueGQG5CPOf/Z5yVDHacGz0eai+uqqZB8gL9CF4rgoFx VIHAD1ZRfQdJSWWYLeQt64OgwoUUrggUfqlEAQNQzuIdL5RguxowpFww1apHwuo5mHPyIaNW MbiMC3NPxWcVbLvgPfXegIeYuVlQ3oucChic5VW8QDtzqANiCdBCmy38jq5r/u2GK17U9d2m yhdsXGOzGglTQIsNJFFWPS3p3KD5NioT/14j7qGQ3jYuOTfUYUxbFlK0fnLn3/Mm8XMxpzOv oFIx3wkoz0pEsuMjJ/qJxwjhuU7rB3kx9BMJHvY/1DBkCyZ4jzY9ltRyG3w7vD+ebv7g/Dtg XzC/rVV+E6C1IdeYQIIkUOF4BgAsILp7mmex5gMjkFysScIyosLsyMLwKguJKmVkxr7qdVRm WKTTJDwuhA5+UutKInZ+VSltW22WUZXMyRhufDddhFx8jPgCxt4K8EfyKJK7iCHu6gG3bRFm /55xARy1Ni8hpENbV7vaxXJUlkAHaiI8qG7ppZ8qMq/mJSN/g6d5AjsRBExvVMZ+hiRJ8i3v 0LQ409KNSboB1SrAn1PR3tjukVrj62+sCs1YhNCbpvfyapYGsqE/UwK3naK/0pmW3NipjuDL 32+Xxy+DbwcyQYL5c2AEP6i99JGuk0UVP63WNE9mGjvC762t/VaCTUkILDeiUQKpaJgAYXc+ LcBL8pq+ChEpSLMFzZtQEk4Kaf7HzyuKNVsi2FS4iMOJtI5QN4nLUhijiSx8/TjAUar/hJ4q A6XH1OXyclkE+u96idcHB7BIwOp1OVdfEiR5GDPIKccPG064KSE9cABRx+mBaQsZA2AGUbGi g94HsXbuxjB3fINmZHwDwEK8jbu+ZV0UfLWOu8gHRx3ISkzHtBZUG674JHRKA4EXu7mpIYME KT3U8FjX4cGyohCJz64QftK+PPRrA6f6YoWRqFlBT0SGg1LxH/0mcXw7eZ47+2p9wWj++Ugc x2NnqhbsMFMHXd2omKnCdArO081BaSJ6hDUi6mlRI1Fi7qm4yc80ZEI9BmoktrmzZABLjWRs GF9v4hrG15tMjGVmBszMmRibOXOptzWtuG2qeDwzNXM6VjExy4HVas9QlWVjxwEdZamlRBwt vUvtF+jtH1OQQfUR3lG/1oINPRrwe4uYfPKZKf2ZGQ22HJ2dOwwVHFch0JhpncdeXaqfEbCN /gkI4FbmqU/H+GopgiipyNupnoCrypsyp6oPytyv4s++cF/GSXL1G0s/SnCK1Q5eRtFa7T+A 4wCyuoUEItvE1bAaMQq8mVQXqk25jg1nEdBsqgX9FhAmhkw3WRyYkn8o9wjSwvOwfz/Dg8Eg +B2cQrjB8JvrprcQ+qseaH+t0BeVLOZyXVYBfcnVBXR8zPtaW/VC3gBEoYQ/o2/X4arOeXXi 4RRrYXC8x9U9BGRj4oq4KuNASSDdkhiMOSTScA4u8lJcLrB8UxoczkAMEVnmohKyrKyipCBD NrQRtvoW+4jFEpb++uXj4fnhl6fTw+Pr8eWXt4c/Drz48fEXCP39HWbli5yk9eH8cni6+fFw fjyI16zBZC0DyOa14foZb1654Soyl3N+VRKS3BxfjmAHdfz7obOobErHXHOGbgXrOsszal7J +tsbmK4emmp+X0Z05L0r9LVJvqHLmNNeK/QQOUEOTD+XEtRlxc5E0LRfrdFImfGGCtLCxoZg Xj1VuckgKFwrLhvuCPmYg0cfF1uDjlcMARFb4gXfj4y0rXUDPdst2sxLnV23viX0+j5fq3nn MH7+eL2cbvaQbf50vvlxeHrFyfEkMe/e0sdRTBWwPYRHfkgCh6TzZB3ExQrfAeqYYSEQ+0ng kLRUrzpaGEk41K3bphtb4ptavy6KIfUaX1a3NYDiPiTlR42/JOpt4MojT4OCdUxpM0rBTvmD kKpsUP1yYdleukkGiGyT0MBh08UfYv431YqfFAO4Gtu1AbI4HdawTDZRLTdqCDHTsnDx/vvT cf/1z8PHzV5w8/fzw+uPjwETl8wfVBkO+Sj638qObLltHPkrftyt2klZvsbZKj+AJCQh4mWQ tGS/sBxHk6hm7KRsuTbz99vdIEUcDVXmIYe6myAINBp9AZ2GfZQpS6gzatJEat733zAx5elx v/1yIl+oK3gB2v92+28n4u3t+9OOUNnj/jHoW5oWwRgs0iIc2yVs2eLstK7y+9n56SXDBkIu FF4AztuVLk3E+LSIzi4j93QMXFXprrmK5J/ZNLMzPh92mG55q+6YAV4KkJl3YzQuoSMDz9+/ 2JcyjwOTpMxYpHMu6Dki23B5pcyakGkSwHK9DuarmicBrDb9coEb5iWgK7nlncYltrSm2puf DJTRtisOwbrHt2+x0Sns0y2jwCwE0zfssE95ZyjHLK7t2z58g07Pz8LmDNhEBHlk8DKCwsDl KIaegyndbOJOn0MD7ew0c+8J9pYWu4NER7rILoJuFtllCFPAsRTUD0dCF9ns7JoFX51yYFh5 wQsAfG5fKj8un6WYBU0AEJtgwJezUGgD+DwEFgysBe0lqcJdtV3o2cew4XV9SceCjbZBBVlD /hSyYSVZ492YwVFcxu5dmkhKZTgwzhCi7BIVrspcJRhVCmefBSZ5tcbby6KI4MzfyLECb9hS 4faUCrTSxocCRgcs5wSz0CELZbIJYHP6l3nDaikeBOfTHplB5A3sRtFtipnURspjDUpdO/du uPC+aeQZzjjDqhchR0rBdKBdV5HaAS5BbLJG9CWdMxzvG/uBaY07+7jnYbwpohQ0kz9UAez6 4oyZhPyB8+5MyGUosDFkNHZOP758+f58Ur4/f96+jgfuuJ6KEkuw1qgxB0yjk8V4/zeDYXcS g+HkLGG43RcRAfCTalupJWaW1ffMfKLa24MZciQY4BE2g9L+S8QwHL9Eh+ZNfJqwb1grrWI+ YLlmnhPNfWHMVHKjYHhmGhkLWXdJPtA0XeKSbS5PP/apRFeISjGq6aeQ1Ku0ucayvneIxTY4 it/HugAT1nA9nsj6gxTeN6qu97b7+mJyM5++bZ/+BLN04jETJwT7vGsGR5F2otAhvrHKEAxY uQH73v6i4PmAwvgBLk4/XjnOo6rMhL73u8M7BEzLSU4XNjYtTzxmTfzCmEyOtBL7QFWV5+Og 5rvPr49g+L9+f9/vXtx0Dcy/9F58aAp2ZbxP3BqRMVUSNuwyre/7uaZMPHt2bZJclhFsKdu+ a5UdQhpRc1Vm8JeGUUlsl2la6cxJ99PoSCm7IjFlCAawcQuKPGwY75ZXVWEn9o0oD0xJH7C8 erzSvAedsVV1rlzLOQX7CqSIA5pduUsx7Y8ojfDWtusdMzU992xw1Fobmc9br6iCTwLLVSb3 MfPMIuGlPhEIvTbc7z0Jk8A/dHXhbixp5CZHnXJHBUANGvR7ewCsUyJGKbdi0KLMqsIakGno nbyNZxuayRD+gBoYyM3cWewEDTZWO/3EhXItx9JLMDmF7YmTUuKCOfrNA4ItYUy/B7/FYcAH KKWx1pHLRAyJilX1GfBCc6XWJ2S7hNUXdAdvnA47maSfApg7i9MX94sHVbOIBBBnLCZ/cOr7 TIjNQ7jeybU63Is8shfokH1T5ZWjn9lQjElc8w/g+yzURmgt7o3gsHfYpkoViKc72RPBhEJZ AzLIzpw1ICrU48gmhDuljErqh6lgBAJ30VrKEcKga7mgJJ0lqTwuNi0O3qZs+8fj+197PMix 3319//7+dvJsPMaPr9vHE7y44L+WggcPU2mQWmoMxGGNH7s8yIhu0HZN7ls2zduhshr6O9aQ ipQFcogEW0cCy2blalEWOAbXVrQMEbUKk1HGvXqRG36xRP1Spngv7aIUbecUrLq19528Stxf k+iy4oND+t/YdP7QtyKxR0DpW3QjcJZmUSungG2mCuc3/Jhn1oxXKsNK0aBxaIf7gCPHpXGX NVW4YBayxbhFNc8Ec3ICn+ntcP68QrvKr8RL0OufsysPhImnMDJOdv2Yd5mu1iL3wzKZrKvW hqHuZO8L1jEvT/Vxo2ajQknQH6+7l/2f5nzU8/aNiaWRWrWisj43TjIpgTHxhveWm/Q4vAI7 