* [PATCH] mt2063: rework tuner driver
@ 2012-01-09 16:37 linuxtv
2012-01-26 20:05 ` Mauro Carvalho Chehab
0 siblings, 1 reply; 4+ messages in thread
From: linuxtv @ 2012-01-09 16:37 UTC (permalink / raw)
To: linux-media; +Cc: mchehab, Stefan Ringel
From: Stefan Ringel <linuxtv@stefanringel.de>
- remove DECT stuff
- use a simpler calculation
- add hybrid stuff
- use ClearTune, first IF filter, bypass filter in auto mode
- move a few register setting from mt2063_set_mode into mt2063_init
- reorganise main structure
Signed-off-by: Stefan Ringel <linuxtv@stefanringel.de>
---
drivers/media/common/tuners/mt2063.c | 2522 +++++------------------------
drivers/media/common/tuners/mt2063.h | 42 +-
drivers/media/common/tuners/mt2063_priv.h | 234 +++
3 files changed, 704 insertions(+), 2094 deletions(-)
create mode 100644 drivers/media/common/tuners/mt2063_priv.h
diff --git a/drivers/media/common/tuners/mt2063.c b/drivers/media/common/tuners/mt2063.c
index c89af3c..27dab10 100644
--- a/drivers/media/common/tuners/mt2063.c
+++ b/drivers/media/common/tuners/mt2063.c
@@ -1,12 +1,13 @@
/*
- * Driver for mt2063 Micronas tuner
+ * Driver for microtune mt2063 tuner
*
* Copyright (c) 2011 Mauro Carvalho Chehab <mchehab@redhat.com>
+ * Copyright (c) 2012 Stefan Ringel <linuxtv@stefanringel.de>
*
* This driver came from a driver originally written by:
- * Henry Wang <Henry.wang@AzureWave.com>
+ * Henry Wang <Henry.wang@AzureWave.com>
* Made publicly available by Terratec, at:
- * http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
+ * http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
* The original driver's license is GPL, as declared with MODULE_LICENSE()
*
* This program is free software; you can redistribute it and/or modify
@@ -26,247 +27,42 @@
#include <linux/videodev2.h>
#include "mt2063.h"
+#include "mt2063_priv.h"
static unsigned int debug;
module_param(debug, int, 0644);
-MODULE_PARM_DESC(debug, "Set Verbosity level");
+MODULE_PARM_DESC(debug, "Set debug level");
-#define dprintk(level, fmt, arg...) do { \
-if (debug >= level) \
- printk(KERN_DEBUG "mt2063 %s: " fmt, __func__, ## arg); \
-} while (0)
-
-
-/* positive error codes used internally */
-
-/* Info: Unavoidable LO-related spur may be present in the output */
-#define MT2063_SPUR_PRESENT_ERR (0x00800000)
-
-/* Info: Mask of bits used for # of LO-related spurs that were avoided during tuning */
-#define MT2063_SPUR_CNT_MASK (0x001f0000)
-#define MT2063_SPUR_SHIFT (16)
-
-/* Info: Upconverter frequency is out of range (may be reason for MT_UPC_UNLOCK) */
-#define MT2063_UPC_RANGE (0x04000000)
-
-/* Info: Downconverter frequency is out of range (may be reason for MT_DPC_UNLOCK) */
-#define MT2063_DNC_RANGE (0x08000000)
-
-/*
- * Constant defining the version of the following structure
- * and therefore the API for this code.
- *
- * When compiling the tuner driver, the preprocessor will
- * check against this version number to make sure that
- * it matches the version that the tuner driver knows about.
- */
-
-/* DECT Frequency Avoidance */
-#define MT2063_DECT_AVOID_US_FREQS 0x00000001
-
-#define MT2063_DECT_AVOID_EURO_FREQS 0x00000002
-
-#define MT2063_EXCLUDE_US_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_US_FREQS) != 0)
-
-#define MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_EURO_FREQS) != 0)
-
-enum MT2063_DECT_Avoid_Type {
- MT2063_NO_DECT_AVOIDANCE = 0, /* Do not create DECT exclusion zones. */
- MT2063_AVOID_US_DECT = MT2063_DECT_AVOID_US_FREQS, /* Avoid US DECT frequencies. */
- MT2063_AVOID_EURO_DECT = MT2063_DECT_AVOID_EURO_FREQS, /* Avoid European DECT frequencies. */
- MT2063_AVOID_BOTH /* Avoid both regions. Not typically used. */
-};
-
-#define MT2063_MAX_ZONES 48
-
-struct MT2063_ExclZone_t {
- u32 min_;
- u32 max_;
- struct MT2063_ExclZone_t *next_;
-};
-
-/*
- * Structure of data needed for Spur Avoidance
- */
-struct MT2063_AvoidSpursData_t {
- u32 f_ref;
- u32 f_in;
- u32 f_LO1;
- u32 f_if1_Center;
- u32 f_if1_Request;
- u32 f_if1_bw;
- u32 f_LO2;
- u32 f_out;
- u32 f_out_bw;
- u32 f_LO1_Step;
- u32 f_LO2_Step;
- u32 f_LO1_FracN_Avoid;
- u32 f_LO2_FracN_Avoid;
- u32 f_zif_bw;
- u32 f_min_LO_Separation;
- u32 maxH1;
- u32 maxH2;
- enum MT2063_DECT_Avoid_Type avoidDECT;
- u32 bSpurPresent;
- u32 bSpurAvoided;
- u32 nSpursFound;
- u32 nZones;
- struct MT2063_ExclZone_t *freeZones;
- struct MT2063_ExclZone_t *usedZones;
- struct MT2063_ExclZone_t MT2063_ExclZones[MT2063_MAX_ZONES];
-};
-
-/*
- * Parameter for function MT2063_SetPowerMask that specifies the power down
- * of various sections of the MT2063.
- */
-enum MT2063_Mask_Bits {
- MT2063_REG_SD = 0x0040, /* Shutdown regulator */
- MT2063_SRO_SD = 0x0020, /* Shutdown SRO */
- MT2063_AFC_SD = 0x0010, /* Shutdown AFC A/D */
- MT2063_PD_SD = 0x0002, /* Enable power detector shutdown */
- MT2063_PDADC_SD = 0x0001, /* Enable power detector A/D shutdown */
- MT2063_VCO_SD = 0x8000, /* Enable VCO shutdown */
- MT2063_LTX_SD = 0x4000, /* Enable LTX shutdown */
- MT2063_LT1_SD = 0x2000, /* Enable LT1 shutdown */
- MT2063_LNA_SD = 0x1000, /* Enable LNA shutdown */
- MT2063_UPC_SD = 0x0800, /* Enable upconverter shutdown */
- MT2063_DNC_SD = 0x0400, /* Enable downconverter shutdown */
- MT2063_VGA_SD = 0x0200, /* Enable VGA shutdown */
- MT2063_AMP_SD = 0x0100, /* Enable AMP shutdown */
- MT2063_ALL_SD = 0xFF73, /* All shutdown bits for this tuner */
- MT2063_NONE_SD = 0x0000 /* No shutdown bits */
-};
-
-/*
- * Possible values for MT2063_DNC_OUTPUT
- */
-enum MT2063_DNC_Output_Enable {
- MT2063_DNC_NONE = 0,
- MT2063_DNC_1,
- MT2063_DNC_2,
- MT2063_DNC_BOTH
-};
+static DEFINE_MUTEX(mt2063_list_mutex);
+static LIST_HEAD(hybrid_tuner_instance_list);
-/*
- * Two-wire serial bus subaddresses of the tuner registers.
- * Also known as the tuner's register addresses.
+/* debug level
+ * 0 don't debug
+ * 1 called functions without i2c comunications
+ * 2 additional calculating, result etc.
+ * 3 maximum debug information
*/
-enum MT2063_Register_Offsets {
- MT2063_REG_PART_REV = 0, /* 0x00: Part/Rev Code */
- MT2063_REG_LO1CQ_1, /* 0x01: LO1C Queued Byte 1 */
- MT2063_REG_LO1CQ_2, /* 0x02: LO1C Queued Byte 2 */
- MT2063_REG_LO2CQ_1, /* 0x03: LO2C Queued Byte 1 */
- MT2063_REG_LO2CQ_2, /* 0x04: LO2C Queued Byte 2 */
- MT2063_REG_LO2CQ_3, /* 0x05: LO2C Queued Byte 3 */
- MT2063_REG_RSVD_06, /* 0x06: Reserved */
- MT2063_REG_LO_STATUS, /* 0x07: LO Status */
- MT2063_REG_FIFFC, /* 0x08: FIFF Center */
- MT2063_REG_CLEARTUNE, /* 0x09: ClearTune Filter */
- MT2063_REG_ADC_OUT, /* 0x0A: ADC_OUT */
- MT2063_REG_LO1C_1, /* 0x0B: LO1C Byte 1 */
- MT2063_REG_LO1C_2, /* 0x0C: LO1C Byte 2 */
- MT2063_REG_LO2C_1, /* 0x0D: LO2C Byte 1 */
- MT2063_REG_LO2C_2, /* 0x0E: LO2C Byte 2 */
- MT2063_REG_LO2C_3, /* 0x0F: LO2C Byte 3 */
- MT2063_REG_RSVD_10, /* 0x10: Reserved */
- MT2063_REG_PWR_1, /* 0x11: PWR Byte 1 */
- MT2063_REG_PWR_2, /* 0x12: PWR Byte 2 */
- MT2063_REG_TEMP_STATUS, /* 0x13: Temp Status */
- MT2063_REG_XO_STATUS, /* 0x14: Crystal Status */
- MT2063_REG_RF_STATUS, /* 0x15: RF Attn Status */
- MT2063_REG_FIF_STATUS, /* 0x16: FIF Attn Status */
- MT2063_REG_LNA_OV, /* 0x17: LNA Attn Override */
- MT2063_REG_RF_OV, /* 0x18: RF Attn Override */
- MT2063_REG_FIF_OV, /* 0x19: FIF Attn Override */
- MT2063_REG_LNA_TGT, /* 0x1A: Reserved */
- MT2063_REG_PD1_TGT, /* 0x1B: Pwr Det 1 Target */
- MT2063_REG_PD2_TGT, /* 0x1C: Pwr Det 2 Target */
- MT2063_REG_RSVD_1D, /* 0x1D: Reserved */
- MT2063_REG_RSVD_1E, /* 0x1E: Reserved */
- MT2063_REG_RSVD_1F, /* 0x1F: Reserved */
- MT2063_REG_RSVD_20, /* 0x20: Reserved */
- MT2063_REG_BYP_CTRL, /* 0x21: Bypass Control */
- MT2063_REG_RSVD_22, /* 0x22: Reserved */
- MT2063_REG_RSVD_23, /* 0x23: Reserved */
- MT2063_REG_RSVD_24, /* 0x24: Reserved */
- MT2063_REG_RSVD_25, /* 0x25: Reserved */
- MT2063_REG_RSVD_26, /* 0x26: Reserved */
- MT2063_REG_RSVD_27, /* 0x27: Reserved */
- MT2063_REG_FIFF_CTRL, /* 0x28: FIFF Control */
- MT2063_REG_FIFF_OFFSET, /* 0x29: FIFF Offset */
- MT2063_REG_CTUNE_CTRL, /* 0x2A: Reserved */
- MT2063_REG_CTUNE_OV, /* 0x2B: Reserved */
- MT2063_REG_CTRL_2C, /* 0x2C: Reserved */
- MT2063_REG_FIFF_CTRL2, /* 0x2D: Fiff Control */
- MT2063_REG_RSVD_2E, /* 0x2E: Reserved */
- MT2063_REG_DNC_GAIN, /* 0x2F: DNC Control */
- MT2063_REG_VGA_GAIN, /* 0x30: VGA Gain Ctrl */
- MT2063_REG_RSVD_31, /* 0x31: Reserved */
- MT2063_REG_TEMP_SEL, /* 0x32: Temperature Selection */
- MT2063_REG_RSVD_33, /* 0x33: Reserved */
- MT2063_REG_RSVD_34, /* 0x34: Reserved */
- MT2063_REG_RSVD_35, /* 0x35: Reserved */
- MT2063_REG_RSVD_36, /* 0x36: Reserved */
- MT2063_REG_RSVD_37, /* 0x37: Reserved */
- MT2063_REG_RSVD_38, /* 0x38: Reserved */
- MT2063_REG_RSVD_39, /* 0x39: Reserved */
- MT2063_REG_RSVD_3A, /* 0x3A: Reserved */
- MT2063_REG_RSVD_3B, /* 0x3B: Reserved */
- MT2063_REG_RSVD_3C, /* 0x3C: Reserved */
- MT2063_REG_END_REGS
-};
-
-struct mt2063_state {
- struct i2c_adapter *i2c;
-
- bool init;
-
- const struct mt2063_config *config;
- struct dvb_tuner_ops ops;
- struct dvb_frontend *frontend;
- struct tuner_state status;
-
- u32 frequency;
- u32 srate;
- u32 bandwidth;
- u32 reference;
-
- u32 tuner_id;
- struct MT2063_AvoidSpursData_t AS_Data;
- u32 f_IF1_actual;
- u32 rcvr_mode;
- u32 ctfilt_sw;
- u32 CTFiltMax[31];
- u32 num_regs;
- u8 reg[MT2063_REG_END_REGS];
-};
+#define dprintk(level, fmt, arg...) do { \
+if (debug >= level) \
+ printk(KERN_DEBUG "mt2063 %s: " fmt, __func__, ##arg); \
+} while (0)
-/*
- * mt2063_write - Write data into the I2C bus
- */
-static u32 mt2063_write(struct mt2063_state *state, u8 reg, u8 *data, u32 len)
+static int mt2063_write(struct mt2063_state *state, u8 reg, u8 data)
{
- struct dvb_frontend *fe = state->frontend;
int ret;
- u8 buf[60];
+ u8 buf[2] = { reg, data };
+
struct i2c_msg msg = {
- .addr = state->config->tuner_address,
+ .addr = state->i2c_addr,
.flags = 0,
.buf = buf,
- .len = len + 1
+ .len = 2,
};
- dprintk(2, "\n");
-
- msg.buf[0] = reg;
- memcpy(msg.buf + 1, data, len);
+ dprintk(3, "writeing at address 0x%02x, subadresse 0x%02x, \
+ value 0x%02x\n", state->i2c_addr, reg, data);
- if (fe->ops.i2c_gate_ctrl)
- fe->ops.i2c_gate_ctrl(fe, 1);
ret = i2c_transfer(state->i2c, &msg, 1);
- if (fe->ops.i2c_gate_ctrl)
- fe->ops.i2c_gate_ctrl(fe, 0);
if (ret < 0)
printk(KERN_ERR "%s error ret=%d\n", __func__, ret);
@@ -274,1769 +70,442 @@ static u32 mt2063_write(struct mt2063_state *state, u8 reg, u8 *data, u32 len)
return ret;
}
-/*
- * mt2063_write - Write register data into the I2C bus, caching the value
- */
-static u32 mt2063_setreg(struct mt2063_state *state, u8 reg, u8 val)
-{
- u32 status;
-
- dprintk(2, "\n");
-
- if (reg >= MT2063_REG_END_REGS)
- return -ERANGE;
-
- status = mt2063_write(state, reg, &val, 1);
- if (status < 0)
- return status;
-
- state->reg[reg] = val;
-
- return 0;
-}
-
-/*
- * mt2063_read - Read data from the I2C bus
- */
-static u32 mt2063_read(struct mt2063_state *state,
- u8 subAddress, u8 *pData, u32 cnt)
-{
- u32 status = 0; /* Status to be returned */
- struct dvb_frontend *fe = state->frontend;
- u32 i = 0;
-
- dprintk(2, "addr 0x%02x, cnt %d\n", subAddress, cnt);
-
- if (fe->ops.i2c_gate_ctrl)
- fe->ops.i2c_gate_ctrl(fe, 1);
-
- for (i = 0; i < cnt; i++) {
- u8 b0[] = { subAddress + i };
- struct i2c_msg msg[] = {
- {
- .addr = state->config->tuner_address,
- .flags = 0,
- .buf = b0,
- .len = 1
- }, {
- .addr = state->config->tuner_address,
- .flags = I2C_M_RD,
- .buf = pData + i,
- .len = 1
- }
- };
-
- status = i2c_transfer(state->i2c, msg, 2);
- dprintk(2, "addr 0x%02x, ret = %d, val = 0x%02x\n",
- subAddress + i, status, *(pData + i));
- if (status < 0)
- break;
- }
- if (fe->ops.i2c_gate_ctrl)
- fe->ops.i2c_gate_ctrl(fe, 0);
-
- if (status < 0)
- printk(KERN_ERR "Can't read from address 0x%02x,\n",
- subAddress + i);
-
- return status;
-}
-
-/*
- * FIXME: Is this really needed?
- */
-static int MT2063_Sleep(struct dvb_frontend *fe)
+static int mt2063_read(struct mt2063_state *state, u8 reg, u8 *data)
{
- /*
- * ToDo: Add code here to implement a OS blocking
- */
- msleep(10);
-
- return 0;
-}
+ int ret = 0;
-/*
- * Microtune spur avoidance
- */
-
-/* Implement ceiling, floor functions. */
-#define ceil(n, d) (((n) < 0) ? (-((-(n))/(d))) : (n)/(d) + ((n)%(d) != 0))
-#define floor(n, d) (((n) < 0) ? (-((-(n))/(d))) - ((n)%(d) != 0) : (n)/(d))
-
-struct MT2063_FIFZone_t {
- s32 min_;
- s32 max_;
-};
-
-static struct MT2063_ExclZone_t *InsertNode(struct MT2063_AvoidSpursData_t
- *pAS_Info,
- struct MT2063_ExclZone_t *pPrevNode)
-{
- struct MT2063_ExclZone_t *pNode;
-
- dprintk(2, "\n");
-
- /* Check for a node in the free list */
- if (pAS_Info->freeZones != NULL) {
- /* Use one from the free list */
- pNode = pAS_Info->freeZones;
- pAS_Info->freeZones = pNode->next_;
- } else {
- /* Grab a node from the array */
- pNode = &pAS_Info->MT2063_ExclZones[pAS_Info->nZones];
- }
-
- if (pPrevNode != NULL) {
- pNode->next_ = pPrevNode->next_;
- pPrevNode->next_ = pNode;
- } else { /* insert at the beginning of the list */
-
- pNode->next_ = pAS_Info->usedZones;
- pAS_Info->usedZones = pNode;
- }
-
- pAS_Info->nZones++;
- return pNode;
-}
-
-static struct MT2063_ExclZone_t *RemoveNode(struct MT2063_AvoidSpursData_t
- *pAS_Info,
- struct MT2063_ExclZone_t *pPrevNode,
- struct MT2063_ExclZone_t
- *pNodeToRemove)
-{
- struct MT2063_ExclZone_t *pNext = pNodeToRemove->next_;
-
- dprintk(2, "\n");
-
- /* Make previous node point to the subsequent node */
- if (pPrevNode != NULL)
- pPrevNode->next_ = pNext;
-
- /* Add pNodeToRemove to the beginning of the freeZones */
- pNodeToRemove->next_ = pAS_Info->freeZones;
- pAS_Info->freeZones = pNodeToRemove;
-
- /* Decrement node count */
- pAS_Info->nZones--;
-
- return pNext;
-}
-
-/*
- * MT_AddExclZone()
- *
- * Add (and merge) an exclusion zone into the list.
- * If the range (f_min, f_max) is totally outside the
- * 1st IF BW, ignore the entry.
- * If the range (f_min, f_max) is negative, ignore the entry.
- */
-static void MT2063_AddExclZone(struct MT2063_AvoidSpursData_t *pAS_Info,
- u32 f_min, u32 f_max)
-{
- struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
- struct MT2063_ExclZone_t *pPrev = NULL;
- struct MT2063_ExclZone_t *pNext = NULL;
-
- dprintk(2, "\n");
-
- /* Check to see if this overlaps the 1st IF filter */
- if ((f_max > (pAS_Info->f_if1_Center - (pAS_Info->f_if1_bw / 2)))
- && (f_min < (pAS_Info->f_if1_Center + (pAS_Info->f_if1_bw / 2)))
- && (f_min < f_max)) {
- /*
- * 1 2 3 4 5 6
- *
- * New entry: |---| |--| |--| |-| |---| |--|
- * or or or or or
- * Existing: |--| |--| |--| |---| |-| |--|
- */
-
- /* Check for our place in the list */
- while ((pNode != NULL) && (pNode->max_ < f_min)) {
- pPrev = pNode;
- pNode = pNode->next_;
- }
-
- if ((pNode != NULL) && (pNode->min_ < f_max)) {
- /* Combine me with pNode */
- if (f_min < pNode->min_)
- pNode->min_ = f_min;
- if (f_max > pNode->max_)
- pNode->max_ = f_max;
- } else {
- pNode = InsertNode(pAS_Info, pPrev);
- pNode->min_ = f_min;
- pNode->max_ = f_max;
- }
-
- /* Look for merging possibilities */
- pNext = pNode->next_;
- while ((pNext != NULL) && (pNext->min_ < pNode->max_)) {
- if (pNext->max_ > pNode->max_)
- pNode->max_ = pNext->max_;
- /* Remove pNext, return ptr to pNext->next */
- pNext = RemoveNode(pAS_Info, pNode, pNext);
- }
- }
-}
-
-/*
- * Reset all exclusion zones.
- * Add zones to protect the PLL FracN regions near zero
- */
-static void MT2063_ResetExclZones(struct MT2063_AvoidSpursData_t *pAS_Info)
-{
- u32 center;
-
- dprintk(2, "\n");
-
- pAS_Info->nZones = 0; /* this clears the used list */
- pAS_Info->usedZones = NULL; /* reset ptr */
- pAS_Info->freeZones = NULL; /* reset ptr */
-
- center =
- pAS_Info->f_ref *
- ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 +
- pAS_Info->f_in) / pAS_Info->f_ref) - pAS_Info->f_in;
- while (center <
- pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
- pAS_Info->f_LO1_FracN_Avoid) {
- /* Exclude LO1 FracN */
- MT2063_AddExclZone(pAS_Info,
- center - pAS_Info->f_LO1_FracN_Avoid,
- center - 1);
- MT2063_AddExclZone(pAS_Info, center + 1,
- center + pAS_Info->f_LO1_FracN_Avoid);
- center += pAS_Info->f_ref;
- }
-
- center =
- pAS_Info->f_ref *
- ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 -
- pAS_Info->f_out) / pAS_Info->f_ref) + pAS_Info->f_out;
- while (center <
- pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
- pAS_Info->f_LO2_FracN_Avoid) {
- /* Exclude LO2 FracN */
- MT2063_AddExclZone(pAS_Info,
- center - pAS_Info->f_LO2_FracN_Avoid,
- center - 1);
- MT2063_AddExclZone(pAS_Info, center + 1,
- center + pAS_Info->f_LO2_FracN_Avoid);
- center += pAS_Info->f_ref;
- }
-
- if (MT2063_EXCLUDE_US_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
- /* Exclude LO1 values that conflict with DECT channels */
- MT2063_AddExclZone(pAS_Info, 1920836000 - pAS_Info->f_in, 1922236000 - pAS_Info->f_in); /* Ctr = 1921.536 */
- MT2063_AddExclZone(pAS_Info, 1922564000 - pAS_Info->f_in, 1923964000 - pAS_Info->f_in); /* Ctr = 1923.264 */
- MT2063_AddExclZone(pAS_Info, 1924292000 - pAS_Info->f_in, 1925692000 - pAS_Info->f_in); /* Ctr = 1924.992 */
- MT2063_AddExclZone(pAS_Info, 1926020000 - pAS_Info->f_in, 1927420000 - pAS_Info->f_in); /* Ctr = 1926.720 */
- MT2063_AddExclZone(pAS_Info, 1927748000 - pAS_Info->f_in, 1929148000 - pAS_Info->f_in); /* Ctr = 1928.448 */
- }
-
- if (MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
- MT2063_AddExclZone(pAS_Info, 1896644000 - pAS_Info->f_in, 1898044000 - pAS_Info->f_in); /* Ctr = 1897.344 */
- MT2063_AddExclZone(pAS_Info, 1894916000 - pAS_Info->f_in, 1896316000 - pAS_Info->f_in); /* Ctr = 1895.616 */
- MT2063_AddExclZone(pAS_Info, 1893188000 - pAS_Info->f_in, 1894588000 - pAS_Info->f_in); /* Ctr = 1893.888 */
- MT2063_AddExclZone(pAS_Info, 1891460000 - pAS_Info->f_in, 1892860000 - pAS_Info->f_in); /* Ctr = 1892.16 */
- MT2063_AddExclZone(pAS_Info, 1889732000 - pAS_Info->f_in, 1891132000 - pAS_Info->f_in); /* Ctr = 1890.432 */
- MT2063_AddExclZone(pAS_Info, 1888004000 - pAS_Info->f_in, 1889404000 - pAS_Info->f_in); /* Ctr = 1888.704 */
- MT2063_AddExclZone(pAS_Info, 1886276000 - pAS_Info->f_in, 1887676000 - pAS_Info->f_in); /* Ctr = 1886.976 */
- MT2063_AddExclZone(pAS_Info, 1884548000 - pAS_Info->f_in, 1885948000 - pAS_Info->f_in); /* Ctr = 1885.248 */
- MT2063_AddExclZone(pAS_Info, 1882820000 - pAS_Info->f_in, 1884220000 - pAS_Info->f_in); /* Ctr = 1883.52 */
- MT2063_AddExclZone(pAS_Info, 1881092000 - pAS_Info->f_in, 1882492000 - pAS_Info->f_in); /* Ctr = 1881.792 */
- }
-}
-
-/*
- * MT_ChooseFirstIF - Choose the best available 1st IF
- * If f_Desired is not excluded, choose that first.
- * Otherwise, return the value closest to f_Center that is
- * not excluded
- */
-static u32 MT2063_ChooseFirstIF(struct MT2063_AvoidSpursData_t *pAS_Info)
-{
- /*
- * Update "f_Desired" to be the nearest "combinational-multiple" of
- * "f_LO1_Step".
- * The resulting number, F_LO1 must be a multiple of f_LO1_Step.
- * And F_LO1 is the arithmetic sum of f_in + f_Center.
- * Neither f_in, nor f_Center must be a multiple of f_LO1_Step.
- * However, the sum must be.
- */
- const u32 f_Desired =
- pAS_Info->f_LO1_Step *
- ((pAS_Info->f_if1_Request + pAS_Info->f_in +
- pAS_Info->f_LO1_Step / 2) / pAS_Info->f_LO1_Step) -
- pAS_Info->f_in;
- const u32 f_Step =
- (pAS_Info->f_LO1_Step >
- pAS_Info->f_LO2_Step) ? pAS_Info->f_LO1_Step : pAS_Info->
- f_LO2_Step;
- u32 f_Center;
- s32 i;
- s32 j = 0;
- u32 bDesiredExcluded = 0;
- u32 bZeroExcluded = 0;
- s32 tmpMin, tmpMax;
- s32 bestDiff;
- struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
- struct MT2063_FIFZone_t zones[MT2063_MAX_ZONES];
-
- dprintk(2, "\n");
-
- if (pAS_Info->nZones == 0)
- return f_Desired;
-
- /*
- * f_Center needs to be an integer multiple of f_Step away
- * from f_Desired
- */
- if (pAS_Info->f_if1_Center > f_Desired)
- f_Center =
- f_Desired +
- f_Step *
- ((pAS_Info->f_if1_Center - f_Desired +
- f_Step / 2) / f_Step);
- else
- f_Center =
- f_Desired -
- f_Step *
- ((f_Desired - pAS_Info->f_if1_Center +
- f_Step / 2) / f_Step);
-
- /*
- * Take MT_ExclZones, center around f_Center and change the
- * resolution to f_Step
- */
- while (pNode != NULL) {
- /* floor function */
- tmpMin =
- floor((s32) (pNode->min_ - f_Center), (s32) f_Step);
-
- /* ceil function */
- tmpMax =
- ceil((s32) (pNode->max_ - f_Center), (s32) f_Step);
-
- if ((pNode->min_ < f_Desired) && (pNode->max_ > f_Desired))
- bDesiredExcluded = 1;
-
- if ((tmpMin < 0) && (tmpMax > 0))
- bZeroExcluded = 1;
-
- /* See if this zone overlaps the previous */
- if ((j > 0) && (tmpMin < zones[j - 1].max_))
- zones[j - 1].max_ = tmpMax;
- else {
- /* Add new zone */
- zones[j].min_ = tmpMin;
- zones[j].max_ = tmpMax;
- j++;
- }
- pNode = pNode->next_;
- }
-
- /*
- * If the desired is okay, return with it
- */
- if (bDesiredExcluded == 0)
- return f_Desired;
-
- /*
- * If the desired is excluded and the center is okay, return with it
- */
- if (bZeroExcluded == 0)
- return f_Center;
+ struct i2c_msg msg[] = { {
+ .addr = state->i2c_addr,
+ .flags = 0,
+ .buf = ®,
+ .len = 1,
+ }, {
+ .addr = state->i2c_addr,
+ .flags = I2C_M_RD,
+ .buf = data,
+ .len = 1,
+ } };
- /* Find the value closest to 0 (f_Center) */
- bestDiff = zones[0].min_;
- for (i = 0; i < j; i++) {
- if (abs(zones[i].min_) < abs(bestDiff))
- bestDiff = zones[i].min_;
- if (abs(zones[i].max_) < abs(bestDiff))
- bestDiff = zones[i].max_;
- }
+ dprintk(3, "\n");
- if (bestDiff < 0)
- return f_Center - ((u32) (-bestDiff) * f_Step);
+ ret = i2c_transfer(state->i2c, msg, 2);
- return f_Center + (bestDiff * f_Step);
-}
-
-/**
- * gcd() - Uses Euclid's algorithm
- *
- * @u, @v: Unsigned values whose GCD is desired.
- *
- * Returns THE greatest common divisor of u and v, if either value is 0,
- * the other value is returned as the result.
- */
-static u32 MT2063_gcd(u32 u, u32 v)
-{
- u32 r;
+ if (ret < 0)
+ printk(KERN_ERR "Can't read from address 0x%02x,\n", reg);
- while (v != 0) {
- r = u % v;
- u = v;
- v = r;
- }
+ dprintk(3, "readed at address 0x%02x, subadress 0x%02x, \
+ value 0x%02x\n", state->i2c_addr, reg, data[0]);
- return u;
+ return ret;
}
-/**
- * IsSpurInBand() - Checks to see if a spur will be present within the IF's
- * bandwidth. (fIFOut +/- fIFBW, -fIFOut +/- fIFBW)
- *
- * ma mb mc md
- * <--+-+-+-------------------+-------------------+-+-+-->
- * | ^ 0 ^ |
- * ^ b=-fIFOut+fIFBW/2 -b=+fIFOut-fIFBW/2 ^
- * a=-fIFOut-fIFBW/2 -a=+fIFOut+fIFBW/2
- *
- * Note that some equations are doubled to prevent round-off
- * problems when calculating fIFBW/2
- *
- * @pAS_Info: Avoid Spurs information block
- * @fm: If spur, amount f_IF1 has to move negative
- * @fp: If spur, amount f_IF1 has to move positive
- *
- * Returns 1 if an LO spur would be present, otherwise 0.
- */
-static u32 IsSpurInBand(struct MT2063_AvoidSpursData_t *pAS_Info,
- u32 *fm, u32 * fp)
+static int mt2063_set_reg_mask(struct mt2063_state *state, u8 reg,
+ u8 val, u8 mask)
{
- /*
- ** Calculate LO frequency settings.
- */
- u32 n, n0;
- const u32 f_LO1 = pAS_Info->f_LO1;
- const u32 f_LO2 = pAS_Info->f_LO2;
- const u32 d = pAS_Info->f_out + pAS_Info->f_out_bw / 2;
- const u32 c = d - pAS_Info->f_out_bw;
- const u32 f = pAS_Info->f_zif_bw / 2;
- const u32 f_Scale = (f_LO1 / (UINT_MAX / 2 / pAS_Info->maxH1)) + 1;
- s32 f_nsLO1, f_nsLO2;
- s32 f_Spur;
- u32 ma, mb, mc, md, me, mf;
- u32 lo_gcd, gd_Scale, gc_Scale, gf_Scale, hgds, hgfs, hgcs;
-
- dprintk(2, "\n");
-
- *fm = 0;
-
- /*
- ** For each edge (d, c & f), calculate a scale, based on the gcd
- ** of f_LO1, f_LO2 and the edge value. Use the larger of this
- ** gcd-based scale factor or f_Scale.
- */
- lo_gcd = MT2063_gcd(f_LO1, f_LO2);
- gd_Scale = max((u32) MT2063_gcd(lo_gcd, d), f_Scale);
- hgds = gd_Scale / 2;
- gc_Scale = max((u32) MT2063_gcd(lo_gcd, c), f_Scale);
- hgcs = gc_Scale / 2;
- gf_Scale = max((u32) MT2063_gcd(lo_gcd, f), f_Scale);
- hgfs = gf_Scale / 2;
-
- n0 = DIV_ROUND_UP(f_LO2 - d, f_LO1 - f_LO2);
-
- /* Check out all multiples of LO1 from n0 to m_maxLOSpurHarmonic */
- for (n = n0; n <= pAS_Info->maxH1; ++n) {
- md = (n * ((f_LO1 + hgds) / gd_Scale) -
- ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);
+ u8 old_val, new_val;
- /* If # fLO2 harmonics > m_maxLOSpurHarmonic, then no spurs present */
- if (md >= pAS_Info->maxH1)
- break;
+ dprintk(3, "\n");
- ma = (n * ((f_LO1 + hgds) / gd_Scale) +
- ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);
+ mt2063_read(state, reg, &old_val);
- /* If no spurs between +/- (f_out + f_IFBW/2), then try next harmonic */
- if (md == ma)
- continue;
-
- mc = (n * ((f_LO1 + hgcs) / gc_Scale) -
- ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
- if (mc != md) {
- f_nsLO1 = (s32) (n * (f_LO1 / gc_Scale));
- f_nsLO2 = (s32) (mc * (f_LO2 / gc_Scale));
- f_Spur =
- (gc_Scale * (f_nsLO1 - f_nsLO2)) +
- n * (f_LO1 % gc_Scale) - mc * (f_LO2 % gc_Scale);
-
- *fp = ((f_Spur - (s32) c) / (mc - n)) + 1;
- *fm = (((s32) d - f_Spur) / (mc - n)) + 1;
- return 1;
- }
+ new_val = (old_val & ~mask) | (val & mask);
- /* Location of Zero-IF-spur to be checked */
- me = (n * ((f_LO1 + hgfs) / gf_Scale) +
- ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
- mf = (n * ((f_LO1 + hgfs) / gf_Scale) -
- ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
- if (me != mf) {
- f_nsLO1 = n * (f_LO1 / gf_Scale);
- f_nsLO2 = me * (f_LO2 / gf_Scale);
- f_Spur =
- (gf_Scale * (f_nsLO1 - f_nsLO2)) +
- n * (f_LO1 % gf_Scale) - me * (f_LO2 % gf_Scale);
+ if (new_val != old_val)
+ mt2063_write(state, reg, new_val);
- *fp = ((f_Spur + (s32) f) / (me - n)) + 1;
- *fm = (((s32) f - f_Spur) / (me - n)) + 1;
- return 1;
- }
-
- mb = (n * ((f_LO1 + hgcs) / gc_Scale) +
- ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
- if (ma != mb) {
- f_nsLO1 = n * (f_LO1 / gc_Scale);
- f_nsLO2 = ma * (f_LO2 / gc_Scale);
- f_Spur =
- (gc_Scale * (f_nsLO1 - f_nsLO2)) +
- n * (f_LO1 % gc_Scale) - ma * (f_LO2 % gc_Scale);
-
- *fp = (((s32) d + f_Spur) / (ma - n)) + 1;
- *fm = (-(f_Spur + (s32) c) / (ma - n)) + 1;
- return 1;
- }
- }
-
- /* No spurs found */
return 0;
}
-/*
- * MT_AvoidSpurs() - Main entry point to avoid spurs.
- * Checks for existing spurs in present LO1, LO2 freqs
- * and if present, chooses spur-free LO1, LO2 combination
- * that tunes the same input/output frequencies.
- */
-static u32 MT2063_AvoidSpurs(struct MT2063_AvoidSpursData_t *pAS_Info)
+static void mt2063_shutdown(struct mt2063_state *state,
+ enum MT2063_Mask_Bits sd)
{
- u32 status = 0;
- u32 fm, fp; /* restricted range on LO's */
- pAS_Info->bSpurAvoided = 0;
- pAS_Info->nSpursFound = 0;
-
- dprintk(2, "\n");
-
- if (pAS_Info->maxH1 == 0)
- return 0;
+ dprintk(1, "\n");
/*
- * Avoid LO Generated Spurs
- *
- * Make sure that have no LO-related spurs within the IF output
- * bandwidth.
+ * set all power bits
*
- * If there is an LO spur in this band, start at the current IF1 frequency
- * and work out until we find a spur-free frequency or run up against the
- * 1st IF SAW band edge. Use temporary copies of fLO1 and fLO2 so that they
- * will be unchanged if a spur-free setting is not found.
- */
- pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp);
- if (pAS_Info->bSpurPresent) {
- u32 zfIF1 = pAS_Info->f_LO1 - pAS_Info->f_in; /* current attempt at a 1st IF */
- u32 zfLO1 = pAS_Info->f_LO1; /* current attempt at an LO1 freq */
- u32 zfLO2 = pAS_Info->f_LO2; /* current attempt at an LO2 freq */
- u32 delta_IF1;
- u32 new_IF1;
-
- /*
- ** Spur was found, attempt to find a spur-free 1st IF
- */
- do {
- pAS_Info->nSpursFound++;
-
- /* Raise f_IF1_upper, if needed */
- MT2063_AddExclZone(pAS_Info, zfIF1 - fm, zfIF1 + fp);
-
- /* Choose next IF1 that is closest to f_IF1_CENTER */
- new_IF1 = MT2063_ChooseFirstIF(pAS_Info);
-
- if (new_IF1 > zfIF1) {
- pAS_Info->f_LO1 += (new_IF1 - zfIF1);
- pAS_Info->f_LO2 += (new_IF1 - zfIF1);
- } else {
- pAS_Info->f_LO1 -= (zfIF1 - new_IF1);
- pAS_Info->f_LO2 -= (zfIF1 - new_IF1);
- }
- zfIF1 = new_IF1;
-
- if (zfIF1 > pAS_Info->f_if1_Center)
- delta_IF1 = zfIF1 - pAS_Info->f_if1_Center;
- else
- delta_IF1 = pAS_Info->f_if1_Center - zfIF1;
-
- pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp);
- /*
- * Continue while the new 1st IF is still within the 1st IF bandwidth
- * and there is a spur in the band (again)
- */
- } while ((2 * delta_IF1 + pAS_Info->f_out_bw <= pAS_Info->f_if1_bw) && pAS_Info->bSpurPresent);
-
- /*
- * Use the LO-spur free values found. If the search went all
- * the way to the 1st IF band edge and always found spurs, just
- * leave the original choice. It's as "good" as any other.
- */
- if (pAS_Info->bSpurPresent == 1) {
- status |= MT2063_SPUR_PRESENT_ERR;
- pAS_Info->f_LO1 = zfLO1;
- pAS_Info->f_LO2 = zfLO2;
- } else
- pAS_Info->bSpurAvoided = 1;
- }
-
- status |=
- ((pAS_Info->
- nSpursFound << MT2063_SPUR_SHIFT) & MT2063_SPUR_CNT_MASK);
-
- return status;
-}
-
-/*
- * Constants used by the tuning algorithm
- */
-#define MT2063_REF_FREQ (16000000UL) /* Reference oscillator Frequency (in Hz) */
-#define MT2063_IF1_BW (22000000UL) /* The IF1 filter bandwidth (in Hz) */
-#define MT2063_TUNE_STEP_SIZE (50000UL) /* Tune in steps of 50 kHz */
-#define MT2063_SPUR_STEP_HZ (250000UL) /* Step size (in Hz) to move IF1 when avoiding spurs */
-#define MT2063_ZIF_BW (2000000UL) /* Zero-IF spur-free bandwidth (in Hz) */
-#define MT2063_MAX_HARMONICS_1 (15UL) /* Highest intra-tuner LO Spur Harmonic to be avoided */
-#define MT2063_MAX_HARMONICS_2 (5UL) /* Highest inter-tuner LO Spur Harmonic to be avoided */
-#define MT2063_MIN_LO_SEP (1000000UL) /* Minimum inter-tuner LO frequency separation */
-#define MT2063_LO1_FRACN_AVOID (0UL) /* LO1 FracN numerator avoid region (in Hz) */
-#define MT2063_LO2_FRACN_AVOID (199999UL) /* LO2 FracN numerator avoid region (in Hz) */
-#define MT2063_MIN_FIN_FREQ (44000000UL) /* Minimum input frequency (in Hz) */
-#define MT2063_MAX_FIN_FREQ (1100000000UL) /* Maximum input frequency (in Hz) */
-#define MT2063_MIN_FOUT_FREQ (36000000UL) /* Minimum output frequency (in Hz) */
-#define MT2063_MAX_FOUT_FREQ (57000000UL) /* Maximum output frequency (in Hz) */
-#define MT2063_MIN_DNC_FREQ (1293000000UL) /* Minimum LO2 frequency (in Hz) */
-#define MT2063_MAX_DNC_FREQ (1614000000UL) /* Maximum LO2 frequency (in Hz) */
-#define MT2063_MIN_UPC_FREQ (1396000000UL) /* Minimum LO1 frequency (in Hz) */
-#define MT2063_MAX_UPC_FREQ (2750000000UL) /* Maximum LO1 frequency (in Hz) */
-
-/*
- * Define the supported Part/Rev codes for the MT2063
- */
-#define MT2063_B0 (0x9B)
-#define MT2063_B1 (0x9C)
-#define MT2063_B2 (0x9D)
-#define MT2063_B3 (0x9E)
-
-/**
- * mt2063_lockStatus - Checks to see if LO1 and LO2 are locked
- *
- * @state: struct mt2063_state pointer
- *
- * This function returns 0, if no lock, 1 if locked and a value < 1 if error
- */
-static unsigned int mt2063_lockStatus(struct mt2063_state *state)
-{
- const u32 nMaxWait = 100; /* wait a maximum of 100 msec */
- const u32 nPollRate = 2; /* poll status bits every 2 ms */
- const u32 nMaxLoops = nMaxWait / nPollRate;
- const u8 LO1LK = 0x80;
- u8 LO2LK = 0x08;
- u32 status;
- u32 nDelays = 0;
-
- dprintk(2, "\n");
-
- /* LO2 Lock bit was in a different place for B0 version */
- if (state->tuner_id == MT2063_B0)
- LO2LK = 0x40;
-
- do {
- status = mt2063_read(state, MT2063_REG_LO_STATUS,
- &state->reg[MT2063_REG_LO_STATUS], 1);
-
- if (status < 0)
- return status;
-
- if ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) ==
- (LO1LK | LO2LK)) {
- return TUNER_STATUS_LOCKED | TUNER_STATUS_STEREO;
- }
- msleep(nPollRate); /* Wait between retries */
- } while (++nDelays < nMaxLoops);
-
- /*
- * Got no lock or partial lock
*/
- return 0;
-}
-
-/*
- * Constants for setting receiver modes.
- * (6 modes defined at this time, enumerated by mt2063_delivery_sys)
- * (DNC1GC & DNC2GC are the values, which are used, when the specific
- * DNC Output is selected, the other is always off)
- *
- * enum mt2063_delivery_sys
- * -------------+----------------------------------------------
- * Mode 0 : | MT2063_CABLE_QAM
- * Mode 1 : | MT2063_CABLE_ANALOG
- * Mode 2 : | MT2063_OFFAIR_COFDM
- * Mode 3 : | MT2063_OFFAIR_COFDM_SAWLESS
- * Mode 4 : | MT2063_OFFAIR_ANALOG
- * Mode 5 : | MT2063_OFFAIR_8VSB
- * --------------+----------------------------------------------
- *
- * |<---------- Mode -------------->|
- * Reg Field | 0 | 1 | 2 | 3 | 4 | 5 |
- * ------------+-----+-----+-----+-----+-----+-----+
- * RFAGCen | OFF | OFF | OFF | OFF | OFF | OFF
- * LNARin | 0 | 0 | 3 | 3 | 3 | 3
- * FIFFQen | 1 | 1 | 1 | 1 | 1 | 1
- * FIFFq | 0 | 0 | 0 | 0 | 0 | 0
- * DNC1gc | 0 | 0 | 0 | 0 | 0 | 0
- * DNC2gc | 0 | 0 | 0 | 0 | 0 | 0
- * GCU Auto | 1 | 1 | 1 | 1 | 1 | 1
- * LNA max Atn | 31 | 31 | 31 | 31 | 31 | 31
- * LNA Target | 44 | 43 | 43 | 43 | 43 | 43
- * ign RF Ovl | 0 | 0 | 0 | 0 | 0 | 0
- * RF max Atn | 31 | 31 | 31 | 31 | 31 | 31
- * PD1 Target | 36 | 36 | 38 | 38 | 36 | 38
- * ign FIF Ovl | 0 | 0 | 0 | 0 | 0 | 0
- * FIF max Atn | 5 | 5 | 5 | 5 | 5 | 5
- * PD2 Target | 40 | 33 | 42 | 42 | 33 | 42
- */
-
-enum mt2063_delivery_sys {
- MT2063_CABLE_QAM = 0,
- MT2063_CABLE_ANALOG,
- MT2063_OFFAIR_COFDM,
- MT2063_OFFAIR_COFDM_SAWLESS,
- MT2063_OFFAIR_ANALOG,
- MT2063_OFFAIR_8VSB,
- MT2063_NUM_RCVR_MODES
-};
-
-static const char *mt2063_mode_name[] = {
- [MT2063_CABLE_QAM] = "digital cable",
- [MT2063_CABLE_ANALOG] = "analog cable",
- [MT2063_OFFAIR_COFDM] = "digital offair",
- [MT2063_OFFAIR_COFDM_SAWLESS] = "digital offair without SAW",
- [MT2063_OFFAIR_ANALOG] = "analog offair",
- [MT2063_OFFAIR_8VSB] = "analog offair 8vsb",
-};
-
-static const u8 RFAGCEN[] = { 0, 0, 0, 0, 0, 0 };
-static const u8 LNARIN[] = { 0, 0, 3, 3, 3, 3 };
-static const u8 FIFFQEN[] = { 1, 1, 1, 1, 1, 1 };
-static const u8 FIFFQ[] = { 0, 0, 0, 0, 0, 0 };
-static const u8 DNC1GC[] = { 0, 0, 0, 0, 0, 0 };
-static const u8 DNC2GC[] = { 0, 0, 0, 0, 0, 0 };
-static const u8 ACLNAMAX[] = { 31, 31, 31, 31, 31, 31 };
-static const u8 LNATGT[] = { 44, 43, 43, 43, 43, 43 };
-static const u8 RFOVDIS[] = { 0, 0, 0, 0, 0, 0 };
-static const u8 ACRFMAX[] = { 31, 31, 31, 31, 31, 31 };
-static const u8 PD1TGT[] = { 36, 36, 38, 38, 36, 38 };
-static const u8 FIFOVDIS[] = { 0, 0, 0, 0, 0, 0 };
-static const u8 ACFIFMAX[] = { 29, 29, 29, 29, 29, 29 };
-static const u8 PD2TGT[] = { 40, 33, 38, 42, 30, 38 };
-
-/*
- * mt2063_set_dnc_output_enable()
- */
-static u32 mt2063_get_dnc_output_enable(struct mt2063_state *state,
- enum MT2063_DNC_Output_Enable *pValue)
-{
- dprintk(2, "\n");
-
- if ((state->reg[MT2063_REG_DNC_GAIN] & 0x03) == 0x03) { /* if DNC1 is off */
- if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */
- *pValue = MT2063_DNC_NONE;
- else
- *pValue = MT2063_DNC_2;
- } else { /* DNC1 is on */
- if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */
- *pValue = MT2063_DNC_1;
- else
- *pValue = MT2063_DNC_BOTH;
- }
- return 0;
-}
-
-/*
- * mt2063_set_dnc_output_enable()
- */
-static u32 mt2063_set_dnc_output_enable(struct mt2063_state *state,
- enum MT2063_DNC_Output_Enable nValue)
-{
- u32 status = 0; /* Status to be returned */
- u8 val = 0;
-
- dprintk(2, "\n");
-
- /* selects, which DNC output is used */
- switch (nValue) {
- case MT2063_DNC_NONE:
- val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */
- if (state->reg[MT2063_REG_DNC_GAIN] !=
- val)
- status |=
- mt2063_setreg(state,
- MT2063_REG_DNC_GAIN,
- val);
-
- val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */
- if (state->reg[MT2063_REG_VGA_GAIN] !=
- val)
- status |=
- mt2063_setreg(state,
- MT2063_REG_VGA_GAIN,
- val);
-
- val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */
- if (state->reg[MT2063_REG_RSVD_20] !=
- val)
- status |=
- mt2063_setreg(state,
- MT2063_REG_RSVD_20,
- val);
-
- break;
- case MT2063_DNC_1:
- val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03); /* Set DNC1GC=x */
- if (state->reg[MT2063_REG_DNC_GAIN] !=
- val)
- status |=
- mt2063_setreg(state,
- MT2063_REG_DNC_GAIN,
- val);
-
- val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */
- if (state->reg[MT2063_REG_VGA_GAIN] !=
- val)
- status |=
- mt2063_setreg(state,
- MT2063_REG_VGA_GAIN,
- val);
-
- val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */
- if (state->reg[MT2063_REG_RSVD_20] !=
- val)
- status |=
- mt2063_setreg(state,
- MT2063_REG_RSVD_20,
- val);
-
- break;
- case MT2063_DNC_2:
- val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */
- if (state->reg[MT2063_REG_DNC_GAIN] !=
- val)
- status |=
- mt2063_setreg(state,
- MT2063_REG_DNC_GAIN,
- val);
-
- val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03); /* Set DNC2GC=x */
- if (state->reg[MT2063_REG_VGA_GAIN] !=
- val)
- status |=
- mt2063_setreg(state,
- MT2063_REG_VGA_GAIN,
- val);
-
- val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */
- if (state->reg[MT2063_REG_RSVD_20] !=
- val)
- status |=
- mt2063_setreg(state,
- MT2063_REG_RSVD_20,
- val);
-
- break;
- case MT2063_DNC_BOTH:
- val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03); /* Set DNC1GC=x */
- if (state->reg[MT2063_REG_DNC_GAIN] !=
- val)
- status |=
- mt2063_setreg(state,
- MT2063_REG_DNC_GAIN,
- val);
-
- val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03); /* Set DNC2GC=x */
- if (state->reg[MT2063_REG_VGA_GAIN] !=
- val)
- status |=
- mt2063_setreg(state,
- MT2063_REG_VGA_GAIN,
- val);
-
- val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */
- if (state->reg[MT2063_REG_RSVD_20] !=
- val)
- status |=
- mt2063_setreg(state,
- MT2063_REG_RSVD_20,
- val);
-
- break;
- default:
- break;
+ if (sd == MT2063_NONE_SD) {
+ mt2063_write(state, MT2063_REG_PWR_1, 0x00);
+ mt2063_write(state, MT2063_REG_PWR_2, 0x00);
+ } else {
+ mt2063_set_reg_mask(state, MT2063_REG_PWR_1,
+ sd & 0xff, sd & 0xff);
+ mt2063_set_reg_mask(state, MT2063_REG_PWR_2, sd >> 8,
+ sd >> 8);
}
-
- return status;
}
-/*
- * MT2063_SetReceiverMode() - Set the MT2063 receiver mode, according with
- * the selected enum mt2063_delivery_sys type.
- *
- * (DNC1GC & DNC2GC are the values, which are used, when the specific
- * DNC Output is selected, the other is always off)
- *
- * @state: ptr to mt2063_state structure
- * @Mode: desired reciever delivery system
- *
- * Note: Register cache must be valid for it to work
- */
-
-static u32 MT2063_SetReceiverMode(struct mt2063_state *state,
- enum mt2063_delivery_sys Mode)
+static int mt2063_set_mode(struct mt2063_state *state, enum mt2063_delsys Mode)
{
- u32 status = 0; /* Status to be returned */
- u8 val;
- u32 longval;
-
- dprintk(2, "\n");
-
- if (Mode >= MT2063_NUM_RCVR_MODES)
- status = -ERANGE;
-
- /* RFAGCen */
- if (status >= 0) {
- val =
- (state->
- reg[MT2063_REG_PD1_TGT] & (u8) ~0x40) | (RFAGCEN[Mode]
- ? 0x40 :
- 0x00);
- if (state->reg[MT2063_REG_PD1_TGT] != val)
- status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
- }
-
- /* LNARin */
- if (status >= 0) {
- u8 val = (state->reg[MT2063_REG_CTRL_2C] & (u8) ~0x03) |
- (LNARIN[Mode] & 0x03);
- if (state->reg[MT2063_REG_CTRL_2C] != val)
- status |= mt2063_setreg(state, MT2063_REG_CTRL_2C, val);
- }
-
- /* FIFFQEN and FIFFQ */
- if (status >= 0) {
- val =
- (state->
- reg[MT2063_REG_FIFF_CTRL2] & (u8) ~0xF0) |
- (FIFFQEN[Mode] << 7) | (FIFFQ[Mode] << 4);
- if (state->reg[MT2063_REG_FIFF_CTRL2] != val) {
- status |=
- mt2063_setreg(state, MT2063_REG_FIFF_CTRL2, val);
- /* trigger FIFF calibration, needed after changing FIFFQ */
- val =
- (state->reg[MT2063_REG_FIFF_CTRL] | (u8) 0x01);
- status |=
- mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
- val =
- (state->
- reg[MT2063_REG_FIFF_CTRL] & (u8) ~0x01);
- status |=
- mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
- }
- }
-
- /* DNC1GC & DNC2GC */
- status |= mt2063_get_dnc_output_enable(state, &longval);
- status |= mt2063_set_dnc_output_enable(state, longval);
+ dprintk(1, "\n");
- /* acLNAmax */
- if (status >= 0) {
- u8 val = (state->reg[MT2063_REG_LNA_OV] & (u8) ~0x1F) |
- (ACLNAMAX[Mode] & 0x1F);
- if (state->reg[MT2063_REG_LNA_OV] != val)
- status |= mt2063_setreg(state, MT2063_REG_LNA_OV, val);
- }
+ /* check, if mode outside */
+ if (Mode > 5)
+ return -EINVAL;
- /* LNATGT */
- if (status >= 0) {
- u8 val = (state->reg[MT2063_REG_LNA_TGT] & (u8) ~0x3F) |
- (LNATGT[Mode] & 0x3F);
- if (state->reg[MT2063_REG_LNA_TGT] != val)
- status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
- }
+ /* set LNA R in (75 Ohm ??) */
+ mt2063_set_reg_mask(state, MT2063_REG_CTRL_2C, LNARIN[Mode], 0x03);
- /* ACRF */
- if (status >= 0) {
- u8 val = (state->reg[MT2063_REG_RF_OV] & (u8) ~0x1F) |
- (ACRFMAX[Mode] & 0x1F);
- if (state->reg[MT2063_REG_RF_OV] != val)
- status |= mt2063_setreg(state, MT2063_REG_RF_OV, val);
- }
+ /* set LNA Target */
+ mt2063_set_reg_mask(state, MT2063_REG_LNA_TGT, LNATGT[Mode], 0x3f);
- /* PD1TGT */
- if (status >= 0) {
- u8 val = (state->reg[MT2063_REG_PD1_TGT] & (u8) ~0x3F) |
- (PD1TGT[Mode] & 0x3F);
- if (state->reg[MT2063_REG_PD1_TGT] != val)
- status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
- }
+ /* PD1 Target */
+ mt2063_set_reg_mask(state, MT2063_REG_PD1_TGT, PD1TGT[Mode], 0x3f);
- /* FIFATN */
- if (status >= 0) {
- u8 val = ACFIFMAX[Mode];
- if (state->reg[MT2063_REG_PART_REV] != MT2063_B3 && val > 5)
- val = 5;
- val = (state->reg[MT2063_REG_FIF_OV] & (u8) ~0x1F) |
- (val & 0x1F);
- if (state->reg[MT2063_REG_FIF_OV] != val)
- status |= mt2063_setreg(state, MT2063_REG_FIF_OV, val);
- }
-
- /* PD2TGT */
- if (status >= 0) {
- u8 val = (state->reg[MT2063_REG_PD2_TGT] & (u8) ~0x3F) |
- (PD2TGT[Mode] & 0x3F);
- if (state->reg[MT2063_REG_PD2_TGT] != val)
- status |= mt2063_setreg(state, MT2063_REG_PD2_TGT, val);
- }
+ /* PD2 Target */
+ mt2063_set_reg_mask(state, MT2063_REG_PD2_TGT, PD2TGT[Mode], 0x3f);
/* Ignore ATN Overload */
- if (status >= 0) {
- val = (state->reg[MT2063_REG_LNA_TGT] & (u8) ~0x80) |
- (RFOVDIS[Mode] ? 0x80 : 0x00);
- if (state->reg[MT2063_REG_LNA_TGT] != val)
- status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
- }
-
- /* Ignore FIF Overload */
- if (status >= 0) {
- val = (state->reg[MT2063_REG_PD1_TGT] & (u8) ~0x80) |
- (FIFOVDIS[Mode] ? 0x80 : 0x00);
- if (state->reg[MT2063_REG_PD1_TGT] != val)
- status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
- }
-
- if (status >= 0) {
- state->rcvr_mode = Mode;
- dprintk(1, "mt2063 mode changed to %s\n",
- mt2063_mode_name[state->rcvr_mode]);
- }
-
- return status;
-}
-
-/*
- * MT2063_ClearPowerMaskBits () - Clears the power-down mask bits for various
- * sections of the MT2063
- *
- * @Bits: Mask bits to be cleared.
- *
- * See definition of MT2063_Mask_Bits type for description
- * of each of the power bits.
- */
-static u32 MT2063_ClearPowerMaskBits(struct mt2063_state *state,
- enum MT2063_Mask_Bits Bits)
-{
- u32 status = 0;
-
- dprintk(2, "\n");
- Bits = (enum MT2063_Mask_Bits)(Bits & MT2063_ALL_SD); /* Only valid bits for this tuner */
- if ((Bits & 0xFF00) != 0) {
- state->reg[MT2063_REG_PWR_2] &= ~(u8) (Bits >> 8);
- status |=
- mt2063_write(state,
- MT2063_REG_PWR_2,
- &state->reg[MT2063_REG_PWR_2], 1);
- }
- if ((Bits & 0xFF) != 0) {
- state->reg[MT2063_REG_PWR_1] &= ~(u8) (Bits & 0xFF);
- status |=
- mt2063_write(state,
- MT2063_REG_PWR_1,
- &state->reg[MT2063_REG_PWR_1], 1);
- }
-
- return status;
-}
-
-/*
- * MT2063_SoftwareShutdown() - Enables or disables software shutdown function.
- * When Shutdown is 1, any section whose power
- * mask is set will be shutdown.
- */
-static u32 MT2063_SoftwareShutdown(struct mt2063_state *state, u8 Shutdown)
-{
- u32 status;
-
- dprintk(2, "\n");
- if (Shutdown == 1)
- state->reg[MT2063_REG_PWR_1] |= 0x04;
+ if (RFOVDIS[Mode])
+ mt2063_set_reg_mask(state, MT2063_REG_LNA_TGT, 0x80, 0x80);
else
- state->reg[MT2063_REG_PWR_1] &= ~0x04;
-
- status = mt2063_write(state,
- MT2063_REG_PWR_1,
- &state->reg[MT2063_REG_PWR_1], 1);
-
- if (Shutdown != 1) {
- state->reg[MT2063_REG_BYP_CTRL] =
- (state->reg[MT2063_REG_BYP_CTRL] & 0x9F) | 0x40;
- status |=
- mt2063_write(state,
- MT2063_REG_BYP_CTRL,
- &state->reg[MT2063_REG_BYP_CTRL],
- 1);
- state->reg[MT2063_REG_BYP_CTRL] =
- (state->reg[MT2063_REG_BYP_CTRL] & 0x9F);
- status |=
- mt2063_write(state,
- MT2063_REG_BYP_CTRL,
- &state->reg[MT2063_REG_BYP_CTRL],
- 1);
- }
-
- return status;
-}
-
-static u32 MT2063_Round_fLO(u32 f_LO, u32 f_LO_Step, u32 f_ref)
-{
- return f_ref * (f_LO / f_ref)
- + f_LO_Step * (((f_LO % f_ref) + (f_LO_Step / 2)) / f_LO_Step);
-}
-
-/**
- * fLO_FractionalTerm() - Calculates the portion contributed by FracN / denom.
- * This function preserves maximum precision without
- * risk of overflow. It accurately calculates
- * f_ref * num / denom to within 1 HZ with fixed math.
- *
- * @num : Fractional portion of the multiplier
- * @denom: denominator portion of the ratio
- * @f_Ref: SRO frequency.
- *
- * This calculation handles f_ref as two separate 14-bit fields.
- * Therefore, a maximum value of 2^28-1 may safely be used for f_ref.
- * This is the genesis of the magic number "14" and the magic mask value of
- * 0x03FFF.
- *
- * This routine successfully handles denom values up to and including 2^18.
- * Returns: f_ref * num / denom
- */
-static u32 MT2063_fLO_FractionalTerm(u32 f_ref, u32 num, u32 denom)
-{
- u32 t1 = (f_ref >> 14) * num;
- u32 term1 = t1 / denom;
- u32 loss = t1 % denom;
- u32 term2 =
- (((f_ref & 0x00003FFF) * num + (loss << 14)) + (denom / 2)) / denom;
- return (term1 << 14) + term2;
-}
-
-/*
- * CalcLO1Mult()- Calculates Integer divider value and the numerator
- * value for a FracN PLL.
- *
- * This function assumes that the f_LO and f_Ref are
- * evenly divisible by f_LO_Step.
- *
- * @Div: OUTPUT: Whole number portion of the multiplier
- * @FracN: OUTPUT: Fractional portion of the multiplier
- * @f_LO: desired LO frequency.
- * @f_LO_Step: Minimum step size for the LO (in Hz).
- * @f_Ref: SRO frequency.
- * @f_Avoid: Range of PLL frequencies to avoid near integer multiples
- * of f_Ref (in Hz).
- *
- * Returns: Recalculated LO frequency.
- */
-static u32 MT2063_CalcLO1Mult(u32 *Div,
- u32 *FracN,
- u32 f_LO,
- u32 f_LO_Step, u32 f_Ref)
-{
- /* Calculate the whole number portion of the divider */
- *Div = f_LO / f_Ref;
-
- /* Calculate the numerator value (round to nearest f_LO_Step) */
- *FracN =
- (64 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
- (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);
-
- return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, 64);
-}
-
-/**
- * CalcLO2Mult() - Calculates Integer divider value and the numerator
- * value for a FracN PLL.
- *
- * This function assumes that the f_LO and f_Ref are
- * evenly divisible by f_LO_Step.
- *
- * @Div: OUTPUT: Whole number portion of the multiplier
- * @FracN: OUTPUT: Fractional portion of the multiplier
- * @f_LO: desired LO frequency.
- * @f_LO_Step: Minimum step size for the LO (in Hz).
- * @f_Ref: SRO frequency.
- * @f_Avoid: Range of PLL frequencies to avoid near
- * integer multiples of f_Ref (in Hz).
- *
- * Returns: Recalculated LO frequency.
- */
-static u32 MT2063_CalcLO2Mult(u32 *Div,
- u32 *FracN,
- u32 f_LO,
- u32 f_LO_Step, u32 f_Ref)
-{
- /* Calculate the whole number portion of the divider */
- *Div = f_LO / f_Ref;
+ mt2063_set_reg_mask(state, MT2063_REG_LNA_TGT, 0x00, 0x80);
- /* Calculate the numerator value (round to nearest f_LO_Step) */
- *FracN =
- (8191 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
- (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);
+ /* Ignore FIF Overload */
+ if (FIFOVDIS[Mode])
+ mt2063_set_reg_mask(state, MT2063_REG_PD1_TGT, 0x80, 0x80);
+ else
+ mt2063_set_reg_mask(state, MT2063_REG_PD1_TGT, 0x00, 0x80);
- return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN,
- 8191);
+ dprintk(1, "mode changed to %s\n", mt2063_mode_name[Mode]);
+ return 0;
}
-/*
- * FindClearTuneFilter() - Calculate the corrrect ClearTune filter to be
- * used for a given input frequency.
- *
- * @state: ptr to tuner data structure
- * @f_in: RF input center frequency (in Hz).
- *
- * Returns: ClearTune filter number (0-31)
- */
-static u32 FindClearTuneFilter(struct mt2063_state *state, u32 f_in)
+#define MT2063_IF1 1510000
+#define MT2063_OSC 16000
+
+static int mt2063_tune(struct mt2063_state *state)
{
- u32 RFBand;
- u32 idx; /* index loop */
+ u32 f_lo1, f_lo2;
+ u32 div1, num1, div2;
+ u32 num2;
+ bool lock = false;
+
+ dprintk(1, "\n");
/*
- ** Find RF Band setting
+ * it use ClearTune in auto mode, so it doesn't set ClearTune RF Band.
+ *
+ * first IF Filter Center frequency (f_if1) is static setted to 1510 MHz
+ * the reference osc is always 16 MHz
+ *
+ * f_if1 = (f_ref / 8) * (FIFFC + 640)
+ *
+ * f_if2_of = (f_if1 (f_ref / 64)) - ( 8 * FIFFC) - 4992
+ *
+ * f_lo1 = f_in + f_if1
+ *
+ * f_lo2 = f_lo1 - f_in - f_if2
+ *
*/
- RFBand = 31; /* def when f_in > all */
- for (idx = 0; idx < 31; ++idx) {
- if (state->CTFiltMax[idx] >= f_in) {
- RFBand = idx;
- break;
+ f_lo1 = state->frequency + MT2063_IF1;
+ /* rounding it to a multiple of 250 kHz */
+ f_lo1 = (f_lo1 / 250) * 250;
+
+ f_lo2 = f_lo1 - state->frequency - state->if2;
+ /* rounding it to a multiple of 50 kHz */
+ f_lo2 = ((f_lo2 + 25) / 50) * 50;
+
+ /* TODO: spuck check */
+
+ /* f_lo1 = 16MHz * (div1 + num1/64) */
+ num1 = f_lo1 / (MT2063_OSC / 64);
+ div1 = num1 / 64;
+ num1 &= 0x3f;
+
+ /* f_lo2 = 16MHz * (div2 + num2/8192) */
+ num2 = f_lo2 * 64 / (MT2063_OSC / 128);
+ div2 = num2 / 8192;
+ num2 &= 0x1fff;
+
+ state->frequency = f_lo1 - f_lo2 - state->if2;
+
+ dprintk(2, "Input frequency: %d kHz\n", state->frequency);
+ dprintk(2, "first IF Filter central frequency: %d kHz\n", 1510000);
+ dprintk(2, "IF Output frequency: %d kHz\n", state->if2);
+ dprintk(2, "LO1 frequency: %d kHz\n", f_lo1);
+ dprintk(2, "LO1 div: %d, 0x%02x\n", div1, div1);
+ dprintk(2, "LO1 num: %d/64, 0x%02x\n", num1, num1);
+ dprintk(2, "LO2 frequency: %d kHz\n", f_lo2);
+ dprintk(2, "LO2 div: %d, 0x%02x\n", div2, div2);
+ dprintk(2, "LO2 num: %d/8192, 0x%04x\n", num2, num2);
+
+ /* set first IF filter center frequency */
+ mt2063_write(state, MT2063_REG_FIFFC, 115);
+
+ /* set LO1 */
+ mt2063_write(state, MT2063_REG_LO1CQ_1, (div1 & 0xff));
+ mt2063_write(state, MT2063_REG_LO1CQ_2, (num1 & 0x3f));
+ /* set LO2, the lastest value with reset */
+ mt2063_write(state, MT2063_REG_LO2CQ_1, (((div2 & 0x7f) << 1) |
+ ((num2 & 0x1000) >> 12)));
+ mt2063_write(state, MT2063_REG_LO2CQ_2, ((num2 & 0x0ff0) >> 4));
+ mt2063_write(state, MT2063_REG_LO2CQ_3, ( 0xe0 | (num2 & 0x000f)));
+
+ /* wait util it's lock */
+ do {
+ u8 status;
+ /* read LO status bit */
+ mt2063_read(state, MT2063_REG_LO_STATUS, &status);
+
+ if (state->tuner_id == MT2063_B0) {
+ if ((status & 0xc0) == 0xc0)
+ lock = true;
+ } else {
+ if ((status & 0x88) == 0x88)
+ lock = true;
}
- }
- return RFBand;
+ } while (!lock);
+
+ return 0;
}
-/*
- * MT2063_Tune() - Change the tuner's tuned frequency to RFin.
- */
-static u32 MT2063_Tune(struct mt2063_state *state, u32 f_in)
-{ /* RF input center frequency */
+static int mt2063_set_analog_params(struct dvb_frontend *fe,
+ struct analog_parameters *params)
+{
+ struct mt2063_state *state = fe->tuner_priv;
+ u32 freq, bw;
+ int ret = 0;
- u32 status = 0;
- u32 LO1; /* 1st LO register value */
- u32 Num1; /* Numerator for LO1 reg. value */
- u32 f_IF1; /* 1st IF requested */
- u32 LO2; /* 2nd LO register value */
- u32 Num2; /* Numerator for LO2 reg. value */
- u32 ofLO1, ofLO2; /* last time's LO frequencies */
- u8 fiffc = 0x80; /* FIFF center freq from tuner */
- u32 fiffof; /* Offset from FIFF center freq */
- const u8 LO1LK = 0x80; /* Mask for LO1 Lock bit */
- u8 LO2LK = 0x08; /* Mask for LO2 Lock bit */
- u8 val;
- u32 RFBand;
+ dprintk(1, "\n");
- dprintk(2, "\n");
- /* Check the input and output frequency ranges */
- if ((f_in < MT2063_MIN_FIN_FREQ) || (f_in > MT2063_MAX_FIN_FREQ))
- return -EINVAL;
+ mutex_lock(&state->lock);
- if ((state->AS_Data.f_out < MT2063_MIN_FOUT_FREQ)
- || (state->AS_Data.f_out > MT2063_MAX_FOUT_FREQ))
- return -EINVAL;
+ /* open gate */
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 1);
- /*
- * Save original LO1 and LO2 register values
- */
- ofLO1 = state->AS_Data.f_LO1;
- ofLO2 = state->AS_Data.f_LO2;
+ /* all calculation is in kHz */
+ freq = params->frequency / 1000;
- /*
- * Find and set RF Band setting
- */
- if (state->ctfilt_sw == 1) {
- val = (state->reg[MT2063_REG_CTUNE_CTRL] | 0x08);
- if (state->reg[MT2063_REG_CTUNE_CTRL] != val) {
- status |=
- mt2063_setreg(state, MT2063_REG_CTUNE_CTRL, val);
- }
- val = state->reg[MT2063_REG_CTUNE_OV];
- RFBand = FindClearTuneFilter(state, f_in);
- state->reg[MT2063_REG_CTUNE_OV] =
- (u8) ((state->reg[MT2063_REG_CTUNE_OV] & ~0x1F)
- | RFBand);
- if (state->reg[MT2063_REG_CTUNE_OV] != val) {
- status |=
- mt2063_setreg(state, MT2063_REG_CTUNE_OV, val);
- }
+ switch(params->mode) {
+ case V4L2_TUNER_RADIO:
+ state->mode = MT2063_OFFAIR_ANALOG;
+ state->if2 = 38900;
+ bw = 8000; /* TODO */
+ break;
+ case V4L2_TUNER_ANALOG_TV:
+ state->mode = MT2063_CABLE_ANALOG;
+ state->if2 = 38900;
+ if (params->std & ~V4L2_STD_MN)
+ bw = 6000;
+ else if (params->std & V4L2_STD_PAL_G)
+ bw = 7000;
+ else
+ bw = 8000;
+ break;
+ default:
+ ret = -EINVAL;
+ goto err;
}
- /*
- * Read the FIFF Center Frequency from the tuner
- */
- if (status >= 0) {
- status |=
- mt2063_read(state,
- MT2063_REG_FIFFC,
- &state->reg[MT2063_REG_FIFFC], 1);
- fiffc = state->reg[MT2063_REG_FIFFC];
- }
- /*
- * Assign in the requested values
- */
- state->AS_Data.f_in = f_in;
- /* Request a 1st IF such that LO1 is on a step size */
- state->AS_Data.f_if1_Request =
- MT2063_Round_fLO(state->AS_Data.f_if1_Request + f_in,
- state->AS_Data.f_LO1_Step,
- state->AS_Data.f_ref) - f_in;
+ state->frequency = freq;
+ state->bw = bw;
- /*
- * Calculate frequency settings. f_IF1_FREQ + f_in is the
- * desired LO1 frequency
- */
- MT2063_ResetExclZones(&state->AS_Data);
+ dprintk(2, "Set input frequency to %d kHz.\n", freq);
- f_IF1 = MT2063_ChooseFirstIF(&state->AS_Data);
+ ret = mt2063_set_mode(state, state->mode);
+ if (ret < 0)
+ goto err;
- state->AS_Data.f_LO1 =
- MT2063_Round_fLO(f_IF1 + f_in, state->AS_Data.f_LO1_Step,
- state->AS_Data.f_ref);
+ ret = mt2063_tune(state);
- state->AS_Data.f_LO2 =
- MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
- state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
+err:
+ /* close gate */
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 0);
- /*
- * Check for any LO spurs in the output bandwidth and adjust
- * the LO settings to avoid them if needed
- */
- status |= MT2063_AvoidSpurs(&state->AS_Data);
- /*
- * MT_AvoidSpurs spurs may have changed the LO1 & LO2 values.
- * Recalculate the LO frequencies and the values to be placed
- * in the tuning registers.
- */
- state->AS_Data.f_LO1 =
- MT2063_CalcLO1Mult(&LO1, &Num1, state->AS_Data.f_LO1,
- state->AS_Data.f_LO1_Step, state->AS_Data.f_ref);
- state->AS_Data.f_LO2 =
- MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
- state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
- state->AS_Data.f_LO2 =
- MT2063_CalcLO2Mult(&LO2, &Num2, state->AS_Data.f_LO2,
- state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
+ mutex_unlock(&state->lock);
+ return ret;
+}
- /*
- * Check the upconverter and downconverter frequency ranges
- */
- if ((state->AS_Data.f_LO1 < MT2063_MIN_UPC_FREQ)
- || (state->AS_Data.f_LO1 > MT2063_MAX_UPC_FREQ))
- status |= MT2063_UPC_RANGE;
- if ((state->AS_Data.f_LO2 < MT2063_MIN_DNC_FREQ)
- || (state->AS_Data.f_LO2 > MT2063_MAX_DNC_FREQ))
- status |= MT2063_DNC_RANGE;
- /* LO2 Lock bit was in a different place for B0 version */
- if (state->tuner_id == MT2063_B0)
- LO2LK = 0x40;
+static int mt2063_set_params(struct dvb_frontend *fe)
+{
+ struct mt2063_state *state = fe->tuner_priv;
+ struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+ u32 freq, bw;
+ int ret = 0;
- /*
- * If we have the same LO frequencies and we're already locked,
- * then skip re-programming the LO registers.
- */
- if ((ofLO1 != state->AS_Data.f_LO1)
- || (ofLO2 != state->AS_Data.f_LO2)
- || ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) !=
- (LO1LK | LO2LK))) {
- /*
- * Calculate the FIFFOF register value
- *
- * IF1_Actual
- * FIFFOF = ------------ - 8 * FIFFC - 4992
- * f_ref/64
- */
- fiffof =
- (state->AS_Data.f_LO1 -
- f_in) / (state->AS_Data.f_ref / 64) - 8 * (u32) fiffc -
- 4992;
- if (fiffof > 0xFF)
- fiffof = 0xFF;
+ dprintk(1, "\n");
- /*
- * Place all of the calculated values into the local tuner
- * register fields.
- */
- if (status >= 0) {
- state->reg[MT2063_REG_LO1CQ_1] = (u8) (LO1 & 0xFF); /* DIV1q */
- state->reg[MT2063_REG_LO1CQ_2] = (u8) (Num1 & 0x3F); /* NUM1q */
- state->reg[MT2063_REG_LO2CQ_1] = (u8) (((LO2 & 0x7F) << 1) /* DIV2q */
- |(Num2 >> 12)); /* NUM2q (hi) */
- state->reg[MT2063_REG_LO2CQ_2] = (u8) ((Num2 & 0x0FF0) >> 4); /* NUM2q (mid) */
- state->reg[MT2063_REG_LO2CQ_3] = (u8) (0xE0 | (Num2 & 0x000F)); /* NUM2q (lo) */
+ mutex_lock(&state->lock);
- /*
- * Now write out the computed register values
- * IMPORTANT: There is a required order for writing
- * (0x05 must follow all the others).
- */
- status |= mt2063_write(state, MT2063_REG_LO1CQ_1, &state->reg[MT2063_REG_LO1CQ_1], 5); /* 0x01 - 0x05 */
- if (state->tuner_id == MT2063_B0) {
- /* Re-write the one-shot bits to trigger the tune operation */
- status |= mt2063_write(state, MT2063_REG_LO2CQ_3, &state->reg[MT2063_REG_LO2CQ_3], 1); /* 0x05 */
- }
- /* Write out the FIFF offset only if it's changing */
- if (state->reg[MT2063_REG_FIFF_OFFSET] !=
- (u8) fiffof) {
- state->reg[MT2063_REG_FIFF_OFFSET] =
- (u8) fiffof;
- status |=
- mt2063_write(state,
- MT2063_REG_FIFF_OFFSET,
- &state->
- reg[MT2063_REG_FIFF_OFFSET],
- 1);
- }
- }
+ /* open gate */
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 1);
- /*
- * Check for LO's locking
- */
+ /* all calculation is in kHz */
+ freq = c->frequency / 1000;
- if (status < 0)
- return status;
+ switch (c->delivery_system) {
+ case SYS_DVBT:
+ if (c->bandwidth_hz == 0) {
+ ret = -EINVAL;
+ goto err;
+ }
+ bw = c->bandwidth_hz / 1000;
+ state->mode = MT2063_OFFAIR_COFDM;
+ state->if2 = 36000;
+ break;
+ case SYS_DVBC_ANNEX_A:
+ case SYS_DVBC_ANNEX_C:
+ bw = c->bandwidth_hz / 1000;
+ state->mode = MT2063_CABLE_QAM;
+ state->if2 = 36000;
+ break;
+ case SYS_ATSC:
+ /* TODO */
+ default:
+ ret = -EINVAL;
+ goto err;
+ }
- status = mt2063_lockStatus(state);
- if (status < 0)
- return status;
- if (!status)
- return -EINVAL; /* Couldn't lock */
+ state->frequency = freq;
+ /* for spurcheck */
+ state->bw = bw;
- /*
- * If we locked OK, assign calculated data to mt2063_state structure
- */
- state->f_IF1_actual = state->AS_Data.f_LO1 - f_in;
- }
+ dprintk(2, "Set input frequency to %d kHz.\n", freq);
- return status;
-}
+ ret = mt2063_set_mode(state, state->mode);
+ if (ret < 0)
+ goto err;
-static const u8 MT2063B0_defaults[] = {
- /* Reg, Value */
- 0x19, 0x05,
- 0x1B, 0x1D,
- 0x1C, 0x1F,
- 0x1D, 0x0F,
- 0x1E, 0x3F,
- 0x1F, 0x0F,
- 0x20, 0x3F,
- 0x22, 0x21,
- 0x23, 0x3F,
- 0x24, 0x20,
- 0x25, 0x3F,
- 0x27, 0xEE,
- 0x2C, 0x27, /* bit at 0x20 is cleared below */
- 0x30, 0x03,
- 0x2C, 0x07, /* bit at 0x20 is cleared here */
- 0x2D, 0x87,
- 0x2E, 0xAA,
- 0x28, 0xE1, /* Set the FIFCrst bit here */
- 0x28, 0xE0, /* Clear the FIFCrst bit here */
- 0x00
-};
+ ret = mt2063_tune(state);
-/* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
-static const u8 MT2063B1_defaults[] = {
- /* Reg, Value */
- 0x05, 0xF0,
- 0x11, 0x10, /* New Enable AFCsd */
- 0x19, 0x05,
- 0x1A, 0x6C,
- 0x1B, 0x24,
- 0x1C, 0x28,
- 0x1D, 0x8F,
- 0x1E, 0x14,
- 0x1F, 0x8F,
- 0x20, 0x57,
- 0x22, 0x21, /* New - ver 1.03 */
- 0x23, 0x3C, /* New - ver 1.10 */
- 0x24, 0x20, /* New - ver 1.03 */
- 0x2C, 0x24, /* bit at 0x20 is cleared below */
- 0x2D, 0x87, /* FIFFQ=0 */
- 0x2F, 0xF3,
- 0x30, 0x0C, /* New - ver 1.11 */
- 0x31, 0x1B, /* New - ver 1.11 */
- 0x2C, 0x04, /* bit at 0x20 is cleared here */
- 0x28, 0xE1, /* Set the FIFCrst bit here */
- 0x28, 0xE0, /* Clear the FIFCrst bit here */
- 0x00
-};
+err:
+ /* close gate */
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 0);
-/* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
-static const u8 MT2063B3_defaults[] = {
- /* Reg, Value */
- 0x05, 0xF0,
- 0x19, 0x3D,
- 0x2C, 0x24, /* bit at 0x20 is cleared below */
- 0x2C, 0x04, /* bit at 0x20 is cleared here */
- 0x28, 0xE1, /* Set the FIFCrst bit here */
- 0x28, 0xE0, /* Clear the FIFCrst bit here */
- 0x00
-};
+ mutex_unlock(&state->lock);
+ return ret;
+}
static int mt2063_init(struct dvb_frontend *fe)
{
- u32 status;
struct mt2063_state *state = fe->tuner_priv;
- u8 all_resets = 0xF0; /* reset/load bits */
const u8 *def = NULL;
- char *step;
- u32 FCRUN;
- s32 maxReads;
- u32 fcu_osc;
- u32 i;
+ u8 xo_lock = 1, i;
- dprintk(2, "\n");
+ dprintk(1, "\n");
- state->rcvr_mode = MT2063_CABLE_QAM;
+ mutex_lock(&state->lock);
- /* Read the Part/Rev code from the tuner */
- status = mt2063_read(state, MT2063_REG_PART_REV,
- &state->reg[MT2063_REG_PART_REV], 1);
- if (status < 0) {
- printk(KERN_ERR "Can't read mt2063 part ID\n");
- return status;
- }
+ /* open gate */
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 1);
- /* Check the part/rev code */
- switch (state->reg[MT2063_REG_PART_REV]) {
- case MT2063_B0:
- step = "B0";
- break;
- case MT2063_B1:
- step = "B1";
- break;
- case MT2063_B2:
- step = "B2";
- break;
- case MT2063_B3:
- step = "B3";
- break;
- default:
- printk(KERN_ERR "mt2063: Unknown mt2063 device ID (0x%02x)\n",
- state->reg[MT2063_REG_PART_REV]);
- return -ENODEV; /* Wrong tuner Part/Rev code */
- }
+ /* power on */
+ mt2063_shutdown(state, MT2063_NONE_SD);
- /* Check the 2nd byte of the Part/Rev code from the tuner */
- status = mt2063_read(state, MT2063_REG_RSVD_3B,
- &state->reg[MT2063_REG_RSVD_3B], 1);
+ /* reset */
+ mt2063_write(state, MT2063_REG_LO2CQ_3, 0xf0);
- /* b7 != 0 ==> NOT MT2063 */
- if (status < 0 || ((state->reg[MT2063_REG_RSVD_3B] & 0x80) != 0x00)) {
- printk(KERN_ERR "mt2063: Unknown part ID (0x%02x%02x)\n",
- state->reg[MT2063_REG_PART_REV],
- state->reg[MT2063_REG_RSVD_3B]);
- return -ENODEV; /* Wrong tuner Part/Rev code */
+ /* debug dump */
+ if (debug >= 3) {
+ /* print all register after reset */
+ u8 reg[64];
+ /* fill all reg */
+ for (i = 0; i < 64; i++) {
+ mt2063_read(state, i, ®[i]);
+ }
+ print_hex_dump(KERN_DEBUG, "mt2063: ",
+ DUMP_PREFIX_OFFSET, 16, 1, reg, 64, false);
}
- printk(KERN_INFO "mt2063: detected a mt2063 %s\n", step);
-
- /* Reset the tuner */
- status = mt2063_write(state, MT2063_REG_LO2CQ_3, &all_resets, 1);
- if (status < 0)
- return status;
-
- /* change all of the default values that vary from the HW reset values */
- /* def = (state->reg[PART_REV] == MT2063_B0) ? MT2063B0_defaults : MT2063B1_defaults; */
- switch (state->reg[MT2063_REG_PART_REV]) {
+ /* load defaults */
+ switch (state->tuner_id) {
case MT2063_B3:
def = MT2063B3_defaults;
break;
-
case MT2063_B1:
def = MT2063B1_defaults;
break;
-
case MT2063_B0:
def = MT2063B0_defaults;
break;
-
default:
- return -ENODEV;
+ def = MT2063B1_defaults;
break;
}
- while (status >= 0 && *def) {
+ while (*def) {
u8 reg = *def++;
u8 val = *def++;
- status = mt2063_write(state, reg, &val, 1);
+ mt2063_write(state, reg, val);
}
- if (status < 0)
- return status;
- /* Wait for FIFF location to complete. */
- FCRUN = 1;
- maxReads = 10;
- while (status >= 0 && (FCRUN != 0) && (maxReads-- > 0)) {
+ /* wait to lock */
+ while (!xo_lock) {
msleep(2);
- status = mt2063_read(state,
- MT2063_REG_XO_STATUS,
- &state->
- reg[MT2063_REG_XO_STATUS], 1);
- FCRUN = (state->reg[MT2063_REG_XO_STATUS] & 0x40) >> 6;
+ mt2063_read(state, MT2063_REG_XO_STATUS, &xo_lock);
+ xo_lock = (xo_lock & 0x40) >> 6;
}
- if (FCRUN != 0 || status < 0)
- return -ENODEV;
-
- status = mt2063_read(state,
- MT2063_REG_FIFFC,
- &state->reg[MT2063_REG_FIFFC], 1);
- if (status < 0)
- return status;
-
- /* Read back all the registers from the tuner */
- status = mt2063_read(state,
- MT2063_REG_PART_REV,
- state->reg, MT2063_REG_END_REGS);
- if (status < 0)
- return status;
-
- /* Initialize the tuner state. */
- state->tuner_id = state->reg[MT2063_REG_PART_REV];
- state->AS_Data.f_ref = MT2063_REF_FREQ;
- state->AS_Data.f_if1_Center = (state->AS_Data.f_ref / 8) *
- ((u32) state->reg[MT2063_REG_FIFFC] + 640);
- state->AS_Data.f_if1_bw = MT2063_IF1_BW;
- state->AS_Data.f_out = 43750000UL;
- state->AS_Data.f_out_bw = 6750000UL;
- state->AS_Data.f_zif_bw = MT2063_ZIF_BW;
- state->AS_Data.f_LO1_Step = state->AS_Data.f_ref / 64;
- state->AS_Data.f_LO2_Step = MT2063_TUNE_STEP_SIZE;
- state->AS_Data.maxH1 = MT2063_MAX_HARMONICS_1;
- state->AS_Data.maxH2 = MT2063_MAX_HARMONICS_2;
- state->AS_Data.f_min_LO_Separation = MT2063_MIN_LO_SEP;
- state->AS_Data.f_if1_Request = state->AS_Data.f_if1_Center;
- state->AS_Data.f_LO1 = 2181000000UL;
- state->AS_Data.f_LO2 = 1486249786UL;
- state->f_IF1_actual = state->AS_Data.f_if1_Center;
- state->AS_Data.f_in = state->AS_Data.f_LO1 - state->f_IF1_actual;
- state->AS_Data.f_LO1_FracN_Avoid = MT2063_LO1_FRACN_AVOID;
- state->AS_Data.f_LO2_FracN_Avoid = MT2063_LO2_FRACN_AVOID;
- state->num_regs = MT2063_REG_END_REGS;
- state->AS_Data.avoidDECT = MT2063_AVOID_BOTH;
- state->ctfilt_sw = 0;
+ /* set RF AGC on */
+ mt2063_set_reg_mask(state, MT2063_REG_PD1_TGT, 0x40, 0x40);
- state->CTFiltMax[0] = 69230000;
- state->CTFiltMax[1] = 105770000;
- state->CTFiltMax[2] = 140350000;
- state->CTFiltMax[3] = 177110000;
- state->CTFiltMax[4] = 212860000;
- state->CTFiltMax[5] = 241130000;
- state->CTFiltMax[6] = 274370000;
- state->CTFiltMax[7] = 309820000;
- state->CTFiltMax[8] = 342450000;
- state->CTFiltMax[9] = 378870000;
- state->CTFiltMax[10] = 416210000;
- state->CTFiltMax[11] = 456500000;
- state->CTFiltMax[12] = 495790000;
- state->CTFiltMax[13] = 534530000;
- state->CTFiltMax[14] = 572610000;
- state->CTFiltMax[15] = 598970000;
- state->CTFiltMax[16] = 635910000;
- state->CTFiltMax[17] = 672130000;
- state->CTFiltMax[18] = 714840000;
- state->CTFiltMax[19] = 739660000;
- state->CTFiltMax[20] = 770410000;
- state->CTFiltMax[21] = 814660000;
- state->CTFiltMax[22] = 846950000;
- state->CTFiltMax[23] = 867820000;
- state->CTFiltMax[24] = 915980000;
- state->CTFiltMax[25] = 947450000;
- state->CTFiltMax[26] = 983110000;
- state->CTFiltMax[27] = 1021630000;
- state->CTFiltMax[28] = 1061870000;
- state->CTFiltMax[29] = 1098330000;
- state->CTFiltMax[30] = 1138990000;
+ /* first IF Filter Queue enable and first IF Filter queue */
+ mt2063_set_reg_mask(state, MT2063_REG_FIFF_CTRL2,
+ (1 << 7) | (0 << 4), 0xf0);
+ /* trigger FIFF calibration, needed after changing FIFFQ */
+ mt2063_set_reg_mask(state, MT2063_REG_FIFF_CTRL, 0x01, 0x01);
+ mt2063_set_reg_mask(state, MT2063_REG_FIFF_CTRL, 0x00, 0x01);
- /*
- ** Fetch the FCU osc value and use it and the fRef value to
- ** scale all of the Band Max values
- */
+ /* set DNC1 GC on */
+ mt2063_set_reg_mask(state, MT2063_REG_DNC_GAIN, 0x00, 0x03);
+ /* set DNC2 GC on */
+ mt2063_set_reg_mask(state, MT2063_REG_VGA_GAIN, 0x00, 0x03);
+ /* set PD2MUX = 0 */
+ mt2063_set_reg_mask(state, MT2063_REG_RSVD_20, 0x00, 0x40);
- state->reg[MT2063_REG_CTUNE_CTRL] = 0x0A;
- status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
- &state->reg[MT2063_REG_CTUNE_CTRL], 1);
- if (status < 0)
- return status;
+ /* ac LNA max */
+ mt2063_set_reg_mask(state, MT2063_REG_LNA_OV, 0x1f, 0x1f);
- /* Read the ClearTune filter calibration value */
- status = mt2063_read(state, MT2063_REG_FIFFC,
- &state->reg[MT2063_REG_FIFFC], 1);
- if (status < 0)
- return status;
+ /* ac RF max */
+ mt2063_set_reg_mask(state, MT2063_REG_RF_OV, 0x1f, 0x1f);
- fcu_osc = state->reg[MT2063_REG_FIFFC];
+ /* first IF ATN */
+ if (state->tuner_id == MT2063_B0)
+ mt2063_set_reg_mask(state, MT2063_REG_FIF_OV, 5, 0x1f);
+ else
+ mt2063_set_reg_mask(state, MT2063_REG_FIF_OV, 29, 0x1f);
- state->reg[MT2063_REG_CTUNE_CTRL] = 0x00;
- status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
- &state->reg[MT2063_REG_CTUNE_CTRL], 1);
- if (status < 0)
- return status;
+ /* set ClearTune in auto mode */
+ mt2063_set_reg_mask(state, MT2063_REG_CTUNE_CTRL, 0x00, 0x08);
- /* Adjust each of the values in the ClearTune filter cross-over table */
- for (i = 0; i < 31; i++)
- state->CTFiltMax[i] = (state->CTFiltMax[i] / 768) * (fcu_osc + 640);
+ /* set Bypass in auto mode */
+ mt2063_set_reg_mask(state, MT2063_REG_BYP_CTRL, 0x00, 0x80);
- status = MT2063_SoftwareShutdown(state, 1);
- if (status < 0)
- return status;
- status = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
- if (status < 0)
- return status;
+ /* close gate */
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 0);
- state->init = true;
+ mutex_unlock(&state->lock);
return 0;
}
-static int mt2063_get_status(struct dvb_frontend *fe, u32 *tuner_status)
+static int mt2063_sleep(struct dvb_frontend *fe)
{
struct mt2063_state *state = fe->tuner_priv;
- int status;
- dprintk(2, "\n");
+ dprintk(1, "\n");
+ mutex_lock(&state->lock);
- if (!state->init)
- return -ENODEV;
+ /* open gate */
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 1);
- *tuner_status = 0;
- status = mt2063_lockStatus(state);
- if (status < 0)
- return status;
- if (status)
- *tuner_status = TUNER_STATUS_LOCKED;
+ /* set all power bits off */
+ mt2063_shutdown(state, MT2063_ALL_SD);
- dprintk(1, "Tuner status: %d", *tuner_status);
+ /* close gate */
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 0);
+ mutex_unlock(&state->lock);
return 0;
}
@@ -2044,264 +513,157 @@ static int mt2063_release(struct dvb_frontend *fe)
{
struct mt2063_state *state = fe->tuner_priv;
- dprintk(2, "\n");
+ dprintk(1,"\n");
+
+ mutex_lock(&mt2063_list_mutex);
+
+ if (state)
+ hybrid_tuner_release_state(state);
+
+ mutex_unlock(&mt2063_list_mutex);
fe->tuner_priv = NULL;
- kfree(state);
return 0;
}
-static int mt2063_set_analog_params(struct dvb_frontend *fe,
- struct analog_parameters *params)
+static int mt2063_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
{
struct mt2063_state *state = fe->tuner_priv;
- s32 pict_car;
- s32 pict2chanb_vsb;
- s32 ch_bw;
- s32 if_mid;
- s32 rcvr_mode;
- int status;
-
- dprintk(2, "\n");
-
- if (!state->init) {
- status = mt2063_init(fe);
- if (status < 0)
- return status;
- }
-
- switch (params->mode) {
- case V4L2_TUNER_RADIO:
- pict_car = 38900000;
- ch_bw = 8000000;
- pict2chanb_vsb = -(ch_bw / 2);
- rcvr_mode = MT2063_OFFAIR_ANALOG;
- break;
- case V4L2_TUNER_ANALOG_TV:
- rcvr_mode = MT2063_CABLE_ANALOG;
- if (params->std & ~V4L2_STD_MN) {
- pict_car = 38900000;
- ch_bw = 6000000;
- pict2chanb_vsb = -1250000;
- } else if (params->std & V4L2_STD_PAL_G) {
- pict_car = 38900000;
- ch_bw = 7000000;
- pict2chanb_vsb = -1250000;
- } else { /* PAL/SECAM standards */
- pict_car = 38900000;
- ch_bw = 8000000;
- pict2chanb_vsb = -1250000;
- }
- break;
- default:
- return -EINVAL;
- }
- if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));
- state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */
- state->AS_Data.f_out = if_mid;
- state->AS_Data.f_out_bw = ch_bw + 750000;
- status = MT2063_SetReceiverMode(state, rcvr_mode);
- if (status < 0)
- return status;
+ dprintk(1, "\n");
- dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
- params->frequency, ch_bw, pict2chanb_vsb);
+ *frequency = state->if2 * 1000;
- status = MT2063_Tune(state, (params->frequency + (pict2chanb_vsb + (ch_bw / 2))));
- if (status < 0)
- return status;
+ dprintk(2, "if frequency is %d kHz\n", state->if2);
- state->frequency = params->frequency;
return 0;
}
-/*
- * As defined on EN 300 429, the DVB-C roll-off factor is 0.15.
- * So, the amount of the needed bandwith is given by:
- * Bw = Symbol_rate * (1 + 0.15)
- * As such, the maximum symbol rate supported by 6 MHz is given by:
- * max_symbol_rate = 6 MHz / 1.15 = 5217391 Bauds
- */
-#define MAX_SYMBOL_RATE_6MHz 5217391
+static struct dvb_tuner_ops mt2063_ops = {
+ .info = {
+ .name = "MT2063 Silicon Tuner",
+ .frequency_min = 48000000, /* 48 MHz */
+ .frequency_max = 1002000000, /* 1002 MHz */
+ .frequency_step = 50000, /* 50 kHz */
+ },
+ .release = mt2063_release,
+ .init = mt2063_init,
+ .sleep = mt2063_sleep,
-static int mt2063_set_params(struct dvb_frontend *fe)
+ .set_params = mt2063_set_params,
+ .set_analog_params = mt2063_set_analog_params,
+ .get_if_frequency = mt2063_get_if_frequency,
+ /* TODO */
+};
+
+static int mt2063_find_chip(struct mt2063_state *state)
{
- struct dtv_frontend_properties *c = &fe->dtv_property_cache;
- struct mt2063_state *state = fe->tuner_priv;
- int status;
- s32 pict_car;
- s32 pict2chanb_vsb;
- s32 ch_bw;
- s32 if_mid;
- s32 rcvr_mode;
+ int err;
+ u8 chip = 0, chip_hi = 0;
+ char *step;
+ struct dvb_frontend *fe = state->frontend;
- if (!state->init) {
- status = mt2063_init(fe);
- if (status < 0)
- return status;
- }
+ dprintk(1, "\n");
- dprintk(2, "\n");
+ /* open gate */
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 1);
- if (c->bandwidth_hz == 0)
- return -EINVAL;
- if (c->bandwidth_hz <= 6000000)
- ch_bw = 6000000;
- else if (c->bandwidth_hz <= 7000000)
- ch_bw = 7000000;
- else
- ch_bw = 8000000;
+ /* Read the Part/Rev code from the tuner */
+ err = mt2063_read(state, MT2063_REG_PART_REV, &chip);
+ if (err < 0) {
+ printk(KERN_ERR "Can't read mt2063 part ID\n");
+ return -ENODEV;
+ }
- switch (c->delivery_system) {
- case SYS_DVBT:
- rcvr_mode = MT2063_OFFAIR_COFDM;
- pict_car = 36125000;
- pict2chanb_vsb = -(ch_bw / 2);
+ /* Check the part/rev code */
+ switch (chip) {
+ case MT2063_B0:
+ step = "B0";
break;
- case SYS_DVBC_ANNEX_A:
- case SYS_DVBC_ANNEX_C:
- rcvr_mode = MT2063_CABLE_QAM;
- pict_car = 36125000;
- pict2chanb_vsb = -(ch_bw / 2);
+ case MT2063_B1:
+ step = "B1";
+ break;
+ case MT2063_B2:
+ step = "B2";
+ break;
+ case MT2063_B3:
+ step = "B3";
break;
default:
- return -EINVAL;
- }
- if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));
-
- state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */
- state->AS_Data.f_out = if_mid;
- state->AS_Data.f_out_bw = ch_bw + 750000;
- status = MT2063_SetReceiverMode(state, rcvr_mode);
- if (status < 0)
- return status;
-
- dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
- c->frequency, ch_bw, pict2chanb_vsb);
-
- status = MT2063_Tune(state, (c->frequency + (pict2chanb_vsb + (ch_bw / 2))));
-
- if (status < 0)
- return status;
-
- state->frequency = c->frequency;
- return 0;
-}
-
-static int mt2063_get_if_frequency(struct dvb_frontend *fe, u32 *freq)
-{
- struct mt2063_state *state = fe->tuner_priv;
-
- dprintk(2, "\n");
-
- if (!state->init)
+ printk(KERN_ERR "mt2063: Unknown mt2063 device ID (0x%02x)\n",
+ chip);
return -ENODEV;
+ }
- *freq = state->AS_Data.f_out;
-
- dprintk(1, "IF frequency: %d\n", *freq);
-
- return 0;
-}
-
-static int mt2063_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
-{
- struct mt2063_state *state = fe->tuner_priv;
-
- dprintk(2, "\n");
-
- if (!state->init)
+ /* Check the 2nd byte of the Part/Rev code from the tuner */
+ mt2063_read(state, MT2063_REG_RSVD_3B, &chip_hi);
+ if ((chip_hi & 0x80) != 0x00) {
+ printk(KERN_ERR "mt2063: Unknown part ID (0x%02x%02x)\n",
+ chip, chip_hi);
return -ENODEV;
+ }
- *bw = state->AS_Data.f_out_bw - 750000;
+ printk(KERN_INFO "mt2063: detected a mt2063 rev %s", step);
+ state->tuner_id = chip;
- dprintk(1, "bandwidth: %d\n", *bw);
+ /* close gate */
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 0);
return 0;
}
-static struct dvb_tuner_ops mt2063_ops = {
- .info = {
- .name = "MT2063 Silicon Tuner",
- .frequency_min = 45000000,
- .frequency_max = 850000000,
- .frequency_step = 0,
- },
-
- .init = mt2063_init,
- .sleep = MT2063_Sleep,
- .get_status = mt2063_get_status,
- .set_analog_params = mt2063_set_analog_params,
- .set_params = mt2063_set_params,
- .get_if_frequency = mt2063_get_if_frequency,
- .get_bandwidth = mt2063_get_bandwidth,
- .release = mt2063_release,
-};
-
struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe,
- struct mt2063_config *config,
- struct i2c_adapter *i2c)
+ struct mt2063_config *config,
+ struct i2c_adapter *i2c)
{
struct mt2063_state *state = NULL;
+ int instance, ret;
+
+ dprintk(1, "\n");
- dprintk(2, "\n");
+ mutex_lock(&mt2063_list_mutex);
- state = kzalloc(sizeof(struct mt2063_state), GFP_KERNEL);
- if (state == NULL)
- goto error;
+ instance = hybrid_tuner_request_state(struct mt2063_state, state,
+ hybrid_tuner_instance_list,
+ i2c, config->tuner_address,
+ "mt2063");
- state->config = config;
- state->i2c = i2c;
- state->frontend = fe;
- state->reference = config->refclock / 1000; /* kHz */
- fe->tuner_priv = state;
- fe->ops.tuner_ops = mt2063_ops;
+ switch(instance) {
+ case 0:
+ goto fail;
+ case 1:
+ /* new instance */
+ state->i2c = i2c;
+ state->i2c_addr = config->tuner_address;
+ /* find chip */
+ mutex_init(&state->lock);
+ state->frontend = fe;
+ ret = mt2063_find_chip(state);
+ if (ret < 0)
+ goto fail;
+ fe->tuner_priv = state;
+ fe->ops.tuner_ops = mt2063_ops;
+ break;
+ default:
+ fe->tuner_priv = state;
+ fe->ops.tuner_ops = mt2063_ops;
+ break;
+ }
+ mutex_unlock(&mt2063_list_mutex);
- printk(KERN_INFO "%s: Attaching MT2063\n", __func__);
return fe;
-error:
- kfree(state);
+fail:
+ hybrid_tuner_release_state(state);
+ mutex_unlock(&mt2063_list_mutex);
return NULL;
}
EXPORT_SYMBOL_GPL(mt2063_attach);
-/*
- * Ancillary routines visible outside mt2063
- * FIXME: Remove them in favor of using standard tuner callbacks
- */
-unsigned int tuner_MT2063_SoftwareShutdown(struct dvb_frontend *fe)
-{
- struct mt2063_state *state = fe->tuner_priv;
- int err = 0;
-
- dprintk(2, "\n");
-
- err = MT2063_SoftwareShutdown(state, 1);
- if (err < 0)
- printk(KERN_ERR "%s: Couldn't shutdown\n", __func__);
-
- return err;
-}
-EXPORT_SYMBOL_GPL(tuner_MT2063_SoftwareShutdown);
-
-unsigned int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend *fe)
-{
- struct mt2063_state *state = fe->tuner_priv;
- int err = 0;
-
- dprintk(2, "\n");
-
- err = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
- if (err < 0)
- printk(KERN_ERR "%s: Invalid parameter\n", __func__);
-
- return err;
-}
-EXPORT_SYMBOL_GPL(tuner_MT2063_ClearPowerMaskBits);
-
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_DESCRIPTION("MT2063 Silicon tuner");
MODULE_LICENSE("GPL");
+MODULE_VERSION("0.2");
diff --git a/drivers/media/common/tuners/mt2063.h b/drivers/media/common/tuners/mt2063.h
index 62d0e8e..4720757 100644
--- a/drivers/media/common/tuners/mt2063.h
+++ b/drivers/media/common/tuners/mt2063.h
@@ -1,3 +1,25 @@
+/*
+ * Driver for microtune mt2063 tuner
+ *
+ * Copyright (c) 2012 Stefan Ringel <linuxtv@stefanringel.de>
+ * Copyright (c) 2011 Mauro Carvalho Chehab <mchehab@redhat.com>
+ *
+ * This driver came from a driver originally written by:
+ * Henry Wang <Henry.wang@AzureWave.com>
+ * Made publicly available by Terratec, at:
+ * http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
+ * The original driver's license is GPL, as declared with MODULE_LICENSE()
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation under version 2 of the License.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
#ifndef __MT2063_H__
#define __MT2063_H__
@@ -10,27 +32,19 @@ struct mt2063_config {
#if defined(CONFIG_MEDIA_TUNER_MT2063) || (defined(CONFIG_MEDIA_TUNER_MT2063_MODULE) && defined(MODULE))
struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe,
- struct mt2063_config *config,
- struct i2c_adapter *i2c);
+ struct mt2063_config *config,
+ struct i2c_adapter *i2c);
#else
static inline struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe,
- struct mt2063_config *config,
- struct i2c_adapter *i2c)
+ struct mt2063_config *config,
+ struct i2c_adapter *i2c)
{
- printk(KERN_WARNING "%s: Driver disabled by Kconfig\n", __func__);
+ printk(KERN_WARNING "%s: Driver disable by Kconfig\n", __func__);
return NULL;
}
-int mt2063_setTune(struct dvb_frontend *fe, u32 f_in,
- u32 bw_in,
- enum MTTune_atv_standard tv_type);
-
-/* FIXME: Should use the standard DVB attachment interfaces */
-unsigned int tuner_MT2063_SoftwareShutdown(struct dvb_frontend *fe);
-unsigned int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend *fe);
-
-#endif /* CONFIG_DVB_MT2063 */
+#endif /* CONFIG_MEDIA_TUNER_MT2063 */
#endif /* __MT2063_H__ */
diff --git a/drivers/media/common/tuners/mt2063_priv.h b/drivers/media/common/tuners/mt2063_priv.h
new file mode 100644
index 0000000..a164bae
--- /dev/null
+++ b/drivers/media/common/tuners/mt2063_priv.h
@@ -0,0 +1,234 @@
+/*
+ * Driver for microtune mt2063 tuner
+ *
+ * Copyright (c) 2012 Stefan Ringel <linuxtv@stefanringel.de>
+ * Copyright (c) 2011 Mauro Carvalho Chehab <mchehab@redhat.com>
+ *
+ * This driver came from a driver originally written by:
+ * Henry Wang <Henry.wang@AzureWave.com>
+ * Made publicly available by Terratec, at:
+ * http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
+ * The original driver's license is GPL, as declared with MODULE_LICENSE()
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation under version 2 of the License.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#include "tuner-i2c.h"
+
+#ifndef __MT2063_PRIV_H__
+#define __MT2063_PRIV_H__
+
+#define MT2063_REG_PART_REV 0x00 /* Part/Rev Code */
+#define MT2063_REG_LO1CQ_1 0x01 /* LO1C Queued Byte 1 */
+#define MT2063_REG_LO1CQ_2 0x02 /* LO1C Queued Byte 2 */
+#define MT2063_REG_LO2CQ_1 0x03 /* LO2C Queued Byte 1 */
+#define MT2063_REG_LO2CQ_2 0x04 /* LO2C Queued Byte 2 */
+#define MT2063_REG_LO2CQ_3 0x05 /* LO2C Queued Byte 3 */
+#define MT2063_REG_RSVD_06 0x06
+#define MT2063_REG_LO_STATUS 0x07 /* LO Status */
+#define MT2063_REG_FIFFC 0x08 /* FIFF Center */
+#define MT2063_REG_CLEARTUNE 0x09 /* ClearTune Filter */
+#define MT2063_REG_ADC_OUT 0x0a /* ADC Output */
+#define MT2063_REG_LO1C_1 0x0b /* LO1C Byte 1 */
+#define MT2063_REG_LO1C_2 0x0c /* LO1C Byte 2 */
+#define MT2063_REG_LO2C_1 0x0d /* LO2C Byte 1 */
+#define MT2063_REG_LO2C_2 0x0e /* LO2C Byte 2 */
+#define MT2063_REG_LO2C_3 0x0f /* LO2C Byte 3 */
+#define MT2063_REG_RSVD_10 0x10
+#define MT2063_REG_PWR_1 0x11 /* Power Byte 1 */
+#define MT2063_REG_PWR_2 0x12 /* Power Byte 2 */
+#define MT2063_REG_TEMP_STATUS 0x13 /* Temperature Status */
+#define MT2063_REG_XO_STATUS 0x14 /* Crystal Status */
+#define MT2063_REG_RF_STATUS 0x15 /* RF Attn Status */
+#define MT2063_REG_FIF_STATUS 0x16 /* FIF Attn Status */
+#define MT2063_REG_LNA_OV 0x17 /* LNA Attn Override */
+#define MT2063_REG_RF_OV 0x18 /* RF Attn Override */
+#define MT2063_REG_FIF_OV 0x19 /* FIF Attn Override */
+#define MT2063_REG_LNA_TGT 0x1a /* LNA Target */
+#define MT2063_REG_PD1_TGT 0x1b /* Power Detection 1 Target */
+#define MT2063_REG_PD2_TGT 0x1c /* Power Detection 2 Target */
+#define MT2063_REG_RSVD_1D 0x1d
+#define MT2063_REG_RSVD_1E 0x1e
+#define MT2063_REG_RSVD_1F 0x1f
+#define MT2063_REG_RSVD_20 0x20
+#define MT2063_REG_BYP_CTRL 0x21 /* Bypass Control */
+#define MT2063_REG_RSVD_22 0x22
+#define MT2063_REG_RSVD_23 0x23
+#define MT2063_REG_RSVD_24 0x24
+#define MT2063_REG_RSVD_25 0x25
+#define MT2063_REG_RSVD_26 0x26
+#define MT2063_REG_RSVD_27 0x27
+#define MT2063_REG_FIFF_CTRL 0x28 /* FIFF Control */
+#define MT2063_REG_FIFF_OFFSET 0x29 /* FIFF Offset */
+#define MT2063_REG_CTUNE_CTRL 0x2a /* ClearTune Control */
+#define MT2063_REG_CTUNE_OV 0x2b /* ClearTune Override */
+#define MT2063_REG_CTRL_2C 0x2c
+#define MT2063_REG_FIFF_CTRL2 0x2d /* FIFF Control 2 */
+#define MT2063_REG_RSVD_2E 0x2e
+#define MT2063_REG_DNC_GAIN 0x2f /* DNC Gain Control */
+#define MT2063_REG_VGA_GAIN 0x30 /* VGA Gain Control */
+#define MT2063_REG_RSVD_31 0x31
+#define MT2063_REG_TEMP_SEL 0x32 /* Temperature Selection */
+#define MT2063_REG_RSVD_33 0x33
+#define MT2063_REG_RSVD_34 0x34
+#define MT2063_REG_RSVD_35 0x35
+#define MT2063_REG_RSVD_36 0x36
+#define MT2063_REG_RSVD_37 0x37
+#define MT2063_REG_RSVD_38 0x38
+#define MT2063_REG_RSVD_39 0x39
+#define MT2063_REG_RSVD_3A 0x3a
+#define MT2063_REG_RSVD_3B 0x3b
+#define MT2063_REG_RSVD_3C 0x3c
+
+/*
+ * Chip ID's
+ */
+#define MT2063_B0 0x9b
+#define MT2063_B1 0x9c
+#define MT2063_B2 0x9d
+#define MT2063_B3 0x9e
+
+
+/*
+ * tuner defaults for each tuner
+ */
+static const u8 MT2063B0_defaults[] = {
+ /* Reg, Value */
+ 0x19, 0x05,
+ 0x1b, 0x1d,
+ 0x1c, 0x1f,
+ 0x1d, 0x0f,
+ 0x1e, 0x3f,
+ 0x1f, 0x0f,
+ 0x20, 0x3f,
+ 0x22, 0x21,
+ 0x23, 0x3f,
+ 0x24, 0x20,
+ 0x25, 0x3f,
+ 0x27, 0xee,
+ 0x2c, 0x27, /* bit at 0x20 is cleared below */
+ 0x30, 0x03,
+ 0x2c, 0x07, /* bit at 0x20 is cleared here */
+ 0x2d, 0x87,
+ 0x2e, 0xaa,
+ 0x28, 0xe1, /* Set the FIFCrst bit here */
+ 0x28, 0xe0, /* Clear the FIFCrst bit here */
+ 0x00
+};
+
+static const u8 MT2063B1_defaults [] = {
+ 0x11, 0x10, /* new EnableAFCsd */
+ 0x19, 0x05,
+ 0x1a, 0x6c,
+ 0x1b, 0x24,
+ 0x1c, 0x28,
+ 0x1d, 0x8f,
+ 0x1e, 0x14,
+ 0x1f, 0x8f,
+ 0x20, 0x57,
+ 0x22, 0x21,
+ 0x23, 0x3c,
+ 0x24, 0x20,
+ 0x2c, 0x24, /* bit at 0x20 is cleared below */
+ 0x2d, 0x87,
+ 0x2f, 0xf3,
+ 0x30, 0x0c,
+ 0x31, 0x1b,
+ 0x2c, 0x04, /* bit at 0x20 is cleared here */
+ 0x28, 0xe1, /* Set the FIFCrst bit here */
+ 0x28, 0xe0, /* Clear the FIFCrst bit here */
+ 0x00
+};
+
+static const u8 MT2063B3_defaults [] = {
+ 0x19, 0x3d,
+ 0x2c, 0x24, /* bit at 0x20 is cleared below */
+ 0x2c, 0x04, /* bit at 0x20 is cleared here */
+ 0x28, 0xe1, /* Set the FIFCrst bit here */
+ 0x28, 0xe0, /* Clear the FIFCrst bit here */
+ 0x00
+};
+
+/*
+ * Parameter for function MT2063_SetPowerMask that specifies the power down
+ * of various sections of the MT2063.
+ */
+enum MT2063_Mask_Bits {
+ MT2063_REG_SD = 0x0040, /* Shutdown regulator */
+ MT2063_SRO_SD = 0x0020, /* Shutdown SRO */
+ MT2063_AFC_SD = 0x0010, /* Shutdown AFC A/D */
+ MT2063_PD_SD = 0x0002, /* Enable power detector shutdown */
+ MT2063_PDADC_SD = 0x0001, /* Enable power detector A/D shutdown */
+ MT2063_VCO_SD = 0x8000, /* Enable VCO shutdown */
+ MT2063_LTX_SD = 0x4000, /* Enable LTX shutdown */
+ MT2063_LT1_SD = 0x2000, /* Enable LT1 shutdown */
+ MT2063_LNA_SD = 0x1000, /* Enable LNA shutdown */
+ MT2063_UPC_SD = 0x0800, /* Enable upconverter shutdown */
+ MT2063_DNC_SD = 0x0400, /* Enable downconverter shutdown */
+ MT2063_VGA_SD = 0x0200, /* Enable VGA shutdown */
+ MT2063_AMP_SD = 0x0100, /* Enable AMP shutdown */
+ MT2063_ALL_SD = 0xFF73, /* All shutdown bits for this tuner */
+ MT2063_NONE_SD = 0x0000 /* No shutdown bits */
+};
+
+enum mt2063_delsys {
+ MT2063_CABLE_QAM = 0, /* dvb-c */
+ MT2063_CABLE_ANALOG, /* analog tv */
+ MT2063_OFFAIR_COFDM, /* dvb-t */
+ MT2063_OFFAIR_COFDM_SAWLESS, /* dvb-t sawless */
+ MT2063_OFFAIR_ANALOG, /* analog radio */
+ MT2063_OFFAIR_8VSB, /* atsc */
+};
+
+static const char *mt2063_mode_name[] = {
+ [MT2063_CABLE_QAM] = "digital cable",
+ [MT2063_CABLE_ANALOG] = "analog cable",
+ [MT2063_OFFAIR_COFDM] = "digital offair",
+ [MT2063_OFFAIR_COFDM_SAWLESS] = "digital offair without sawless",
+ [MT2063_OFFAIR_ANALOG] = "analog offair",
+ [MT2063_OFFAIR_8VSB] = "digital offair 8vsb/ATSC",
+};
+
+static const u8 LNARIN [] = { 0, 0, 3, 3, 3, 3 };
+static const u8 LNATGT [] = { 44, 43, 43, 43, 43, 43 };
+static const u8 RFOVDIS [] = { 0, 0, 0, 0, 0, 0 };
+static const u8 PD1TGT [] = { 36, 36, 38, 38, 36, 38 };
+static const u8 FIFOVDIS [] = { 0, 0, 0, 0, 0, 0 };
+static const u8 PD2TGT [] = { 40, 33, 42, 42, 33, 42 };
+
+/*
+ * main structure of mt2063
+ */
+struct mt2063_state {
+ /* i2c adapter */
+ struct i2c_adapter *i2c;
+ u8 i2c_addr;
+
+ /* hybrid stuff */
+ struct list_head hybrid_tuner_instance_list;
+ struct tuner_i2c_props i2c_props;
+
+ /* device lock for remote calls */
+ struct mutex lock;
+
+ /* device configurations */
+ const struct mt2063_config *config;
+ struct dvb_tuner_ops ops;
+ struct dvb_frontend *frontend;
+ struct tuner_state status; /* ? */
+ u32 frequency; /* input frequency in kHz */
+ u32 if2; /* if output frequency in kHz */
+ u32 bw; /* bandwidth spurcheck */
+ u32 tuner_id;
+ enum mt2063_delsys mode;
+};
+
+
+#endif /* __MT2063_PRIV_H__ */
--
1.7.7
^ permalink raw reply related [flat|nested] 4+ messages in thread
* Re: [PATCH] mt2063: rework tuner driver
2012-01-09 16:37 [PATCH] mt2063: rework tuner driver linuxtv
@ 2012-01-26 20:05 ` Mauro Carvalho Chehab
2012-02-14 16:30 ` Stefan Ringel
0 siblings, 1 reply; 4+ messages in thread
From: Mauro Carvalho Chehab @ 2012-01-26 20:05 UTC (permalink / raw)
To: linuxtv; +Cc: linux-media
Hi Stefan,
Em 09-01-2012 14:37, linuxtv@stefanringel.de escreveu:
> From: Stefan Ringel <linuxtv@stefanringel.de>
>
> - remove DECT stuff
> - use a simpler calculation
> - add hybrid stuff
> - use ClearTune, first IF filter, bypass filter in auto mode
> - move a few register setting from mt2063_set_mode into mt2063_init
> - reorganise main structure
Nice cleanup, but it broke support on az6007. I tried to just re-add
the I2C gateway control, but this wasn't enough. The changes you've
made are so big that it is not trivial to have a glue about what
change could have affected it.
This is basically the reason why you shouldn't be doing 6 different
unrelated changes into the same patch.
> Signed-off-by: Stefan Ringel <linuxtv@stefanringel.de>
Btw, I had to rebase your patch, in order to make it work
with the current version. As reference, this is the patch
I applied.
[PATCH] mt2063: rework tuner driver
From: Stefan Ringel <linuxtv@stefanringel.de>
- remove DECT stuff
- use a simpler calculation
- add hybrid stuff
- use ClearTune, first IF filter, bypass filter in auto mode
- move a few register setting from mt2063_set_mode into mt2063_init
- reorganise main structure
[mchehab@redhat.com: Rebase to current tree, fix a typo and re-added i2c-gate-control]
Signed-off-by: Stefan Ringel <linuxtv@stefanringel.de>
---
drivers/media/common/tuners/mt2063.c | 2522 +++++------------------------
drivers/media/common/tuners/mt2063.h | 42 +-
drivers/media/common/tuners/mt2063_priv.h | 234 +++
3 files changed, 704 insertions(+), 2094 deletions(-)
create mode 100644 drivers/media/common/tuners/mt2063_priv.h
Index: patchwork/drivers/media/common/tuners/mt2063.c
===================================================================
--- patchwork.orig/drivers/media/common/tuners/mt2063.c
+++ patchwork/drivers/media/common/tuners/mt2063.c
@@ -1,12 +1,13 @@
/*
- * Driver for mt2063 Micronas tuner
+ * Driver for microtune mt2063 tuner
*
* Copyright (c) 2011 Mauro Carvalho Chehab <mchehab@redhat.com>
+ * Copyright (c) 2012 Stefan Ringel <linuxtv@stefanringel.de>
*
* This driver came from a driver originally written by:
- * Henry Wang <Henry.wang@AzureWave.com>
+ * Henry Wang <Henry.wang@AzureWave.com>
* Made publicly available by Terratec, at:
- * http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
+ * http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
* The original driver's license is GPL, as declared with MODULE_LICENSE()
*
* This program is free software; you can redistribute it and/or modify
@@ -26,241 +27,41 @@
#include <linux/videodev2.h>
#include "mt2063.h"
+#include "mt2063_priv.h"
static unsigned int debug;
module_param(debug, int, 0644);
-MODULE_PARM_DESC(debug, "Set Verbosity level");
+MODULE_PARM_DESC(debug, "Set debug level");
-#define dprintk(level, fmt, arg...) do { \
-if (debug >= level) \
- printk(KERN_DEBUG "mt2063 %s: " fmt, __func__, ## arg); \
-} while (0)
-
-
-/* positive error codes used internally */
-
-/* Info: Unavoidable LO-related spur may be present in the output */
-#define MT2063_SPUR_PRESENT_ERR (0x00800000)
-
-/* Info: Mask of bits used for # of LO-related spurs that were avoided during tuning */
-#define MT2063_SPUR_CNT_MASK (0x001f0000)
-#define MT2063_SPUR_SHIFT (16)
-
-/* Info: Upconverter frequency is out of range (may be reason for MT_UPC_UNLOCK) */
-#define MT2063_UPC_RANGE (0x04000000)
-
-/* Info: Downconverter frequency is out of range (may be reason for MT_DPC_UNLOCK) */
-#define MT2063_DNC_RANGE (0x08000000)
-
-/*
- * Constant defining the version of the following structure
- * and therefore the API for this code.
- *
- * When compiling the tuner driver, the preprocessor will
- * check against this version number to make sure that
- * it matches the version that the tuner driver knows about.
- */
+static DEFINE_MUTEX(mt2063_list_mutex);
+static LIST_HEAD(hybrid_tuner_instance_list);
-/* DECT Frequency Avoidance */
-#define MT2063_DECT_AVOID_US_FREQS 0x00000001
-
-#define MT2063_DECT_AVOID_EURO_FREQS 0x00000002
-
-#define MT2063_EXCLUDE_US_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_US_FREQS) != 0)
-
-#define MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_EURO_FREQS) != 0)
-
-enum MT2063_DECT_Avoid_Type {
- MT2063_NO_DECT_AVOIDANCE = 0, /* Do not create DECT exclusion zones. */
- MT2063_AVOID_US_DECT = MT2063_DECT_AVOID_US_FREQS, /* Avoid US DECT frequencies. */
- MT2063_AVOID_EURO_DECT = MT2063_DECT_AVOID_EURO_FREQS, /* Avoid European DECT frequencies. */
- MT2063_AVOID_BOTH /* Avoid both regions. Not typically used. */
-};
-
-#define MT2063_MAX_ZONES 48
-
-struct MT2063_ExclZone_t {
- u32 min_;
- u32 max_;
- struct MT2063_ExclZone_t *next_;
-};
-
-/*
- * Structure of data needed for Spur Avoidance
- */
-struct MT2063_AvoidSpursData_t {
- u32 f_ref;
- u32 f_in;
- u32 f_LO1;
- u32 f_if1_Center;
- u32 f_if1_Request;
- u32 f_if1_bw;
- u32 f_LO2;
- u32 f_out;
- u32 f_out_bw;
- u32 f_LO1_Step;
- u32 f_LO2_Step;
- u32 f_LO1_FracN_Avoid;
- u32 f_LO2_FracN_Avoid;
- u32 f_zif_bw;
- u32 f_min_LO_Separation;
- u32 maxH1;
- u32 maxH2;
- enum MT2063_DECT_Avoid_Type avoidDECT;
- u32 bSpurPresent;
- u32 bSpurAvoided;
- u32 nSpursFound;
- u32 nZones;
- struct MT2063_ExclZone_t *freeZones;
- struct MT2063_ExclZone_t *usedZones;
- struct MT2063_ExclZone_t MT2063_ExclZones[MT2063_MAX_ZONES];
-};
-
-/*
- * Parameter for function MT2063_SetPowerMask that specifies the power down
- * of various sections of the MT2063.
- */
-enum MT2063_Mask_Bits {
- MT2063_REG_SD = 0x0040, /* Shutdown regulator */
- MT2063_SRO_SD = 0x0020, /* Shutdown SRO */
- MT2063_AFC_SD = 0x0010, /* Shutdown AFC A/D */
- MT2063_PD_SD = 0x0002, /* Enable power detector shutdown */
- MT2063_PDADC_SD = 0x0001, /* Enable power detector A/D shutdown */
- MT2063_VCO_SD = 0x8000, /* Enable VCO shutdown */
- MT2063_LTX_SD = 0x4000, /* Enable LTX shutdown */
- MT2063_LT1_SD = 0x2000, /* Enable LT1 shutdown */
- MT2063_LNA_SD = 0x1000, /* Enable LNA shutdown */
- MT2063_UPC_SD = 0x0800, /* Enable upconverter shutdown */
- MT2063_DNC_SD = 0x0400, /* Enable downconverter shutdown */
- MT2063_VGA_SD = 0x0200, /* Enable VGA shutdown */
- MT2063_AMP_SD = 0x0100, /* Enable AMP shutdown */
- MT2063_ALL_SD = 0xFF73, /* All shutdown bits for this tuner */
- MT2063_NONE_SD = 0x0000 /* No shutdown bits */
-};
-
-/*
- * Possible values for MT2063_DNC_OUTPUT
- */
-enum MT2063_DNC_Output_Enable {
- MT2063_DNC_NONE = 0,
- MT2063_DNC_1,
- MT2063_DNC_2,
- MT2063_DNC_BOTH
-};
-
-/*
- * Two-wire serial bus subaddresses of the tuner registers.
- * Also known as the tuner's register addresses.
- */
-enum MT2063_Register_Offsets {
- MT2063_REG_PART_REV = 0, /* 0x00: Part/Rev Code */
- MT2063_REG_LO1CQ_1, /* 0x01: LO1C Queued Byte 1 */
- MT2063_REG_LO1CQ_2, /* 0x02: LO1C Queued Byte 2 */
- MT2063_REG_LO2CQ_1, /* 0x03: LO2C Queued Byte 1 */
- MT2063_REG_LO2CQ_2, /* 0x04: LO2C Queued Byte 2 */
- MT2063_REG_LO2CQ_3, /* 0x05: LO2C Queued Byte 3 */
- MT2063_REG_RSVD_06, /* 0x06: Reserved */
- MT2063_REG_LO_STATUS, /* 0x07: LO Status */
- MT2063_REG_FIFFC, /* 0x08: FIFF Center */
- MT2063_REG_CLEARTUNE, /* 0x09: ClearTune Filter */
- MT2063_REG_ADC_OUT, /* 0x0A: ADC_OUT */
- MT2063_REG_LO1C_1, /* 0x0B: LO1C Byte 1 */
- MT2063_REG_LO1C_2, /* 0x0C: LO1C Byte 2 */
- MT2063_REG_LO2C_1, /* 0x0D: LO2C Byte 1 */
- MT2063_REG_LO2C_2, /* 0x0E: LO2C Byte 2 */
- MT2063_REG_LO2C_3, /* 0x0F: LO2C Byte 3 */
- MT2063_REG_RSVD_10, /* 0x10: Reserved */
- MT2063_REG_PWR_1, /* 0x11: PWR Byte 1 */
- MT2063_REG_PWR_2, /* 0x12: PWR Byte 2 */
- MT2063_REG_TEMP_STATUS, /* 0x13: Temp Status */
- MT2063_REG_XO_STATUS, /* 0x14: Crystal Status */
- MT2063_REG_RF_STATUS, /* 0x15: RF Attn Status */
- MT2063_REG_FIF_STATUS, /* 0x16: FIF Attn Status */
- MT2063_REG_LNA_OV, /* 0x17: LNA Attn Override */
- MT2063_REG_RF_OV, /* 0x18: RF Attn Override */
- MT2063_REG_FIF_OV, /* 0x19: FIF Attn Override */
- MT2063_REG_LNA_TGT, /* 0x1A: Reserved */
- MT2063_REG_PD1_TGT, /* 0x1B: Pwr Det 1 Target */
- MT2063_REG_PD2_TGT, /* 0x1C: Pwr Det 2 Target */
- MT2063_REG_RSVD_1D, /* 0x1D: Reserved */
- MT2063_REG_RSVD_1E, /* 0x1E: Reserved */
- MT2063_REG_RSVD_1F, /* 0x1F: Reserved */
- MT2063_REG_RSVD_20, /* 0x20: Reserved */
- MT2063_REG_BYP_CTRL, /* 0x21: Bypass Control */
- MT2063_REG_RSVD_22, /* 0x22: Reserved */
- MT2063_REG_RSVD_23, /* 0x23: Reserved */
- MT2063_REG_RSVD_24, /* 0x24: Reserved */
- MT2063_REG_RSVD_25, /* 0x25: Reserved */
- MT2063_REG_RSVD_26, /* 0x26: Reserved */
- MT2063_REG_RSVD_27, /* 0x27: Reserved */
- MT2063_REG_FIFF_CTRL, /* 0x28: FIFF Control */
- MT2063_REG_FIFF_OFFSET, /* 0x29: FIFF Offset */
- MT2063_REG_CTUNE_CTRL, /* 0x2A: Reserved */
- MT2063_REG_CTUNE_OV, /* 0x2B: Reserved */
- MT2063_REG_CTRL_2C, /* 0x2C: Reserved */
- MT2063_REG_FIFF_CTRL2, /* 0x2D: Fiff Control */
- MT2063_REG_RSVD_2E, /* 0x2E: Reserved */
- MT2063_REG_DNC_GAIN, /* 0x2F: DNC Control */
- MT2063_REG_VGA_GAIN, /* 0x30: VGA Gain Ctrl */
- MT2063_REG_RSVD_31, /* 0x31: Reserved */
- MT2063_REG_TEMP_SEL, /* 0x32: Temperature Selection */
- MT2063_REG_RSVD_33, /* 0x33: Reserved */
- MT2063_REG_RSVD_34, /* 0x34: Reserved */
- MT2063_REG_RSVD_35, /* 0x35: Reserved */
- MT2063_REG_RSVD_36, /* 0x36: Reserved */
- MT2063_REG_RSVD_37, /* 0x37: Reserved */
- MT2063_REG_RSVD_38, /* 0x38: Reserved */
- MT2063_REG_RSVD_39, /* 0x39: Reserved */
- MT2063_REG_RSVD_3A, /* 0x3A: Reserved */
- MT2063_REG_RSVD_3B, /* 0x3B: Reserved */
- MT2063_REG_RSVD_3C, /* 0x3C: Reserved */
- MT2063_REG_END_REGS
-};
-
-struct mt2063_state {
- struct i2c_adapter *i2c;
-
- bool init;
-
- const struct mt2063_config *config;
- struct dvb_tuner_ops ops;
- struct dvb_frontend *frontend;
- struct tuner_state status;
-
- u32 frequency;
- u32 srate;
- u32 bandwidth;
- u32 reference;
-
- u32 tuner_id;
- struct MT2063_AvoidSpursData_t AS_Data;
- u32 f_IF1_actual;
- u32 rcvr_mode;
- u32 ctfilt_sw;
- u32 CTFiltMax[31];
- u32 num_regs;
- u8 reg[MT2063_REG_END_REGS];
-};
+/* debug level
+ * 0 don't debug
+ * 1 called functions without i2c comunications
+ * 2 additional calculating, result etc.
+ * 3 maximum debug information
+ */
+#define dprintk(level, fmt, arg...) do { \
+if (debug >= level) \
+ printk(KERN_DEBUG "mt2063 %s: " fmt, __func__, ##arg); \
+} while (0)
-/*
- * mt2063_write - Write data into the I2C bus
- */
-static u32 mt2063_write(struct mt2063_state *state, u8 reg, u8 *data, u32 len)
+static int mt2063_write(struct mt2063_state *state, u8 reg, u8 data)
{
struct dvb_frontend *fe = state->frontend;
int ret;
- u8 buf[60];
+ u8 buf[2] = { reg, data };
+
struct i2c_msg msg = {
- .addr = state->config->tuner_address,
+ .addr = state->i2c_addr,
.flags = 0,
.buf = buf,
- .len = len + 1
+ .len = 2,
};
- dprintk(2, "\n");
-
- msg.buf[0] = reg;
- memcpy(msg.buf + 1, data, len);
+ dprintk(3, "writing at address 0x%02x, subadresse 0x%02x, \
+ value 0x%02x\n", state->i2c_addr, reg, data);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
@@ -274,2034 +75,605 @@ static u32 mt2063_write(struct mt2063_st
return ret;
}
-/*
- * mt2063_write - Write register data into the I2C bus, caching the value
- */
-static u32 mt2063_setreg(struct mt2063_state *state, u8 reg, u8 val)
-{
- u32 status;
-
- dprintk(2, "\n");
-
- if (reg >= MT2063_REG_END_REGS)
- return -ERANGE;
-
- status = mt2063_write(state, reg, &val, 1);
- if (status < 0)
- return status;
-
- state->reg[reg] = val;
-
- return 0;
-}
-
-/*
- * mt2063_read - Read data from the I2C bus
- */
-static u32 mt2063_read(struct mt2063_state *state,
- u8 subAddress, u8 *pData, u32 cnt)
+static int mt2063_read(struct mt2063_state *state, u8 reg, u8 *data)
{
- u32 status = 0; /* Status to be returned */
struct dvb_frontend *fe = state->frontend;
- u32 i = 0;
+ int ret = 0;
+
+ struct i2c_msg msg[] = { {
+ .addr = state->i2c_addr,
+ .flags = 0,
+ .buf = ®,
+ .len = 1,
+ }, {
+ .addr = state->i2c_addr,
+ .flags = I2C_M_RD,
+ .buf = data,
+ .len = 1,
+ } };
- dprintk(2, "addr 0x%02x, cnt %d\n", subAddress, cnt);
+ dprintk(3, "\n");
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
-
- for (i = 0; i < cnt; i++) {
- u8 b0[] = { subAddress + i };
- struct i2c_msg msg[] = {
- {
- .addr = state->config->tuner_address,
- .flags = 0,
- .buf = b0,
- .len = 1
- }, {
- .addr = state->config->tuner_address,
- .flags = I2C_M_RD,
- .buf = pData + i,
- .len = 1
- }
- };
-
- status = i2c_transfer(state->i2c, msg, 2);
- dprintk(2, "addr 0x%02x, ret = %d, val = 0x%02x\n",
- subAddress + i, status, *(pData + i));
- if (status < 0)
- break;
- }
+ ret = i2c_transfer(state->i2c, msg, 2);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
- if (status < 0)
- printk(KERN_ERR "Can't read from address 0x%02x,\n",
- subAddress + i);
-
- return status;
-}
-
-/*
- * FIXME: Is this really needed?
- */
-static int MT2063_Sleep(struct dvb_frontend *fe)
-{
- /*
- * ToDo: Add code here to implement a OS blocking
- */
- msleep(10);
-
- return 0;
-}
-
-/*
- * Microtune spur avoidance
- */
-
-/* Implement ceiling, floor functions. */
-#define ceil(n, d) (((n) < 0) ? (-((-(n))/(d))) : (n)/(d) + ((n)%(d) != 0))
-#define floor(n, d) (((n) < 0) ? (-((-(n))/(d))) - ((n)%(d) != 0) : (n)/(d))
-
-struct MT2063_FIFZone_t {
- s32 min_;
- s32 max_;
-};
-
-static struct MT2063_ExclZone_t *InsertNode(struct MT2063_AvoidSpursData_t
- *pAS_Info,
- struct MT2063_ExclZone_t *pPrevNode)
-{
- struct MT2063_ExclZone_t *pNode;
-
- dprintk(2, "\n");
-
- /* Check for a node in the free list */
- if (pAS_Info->freeZones != NULL) {
- /* Use one from the free list */
- pNode = pAS_Info->freeZones;
- pAS_Info->freeZones = pNode->next_;
- } else {
- /* Grab a node from the array */
- pNode = &pAS_Info->MT2063_ExclZones[pAS_Info->nZones];
- }
-
- if (pPrevNode != NULL) {
- pNode->next_ = pPrevNode->next_;
- pPrevNode->next_ = pNode;
- } else { /* insert at the beginning of the list */
-
- pNode->next_ = pAS_Info->usedZones;
- pAS_Info->usedZones = pNode;
- }
-
- pAS_Info->nZones++;
- return pNode;
-}
-
-static struct MT2063_ExclZone_t *RemoveNode(struct MT2063_AvoidSpursData_t
- *pAS_Info,
- struct MT2063_ExclZone_t *pPrevNode,
- struct MT2063_ExclZone_t
- *pNodeToRemove)
-{
- struct MT2063_ExclZone_t *pNext = pNodeToRemove->next_;
-
- dprintk(2, "\n");
-
- /* Make previous node point to the subsequent node */
- if (pPrevNode != NULL)
- pPrevNode->next_ = pNext;
-
- /* Add pNodeToRemove to the beginning of the freeZones */
- pNodeToRemove->next_ = pAS_Info->freeZones;
- pAS_Info->freeZones = pNodeToRemove;
-
- /* Decrement node count */
- pAS_Info->nZones--;
-
- return pNext;
-}
-
-/*
- * MT_AddExclZone()
- *
- * Add (and merge) an exclusion zone into the list.
- * If the range (f_min, f_max) is totally outside the
- * 1st IF BW, ignore the entry.
- * If the range (f_min, f_max) is negative, ignore the entry.
- */
-static void MT2063_AddExclZone(struct MT2063_AvoidSpursData_t *pAS_Info,
- u32 f_min, u32 f_max)
-{
- struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
- struct MT2063_ExclZone_t *pPrev = NULL;
- struct MT2063_ExclZone_t *pNext = NULL;
-
- dprintk(2, "\n");
-
- /* Check to see if this overlaps the 1st IF filter */
- if ((f_max > (pAS_Info->f_if1_Center - (pAS_Info->f_if1_bw / 2)))
- && (f_min < (pAS_Info->f_if1_Center + (pAS_Info->f_if1_bw / 2)))
- && (f_min < f_max)) {
- /*
- * 1 2 3 4 5 6
- *
- * New entry: |---| |--| |--| |-| |---| |--|
- * or or or or or
- * Existing: |--| |--| |--| |---| |-| |--|
- */
-
- /* Check for our place in the list */
- while ((pNode != NULL) && (pNode->max_ < f_min)) {
- pPrev = pNode;
- pNode = pNode->next_;
- }
-
- if ((pNode != NULL) && (pNode->min_ < f_max)) {
- /* Combine me with pNode */
- if (f_min < pNode->min_)
- pNode->min_ = f_min;
- if (f_max > pNode->max_)
- pNode->max_ = f_max;
- } else {
- pNode = InsertNode(pAS_Info, pPrev);
- pNode->min_ = f_min;
- pNode->max_ = f_max;
- }
-
- /* Look for merging possibilities */
- pNext = pNode->next_;
- while ((pNext != NULL) && (pNext->min_ < pNode->max_)) {
- if (pNext->max_ > pNode->max_)
- pNode->max_ = pNext->max_;
- /* Remove pNext, return ptr to pNext->next */
- pNext = RemoveNode(pAS_Info, pNode, pNext);
- }
- }
-}
-
-/*
- * Reset all exclusion zones.
- * Add zones to protect the PLL FracN regions near zero
- */
-static void MT2063_ResetExclZones(struct MT2063_AvoidSpursData_t *pAS_Info)
-{
- u32 center;
-
- dprintk(2, "\n");
-
- pAS_Info->nZones = 0; /* this clears the used list */
- pAS_Info->usedZones = NULL; /* reset ptr */
- pAS_Info->freeZones = NULL; /* reset ptr */
-
- center =
- pAS_Info->f_ref *
- ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 +
- pAS_Info->f_in) / pAS_Info->f_ref) - pAS_Info->f_in;
- while (center <
- pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
- pAS_Info->f_LO1_FracN_Avoid) {
- /* Exclude LO1 FracN */
- MT2063_AddExclZone(pAS_Info,
- center - pAS_Info->f_LO1_FracN_Avoid,
- center - 1);
- MT2063_AddExclZone(pAS_Info, center + 1,
- center + pAS_Info->f_LO1_FracN_Avoid);
- center += pAS_Info->f_ref;
- }
-
- center =
- pAS_Info->f_ref *
- ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 -
- pAS_Info->f_out) / pAS_Info->f_ref) + pAS_Info->f_out;
- while (center <
- pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
- pAS_Info->f_LO2_FracN_Avoid) {
- /* Exclude LO2 FracN */
- MT2063_AddExclZone(pAS_Info,
- center - pAS_Info->f_LO2_FracN_Avoid,
- center - 1);
- MT2063_AddExclZone(pAS_Info, center + 1,
- center + pAS_Info->f_LO2_FracN_Avoid);
- center += pAS_Info->f_ref;
- }
-
- if (MT2063_EXCLUDE_US_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
- /* Exclude LO1 values that conflict with DECT channels */
- MT2063_AddExclZone(pAS_Info, 1920836000 - pAS_Info->f_in, 1922236000 - pAS_Info->f_in); /* Ctr = 1921.536 */
- MT2063_AddExclZone(pAS_Info, 1922564000 - pAS_Info->f_in, 1923964000 - pAS_Info->f_in); /* Ctr = 1923.264 */
- MT2063_AddExclZone(pAS_Info, 1924292000 - pAS_Info->f_in, 1925692000 - pAS_Info->f_in); /* Ctr = 1924.992 */
- MT2063_AddExclZone(pAS_Info, 1926020000 - pAS_Info->f_in, 1927420000 - pAS_Info->f_in); /* Ctr = 1926.720 */
- MT2063_AddExclZone(pAS_Info, 1927748000 - pAS_Info->f_in, 1929148000 - pAS_Info->f_in); /* Ctr = 1928.448 */
- }
-
- if (MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
- MT2063_AddExclZone(pAS_Info, 1896644000 - pAS_Info->f_in, 1898044000 - pAS_Info->f_in); /* Ctr = 1897.344 */
- MT2063_AddExclZone(pAS_Info, 1894916000 - pAS_Info->f_in, 1896316000 - pAS_Info->f_in); /* Ctr = 1895.616 */
- MT2063_AddExclZone(pAS_Info, 1893188000 - pAS_Info->f_in, 1894588000 - pAS_Info->f_in); /* Ctr = 1893.888 */
- MT2063_AddExclZone(pAS_Info, 1891460000 - pAS_Info->f_in, 1892860000 - pAS_Info->f_in); /* Ctr = 1892.16 */
- MT2063_AddExclZone(pAS_Info, 1889732000 - pAS_Info->f_in, 1891132000 - pAS_Info->f_in); /* Ctr = 1890.432 */
- MT2063_AddExclZone(pAS_Info, 1888004000 - pAS_Info->f_in, 1889404000 - pAS_Info->f_in); /* Ctr = 1888.704 */
- MT2063_AddExclZone(pAS_Info, 1886276000 - pAS_Info->f_in, 1887676000 - pAS_Info->f_in); /* Ctr = 1886.976 */
- MT2063_AddExclZone(pAS_Info, 1884548000 - pAS_Info->f_in, 1885948000 - pAS_Info->f_in); /* Ctr = 1885.248 */
- MT2063_AddExclZone(pAS_Info, 1882820000 - pAS_Info->f_in, 1884220000 - pAS_Info->f_in); /* Ctr = 1883.52 */
- MT2063_AddExclZone(pAS_Info, 1881092000 - pAS_Info->f_in, 1882492000 - pAS_Info->f_in); /* Ctr = 1881.792 */
- }
-}
-
-/*
- * MT_ChooseFirstIF - Choose the best available 1st IF
- * If f_Desired is not excluded, choose that first.
- * Otherwise, return the value closest to f_Center that is
- * not excluded
- */
-static u32 MT2063_ChooseFirstIF(struct MT2063_AvoidSpursData_t *pAS_Info)
-{
- /*
- * Update "f_Desired" to be the nearest "combinational-multiple" of
- * "f_LO1_Step".
- * The resulting number, F_LO1 must be a multiple of f_LO1_Step.
- * And F_LO1 is the arithmetic sum of f_in + f_Center.
- * Neither f_in, nor f_Center must be a multiple of f_LO1_Step.
- * However, the sum must be.
- */
- const u32 f_Desired =
- pAS_Info->f_LO1_Step *
- ((pAS_Info->f_if1_Request + pAS_Info->f_in +
- pAS_Info->f_LO1_Step / 2) / pAS_Info->f_LO1_Step) -
- pAS_Info->f_in;
- const u32 f_Step =
- (pAS_Info->f_LO1_Step >
- pAS_Info->f_LO2_Step) ? pAS_Info->f_LO1_Step : pAS_Info->
- f_LO2_Step;
- u32 f_Center;
- s32 i;
- s32 j = 0;
- u32 bDesiredExcluded = 0;
- u32 bZeroExcluded = 0;
- s32 tmpMin, tmpMax;
- s32 bestDiff;
- struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
- struct MT2063_FIFZone_t zones[MT2063_MAX_ZONES];
-
- dprintk(2, "\n");
-
- if (pAS_Info->nZones == 0)
- return f_Desired;
-
- /*
- * f_Center needs to be an integer multiple of f_Step away
- * from f_Desired
- */
- if (pAS_Info->f_if1_Center > f_Desired)
- f_Center =
- f_Desired +
- f_Step *
- ((pAS_Info->f_if1_Center - f_Desired +
- f_Step / 2) / f_Step);
- else
- f_Center =
- f_Desired -
- f_Step *
- ((f_Desired - pAS_Info->f_if1_Center +
- f_Step / 2) / f_Step);
-
- /*
- * Take MT_ExclZones, center around f_Center and change the
- * resolution to f_Step
- */
- while (pNode != NULL) {
- /* floor function */
- tmpMin =
- floor((s32) (pNode->min_ - f_Center), (s32) f_Step);
-
- /* ceil function */
- tmpMax =
- ceil((s32) (pNode->max_ - f_Center), (s32) f_Step);
-
- if ((pNode->min_ < f_Desired) && (pNode->max_ > f_Desired))
- bDesiredExcluded = 1;
-
- if ((tmpMin < 0) && (tmpMax > 0))
- bZeroExcluded = 1;
-
- /* See if this zone overlaps the previous */
- if ((j > 0) && (tmpMin < zones[j - 1].max_))
- zones[j - 1].max_ = tmpMax;
- else {
- /* Add new zone */
- zones[j].min_ = tmpMin;
- zones[j].max_ = tmpMax;
- j++;
- }
- pNode = pNode->next_;
- }
-
- /*
- * If the desired is okay, return with it
- */
- if (bDesiredExcluded == 0)
- return f_Desired;
-
- /*
- * If the desired is excluded and the center is okay, return with it
- */
- if (bZeroExcluded == 0)
- return f_Center;
-
- /* Find the value closest to 0 (f_Center) */
- bestDiff = zones[0].min_;
- for (i = 0; i < j; i++) {
- if (abs(zones[i].min_) < abs(bestDiff))
- bestDiff = zones[i].min_;
- if (abs(zones[i].max_) < abs(bestDiff))
- bestDiff = zones[i].max_;
- }
-
- if (bestDiff < 0)
- return f_Center - ((u32) (-bestDiff) * f_Step);
-
- return f_Center + (bestDiff * f_Step);
-}
-
-/**
- * gcd() - Uses Euclid's algorithm
- *
- * @u, @v: Unsigned values whose GCD is desired.
- *
- * Returns THE greatest common divisor of u and v, if either value is 0,
- * the other value is returned as the result.
- */
-static u32 MT2063_gcd(u32 u, u32 v)
-{
- u32 r;
+ if (ret < 0)
+ printk(KERN_ERR "Can't read from address 0x%02x,\n", reg);
- while (v != 0) {
- r = u % v;
- u = v;
- v = r;
- }
+ dprintk(3, "readed at address 0x%02x, subadress 0x%02x, \
+ value 0x%02x\n", state->i2c_addr, reg, data[0]);
- return u;
+ return ret;
}
-/**
- * IsSpurInBand() - Checks to see if a spur will be present within the IF's
- * bandwidth. (fIFOut +/- fIFBW, -fIFOut +/- fIFBW)
- *
- * ma mb mc md
- * <--+-+-+-------------------+-------------------+-+-+-->
- * | ^ 0 ^ |
- * ^ b=-fIFOut+fIFBW/2 -b=+fIFOut-fIFBW/2 ^
- * a=-fIFOut-fIFBW/2 -a=+fIFOut+fIFBW/2
- *
- * Note that some equations are doubled to prevent round-off
- * problems when calculating fIFBW/2
- *
- * @pAS_Info: Avoid Spurs information block
- * @fm: If spur, amount f_IF1 has to move negative
- * @fp: If spur, amount f_IF1 has to move positive
- *
- * Returns 1 if an LO spur would be present, otherwise 0.
- */
-static u32 IsSpurInBand(struct MT2063_AvoidSpursData_t *pAS_Info,
- u32 *fm, u32 * fp)
+static int mt2063_set_reg_mask(struct mt2063_state *state, u8 reg,
+ u8 val, u8 mask)
{
- /*
- ** Calculate LO frequency settings.
- */
- u32 n, n0;
- const u32 f_LO1 = pAS_Info->f_LO1;
- const u32 f_LO2 = pAS_Info->f_LO2;
- const u32 d = pAS_Info->f_out + pAS_Info->f_out_bw / 2;
- const u32 c = d - pAS_Info->f_out_bw;
- const u32 f = pAS_Info->f_zif_bw / 2;
- const u32 f_Scale = (f_LO1 / (UINT_MAX / 2 / pAS_Info->maxH1)) + 1;
- s32 f_nsLO1, f_nsLO2;
- s32 f_Spur;
- u32 ma, mb, mc, md, me, mf;
- u32 lo_gcd, gd_Scale, gc_Scale, gf_Scale, hgds, hgfs, hgcs;
+ u8 old_val, new_val;
- dprintk(2, "\n");
+ dprintk(3, "\n");
- *fm = 0;
+ mt2063_read(state, reg, &old_val);
- /*
- ** For each edge (d, c & f), calculate a scale, based on the gcd
- ** of f_LO1, f_LO2 and the edge value. Use the larger of this
- ** gcd-based scale factor or f_Scale.