B40qP8QEfo9S3HZKtjcXh3kelOWghYupF1Rta+hKJnPBBzmz+1Jg6WQm9WoYsugwHMzS3V/b 3/a750H9fCPSJwN/DQfNpC8NdkoAw5zmLpVO6TIL24DexWs+FlG2FnrOb2QWVdJGQo1ZgoWk Vd3ywTtZUmyj6NBtggufS3TXAnRR6EZ5Mzs9u7AZswa5jycg3BvmNVh21Cwgmfa6EtTmDJ9K Kqf2H32Omxm9lHjoCtO8YW2wUqKqgWNROqoyV6VjIpkGwXhBpRmzggvRpssbN2Tu4Ogr+6pk a3eacagrOuYQTum8Agk/JNrhNZl1xxs8v8pjh+UhFooSwOncWQg8BEbNXN6c/pxxVGCpKNtw MJ02eZnhx2AKdZAPP4RYs+3n969fHWOVco7AlMSbydxCQqY5xNM2w+VO4LPVunSsaDKeK9VU w4xaJp2N6Ut0qZWxpAeP+EHGTigfOtl7MXuHQFeZaEV/EMMOskrwBBWnB9AONAw3aEFDJN57 fMQc6Z/JVOhQVh6huuOW3MHmG2hM/U2fGSawzw10XSyF449/H3URj1bM82odtuOgub0kpU6u BMzpuP9OnTRgauNmFgT+J670lv/SHNgctEAgOsF7rt5/mGW3fHz56vgMmmreYm5xV7O3S06S SejsV+gMsl/iwb1WNJyAXd+C3AHpkw0FVA4novjO2vxdwvoG+VXxR5QcPJ6N6qRT+1KltN1X nVUSs4FtIPNr7Bmgu80RjHKTfTrDqLLMzJbisxm+ciVlbVa2ceJgnPIwgyf/evuxe8HY5dt/ Tp7f99ufW/jPdv/04cOHf09Ch85mUZNUgSjQyGoNrBaewKLHsN9+v9AY6Vq5kcGeZBUNcNcF T75eG0zfAJvXwrFZzJvWjXMEwECpY54yTlnusg6X0oCIyiosE4OyP5ey5l6EI0au3UGvbLwB AnZG7d9LNpi+jFNH/8Ekjg22lOoPK3SeCztnjliIkPan0+4MIwQqBEZFgNWM3+SIOFwZuRwd J/gzJFEFo6SagEXqAejLNc60Mig6nae8WqIGlYJ2COaa8u7aMjGItGP3WWJpnVphBW+iJiUs 7egO+d53r1l4fpIJ4w89AuVtc0S1drvsfyzIOKMgaUY1Gs3FYax6qTVdOfPJqGd8xiLpPCzN yMcC9JH0vq2sBUDRh4m5QqFRVrX5eLu0KW5w8640uuJx7EKLesnTjNbJfBzcOLJfq3aJxmzj v8egCzpJCwToN/ZI8KggrhGiJG3VbyQdHjStWKxEbaeupCPr078Onu76J3qvYCuoxhswjqH7 aTgKtZayAHUdtFG2c0F7A8CapWn6qQVe64NFojLQKZepmp1/vCAnSER3GVMWcQWYSnhuyd58 lUXObOMTJCNAY9C8FUckUWwyMSEI02CZTisvwQSCI3jbVRelIqMFNID+eGPopqq7mMwwm8rV hSv+7a9dyg2e5TkyHMadYZLSOJ1lpGpSN3hJ8BUg2orzgBH6EBmygYlqjY/RbQrAVLIt3tWu ixTEI6xxg8bxnJrrUmgMAbTRTFkznrEQLWFVxh/+N7y5OsK4d0XMHDOfjmISz0Q711jRsNW8 o8EgMeS3RF9PrAgexb9g6PsERPOyEJo3eKi1udIF7PhHRsecij4yg4GryGUySmgfUvDdJx2D KP4CMIxSAXx3jN8pBhnx84yNRKQTYNwoAhmaZU9mKEhwvArNs7cbgVcVR81QMgRXi8zxweLv Y0Zjl5DhhXY2OlpE7piIhOXcPPTU5JUOA5DAJHiBhhoOMUprJzOnGwaKCUx3bbEYV5EM93Ws sDgoeuRMtCvlSaHzIazsWOY2vM+SBT/NDhVe3LLJ2PKCVOOxpZOOdPv33yHCvnqElKaNpYBW HUiKMd3a067wRH3esTk6NO1YL81XeKatoTIu1f50E7vmbaKQvEg8UESX3IECj1r4erVx7wot vFKVtThyjNY8inkuEW+wUcALdTzKjMM/ePAiemnd4TkE3PyicZSuXONNFJpxEvoHEIxb/v8R L4L+khECAA== --htu7lpwfht3g3r4g--