- */
- lo_gcd = MT2063_gcd(f_LO1, f_LO2);
- gd_Scale = max((u32) MT2063_gcd(lo_gcd, d), f_Scale);
- hgds = gd_Scale / 2;
- gc_Scale = max((u32) MT2063_gcd(lo_gcd, c), f_Scale);
- hgcs = gc_Scale / 2;
- gf_Scale = max((u32) MT2063_gcd(lo_gcd, f), f_Scale);
- hgfs = gf_Scale / 2;
-
- n0 = DIV_ROUND_UP(f_LO2 - d, f_LO1 - f_LO2);
-
- /* Check out all multiples of LO1 from n0 to m_maxLOSpurHarmonic */
- for (n = n0; n <= pAS_Info->maxH1; ++n) {
- md = (n * ((f_LO1 + hgds) / gd_Scale) -
- ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);
-
- /* If # fLO2 harmonics > m_maxLOSpurHarmonic, then no spurs present */
- if (md >= pAS_Info->maxH1)
- break;
-
- ma = (n * ((f_LO1 + hgds) / gd_Scale) +
- ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);
-
- /* If no spurs between +/- (f_out + f_IFBW/2), then try next harmonic */
- if (md == ma)
- continue;
-
- mc = (n * ((f_LO1 + hgcs) / gc_Scale) -
- ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
- if (mc != md) {
- f_nsLO1 = (s32) (n * (f_LO1 / gc_Scale));
- f_nsLO2 = (s32) (mc * (f_LO2 / gc_Scale));
- f_Spur =
- (gc_Scale * (f_nsLO1 - f_nsLO2)) +
- n * (f_LO1 % gc_Scale) - mc * (f_LO2 % gc_Scale);
-
- *fp = ((f_Spur - (s32) c) / (mc - n)) + 1;
- *fm = (((s32) d - f_Spur) / (mc - n)) + 1;
- return 1;
- }
-
- /* Location of Zero-IF-spur to be checked */
- me = (n * ((f_LO1 + hgfs) / gf_Scale) +
- ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
- mf = (n * ((f_LO1 + hgfs) / gf_Scale) -
- ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
- if (me != mf) {
- f_nsLO1 = n * (f_LO1 / gf_Scale);
- f_nsLO2 = me * (f_LO2 / gf_Scale);
- f_Spur =
- (gf_Scale * (f_nsLO1 - f_nsLO2)) +
- n * (f_LO1 % gf_Scale) - me * (f_LO2 % gf_Scale);
-
- *fp = ((f_Spur + (s32) f) / (me - n)) + 1;
- *fm = (((s32) f - f_Spur) / (me - n)) + 1;
- return 1;
- }
+ new_val = (old_val & ~mask) | (val & mask);
- mb = (n * ((f_LO1 + hgcs) / gc_Scale) +
- ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
- if (ma != mb) {
- f_nsLO1 = n * (f_LO1 / gc_Scale);
- f_nsLO2 = ma * (f_LO2 / gc_Scale);
- f_Spur =
- (gc_Scale * (f_nsLO1 - f_nsLO2)) +
- n * (f_LO1 % gc_Scale) - ma * (f_LO2 % gc_Scale);
-
- *fp = (((s32) d + f_Spur) / (ma - n)) + 1;
- *fm = (-(f_Spur + (s32) c) / (ma - n)) + 1;
- return 1;
- }
- }
+ if (new_val != old_val)
+ mt2063_write(state, reg, new_val);
- /* No spurs found */
return 0;
}
-/*
- * MT_AvoidSpurs() - Main entry point to avoid spurs.
- * Checks for existing spurs in present LO1, LO2 freqs
- * and if present, chooses spur-free LO1, LO2 combination
- * that tunes the same input/output frequencies.
- */
-static u32 MT2063_AvoidSpurs(struct MT2063_AvoidSpursData_t *pAS_Info)
+static void mt2063_shutdown(struct mt2063_state *state,
+ enum MT2063_Mask_Bits sd)
{
- u32 status = 0;
- u32 fm, fp; /* restricted range on LO's */
- pAS_Info->bSpurAvoided = 0;
- pAS_Info->nSpursFound = 0;
-
- dprintk(2, "\n");
-
- if (pAS_Info->maxH1 == 0)
- return 0;
+ dprintk(1, "\n");
/*
- * Avoid LO Generated Spurs
- *
- * Make sure that have no LO-related spurs within the IF output
- * bandwidth.
+ * set all power bits
*
- * If there is an LO spur in this band, start at the current IF1 frequency
- * and work out until we find a spur-free frequency or run up against the
- * 1st IF SAW band edge. Use temporary copies of fLO1 and fLO2 so that they
- * will be unchanged if a spur-free setting is not found.
*/
- pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp);
- if (pAS_Info->bSpurPresent) {
- u32 zfIF1 = pAS_Info->f_LO1 - pAS_Info->f_in; /* current attempt at a 1st IF */
- u32 zfLO1 = pAS_Info->f_LO1; /* current attempt at an LO1 freq */
- u32 zfLO2 = pAS_Info->f_LO2; /* current attempt at an LO2 freq */
- u32 delta_IF1;
- u32 new_IF1;
-
- /*
- ** Spur was found, attempt to find a spur-free 1st IF
- */
- do {
- pAS_Info->nSpursFound++;
-
- /* Raise f_IF1_upper, if needed */
- MT2063_AddExclZone(pAS_Info, zfIF1 - fm, zfIF1 + fp);
-
- /* Choose next IF1 that is closest to f_IF1_CENTER */
- new_IF1 = MT2063_ChooseFirstIF(pAS_Info);
-
- if (new_IF1 > zfIF1) {
- pAS_Info->f_LO1 += (new_IF1 - zfIF1);
- pAS_Info->f_LO2 += (new_IF1 - zfIF1);
- } else {
- pAS_Info->f_LO1 -= (zfIF1 - new_IF1);
- pAS_Info->f_LO2 -= (zfIF1 - new_IF1);
- }
- zfIF1 = new_IF1;
-
- if (zfIF1 > pAS_Info->f_if1_Center)
- delta_IF1 = zfIF1 - pAS_Info->f_if1_Center;
- else
- delta_IF1 = pAS_Info->f_if1_Center - zfIF1;
-
- pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp);
- /*
- * Continue while the new 1st IF is still within the 1st IF bandwidth
- * and there is a spur in the band (again)
- */
- } while ((2 * delta_IF1 + pAS_Info->f_out_bw <= pAS_Info->f_if1_bw) && pAS_Info->bSpurPresent);
-
- /*
- * Use the LO-spur free values found. If the search went all
- * the way to the 1st IF band edge and always found spurs, just
- * leave the original choice. It's as "good" as any other.
- */
- if (pAS_Info->bSpurPresent == 1) {
- status |= MT2063_SPUR_PRESENT_ERR;
- pAS_Info->f_LO1 = zfLO1;
- pAS_Info->f_LO2 = zfLO2;
- } else
- pAS_Info->bSpurAvoided = 1;
- }
-
- status |=
- ((pAS_Info->
- nSpursFound << MT2063_SPUR_SHIFT) & MT2063_SPUR_CNT_MASK);
-
- return status;
-}
-
-/*
- * Constants used by the tuning algorithm
- */
-#define MT2063_REF_FREQ (16000000UL) /* Reference oscillator Frequency (in Hz) */
-#define MT2063_IF1_BW (22000000UL) /* The IF1 filter bandwidth (in Hz) */
-#define MT2063_TUNE_STEP_SIZE (50000UL) /* Tune in steps of 50 kHz */
-#define MT2063_SPUR_STEP_HZ (250000UL) /* Step size (in Hz) to move IF1 when avoiding spurs */
-#define MT2063_ZIF_BW (2000000UL) /* Zero-IF spur-free bandwidth (in Hz) */
-#define MT2063_MAX_HARMONICS_1 (15UL) /* Highest intra-tuner LO Spur Harmonic to be avoided */
-#define MT2063_MAX_HARMONICS_2 (5UL) /* Highest inter-tuner LO Spur Harmonic to be avoided */
-#define MT2063_MIN_LO_SEP (1000000UL) /* Minimum inter-tuner LO frequency separation */
-#define MT2063_LO1_FRACN_AVOID (0UL) /* LO1 FracN numerator avoid region (in Hz) */
-#define MT2063_LO2_FRACN_AVOID (199999UL) /* LO2 FracN numerator avoid region (in Hz) */
-#define MT2063_MIN_FIN_FREQ (44000000UL) /* Minimum input frequency (in Hz) */
-#define MT2063_MAX_FIN_FREQ (1100000000UL) /* Maximum input frequency (in Hz) */
-#define MT2063_MIN_FOUT_FREQ (36000000UL) /* Minimum output frequency (in Hz) */
-#define MT2063_MAX_FOUT_FREQ (57000000UL) /* Maximum output frequency (in Hz) */
-#define MT2063_MIN_DNC_FREQ (1293000000UL) /* Minimum LO2 frequency (in Hz) */
-#define MT2063_MAX_DNC_FREQ (1614000000UL) /* Maximum LO2 frequency (in Hz) */
-#define MT2063_MIN_UPC_FREQ (1396000000UL) /* Minimum LO1 frequency (in Hz) */
-#define MT2063_MAX_UPC_FREQ (2750000000UL) /* Maximum LO1 frequency (in Hz) */
-
-/*
- * Define the supported Part/Rev codes for the MT2063
- */
-#define MT2063_B0 (0x9B)
-#define MT2063_B1 (0x9C)
-#define MT2063_B2 (0x9D)
-#define MT2063_B3 (0x9E)
-
-/**
- * mt2063_lockStatus - Checks to see if LO1 and LO2 are locked
- *
- * @state: struct mt2063_state pointer
- *
- * This function returns 0, if no lock, 1 if locked and a value < 1 if error
- */
-static unsigned int mt2063_lockStatus(struct mt2063_state *state)
-{
- const u32 nMaxWait = 100; /* wait a maximum of 100 msec */
- const u32 nPollRate = 2; /* poll status bits every 2 ms */
- const u32 nMaxLoops = nMaxWait / nPollRate;
- const u8 LO1LK = 0x80;
- u8 LO2LK = 0x08;
- u32 status;
- u32 nDelays = 0;
-
- dprintk(2, "\n");
-
- /* LO2 Lock bit was in a different place for B0 version */
- if (state->tuner_id == MT2063_B0)
- LO2LK = 0x40;
-
- do {
- status = mt2063_read(state, MT2063_REG_LO_STATUS,
- &state->reg[MT2063_REG_LO_STATUS], 1);
-
- if (status < 0)
- return status;
-
- if ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) ==
- (LO1LK | LO2LK)) {
- return TUNER_STATUS_LOCKED | TUNER_STATUS_STEREO;
- }
- msleep(nPollRate); /* Wait between retries */
- } while (++nDelays < nMaxLoops);
-
- /*
- * Got no lock or partial lock
- */
- return 0;
-}
-
-/*
- * Constants for setting receiver modes.
- * (6 modes defined at this time, enumerated by mt2063_delivery_sys)
- * (DNC1GC & DNC2GC are the values, which are used, when the specific
- * DNC Output is selected, the other is always off)
- *
- * enum mt2063_delivery_sys
- * -------------+----------------------------------------------
- * Mode 0 : | MT2063_CABLE_QAM
- * Mode 1 : | MT2063_CABLE_ANALOG
- * Mode 2 : | MT2063_OFFAIR_COFDM
- * Mode 3 : | MT2063_OFFAIR_COFDM_SAWLESS
- * Mode 4 : | MT2063_OFFAIR_ANALOG
- * Mode 5 : | MT2063_OFFAIR_8VSB
- * --------------+----------------------------------------------
- *
- * |<---------- Mode -------------->|
- * Reg Field | 0 | 1 | 2 | 3 | 4 | 5 |
- * ------------+-----+-----+-----+-----+-----+-----+
- * RFAGCen | OFF | OFF | OFF | OFF | OFF | OFF
- * LNARin | 0 | 0 | 3 | 3 | 3 | 3
- * FIFFQen | 1 | 1 | 1 | 1 | 1 | 1
- * FIFFq | 0 | 0 | 0 | 0 | 0 | 0
- * DNC1gc | 0 | 0 | 0 | 0 | 0 | 0
- * DNC2gc | 0 | 0 | 0 | 0 | 0 | 0
- * GCU Auto | 1 | 1 | 1 | 1 | 1 | 1
- * LNA max Atn | 31 | 31 | 31 | 31 | 31 | 31
- * LNA Target | 44 | 43 | 43 | 43 | 43 | 43
- * ign RF Ovl | 0 | 0 | 0 | 0 | 0 | 0
- * RF max Atn | 31 | 31 | 31 | 31 | 31 | 31
- * PD1 Target | 36 | 36 | 38 | 38 | 36 | 38
- * ign FIF Ovl | 0 | 0 | 0 | 0 | 0 | 0
- * FIF max Atn | 5 | 5 | 5 | 5 | 5 | 5
- * PD2 Target | 40 | 33 | 42 | 42 | 33 | 42
- */
-
-enum mt2063_delivery_sys {
- MT2063_CABLE_QAM = 0,
- MT2063_CABLE_ANALOG,
- MT2063_OFFAIR_COFDM,
- MT2063_OFFAIR_COFDM_SAWLESS,
- MT2063_OFFAIR_ANALOG,
- MT2063_OFFAIR_8VSB,
- MT2063_NUM_RCVR_MODES
-};
-
-static const char *mt2063_mode_name[] = {
- [MT2063_CABLE_QAM] = "digital cable",
- [MT2063_CABLE_ANALOG] = "analog cable",
- [MT2063_OFFAIR_COFDM] = "digital offair",
- [MT2063_OFFAIR_COFDM_SAWLESS] = "digital offair without SAW",
- [MT2063_OFFAIR_ANALOG] = "analog offair",
- [MT2063_OFFAIR_8VSB] = "analog offair 8vsb",
-};
-
-static const u8 RFAGCEN[] = { 0, 0, 0, 0, 0, 0 };
-static const u8 LNARIN[] = { 0, 0, 3, 3, 3, 3 };
-static const u8 FIFFQEN[] = { 1, 1, 1, 1, 1, 1 };
-static const u8 FIFFQ[] = { 0, 0, 0, 0, 0, 0 };
-static const u8 DNC1GC[] = { 0, 0, 0, 0, 0, 0 };
-static const u8 DNC2GC[] = { 0, 0, 0, 0, 0, 0 };
-static const u8 ACLNAMAX[] = { 31, 31, 31, 31, 31, 31 };
-static const u8 LNATGT[] = { 44, 43, 43, 43, 43, 43 };
-static const u8 RFOVDIS[] = { 0, 0, 0, 0, 0, 0 };
-static const u8 ACRFMAX[] = { 31, 31, 31, 31, 31, 31 };
-static const u8 PD1TGT[] = { 36, 36, 38, 38, 36, 38 };
-static const u8 FIFOVDIS[] = { 0, 0, 0, 0, 0, 0 };
-static const u8 ACFIFMAX[] = { 29, 29, 29, 29, 29, 29 };
-static const u8 PD2TGT[] = { 40, 33, 38, 42, 30, 38 };
-
-/*
- * mt2063_set_dnc_output_enable()
- */
-static u32 mt2063_get_dnc_output_enable(struct mt2063_state *state,
- enum MT2063_DNC_Output_Enable *pValue)
-{
- dprintk(2, "\n");
-
- if ((state->reg[MT2063_REG_DNC_GAIN] & 0x03) == 0x03) { /* if DNC1 is off */
- if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */
- *pValue = MT2063_DNC_NONE;
- else
- *pValue = MT2063_DNC_2;
- } else { /* DNC1 is on */
- if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */
- *pValue = MT2063_DNC_1;
- else
- *pValue = MT2063_DNC_BOTH;
- }
- return 0;
-}
-
-/*
- * mt2063_set_dnc_output_enable()
- */
-static u32 mt2063_set_dnc_output_enable(struct mt2063_state *state,
- enum MT2063_DNC_Output_Enable nValue)
-{
- u32 status = 0; /* Status to be returned */
- u8 val = 0;
-
- dprintk(2, "\n");
-
- /* selects, which DNC output is used */
- switch (nValue) {
- case MT2063_DNC_NONE:
- val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */
- if (state->reg[MT2063_REG_DNC_GAIN] !=
- val)
- status |=
- mt2063_setreg(state,
- MT2063_REG_DNC_GAIN,
- val);
-
- val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */
- if (state->reg[MT2063_REG_VGA_GAIN] !=
- val)
- status |=
- mt2063_setreg(state,
- MT2063_REG_VGA_GAIN,
- val);
-
- val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */
- if (state->reg[MT2063_REG_RSVD_20] !=
- val)
- status |=
- mt2063_setreg(state,
- MT2063_REG_RSVD_20,
- val);
-
- break;
- case MT2063_DNC_1:
- val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03); /* Set DNC1GC=x */
- if (state->reg[MT2063_REG_DNC_GAIN] !=
- val)
- status |=
- mt2063_setreg(state,
- MT2063_REG_DNC_GAIN,
- val);
-
- val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */
- if (state->reg[MT2063_REG_VGA_GAIN] !=
- val)
- status |=
- mt2063_setreg(state,
- MT2063_REG_VGA_GAIN,
- val);
-
- val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */
- if (state->reg[MT2063_REG_RSVD_20] !=
- val)
- status |=
- mt2063_setreg(state,
- MT2063_REG_RSVD_20,
- val);
-
- break;
- case MT2063_DNC_2:
- val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */
- if (state->reg[MT2063_REG_DNC_GAIN] !=
- val)
- status |=
- mt2063_setreg(state,
- MT2063_REG_DNC_GAIN,
- val);
-
- val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03); /* Set DNC2GC=x */
- if (state->reg[MT2063_REG_VGA_GAIN] !=
- val)
- status |=
- mt2063_setreg(state,
- MT2063_REG_VGA_GAIN,
- val);
-
- val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */
- if (state->reg[MT2063_REG_RSVD_20] !=
- val)
- status |=
- mt2063_setreg(state,
- MT2063_REG_RSVD_20,
- val);
-
- break;
- case MT2063_DNC_BOTH:
- val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03); /* Set DNC1GC=x */
- if (state->reg[MT2063_REG_DNC_GAIN] !=
- val)
- status |=
- mt2063_setreg(state,
- MT2063_REG_DNC_GAIN,
- val);
-
- val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03); /* Set DNC2GC=x */
- if (state->reg[MT2063_REG_VGA_GAIN] !=
- val)
- status |=
- mt2063_setreg(state,
- MT2063_REG_VGA_GAIN,
- val);
-
- val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */
- if (state->reg[MT2063_REG_RSVD_20] !=
- val)
- status |=
- mt2063_setreg(state,
- MT2063_REG_RSVD_20,
- val);
-
- break;
- default:
- break;
- }
-
- return status;
-}
-
-/*
- * MT2063_SetReceiverMode() - Set the MT2063 receiver mode, according with
- * the selected enum mt2063_delivery_sys type.
- *
- * (DNC1GC & DNC2GC are the values, which are used, when the specific
- * DNC Output is selected, the other is always off)
- *
- * @state: ptr to mt2063_state structure
- * @Mode: desired reciever delivery system
- *
- * Note: Register cache must be valid for it to work
- */
-
-static u32 MT2063_SetReceiverMode(struct mt2063_state *state,
- enum mt2063_delivery_sys Mode)
-{
- u32 status = 0; /* Status to be returned */
- u8 val;
- u32 longval;
-
- dprintk(2, "\n");
-
- if (Mode >= MT2063_NUM_RCVR_MODES)
- status = -ERANGE;
-
- /* RFAGCen */
- if (status >= 0) {
- val =
- (state->
- reg[MT2063_REG_PD1_TGT] & (u8) ~0x40) | (RFAGCEN[Mode]
- ? 0x40 :
- 0x00);
- if (state->reg[MT2063_REG_PD1_TGT] != val)
- status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
- }
-
- /* LNARin */
- if (status >= 0) {
- u8 val = (state->reg[MT2063_REG_CTRL_2C] & (u8) ~0x03) |
- (LNARIN[Mode] & 0x03);
- if (state->reg[MT2063_REG_CTRL_2C] != val)
- status |= mt2063_setreg(state, MT2063_REG_CTRL_2C, val);
- }
-
- /* FIFFQEN and FIFFQ */
- if (status >= 0) {
- val =
- (state->
- reg[MT2063_REG_FIFF_CTRL2] & (u8) ~0xF0) |
- (FIFFQEN[Mode] << 7) | (FIFFQ[Mode] << 4);
- if (state->reg[MT2063_REG_FIFF_CTRL2] != val) {
- status |=
- mt2063_setreg(state, MT2063_REG_FIFF_CTRL2, val);
- /* trigger FIFF calibration, needed after changing FIFFQ */
- val =
- (state->reg[MT2063_REG_FIFF_CTRL] | (u8) 0x01);
- status |=
- mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
- val =
- (state->
- reg[MT2063_REG_FIFF_CTRL] & (u8) ~0x01);
- status |=
- mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
- }
- }
-
- /* DNC1GC & DNC2GC */
- status |= mt2063_get_dnc_output_enable(state, &longval);
- status |= mt2063_set_dnc_output_enable(state, longval);
-
- /* acLNAmax */
- if (status >= 0) {
- u8 val = (state->reg[MT2063_REG_LNA_OV] & (u8) ~0x1F) |
- (ACLNAMAX[Mode] & 0x1F);
- if (state->reg[MT2063_REG_LNA_OV] != val)
- status |= mt2063_setreg(state, MT2063_REG_LNA_OV, val);
- }
-
- /* LNATGT */
- if (status >= 0) {
- u8 val = (state->reg[MT2063_REG_LNA_TGT] & (u8) ~0x3F) |
- (LNATGT[Mode] & 0x3F);
- if (state->reg[MT2063_REG_LNA_TGT] != val)
- status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
- }
-
- /* ACRF */
- if (status >= 0) {
- u8 val = (state->reg[MT2063_REG_RF_OV] & (u8) ~0x1F) |
- (ACRFMAX[Mode] & 0x1F);
- if (state->reg[MT2063_REG_RF_OV] != val)
- status |= mt2063_setreg(state, MT2063_REG_RF_OV, val);
- }
-
- /* PD1TGT */
- if (status >= 0) {
- u8 val = (state->reg[MT2063_REG_PD1_TGT] & (u8) ~0x3F) |
- (PD1TGT[Mode] & 0x3F);
- if (state->reg[MT2063_REG_PD1_TGT] != val)
- status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
- }
-
- /* FIFATN */
- if (status >= 0) {
- u8 val = ACFIFMAX[Mode];
- if (state->reg[MT2063_REG_PART_REV] != MT2063_B3 && val > 5)
- val = 5;
- val = (state->reg[MT2063_REG_FIF_OV] & (u8) ~0x1F) |
- (val & 0x1F);
- if (state->reg[MT2063_REG_FIF_OV] != val)
- status |= mt2063_setreg(state, MT2063_REG_FIF_OV, val);
- }
-
- /* PD2TGT */
- if (status >= 0) {
- u8 val = (state->reg[MT2063_REG_PD2_TGT] & (u8) ~0x3F) |
- (PD2TGT[Mode] & 0x3F);
- if (state->reg[MT2063_REG_PD2_TGT] != val)
- status |= mt2063_setreg(state, MT2063_REG_PD2_TGT, val);
- }
-
- /* Ignore ATN Overload */
- if (status >= 0) {
- val = (state->reg[MT2063_REG_LNA_TGT] & (u8) ~0x80) |
- (RFOVDIS[Mode] ? 0x80 : 0x00);
- if (state->reg[MT2063_REG_LNA_TGT] != val)
- status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
- }
-
- /* Ignore FIF Overload */
- if (status >= 0) {
- val = (state->reg[MT2063_REG_PD1_TGT] & (u8) ~0x80) |
- (FIFOVDIS[Mode] ? 0x80 : 0x00);
- if (state->reg[MT2063_REG_PD1_TGT] != val)
- status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
- }
-
- if (status >= 0) {
- state->rcvr_mode = Mode;
- dprintk(1, "mt2063 mode changed to %s\n",
- mt2063_mode_name[state->rcvr_mode]);
- }
-
- return status;
-}
-
-/*
- * MT2063_ClearPowerMaskBits () - Clears the power-down mask bits for various
- * sections of the MT2063
- *
- * @Bits: Mask bits to be cleared.
- *
- * See definition of MT2063_Mask_Bits type for description
- * of each of the power bits.
- */
-static u32 MT2063_ClearPowerMaskBits(struct mt2063_state *state,
- enum MT2063_Mask_Bits Bits)
-{
- u32 status = 0;
-
- dprintk(2, "\n");
- Bits = (enum MT2063_Mask_Bits)(Bits & MT2063_ALL_SD); /* Only valid bits for this tuner */
- if ((Bits & 0xFF00) != 0) {
- state->reg[MT2063_REG_PWR_2] &= ~(u8) (Bits >> 8);
- status |=
- mt2063_write(state,
- MT2063_REG_PWR_2,
- &state->reg[MT2063_REG_PWR_2], 1);
- }
- if ((Bits & 0xFF) != 0) {
- state->reg[MT2063_REG_PWR_1] &= ~(u8) (Bits & 0xFF);
- status |=
- mt2063_write(state,
- MT2063_REG_PWR_1,
- &state->reg[MT2063_REG_PWR_1], 1);
- }
-
- return status;
-}
-
-/*
- * MT2063_SoftwareShutdown() - Enables or disables software shutdown function.
- * When Shutdown is 1, any section whose power
- * mask is set will be shutdown.
- */
-static u32 MT2063_SoftwareShutdown(struct mt2063_state *state, u8 Shutdown)
-{
- u32 status;
-
- dprintk(2, "\n");
- if (Shutdown == 1)
- state->reg[MT2063_REG_PWR_1] |= 0x04;
- else
- state->reg[MT2063_REG_PWR_1] &= ~0x04;
-
- status = mt2063_write(state,
- MT2063_REG_PWR_1,
- &state->reg[MT2063_REG_PWR_1], 1);
-
- if (Shutdown != 1) {
- state->reg[MT2063_REG_BYP_CTRL] =
- (state->reg[MT2063_REG_BYP_CTRL] & 0x9F) | 0x40;
- status |=
- mt2063_write(state,
- MT2063_REG_BYP_CTRL,
- &state->reg[MT2063_REG_BYP_CTRL],
- 1);
- state->reg[MT2063_REG_BYP_CTRL] =
- (state->reg[MT2063_REG_BYP_CTRL] & 0x9F);
- status |=
- mt2063_write(state,
- MT2063_REG_BYP_CTRL,
- &state->reg[MT2063_REG_BYP_CTRL],
- 1);
+ if (sd == MT2063_NONE_SD) {
+ mt2063_write(state, MT2063_REG_PWR_1, 0x00);
+ mt2063_write(state, MT2063_REG_PWR_2, 0x00);
+ } else {
+ mt2063_set_reg_mask(state, MT2063_REG_PWR_1,
+ sd & 0xff, sd & 0xff);
+ mt2063_set_reg_mask(state, MT2063_REG_PWR_2, sd >> 8,
+ sd >> 8);
}
-
- return status;
-}
-
-static u32 MT2063_Round_fLO(u32 f_LO, u32 f_LO_Step, u32 f_ref)
-{
- return f_ref * (f_LO / f_ref)
- + f_LO_Step * (((f_LO % f_ref) + (f_LO_Step / 2)) / f_LO_Step);
}
-/**
- * fLO_FractionalTerm() - Calculates the portion contributed by FracN / denom.
- * This function preserves maximum precision without
- * risk of overflow. It accurately calculates
- * f_ref * num / denom to within 1 HZ with fixed math.
- *
- * @num : Fractional portion of the multiplier
- * @denom: denominator portion of the ratio
- * @f_Ref: SRO frequency.
- *
- * This calculation handles f_ref as two separate 14-bit fields.
- * Therefore, a maximum value of 2^28-1 may safely be used for f_ref.
- * This is the genesis of the magic number "14" and the magic mask value of
- * 0x03FFF.
- *
- * This routine successfully handles denom values up to and including 2^18.
- * Returns: f_ref * num / denom
- */
-static u32 MT2063_fLO_FractionalTerm(u32 f_ref, u32 num, u32 denom)
-{
- u32 t1 = (f_ref >> 14) * num;
- u32 term1 = t1 / denom;
- u32 loss = t1 % denom;
- u32 term2 =
- (((f_ref & 0x00003FFF) * num + (loss << 14)) + (denom / 2)) / denom;
- return (term1 << 14) + term2;
-}
-
-/*
- * CalcLO1Mult()- Calculates Integer divider value and the numerator
- * value for a FracN PLL.
- *
- * This function assumes that the f_LO and f_Ref are
- * evenly divisible by f_LO_Step.
- *
- * @Div: OUTPUT: Whole number portion of the multiplier
- * @FracN: OUTPUT: Fractional portion of the multiplier
- * @f_LO: desired LO frequency.
- * @f_LO_Step: Minimum step size for the LO (in Hz).
- * @f_Ref: SRO frequency.
- * @f_Avoid: Range of PLL frequencies to avoid near integer multiples
- * of f_Ref (in Hz).
- *
- * Returns: Recalculated LO frequency.
- */
-static u32 MT2063_CalcLO1Mult(u32 *Div,
- u32 *FracN,
- u32 f_LO,
- u32 f_LO_Step, u32 f_Ref)
+static int mt2063_set_mode(struct mt2063_state *state, enum mt2063_delsys Mode)
{
- /* Calculate the whole number portion of the divider */
- *Div = f_LO / f_Ref;
-
- /* Calculate the numerator value (round to nearest f_LO_Step) */
- *FracN =
- (64 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
- (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);
+ dprintk(1, "\n");
- return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, 64);
-}
+ /* check, if mode outside */
+ if (Mode > 5)
+ return -EINVAL;
-/**
- * CalcLO2Mult() - Calculates Integer divider value and the numerator
- * value for a FracN PLL.
- *
- * This function assumes that the f_LO and f_Ref are
- * evenly divisible by f_LO_Step.
- *
- * @Div: OUTPUT: Whole number portion of the multiplier
- * @FracN: OUTPUT: Fractional portion of the multiplier
- * @f_LO: desired LO frequency.
- * @f_LO_Step: Minimum step size for the LO (in Hz).
- * @f_Ref: SRO frequency.
- * @f_Avoid: Range of PLL frequencies to avoid near
- * integer multiples of f_Ref (in Hz).
- *
- * Returns: Recalculated LO frequency.
- */
-static u32 MT2063_CalcLO2Mult(u32 *Div,
- u32 *FracN,
- u32 f_LO,
- u32 f_LO_Step, u32 f_Ref)
-{
- /* Calculate the whole number portion of the divider */
- *Div = f_LO / f_Ref;
+ /* set LNA R in (75 Ohm ??) */
+ mt2063_set_reg_mask(state, MT2063_REG_CTRL_2C, LNARIN[Mode], 0x03);
- /* Calculate the numerator value (round to nearest f_LO_Step) */
- *FracN =
- (8191 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
- (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);
+ /* set LNA Target */
+ mt2063_set_reg_mask(state, MT2063_REG_LNA_TGT, LNATGT[Mode], 0x3f);
- return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN,
- 8191);
+ /* PD1 Target */
+ mt2063_set_reg_mask(state, MT2063_REG_PD1_TGT, PD1TGT[Mode], 0x3f);
+
+ /* PD2 Target */
+ mt2063_set_reg_mask(state, MT2063_REG_PD2_TGT, PD2TGT[Mode], 0x3f);
+
+ /* Ignore ATN Overload */
+ if (RFOVDIS[Mode])
+ mt2063_set_reg_mask(state, MT2063_REG_LNA_TGT, 0x80, 0x80);
+ else
+ mt2063_set_reg_mask(state, MT2063_REG_LNA_TGT, 0x00, 0x80);
+
+ /* Ignore FIF Overload */
+ if (FIFOVDIS[Mode])
+ mt2063_set_reg_mask(state, MT2063_REG_PD1_TGT, 0x80, 0x80);
+ else
+ mt2063_set_reg_mask(state, MT2063_REG_PD1_TGT, 0x00, 0x80);
+
+ dprintk(1, "mode changed to %s\n", mt2063_mode_name[Mode]);
+ return 0;
}
-/*
- * FindClearTuneFilter() - Calculate the corrrect ClearTune filter to be
- * used for a given input frequency.
- *
- * @state: ptr to tuner data structure
- * @f_in: RF input center frequency (in Hz).
- *
- * Returns: ClearTune filter number (0-31)
- */
-static u32 FindClearTuneFilter(struct mt2063_state *state, u32 f_in)
+#define MT2063_IF1 1510000
+#define MT2063_OSC 16000
+
+static int mt2063_tune(struct mt2063_state *state)
{
- u32 RFBand;
- u32 idx; /* index loop */
+ u32 f_lo1, f_lo2;
+ u32 div1, num1, div2;
+ u32 num2;
+ bool lock = false;
+
+ dprintk(1, "\n");
/*
- ** Find RF Band setting
+ * it use ClearTune in auto mode, so it doesn't set ClearTune RF Band.
+ *
+ * first IF Filter Center frequency (f_if1) is static setted to 1510 MHz
+ * the reference osc is always 16 MHz
+ *
+ * f_if1 = (f_ref / 8) * (FIFFC + 640)
+ *
+ * f_if2_of = (f_if1 (f_ref / 64)) - ( 8 * FIFFC) - 4992
+ *
+ * f_lo1 = f_in + f_if1
+ *
+ * f_lo2 = f_lo1 - f_in - f_if2
+ *
*/
- RFBand = 31; /* def when f_in > all */
- for (idx = 0; idx < 31; ++idx) {
- if (state->CTFiltMax[idx] >= f_in) {
- RFBand = idx;
- break;
+ f_lo1 = state->frequency + MT2063_IF1;
+ /* rounding it to a multiple of 250 kHz */
+ f_lo1 = (f_lo1 / 250) * 250;
+
+ f_lo2 = f_lo1 - state->frequency - state->if2;
+ /* rounding it to a multiple of 50 kHz */
+ f_lo2 = ((f_lo2 + 25) / 50) * 50;
+
+ /* TODO: spuck check */
+
+ /* f_lo1 = 16MHz * (div1 + num1/64) */
+ num1 = f_lo1 / (MT2063_OSC / 64);
+ div1 = num1 / 64;
+ num1 &= 0x3f;
+
+ /* f_lo2 = 16MHz * (div2 + num2/8192) */
+ num2 = f_lo2 * 64 / (MT2063_OSC / 128);
+ div2 = num2 / 8192;
+ num2 &= 0x1fff;
+
+ state->frequency = f_lo1 - f_lo2 - state->if2;
+
+ dprintk(2, "Input frequency: %d kHz\n", state->frequency);
+ dprintk(2, "first IF Filter central frequency: %d kHz\n", 1510000);
+ dprintk(2, "IF Output frequency: %d kHz\n", state->if2);
+ dprintk(2, "LO1 frequency: %d kHz\n", f_lo1);
+ dprintk(2, "LO1 div: %d, 0x%02x\n", div1, div1);
+ dprintk(2, "LO1 num: %d/64, 0x%02x\n", num1, num1);
+ dprintk(2, "LO2 frequency: %d kHz\n", f_lo2);
+ dprintk(2, "LO2 div: %d, 0x%02x\n", div2, div2);
+ dprintk(2, "LO2 num: %d/8192, 0x%04x\n", num2, num2);
+
+ /* set first IF filter center frequency */
+ mt2063_write(state, MT2063_REG_FIFFC, 115);
+
+ /* set LO1 */
+ mt2063_write(state, MT2063_REG_LO1CQ_1, (div1 & 0xff));
+ mt2063_write(state, MT2063_REG_LO1CQ_2, (num1 & 0x3f));
+ /* set LO2, the lastest value with reset */
+ mt2063_write(state, MT2063_REG_LO2CQ_1, (((div2 & 0x7f) << 1) |
+ ((num2 & 0x1000) >> 12)));
+ mt2063_write(state, MT2063_REG_LO2CQ_2, ((num2 & 0x0ff0) >> 4));
+ mt2063_write(state, MT2063_REG_LO2CQ_3, ( 0xe0 | (num2 & 0x000f)));
+
+ /* wait util it's lock */
+ do {
+ u8 status;
+ /* read LO status bit */
+ mt2063_read(state, MT2063_REG_LO_STATUS, &status);
+
+ if (state->tuner_id == MT2063_B0) {
+ if ((status & 0xc0) == 0xc0)
+ lock = true;
+ } else {
+ if ((status & 0x88) == 0x88)
+ lock = true;
}
- }
- return RFBand;
+ } while (!lock);
+
+ return 0;
}
-/*
- * MT2063_Tune() - Change the tuner's tuned frequency to RFin.
- */
-static u32 MT2063_Tune(struct mt2063_state *state, u32 f_in)
-{ /* RF input center frequency */
+static int mt2063_set_analog_params(struct dvb_frontend *fe,
+ struct analog_parameters *params)
+{
+ struct mt2063_state *state = fe->tuner_priv;
+ u32 freq, bw;
+ int ret = 0;
- u32 status = 0;
- u32 LO1; /* 1st LO register value */
- u32 Num1; /* Numerator for LO1 reg. value */
- u32 f_IF1; /* 1st IF requested */
- u32 LO2; /* 2nd LO register value */
- u32 Num2; /* Numerator for LO2 reg. value */
- u32 ofLO1, ofLO2; /* last time's LO frequencies */
- u8 fiffc = 0x80; /* FIFF center freq from tuner */
- u32 fiffof; /* Offset from FIFF center freq */
- const u8 LO1LK = 0x80; /* Mask for LO1 Lock bit */
- u8 LO2LK = 0x08; /* Mask for LO2 Lock bit */
- u8 val;
- u32 RFBand;
-
- dprintk(2, "\n");
- /* Check the input and output frequency ranges */
- if ((f_in < MT2063_MIN_FIN_FREQ) || (f_in > MT2063_MAX_FIN_FREQ))
- return -EINVAL;
+ dprintk(1, "\n");
- if ((state->AS_Data.f_out < MT2063_MIN_FOUT_FREQ)
- || (state->AS_Data.f_out > MT2063_MAX_FOUT_FREQ))
- return -EINVAL;
+ mutex_lock(&state->lock);
- /*
- * Save original LO1 and LO2 register values
- */
- ofLO1 = state->AS_Data.f_LO1;
- ofLO2 = state->AS_Data.f_LO2;
+ /* open gate */
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 1);
- /*
- * Find and set RF Band setting
- */
- if (state->ctfilt_sw == 1) {
- val = (state->reg[MT2063_REG_CTUNE_CTRL] | 0x08);
- if (state->reg[MT2063_REG_CTUNE_CTRL] != val) {
- status |=
- mt2063_setreg(state, MT2063_REG_CTUNE_CTRL, val);
- }
- val = state->reg[MT2063_REG_CTUNE_OV];
- RFBand = FindClearTuneFilter(state, f_in);
- state->reg[MT2063_REG_CTUNE_OV] =
- (u8) ((state->reg[MT2063_REG_CTUNE_OV] & ~0x1F)
- | RFBand);
- if (state->reg[MT2063_REG_CTUNE_OV] != val) {
- status |=
- mt2063_setreg(state, MT2063_REG_CTUNE_OV, val);
- }
- }
+ /* all calculation is in kHz */
+ freq = params->frequency / 1000;
- /*
- * Read the FIFF Center Frequency from the tuner
- */
- if (status >= 0) {
- status |=
- mt2063_read(state,
- MT2063_REG_FIFFC,
- &state->reg[MT2063_REG_FIFFC], 1);
- fiffc = state->reg[MT2063_REG_FIFFC];
+ switch(params->mode) {
+ case V4L2_TUNER_RADIO:
+ state->mode = MT2063_OFFAIR_ANALOG;
+ state->if2 = 38900;
+ bw = 8000; /* TODO */
+ break;
+ case V4L2_TUNER_ANALOG_TV:
+ state->mode = MT2063_CABLE_ANALOG;
+ state->if2 = 38900;
+ if (params->std & ~V4L2_STD_MN)
+ bw = 6000;
+ else if (params->std & V4L2_STD_PAL_G)
+ bw = 7000;
+ else
+ bw = 8000;
+ break;
+ default:
+ ret = -EINVAL;
+ goto err;
}
- /*
- * Assign in the requested values
- */
- state->AS_Data.f_in = f_in;
- /* Request a 1st IF such that LO1 is on a step size */
- state->AS_Data.f_if1_Request =
- MT2063_Round_fLO(state->AS_Data.f_if1_Request + f_in,
- state->AS_Data.f_LO1_Step,
- state->AS_Data.f_ref) - f_in;
- /*
- * Calculate frequency settings. f_IF1_FREQ + f_in is the
- * desired LO1 frequency
- */
- MT2063_ResetExclZones(&state->AS_Data);
+ state->frequency = freq;
+ state->bw = bw;
- f_IF1 = MT2063_ChooseFirstIF(&state->AS_Data);
+ dprintk(2, "Set input frequency to %d kHz.\n", freq);
- state->AS_Data.f_LO1 =
- MT2063_Round_fLO(f_IF1 + f_in, state->AS_Data.f_LO1_Step,
- state->AS_Data.f_ref);
+ ret = mt2063_set_mode(state, state->mode);
+ if (ret < 0)
+ goto err;
- state->AS_Data.f_LO2 =
- MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
- state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
+ ret = mt2063_tune(state);
- /*
- * Check for any LO spurs in the output bandwidth and adjust
- * the LO settings to avoid them if needed
- */
- status |= MT2063_AvoidSpurs(&state->AS_Data);
- /*
- * MT_AvoidSpurs spurs may have changed the LO1 & LO2 values.
- * Recalculate the LO frequencies and the values to be placed
- * in the tuning registers.
- */
- state->AS_Data.f_LO1 =
- MT2063_CalcLO1Mult(&LO1, &Num1, state->AS_Data.f_LO1,
- state->AS_Data.f_LO1_Step, state->AS_Data.f_ref);
- state->AS_Data.f_LO2 =
- MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
- state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
- state->AS_Data.f_LO2 =
- MT2063_CalcLO2Mult(&LO2, &Num2, state->AS_Data.f_LO2,
- state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
+err:
+ /* close gate */
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 0);
- /*
- * Check the upconverter and downconverter frequency ranges
- */
- if ((state->AS_Data.f_LO1 < MT2063_MIN_UPC_FREQ)
- || (state->AS_Data.f_LO1 > MT2063_MAX_UPC_FREQ))
- status |= MT2063_UPC_RANGE;
- if ((state->AS_Data.f_LO2 < MT2063_MIN_DNC_FREQ)
- || (state->AS_Data.f_LO2 > MT2063_MAX_DNC_FREQ))
- status |= MT2063_DNC_RANGE;
- /* LO2 Lock bit was in a different place for B0 version */
- if (state->tuner_id == MT2063_B0)
- LO2LK = 0x40;
+ mutex_unlock(&state->lock);
+ return ret;
+}
- /*
- * If we have the same LO frequencies and we're already locked,
- * then skip re-programming the LO registers.
- */
- if ((ofLO1 != state->AS_Data.f_LO1)
- || (ofLO2 != state->AS_Data.f_LO2)
- || ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) !=
- (LO1LK | LO2LK))) {
- /*
- * Calculate the FIFFOF register value
- *
- * IF1_Actual
- * FIFFOF = ------------ - 8 * FIFFC - 4992
- * f_ref/64
- */
- fiffof =
- (state->AS_Data.f_LO1 -
- f_in) / (state->AS_Data.f_ref / 64) - 8 * (u32) fiffc -
- 4992;
- if (fiffof > 0xFF)
- fiffof = 0xFF;
-
- /*
- * Place all of the calculated values into the local tuner
- * register fields.
- */
- if (status >= 0) {
- state->reg[MT2063_REG_LO1CQ_1] = (u8) (LO1 & 0xFF); /* DIV1q */
- state->reg[MT2063_REG_LO1CQ_2] = (u8) (Num1 & 0x3F); /* NUM1q */
- state->reg[MT2063_REG_LO2CQ_1] = (u8) (((LO2 & 0x7F) << 1) /* DIV2q */
- |(Num2 >> 12)); /* NUM2q (hi) */
- state->reg[MT2063_REG_LO2CQ_2] = (u8) ((Num2 & 0x0FF0) >> 4); /* NUM2q (mid) */
- state->reg[MT2063_REG_LO2CQ_3] = (u8) (0xE0 | (Num2 & 0x000F)); /* NUM2q (lo) */
-
- /*
- * Now write out the computed register values
- * IMPORTANT: There is a required order for writing
- * (0x05 must follow all the others).
- */
- status |= mt2063_write(state, MT2063_REG_LO1CQ_1, &state->reg[MT2063_REG_LO1CQ_1], 5); /* 0x01 - 0x05 */
- if (state->tuner_id == MT2063_B0) {
- /* Re-write the one-shot bits to trigger the tune operation */
- status |= mt2063_write(state, MT2063_REG_LO2CQ_3, &state->reg[MT2063_REG_LO2CQ_3], 1); /* 0x05 */
- }
- /* Write out the FIFF offset only if it's changing */
- if (state->reg[MT2063_REG_FIFF_OFFSET] !=
- (u8) fiffof) {
- state->reg[MT2063_REG_FIFF_OFFSET] =
- (u8) fiffof;
- status |=
- mt2063_write(state,
- MT2063_REG_FIFF_OFFSET,
- &state->
- reg[MT2063_REG_FIFF_OFFSET],
- 1);
- }
- }
+static int mt2063_set_params(struct dvb_frontend *fe)
+{
+ struct mt2063_state *state = fe->tuner_priv;
+ struct dtv_frontend_properties *c = &fe->dtv_property_cache;
+ u32 freq, bw;
+ int ret = 0;
+
+ dprintk(1, "\n");
+
+ mutex_lock(&state->lock);
+
+ /* open gate */
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 1);
+
+ /* all calculation is in kHz */
+ freq = c->frequency / 1000;
- /*
- * Check for LO's locking
- */
-
- if (status < 0)
- return status;
-
- status = mt2063_lockStatus(state);
- if (status < 0)
- return status;
- if (!status)
- return -EINVAL; /* Couldn't lock */
-
- /*
- * If we locked OK, assign calculated data to mt2063_state structure
- */
- state->f_IF1_actual = state->AS_Data.f_LO1 - f_in;
+ switch (c->delivery_system) {
+ case SYS_DVBT:
+ if (c->bandwidth_hz == 0) {
+ ret = -EINVAL;
+ goto err;
+ }
+ bw = c->bandwidth_hz / 1000;
+ state->mode = MT2063_OFFAIR_COFDM;
+ state->if2 = 36000;
+ break;
+ case SYS_DVBC_ANNEX_A:
+ case SYS_DVBC_ANNEX_C:
+ bw = c->bandwidth_hz / 1000;
+ state->mode = MT2063_CABLE_QAM;
+ state->if2 = 36000;
+ break;
+ case SYS_ATSC:
+ /* TODO */
+ default:
+ ret = -EINVAL;
+ goto err;
}
- return status;
-}
+ state->frequency = freq;
+ /* for spurcheck */
+ state->bw = bw;
-static const u8 MT2063B0_defaults[] = {
- /* Reg, Value */
- 0x19, 0x05,
- 0x1B, 0x1D,
- 0x1C, 0x1F,
- 0x1D, 0x0F,
- 0x1E, 0x3F,
- 0x1F, 0x0F,
- 0x20, 0x3F,
- 0x22, 0x21,
- 0x23, 0x3F,
- 0x24, 0x20,
- 0x25, 0x3F,
- 0x27, 0xEE,
- 0x2C, 0x27, /* bit at 0x20 is cleared below */
- 0x30, 0x03,
- 0x2C, 0x07, /* bit at 0x20 is cleared here */
- 0x2D, 0x87,
- 0x2E, 0xAA,
- 0x28, 0xE1, /* Set the FIFCrst bit here */
- 0x28, 0xE0, /* Clear the FIFCrst bit here */
- 0x00
-};
+ dprintk(2, "Set input frequency to %d kHz.\n", freq);
-/* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
-static const u8 MT2063B1_defaults[] = {
- /* Reg, Value */
- 0x05, 0xF0,
- 0x11, 0x10, /* New Enable AFCsd */
- 0x19, 0x05,
- 0x1A, 0x6C,
- 0x1B, 0x24,
- 0x1C, 0x28,
- 0x1D, 0x8F,
- 0x1E, 0x14,
- 0x1F, 0x8F,
- 0x20, 0x57,
- 0x22, 0x21, /* New - ver 1.03 */
- 0x23, 0x3C, /* New - ver 1.10 */
- 0x24, 0x20, /* New - ver 1.03 */
- 0x2C, 0x24, /* bit at 0x20 is cleared below */
- 0x2D, 0x87, /* FIFFQ=0 */
- 0x2F, 0xF3,
- 0x30, 0x0C, /* New - ver 1.11 */
- 0x31, 0x1B, /* New - ver 1.11 */
- 0x2C, 0x04, /* bit at 0x20 is cleared here */
- 0x28, 0xE1, /* Set the FIFCrst bit here */
- 0x28, 0xE0, /* Clear the FIFCrst bit here */
- 0x00
-};
+ ret = mt2063_set_mode(state, state->mode);
+ if (ret < 0)
+ goto err;
-/* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
-static const u8 MT2063B3_defaults[] = {
- /* Reg, Value */
- 0x05, 0xF0,
- 0x19, 0x3D,
- 0x2C, 0x24, /* bit at 0x20 is cleared below */
- 0x2C, 0x04, /* bit at 0x20 is cleared here */
- 0x28, 0xE1, /* Set the FIFCrst bit here */
- 0x28, 0xE0, /* Clear the FIFCrst bit here */
- 0x00
-};
+ ret = mt2063_tune(state);
+
+err:
+ /* close gate */
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 0);
+
+ mutex_unlock(&state->lock);
+ return ret;
+}
static int mt2063_init(struct dvb_frontend *fe)
{
- u32 status;
struct mt2063_state *state = fe->tuner_priv;
- u8 all_resets = 0xF0; /* reset/load bits */
const u8 *def = NULL;
- char *step;
- u32 FCRUN;
- s32 maxReads;
- u32 fcu_osc;
- u32 i;
-
- dprintk(2, "\n");
-
- state->rcvr_mode = MT2063_CABLE_QAM;
-
- /* Read the Part/Rev code from the tuner */
- status = mt2063_read(state, MT2063_REG_PART_REV,
- &state->reg[MT2063_REG_PART_REV], 1);
- if (status < 0) {
- printk(KERN_ERR "Can't read mt2063 part ID\n");
- return status;
- }
+ u8 xo_lock = 1, i;
- /* Check the part/rev code */
- switch (state->reg[MT2063_REG_PART_REV]) {
- case MT2063_B0:
- step = "B0";
- break;
- case MT2063_B1:
- step = "B1";
- break;
- case MT2063_B2:
- step = "B2";
- break;
- case MT2063_B3:
- step = "B3";
- break;
- default:
- printk(KERN_ERR "mt2063: Unknown mt2063 device ID (0x%02x)\n",
- state->reg[MT2063_REG_PART_REV]);
- return -ENODEV; /* Wrong tuner Part/Rev code */
- }
+ dprintk(1, "\n");
- /* Check the 2nd byte of the Part/Rev code from the tuner */
- status = mt2063_read(state, MT2063_REG_RSVD_3B,
- &state->reg[MT2063_REG_RSVD_3B], 1);
+ mutex_lock(&state->lock);
- /* b7 != 0 ==> NOT MT2063 */
- if (status < 0 || ((state->reg[MT2063_REG_RSVD_3B] & 0x80) != 0x00)) {
- printk(KERN_ERR "mt2063: Unknown part ID (0x%02x%02x)\n",
- state->reg[MT2063_REG_PART_REV],
- state->reg[MT2063_REG_RSVD_3B]);
- return -ENODEV; /* Wrong tuner Part/Rev code */
- }
+ /* open gate */
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 1);
+
+ /* power on */
+ mt2063_shutdown(state, MT2063_NONE_SD);
- printk(KERN_INFO "mt2063: detected a mt2063 %s\n", step);
+ /* reset */
+ mt2063_write(state, MT2063_REG_LO2CQ_3, 0xf0);
+
+ /* debug dump */
+ if (debug >= 3) {
+ /* print all register after reset */
+ u8 reg[64];
+ /* fill all reg */
+ for (i = 0; i < 64; i++) {
+ mt2063_read(state, i, ®[i]);
+ }
+ print_hex_dump(KERN_DEBUG, "mt2063: ",
+ DUMP_PREFIX_OFFSET, 16, 1, reg, 64, false);
+ }
- /* Reset the tuner */
- status = mt2063_write(state, MT2063_REG_LO2CQ_3, &all_resets, 1);
- if (status < 0)
- return status;
-
- /* change all of the default values that vary from the HW reset values */
- /* def = (state->reg[PART_REV] == MT2063_B0) ? MT2063B0_defaults : MT2063B1_defaults; */
- switch (state->reg[MT2063_REG_PART_REV]) {
+ /* load defaults */
+ switch (state->tuner_id) {
case MT2063_B3:
def = MT2063B3_defaults;
break;
-
case MT2063_B1:
def = MT2063B1_defaults;
break;
-
case MT2063_B0:
def = MT2063B0_defaults;
break;
-
default:
- return -ENODEV;
+ def = MT2063B1_defaults;
break;
}
- while (status >= 0 && *def) {
+ while (*def) {
u8 reg = *def++;
u8 val = *def++;
- status = mt2063_write(state, reg, &val, 1);
+ mt2063_write(state, reg, val);
}
- if (status < 0)
- return status;
- /* Wait for FIFF location to complete. */
- FCRUN = 1;
- maxReads = 10;
- while (status >= 0 && (FCRUN != 0) && (maxReads-- > 0)) {
+ /* wait to lock */
+ while (!xo_lock) {
msleep(2);
- status = mt2063_read(state,
- MT2063_REG_XO_STATUS,
- &state->
- reg[MT2063_REG_XO_STATUS], 1);
- FCRUN = (state->reg[MT2063_REG_XO_STATUS] & 0x40) >> 6;
+ mt2063_read(state, MT2063_REG_XO_STATUS, &xo_lock);
+ xo_lock = (xo_lock & 0x40) >> 6;
}
- if (FCRUN != 0 || status < 0)
- return -ENODEV;
-
- status = mt2063_read(state,
- MT2063_REG_FIFFC,
- &state->reg[MT2063_REG_FIFFC], 1);
- if (status < 0)
- return status;
-
- /* Read back all the registers from the tuner */
- status = mt2063_read(state,
- MT2063_REG_PART_REV,
- state->reg, MT2063_REG_END_REGS);
- if (status < 0)
- return status;
-
- /* Initialize the tuner state. */
- state->tuner_id = state->reg[MT2063_REG_PART_REV];
- state->AS_Data.f_ref = MT2063_REF_FREQ;
- state->AS_Data.f_if1_Center = (state->AS_Data.f_ref / 8) *
- ((u32) state->reg[MT2063_REG_FIFFC] + 640);
- state->AS_Data.f_if1_bw = MT2063_IF1_BW;
- state->AS_Data.f_out = 43750000UL;
- state->AS_Data.f_out_bw = 6750000UL;
- state->AS_Data.f_zif_bw = MT2063_ZIF_BW;
- state->AS_Data.f_LO1_Step = state->AS_Data.f_ref / 64;
- state->AS_Data.f_LO2_Step = MT2063_TUNE_STEP_SIZE;
- state->AS_Data.maxH1 = MT2063_MAX_HARMONICS_1;
- state->AS_Data.maxH2 = MT2063_MAX_HARMONICS_2;
- state->AS_Data.f_min_LO_Separation = MT2063_MIN_LO_SEP;
- state->AS_Data.f_if1_Request = state->AS_Data.f_if1_Center;
- state->AS_Data.f_LO1 = 2181000000UL;
- state->AS_Data.f_LO2 = 1486249786UL;
- state->f_IF1_actual = state->AS_Data.f_if1_Center;
- state->AS_Data.f_in = state->AS_Data.f_LO1 - state->f_IF1_actual;
- state->AS_Data.f_LO1_FracN_Avoid = MT2063_LO1_FRACN_AVOID;
- state->AS_Data.f_LO2_FracN_Avoid = MT2063_LO2_FRACN_AVOID;
- state->num_regs = MT2063_REG_END_REGS;
- state->AS_Data.avoidDECT = MT2063_AVOID_BOTH;
- state->ctfilt_sw = 0;
-
- state->CTFiltMax[0] = 69230000;
- state->CTFiltMax[1] = 105770000;
- state->CTFiltMax[2] = 140350000;
- state->CTFiltMax[3] = 177110000;
- state->CTFiltMax[4] = 212860000;
- state->CTFiltMax[5] = 241130000;
- state->CTFiltMax[6] = 274370000;
- state->CTFiltMax[7] = 309820000;
- state->CTFiltMax[8] = 342450000;
- state->CTFiltMax[9] = 378870000;
- state->CTFiltMax[10] = 416210000;
- state->CTFiltMax[11] = 456500000;
- state->CTFiltMax[12] = 495790000;
- state->CTFiltMax[13] = 534530000;
- state->CTFiltMax[14] = 572610000;
- state->CTFiltMax[15] = 598970000;
- state->CTFiltMax[16] = 635910000;
- state->CTFiltMax[17] = 672130000;
- state->CTFiltMax[18] = 714840000;
- state->CTFiltMax[19] = 739660000;
- state->CTFiltMax[20] = 770410000;
- state->CTFiltMax[21] = 814660000;
- state->CTFiltMax[22] = 846950000;
- state->CTFiltMax[23] = 867820000;
- state->CTFiltMax[24] = 915980000;
- state->CTFiltMax[25] = 947450000;
- state->CTFiltMax[26] = 983110000;
- state->CTFiltMax[27] = 1021630000;
- state->CTFiltMax[28] = 1061870000;
- state->CTFiltMax[29] = 1098330000;
- state->CTFiltMax[30] = 1138990000;
+ /* set RF AGC on */
+ mt2063_set_reg_mask(state, MT2063_REG_PD1_TGT, 0x40, 0x40);
- /*
- ** Fetch the FCU osc value and use it and the fRef value to
- ** scale all of the Band Max values
- */
+ /* first IF Filter Queue enable and first IF Filter queue */
+ mt2063_set_reg_mask(state, MT2063_REG_FIFF_CTRL2,
+ (1 << 7) | (0 << 4), 0xf0);
+ /* trigger FIFF calibration, needed after changing FIFFQ */
+ mt2063_set_reg_mask(state, MT2063_REG_FIFF_CTRL, 0x01, 0x01);
+ mt2063_set_reg_mask(state, MT2063_REG_FIFF_CTRL, 0x00, 0x01);
+
+ /* set DNC1 GC on */
+ mt2063_set_reg_mask(state, MT2063_REG_DNC_GAIN, 0x00, 0x03);
+ /* set DNC2 GC on */
+ mt2063_set_reg_mask(state, MT2063_REG_VGA_GAIN, 0x00, 0x03);
+ /* set PD2MUX = 0 */
+ mt2063_set_reg_mask(state, MT2063_REG_RSVD_20, 0x00, 0x40);
- state->reg[MT2063_REG_CTUNE_CTRL] = 0x0A;
- status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
- &state->reg[MT2063_REG_CTUNE_CTRL], 1);
- if (status < 0)
- return status;
-
- /* Read the ClearTune filter calibration value */
- status = mt2063_read(state, MT2063_REG_FIFFC,
- &state->reg[MT2063_REG_FIFFC], 1);
- if (status < 0)
- return status;
-
- fcu_osc = state->reg[MT2063_REG_FIFFC];
-
- state->reg[MT2063_REG_CTUNE_CTRL] = 0x00;
- status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
- &state->reg[MT2063_REG_CTUNE_CTRL], 1);
- if (status < 0)
- return status;
-
- /* Adjust each of the values in the ClearTune filter cross-over table */
- for (i = 0; i < 31; i++)
- state->CTFiltMax[i] = (state->CTFiltMax[i] / 768) * (fcu_osc + 640);
-
- status = MT2063_SoftwareShutdown(state, 1);
- if (status < 0)
- return status;
- status = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
- if (status < 0)
- return status;
+ /* ac LNA max */
+ mt2063_set_reg_mask(state, MT2063_REG_LNA_OV, 0x1f, 0x1f);
- state->init = true;
-
- return 0;
-}
+ /* ac RF max */
+ mt2063_set_reg_mask(state, MT2063_REG_RF_OV, 0x1f, 0x1f);
-static int mt2063_get_status(struct dvb_frontend *fe, u32 *tuner_status)
-{
- struct mt2063_state *state = fe->tuner_priv;
- int status;
+ /* first IF ATN */
+ if (state->tuner_id == MT2063_B0)
+ mt2063_set_reg_mask(state, MT2063_REG_FIF_OV, 5, 0x1f);
+ else
+ mt2063_set_reg_mask(state, MT2063_REG_FIF_OV, 29, 0x1f);
- dprintk(2, "\n");
+ /* set ClearTune in auto mode */
+ mt2063_set_reg_mask(state, MT2063_REG_CTUNE_CTRL, 0x00, 0x08);
- if (!state->init)
- return -ENODEV;
+ /* set Bypass in auto mode */
+ mt2063_set_reg_mask(state, MT2063_REG_BYP_CTRL, 0x00, 0x80);
- *tuner_status = 0;
- status = mt2063_lockStatus(state);
- if (status < 0)
- return status;
- if (status)
- *tuner_status = TUNER_STATUS_LOCKED;
+ /* close gate */
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 0);
- dprintk(1, "Tuner status: %d", *tuner_status);
+ mutex_unlock(&state->lock);
return 0;
}
-static int mt2063_release(struct dvb_frontend *fe)
+static int mt2063_sleep(struct dvb_frontend *fe)
{
struct mt2063_state *state = fe->tuner_priv;
- dprintk(2, "\n");
-
- fe->tuner_priv = NULL;
- kfree(state);
-
- return 0;
-}
+ dprintk(1, "\n");
+ mutex_lock(&state->lock);
-static int mt2063_set_analog_params(struct dvb_frontend *fe,
- struct analog_parameters *params)
-{
- struct mt2063_state *state = fe->tuner_priv;
- s32 pict_car;
- s32 pict2chanb_vsb;
- s32 ch_bw;
- s32 if_mid;
- s32 rcvr_mode;
- int status;
-
- dprintk(2, "\n");
-
- if (!state->init) {
- status = mt2063_init(fe);
- if (status < 0)
- return status;
- }
+ /* open gate */
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 1);
- switch (params->mode) {
- case V4L2_TUNER_RADIO:
- pict_car = 38900000;
- ch_bw = 8000000;
- pict2chanb_vsb = -(ch_bw / 2);
- rcvr_mode = MT2063_OFFAIR_ANALOG;
- break;
- case V4L2_TUNER_ANALOG_TV:
- rcvr_mode = MT2063_CABLE_ANALOG;
- if (params->std & ~V4L2_STD_MN) {
- pict_car = 38900000;
- ch_bw = 6000000;
- pict2chanb_vsb = -1250000;
- } else if (params->std & V4L2_STD_PAL_G) {
- pict_car = 38900000;
- ch_bw = 7000000;
- pict2chanb_vsb = -1250000;
- } else { /* PAL/SECAM standards */
- pict_car = 38900000;
- ch_bw = 8000000;
- pict2chanb_vsb = -1250000;
- }
- break;
- default:
- return -EINVAL;
- }
- if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));
+ /* set all power bits off */
+ mt2063_shutdown(state, MT2063_ALL_SD);
- state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */
- state->AS_Data.f_out = if_mid;
- state->AS_Data.f_out_bw = ch_bw + 750000;
- status = MT2063_SetReceiverMode(state, rcvr_mode);
- if (status < 0)
- return status;
-
- dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
- params->frequency, ch_bw, pict2chanb_vsb);
-
- status = MT2063_Tune(state, (params->frequency + (pict2chanb_vsb + (ch_bw / 2))));
- if (status < 0)
- return status;
+ /* close gate */
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 0);
- state->frequency = params->frequency;
+ mutex_unlock(&state->lock);
return 0;
}
-/*
- * As defined on EN 300 429, the DVB-C roll-off factor is 0.15.
- * So, the amount of the needed bandwith is given by:
- * Bw = Symbol_rate * (1 + 0.15)
- * As such, the maximum symbol rate supported by 6 MHz is given by:
- * max_symbol_rate = 6 MHz / 1.15 = 5217391 Bauds
- */
-#define MAX_SYMBOL_RATE_6MHz 5217391
-
-static int mt2063_set_params(struct dvb_frontend *fe)
+static int mt2063_release(struct dvb_frontend *fe)
{
- struct dtv_frontend_properties *c = &fe->dtv_property_cache;
struct mt2063_state *state = fe->tuner_priv;
- int status;
- s32 pict_car;
- s32 pict2chanb_vsb;
- s32 ch_bw;
- s32 if_mid;
- s32 rcvr_mode;
-
- if (!state->init) {
- status = mt2063_init(fe);
- if (status < 0)
- return status;
- }
-
- dprintk(2, "\n");
-
- if (c->bandwidth_hz == 0)
- return -EINVAL;
- if (c->bandwidth_hz <= 6000000)
- ch_bw = 6000000;
- else if (c->bandwidth_hz <= 7000000)
- ch_bw = 7000000;
- else
- ch_bw = 8000000;
-
- switch (c->delivery_system) {
- case SYS_DVBT:
- rcvr_mode = MT2063_OFFAIR_COFDM;
- pict_car = 36125000;
- pict2chanb_vsb = -(ch_bw / 2);
- break;
- case SYS_DVBC_ANNEX_A:
- case SYS_DVBC_ANNEX_C:
- rcvr_mode = MT2063_CABLE_QAM;
- pict_car = 36125000;
- pict2chanb_vsb = -(ch_bw / 2);
- break;
- default:
- return -EINVAL;
- }
- if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));
-
- state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */
- state->AS_Data.f_out = if_mid;
- state->AS_Data.f_out_bw = ch_bw + 750000;
- status = MT2063_SetReceiverMode(state, rcvr_mode);
- if (status < 0)
- return status;
-
- dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
- c->frequency, ch_bw, pict2chanb_vsb);
-
- status = MT2063_Tune(state, (c->frequency + (pict2chanb_vsb + (ch_bw / 2))));
-
- if (status < 0)
- return status;
-
- state->frequency = c->frequency;
- return 0;
-}
-static int mt2063_get_if_frequency(struct dvb_frontend *fe, u32 *freq)
-{
- struct mt2063_state *state = fe->tuner_priv;
+ dprintk(1,"\n");
- dprintk(2, "\n");
+ mutex_lock(&mt2063_list_mutex);
- if (!state->init)
- return -ENODEV;
+ if (state)
+ hybrid_tuner_release_state(state);
- *freq = state->AS_Data.f_out;
+ mutex_unlock(&mt2063_list_mutex);
- dprintk(1, "IF frequency: %d\n", *freq);
+ fe->tuner_priv = NULL;
return 0;
}
-static int mt2063_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
+static int mt2063_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
{
struct mt2063_state *state = fe->tuner_priv;
- dprintk(2, "\n");
-
- if (!state->init)
- return -ENODEV;
+ dprintk(1, "\n");
- *bw = state->AS_Data.f_out_bw - 750000;
+ *frequency = state->if2 * 1000;
- dprintk(1, "bandwidth: %d\n", *bw);
+ dprintk(2, "if frequency is %d kHz\n", state->if2);
return 0;
}
static struct dvb_tuner_ops mt2063_ops = {
.info = {
- .name = "MT2063 Silicon Tuner",
- .frequency_min = 45000000,
- .frequency_max = 850000000,
- .frequency_step = 0,
- },
-
+ .name = "MT2063 Silicon Tuner",
+ .frequency_min = 48000000, /* 48 MHz */
+ .frequency_max = 1002000000, /* 1002 MHz */
+ .frequency_step = 50000, /* 50 kHz */
+ },
+ .release = mt2063_release,
.init = mt2063_init,
- .sleep = MT2063_Sleep,
- .get_status = mt2063_get_status,
+ .sleep = mt2063_sleep,
+
+ .set_params = mt2063_set_params,
.set_analog_params = mt2063_set_analog_params,
- .set_params = mt2063_set_params,
.get_if_frequency = mt2063_get_if_frequency,
- .get_bandwidth = mt2063_get_bandwidth,
- .release = mt2063_release,
+ /* TODO */
};
-struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe,
- struct mt2063_config *config,
- struct i2c_adapter *i2c)
+static int mt2063_find_chip(struct mt2063_state *state)
{
- struct mt2063_state *state = NULL;
+ int err;
+ u8 chip = 0, chip_hi = 0;
+ char *step;
+ struct dvb_frontend *fe = state->frontend;
- dprintk(2, "\n");
+ dprintk(1, "\n");
- state = kzalloc(sizeof(struct mt2063_state), GFP_KERNEL);
- if (state == NULL)
- goto error;
-
- state->config = config;
- state->i2c = i2c;
- state->frontend = fe;
- state->reference = config->refclock / 1000; /* kHz */
- fe->tuner_priv = state;
- fe->ops.tuner_ops = mt2063_ops;
+ /* open gate */
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 1);
- printk(KERN_INFO "%s: Attaching MT2063\n", __func__);
- return fe;
+ /* Read the Part/Rev code from the tuner */
+ err = mt2063_read(state, MT2063_REG_PART_REV, &chip);
+ if (err < 0) {
+ printk(KERN_ERR "Can't read mt2063 part ID\n");
+ return -ENODEV;
+ }
-error:
- kfree(state);
- return NULL;
-}
-EXPORT_SYMBOL_GPL(mt2063_attach);
+ /* Check the part/rev code */
+ switch (chip) {
+ case MT2063_B0:
+ step = "B0";
+ break;
+ case MT2063_B1:
+ step = "B1";
+ break;
+ case MT2063_B2:
+ step = "B2";
+ break;
+ case MT2063_B3:
+ step = "B3";
+ break;
+ default:
+ printk(KERN_ERR "mt2063: Unknown mt2063 device ID (0x%02x)\n",
+ chip);
+ return -ENODEV;
+ }
-/*
- * Ancillary routines visible outside mt2063
- * FIXME: Remove them in favor of using standard tuner callbacks
- */
-unsigned int tuner_MT2063_SoftwareShutdown(struct dvb_frontend *fe)
-{
- struct mt2063_state *state = fe->tuner_priv;
- int err = 0;
+ /* Check the 2nd byte of the Part/Rev code from the tuner */
+ mt2063_read(state, MT2063_REG_RSVD_3B, &chip_hi);
+ if ((chip_hi & 0x80) != 0x00) {
+ printk(KERN_ERR "mt2063: Unknown part ID (0x%02x%02x)\n",
+ chip, chip_hi);
+ return -ENODEV;
+ }
- dprintk(2, "\n");
+ printk(KERN_INFO "mt2063: detected a mt2063 rev %s", step);
+ state->tuner_id = chip;
- err = MT2063_SoftwareShutdown(state, 1);
- if (err < 0)
- printk(KERN_ERR "%s: Couldn't shutdown\n", __func__);
+ /* close gate */
+ if (fe->ops.i2c_gate_ctrl)
+ fe->ops.i2c_gate_ctrl(fe, 0);
- return err;
+ return 0;
}
-EXPORT_SYMBOL_GPL(tuner_MT2063_SoftwareShutdown);
-unsigned int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend *fe)
+struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe,
+ struct mt2063_config *config,
+ struct i2c_adapter *i2c)
{
- struct mt2063_state *state = fe->tuner_priv;
- int err = 0;
+ struct mt2063_state *state = NULL;
+ int instance, ret;
+
+ dprintk(1, "\n");
- dprintk(2, "\n");
+ mutex_lock(&mt2063_list_mutex);
- err = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
- if (err < 0)
- printk(KERN_ERR "%s: Invalid parameter\n", __func__);
+ instance = hybrid_tuner_request_state(struct mt2063_state, state,
+ hybrid_tuner_instance_list,
+ i2c, config->tuner_address,
+ "mt2063");
+
+ switch(instance) {
+ case 0:
+ goto fail;
+ case 1:
+ /* new instance */
+ state->i2c = i2c;
+ state->i2c_addr = config->tuner_address;
+ /* find chip */
+ mutex_init(&state->lock);
+ state->frontend = fe;
+ ret = mt2063_find_chip(state);
+ if (ret < 0)
+ goto fail;
+ fe->tuner_priv = state;
+ fe->ops.tuner_ops = mt2063_ops;
+ break;
+ default:
+ fe->tuner_priv = state;
+ fe->ops.tuner_ops = mt2063_ops;
+ break;
+ }
+ mutex_unlock(&mt2063_list_mutex);
- return err;
+ return fe;
+
+fail:
+ hybrid_tuner_release_state(state);
+ mutex_unlock(&mt2063_list_mutex);
+ return NULL;
}
-EXPORT_SYMBOL_GPL(tuner_MT2063_ClearPowerMaskBits);
+EXPORT_SYMBOL_GPL(mt2063_attach);
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_DESCRIPTION("MT2063 Silicon tuner");
MODULE_LICENSE("GPL");
+MODULE_VERSION("0.2");
Index: patchwork/drivers/media/common/tuners/mt2063.h
===================================================================
--- patchwork.orig/drivers/media/common/tuners/mt2063.h
+++ patchwork/drivers/media/common/tuners/mt2063.h
@@ -1,3 +1,25 @@
+/*
+ * Driver for microtune mt2063 tuner
+ *
+ * Copyright (c) 2012 Stefan Ringel <linuxtv@stefanringel.de>
+ * Copyright (c) 2011 Mauro Carvalho Chehab <mchehab@redhat.com>
+ *
+ * This driver came from a driver originally written by:
+ * Henry Wang <Henry.wang@AzureWave.com>
+ * Made publicly available by Terratec, at:
+ * http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
+ * The original driver's license is GPL, as declared with MODULE_LICENSE()
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation under version 2 of the License.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
#ifndef __MT2063_H__
#define __MT2063_H__
@@ -10,27 +32,19 @@ struct mt2063_config {
#if defined(CONFIG_MEDIA_TUNER_MT2063) || (defined(CONFIG_MEDIA_TUNER_MT2063_MODULE) && defined(MODULE))
struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe,
- struct mt2063_config *config,
- struct i2c_adapter *i2c);
+ struct mt2063_config *config,
+ struct i2c_adapter *i2c);
#else
static inline struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe,
- struct mt2063_config *config,
- struct i2c_adapter *i2c)
+ struct mt2063_config *config,
+ struct i2c_adapter *i2c)
{
- printk(KERN_WARNING "%s: Driver disabled by Kconfig\n", __func__);
+ printk(KERN_WARNING "%s: Driver disable by Kconfig\n", __func__);
return NULL;
}
-int mt2063_setTune(struct dvb_frontend *fe, u32 f_in,
- u32 bw_in,
- enum MTTune_atv_standard tv_type);
-
-/* FIXME: Should use the standard DVB attachment interfaces */
-unsigned int tuner_MT2063_SoftwareShutdown(struct dvb_frontend *fe);
-unsigned int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend *fe);
-
-#endif /* CONFIG_DVB_MT2063 */
+#endif /* CONFIG_MEDIA_TUNER_MT2063 */
#endif /* __MT2063_H__ */
Index: patchwork/drivers/media/common/tuners/mt2063_priv.h
===================================================================
--- /dev/null
+++ patchwork/drivers/media/common/tuners/mt2063_priv.h
@@ -0,0 +1,234 @@
+/*
+ * Driver for microtune mt2063 tuner
+ *
+ * Copyright (c) 2012 Stefan Ringel <linuxtv@stefanringel.de>
+ * Copyright (c) 2011 Mauro Carvalho Chehab <mchehab@redhat.com>
+ *
+ * This driver came from a driver originally written by:
+ * Henry Wang <Henry.wang@AzureWave.com>
+ * Made publicly available by Terratec, at:
+ * http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
+ * The original driver's license is GPL, as declared with MODULE_LICENSE()
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation under version 2 of the License.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#include "tuner-i2c.h"
+
+#ifndef __MT2063_PRIV_H__
+#define __MT2063_PRIV_H__
+
+#define MT2063_REG_PART_REV 0x00 /* Part/Rev Code */
+#define MT2063_REG_LO1CQ_1 0x01 /* LO1C Queued Byte 1 */
+#define MT2063_REG_LO1CQ_2 0x02 /* LO1C Queued Byte 2 */
+#define MT2063_REG_LO2CQ_1 0x03 /* LO2C Queued Byte 1 */
+#define MT2063_REG_LO2CQ_2 0x04 /* LO2C Queued Byte 2 */
+#define MT2063_REG_LO2CQ_3 0x05 /* LO2C Queued Byte 3 */
+#define MT2063_REG_RSVD_06 0x06
+#define MT2063_REG_LO_STATUS 0x07 /* LO Status */
+#define MT2063_REG_FIFFC 0x08 /* FIFF Center */
+#define MT2063_REG_CLEARTUNE 0x09 /* ClearTune Filter */
+#define MT2063_REG_ADC_OUT 0x0a /* ADC Output */
+#define MT2063_REG_LO1C_1 0x0b /* LO1C Byte 1 */
+#define MT2063_REG_LO1C_2 0x0c /* LO1C Byte 2 */
+#define MT2063_REG_LO2C_1 0x0d /* LO2C Byte 1 */
+#define MT2063_REG_LO2C_2 0x0e /* LO2C Byte 2 */
+#define MT2063_REG_LO2C_3 0x0f /* LO2C Byte 3 */
+#define MT2063_REG_RSVD_10 0x10
+#define MT2063_REG_PWR_1 0x11 /* Power Byte 1 */
+#define MT2063_REG_PWR_2 0x12 /* Power Byte 2 */
+#define MT2063_REG_TEMP_STATUS 0x13 /* Temperature Status */
+#define MT2063_REG_XO_STATUS 0x14 /* Crystal Status */
+#define MT2063_REG_RF_STATUS 0x15 /* RF Attn Status */
+#define MT2063_REG_FIF_STATUS 0x16 /* FIF Attn Status */
+#define MT2063_REG_LNA_OV 0x17 /* LNA Attn Override */
+#define MT2063_REG_RF_OV 0x18 /* RF Attn Override */
+#define MT2063_REG_FIF_OV 0x19 /* FIF Attn Override */
+#define MT2063_REG_LNA_TGT 0x1a /* LNA Target */
+#define MT2063_REG_PD1_TGT 0x1b /* Power Detection 1 Target */
+#define MT2063_REG_PD2_TGT 0x1c /* Power Detection 2 Target */
+#define MT2063_REG_RSVD_1D 0x1d
+#define MT2063_REG_RSVD_1E 0x1e
+#define MT2063_REG_RSVD_1F 0x1f
+#define MT2063_REG_RSVD_20 0x20
+#define MT2063_REG_BYP_CTRL 0x21 /* Bypass Control */
+#define MT2063_REG_RSVD_22 0x22
+#define MT2063_REG_RSVD_23 0x23
+#define MT2063_REG_RSVD_24 0x24
+#define MT2063_REG_RSVD_25 0x25
+#define MT2063_REG_RSVD_26 0x26
+#define MT2063_REG_RSVD_27 0x27
+#define MT2063_REG_FIFF_CTRL 0x28 /* FIFF Control */
+#define MT2063_REG_FIFF_OFFSET 0x29 /* FIFF Offset */
+#define MT2063_REG_CTUNE_CTRL 0x2a /* ClearTune Control */
+#define MT2063_REG_CTUNE_OV 0x2b /* ClearTune Override */
+#define MT2063_REG_CTRL_2C 0x2c
+#define MT2063_REG_FIFF_CTRL2 0x2d /* FIFF Control 2 */
+#define MT2063_REG_RSVD_2E 0x2e
+#define MT2063_REG_DNC_GAIN 0x2f /* DNC Gain Control */
+#define MT2063_REG_VGA_GAIN 0x30 /* VGA Gain Control */
+#define MT2063_REG_RSVD_31 0x31
+#define MT2063_REG_TEMP_SEL 0x32 /* Temperature Selection */
+#define MT2063_REG_RSVD_33 0x33
+#define MT2063_REG_RSVD_34 0x34
+#define MT2063_REG_RSVD_35 0x35
+#define MT2063_REG_RSVD_36 0x36
+#define MT2063_REG_RSVD_37 0x37
+#define MT2063_REG_RSVD_38 0x38
+#define MT2063_REG_RSVD_39 0x39
+#define MT2063_REG_RSVD_3A 0x3a
+#define MT2063_REG_RSVD_3B 0x3b
+#define MT2063_REG_RSVD_3C 0x3c
+
+/*
+ * Chip ID's
+ */
+#define MT2063_B0 0x9b
+#define MT2063_B1 0x9c
+#define MT2063_B2 0x9d
+#define MT2063_B3 0x9e
+
+
+/*
+ * tuner defaults for each tuner
+ */
+static const u8 MT2063B0_defaults[] = {
+ /* Reg, Value */
+ 0x19, 0x05,
+ 0x1b, 0x1d,
+ 0x1c, 0x1f,
+ 0x1d, 0x0f,
+ 0x1e, 0x3f,
+ 0x1f, 0x0f,
+ 0x20, 0x3f,
+ 0x22, 0x21,
+ 0x23, 0x3f,
+ 0x24, 0x20,
+ 0x25, 0x3f,
+ 0x27, 0xee,
+ 0x2c, 0x27, /* bit at 0x20 is cleared below */
+ 0x30, 0x03,
+ 0x2c, 0x07, /* bit at 0x20 is cleared here */
+ 0x2d, 0x87,
+ 0x2e, 0xaa,
+ 0x28, 0xe1, /* Set the FIFCrst bit here */
+ 0x28, 0xe0, /* Clear the FIFCrst bit here */
+ 0x00
+};
+
+static const u8 MT2063B1_defaults [] = {
+ 0x11, 0x10, /* new EnableAFCsd */
+ 0x19, 0x05,
+ 0x1a, 0x6c,
+ 0x1b, 0x24,
+ 0x1c, 0x28,
+ 0x1d, 0x8f,
+ 0x1e, 0x14,
+ 0x1f, 0x8f,
+ 0x20, 0x57,
+ 0x22, 0x21,
+ 0x23, 0x3c,
+ 0x24, 0x20,
+ 0x2c, 0x24, /* bit at 0x20 is cleared below */
+ 0x2d, 0x87,
+ 0x2f, 0xf3,
+ 0x30, 0x0c,
+ 0x31, 0x1b,
+ 0x2c, 0x04, /* bit at 0x20 is cleared here */
+ 0x28, 0xe1, /* Set the FIFCrst bit here */
+ 0x28, 0xe0, /* Clear the FIFCrst bit here */
+ 0x00
+};
+
+static const u8 MT2063B3_defaults [] = {
+ 0x19, 0x3d,
+ 0x2c, 0x24, /* bit at 0x20 is cleared below */
+ 0x2c, 0x04, /* bit at 0x20 is cleared here */
+ 0x28, 0xe1, /* Set the FIFCrst bit here */
+ 0x28, 0xe0, /* Clear the FIFCrst bit here */
+ 0x00
+};
+
+/*
+ * Parameter for function MT2063_SetPowerMask that specifies the power down
+ * of various sections of the MT2063.
+ */
+enum MT2063_Mask_Bits {
+ MT2063_REG_SD = 0x0040, /* Shutdown regulator */
+ MT2063_SRO_SD = 0x0020, /* Shutdown SRO */
+ MT2063_AFC_SD = 0x0010, /* Shutdown AFC A/D */
+ MT2063_PD_SD = 0x0002, /* Enable power detector shutdown */
+ MT2063_PDADC_SD = 0x0001, /* Enable power detector A/D shutdown */
+ MT2063_VCO_SD = 0x8000, /* Enable VCO shutdown */
+ MT2063_LTX_SD = 0x4000, /* Enable LTX shutdown */
+ MT2063_LT1_SD = 0x2000, /* Enable LT1 shutdown */
+ MT2063_LNA_SD = 0x1000, /* Enable LNA shutdown */
+ MT2063_UPC_SD = 0x0800, /* Enable upconverter shutdown */
+ MT2063_DNC_SD = 0x0400, /* Enable downconverter shutdown */
+ MT2063_VGA_SD = 0x0200, /* Enable VGA shutdown */
+ MT2063_AMP_SD = 0x0100, /* Enable AMP shutdown */
+ MT2063_ALL_SD = 0xFF73, /* All shutdown bits for this tuner */
+ MT2063_NONE_SD = 0x0000 /* No shutdown bits */
+};
+
+enum mt2063_delsys {
+ MT2063_CABLE_QAM = 0, /* dvb-c */
+ MT2063_CABLE_ANALOG, /* analog tv */
+ MT2063_OFFAIR_COFDM, /* dvb-t */
+ MT2063_OFFAIR_COFDM_SAWLESS, /* dvb-t sawless */
+ MT2063_OFFAIR_ANALOG, /* analog radio */
+ MT2063_OFFAIR_8VSB, /* atsc */
+};
+
+static const char *mt2063_mode_name[] = {
+ [MT2063_CABLE_QAM] = "digital cable",
+ [MT2063_CABLE_ANALOG] = "analog cable",
+ [MT2063_OFFAIR_COFDM] = "digital offair",
+ [MT2063_OFFAIR_COFDM_SAWLESS] = "digital offair without sawless",
+ [MT2063_OFFAIR_ANALOG] = "analog offair",
+ [MT2063_OFFAIR_8VSB] = "digital offair 8vsb/ATSC",
+};
+
+static const u8 LNARIN [] = { 0, 0, 3, 3, 3, 3 };
+static const u8 LNATGT [] = { 44, 43, 43, 43, 43, 43 };
+static const u8 RFOVDIS [] = { 0, 0, 0, 0, 0, 0 };
+static const u8 PD1TGT [] = { 36, 36, 38, 38, 36, 38 };
+static const u8 FIFOVDIS [] = { 0, 0, 0, 0, 0, 0 };
+static const u8 PD2TGT [] = { 40, 33, 42, 42, 33, 42 };
+
+/*
+ * main structure of mt2063
+ */
+struct mt2063_state {
+ /* i2c adapter */
+ struct i2c_adapter *i2c;
+ u8 i2c_addr;
+
+ /* hybrid stuff */
+ struct list_head hybrid_tuner_instance_list;
+ struct tuner_i2c_props i2c_props;
+
+ /* device lock for remote calls */
+ struct mutex lock;
+
+ /* device configurations */
+ const struct mt2063_config *config;
+ struct dvb_tuner_ops ops;
+ struct dvb_frontend *frontend;
+ struct tuner_state status; /* ? */
+ u32 frequency; /* input frequency in kHz */
+ u32 if2; /* if output frequency in kHz */
+ u32 bw; /* bandwidth spurcheck */
+ u32 tuner_id;
+ enum mt2063_delsys mode;
+};
+
+
+#endif /* __MT2063_PRIV_H__ */
^ permalink raw reply [flat|nested] 4+ messages in thread
* Re: [PATCH] mt2063: rework tuner driver
2012-01-26 20:05 ` Mauro Carvalho Chehab
@ 2012-02-14 16:30 ` Stefan Ringel
2012-02-14 16:40 ` Mauro Carvalho Chehab
0 siblings, 1 reply; 4+ messages in thread
From: Stefan Ringel @ 2012-02-14 16:30 UTC (permalink / raw)
To: Mauro Carvalho Chehab; +Cc: linux-media
Mauro,
I think you applied this patch, but I don't see it into media_tree.git ?
Am 26.01.2012 21:05, schrieb Mauro Carvalho Chehab:
> Hi Stefan,
>
> Em 09-01-2012 14:37, linuxtv@stefanringel.de escreveu:
>> From: Stefan Ringel<linuxtv@stefanringel.de>
>>
>> - remove DECT stuff
>> - use a simpler calculation
>> - add hybrid stuff
>> - use ClearTune, first IF filter, bypass filter in auto mode
>> - move a few register setting from mt2063_set_mode into mt2063_init
>> - reorganise main structure
> Nice cleanup, but it broke support on az6007. I tried to just re-add
> the I2C gateway control, but this wasn't enough. The changes you've
> made are so big that it is not trivial to have a glue about what
> change could have affected it.
>
> This is basically the reason why you shouldn't be doing 6 different
> unrelated changes into the same patch.
>
>> Signed-off-by: Stefan Ringel<linuxtv@stefanringel.de>
>
> Btw, I had to rebase your patch, in order to make it work
> with the current version. As reference, this is the patch
> I applied.
>
> [PATCH] mt2063: rework tuner driver
>
> From: Stefan Ringel<linuxtv@stefanringel.de>
>
> - remove DECT stuff
> - use a simpler calculation
> - add hybrid stuff
> - use ClearTune, first IF filter, bypass filter in auto mode
> - move a few register setting from mt2063_set_mode into mt2063_init
> - reorganise main structure
>
> [mchehab@redhat.com: Rebase to current tree, fix a typo and re-added i2c-gate-control]
> Signed-off-by: Stefan Ringel<linuxtv@stefanringel.de>
>
> ---
> drivers/media/common/tuners/mt2063.c | 2522 +++++------------------------
> drivers/media/common/tuners/mt2063.h | 42 +-
> drivers/media/common/tuners/mt2063_priv.h | 234 +++
> 3 files changed, 704 insertions(+), 2094 deletions(-)
> create mode 100644 drivers/media/common/tuners/mt2063_priv.h
>
> Index: patchwork/drivers/media/common/tuners/mt2063.c
> ===================================================================
> --- patchwork.orig/drivers/media/common/tuners/mt2063.c
> +++ patchwork/drivers/media/common/tuners/mt2063.c
> @@ -1,12 +1,13 @@
> /*
> - * Driver for mt2063 Micronas tuner
> + * Driver for microtune mt2063 tuner
> *
> * Copyright (c) 2011 Mauro Carvalho Chehab<mchehab@redhat.com>
> + * Copyright (c) 2012 Stefan Ringel<linuxtv@stefanringel.de>
> *
> * This driver came from a driver originally written by:
> - * Henry Wang<Henry.wang@AzureWave.com>
> + * Henry Wang<Henry.wang@AzureWave.com>
> * Made publicly available by Terratec, at:
> - * http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
> + * http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
> * The original driver's license is GPL, as declared with MODULE_LICENSE()
> *
> * This program is free software; you can redistribute it and/or modify
> @@ -26,241 +27,41 @@
> #include<linux/videodev2.h>
>
> #include "mt2063.h"
> +#include "mt2063_priv.h"
>
> static unsigned int debug;
> module_param(debug, int, 0644);
> -MODULE_PARM_DESC(debug, "Set Verbosity level");
> +MODULE_PARM_DESC(debug, "Set debug level");
>
> -#define dprintk(level, fmt, arg...) do { \
> -if (debug>= level) \
> - printk(KERN_DEBUG "mt2063 %s: " fmt, __func__, ## arg); \
> -} while (0)
> -
> -
> -/* positive error codes used internally */
> -
> -/* Info: Unavoidable LO-related spur may be present in the output */
> -#define MT2063_SPUR_PRESENT_ERR (0x00800000)
> -
> -/* Info: Mask of bits used for # of LO-related spurs that were avoided during tuning */
> -#define MT2063_SPUR_CNT_MASK (0x001f0000)
> -#define MT2063_SPUR_SHIFT (16)
> -
> -/* Info: Upconverter frequency is out of range (may be reason for MT_UPC_UNLOCK) */
> -#define MT2063_UPC_RANGE (0x04000000)
> -
> -/* Info: Downconverter frequency is out of range (may be reason for MT_DPC_UNLOCK) */
> -#define MT2063_DNC_RANGE (0x08000000)
> -
> -/*
> - * Constant defining the version of the following structure
> - * and therefore the API for this code.
> - *
> - * When compiling the tuner driver, the preprocessor will
> - * check against this version number to make sure that
> - * it matches the version that the tuner driver knows about.
> - */
> +static DEFINE_MUTEX(mt2063_list_mutex);
> +static LIST_HEAD(hybrid_tuner_instance_list);
>
> -/* DECT Frequency Avoidance */
> -#define MT2063_DECT_AVOID_US_FREQS 0x00000001
> -
> -#define MT2063_DECT_AVOID_EURO_FREQS 0x00000002
> -
> -#define MT2063_EXCLUDE_US_DECT_FREQUENCIES(s) (((s)& MT2063_DECT_AVOID_US_FREQS) != 0)
> -
> -#define MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(s) (((s)& MT2063_DECT_AVOID_EURO_FREQS) != 0)
> -
> -enum MT2063_DECT_Avoid_Type {
> - MT2063_NO_DECT_AVOIDANCE = 0, /* Do not create DECT exclusion zones. */
> - MT2063_AVOID_US_DECT = MT2063_DECT_AVOID_US_FREQS, /* Avoid US DECT frequencies. */
> - MT2063_AVOID_EURO_DECT = MT2063_DECT_AVOID_EURO_FREQS, /* Avoid European DECT frequencies. */
> - MT2063_AVOID_BOTH /* Avoid both regions. Not typically used. */
> -};
> -
> -#define MT2063_MAX_ZONES 48
> -
> -struct MT2063_ExclZone_t {
> - u32 min_;
> - u32 max_;
> - struct MT2063_ExclZone_t *next_;
> -};
> -
> -/*
> - * Structure of data needed for Spur Avoidance
> - */
> -struct MT2063_AvoidSpursData_t {
> - u32 f_ref;
> - u32 f_in;
> - u32 f_LO1;
> - u32 f_if1_Center;
> - u32 f_if1_Request;
> - u32 f_if1_bw;
> - u32 f_LO2;
> - u32 f_out;
> - u32 f_out_bw;
> - u32 f_LO1_Step;
> - u32 f_LO2_Step;
> - u32 f_LO1_FracN_Avoid;
> - u32 f_LO2_FracN_Avoid;
> - u32 f_zif_bw;
> - u32 f_min_LO_Separation;
> - u32 maxH1;
> - u32 maxH2;
> - enum MT2063_DECT_Avoid_Type avoidDECT;
> - u32 bSpurPresent;
> - u32 bSpurAvoided;
> - u32 nSpursFound;
> - u32 nZones;
> - struct MT2063_ExclZone_t *freeZones;
> - struct MT2063_ExclZone_t *usedZones;
> - struct MT2063_ExclZone_t MT2063_ExclZones[MT2063_MAX_ZONES];
> -};
> -
> -/*
> - * Parameter for function MT2063_SetPowerMask that specifies the power down
> - * of various sections of the MT2063.
> - */
> -enum MT2063_Mask_Bits {
> - MT2063_REG_SD = 0x0040, /* Shutdown regulator */
> - MT2063_SRO_SD = 0x0020, /* Shutdown SRO */
> - MT2063_AFC_SD = 0x0010, /* Shutdown AFC A/D */
> - MT2063_PD_SD = 0x0002, /* Enable power detector shutdown */
> - MT2063_PDADC_SD = 0x0001, /* Enable power detector A/D shutdown */
> - MT2063_VCO_SD = 0x8000, /* Enable VCO shutdown */
> - MT2063_LTX_SD = 0x4000, /* Enable LTX shutdown */
> - MT2063_LT1_SD = 0x2000, /* Enable LT1 shutdown */
> - MT2063_LNA_SD = 0x1000, /* Enable LNA shutdown */
> - MT2063_UPC_SD = 0x0800, /* Enable upconverter shutdown */
> - MT2063_DNC_SD = 0x0400, /* Enable downconverter shutdown */
> - MT2063_VGA_SD = 0x0200, /* Enable VGA shutdown */
> - MT2063_AMP_SD = 0x0100, /* Enable AMP shutdown */
> - MT2063_ALL_SD = 0xFF73, /* All shutdown bits for this tuner */
> - MT2063_NONE_SD = 0x0000 /* No shutdown bits */
> -};
> -
> -/*
> - * Possible values for MT2063_DNC_OUTPUT
> - */
> -enum MT2063_DNC_Output_Enable {
> - MT2063_DNC_NONE = 0,
> - MT2063_DNC_1,
> - MT2063_DNC_2,
> - MT2063_DNC_BOTH
> -};
> -
> -/*
> - * Two-wire serial bus subaddresses of the tuner registers.
> - * Also known as the tuner's register addresses.
> - */
> -enum MT2063_Register_Offsets {
> - MT2063_REG_PART_REV = 0, /* 0x00: Part/Rev Code */
> - MT2063_REG_LO1CQ_1, /* 0x01: LO1C Queued Byte 1 */
> - MT2063_REG_LO1CQ_2, /* 0x02: LO1C Queued Byte 2 */
> - MT2063_REG_LO2CQ_1, /* 0x03: LO2C Queued Byte 1 */
> - MT2063_REG_LO2CQ_2, /* 0x04: LO2C Queued Byte 2 */
> - MT2063_REG_LO2CQ_3, /* 0x05: LO2C Queued Byte 3 */
> - MT2063_REG_RSVD_06, /* 0x06: Reserved */
> - MT2063_REG_LO_STATUS, /* 0x07: LO Status */
> - MT2063_REG_FIFFC, /* 0x08: FIFF Center */
> - MT2063_REG_CLEARTUNE, /* 0x09: ClearTune Filter */
> - MT2063_REG_ADC_OUT, /* 0x0A: ADC_OUT */
> - MT2063_REG_LO1C_1, /* 0x0B: LO1C Byte 1 */
> - MT2063_REG_LO1C_2, /* 0x0C: LO1C Byte 2 */
> - MT2063_REG_LO2C_1, /* 0x0D: LO2C Byte 1 */
> - MT2063_REG_LO2C_2, /* 0x0E: LO2C Byte 2 */
> - MT2063_REG_LO2C_3, /* 0x0F: LO2C Byte 3 */
> - MT2063_REG_RSVD_10, /* 0x10: Reserved */
> - MT2063_REG_PWR_1, /* 0x11: PWR Byte 1 */
> - MT2063_REG_PWR_2, /* 0x12: PWR Byte 2 */
> - MT2063_REG_TEMP_STATUS, /* 0x13: Temp Status */
> - MT2063_REG_XO_STATUS, /* 0x14: Crystal Status */
> - MT2063_REG_RF_STATUS, /* 0x15: RF Attn Status */
> - MT2063_REG_FIF_STATUS, /* 0x16: FIF Attn Status */
> - MT2063_REG_LNA_OV, /* 0x17: LNA Attn Override */
> - MT2063_REG_RF_OV, /* 0x18: RF Attn Override */
> - MT2063_REG_FIF_OV, /* 0x19: FIF Attn Override */
> - MT2063_REG_LNA_TGT, /* 0x1A: Reserved */
> - MT2063_REG_PD1_TGT, /* 0x1B: Pwr Det 1 Target */
> - MT2063_REG_PD2_TGT, /* 0x1C: Pwr Det 2 Target */
> - MT2063_REG_RSVD_1D, /* 0x1D: Reserved */
> - MT2063_REG_RSVD_1E, /* 0x1E: Reserved */
> - MT2063_REG_RSVD_1F, /* 0x1F: Reserved */
> - MT2063_REG_RSVD_20, /* 0x20: Reserved */
> - MT2063_REG_BYP_CTRL, /* 0x21: Bypass Control */
> - MT2063_REG_RSVD_22, /* 0x22: Reserved */
> - MT2063_REG_RSVD_23, /* 0x23: Reserved */
> - MT2063_REG_RSVD_24, /* 0x24: Reserved */
> - MT2063_REG_RSVD_25, /* 0x25: Reserved */
> - MT2063_REG_RSVD_26, /* 0x26: Reserved */
> - MT2063_REG_RSVD_27, /* 0x27: Reserved */
> - MT2063_REG_FIFF_CTRL, /* 0x28: FIFF Control */
> - MT2063_REG_FIFF_OFFSET, /* 0x29: FIFF Offset */
> - MT2063_REG_CTUNE_CTRL, /* 0x2A: Reserved */
> - MT2063_REG_CTUNE_OV, /* 0x2B: Reserved */
> - MT2063_REG_CTRL_2C, /* 0x2C: Reserved */
> - MT2063_REG_FIFF_CTRL2, /* 0x2D: Fiff Control */
> - MT2063_REG_RSVD_2E, /* 0x2E: Reserved */
> - MT2063_REG_DNC_GAIN, /* 0x2F: DNC Control */
> - MT2063_REG_VGA_GAIN, /* 0x30: VGA Gain Ctrl */
> - MT2063_REG_RSVD_31, /* 0x31: Reserved */
> - MT2063_REG_TEMP_SEL, /* 0x32: Temperature Selection */
> - MT2063_REG_RSVD_33, /* 0x33: Reserved */
> - MT2063_REG_RSVD_34, /* 0x34: Reserved */
> - MT2063_REG_RSVD_35, /* 0x35: Reserved */
> - MT2063_REG_RSVD_36, /* 0x36: Reserved */
> - MT2063_REG_RSVD_37, /* 0x37: Reserved */
> - MT2063_REG_RSVD_38, /* 0x38: Reserved */
> - MT2063_REG_RSVD_39, /* 0x39: Reserved */
> - MT2063_REG_RSVD_3A, /* 0x3A: Reserved */
> - MT2063_REG_RSVD_3B, /* 0x3B: Reserved */
> - MT2063_REG_RSVD_3C, /* 0x3C: Reserved */
> - MT2063_REG_END_REGS
> -};
> -
> -struct mt2063_state {
> - struct i2c_adapter *i2c;
> -
> - bool init;
> -
> - const struct mt2063_config *config;
> - struct dvb_tuner_ops ops;
> - struct dvb_frontend *frontend;
> - struct tuner_state status;
> -
> - u32 frequency;
> - u32 srate;
> - u32 bandwidth;
> - u32 reference;
> -
> - u32 tuner_id;
> - struct MT2063_AvoidSpursData_t AS_Data;
> - u32 f_IF1_actual;
> - u32 rcvr_mode;
> - u32 ctfilt_sw;
> - u32 CTFiltMax[31];
> - u32 num_regs;
> - u8 reg[MT2063_REG_END_REGS];
> -};
> +/* debug level
> + * 0 don't debug
> + * 1 called functions without i2c comunications
> + * 2 additional calculating, result etc.
> + * 3 maximum debug information
> + */
> +#define dprintk(level, fmt, arg...) do { \
> +if (debug>= level) \
> + printk(KERN_DEBUG "mt2063 %s: " fmt, __func__, ##arg); \
> +} while (0)
>
> -/*
> - * mt2063_write - Write data into the I2C bus
> - */
> -static u32 mt2063_write(struct mt2063_state *state, u8 reg, u8 *data, u32 len)
> +static int mt2063_write(struct mt2063_state *state, u8 reg, u8 data)
> {
> struct dvb_frontend *fe = state->frontend;
> int ret;
> - u8 buf[60];
> + u8 buf[2] = { reg, data };
> +
> struct i2c_msg msg = {
> - .addr = state->config->tuner_address,
> + .addr = state->i2c_addr,
> .flags = 0,
> .buf = buf,
> - .len = len + 1
> + .len = 2,
> };
>
> - dprintk(2, "\n");
> -
> - msg.buf[0] = reg;
> - memcpy(msg.buf + 1, data, len);
> + dprintk(3, "writing at address 0x%02x, subadresse 0x%02x, \
> + value 0x%02x\n", state->i2c_addr, reg, data);
>
> if (fe->ops.i2c_gate_ctrl)
> fe->ops.i2c_gate_ctrl(fe, 1);
> @@ -274,2034 +75,605 @@ static u32 mt2063_write(struct mt2063_st
> return ret;
> }
>
> -/*
> - * mt2063_write - Write register data into the I2C bus, caching the value
> - */
> -static u32 mt2063_setreg(struct mt2063_state *state, u8 reg, u8 val)
> -{
> - u32 status;
> -
> - dprintk(2, "\n");
> -
> - if (reg>= MT2063_REG_END_REGS)
> - return -ERANGE;
> -
> - status = mt2063_write(state, reg,&val, 1);
> - if (status< 0)
> - return status;
> -
> - state->reg[reg] = val;
> -
> - return 0;
> -}
> -
> -/*
> - * mt2063_read - Read data from the I2C bus
> - */
> -static u32 mt2063_read(struct mt2063_state *state,
> - u8 subAddress, u8 *pData, u32 cnt)
> +static int mt2063_read(struct mt2063_state *state, u8 reg, u8 *data)
> {
> - u32 status = 0; /* Status to be returned */
> struct dvb_frontend *fe = state->frontend;
> - u32 i = 0;
> + int ret = 0;
> +
> + struct i2c_msg msg[] = { {
> + .addr = state->i2c_addr,
> + .flags = 0,
> + .buf =®,
> + .len = 1,
> + }, {
> + .addr = state->i2c_addr,
> + .flags = I2C_M_RD,
> + .buf = data,
> + .len = 1,
> + } };
>
> - dprintk(2, "addr 0x%02x, cnt %d\n", subAddress, cnt);
> + dprintk(3, "\n");
>
> if (fe->ops.i2c_gate_ctrl)
> fe->ops.i2c_gate_ctrl(fe, 1);
> -
> - for (i = 0; i< cnt; i++) {
> - u8 b0[] = { subAddress + i };
> - struct i2c_msg msg[] = {
> - {
> - .addr = state->config->tuner_address,
> - .flags = 0,
> - .buf = b0,
> - .len = 1
> - }, {
> - .addr = state->config->tuner_address,
> - .flags = I2C_M_RD,
> - .buf = pData + i,
> - .len = 1
> - }
> - };
> -
> - status = i2c_transfer(state->i2c, msg, 2);
> - dprintk(2, "addr 0x%02x, ret = %d, val = 0x%02x\n",
> - subAddress + i, status, *(pData + i));
> - if (status< 0)
> - break;
> - }
> + ret = i2c_transfer(state->i2c, msg, 2);
> if (fe->ops.i2c_gate_ctrl)
> fe->ops.i2c_gate_ctrl(fe, 0);
>
> - if (status< 0)
> - printk(KERN_ERR "Can't read from address 0x%02x,\n",
> - subAddress + i);
> -
> - return status;
> -}
> -
> -/*
> - * FIXME: Is this really needed?
> - */
> -static int MT2063_Sleep(struct dvb_frontend *fe)
> -{
> - /*
> - * ToDo: Add code here to implement a OS blocking
> - */
> - msleep(10);
> -
> - return 0;
> -}
> -
> -/*
> - * Microtune spur avoidance
> - */
> -
> -/* Implement ceiling, floor functions. */
> -#define ceil(n, d) (((n)< 0) ? (-((-(n))/(d))) : (n)/(d) + ((n)%(d) != 0))
> -#define floor(n, d) (((n)< 0) ? (-((-(n))/(d))) - ((n)%(d) != 0) : (n)/(d))
> -
> -struct MT2063_FIFZone_t {
> - s32 min_;
> - s32 max_;
> -};
> -
> -static struct MT2063_ExclZone_t *InsertNode(struct MT2063_AvoidSpursData_t
> - *pAS_Info,
> - struct MT2063_ExclZone_t *pPrevNode)
> -{
> - struct MT2063_ExclZone_t *pNode;
> -
> - dprintk(2, "\n");
> -
> - /* Check for a node in the free list */
> - if (pAS_Info->freeZones != NULL) {
> - /* Use one from the free list */
> - pNode = pAS_Info->freeZones;
> - pAS_Info->freeZones = pNode->next_;
> - } else {
> - /* Grab a node from the array */
> - pNode =&pAS_Info->MT2063_ExclZones[pAS_Info->nZones];
> - }
> -
> - if (pPrevNode != NULL) {
> - pNode->next_ = pPrevNode->next_;
> - pPrevNode->next_ = pNode;
> - } else { /* insert at the beginning of the list */
> -
> - pNode->next_ = pAS_Info->usedZones;
> - pAS_Info->usedZones = pNode;
> - }
> -
> - pAS_Info->nZones++;
> - return pNode;
> -}
> -
> -static struct MT2063_ExclZone_t *RemoveNode(struct MT2063_AvoidSpursData_t
> - *pAS_Info,
> - struct MT2063_ExclZone_t *pPrevNode,
> - struct MT2063_ExclZone_t
> - *pNodeToRemove)
> -{
> - struct MT2063_ExclZone_t *pNext = pNodeToRemove->next_;
> -
> - dprintk(2, "\n");
> -
> - /* Make previous node point to the subsequent node */
> - if (pPrevNode != NULL)
> - pPrevNode->next_ = pNext;
> -
> - /* Add pNodeToRemove to the beginning of the freeZones */
> - pNodeToRemove->next_ = pAS_Info->freeZones;
> - pAS_Info->freeZones = pNodeToRemove;
> -
> - /* Decrement node count */
> - pAS_Info->nZones--;
> -
> - return pNext;
> -}
> -
> -/*
> - * MT_AddExclZone()
> - *
> - * Add (and merge) an exclusion zone into the list.
> - * If the range (f_min, f_max) is totally outside the
> - * 1st IF BW, ignore the entry.
> - * If the range (f_min, f_max) is negative, ignore the entry.
> - */
> -static void MT2063_AddExclZone(struct MT2063_AvoidSpursData_t *pAS_Info,
> - u32 f_min, u32 f_max)
> -{
> - struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
> - struct MT2063_ExclZone_t *pPrev = NULL;
> - struct MT2063_ExclZone_t *pNext = NULL;
> -
> - dprintk(2, "\n");
> -
> - /* Check to see if this overlaps the 1st IF filter */
> - if ((f_max> (pAS_Info->f_if1_Center - (pAS_Info->f_if1_bw / 2)))
> - && (f_min< (pAS_Info->f_if1_Center + (pAS_Info->f_if1_bw / 2)))
> - && (f_min< f_max)) {
> - /*
> - * 1 2 3 4 5 6
> - *
> - * New entry: |---| |--| |--| |-| |---| |--|
> - * or or or or or
> - * Existing: |--| |--| |--| |---| |-| |--|
> - */
> -
> - /* Check for our place in the list */
> - while ((pNode != NULL)&& (pNode->max_< f_min)) {
> - pPrev = pNode;
> - pNode = pNode->next_;
> - }
> -
> - if ((pNode != NULL)&& (pNode->min_< f_max)) {
> - /* Combine me with pNode */
> - if (f_min< pNode->min_)
> - pNode->min_ = f_min;
> - if (f_max> pNode->max_)
> - pNode->max_ = f_max;
> - } else {
> - pNode = InsertNode(pAS_Info, pPrev);
> - pNode->min_ = f_min;
> - pNode->max_ = f_max;
> - }
> -
> - /* Look for merging possibilities */
> - pNext = pNode->next_;
> - while ((pNext != NULL)&& (pNext->min_< pNode->max_)) {
> - if (pNext->max_> pNode->max_)
> - pNode->max_ = pNext->max_;
> - /* Remove pNext, return ptr to pNext->next */
> - pNext = RemoveNode(pAS_Info, pNode, pNext);
> - }
> - }
> -}
> -
> -/*
> - * Reset all exclusion zones.
> - * Add zones to protect the PLL FracN regions near zero
> - */
> -static void MT2063_ResetExclZones(struct MT2063_AvoidSpursData_t *pAS_Info)
> -{
> - u32 center;
> -
> - dprintk(2, "\n");
> -
> - pAS_Info->nZones = 0; /* this clears the used list */
> - pAS_Info->usedZones = NULL; /* reset ptr */
> - pAS_Info->freeZones = NULL; /* reset ptr */
> -
> - center =
> - pAS_Info->f_ref *
> - ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 +
> - pAS_Info->f_in) / pAS_Info->f_ref) - pAS_Info->f_in;
> - while (center<
> - pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
> - pAS_Info->f_LO1_FracN_Avoid) {
> - /* Exclude LO1 FracN */
> - MT2063_AddExclZone(pAS_Info,
> - center - pAS_Info->f_LO1_FracN_Avoid,
> - center - 1);
> - MT2063_AddExclZone(pAS_Info, center + 1,
> - center + pAS_Info->f_LO1_FracN_Avoid);
> - center += pAS_Info->f_ref;
> - }
> -
> - center =
> - pAS_Info->f_ref *
> - ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 -
> - pAS_Info->f_out) / pAS_Info->f_ref) + pAS_Info->f_out;
> - while (center<
> - pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
> - pAS_Info->f_LO2_FracN_Avoid) {
> - /* Exclude LO2 FracN */
> - MT2063_AddExclZone(pAS_Info,
> - center - pAS_Info->f_LO2_FracN_Avoid,
> - center - 1);
> - MT2063_AddExclZone(pAS_Info, center + 1,
> - center + pAS_Info->f_LO2_FracN_Avoid);
> - center += pAS_Info->f_ref;
> - }
> -
> - if (MT2063_EXCLUDE_US_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
> - /* Exclude LO1 values that conflict with DECT channels */
> - MT2063_AddExclZone(pAS_Info, 1920836000 - pAS_Info->f_in, 1922236000 - pAS_Info->f_in); /* Ctr = 1921.536 */
> - MT2063_AddExclZone(pAS_Info, 1922564000 - pAS_Info->f_in, 1923964000 - pAS_Info->f_in); /* Ctr = 1923.264 */
> - MT2063_AddExclZone(pAS_Info, 1924292000 - pAS_Info->f_in, 1925692000 - pAS_Info->f_in); /* Ctr = 1924.992 */
> - MT2063_AddExclZone(pAS_Info, 1926020000 - pAS_Info->f_in, 1927420000 - pAS_Info->f_in); /* Ctr = 1926.720 */
> - MT2063_AddExclZone(pAS_Info, 1927748000 - pAS_Info->f_in, 1929148000 - pAS_Info->f_in); /* Ctr = 1928.448 */
> - }
> -
> - if (MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
> - MT2063_AddExclZone(pAS_Info, 1896644000 - pAS_Info->f_in, 1898044000 - pAS_Info->f_in); /* Ctr = 1897.344 */
> - MT2063_AddExclZone(pAS_Info, 1894916000 - pAS_Info->f_in, 1896316000 - pAS_Info->f_in); /* Ctr = 1895.616 */
> - MT2063_AddExclZone(pAS_Info, 1893188000 - pAS_Info->f_in, 1894588000 - pAS_Info->f_in); /* Ctr = 1893.888 */
> - MT2063_AddExclZone(pAS_Info, 1891460000 - pAS_Info->f_in, 1892860000 - pAS_Info->f_in); /* Ctr = 1892.16 */
> - MT2063_AddExclZone(pAS_Info, 1889732000 - pAS_Info->f_in, 1891132000 - pAS_Info->f_in); /* Ctr = 1890.432 */
> - MT2063_AddExclZone(pAS_Info, 1888004000 - pAS_Info->f_in, 1889404000 - pAS_Info->f_in); /* Ctr = 1888.704 */
> - MT2063_AddExclZone(pAS_Info, 1886276000 - pAS_Info->f_in, 1887676000 - pAS_Info->f_in); /* Ctr = 1886.976 */
> - MT2063_AddExclZone(pAS_Info, 1884548000 - pAS_Info->f_in, 1885948000 - pAS_Info->f_in); /* Ctr = 1885.248 */
> - MT2063_AddExclZone(pAS_Info, 1882820000 - pAS_Info->f_in, 1884220000 - pAS_Info->f_in); /* Ctr = 1883.52 */
> - MT2063_AddExclZone(pAS_Info, 1881092000 - pAS_Info->f_in, 1882492000 - pAS_Info->f_in); /* Ctr = 1881.792 */
> - }
> -}
> -
> -/*
> - * MT_ChooseFirstIF - Choose the best available 1st IF
> - * If f_Desired is not excluded, choose that first.
> - * Otherwise, return the value closest to f_Center that is
> - * not excluded
> - */
> -static u32 MT2063_ChooseFirstIF(struct MT2063_AvoidSpursData_t *pAS_Info)
> -{
> - /*
> - * Update "f_Desired" to be the nearest "combinational-multiple" of
> - * "f_LO1_Step".
> - * The resulting number, F_LO1 must be a multiple of f_LO1_Step.
> - * And F_LO1 is the arithmetic sum of f_in + f_Center.
> - * Neither f_in, nor f_Center must be a multiple of f_LO1_Step.
> - * However, the sum must be.
> - */
> - const u32 f_Desired =
> - pAS_Info->f_LO1_Step *
> - ((pAS_Info->f_if1_Request + pAS_Info->f_in +
> - pAS_Info->f_LO1_Step / 2) / pAS_Info->f_LO1_Step) -
> - pAS_Info->f_in;
> - const u32 f_Step =
> - (pAS_Info->f_LO1_Step>
> - pAS_Info->f_LO2_Step) ? pAS_Info->f_LO1_Step : pAS_Info->
> - f_LO2_Step;
> - u32 f_Center;
> - s32 i;
> - s32 j = 0;
> - u32 bDesiredExcluded = 0;
> - u32 bZeroExcluded = 0;
> - s32 tmpMin, tmpMax;
> - s32 bestDiff;
> - struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
> - struct MT2063_FIFZone_t zones[MT2063_MAX_ZONES];
> -
> - dprintk(2, "\n");
> -
> - if (pAS_Info->nZones == 0)
> - return f_Desired;
> -
> - /*
> - * f_Center needs to be an integer multiple of f_Step away
> - * from f_Desired
> - */
> - if (pAS_Info->f_if1_Center> f_Desired)
> - f_Center =
> - f_Desired +
> - f_Step *
> - ((pAS_Info->f_if1_Center - f_Desired +
> - f_Step / 2) / f_Step);
> - else
> - f_Center =
> - f_Desired -
> - f_Step *
> - ((f_Desired - pAS_Info->f_if1_Center +
> - f_Step / 2) / f_Step);
> -
> - /*
> - * Take MT_ExclZones, center around f_Center and change the
> - * resolution to f_Step
> - */
> - while (pNode != NULL) {
> - /* floor function */
> - tmpMin =
> - floor((s32) (pNode->min_ - f_Center), (s32) f_Step);
> -
> - /* ceil function */
> - tmpMax =
> - ceil((s32) (pNode->max_ - f_Center), (s32) f_Step);
> -
> - if ((pNode->min_< f_Desired)&& (pNode->max_> f_Desired))
> - bDesiredExcluded = 1;
> -
> - if ((tmpMin< 0)&& (tmpMax> 0))
> - bZeroExcluded = 1;
> -
> - /* See if this zone overlaps the previous */
> - if ((j> 0)&& (tmpMin< zones[j - 1].max_))
> - zones[j - 1].max_ = tmpMax;
> - else {
> - /* Add new zone */
> - zones[j].min_ = tmpMin;
> - zones[j].max_ = tmpMax;
> - j++;
> - }
> - pNode = pNode->next_;
> - }
> -
> - /*
> - * If the desired is okay, return with it
> - */
> - if (bDesiredExcluded == 0)
> - return f_Desired;
> -
> - /*
> - * If the desired is excluded and the center is okay, return with it
> - */
> - if (bZeroExcluded == 0)
> - return f_Center;
> -
> - /* Find the value closest to 0 (f_Center) */
> - bestDiff = zones[0].min_;
> - for (i = 0; i< j; i++) {
> - if (abs(zones[i].min_)< abs(bestDiff))
> - bestDiff = zones[i].min_;
> - if (abs(zones[i].max_)< abs(bestDiff))
> - bestDiff = zones[i].max_;
> - }
> -
> - if (bestDiff< 0)
> - return f_Center - ((u32) (-bestDiff) * f_Step);
> -
> - return f_Center + (bestDiff * f_Step);
> -}
> -
> -/**
> - * gcd() - Uses Euclid's algorithm
> - *
> - * @u, @v: Unsigned values whose GCD is desired.
> - *
> - * Returns THE greatest common divisor of u and v, if either value is 0,
> - * the other value is returned as the result.
> - */
> -static u32 MT2063_gcd(u32 u, u32 v)
> -{
> - u32 r;
> + if (ret< 0)
> + printk(KERN_ERR "Can't read from address 0x%02x,\n", reg);
>
> - while (v != 0) {
> - r = u % v;
> - u = v;
> - v = r;
> - }
> + dprintk(3, "readed at address 0x%02x, subadress 0x%02x, \
> + value 0x%02x\n", state->i2c_addr, reg, data[0]);
>
> - return u;
> + return ret;
> }
>
> -/**
> - * IsSpurInBand() - Checks to see if a spur will be present within the IF's
> - * bandwidth. (fIFOut +/- fIFBW, -fIFOut +/- fIFBW)
> - *
> - * ma mb mc md
> - *<--+-+-+-------------------+-------------------+-+-+-->
> - * | ^ 0 ^ |
> - * ^ b=-fIFOut+fIFBW/2 -b=+fIFOut-fIFBW/2 ^
> - * a=-fIFOut-fIFBW/2 -a=+fIFOut+fIFBW/2
> - *
> - * Note that some equations are doubled to prevent round-off
> - * problems when calculating fIFBW/2
> - *
> - * @pAS_Info: Avoid Spurs information block
> - * @fm: If spur, amount f_IF1 has to move negative
> - * @fp: If spur, amount f_IF1 has to move positive
> - *
> - * Returns 1 if an LO spur would be present, otherwise 0.
> - */
> -static u32 IsSpurInBand(struct MT2063_AvoidSpursData_t *pAS_Info,
> - u32 *fm, u32 * fp)
> +static int mt2063_set_reg_mask(struct mt2063_state *state, u8 reg,
> + u8 val, u8 mask)
> {
> - /*
> - ** Calculate LO frequency settings.
> - */
> - u32 n, n0;
> - const u32 f_LO1 = pAS_Info->f_LO1;
> - const u32 f_LO2 = pAS_Info->f_LO2;
> - const u32 d = pAS_Info->f_out + pAS_Info->f_out_bw / 2;
> - const u32 c = d - pAS_Info->f_out_bw;
> - const u32 f = pAS_Info->f_zif_bw / 2;
> - const u32 f_Scale = (f_LO1 / (UINT_MAX / 2 / pAS_Info->maxH1)) + 1;
> - s32 f_nsLO1, f_nsLO2;
> - s32 f_Spur;
> - u32 ma, mb, mc, md, me, mf;
> - u32 lo_gcd, gd_Scale, gc_Scale, gf_Scale, hgds, hgfs, hgcs;
> + u8 old_val, new_val;
>
> - dprintk(2, "\n");
> + dprintk(3, "\n");
>
> - *fm = 0;
> + mt2063_read(state, reg,&old_val);
>
> - /*
> - ** For each edge (d, c& f), calculate a scale, based on the gcd
> - ** of f_LO1, f_LO2 and the edge value. Use the larger of this
> - ** gcd-based scale factor or f_Scale.
> - */
> - lo_gcd = MT2063_gcd(f_LO1, f_LO2);
> - gd_Scale = max((u32) MT2063_gcd(lo_gcd, d), f_Scale);
> - hgds = gd_Scale / 2;
> - gc_Scale = max((u32) MT2063_gcd(lo_gcd, c), f_Scale);
> - hgcs = gc_Scale / 2;
> - gf_Scale = max((u32) MT2063_gcd(lo_gcd, f), f_Scale);
> - hgfs = gf_Scale / 2;
> -
> - n0 = DIV_ROUND_UP(f_LO2 - d, f_LO1 - f_LO2);
> -
> - /* Check out all multiples of LO1 from n0 to m_maxLOSpurHarmonic */
> - for (n = n0; n<= pAS_Info->maxH1; ++n) {
> - md = (n * ((f_LO1 + hgds) / gd_Scale) -
> - ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);
> -
> - /* If # fLO2 harmonics> m_maxLOSpurHarmonic, then no spurs present */
> - if (md>= pAS_Info->maxH1)
> - break;
> -
> - ma = (n * ((f_LO1 + hgds) / gd_Scale) +
> - ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);
> -
> - /* If no spurs between +/- (f_out + f_IFBW/2), then try next harmonic */
> - if (md == ma)
> - continue;
> -
> - mc = (n * ((f_LO1 + hgcs) / gc_Scale) -
> - ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
> - if (mc != md) {
> - f_nsLO1 = (s32) (n * (f_LO1 / gc_Scale));
> - f_nsLO2 = (s32) (mc * (f_LO2 / gc_Scale));
> - f_Spur =
> - (gc_Scale * (f_nsLO1 - f_nsLO2)) +
> - n * (f_LO1 % gc_Scale) - mc * (f_LO2 % gc_Scale);
> -
> - *fp = ((f_Spur - (s32) c) / (mc - n)) + 1;
> - *fm = (((s32) d - f_Spur) / (mc - n)) + 1;
> - return 1;
> - }
> -
> - /* Location of Zero-IF-spur to be checked */
> - me = (n * ((f_LO1 + hgfs) / gf_Scale) +
> - ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
> - mf = (n * ((f_LO1 + hgfs) / gf_Scale) -
> - ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
> - if (me != mf) {
> - f_nsLO1 = n * (f_LO1 / gf_Scale);
> - f_nsLO2 = me * (f_LO2 / gf_Scale);
> - f_Spur =
> - (gf_Scale * (f_nsLO1 - f_nsLO2)) +
> - n * (f_LO1 % gf_Scale) - me * (f_LO2 % gf_Scale);
> -
> - *fp = ((f_Spur + (s32) f) / (me - n)) + 1;
> - *fm = (((s32) f - f_Spur) / (me - n)) + 1;
> - return 1;
> - }
> + new_val = (old_val& ~mask) | (val& mask);
>
> - mb = (n * ((f_LO1 + hgcs) / gc_Scale) +
> - ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
> - if (ma != mb) {
> - f_nsLO1 = n * (f_LO1 / gc_Scale);
> - f_nsLO2 = ma * (f_LO2 / gc_Scale);
> - f_Spur =
> - (gc_Scale * (f_nsLO1 - f_nsLO2)) +
> - n * (f_LO1 % gc_Scale) - ma * (f_LO2 % gc_Scale);
> -
> - *fp = (((s32) d + f_Spur) / (ma - n)) + 1;
> - *fm = (-(f_Spur + (s32) c) / (ma - n)) + 1;
> - return 1;
> - }
> - }
> + if (new_val != old_val)
> + mt2063_write(state, reg, new_val);
>
> - /* No spurs found */
> return 0;
> }
>
> -/*
> - * MT_AvoidSpurs() - Main entry point to avoid spurs.
> - * Checks for existing spurs in present LO1, LO2 freqs
> - * and if present, chooses spur-free LO1, LO2 combination
> - * that tunes the same input/output frequencies.
> - */
> -static u32 MT2063_AvoidSpurs(struct MT2063_AvoidSpursData_t *pAS_Info)
> +static void mt2063_shutdown(struct mt2063_state *state,
> + enum MT2063_Mask_Bits sd)
> {
> - u32 status = 0;
> - u32 fm, fp; /* restricted range on LO's */
> - pAS_Info->bSpurAvoided = 0;
> - pAS_Info->nSpursFound = 0;
> -
> - dprintk(2, "\n");
> -
> - if (pAS_Info->maxH1 == 0)
> - return 0;
> + dprintk(1, "\n");
>
> /*
> - * Avoid LO Generated Spurs
> - *
> - * Make sure that have no LO-related spurs within the IF output
> - * bandwidth.
> + * set all power bits
> *
> - * If there is an LO spur in this band, start at the current IF1 frequency
> - * and work out until we find a spur-free frequency or run up against the
> - * 1st IF SAW band edge. Use temporary copies of fLO1 and fLO2 so that they
> - * will be unchanged if a spur-free setting is not found.
> */
> - pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info,&fm,&fp);
> - if (pAS_Info->bSpurPresent) {
> - u32 zfIF1 = pAS_Info->f_LO1 - pAS_Info->f_in; /* current attempt at a 1st IF */
> - u32 zfLO1 = pAS_Info->f_LO1; /* current attempt at an LO1 freq */
> - u32 zfLO2 = pAS_Info->f_LO2; /* current attempt at an LO2 freq */
> - u32 delta_IF1;
> - u32 new_IF1;
> -
> - /*
> - ** Spur was found, attempt to find a spur-free 1st IF
> - */
> - do {
> - pAS_Info->nSpursFound++;
> -
> - /* Raise f_IF1_upper, if needed */
> - MT2063_AddExclZone(pAS_Info, zfIF1 - fm, zfIF1 + fp);
> -
> - /* Choose next IF1 that is closest to f_IF1_CENTER */
> - new_IF1 = MT2063_ChooseFirstIF(pAS_Info);
> -
> - if (new_IF1> zfIF1) {
> - pAS_Info->f_LO1 += (new_IF1 - zfIF1);
> - pAS_Info->f_LO2 += (new_IF1 - zfIF1);
> - } else {
> - pAS_Info->f_LO1 -= (zfIF1 - new_IF1);
> - pAS_Info->f_LO2 -= (zfIF1 - new_IF1);
> - }
> - zfIF1 = new_IF1;
> -
> - if (zfIF1> pAS_Info->f_if1_Center)
> - delta_IF1 = zfIF1 - pAS_Info->f_if1_Center;
> - else
> - delta_IF1 = pAS_Info->f_if1_Center - zfIF1;
> -
> - pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info,&fm,&fp);
> - /*
> - * Continue while the new 1st IF is still within the 1st IF bandwidth
> - * and there is a spur in the band (again)
> - */
> - } while ((2 * delta_IF1 + pAS_Info->f_out_bw<= pAS_Info->f_if1_bw)&& pAS_Info->bSpurPresent);
> -
> - /*
> - * Use the LO-spur free values found. If the search went all
> - * the way to the 1st IF band edge and always found spurs, just
> - * leave the original choice. It's as "good" as any other.
> - */
> - if (pAS_Info->bSpurPresent == 1) {
> - status |= MT2063_SPUR_PRESENT_ERR;
> - pAS_Info->f_LO1 = zfLO1;
> - pAS_Info->f_LO2 = zfLO2;
> - } else
> - pAS_Info->bSpurAvoided = 1;
> - }
> -
> - status |=
> - ((pAS_Info->
> - nSpursFound<< MT2063_SPUR_SHIFT)& MT2063_SPUR_CNT_MASK);
> -
> - return status;
> -}
> -
> -/*
> - * Constants used by the tuning algorithm
> - */
> -#define MT2063_REF_FREQ (16000000UL) /* Reference oscillator Frequency (in Hz) */
> -#define MT2063_IF1_BW (22000000UL) /* The IF1 filter bandwidth (in Hz) */
> -#define MT2063_TUNE_STEP_SIZE (50000UL) /* Tune in steps of 50 kHz */
> -#define MT2063_SPUR_STEP_HZ (250000UL) /* Step size (in Hz) to move IF1 when avoiding spurs */
> -#define MT2063_ZIF_BW (2000000UL) /* Zero-IF spur-free bandwidth (in Hz) */
> -#define MT2063_MAX_HARMONICS_1 (15UL) /* Highest intra-tuner LO Spur Harmonic to be avoided */
> -#define MT2063_MAX_HARMONICS_2 (5UL) /* Highest inter-tuner LO Spur Harmonic to be avoided */
> -#define MT2063_MIN_LO_SEP (1000000UL) /* Minimum inter-tuner LO frequency separation */
> -#define MT2063_LO1_FRACN_AVOID (0UL) /* LO1 FracN numerator avoid region (in Hz) */
> -#define MT2063_LO2_FRACN_AVOID (199999UL) /* LO2 FracN numerator avoid region (in Hz) */
> -#define MT2063_MIN_FIN_FREQ (44000000UL) /* Minimum input frequency (in Hz) */
> -#define MT2063_MAX_FIN_FREQ (1100000000UL) /* Maximum input frequency (in Hz) */
> -#define MT2063_MIN_FOUT_FREQ (36000000UL) /* Minimum output frequency (in Hz) */
> -#define MT2063_MAX_FOUT_FREQ (57000000UL) /* Maximum output frequency (in Hz) */
> -#define MT2063_MIN_DNC_FREQ (1293000000UL) /* Minimum LO2 frequency (in Hz) */
> -#define MT2063_MAX_DNC_FREQ (1614000000UL) /* Maximum LO2 frequency (in Hz) */
> -#define MT2063_MIN_UPC_FREQ (1396000000UL) /* Minimum LO1 frequency (in Hz) */
> -#define MT2063_MAX_UPC_FREQ (2750000000UL) /* Maximum LO1 frequency (in Hz) */
> -
> -/*
> - * Define the supported Part/Rev codes for the MT2063
> - */
> -#define MT2063_B0 (0x9B)
> -#define MT2063_B1 (0x9C)
> -#define MT2063_B2 (0x9D)
> -#define MT2063_B3 (0x9E)
> -
> -/**
> - * mt2063_lockStatus - Checks to see if LO1 and LO2 are locked
> - *
> - * @state: struct mt2063_state pointer
> - *
> - * This function returns 0, if no lock, 1 if locked and a value< 1 if error
> - */
> -static unsigned int mt2063_lockStatus(struct mt2063_state *state)
> -{
> - const u32 nMaxWait = 100; /* wait a maximum of 100 msec */
> - const u32 nPollRate = 2; /* poll status bits every 2 ms */
> - const u32 nMaxLoops = nMaxWait / nPollRate;
> - const u8 LO1LK = 0x80;
> - u8 LO2LK = 0x08;
> - u32 status;
> - u32 nDelays = 0;
> -
> - dprintk(2, "\n");
> -
> - /* LO2 Lock bit was in a different place for B0 version */
> - if (state->tuner_id == MT2063_B0)
> - LO2LK = 0x40;
> -
> - do {
> - status = mt2063_read(state, MT2063_REG_LO_STATUS,
> - &state->reg[MT2063_REG_LO_STATUS], 1);
> -
> - if (status< 0)
> - return status;
> -
> - if ((state->reg[MT2063_REG_LO_STATUS]& (LO1LK | LO2LK)) ==
> - (LO1LK | LO2LK)) {
> - return TUNER_STATUS_LOCKED | TUNER_STATUS_STEREO;
> - }
> - msleep(nPollRate); /* Wait between retries */
> - } while (++nDelays< nMaxLoops);
> -
> - /*
> - * Got no lock or partial lock
> - */
> - return 0;
> -}
> -
> -/*
> - * Constants for setting receiver modes.
> - * (6 modes defined at this time, enumerated by mt2063_delivery_sys)
> - * (DNC1GC& DNC2GC are the values, which are used, when the specific
> - * DNC Output is selected, the other is always off)
> - *
> - * enum mt2063_delivery_sys
> - * -------------+----------------------------------------------
> - * Mode 0 : | MT2063_CABLE_QAM
> - * Mode 1 : | MT2063_CABLE_ANALOG
> - * Mode 2 : | MT2063_OFFAIR_COFDM
> - * Mode 3 : | MT2063_OFFAIR_COFDM_SAWLESS
> - * Mode 4 : | MT2063_OFFAIR_ANALOG
> - * Mode 5 : | MT2063_OFFAIR_8VSB
> - * --------------+----------------------------------------------
> - *
> - * |<---------- Mode -------------->|
> - * Reg Field | 0 | 1 | 2 | 3 | 4 | 5 |
> - * ------------+-----+-----+-----+-----+-----+-----+
> - * RFAGCen | OFF | OFF | OFF | OFF | OFF | OFF
> - * LNARin | 0 | 0 | 3 | 3 | 3 | 3
> - * FIFFQen | 1 | 1 | 1 | 1 | 1 | 1
> - * FIFFq | 0 | 0 | 0 | 0 | 0 | 0
> - * DNC1gc | 0 | 0 | 0 | 0 | 0 | 0
> - * DNC2gc | 0 | 0 | 0 | 0 | 0 | 0
> - * GCU Auto | 1 | 1 | 1 | 1 | 1 | 1
> - * LNA max Atn | 31 | 31 | 31 | 31 | 31 | 31
> - * LNA Target | 44 | 43 | 43 | 43 | 43 | 43
> - * ign RF Ovl | 0 | 0 | 0 | 0 | 0 | 0
> - * RF max Atn | 31 | 31 | 31 | 31 | 31 | 31
> - * PD1 Target | 36 | 36 | 38 | 38 | 36 | 38
> - * ign FIF Ovl | 0 | 0 | 0 | 0 | 0 | 0
> - * FIF max Atn | 5 | 5 | 5 | 5 | 5 | 5
> - * PD2 Target | 40 | 33 | 42 | 42 | 33 | 42
> - */
> -
> -enum mt2063_delivery_sys {
> - MT2063_CABLE_QAM = 0,
> - MT2063_CABLE_ANALOG,
> - MT2063_OFFAIR_COFDM,
> - MT2063_OFFAIR_COFDM_SAWLESS,
> - MT2063_OFFAIR_ANALOG,
> - MT2063_OFFAIR_8VSB,
> - MT2063_NUM_RCVR_MODES
> -};
> -
> -static const char *mt2063_mode_name[] = {
> - [MT2063_CABLE_QAM] = "digital cable",
> - [MT2063_CABLE_ANALOG] = "analog cable",
> - [MT2063_OFFAIR_COFDM] = "digital offair",
> - [MT2063_OFFAIR_COFDM_SAWLESS] = "digital offair without SAW",
> - [MT2063_OFFAIR_ANALOG] = "analog offair",
> - [MT2063_OFFAIR_8VSB] = "analog offair 8vsb",
> -};
> -
> -static const u8 RFAGCEN[] = { 0, 0, 0, 0, 0, 0 };
> -static const u8 LNARIN[] = { 0, 0, 3, 3, 3, 3 };
> -static const u8 FIFFQEN[] = { 1, 1, 1, 1, 1, 1 };
> -static const u8 FIFFQ[] = { 0, 0, 0, 0, 0, 0 };
> -static const u8 DNC1GC[] = { 0, 0, 0, 0, 0, 0 };
> -static const u8 DNC2GC[] = { 0, 0, 0, 0, 0, 0 };
> -static const u8 ACLNAMAX[] = { 31, 31, 31, 31, 31, 31 };
> -static const u8 LNATGT[] = { 44, 43, 43, 43, 43, 43 };
> -static const u8 RFOVDIS[] = { 0, 0, 0, 0, 0, 0 };
> -static const u8 ACRFMAX[] = { 31, 31, 31, 31, 31, 31 };
> -static const u8 PD1TGT[] = { 36, 36, 38, 38, 36, 38 };
> -static const u8 FIFOVDIS[] = { 0, 0, 0, 0, 0, 0 };
> -static const u8 ACFIFMAX[] = { 29, 29, 29, 29, 29, 29 };
> -static const u8 PD2TGT[] = { 40, 33, 38, 42, 30, 38 };
> -
> -/*
> - * mt2063_set_dnc_output_enable()
> - */
> -static u32 mt2063_get_dnc_output_enable(struct mt2063_state *state,
> - enum MT2063_DNC_Output_Enable *pValue)
> -{
> - dprintk(2, "\n");
> -
> - if ((state->reg[MT2063_REG_DNC_GAIN]& 0x03) == 0x03) { /* if DNC1 is off */
> - if ((state->reg[MT2063_REG_VGA_GAIN]& 0x03) == 0x03) /* if DNC2 is off */
> - *pValue = MT2063_DNC_NONE;
> - else
> - *pValue = MT2063_DNC_2;
> - } else { /* DNC1 is on */
> - if ((state->reg[MT2063_REG_VGA_GAIN]& 0x03) == 0x03) /* if DNC2 is off */
> - *pValue = MT2063_DNC_1;
> - else
> - *pValue = MT2063_DNC_BOTH;
> - }
> - return 0;
> -}
> -
> -/*
> - * mt2063_set_dnc_output_enable()
> - */
> -static u32 mt2063_set_dnc_output_enable(struct mt2063_state *state,
> - enum MT2063_DNC_Output_Enable nValue)
> -{
> - u32 status = 0; /* Status to be returned */
> - u8 val = 0;
> -
> - dprintk(2, "\n");
> -
> - /* selects, which DNC output is used */
> - switch (nValue) {
> - case MT2063_DNC_NONE:
> - val = (state->reg[MT2063_REG_DNC_GAIN]& 0xFC) | 0x03; /* Set DNC1GC=3 */
> - if (state->reg[MT2063_REG_DNC_GAIN] !=
> - val)
> - status |=
> - mt2063_setreg(state,
> - MT2063_REG_DNC_GAIN,
> - val);
> -
> - val = (state->reg[MT2063_REG_VGA_GAIN]& 0xFC) | 0x03; /* Set DNC2GC=3 */
> - if (state->reg[MT2063_REG_VGA_GAIN] !=
> - val)
> - status |=
> - mt2063_setreg(state,
> - MT2063_REG_VGA_GAIN,
> - val);
> -
> - val = (state->reg[MT2063_REG_RSVD_20]& ~0x40); /* Set PD2MUX=0 */
> - if (state->reg[MT2063_REG_RSVD_20] !=
> - val)
> - status |=
> - mt2063_setreg(state,
> - MT2063_REG_RSVD_20,
> - val);
> -
> - break;
> - case MT2063_DNC_1:
> - val = (state->reg[MT2063_REG_DNC_GAIN]& 0xFC) | (DNC1GC[state->rcvr_mode]& 0x03); /* Set DNC1GC=x */
> - if (state->reg[MT2063_REG_DNC_GAIN] !=
> - val)
> - status |=
> - mt2063_setreg(state,
> - MT2063_REG_DNC_GAIN,
> - val);
> -
> - val = (state->reg[MT2063_REG_VGA_GAIN]& 0xFC) | 0x03; /* Set DNC2GC=3 */
> - if (state->reg[MT2063_REG_VGA_GAIN] !=
> - val)
> - status |=
> - mt2063_setreg(state,
> - MT2063_REG_VGA_GAIN,
> - val);
> -
> - val = (state->reg[MT2063_REG_RSVD_20]& ~0x40); /* Set PD2MUX=0 */
> - if (state->reg[MT2063_REG_RSVD_20] !=
> - val)
> - status |=
> - mt2063_setreg(state,
> - MT2063_REG_RSVD_20,
> - val);
> -
> - break;
> - case MT2063_DNC_2:
> - val = (state->reg[MT2063_REG_DNC_GAIN]& 0xFC) | 0x03; /* Set DNC1GC=3 */
> - if (state->reg[MT2063_REG_DNC_GAIN] !=
> - val)
> - status |=
> - mt2063_setreg(state,
> - MT2063_REG_DNC_GAIN,
> - val);
> -
> - val = (state->reg[MT2063_REG_VGA_GAIN]& 0xFC) | (DNC2GC[state->rcvr_mode]& 0x03); /* Set DNC2GC=x */
> - if (state->reg[MT2063_REG_VGA_GAIN] !=
> - val)
> - status |=
> - mt2063_setreg(state,
> - MT2063_REG_VGA_GAIN,
> - val);
> -
> - val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */
> - if (state->reg[MT2063_REG_RSVD_20] !=
> - val)
> - status |=
> - mt2063_setreg(state,
> - MT2063_REG_RSVD_20,
> - val);
> -
> - break;
> - case MT2063_DNC_BOTH:
> - val = (state->reg[MT2063_REG_DNC_GAIN]& 0xFC) | (DNC1GC[state->rcvr_mode]& 0x03); /* Set DNC1GC=x */
> - if (state->reg[MT2063_REG_DNC_GAIN] !=
> - val)
> - status |=
> - mt2063_setreg(state,
> - MT2063_REG_DNC_GAIN,
> - val);
> -
> - val = (state->reg[MT2063_REG_VGA_GAIN]& 0xFC) | (DNC2GC[state->rcvr_mode]& 0x03); /* Set DNC2GC=x */
> - if (state->reg[MT2063_REG_VGA_GAIN] !=
> - val)
> - status |=
> - mt2063_setreg(state,
> - MT2063_REG_VGA_GAIN,
> - val);
> -
> - val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */
> - if (state->reg[MT2063_REG_RSVD_20] !=
> - val)
> - status |=
> - mt2063_setreg(state,
> - MT2063_REG_RSVD_20,
> - val);
> -
> - break;
> - default:
> - break;
> - }
> -
> - return status;
> -}
> -
> -/*
> - * MT2063_SetReceiverMode() - Set the MT2063 receiver mode, according with
> - * the selected enum mt2063_delivery_sys type.
> - *
> - * (DNC1GC& DNC2GC are the values, which are used, when the specific
> - * DNC Output is selected, the other is always off)
> - *
> - * @state: ptr to mt2063_state structure
> - * @Mode: desired reciever delivery system
> - *
> - * Note: Register cache must be valid for it to work
> - */
> -
> -static u32 MT2063_SetReceiverMode(struct mt2063_state *state,
> - enum mt2063_delivery_sys Mode)
> -{
> - u32 status = 0; /* Status to be returned */
> - u8 val;
> - u32 longval;
> -
> - dprintk(2, "\n");
> -
> - if (Mode>= MT2063_NUM_RCVR_MODES)
> - status = -ERANGE;
> -
> - /* RFAGCen */
> - if (status>= 0) {
> - val =
> - (state->
> - reg[MT2063_REG_PD1_TGT]& (u8) ~0x40) | (RFAGCEN[Mode]
> - ? 0x40 :
> - 0x00);
> - if (state->reg[MT2063_REG_PD1_TGT] != val)
> - status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
> - }
> -
> - /* LNARin */
> - if (status>= 0) {
> - u8 val = (state->reg[MT2063_REG_CTRL_2C]& (u8) ~0x03) |
> - (LNARIN[Mode]& 0x03);
> - if (state->reg[MT2063_REG_CTRL_2C] != val)
> - status |= mt2063_setreg(state, MT2063_REG_CTRL_2C, val);
> - }
> -
> - /* FIFFQEN and FIFFQ */
> - if (status>= 0) {
> - val =
> - (state->
> - reg[MT2063_REG_FIFF_CTRL2]& (u8) ~0xF0) |
> - (FIFFQEN[Mode]<< 7) | (FIFFQ[Mode]<< 4);
> - if (state->reg[MT2063_REG_FIFF_CTRL2] != val) {
> - status |=
> - mt2063_setreg(state, MT2063_REG_FIFF_CTRL2, val);
> - /* trigger FIFF calibration, needed after changing FIFFQ */
> - val =
> - (state->reg[MT2063_REG_FIFF_CTRL] | (u8) 0x01);
> - status |=
> - mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
> - val =
> - (state->
> - reg[MT2063_REG_FIFF_CTRL]& (u8) ~0x01);
> - status |=
> - mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
> - }
> - }
> -
> - /* DNC1GC& DNC2GC */
> - status |= mt2063_get_dnc_output_enable(state,&longval);
> - status |= mt2063_set_dnc_output_enable(state, longval);
> -
> - /* acLNAmax */
> - if (status>= 0) {
> - u8 val = (state->reg[MT2063_REG_LNA_OV]& (u8) ~0x1F) |
> - (ACLNAMAX[Mode]& 0x1F);
> - if (state->reg[MT2063_REG_LNA_OV] != val)
> - status |= mt2063_setreg(state, MT2063_REG_LNA_OV, val);
> - }
> -
> - /* LNATGT */
> - if (status>= 0) {
> - u8 val = (state->reg[MT2063_REG_LNA_TGT]& (u8) ~0x3F) |
> - (LNATGT[Mode]& 0x3F);
> - if (state->reg[MT2063_REG_LNA_TGT] != val)
> - status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
> - }
> -
> - /* ACRF */
> - if (status>= 0) {
> - u8 val = (state->reg[MT2063_REG_RF_OV]& (u8) ~0x1F) |
> - (ACRFMAX[Mode]& 0x1F);
> - if (state->reg[MT2063_REG_RF_OV] != val)
> - status |= mt2063_setreg(state, MT2063_REG_RF_OV, val);
> - }
> -
> - /* PD1TGT */
> - if (status>= 0) {
> - u8 val = (state->reg[MT2063_REG_PD1_TGT]& (u8) ~0x3F) |
> - (PD1TGT[Mode]& 0x3F);
> - if (state->reg[MT2063_REG_PD1_TGT] != val)
> - status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
> - }
> -
> - /* FIFATN */
> - if (status>= 0) {
> - u8 val = ACFIFMAX[Mode];
> - if (state->reg[MT2063_REG_PART_REV] != MT2063_B3&& val> 5)
> - val = 5;
> - val = (state->reg[MT2063_REG_FIF_OV]& (u8) ~0x1F) |
> - (val& 0x1F);
> - if (state->reg[MT2063_REG_FIF_OV] != val)
> - status |= mt2063_setreg(state, MT2063_REG_FIF_OV, val);
> - }
> -
> - /* PD2TGT */
> - if (status>= 0) {
> - u8 val = (state->reg[MT2063_REG_PD2_TGT]& (u8) ~0x3F) |
> - (PD2TGT[Mode]& 0x3F);
> - if (state->reg[MT2063_REG_PD2_TGT] != val)
> - status |= mt2063_setreg(state, MT2063_REG_PD2_TGT, val);
> - }
> -
> - /* Ignore ATN Overload */
> - if (status>= 0) {
> - val = (state->reg[MT2063_REG_LNA_TGT]& (u8) ~0x80) |
> - (RFOVDIS[Mode] ? 0x80 : 0x00);
> - if (state->reg[MT2063_REG_LNA_TGT] != val)
> - status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
> - }
> -
> - /* Ignore FIF Overload */
> - if (status>= 0) {
> - val = (state->reg[MT2063_REG_PD1_TGT]& (u8) ~0x80) |
> - (FIFOVDIS[Mode] ? 0x80 : 0x00);
> - if (state->reg[MT2063_REG_PD1_TGT] != val)
> - status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
> - }
> -
> - if (status>= 0) {
> - state->rcvr_mode = Mode;
> - dprintk(1, "mt2063 mode changed to %s\n",
> - mt2063_mode_name[state->rcvr_mode]);
> - }
> -
> - return status;
> -}
> -
> -/*
> - * MT2063_ClearPowerMaskBits () - Clears the power-down mask bits for various
> - * sections of the MT2063
> - *
> - * @Bits: Mask bits to be cleared.
> - *
> - * See definition of MT2063_Mask_Bits type for description
> - * of each of the power bits.
> - */
> -static u32 MT2063_ClearPowerMaskBits(struct mt2063_state *state,
> - enum MT2063_Mask_Bits Bits)
> -{
> - u32 status = 0;
> -
> - dprintk(2, "\n");
> - Bits = (enum MT2063_Mask_Bits)(Bits& MT2063_ALL_SD); /* Only valid bits for this tuner */
> - if ((Bits& 0xFF00) != 0) {
> - state->reg[MT2063_REG_PWR_2]&= ~(u8) (Bits>> 8);
> - status |=
> - mt2063_write(state,
> - MT2063_REG_PWR_2,
> - &state->reg[MT2063_REG_PWR_2], 1);
> - }
> - if ((Bits& 0xFF) != 0) {
> - state->reg[MT2063_REG_PWR_1]&= ~(u8) (Bits& 0xFF);
> - status |=
> - mt2063_write(state,
> - MT2063_REG_PWR_1,
> - &state->reg[MT2063_REG_PWR_1], 1);
> - }
> -
> - return status;
> -}
> -
> -/*
> - * MT2063_SoftwareShutdown() - Enables or disables software shutdown function.
> - * When Shutdown is 1, any section whose power
> - * mask is set will be shutdown.
> - */
> -static u32 MT2063_SoftwareShutdown(struct mt2063_state *state, u8 Shutdown)
> -{
> - u32 status;
> -
> - dprintk(2, "\n");
> - if (Shutdown == 1)
> - state->reg[MT2063_REG_PWR_1] |= 0x04;
> - else
> - state->reg[MT2063_REG_PWR_1]&= ~0x04;
> -
> - status = mt2063_write(state,
> - MT2063_REG_PWR_1,
> - &state->reg[MT2063_REG_PWR_1], 1);
> -
> - if (Shutdown != 1) {
> - state->reg[MT2063_REG_BYP_CTRL] =
> - (state->reg[MT2063_REG_BYP_CTRL]& 0x9F) | 0x40;
> - status |=
> - mt2063_write(state,
> - MT2063_REG_BYP_CTRL,
> - &state->reg[MT2063_REG_BYP_CTRL],
> - 1);
> - state->reg[MT2063_REG_BYP_CTRL] =
> - (state->reg[MT2063_REG_BYP_CTRL]& 0x9F);
> - status |=
> - mt2063_write(state,
> - MT2063_REG_BYP_CTRL,
> - &state->reg[MT2063_REG_BYP_CTRL],
> - 1);
> + if (sd == MT2063_NONE_SD) {
> + mt2063_write(state, MT2063_REG_PWR_1, 0x00);
> + mt2063_write(state, MT2063_REG_PWR_2, 0x00);
> + } else {
> + mt2063_set_reg_mask(state, MT2063_REG_PWR_1,
> + sd& 0xff, sd& 0xff);
> + mt2063_set_reg_mask(state, MT2063_REG_PWR_2, sd>> 8,
> + sd>> 8);
> }
> -
> - return status;
> -}
> -
> -static u32 MT2063_Round_fLO(u32 f_LO, u32 f_LO_Step, u32 f_ref)
> -{
> - return f_ref * (f_LO / f_ref)
> - + f_LO_Step * (((f_LO % f_ref) + (f_LO_Step / 2)) / f_LO_Step);
> }
>
> -/**
> - * fLO_FractionalTerm() - Calculates the portion contributed by FracN / denom.
> - * This function preserves maximum precision without
> - * risk of overflow. It accurately calculates
> - * f_ref * num / denom to within 1 HZ with fixed math.
> - *
> - * @num : Fractional portion of the multiplier
> - * @denom: denominator portion of the ratio
> - * @f_Ref: SRO frequency.
> - *
> - * This calculation handles f_ref as two separate 14-bit fields.
> - * Therefore, a maximum value of 2^28-1 may safely be used for f_ref.
> - * This is the genesis of the magic number "14" and the magic mask value of
> - * 0x03FFF.
> - *
> - * This routine successfully handles denom values up to and including 2^18.
> - * Returns: f_ref * num / denom
> - */
> -static u32 MT2063_fLO_FractionalTerm(u32 f_ref, u32 num, u32 denom)
> -{
> - u32 t1 = (f_ref>> 14) * num;
> - u32 term1 = t1 / denom;
> - u32 loss = t1 % denom;
> - u32 term2 =
> - (((f_ref& 0x00003FFF) * num + (loss<< 14)) + (denom / 2)) / denom;
> - return (term1<< 14) + term2;
> -}
> -
> -/*
> - * CalcLO1Mult()- Calculates Integer divider value and the numerator
> - * value for a FracN PLL.
> - *
> - * This function assumes that the f_LO and f_Ref are
> - * evenly divisible by f_LO_Step.
> - *
> - * @Div: OUTPUT: Whole number portion of the multiplier
> - * @FracN: OUTPUT: Fractional portion of the multiplier
> - * @f_LO: desired LO frequency.
> - * @f_LO_Step: Minimum step size for the LO (in Hz).
> - * @f_Ref: SRO frequency.
> - * @f_Avoid: Range of PLL frequencies to avoid near integer multiples
> - * of f_Ref (in Hz).
> - *
> - * Returns: Recalculated LO frequency.
> - */
> -static u32 MT2063_CalcLO1Mult(u32 *Div,
> - u32 *FracN,
> - u32 f_LO,
> - u32 f_LO_Step, u32 f_Ref)
> +static int mt2063_set_mode(struct mt2063_state *state, enum mt2063_delsys Mode)
> {
> - /* Calculate the whole number portion of the divider */
> - *Div = f_LO / f_Ref;
> -
> - /* Calculate the numerator value (round to nearest f_LO_Step) */
> - *FracN =
> - (64 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
> - (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);
> + dprintk(1, "\n");
>
> - return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, 64);
> -}
> + /* check, if mode outside */
> + if (Mode> 5)
> + return -EINVAL;
>
> -/**
> - * CalcLO2Mult() - Calculates Integer divider value and the numerator
> - * value for a FracN PLL.
> - *
> - * This function assumes that the f_LO and f_Ref are
> - * evenly divisible by f_LO_Step.
> - *
> - * @Div: OUTPUT: Whole number portion of the multiplier
> - * @FracN: OUTPUT: Fractional portion of the multiplier
> - * @f_LO: desired LO frequency.
> - * @f_LO_Step: Minimum step size for the LO (in Hz).
> - * @f_Ref: SRO frequency.
> - * @f_Avoid: Range of PLL frequencies to avoid near
> - * integer multiples of f_Ref (in Hz).
> - *
> - * Returns: Recalculated LO frequency.
> - */
> -static u32 MT2063_CalcLO2Mult(u32 *Div,
> - u32 *FracN,
> - u32 f_LO,
> - u32 f_LO_Step, u32 f_Ref)
> -{
> - /* Calculate the whole number portion of the divider */
> - *Div = f_LO / f_Ref;
> + /* set LNA R in (75 Ohm ??) */
> + mt2063_set_reg_mask(state, MT2063_REG_CTRL_2C, LNARIN[Mode], 0x03);
>
> - /* Calculate the numerator value (round to nearest f_LO_Step) */
> - *FracN =
> - (8191 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
> - (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);
> + /* set LNA Target */
> + mt2063_set_reg_mask(state, MT2063_REG_LNA_TGT, LNATGT[Mode], 0x3f);
>
> - return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN,
> - 8191);
> + /* PD1 Target */
> + mt2063_set_reg_mask(state, MT2063_REG_PD1_TGT, PD1TGT[Mode], 0x3f);
> +
> + /* PD2 Target */
> + mt2063_set_reg_mask(state, MT2063_REG_PD2_TGT, PD2TGT[Mode], 0x3f);
> +
> + /* Ignore ATN Overload */
> + if (RFOVDIS[Mode])
> + mt2063_set_reg_mask(state, MT2063_REG_LNA_TGT, 0x80, 0x80);
> + else
> + mt2063_set_reg_mask(state, MT2063_REG_LNA_TGT, 0x00, 0x80);
> +
> + /* Ignore FIF Overload */
> + if (FIFOVDIS[Mode])
> + mt2063_set_reg_mask(state, MT2063_REG_PD1_TGT, 0x80, 0x80);
> + else
> + mt2063_set_reg_mask(state, MT2063_REG_PD1_TGT, 0x00, 0x80);
> +
> + dprintk(1, "mode changed to %s\n", mt2063_mode_name[Mode]);
> + return 0;
> }
>
> -/*
> - * FindClearTuneFilter() - Calculate the corrrect ClearTune filter to be
> - * used for a given input frequency.
> - *
> - * @state: ptr to tuner data structure
> - * @f_in: RF input center frequency (in Hz).
> - *
> - * Returns: ClearTune filter number (0-31)
> - */
> -static u32 FindClearTuneFilter(struct mt2063_state *state, u32 f_in)
> +#define MT2063_IF1 1510000
> +#define MT2063_OSC 16000
> +
> +static int mt2063_tune(struct mt2063_state *state)
> {
> - u32 RFBand;
> - u32 idx; /* index loop */
> + u32 f_lo1, f_lo2;
> + u32 div1, num1, div2;
> + u32 num2;
> + bool lock = false;
> +
> + dprintk(1, "\n");
>
> /*
> - ** Find RF Band setting
> + * it use ClearTune in auto mode, so it doesn't set ClearTune RF Band.
> + *
> + * first IF Filter Center frequency (f_if1) is static setted to 1510 MHz
> + * the reference osc is always 16 MHz
> + *
> + * f_if1 = (f_ref / 8) * (FIFFC + 640)
> + *
> + * f_if2_of = (f_if1 (f_ref / 64)) - ( 8 * FIFFC) - 4992
> + *
> + * f_lo1 = f_in + f_if1
> + *
> + * f_lo2 = f_lo1 - f_in - f_if2
> + *
> */
> - RFBand = 31; /* def when f_in> all */
> - for (idx = 0; idx< 31; ++idx) {
> - if (state->CTFiltMax[idx]>= f_in) {
> - RFBand = idx;
> - break;
> + f_lo1 = state->frequency + MT2063_IF1;
> + /* rounding it to a multiple of 250 kHz */
> + f_lo1 = (f_lo1 / 250) * 250;
> +
> + f_lo2 = f_lo1 - state->frequency - state->if2;
> + /* rounding it to a multiple of 50 kHz */
> + f_lo2 = ((f_lo2 + 25) / 50) * 50;
> +
> + /* TODO: spuck check */
> +
> + /* f_lo1 = 16MHz * (div1 + num1/64) */
> + num1 = f_lo1 / (MT2063_OSC / 64);
> + div1 = num1 / 64;
> + num1&= 0x3f;
> +
> + /* f_lo2 = 16MHz * (div2 + num2/8192) */
> + num2 = f_lo2 * 64 / (MT2063_OSC / 128);
> + div2 = num2 / 8192;
> + num2&= 0x1fff;
> +
> + state->frequency = f_lo1 - f_lo2 - state->if2;
> +
> + dprintk(2, "Input frequency: %d kHz\n", state->frequency);
> + dprintk(2, "first IF Filter central frequency: %d kHz\n", 1510000);
> + dprintk(2, "IF Output frequency: %d kHz\n", state->if2);
> + dprintk(2, "LO1 frequency: %d kHz\n", f_lo1);
> + dprintk(2, "LO1 div: %d, 0x%02x\n", div1, div1);
> + dprintk(2, "LO1 num: %d/64, 0x%02x\n", num1, num1);
> + dprintk(2, "LO2 frequency: %d kHz\n", f_lo2);
> + dprintk(2, "LO2 div: %d, 0x%02x\n", div2, div2);
> + dprintk(2, "LO2 num: %d/8192, 0x%04x\n", num2, num2);
> +
> + /* set first IF filter center frequency */
> + mt2063_write(state, MT2063_REG_FIFFC, 115);
> +
> + /* set LO1 */
> + mt2063_write(state, MT2063_REG_LO1CQ_1, (div1& 0xff));
> + mt2063_write(state, MT2063_REG_LO1CQ_2, (num1& 0x3f));
> + /* set LO2, the lastest value with reset */
> + mt2063_write(state, MT2063_REG_LO2CQ_1, (((div2& 0x7f)<< 1) |
> + ((num2& 0x1000)>> 12)));
> + mt2063_write(state, MT2063_REG_LO2CQ_2, ((num2& 0x0ff0)>> 4));
> + mt2063_write(state, MT2063_REG_LO2CQ_3, ( 0xe0 | (num2& 0x000f)));
> +
> + /* wait util it's lock */
> + do {
> + u8 status;
> + /* read LO status bit */
> + mt2063_read(state, MT2063_REG_LO_STATUS,&status);
> +
> + if (state->tuner_id == MT2063_B0) {
> + if ((status& 0xc0) == 0xc0)
> + lock = true;
> + } else {
> + if ((status& 0x88) == 0x88)
> + lock = true;
> }
> - }
> - return RFBand;
> + } while (!lock);
> +
> + return 0;
> }
>
> -/*
> - * MT2063_Tune() - Change the tuner's tuned frequency to RFin.
> - */
> -static u32 MT2063_Tune(struct mt2063_state *state, u32 f_in)
> -{ /* RF input center frequency */
> +static int mt2063_set_analog_params(struct dvb_frontend *fe,
> + struct analog_parameters *params)
> +{
> + struct mt2063_state *state = fe->tuner_priv;
> + u32 freq, bw;
> + int ret = 0;
>
> - u32 status = 0;
> - u32 LO1; /* 1st LO register value */
> - u32 Num1; /* Numerator for LO1 reg. value */
> - u32 f_IF1; /* 1st IF requested */
> - u32 LO2; /* 2nd LO register value */
> - u32 Num2; /* Numerator for LO2 reg. value */
> - u32 ofLO1, ofLO2; /* last time's LO frequencies */
> - u8 fiffc = 0x80; /* FIFF center freq from tuner */
> - u32 fiffof; /* Offset from FIFF center freq */
> - const u8 LO1LK = 0x80; /* Mask for LO1 Lock bit */
> - u8 LO2LK = 0x08; /* Mask for LO2 Lock bit */
> - u8 val;
> - u32 RFBand;
> -
> - dprintk(2, "\n");
> - /* Check the input and output frequency ranges */
> - if ((f_in< MT2063_MIN_FIN_FREQ) || (f_in> MT2063_MAX_FIN_FREQ))
> - return -EINVAL;
> + dprintk(1, "\n");
>
> - if ((state->AS_Data.f_out< MT2063_MIN_FOUT_FREQ)
> - || (state->AS_Data.f_out> MT2063_MAX_FOUT_FREQ))
> - return -EINVAL;
> + mutex_lock(&state->lock);
>
> - /*
> - * Save original LO1 and LO2 register values
> - */
> - ofLO1 = state->AS_Data.f_LO1;
> - ofLO2 = state->AS_Data.f_LO2;
> + /* open gate */
> + if (fe->ops.i2c_gate_ctrl)
> + fe->ops.i2c_gate_ctrl(fe, 1);
>
> - /*
> - * Find and set RF Band setting
> - */
> - if (state->ctfilt_sw == 1) {
> - val = (state->reg[MT2063_REG_CTUNE_CTRL] | 0x08);
> - if (state->reg[MT2063_REG_CTUNE_CTRL] != val) {
> - status |=
> - mt2063_setreg(state, MT2063_REG_CTUNE_CTRL, val);
> - }
> - val = state->reg[MT2063_REG_CTUNE_OV];
> - RFBand = FindClearTuneFilter(state, f_in);
> - state->reg[MT2063_REG_CTUNE_OV] =
> - (u8) ((state->reg[MT2063_REG_CTUNE_OV]& ~0x1F)
> - | RFBand);
> - if (state->reg[MT2063_REG_CTUNE_OV] != val) {
> - status |=
> - mt2063_setreg(state, MT2063_REG_CTUNE_OV, val);
> - }
> - }
> + /* all calculation is in kHz */
> + freq = params->frequency / 1000;
>
> - /*
> - * Read the FIFF Center Frequency from the tuner
> - */
> - if (status>= 0) {
> - status |=
> - mt2063_read(state,
> - MT2063_REG_FIFFC,
> - &state->reg[MT2063_REG_FIFFC], 1);
> - fiffc = state->reg[MT2063_REG_FIFFC];
> + switch(params->mode) {
> + case V4L2_TUNER_RADIO:
> + state->mode = MT2063_OFFAIR_ANALOG;
> + state->if2 = 38900;
> + bw = 8000; /* TODO */
> + break;
> + case V4L2_TUNER_ANALOG_TV:
> + state->mode = MT2063_CABLE_ANALOG;
> + state->if2 = 38900;
> + if (params->std& ~V4L2_STD_MN)
> + bw = 6000;
> + else if (params->std& V4L2_STD_PAL_G)
> + bw = 7000;
> + else
> + bw = 8000;
> + break;
> + default:
> + ret = -EINVAL;
> + goto err;
> }
> - /*
> - * Assign in the requested values
> - */
> - state->AS_Data.f_in = f_in;
> - /* Request a 1st IF such that LO1 is on a step size */
> - state->AS_Data.f_if1_Request =
> - MT2063_Round_fLO(state->AS_Data.f_if1_Request + f_in,
> - state->AS_Data.f_LO1_Step,
> - state->AS_Data.f_ref) - f_in;
>
> - /*
> - * Calculate frequency settings. f_IF1_FREQ + f_in is the
> - * desired LO1 frequency
> - */
> - MT2063_ResetExclZones(&state->AS_Data);
> + state->frequency = freq;
> + state->bw = bw;
>
> - f_IF1 = MT2063_ChooseFirstIF(&state->AS_Data);
> + dprintk(2, "Set input frequency to %d kHz.\n", freq);
>
> - state->AS_Data.f_LO1 =
> - MT2063_Round_fLO(f_IF1 + f_in, state->AS_Data.f_LO1_Step,
> - state->AS_Data.f_ref);
> + ret = mt2063_set_mode(state, state->mode);
> + if (ret< 0)
> + goto err;
>
> - state->AS_Data.f_LO2 =
> - MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
> - state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
> + ret = mt2063_tune(state);
>
> - /*
> - * Check for any LO spurs in the output bandwidth and adjust
> - * the LO settings to avoid them if needed
> - */
> - status |= MT2063_AvoidSpurs(&state->AS_Data);
> - /*
> - * MT_AvoidSpurs spurs may have changed the LO1& LO2 values.
> - * Recalculate the LO frequencies and the values to be placed
> - * in the tuning registers.
> - */
> - state->AS_Data.f_LO1 =
> - MT2063_CalcLO1Mult(&LO1,&Num1, state->AS_Data.f_LO1,
> - state->AS_Data.f_LO1_Step, state->AS_Data.f_ref);
> - state->AS_Data.f_LO2 =
> - MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
> - state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
> - state->AS_Data.f_LO2 =
> - MT2063_CalcLO2Mult(&LO2,&Num2, state->AS_Data.f_LO2,
> - state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
> +err:
> + /* close gate */
> + if (fe->ops.i2c_gate_ctrl)
> + fe->ops.i2c_gate_ctrl(fe, 0);
>
> - /*
> - * Check the upconverter and downconverter frequency ranges
> - */
> - if ((state->AS_Data.f_LO1< MT2063_MIN_UPC_FREQ)
> - || (state->AS_Data.f_LO1> MT2063_MAX_UPC_FREQ))
> - status |= MT2063_UPC_RANGE;
> - if ((state->AS_Data.f_LO2< MT2063_MIN_DNC_FREQ)
> - || (state->AS_Data.f_LO2> MT2063_MAX_DNC_FREQ))
> - status |= MT2063_DNC_RANGE;
> - /* LO2 Lock bit was in a different place for B0 version */
> - if (state->tuner_id == MT2063_B0)
> - LO2LK = 0x40;
> + mutex_unlock(&state->lock);
> + return ret;
> +}
>
> - /*
> - * If we have the same LO frequencies and we're already locked,
> - * then skip re-programming the LO registers.
> - */
> - if ((ofLO1 != state->AS_Data.f_LO1)
> - || (ofLO2 != state->AS_Data.f_LO2)
> - || ((state->reg[MT2063_REG_LO_STATUS]& (LO1LK | LO2LK)) !=
> - (LO1LK | LO2LK))) {
> - /*
> - * Calculate the FIFFOF register value
> - *
> - * IF1_Actual
> - * FIFFOF = ------------ - 8 * FIFFC - 4992
> - * f_ref/64
> - */
> - fiffof =
> - (state->AS_Data.f_LO1 -
> - f_in) / (state->AS_Data.f_ref / 64) - 8 * (u32) fiffc -
> - 4992;
> - if (fiffof> 0xFF)
> - fiffof = 0xFF;
> -
> - /*
> - * Place all of the calculated values into the local tuner
> - * register fields.
> - */
> - if (status>= 0) {
> - state->reg[MT2063_REG_LO1CQ_1] = (u8) (LO1& 0xFF); /* DIV1q */
> - state->reg[MT2063_REG_LO1CQ_2] = (u8) (Num1& 0x3F); /* NUM1q */
> - state->reg[MT2063_REG_LO2CQ_1] = (u8) (((LO2& 0x7F)<< 1) /* DIV2q */
> - |(Num2>> 12)); /* NUM2q (hi) */
> - state->reg[MT2063_REG_LO2CQ_2] = (u8) ((Num2& 0x0FF0)>> 4); /* NUM2q (mid) */
> - state->reg[MT2063_REG_LO2CQ_3] = (u8) (0xE0 | (Num2& 0x000F)); /* NUM2q (lo) */
> -
> - /*
> - * Now write out the computed register values
> - * IMPORTANT: There is a required order for writing
> - * (0x05 must follow all the others).
> - */
> - status |= mt2063_write(state, MT2063_REG_LO1CQ_1,&state->reg[MT2063_REG_LO1CQ_1], 5); /* 0x01 - 0x05 */
> - if (state->tuner_id == MT2063_B0) {
> - /* Re-write the one-shot bits to trigger the tune operation */
> - status |= mt2063_write(state, MT2063_REG_LO2CQ_3,&state->reg[MT2063_REG_LO2CQ_3], 1); /* 0x05 */
> - }
> - /* Write out the FIFF offset only if it's changing */
> - if (state->reg[MT2063_REG_FIFF_OFFSET] !=
> - (u8) fiffof) {
> - state->reg[MT2063_REG_FIFF_OFFSET] =
> - (u8) fiffof;
> - status |=
> - mt2063_write(state,
> - MT2063_REG_FIFF_OFFSET,
> - &state->
> - reg[MT2063_REG_FIFF_OFFSET],
> - 1);
> - }
> - }
> +static int mt2063_set_params(struct dvb_frontend *fe)
> +{
> + struct mt2063_state *state = fe->tuner_priv;
> + struct dtv_frontend_properties *c =&fe->dtv_property_cache;
> + u32 freq, bw;
> + int ret = 0;
> +
> + dprintk(1, "\n");
> +
> + mutex_lock(&state->lock);
> +
> + /* open gate */
> + if (fe->ops.i2c_gate_ctrl)
> + fe->ops.i2c_gate_ctrl(fe, 1);
> +
> + /* all calculation is in kHz */
> + freq = c->frequency / 1000;
>
> - /*
> - * Check for LO's locking
> - */
> -
> - if (status< 0)
> - return status;
> -
> - status = mt2063_lockStatus(state);
> - if (status< 0)
> - return status;
> - if (!status)
> - return -EINVAL; /* Couldn't lock */
> -
> - /*
> - * If we locked OK, assign calculated data to mt2063_state structure
> - */
> - state->f_IF1_actual = state->AS_Data.f_LO1 - f_in;
> + switch (c->delivery_system) {
> + case SYS_DVBT:
> + if (c->bandwidth_hz == 0) {
> + ret = -EINVAL;
> + goto err;
> + }
> + bw = c->bandwidth_hz / 1000;
> + state->mode = MT2063_OFFAIR_COFDM;
> + state->if2 = 36000;
> + break;
> + case SYS_DVBC_ANNEX_A:
> + case SYS_DVBC_ANNEX_C:
> + bw = c->bandwidth_hz / 1000;
> + state->mode = MT2063_CABLE_QAM;
> + state->if2 = 36000;
> + break;
> + case SYS_ATSC:
> + /* TODO */
> + default:
> + ret = -EINVAL;
> + goto err;
> }
>
> - return status;
> -}
> + state->frequency = freq;
> + /* for spurcheck */
> + state->bw = bw;
>
> -static const u8 MT2063B0_defaults[] = {
> - /* Reg, Value */
> - 0x19, 0x05,
> - 0x1B, 0x1D,
> - 0x1C, 0x1F,
> - 0x1D, 0x0F,
> - 0x1E, 0x3F,
> - 0x1F, 0x0F,
> - 0x20, 0x3F,
> - 0x22, 0x21,
> - 0x23, 0x3F,
> - 0x24, 0x20,
> - 0x25, 0x3F,
> - 0x27, 0xEE,
> - 0x2C, 0x27, /* bit at 0x20 is cleared below */
> - 0x30, 0x03,
> - 0x2C, 0x07, /* bit at 0x20 is cleared here */
> - 0x2D, 0x87,
> - 0x2E, 0xAA,
> - 0x28, 0xE1, /* Set the FIFCrst bit here */
> - 0x28, 0xE0, /* Clear the FIFCrst bit here */
> - 0x00
> -};
> + dprintk(2, "Set input frequency to %d kHz.\n", freq);
>
> -/* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
> -static const u8 MT2063B1_defaults[] = {
> - /* Reg, Value */
> - 0x05, 0xF0,
> - 0x11, 0x10, /* New Enable AFCsd */
> - 0x19, 0x05,
> - 0x1A, 0x6C,
> - 0x1B, 0x24,
> - 0x1C, 0x28,
> - 0x1D, 0x8F,
> - 0x1E, 0x14,
> - 0x1F, 0x8F,
> - 0x20, 0x57,
> - 0x22, 0x21, /* New - ver 1.03 */
> - 0x23, 0x3C, /* New - ver 1.10 */
> - 0x24, 0x20, /* New - ver 1.03 */
> - 0x2C, 0x24, /* bit at 0x20 is cleared below */
> - 0x2D, 0x87, /* FIFFQ=0 */
> - 0x2F, 0xF3,
> - 0x30, 0x0C, /* New - ver 1.11 */
> - 0x31, 0x1B, /* New - ver 1.11 */
> - 0x2C, 0x04, /* bit at 0x20 is cleared here */
> - 0x28, 0xE1, /* Set the FIFCrst bit here */
> - 0x28, 0xE0, /* Clear the FIFCrst bit here */
> - 0x00
> -};
> + ret = mt2063_set_mode(state, state->mode);
> + if (ret< 0)
> + goto err;
>
> -/* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
> -static const u8 MT2063B3_defaults[] = {
> - /* Reg, Value */
> - 0x05, 0xF0,
> - 0x19, 0x3D,
> - 0x2C, 0x24, /* bit at 0x20 is cleared below */
> - 0x2C, 0x04, /* bit at 0x20 is cleared here */
> - 0x28, 0xE1, /* Set the FIFCrst bit here */
> - 0x28, 0xE0, /* Clear the FIFCrst bit here */
> - 0x00
> -};
> + ret = mt2063_tune(state);
> +
> +err:
> + /* close gate */
> + if (fe->ops.i2c_gate_ctrl)
> + fe->ops.i2c_gate_ctrl(fe, 0);
> +
> + mutex_unlock(&state->lock);
> + return ret;
> +}
>
> static int mt2063_init(struct dvb_frontend *fe)
> {
> - u32 status;
> struct mt2063_state *state = fe->tuner_priv;
> - u8 all_resets = 0xF0; /* reset/load bits */
> const u8 *def = NULL;
> - char *step;
> - u32 FCRUN;
> - s32 maxReads;
> - u32 fcu_osc;
> - u32 i;
> -
> - dprintk(2, "\n");
> -
> - state->rcvr_mode = MT2063_CABLE_QAM;
> -
> - /* Read the Part/Rev code from the tuner */
> - status = mt2063_read(state, MT2063_REG_PART_REV,
> - &state->reg[MT2063_REG_PART_REV], 1);
> - if (status< 0) {
> - printk(KERN_ERR "Can't read mt2063 part ID\n");
> - return status;
> - }
> + u8 xo_lock = 1, i;
>
> - /* Check the part/rev code */
> - switch (state->reg[MT2063_REG_PART_REV]) {
> - case MT2063_B0:
> - step = "B0";
> - break;
> - case MT2063_B1:
> - step = "B1";
> - break;
> - case MT2063_B2:
> - step = "B2";
> - break;
> - case MT2063_B3:
> - step = "B3";
> - break;
> - default:
> - printk(KERN_ERR "mt2063: Unknown mt2063 device ID (0x%02x)\n",
> - state->reg[MT2063_REG_PART_REV]);
> - return -ENODEV; /* Wrong tuner Part/Rev code */
> - }
> + dprintk(1, "\n");
>
> - /* Check the 2nd byte of the Part/Rev code from the tuner */
> - status = mt2063_read(state, MT2063_REG_RSVD_3B,
> - &state->reg[MT2063_REG_RSVD_3B], 1);
> + mutex_lock(&state->lock);
>
> - /* b7 != 0 ==> NOT MT2063 */
> - if (status< 0 || ((state->reg[MT2063_REG_RSVD_3B]& 0x80) != 0x00)) {
> - printk(KERN_ERR "mt2063: Unknown part ID (0x%02x%02x)\n",
> - state->reg[MT2063_REG_PART_REV],
> - state->reg[MT2063_REG_RSVD_3B]);
> - return -ENODEV; /* Wrong tuner Part/Rev code */
> - }
> + /* open gate */
> + if (fe->ops.i2c_gate_ctrl)
> + fe->ops.i2c_gate_ctrl(fe, 1);
> +
> + /* power on */
> + mt2063_shutdown(state, MT2063_NONE_SD);
>
> - printk(KERN_INFO "mt2063: detected a mt2063 %s\n", step);
> + /* reset */
> + mt2063_write(state, MT2063_REG_LO2CQ_3, 0xf0);
> +
> + /* debug dump */
> + if (debug>= 3) {
> + /* print all register after reset */
> + u8 reg[64];
> + /* fill all reg */
> + for (i = 0; i< 64; i++) {
> + mt2063_read(state, i,®[i]);
> + }
> + print_hex_dump(KERN_DEBUG, "mt2063: ",
> + DUMP_PREFIX_OFFSET, 16, 1, reg, 64, false);
> + }
>
> - /* Reset the tuner */
> - status = mt2063_write(state, MT2063_REG_LO2CQ_3,&all_resets, 1);
> - if (status< 0)
> - return status;
> -
> - /* change all of the default values that vary from the HW reset values */
> - /* def = (state->reg[PART_REV] == MT2063_B0) ? MT2063B0_defaults : MT2063B1_defaults; */
> - switch (state->reg[MT2063_REG_PART_REV]) {
> + /* load defaults */
> + switch (state->tuner_id) {
> case MT2063_B3:
> def = MT2063B3_defaults;
> break;
> -
> case MT2063_B1:
> def = MT2063B1_defaults;
> break;
> -
> case MT2063_B0:
> def = MT2063B0_defaults;
> break;
> -
> default:
> - return -ENODEV;
> + def = MT2063B1_defaults;
> break;
> }
>
> - while (status>= 0&& *def) {
> + while (*def) {
> u8 reg = *def++;
> u8 val = *def++;
> - status = mt2063_write(state, reg,&val, 1);
> + mt2063_write(state, reg, val);
> }
> - if (status< 0)
> - return status;
>
> - /* Wait for FIFF location to complete. */
> - FCRUN = 1;
> - maxReads = 10;
> - while (status>= 0&& (FCRUN != 0)&& (maxReads--> 0)) {
> + /* wait to lock */
> + while (!xo_lock) {
> msleep(2);
> - status = mt2063_read(state,
> - MT2063_REG_XO_STATUS,
> - &state->
> - reg[MT2063_REG_XO_STATUS], 1);
> - FCRUN = (state->reg[MT2063_REG_XO_STATUS]& 0x40)>> 6;
> + mt2063_read(state, MT2063_REG_XO_STATUS,&xo_lock);
> + xo_lock = (xo_lock& 0x40)>> 6;
> }
>
> - if (FCRUN != 0 || status< 0)
> - return -ENODEV;
> -
> - status = mt2063_read(state,
> - MT2063_REG_FIFFC,
> - &state->reg[MT2063_REG_FIFFC], 1);
> - if (status< 0)
> - return status;
> -
> - /* Read back all the registers from the tuner */
> - status = mt2063_read(state,
> - MT2063_REG_PART_REV,
> - state->reg, MT2063_REG_END_REGS);
> - if (status< 0)
> - return status;
> -
> - /* Initialize the tuner state. */
> - state->tuner_id = state->reg[MT2063_REG_PART_REV];
> - state->AS_Data.f_ref = MT2063_REF_FREQ;
> - state->AS_Data.f_if1_Center = (state->AS_Data.f_ref / 8) *
> - ((u32) state->reg[MT2063_REG_FIFFC] + 640);
> - state->AS_Data.f_if1_bw = MT2063_IF1_BW;
> - state->AS_Data.f_out = 43750000UL;
> - state->AS_Data.f_out_bw = 6750000UL;
> - state->AS_Data.f_zif_bw = MT2063_ZIF_BW;
> - state->AS_Data.f_LO1_Step = state->AS_Data.f_ref / 64;
> - state->AS_Data.f_LO2_Step = MT2063_TUNE_STEP_SIZE;
> - state->AS_Data.maxH1 = MT2063_MAX_HARMONICS_1;
> - state->AS_Data.maxH2 = MT2063_MAX_HARMONICS_2;
> - state->AS_Data.f_min_LO_Separation = MT2063_MIN_LO_SEP;
> - state->AS_Data.f_if1_Request = state->AS_Data.f_if1_Center;
> - state->AS_Data.f_LO1 = 2181000000UL;
> - state->AS_Data.f_LO2 = 1486249786UL;
> - state->f_IF1_actual = state->AS_Data.f_if1_Center;
> - state->AS_Data.f_in = state->AS_Data.f_LO1 - state->f_IF1_actual;
> - state->AS_Data.f_LO1_FracN_Avoid = MT2063_LO1_FRACN_AVOID;
> - state->AS_Data.f_LO2_FracN_Avoid = MT2063_LO2_FRACN_AVOID;
> - state->num_regs = MT2063_REG_END_REGS;
> - state->AS_Data.avoidDECT = MT2063_AVOID_BOTH;
> - state->ctfilt_sw = 0;
> -
> - state->CTFiltMax[0] = 69230000;
> - state->CTFiltMax[1] = 105770000;
> - state->CTFiltMax[2] = 140350000;
> - state->CTFiltMax[3] = 177110000;
> - state->CTFiltMax[4] = 212860000;
> - state->CTFiltMax[5] = 241130000;
> - state->CTFiltMax[6] = 274370000;
> - state->CTFiltMax[7] = 309820000;
> - state->CTFiltMax[8] = 342450000;
> - state->CTFiltMax[9] = 378870000;
> - state->CTFiltMax[10] = 416210000;
> - state->CTFiltMax[11] = 456500000;
> - state->CTFiltMax[12] = 495790000;
> - state->CTFiltMax[13] = 534530000;
> - state->CTFiltMax[14] = 572610000;
> - state->CTFiltMax[15] = 598970000;
> - state->CTFiltMax[16] = 635910000;
> - state->CTFiltMax[17] = 672130000;
> - state->CTFiltMax[18] = 714840000;
> - state->CTFiltMax[19] = 739660000;
> - state->CTFiltMax[20] = 770410000;
> - state->CTFiltMax[21] = 814660000;
> - state->CTFiltMax[22] = 846950000;
> - state->CTFiltMax[23] = 867820000;
> - state->CTFiltMax[24] = 915980000;
> - state->CTFiltMax[25] = 947450000;
> - state->CTFiltMax[26] = 983110000;
> - state->CTFiltMax[27] = 1021630000;
> - state->CTFiltMax[28] = 1061870000;
> - state->CTFiltMax[29] = 1098330000;
> - state->CTFiltMax[30] = 1138990000;
> + /* set RF AGC on */
> + mt2063_set_reg_mask(state, MT2063_REG_PD1_TGT, 0x40, 0x40);
>
> - /*
> - ** Fetch the FCU osc value and use it and the fRef value to
> - ** scale all of the Band Max values
> - */
> + /* first IF Filter Queue enable and first IF Filter queue */
> + mt2063_set_reg_mask(state, MT2063_REG_FIFF_CTRL2,
> + (1<< 7) | (0<< 4), 0xf0);
> + /* trigger FIFF calibration, needed after changing FIFFQ */
> + mt2063_set_reg_mask(state, MT2063_REG_FIFF_CTRL, 0x01, 0x01);
> + mt2063_set_reg_mask(state, MT2063_REG_FIFF_CTRL, 0x00, 0x01);
> +
> + /* set DNC1 GC on */
> + mt2063_set_reg_mask(state, MT2063_REG_DNC_GAIN, 0x00, 0x03);
> + /* set DNC2 GC on */
> + mt2063_set_reg_mask(state, MT2063_REG_VGA_GAIN, 0x00, 0x03);
> + /* set PD2MUX = 0 */
> + mt2063_set_reg_mask(state, MT2063_REG_RSVD_20, 0x00, 0x40);
>
> - state->reg[MT2063_REG_CTUNE_CTRL] = 0x0A;
> - status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
> - &state->reg[MT2063_REG_CTUNE_CTRL], 1);
> - if (status< 0)
> - return status;
> -
> - /* Read the ClearTune filter calibration value */
> - status = mt2063_read(state, MT2063_REG_FIFFC,
> - &state->reg[MT2063_REG_FIFFC], 1);
> - if (status< 0)
> - return status;
> -
> - fcu_osc = state->reg[MT2063_REG_FIFFC];
> -
> - state->reg[MT2063_REG_CTUNE_CTRL] = 0x00;
> - status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
> - &state->reg[MT2063_REG_CTUNE_CTRL], 1);
> - if (status< 0)
> - return status;
> -
> - /* Adjust each of the values in the ClearTune filter cross-over table */
> - for (i = 0; i< 31; i++)
> - state->CTFiltMax[i] = (state->CTFiltMax[i] / 768) * (fcu_osc + 640);
> -
> - status = MT2063_SoftwareShutdown(state, 1);
> - if (status< 0)
> - return status;
> - status = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
> - if (status< 0)
> - return status;
> + /* ac LNA max */
> + mt2063_set_reg_mask(state, MT2063_REG_LNA_OV, 0x1f, 0x1f);
>
> - state->init = true;
> -
> - return 0;
> -}
> + /* ac RF max */
> + mt2063_set_reg_mask(state, MT2063_REG_RF_OV, 0x1f, 0x1f);
>
> -static int mt2063_get_status(struct dvb_frontend *fe, u32 *tuner_status)
> -{
> - struct mt2063_state *state = fe->tuner_priv;
> - int status;
> + /* first IF ATN */
> + if (state->tuner_id == MT2063_B0)
> + mt2063_set_reg_mask(state, MT2063_REG_FIF_OV, 5, 0x1f);
> + else
> + mt2063_set_reg_mask(state, MT2063_REG_FIF_OV, 29, 0x1f);
>
> - dprintk(2, "\n");
> + /* set ClearTune in auto mode */
> + mt2063_set_reg_mask(state, MT2063_REG_CTUNE_CTRL, 0x00, 0x08);
>
> - if (!state->init)
> - return -ENODEV;
> + /* set Bypass in auto mode */
> + mt2063_set_reg_mask(state, MT2063_REG_BYP_CTRL, 0x00, 0x80);
>
> - *tuner_status = 0;
> - status = mt2063_lockStatus(state);
> - if (status< 0)
> - return status;
> - if (status)
> - *tuner_status = TUNER_STATUS_LOCKED;
> + /* close gate */
> + if (fe->ops.i2c_gate_ctrl)
> + fe->ops.i2c_gate_ctrl(fe, 0);
>
> - dprintk(1, "Tuner status: %d", *tuner_status);
> + mutex_unlock(&state->lock);
>
> return 0;
> }
>
> -static int mt2063_release(struct dvb_frontend *fe)
> +static int mt2063_sleep(struct dvb_frontend *fe)
> {
> struct mt2063_state *state = fe->tuner_priv;
>
> - dprintk(2, "\n");
> -
> - fe->tuner_priv = NULL;
> - kfree(state);
> -
> - return 0;
> -}
> + dprintk(1, "\n");
> + mutex_lock(&state->lock);
>
> -static int mt2063_set_analog_params(struct dvb_frontend *fe,
> - struct analog_parameters *params)
> -{
> - struct mt2063_state *state = fe->tuner_priv;
> - s32 pict_car;
> - s32 pict2chanb_vsb;
> - s32 ch_bw;
> - s32 if_mid;
> - s32 rcvr_mode;
> - int status;
> -
> - dprintk(2, "\n");
> -
> - if (!state->init) {
> - status = mt2063_init(fe);
> - if (status< 0)
> - return status;
> - }
> + /* open gate */
> + if (fe->ops.i2c_gate_ctrl)
> + fe->ops.i2c_gate_ctrl(fe, 1);
>
> - switch (params->mode) {
> - case V4L2_TUNER_RADIO:
> - pict_car = 38900000;
> - ch_bw = 8000000;
> - pict2chanb_vsb = -(ch_bw / 2);
> - rcvr_mode = MT2063_OFFAIR_ANALOG;
> - break;
> - case V4L2_TUNER_ANALOG_TV:
> - rcvr_mode = MT2063_CABLE_ANALOG;
> - if (params->std& ~V4L2_STD_MN) {
> - pict_car = 38900000;
> - ch_bw = 6000000;
> - pict2chanb_vsb = -1250000;
> - } else if (params->std& V4L2_STD_PAL_G) {
> - pict_car = 38900000;
> - ch_bw = 7000000;
> - pict2chanb_vsb = -1250000;
> - } else { /* PAL/SECAM standards */
> - pict_car = 38900000;
> - ch_bw = 8000000;
> - pict2chanb_vsb = -1250000;
> - }
> - break;
> - default:
> - return -EINVAL;
> - }
> - if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));
> + /* set all power bits off */
> + mt2063_shutdown(state, MT2063_ALL_SD);
>
> - state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */
> - state->AS_Data.f_out = if_mid;
> - state->AS_Data.f_out_bw = ch_bw + 750000;
> - status = MT2063_SetReceiverMode(state, rcvr_mode);
> - if (status< 0)
> - return status;
> -
> - dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
> - params->frequency, ch_bw, pict2chanb_vsb);
> -
> - status = MT2063_Tune(state, (params->frequency + (pict2chanb_vsb + (ch_bw / 2))));
> - if (status< 0)
> - return status;
> + /* close gate */
> + if (fe->ops.i2c_gate_ctrl)
> + fe->ops.i2c_gate_ctrl(fe, 0);
>
> - state->frequency = params->frequency;
> + mutex_unlock(&state->lock);
> return 0;
> }
>
> -/*
> - * As defined on EN 300 429, the DVB-C roll-off factor is 0.15.
> - * So, the amount of the needed bandwith is given by:
> - * Bw = Symbol_rate * (1 + 0.15)
> - * As such, the maximum symbol rate supported by 6 MHz is given by:
> - * max_symbol_rate = 6 MHz / 1.15 = 5217391 Bauds
> - */
> -#define MAX_SYMBOL_RATE_6MHz 5217391
> -
> -static int mt2063_set_params(struct dvb_frontend *fe)
> +static int mt2063_release(struct dvb_frontend *fe)
> {
> - struct dtv_frontend_properties *c =&fe->dtv_property_cache;
> struct mt2063_state *state = fe->tuner_priv;
> - int status;
> - s32 pict_car;
> - s32 pict2chanb_vsb;
> - s32 ch_bw;
> - s32 if_mid;
> - s32 rcvr_mode;
> -
> - if (!state->init) {
> - status = mt2063_init(fe);
> - if (status< 0)
> - return status;
> - }
> -
> - dprintk(2, "\n");
> -
> - if (c->bandwidth_hz == 0)
> - return -EINVAL;
> - if (c->bandwidth_hz<= 6000000)
> - ch_bw = 6000000;
> - else if (c->bandwidth_hz<= 7000000)
> - ch_bw = 7000000;
> - else
> - ch_bw = 8000000;
> -
> - switch (c->delivery_system) {
> - case SYS_DVBT:
> - rcvr_mode = MT2063_OFFAIR_COFDM;
> - pict_car = 36125000;
> - pict2chanb_vsb = -(ch_bw / 2);
> - break;
> - case SYS_DVBC_ANNEX_A:
> - case SYS_DVBC_ANNEX_C:
> - rcvr_mode = MT2063_CABLE_QAM;
> - pict_car = 36125000;
> - pict2chanb_vsb = -(ch_bw / 2);
> - break;
> - default:
> - return -EINVAL;
> - }
> - if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));
> -
> - state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */
> - state->AS_Data.f_out = if_mid;
> - state->AS_Data.f_out_bw = ch_bw + 750000;
> - status = MT2063_SetReceiverMode(state, rcvr_mode);
> - if (status< 0)
> - return status;
> -
> - dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
> - c->frequency, ch_bw, pict2chanb_vsb);
> -
> - status = MT2063_Tune(state, (c->frequency + (pict2chanb_vsb + (ch_bw / 2))));
> -
> - if (status< 0)
> - return status;
> -
> - state->frequency = c->frequency;
> - return 0;
> -}
>
> -static int mt2063_get_if_frequency(struct dvb_frontend *fe, u32 *freq)
> -{
> - struct mt2063_state *state = fe->tuner_priv;
> + dprintk(1,"\n");
>
> - dprintk(2, "\n");
> + mutex_lock(&mt2063_list_mutex);
>
> - if (!state->init)
> - return -ENODEV;
> + if (state)
> + hybrid_tuner_release_state(state);
>
> - *freq = state->AS_Data.f_out;
> + mutex_unlock(&mt2063_list_mutex);
>
> - dprintk(1, "IF frequency: %d\n", *freq);
> + fe->tuner_priv = NULL;
>
> return 0;
> }
>
> -static int mt2063_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
> +static int mt2063_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
> {
> struct mt2063_state *state = fe->tuner_priv;
>
> - dprintk(2, "\n");
> -
> - if (!state->init)
> - return -ENODEV;
> + dprintk(1, "\n");
>
> - *bw = state->AS_Data.f_out_bw - 750000;
> + *frequency = state->if2 * 1000;
>
> - dprintk(1, "bandwidth: %d\n", *bw);
> + dprintk(2, "if frequency is %d kHz\n", state->if2);
>
> return 0;
> }
>
> static struct dvb_tuner_ops mt2063_ops = {
> .info = {
> - .name = "MT2063 Silicon Tuner",
> - .frequency_min = 45000000,
> - .frequency_max = 850000000,
> - .frequency_step = 0,
> - },
> -
> + .name = "MT2063 Silicon Tuner",
> + .frequency_min = 48000000, /* 48 MHz */
> + .frequency_max = 1002000000, /* 1002 MHz */
> + .frequency_step = 50000, /* 50 kHz */
> + },
> + .release = mt2063_release,
> .init = mt2063_init,
> - .sleep = MT2063_Sleep,
> - .get_status = mt2063_get_status,
> + .sleep = mt2063_sleep,
> +
> + .set_params = mt2063_set_params,
> .set_analog_params = mt2063_set_analog_params,
> - .set_params = mt2063_set_params,
> .get_if_frequency = mt2063_get_if_frequency,
> - .get_bandwidth = mt2063_get_bandwidth,
> - .release = mt2063_release,
> + /* TODO */
> };
>
> -struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe,
> - struct mt2063_config *config,
> - struct i2c_adapter *i2c)
> +static int mt2063_find_chip(struct mt2063_state *state)
> {
> - struct mt2063_state *state = NULL;
> + int err;
> + u8 chip = 0, chip_hi = 0;
> + char *step;
> + struct dvb_frontend *fe = state->frontend;
>
> - dprintk(2, "\n");
> + dprintk(1, "\n");
>
> - state = kzalloc(sizeof(struct mt2063_state), GFP_KERNEL);
> - if (state == NULL)
> - goto error;
> -
> - state->config = config;
> - state->i2c = i2c;
> - state->frontend = fe;
> - state->reference = config->refclock / 1000; /* kHz */
> - fe->tuner_priv = state;
> - fe->ops.tuner_ops = mt2063_ops;
> + /* open gate */
> + if (fe->ops.i2c_gate_ctrl)
> + fe->ops.i2c_gate_ctrl(fe, 1);
>
> - printk(KERN_INFO "%s: Attaching MT2063\n", __func__);
> - return fe;
> + /* Read the Part/Rev code from the tuner */
> + err = mt2063_read(state, MT2063_REG_PART_REV,&chip);
> + if (err< 0) {
> + printk(KERN_ERR "Can't read mt2063 part ID\n");
> + return -ENODEV;
> + }
>
> -error:
> - kfree(state);
> - return NULL;
> -}
> -EXPORT_SYMBOL_GPL(mt2063_attach);
> + /* Check the part/rev code */
> + switch (chip) {
> + case MT2063_B0:
> + step = "B0";
> + break;
> + case MT2063_B1:
> + step = "B1";
> + break;
> + case MT2063_B2:
> + step = "B2";
> + break;
> + case MT2063_B3:
> + step = "B3";
> + break;
> + default:
> + printk(KERN_ERR "mt2063: Unknown mt2063 device ID (0x%02x)\n",
> + chip);
> + return -ENODEV;
> + }
>
> -/*
> - * Ancillary routines visible outside mt2063
> - * FIXME: Remove them in favor of using standard tuner callbacks
> - */
> -unsigned int tuner_MT2063_SoftwareShutdown(struct dvb_frontend *fe)
> -{
> - struct mt2063_state *state = fe->tuner_priv;
> - int err = 0;
> + /* Check the 2nd byte of the Part/Rev code from the tuner */
> + mt2063_read(state, MT2063_REG_RSVD_3B,&chip_hi);
> + if ((chip_hi& 0x80) != 0x00) {
> + printk(KERN_ERR "mt2063: Unknown part ID (0x%02x%02x)\n",
> + chip, chip_hi);
> + return -ENODEV;
> + }
>
> - dprintk(2, "\n");
> + printk(KERN_INFO "mt2063: detected a mt2063 rev %s", step);
> + state->tuner_id = chip;
>
> - err = MT2063_SoftwareShutdown(state, 1);
> - if (err< 0)
> - printk(KERN_ERR "%s: Couldn't shutdown\n", __func__);
> + /* close gate */
> + if (fe->ops.i2c_gate_ctrl)
> + fe->ops.i2c_gate_ctrl(fe, 0);
>
> - return err;
> + return 0;
> }
> -EXPORT_SYMBOL_GPL(tuner_MT2063_SoftwareShutdown);
>
> -unsigned int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend *fe)
> +struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe,
> + struct mt2063_config *config,
> + struct i2c_adapter *i2c)
> {
> - struct mt2063_state *state = fe->tuner_priv;
> - int err = 0;
> + struct mt2063_state *state = NULL;
> + int instance, ret;
> +
> + dprintk(1, "\n");
>
> - dprintk(2, "\n");
> + mutex_lock(&mt2063_list_mutex);
>
> - err = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
> - if (err< 0)
> - printk(KERN_ERR "%s: Invalid parameter\n", __func__);
> + instance = hybrid_tuner_request_state(struct mt2063_state, state,
> + hybrid_tuner_instance_list,
> + i2c, config->tuner_address,
> + "mt2063");
> +
> + switch(instance) {
> + case 0:
> + goto fail;
> + case 1:
> + /* new instance */
> + state->i2c = i2c;
> + state->i2c_addr = config->tuner_address;
> + /* find chip */
> + mutex_init(&state->lock);
> + state->frontend = fe;
> + ret = mt2063_find_chip(state);
> + if (ret< 0)
> + goto fail;
> + fe->tuner_priv = state;
> + fe->ops.tuner_ops = mt2063_ops;
> + break;
> + default:
> + fe->tuner_priv = state;
> + fe->ops.tuner_ops = mt2063_ops;
> + break;
> + }
> + mutex_unlock(&mt2063_list_mutex);
>
> - return err;
> + return fe;
> +
> +fail:
> + hybrid_tuner_release_state(state);
> + mutex_unlock(&mt2063_list_mutex);
> + return NULL;
> }
> -EXPORT_SYMBOL_GPL(tuner_MT2063_ClearPowerMaskBits);
> +EXPORT_SYMBOL_GPL(mt2063_attach);
>
> MODULE_AUTHOR("Mauro Carvalho Chehab<mchehab@redhat.com>");
> MODULE_DESCRIPTION("MT2063 Silicon tuner");
> MODULE_LICENSE("GPL");
> +MODULE_VERSION("0.2");
> Index: patchwork/drivers/media/common/tuners/mt2063.h
> ===================================================================
> --- patchwork.orig/drivers/media/common/tuners/mt2063.h
> +++ patchwork/drivers/media/common/tuners/mt2063.h
> @@ -1,3 +1,25 @@
> +/*
> + * Driver for microtune mt2063 tuner
> + *
> + * Copyright (c) 2012 Stefan Ringel<linuxtv@stefanringel.de>
> + * Copyright (c) 2011 Mauro Carvalho Chehab<mchehab@redhat.com>
> + *
> + * This driver came from a driver originally written by:
> + * Henry Wang<Henry.wang@AzureWave.com>
> + * Made publicly available by Terratec, at:
> + * http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
> + * The original driver's license is GPL, as declared with MODULE_LICENSE()
> + *
> + * This program is free software; you can redistribute it and/or modify
> + * it under the terms of the GNU General Public License as published by
> + * the Free Software Foundation under version 2 of the License.
> + *
> + * This program is distributed in the hope that it will be useful,
> + * but WITHOUT ANY WARRANTY; without even the implied warranty of
> + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
> + * GNU General Public License for more details.
> + */
> +
> #ifndef __MT2063_H__
> #define __MT2063_H__
>
> @@ -10,27 +32,19 @@ struct mt2063_config {
>
> #if defined(CONFIG_MEDIA_TUNER_MT2063) || (defined(CONFIG_MEDIA_TUNER_MT2063_MODULE)&& defined(MODULE))
> struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe,
> - struct mt2063_config *config,
> - struct i2c_adapter *i2c);
> + struct mt2063_config *config,
> + struct i2c_adapter *i2c);
>
> #else
>
> static inline struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe,
> - struct mt2063_config *config,
> - struct i2c_adapter *i2c)
> + struct mt2063_config *config,
> + struct i2c_adapter *i2c)
> {
> - printk(KERN_WARNING "%s: Driver disabled by Kconfig\n", __func__);
> + printk(KERN_WARNING "%s: Driver disable by Kconfig\n", __func__);
> return NULL;
> }
>
> -int mt2063_setTune(struct dvb_frontend *fe, u32 f_in,
> - u32 bw_in,
> - enum MTTune_atv_standard tv_type);
> -
> -/* FIXME: Should use the standard DVB attachment interfaces */
> -unsigned int tuner_MT2063_SoftwareShutdown(struct dvb_frontend *fe);
> -unsigned int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend *fe);
> -
> -#endif /* CONFIG_DVB_MT2063 */
> +#endif /* CONFIG_MEDIA_TUNER_MT2063 */
>
> #endif /* __MT2063_H__ */
> Index: patchwork/drivers/media/common/tuners/mt2063_priv.h
> ===================================================================
> --- /dev/null
> +++ patchwork/drivers/media/common/tuners/mt2063_priv.h
> @@ -0,0 +1,234 @@
> +/*
> + * Driver for microtune mt2063 tuner
> + *
> + * Copyright (c) 2012 Stefan Ringel<linuxtv@stefanringel.de>
> + * Copyright (c) 2011 Mauro Carvalho Chehab<mchehab@redhat.com>
> + *
> + * This driver came from a driver originally written by:
> + * Henry Wang<Henry.wang@AzureWave.com>
> + * Made publicly available by Terratec, at:
> + * http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
> + * The original driver's license is GPL, as declared with MODULE_LICENSE()
> + *
> + * This program is free software; you can redistribute it and/or modify
> + * it under the terms of the GNU General Public License as published by
> + * the Free Software Foundation under version 2 of the License.
> + *
> + * This program is distributed in the hope that it will be useful,
> + * but WITHOUT ANY WARRANTY; without even the implied warranty of
> + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
> + * GNU General Public License for more details.
> + */
> +
> +#include "tuner-i2c.h"
> +
> +#ifndef __MT2063_PRIV_H__
> +#define __MT2063_PRIV_H__
> +
> +#define MT2063_REG_PART_REV 0x00 /* Part/Rev Code */
> +#define MT2063_REG_LO1CQ_1 0x01 /* LO1C Queued Byte 1 */
> +#define MT2063_REG_LO1CQ_2 0x02 /* LO1C Queued Byte 2 */
> +#define MT2063_REG_LO2CQ_1 0x03 /* LO2C Queued Byte 1 */
> +#define MT2063_REG_LO2CQ_2 0x04 /* LO2C Queued Byte 2 */
> +#define MT2063_REG_LO2CQ_3 0x05 /* LO2C Queued Byte 3 */
> +#define MT2063_REG_RSVD_06 0x06
> +#define MT2063_REG_LO_STATUS 0x07 /* LO Status */
> +#define MT2063_REG_FIFFC 0x08 /* FIFF Center */
> +#define MT2063_REG_CLEARTUNE 0x09 /* ClearTune Filter */
> +#define MT2063_REG_ADC_OUT 0x0a /* ADC Output */
> +#define MT2063_REG_LO1C_1 0x0b /* LO1C Byte 1 */
> +#define MT2063_REG_LO1C_2 0x0c /* LO1C Byte 2 */
> +#define MT2063_REG_LO2C_1 0x0d /* LO2C Byte 1 */
> +#define MT2063_REG_LO2C_2 0x0e /* LO2C Byte 2 */
> +#define MT2063_REG_LO2C_3 0x0f /* LO2C Byte 3 */
> +#define MT2063_REG_RSVD_10 0x10
> +#define MT2063_REG_PWR_1 0x11 /* Power Byte 1 */
> +#define MT2063_REG_PWR_2 0x12 /* Power Byte 2 */
> +#define MT2063_REG_TEMP_STATUS 0x13 /* Temperature Status */
> +#define MT2063_REG_XO_STATUS 0x14 /* Crystal Status */
> +#define MT2063_REG_RF_STATUS 0x15 /* RF Attn Status */
> +#define MT2063_REG_FIF_STATUS 0x16 /* FIF Attn Status */
> +#define MT2063_REG_LNA_OV 0x17 /* LNA Attn Override */
> +#define MT2063_REG_RF_OV 0x18 /* RF Attn Override */
> +#define MT2063_REG_FIF_OV 0x19 /* FIF Attn Override */
> +#define MT2063_REG_LNA_TGT 0x1a /* LNA Target */
> +#define MT2063_REG_PD1_TGT 0x1b /* Power Detection 1 Target */
> +#define MT2063_REG_PD2_TGT 0x1c /* Power Detection 2 Target */
> +#define MT2063_REG_RSVD_1D 0x1d
> +#define MT2063_REG_RSVD_1E 0x1e
> +#define MT2063_REG_RSVD_1F 0x1f
> +#define MT2063_REG_RSVD_20 0x20
> +#define MT2063_REG_BYP_CTRL 0x21 /* Bypass Control */
> +#define MT2063_REG_RSVD_22 0x22
> +#define MT2063_REG_RSVD_23 0x23
> +#define MT2063_REG_RSVD_24 0x24
> +#define MT2063_REG_RSVD_25 0x25
> +#define MT2063_REG_RSVD_26 0x26
> +#define MT2063_REG_RSVD_27 0x27
> +#define MT2063_REG_FIFF_CTRL 0x28 /* FIFF Control */
> +#define MT2063_REG_FIFF_OFFSET 0x29 /* FIFF Offset */
> +#define MT2063_REG_CTUNE_CTRL 0x2a /* ClearTune Control */
> +#define MT2063_REG_CTUNE_OV 0x2b /* ClearTune Override */
> +#define MT2063_REG_CTRL_2C 0x2c
> +#define MT2063_REG_FIFF_CTRL2 0x2d /* FIFF Control 2 */
> +#define MT2063_REG_RSVD_2E 0x2e
> +#define MT2063_REG_DNC_GAIN 0x2f /* DNC Gain Control */
> +#define MT2063_REG_VGA_GAIN 0x30 /* VGA Gain Control */
> +#define MT2063_REG_RSVD_31 0x31
> +#define MT2063_REG_TEMP_SEL 0x32 /* Temperature Selection */
> +#define MT2063_REG_RSVD_33 0x33
> +#define MT2063_REG_RSVD_34 0x34
> +#define MT2063_REG_RSVD_35 0x35
> +#define MT2063_REG_RSVD_36 0x36
> +#define MT2063_REG_RSVD_37 0x37
> +#define MT2063_REG_RSVD_38 0x38
> +#define MT2063_REG_RSVD_39 0x39
> +#define MT2063_REG_RSVD_3A 0x3a
> +#define MT2063_REG_RSVD_3B 0x3b
> +#define MT2063_REG_RSVD_3C 0x3c
> +
> +/*
> + * Chip ID's
> + */
> +#define MT2063_B0 0x9b
> +#define MT2063_B1 0x9c
> +#define MT2063_B2 0x9d
> +#define MT2063_B3 0x9e
> +
> +
> +/*
> + * tuner defaults for each tuner
> + */
> +static const u8 MT2063B0_defaults[] = {
> + /* Reg, Value */
> + 0x19, 0x05,
> + 0x1b, 0x1d,
> + 0x1c, 0x1f,
> + 0x1d, 0x0f,
> + 0x1e, 0x3f,
> + 0x1f, 0x0f,
> + 0x20, 0x3f,
> + 0x22, 0x21,
> + 0x23, 0x3f,
> + 0x24, 0x20,
> + 0x25, 0x3f,
> + 0x27, 0xee,
> + 0x2c, 0x27, /* bit at 0x20 is cleared below */
> + 0x30, 0x03,
> + 0x2c, 0x07, /* bit at 0x20 is cleared here */
> + 0x2d, 0x87,
> + 0x2e, 0xaa,
> + 0x28, 0xe1, /* Set the FIFCrst bit here */
> + 0x28, 0xe0, /* Clear the FIFCrst bit here */
> + 0x00
> +};
> +
> +static const u8 MT2063B1_defaults [] = {
> + 0x11, 0x10, /* new EnableAFCsd */
> + 0x19, 0x05,
> + 0x1a, 0x6c,
> + 0x1b, 0x24,
> + 0x1c, 0x28,
> + 0x1d, 0x8f,
> + 0x1e, 0x14,
> + 0x1f, 0x8f,
> + 0x20, 0x57,
> + 0x22, 0x21,
> + 0x23, 0x3c,
> + 0x24, 0x20,
> + 0x2c, 0x24, /* bit at 0x20 is cleared below */
> + 0x2d, 0x87,
> + 0x2f, 0xf3,
> + 0x30, 0x0c,
> + 0x31, 0x1b,
> + 0x2c, 0x04, /* bit at 0x20 is cleared here */
> + 0x28, 0xe1, /* Set the FIFCrst bit here */
> + 0x28, 0xe0, /* Clear the FIFCrst bit here */
> + 0x00
> +};
> +
> +static const u8 MT2063B3_defaults [] = {
> + 0x19, 0x3d,
> + 0x2c, 0x24, /* bit at 0x20 is cleared below */
> + 0x2c, 0x04, /* bit at 0x20 is cleared here */
> + 0x28, 0xe1, /* Set the FIFCrst bit here */
> + 0x28, 0xe0, /* Clear the FIFCrst bit here */
> + 0x00
> +};
> +
> +/*
> + * Parameter for function MT2063_SetPowerMask that specifies the power down
> + * of various sections of the MT2063.
> + */
> +enum MT2063_Mask_Bits {
> + MT2063_REG_SD = 0x0040, /* Shutdown regulator */
> + MT2063_SRO_SD = 0x0020, /* Shutdown SRO */
> + MT2063_AFC_SD = 0x0010, /* Shutdown AFC A/D */
> + MT2063_PD_SD = 0x0002, /* Enable power detector shutdown */
> + MT2063_PDADC_SD = 0x0001, /* Enable power detector A/D shutdown */
> + MT2063_VCO_SD = 0x8000, /* Enable VCO shutdown */
> + MT2063_LTX_SD = 0x4000, /* Enable LTX shutdown */
> + MT2063_LT1_SD = 0x2000, /* Enable LT1 shutdown */
> + MT2063_LNA_SD = 0x1000, /* Enable LNA shutdown */
> + MT2063_UPC_SD = 0x0800, /* Enable upconverter shutdown */
> + MT2063_DNC_SD = 0x0400, /* Enable downconverter shutdown */
> + MT2063_VGA_SD = 0x0200, /* Enable VGA shutdown */
> + MT2063_AMP_SD = 0x0100, /* Enable AMP shutdown */
> + MT2063_ALL_SD = 0xFF73, /* All shutdown bits for this tuner */
> + MT2063_NONE_SD = 0x0000 /* No shutdown bits */
> +};
> +
> +enum mt2063_delsys {
> + MT2063_CABLE_QAM = 0, /* dvb-c */
> + MT2063_CABLE_ANALOG, /* analog tv */
> + MT2063_OFFAIR_COFDM, /* dvb-t */
> + MT2063_OFFAIR_COFDM_SAWLESS, /* dvb-t sawless */
> + MT2063_OFFAIR_ANALOG, /* analog radio */
> + MT2063_OFFAIR_8VSB, /* atsc */
> +};
> +
> +static const char *mt2063_mode_name[] = {
> + [MT2063_CABLE_QAM] = "digital cable",
> + [MT2063_CABLE_ANALOG] = "analog cable",
> + [MT2063_OFFAIR_COFDM] = "digital offair",
> + [MT2063_OFFAIR_COFDM_SAWLESS] = "digital offair without sawless",
> + [MT2063_OFFAIR_ANALOG] = "analog offair",
> + [MT2063_OFFAIR_8VSB] = "digital offair 8vsb/ATSC",
> +};
> +
> +static const u8 LNARIN [] = { 0, 0, 3, 3, 3, 3 };
> +static const u8 LNATGT [] = { 44, 43, 43, 43, 43, 43 };
> +static const u8 RFOVDIS [] = { 0, 0, 0, 0, 0, 0 };
> +static const u8 PD1TGT [] = { 36, 36, 38, 38, 36, 38 };
> +static const u8 FIFOVDIS [] = { 0, 0, 0, 0, 0, 0 };
> +static const u8 PD2TGT [] = { 40, 33, 42, 42, 33, 42 };
> +
> +/*
> + * main structure of mt2063
> + */
> +struct mt2063_state {
> + /* i2c adapter */
> + struct i2c_adapter *i2c;
> + u8 i2c_addr;
> +
> + /* hybrid stuff */
> + struct list_head hybrid_tuner_instance_list;
> + struct tuner_i2c_props i2c_props;
> +
> + /* device lock for remote calls */
> + struct mutex lock;
> +
> + /* device configurations */
> + const struct mt2063_config *config;
> + struct dvb_tuner_ops ops;
> + struct dvb_frontend *frontend;
> + struct tuner_state status; /* ? */
> + u32 frequency; /* input frequency in kHz */
> + u32 if2; /* if output frequency in kHz */
> + u32 bw; /* bandwidth spurcheck */
> + u32 tuner_id;
> + enum mt2063_delsys mode;
> +};
> +
> +
> +#endif /* __MT2063_PRIV_H__ */
^ permalink raw reply [flat|nested] 4+ messages in thread
* Re: [PATCH] mt2063: rework tuner driver
2012-02-14 16:30 ` Stefan Ringel
@ 2012-02-14 16:40 ` Mauro Carvalho Chehab
0 siblings, 0 replies; 4+ messages in thread
From: Mauro Carvalho Chehab @ 2012-02-14 16:40 UTC (permalink / raw)
To: Stefan Ringel; +Cc: linux-media
Em 14-02-2012 14:30, Stefan Ringel escreveu:
> Mauro,
>
> I think you applied this patch, but I don't see it into media_tree.git ?
I applied on my test machine, but it broke the az6007 boards, so I
couldn't merge it upstream.
As I suggested, the better is to broke it into smaller patches, in order
to discover what change broke it.
I won't have anytime soon to test it again with az6007, as I'm currently
busy testing a bunch of patches I've made for another subsystem.
Regards,
Mauro
>
> Am 26.01.2012 21:05, schrieb Mauro Carvalho Chehab:
>> Hi Stefan,
>>
>> Em 09-01-2012 14:37, linuxtv@stefanringel.de escreveu:
>>> From: Stefan Ringel<linuxtv@stefanringel.de>
>>>
>>> - remove DECT stuff
>>> - use a simpler calculation
>>> - add hybrid stuff
>>> - use ClearTune, first IF filter, bypass filter in auto mode
>>> - move a few register setting from mt2063_set_mode into mt2063_init
>>> - reorganise main structure
>> Nice cleanup, but it broke support on az6007. I tried to just re-add
>> the I2C gateway control, but this wasn't enough. The changes you've
>> made are so big that it is not trivial to have a glue about what
>> change could have affected it.
>>
>> This is basically the reason why you shouldn't be doing 6 different
>> unrelated changes into the same patch.
>>
>>> Signed-off-by: Stefan Ringel<linuxtv@stefanringel.de>
>>
>> Btw, I had to rebase your patch, in order to make it work
>> with the current version. As reference, this is the patch
>> I applied.
>>
>> [PATCH] mt2063: rework tuner driver
>>
>> From: Stefan Ringel<linuxtv@stefanringel.de>
>>
>> - remove DECT stuff
>> - use a simpler calculation
>> - add hybrid stuff
>> - use ClearTune, first IF filter, bypass filter in auto mode
>> - move a few register setting from mt2063_set_mode into mt2063_init
>> - reorganise main structure
>>
>> [mchehab@redhat.com: Rebase to current tree, fix a typo and re-added i2c-gate-control]
>> Signed-off-by: Stefan Ringel<linuxtv@stefanringel.de>
>>
>> ---
>> drivers/media/common/tuners/mt2063.c | 2522 +++++------------------------
>> drivers/media/common/tuners/mt2063.h | 42 +-
>> drivers/media/common/tuners/mt2063_priv.h | 234 +++
>> 3 files changed, 704 insertions(+), 2094 deletions(-)
>> create mode 100644 drivers/media/common/tuners/mt2063_priv.h
>>
>> Index: patchwork/drivers/media/common/tuners/mt2063.c
>> ===================================================================
>> --- patchwork.orig/drivers/media/common/tuners/mt2063.c
>> +++ patchwork/drivers/media/common/tuners/mt2063.c
>> @@ -1,12 +1,13 @@
>> /*
>> - * Driver for mt2063 Micronas tuner
>> + * Driver for microtune mt2063 tuner
>> *
>> * Copyright (c) 2011 Mauro Carvalho Chehab<mchehab@redhat.com>
>> + * Copyright (c) 2012 Stefan Ringel<linuxtv@stefanringel.de>
>> *
>> * This driver came from a driver originally written by:
>> - * Henry Wang<Henry.wang@AzureWave.com>
>> + * Henry Wang<Henry.wang@AzureWave.com>
>> * Made publicly available by Terratec, at:
>> - * http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
>> + * http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
>> * The original driver's license is GPL, as declared with MODULE_LICENSE()
>> *
>> * This program is free software; you can redistribute it and/or modify
>> @@ -26,241 +27,41 @@
>> #include<linux/videodev2.h>
>>
>> #include "mt2063.h"
>> +#include "mt2063_priv.h"
>>
>> static unsigned int debug;
>> module_param(debug, int, 0644);
>> -MODULE_PARM_DESC(debug, "Set Verbosity level");
>> +MODULE_PARM_DESC(debug, "Set debug level");
>>
>> -#define dprintk(level, fmt, arg...) do { \
>> -if (debug>= level) \
>> - printk(KERN_DEBUG "mt2063 %s: " fmt, __func__, ## arg); \
>> -} while (0)
>> -
>> -
>> -/* positive error codes used internally */
>> -
>> -/* Info: Unavoidable LO-related spur may be present in the output */
>> -#define MT2063_SPUR_PRESENT_ERR (0x00800000)
>> -
>> -/* Info: Mask of bits used for # of LO-related spurs that were avoided during tuning */
>> -#define MT2063_SPUR_CNT_MASK (0x001f0000)
>> -#define MT2063_SPUR_SHIFT (16)
>> -
>> -/* Info: Upconverter frequency is out of range (may be reason for MT_UPC_UNLOCK) */
>> -#define MT2063_UPC_RANGE (0x04000000)
>> -
>> -/* Info: Downconverter frequency is out of range (may be reason for MT_DPC_UNLOCK) */
>> -#define MT2063_DNC_RANGE (0x08000000)
>> -
>> -/*
>> - * Constant defining the version of the following structure
>> - * and therefore the API for this code.
>> - *
>> - * When compiling the tuner driver, the preprocessor will
>> - * check against this version number to make sure that
>> - * it matches the version that the tuner driver knows about.
>> - */
>> +static DEFINE_MUTEX(mt2063_list_mutex);
>> +static LIST_HEAD(hybrid_tuner_instance_list);
>>
>> -/* DECT Frequency Avoidance */
>> -#define MT2063_DECT_AVOID_US_FREQS 0x00000001
>> -
>> -#define MT2063_DECT_AVOID_EURO_FREQS 0x00000002
>> -
>> -#define MT2063_EXCLUDE_US_DECT_FREQUENCIES(s) (((s)& MT2063_DECT_AVOID_US_FREQS) != 0)
>> -
>> -#define MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(s) (((s)& MT2063_DECT_AVOID_EURO_FREQS) != 0)
>> -
>> -enum MT2063_DECT_Avoid_Type {
>> - MT2063_NO_DECT_AVOIDANCE = 0, /* Do not create DECT exclusion zones. */
>> - MT2063_AVOID_US_DECT = MT2063_DECT_AVOID_US_FREQS, /* Avoid US DECT frequencies. */
>> - MT2063_AVOID_EURO_DECT = MT2063_DECT_AVOID_EURO_FREQS, /* Avoid European DECT frequencies. */
>> - MT2063_AVOID_BOTH /* Avoid both regions. Not typically used. */
>> -};
>> -
>> -#define MT2063_MAX_ZONES 48
>> -
>> -struct MT2063_ExclZone_t {
>> - u32 min_;
>> - u32 max_;
>> - struct MT2063_ExclZone_t *next_;
>> -};
>> -
>> -/*
>> - * Structure of data needed for Spur Avoidance
>> - */
>> -struct MT2063_AvoidSpursData_t {
>> - u32 f_ref;
>> - u32 f_in;
>> - u32 f_LO1;
>> - u32 f_if1_Center;
>> - u32 f_if1_Request;
>> - u32 f_if1_bw;
>> - u32 f_LO2;
>> - u32 f_out;
>> - u32 f_out_bw;
>> - u32 f_LO1_Step;
>> - u32 f_LO2_Step;
>> - u32 f_LO1_FracN_Avoid;
>> - u32 f_LO2_FracN_Avoid;
>> - u32 f_zif_bw;
>> - u32 f_min_LO_Separation;
>> - u32 maxH1;
>> - u32 maxH2;
>> - enum MT2063_DECT_Avoid_Type avoidDECT;
>> - u32 bSpurPresent;
>> - u32 bSpurAvoided;
>> - u32 nSpursFound;
>> - u32 nZones;
>> - struct MT2063_ExclZone_t *freeZones;
>> - struct MT2063_ExclZone_t *usedZones;
>> - struct MT2063_ExclZone_t MT2063_ExclZones[MT2063_MAX_ZONES];
>> -};
>> -
>> -/*
>> - * Parameter for function MT2063_SetPowerMask that specifies the power down
>> - * of various sections of the MT2063.
>> - */
>> -enum MT2063_Mask_Bits {
>> - MT2063_REG_SD = 0x0040, /* Shutdown regulator */
>> - MT2063_SRO_SD = 0x0020, /* Shutdown SRO */
>> - MT2063_AFC_SD = 0x0010, /* Shutdown AFC A/D */
>> - MT2063_PD_SD = 0x0002, /* Enable power detector shutdown */
>> - MT2063_PDADC_SD = 0x0001, /* Enable power detector A/D shutdown */
>> - MT2063_VCO_SD = 0x8000, /* Enable VCO shutdown */
>> - MT2063_LTX_SD = 0x4000, /* Enable LTX shutdown */
>> - MT2063_LT1_SD = 0x2000, /* Enable LT1 shutdown */
>> - MT2063_LNA_SD = 0x1000, /* Enable LNA shutdown */
>> - MT2063_UPC_SD = 0x0800, /* Enable upconverter shutdown */
>> - MT2063_DNC_SD = 0x0400, /* Enable downconverter shutdown */
>> - MT2063_VGA_SD = 0x0200, /* Enable VGA shutdown */
>> - MT2063_AMP_SD = 0x0100, /* Enable AMP shutdown */
>> - MT2063_ALL_SD = 0xFF73, /* All shutdown bits for this tuner */
>> - MT2063_NONE_SD = 0x0000 /* No shutdown bits */
>> -};
>> -
>> -/*
>> - * Possible values for MT2063_DNC_OUTPUT
>> - */
>> -enum MT2063_DNC_Output_Enable {
>> - MT2063_DNC_NONE = 0,
>> - MT2063_DNC_1,
>> - MT2063_DNC_2,
>> - MT2063_DNC_BOTH
>> -};
>> -
>> -/*
>> - * Two-wire serial bus subaddresses of the tuner registers.
>> - * Also known as the tuner's register addresses.
>> - */
>> -enum MT2063_Register_Offsets {
>> - MT2063_REG_PART_REV = 0, /* 0x00: Part/Rev Code */
>> - MT2063_REG_LO1CQ_1, /* 0x01: LO1C Queued Byte 1 */
>> - MT2063_REG_LO1CQ_2, /* 0x02: LO1C Queued Byte 2 */
>> - MT2063_REG_LO2CQ_1, /* 0x03: LO2C Queued Byte 1 */
>> - MT2063_REG_LO2CQ_2, /* 0x04: LO2C Queued Byte 2 */
>> - MT2063_REG_LO2CQ_3, /* 0x05: LO2C Queued Byte 3 */
>> - MT2063_REG_RSVD_06, /* 0x06: Reserved */
>> - MT2063_REG_LO_STATUS, /* 0x07: LO Status */
>> - MT2063_REG_FIFFC, /* 0x08: FIFF Center */
>> - MT2063_REG_CLEARTUNE, /* 0x09: ClearTune Filter */
>> - MT2063_REG_ADC_OUT, /* 0x0A: ADC_OUT */
>> - MT2063_REG_LO1C_1, /* 0x0B: LO1C Byte 1 */
>> - MT2063_REG_LO1C_2, /* 0x0C: LO1C Byte 2 */
>> - MT2063_REG_LO2C_1, /* 0x0D: LO2C Byte 1 */
>> - MT2063_REG_LO2C_2, /* 0x0E: LO2C Byte 2 */
>> - MT2063_REG_LO2C_3, /* 0x0F: LO2C Byte 3 */
>> - MT2063_REG_RSVD_10, /* 0x10: Reserved */
>> - MT2063_REG_PWR_1, /* 0x11: PWR Byte 1 */
>> - MT2063_REG_PWR_2, /* 0x12: PWR Byte 2 */
>> - MT2063_REG_TEMP_STATUS, /* 0x13: Temp Status */
>> - MT2063_REG_XO_STATUS, /* 0x14: Crystal Status */
>> - MT2063_REG_RF_STATUS, /* 0x15: RF Attn Status */
>> - MT2063_REG_FIF_STATUS, /* 0x16: FIF Attn Status */
>> - MT2063_REG_LNA_OV, /* 0x17: LNA Attn Override */
>> - MT2063_REG_RF_OV, /* 0x18: RF Attn Override */
>> - MT2063_REG_FIF_OV, /* 0x19: FIF Attn Override */
>> - MT2063_REG_LNA_TGT, /* 0x1A: Reserved */
>> - MT2063_REG_PD1_TGT, /* 0x1B: Pwr Det 1 Target */
>> - MT2063_REG_PD2_TGT, /* 0x1C: Pwr Det 2 Target */
>> - MT2063_REG_RSVD_1D, /* 0x1D: Reserved */
>> - MT2063_REG_RSVD_1E, /* 0x1E: Reserved */
>> - MT2063_REG_RSVD_1F, /* 0x1F: Reserved */
>> - MT2063_REG_RSVD_20, /* 0x20: Reserved */
>> - MT2063_REG_BYP_CTRL, /* 0x21: Bypass Control */
>> - MT2063_REG_RSVD_22, /* 0x22: Reserved */
>> - MT2063_REG_RSVD_23, /* 0x23: Reserved */
>> - MT2063_REG_RSVD_24, /* 0x24: Reserved */
>> - MT2063_REG_RSVD_25, /* 0x25: Reserved */
>> - MT2063_REG_RSVD_26, /* 0x26: Reserved */
>> - MT2063_REG_RSVD_27, /* 0x27: Reserved */
>> - MT2063_REG_FIFF_CTRL, /* 0x28: FIFF Control */
>> - MT2063_REG_FIFF_OFFSET, /* 0x29: FIFF Offset */
>> - MT2063_REG_CTUNE_CTRL, /* 0x2A: Reserved */
>> - MT2063_REG_CTUNE_OV, /* 0x2B: Reserved */
>> - MT2063_REG_CTRL_2C, /* 0x2C: Reserved */
>> - MT2063_REG_FIFF_CTRL2, /* 0x2D: Fiff Control */
>> - MT2063_REG_RSVD_2E, /* 0x2E: Reserved */
>> - MT2063_REG_DNC_GAIN, /* 0x2F: DNC Control */
>> - MT2063_REG_VGA_GAIN, /* 0x30: VGA Gain Ctrl */
>> - MT2063_REG_RSVD_31, /* 0x31: Reserved */
>> - MT2063_REG_TEMP_SEL, /* 0x32: Temperature Selection */
>> - MT2063_REG_RSVD_33, /* 0x33: Reserved */
>> - MT2063_REG_RSVD_34, /* 0x34: Reserved */
>> - MT2063_REG_RSVD_35, /* 0x35: Reserved */
>> - MT2063_REG_RSVD_36, /* 0x36: Reserved */
>> - MT2063_REG_RSVD_37, /* 0x37: Reserved */
>> - MT2063_REG_RSVD_38, /* 0x38: Reserved */
>> - MT2063_REG_RSVD_39, /* 0x39: Reserved */
>> - MT2063_REG_RSVD_3A, /* 0x3A: Reserved */
>> - MT2063_REG_RSVD_3B, /* 0x3B: Reserved */
>> - MT2063_REG_RSVD_3C, /* 0x3C: Reserved */
>> - MT2063_REG_END_REGS
>> -};
>> -
>> -struct mt2063_state {
>> - struct i2c_adapter *i2c;
>> -
>> - bool init;
>> -
>> - const struct mt2063_config *config;
>> - struct dvb_tuner_ops ops;
>> - struct dvb_frontend *frontend;
>> - struct tuner_state status;
>> -
>> - u32 frequency;
>> - u32 srate;
>> - u32 bandwidth;
>> - u32 reference;
>> -
>> - u32 tuner_id;
>> - struct MT2063_AvoidSpursData_t AS_Data;
>> - u32 f_IF1_actual;
>> - u32 rcvr_mode;
>> - u32 ctfilt_sw;
>> - u32 CTFiltMax[31];
>> - u32 num_regs;
>> - u8 reg[MT2063_REG_END_REGS];
>> -};
>> +/* debug level
>> + * 0 don't debug
>> + * 1 called functions without i2c comunications
>> + * 2 additional calculating, result etc.
>> + * 3 maximum debug information
>> + */
>> +#define dprintk(level, fmt, arg...) do { \
>> +if (debug>= level) \
>> + printk(KERN_DEBUG "mt2063 %s: " fmt, __func__, ##arg); \
>> +} while (0)
>>
>> -/*
>> - * mt2063_write - Write data into the I2C bus
>> - */
>> -static u32 mt2063_write(struct mt2063_state *state, u8 reg, u8 *data, u32 len)
>> +static int mt2063_write(struct mt2063_state *state, u8 reg, u8 data)
>> {
>> struct dvb_frontend *fe = state->frontend;
>> int ret;
>> - u8 buf[60];
>> + u8 buf[2] = { reg, data };
>> +
>> struct i2c_msg msg = {
>> - .addr = state->config->tuner_address,
>> + .addr = state->i2c_addr,
>> .flags = 0,
>> .buf = buf,
>> - .len = len + 1
>> + .len = 2,
>> };
>>
>> - dprintk(2, "\n");
>> -
>> - msg.buf[0] = reg;
>> - memcpy(msg.buf + 1, data, len);
>> + dprintk(3, "writing at address 0x%02x, subadresse 0x%02x, \
>> + value 0x%02x\n", state->i2c_addr, reg, data);
>>
>> if (fe->ops.i2c_gate_ctrl)
>> fe->ops.i2c_gate_ctrl(fe, 1);
>> @@ -274,2034 +75,605 @@ static u32 mt2063_write(struct mt2063_st
>> return ret;
>> }
>>
>> -/*
>> - * mt2063_write - Write register data into the I2C bus, caching the value
>> - */
>> -static u32 mt2063_setreg(struct mt2063_state *state, u8 reg, u8 val)
>> -{
>> - u32 status;
>> -
>> - dprintk(2, "\n");
>> -
>> - if (reg>= MT2063_REG_END_REGS)
>> - return -ERANGE;
>> -
>> - status = mt2063_write(state, reg,&val, 1);
>> - if (status< 0)
>> - return status;
>> -
>> - state->reg[reg] = val;
>> -
>> - return 0;
>> -}
>> -
>> -/*
>> - * mt2063_read - Read data from the I2C bus
>> - */
>> -static u32 mt2063_read(struct mt2063_state *state,
>> - u8 subAddress, u8 *pData, u32 cnt)
>> +static int mt2063_read(struct mt2063_state *state, u8 reg, u8 *data)
>> {
>> - u32 status = 0; /* Status to be returned */
>> struct dvb_frontend *fe = state->frontend;
>> - u32 i = 0;
>> + int ret = 0;
>> +
>> + struct i2c_msg msg[] = { {
>> + .addr = state->i2c_addr,
>> + .flags = 0,
>> + .buf =®,
>> + .len = 1,
>> + }, {
>> + .addr = state->i2c_addr,
>> + .flags = I2C_M_RD,
>> + .buf = data,
>> + .len = 1,
>> + } };
>>
>> - dprintk(2, "addr 0x%02x, cnt %d\n", subAddress, cnt);
>> + dprintk(3, "\n");
>>
>> if (fe->ops.i2c_gate_ctrl)
>> fe->ops.i2c_gate_ctrl(fe, 1);
>> -
>> - for (i = 0; i< cnt; i++) {
>> - u8 b0[] = { subAddress + i };
>> - struct i2c_msg msg[] = {
>> - {
>> - .addr = state->config->tuner_address,
>> - .flags = 0,
>> - .buf = b0,
>> - .len = 1
>> - }, {
>> - .addr = state->config->tuner_address,
>> - .flags = I2C_M_RD,
>> - .buf = pData + i,
>> - .len = 1
>> - }
>> - };
>> -
>> - status = i2c_transfer(state->i2c, msg, 2);
>> - dprintk(2, "addr 0x%02x, ret = %d, val = 0x%02x\n",
>> - subAddress + i, status, *(pData + i));
>> - if (status< 0)
>> - break;
>> - }
>> + ret = i2c_transfer(state->i2c, msg, 2);
>> if (fe->ops.i2c_gate_ctrl)
>> fe->ops.i2c_gate_ctrl(fe, 0);
>>
>> - if (status< 0)
>> - printk(KERN_ERR "Can't read from address 0x%02x,\n",
>> - subAddress + i);
>> -
>> - return status;
>> -}
>> -
>> -/*
>> - * FIXME: Is this really needed?
>> - */
>> -static int MT2063_Sleep(struct dvb_frontend *fe)
>> -{
>> - /*
>> - * ToDo: Add code here to implement a OS blocking
>> - */
>> - msleep(10);
>> -
>> - return 0;
>> -}
>> -
>> -/*
>> - * Microtune spur avoidance
>> - */
>> -
>> -/* Implement ceiling, floor functions. */
>> -#define ceil(n, d) (((n)< 0) ? (-((-(n))/(d))) : (n)/(d) + ((n)%(d) != 0))
>> -#define floor(n, d) (((n)< 0) ? (-((-(n))/(d))) - ((n)%(d) != 0) : (n)/(d))
>> -
>> -struct MT2063_FIFZone_t {
>> - s32 min_;
>> - s32 max_;
>> -};
>> -
>> -static struct MT2063_ExclZone_t *InsertNode(struct MT2063_AvoidSpursData_t
>> - *pAS_Info,
>> - struct MT2063_ExclZone_t *pPrevNode)
>> -{
>> - struct MT2063_ExclZone_t *pNode;
>> -
>> - dprintk(2, "\n");
>> -
>> - /* Check for a node in the free list */
>> - if (pAS_Info->freeZones != NULL) {
>> - /* Use one from the free list */
>> - pNode = pAS_Info->freeZones;
>> - pAS_Info->freeZones = pNode->next_;
>> - } else {
>> - /* Grab a node from the array */
>> - pNode =&pAS_Info->MT2063_ExclZones[pAS_Info->nZones];
>> - }
>> -
>> - if (pPrevNode != NULL) {
>> - pNode->next_ = pPrevNode->next_;
>> - pPrevNode->next_ = pNode;
>> - } else { /* insert at the beginning of the list */
>> -
>> - pNode->next_ = pAS_Info->usedZones;
>> - pAS_Info->usedZones = pNode;
>> - }
>> -
>> - pAS_Info->nZones++;
>> - return pNode;
>> -}
>> -
>> -static struct MT2063_ExclZone_t *RemoveNode(struct MT2063_AvoidSpursData_t
>> - *pAS_Info,
>> - struct MT2063_ExclZone_t *pPrevNode,
>> - struct MT2063_ExclZone_t
>> - *pNodeToRemove)
>> -{
>> - struct MT2063_ExclZone_t *pNext = pNodeToRemove->next_;
>> -
>> - dprintk(2, "\n");
>> -
>> - /* Make previous node point to the subsequent node */
>> - if (pPrevNode != NULL)
>> - pPrevNode->next_ = pNext;
>> -
>> - /* Add pNodeToRemove to the beginning of the freeZones */
>> - pNodeToRemove->next_ = pAS_Info->freeZones;
>> - pAS_Info->freeZones = pNodeToRemove;
>> -
>> - /* Decrement node count */
>> - pAS_Info->nZones--;
>> -
>> - return pNext;
>> -}
>> -
>> -/*
>> - * MT_AddExclZone()
>> - *
>> - * Add (and merge) an exclusion zone into the list.
>> - * If the range (f_min, f_max) is totally outside the
>> - * 1st IF BW, ignore the entry.
>> - * If the range (f_min, f_max) is negative, ignore the entry.
>> - */
>> -static void MT2063_AddExclZone(struct MT2063_AvoidSpursData_t *pAS_Info,
>> - u32 f_min, u32 f_max)
>> -{
>> - struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
>> - struct MT2063_ExclZone_t *pPrev = NULL;
>> - struct MT2063_ExclZone_t *pNext = NULL;
>> -
>> - dprintk(2, "\n");
>> -
>> - /* Check to see if this overlaps the 1st IF filter */
>> - if ((f_max> (pAS_Info->f_if1_Center - (pAS_Info->f_if1_bw / 2)))
>> - && (f_min< (pAS_Info->f_if1_Center + (pAS_Info->f_if1_bw / 2)))
>> - && (f_min< f_max)) {
>> - /*
>> - * 1 2 3 4 5 6
>> - *
>> - * New entry: |---| |--| |--| |-| |---| |--|
>> - * or or or or or
>> - * Existing: |--| |--| |--| |---| |-| |--|
>> - */
>> -
>> - /* Check for our place in the list */
>> - while ((pNode != NULL)&& (pNode->max_< f_min)) {
>> - pPrev = pNode;
>> - pNode = pNode->next_;
>> - }
>> -
>> - if ((pNode != NULL)&& (pNode->min_< f_max)) {
>> - /* Combine me with pNode */
>> - if (f_min< pNode->min_)
>> - pNode->min_ = f_min;
>> - if (f_max> pNode->max_)
>> - pNode->max_ = f_max;
>> - } else {
>> - pNode = InsertNode(pAS_Info, pPrev);
>> - pNode->min_ = f_min;
>> - pNode->max_ = f_max;
>> - }
>> -
>> - /* Look for merging possibilities */
>> - pNext = pNode->next_;
>> - while ((pNext != NULL)&& (pNext->min_< pNode->max_)) {
>> - if (pNext->max_> pNode->max_)
>> - pNode->max_ = pNext->max_;
>> - /* Remove pNext, return ptr to pNext->next */
>> - pNext = RemoveNode(pAS_Info, pNode, pNext);
>> - }
>> - }
>> -}
>> -
>> -/*
>> - * Reset all exclusion zones.
>> - * Add zones to protect the PLL FracN regions near zero
>> - */
>> -static void MT2063_ResetExclZones(struct MT2063_AvoidSpursData_t *pAS_Info)
>> -{
>> - u32 center;
>> -
>> - dprintk(2, "\n");
>> -
>> - pAS_Info->nZones = 0; /* this clears the used list */
>> - pAS_Info->usedZones = NULL; /* reset ptr */
>> - pAS_Info->freeZones = NULL; /* reset ptr */
>> -
>> - center =
>> - pAS_Info->f_ref *
>> - ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 +
>> - pAS_Info->f_in) / pAS_Info->f_ref) - pAS_Info->f_in;
>> - while (center<
>> - pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
>> - pAS_Info->f_LO1_FracN_Avoid) {
>> - /* Exclude LO1 FracN */
>> - MT2063_AddExclZone(pAS_Info,
>> - center - pAS_Info->f_LO1_FracN_Avoid,
>> - center - 1);
>> - MT2063_AddExclZone(pAS_Info, center + 1,
>> - center + pAS_Info->f_LO1_FracN_Avoid);
>> - center += pAS_Info->f_ref;
>> - }
>> -
>> - center =
>> - pAS_Info->f_ref *
>> - ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 -
>> - pAS_Info->f_out) / pAS_Info->f_ref) + pAS_Info->f_out;
>> - while (center<
>> - pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 +
>> - pAS_Info->f_LO2_FracN_Avoid) {
>> - /* Exclude LO2 FracN */
>> - MT2063_AddExclZone(pAS_Info,
>> - center - pAS_Info->f_LO2_FracN_Avoid,
>> - center - 1);
>> - MT2063_AddExclZone(pAS_Info, center + 1,
>> - center + pAS_Info->f_LO2_FracN_Avoid);
>> - center += pAS_Info->f_ref;
>> - }
>> -
>> - if (MT2063_EXCLUDE_US_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
>> - /* Exclude LO1 values that conflict with DECT channels */
>> - MT2063_AddExclZone(pAS_Info, 1920836000 - pAS_Info->f_in, 1922236000 - pAS_Info->f_in); /* Ctr = 1921.536 */
>> - MT2063_AddExclZone(pAS_Info, 1922564000 - pAS_Info->f_in, 1923964000 - pAS_Info->f_in); /* Ctr = 1923.264 */
>> - MT2063_AddExclZone(pAS_Info, 1924292000 - pAS_Info->f_in, 1925692000 - pAS_Info->f_in); /* Ctr = 1924.992 */
>> - MT2063_AddExclZone(pAS_Info, 1926020000 - pAS_Info->f_in, 1927420000 - pAS_Info->f_in); /* Ctr = 1926.720 */
>> - MT2063_AddExclZone(pAS_Info, 1927748000 - pAS_Info->f_in, 1929148000 - pAS_Info->f_in); /* Ctr = 1928.448 */
>> - }
>> -
>> - if (MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(pAS_Info->avoidDECT)) {
>> - MT2063_AddExclZone(pAS_Info, 1896644000 - pAS_Info->f_in, 1898044000 - pAS_Info->f_in); /* Ctr = 1897.344 */
>> - MT2063_AddExclZone(pAS_Info, 1894916000 - pAS_Info->f_in, 1896316000 - pAS_Info->f_in); /* Ctr = 1895.616 */
>> - MT2063_AddExclZone(pAS_Info, 1893188000 - pAS_Info->f_in, 1894588000 - pAS_Info->f_in); /* Ctr = 1893.888 */
>> - MT2063_AddExclZone(pAS_Info, 1891460000 - pAS_Info->f_in, 1892860000 - pAS_Info->f_in); /* Ctr = 1892.16 */
>> - MT2063_AddExclZone(pAS_Info, 1889732000 - pAS_Info->f_in, 1891132000 - pAS_Info->f_in); /* Ctr = 1890.432 */
>> - MT2063_AddExclZone(pAS_Info, 1888004000 - pAS_Info->f_in, 1889404000 - pAS_Info->f_in); /* Ctr = 1888.704 */
>> - MT2063_AddExclZone(pAS_Info, 1886276000 - pAS_Info->f_in, 1887676000 - pAS_Info->f_in); /* Ctr = 1886.976 */
>> - MT2063_AddExclZone(pAS_Info, 1884548000 - pAS_Info->f_in, 1885948000 - pAS_Info->f_in); /* Ctr = 1885.248 */
>> - MT2063_AddExclZone(pAS_Info, 1882820000 - pAS_Info->f_in, 1884220000 - pAS_Info->f_in); /* Ctr = 1883.52 */
>> - MT2063_AddExclZone(pAS_Info, 1881092000 - pAS_Info->f_in, 1882492000 - pAS_Info->f_in); /* Ctr = 1881.792 */
>> - }
>> -}
>> -
>> -/*
>> - * MT_ChooseFirstIF - Choose the best available 1st IF
>> - * If f_Desired is not excluded, choose that first.
>> - * Otherwise, return the value closest to f_Center that is
>> - * not excluded
>> - */
>> -static u32 MT2063_ChooseFirstIF(struct MT2063_AvoidSpursData_t *pAS_Info)
>> -{
>> - /*
>> - * Update "f_Desired" to be the nearest "combinational-multiple" of
>> - * "f_LO1_Step".
>> - * The resulting number, F_LO1 must be a multiple of f_LO1_Step.
>> - * And F_LO1 is the arithmetic sum of f_in + f_Center.
>> - * Neither f_in, nor f_Center must be a multiple of f_LO1_Step.
>> - * However, the sum must be.
>> - */
>> - const u32 f_Desired =
>> - pAS_Info->f_LO1_Step *
>> - ((pAS_Info->f_if1_Request + pAS_Info->f_in +
>> - pAS_Info->f_LO1_Step / 2) / pAS_Info->f_LO1_Step) -
>> - pAS_Info->f_in;
>> - const u32 f_Step =
>> - (pAS_Info->f_LO1_Step>
>> - pAS_Info->f_LO2_Step) ? pAS_Info->f_LO1_Step : pAS_Info->
>> - f_LO2_Step;
>> - u32 f_Center;
>> - s32 i;
>> - s32 j = 0;
>> - u32 bDesiredExcluded = 0;
>> - u32 bZeroExcluded = 0;
>> - s32 tmpMin, tmpMax;
>> - s32 bestDiff;
>> - struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones;
>> - struct MT2063_FIFZone_t zones[MT2063_MAX_ZONES];
>> -
>> - dprintk(2, "\n");
>> -
>> - if (pAS_Info->nZones == 0)
>> - return f_Desired;
>> -
>> - /*
>> - * f_Center needs to be an integer multiple of f_Step away
>> - * from f_Desired
>> - */
>> - if (pAS_Info->f_if1_Center> f_Desired)
>> - f_Center =
>> - f_Desired +
>> - f_Step *
>> - ((pAS_Info->f_if1_Center - f_Desired +
>> - f_Step / 2) / f_Step);
>> - else
>> - f_Center =
>> - f_Desired -
>> - f_Step *
>> - ((f_Desired - pAS_Info->f_if1_Center +
>> - f_Step / 2) / f_Step);
>> -
>> - /*
>> - * Take MT_ExclZones, center around f_Center and change the
>> - * resolution to f_Step
>> - */
>> - while (pNode != NULL) {
>> - /* floor function */
>> - tmpMin =
>> - floor((s32) (pNode->min_ - f_Center), (s32) f_Step);
>> -
>> - /* ceil function */
>> - tmpMax =
>> - ceil((s32) (pNode->max_ - f_Center), (s32) f_Step);
>> -
>> - if ((pNode->min_< f_Desired)&& (pNode->max_> f_Desired))
>> - bDesiredExcluded = 1;
>> -
>> - if ((tmpMin< 0)&& (tmpMax> 0))
>> - bZeroExcluded = 1;
>> -
>> - /* See if this zone overlaps the previous */
>> - if ((j> 0)&& (tmpMin< zones[j - 1].max_))
>> - zones[j - 1].max_ = tmpMax;
>> - else {
>> - /* Add new zone */
>> - zones[j].min_ = tmpMin;
>> - zones[j].max_ = tmpMax;
>> - j++;
>> - }
>> - pNode = pNode->next_;
>> - }
>> -
>> - /*
>> - * If the desired is okay, return with it
>> - */
>> - if (bDesiredExcluded == 0)
>> - return f_Desired;
>> -
>> - /*
>> - * If the desired is excluded and the center is okay, return with it
>> - */
>> - if (bZeroExcluded == 0)
>> - return f_Center;
>> -
>> - /* Find the value closest to 0 (f_Center) */
>> - bestDiff = zones[0].min_;
>> - for (i = 0; i< j; i++) {
>> - if (abs(zones[i].min_)< abs(bestDiff))
>> - bestDiff = zones[i].min_;
>> - if (abs(zones[i].max_)< abs(bestDiff))
>> - bestDiff = zones[i].max_;
>> - }
>> -
>> - if (bestDiff< 0)
>> - return f_Center - ((u32) (-bestDiff) * f_Step);
>> -
>> - return f_Center + (bestDiff * f_Step);
>> -}
>> -
>> -/**
>> - * gcd() - Uses Euclid's algorithm
>> - *
>> - * @u, @v: Unsigned values whose GCD is desired.
>> - *
>> - * Returns THE greatest common divisor of u and v, if either value is 0,
>> - * the other value is returned as the result.
>> - */
>> -static u32 MT2063_gcd(u32 u, u32 v)
>> -{
>> - u32 r;
>> + if (ret< 0)
>> + printk(KERN_ERR "Can't read from address 0x%02x,\n", reg);
>>
>> - while (v != 0) {
>> - r = u % v;
>> - u = v;
>> - v = r;
>> - }
>> + dprintk(3, "readed at address 0x%02x, subadress 0x%02x, \
>> + value 0x%02x\n", state->i2c_addr, reg, data[0]);
>>
>> - return u;
>> + return ret;
>> }
>>
>> -/**
>> - * IsSpurInBand() - Checks to see if a spur will be present within the IF's
>> - * bandwidth. (fIFOut +/- fIFBW, -fIFOut +/- fIFBW)
>> - *
>> - * ma mb mc md
>> - *<--+-+-+-------------------+-------------------+-+-+-->
>> - * | ^ 0 ^ |
>> - * ^ b=-fIFOut+fIFBW/2 -b=+fIFOut-fIFBW/2 ^
>> - * a=-fIFOut-fIFBW/2 -a=+fIFOut+fIFBW/2
>> - *
>> - * Note that some equations are doubled to prevent round-off
>> - * problems when calculating fIFBW/2
>> - *
>> - * @pAS_Info: Avoid Spurs information block
>> - * @fm: If spur, amount f_IF1 has to move negative
>> - * @fp: If spur, amount f_IF1 has to move positive
>> - *
>> - * Returns 1 if an LO spur would be present, otherwise 0.
>> - */
>> -static u32 IsSpurInBand(struct MT2063_AvoidSpursData_t *pAS_Info,
>> - u32 *fm, u32 * fp)
>> +static int mt2063_set_reg_mask(struct mt2063_state *state, u8 reg,
>> + u8 val, u8 mask)
>> {
>> - /*
>> - ** Calculate LO frequency settings.
>> - */
>> - u32 n, n0;
>> - const u32 f_LO1 = pAS_Info->f_LO1;
>> - const u32 f_LO2 = pAS_Info->f_LO2;
>> - const u32 d = pAS_Info->f_out + pAS_Info->f_out_bw / 2;
>> - const u32 c = d - pAS_Info->f_out_bw;
>> - const u32 f = pAS_Info->f_zif_bw / 2;
>> - const u32 f_Scale = (f_LO1 / (UINT_MAX / 2 / pAS_Info->maxH1)) + 1;
>> - s32 f_nsLO1, f_nsLO2;
>> - s32 f_Spur;
>> - u32 ma, mb, mc, md, me, mf;
>> - u32 lo_gcd, gd_Scale, gc_Scale, gf_Scale, hgds, hgfs, hgcs;
>> + u8 old_val, new_val;
>>
>> - dprintk(2, "\n");
>> + dprintk(3, "\n");
>>
>> - *fm = 0;
>> + mt2063_read(state, reg,&old_val);
>>
>> - /*
>> - ** For each edge (d, c& f), calculate a scale, based on the gcd
>> - ** of f_LO1, f_LO2 and the edge value. Use the larger of this
>> - ** gcd-based scale factor or f_Scale.
>> - */
>> - lo_gcd = MT2063_gcd(f_LO1, f_LO2);
>> - gd_Scale = max((u32) MT2063_gcd(lo_gcd, d), f_Scale);
>> - hgds = gd_Scale / 2;
>> - gc_Scale = max((u32) MT2063_gcd(lo_gcd, c), f_Scale);
>> - hgcs = gc_Scale / 2;
>> - gf_Scale = max((u32) MT2063_gcd(lo_gcd, f), f_Scale);
>> - hgfs = gf_Scale / 2;
>> -
>> - n0 = DIV_ROUND_UP(f_LO2 - d, f_LO1 - f_LO2);
>> -
>> - /* Check out all multiples of LO1 from n0 to m_maxLOSpurHarmonic */
>> - for (n = n0; n<= pAS_Info->maxH1; ++n) {
>> - md = (n * ((f_LO1 + hgds) / gd_Scale) -
>> - ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);
>> -
>> - /* If # fLO2 harmonics> m_maxLOSpurHarmonic, then no spurs present */
>> - if (md>= pAS_Info->maxH1)
>> - break;
>> -
>> - ma = (n * ((f_LO1 + hgds) / gd_Scale) +
>> - ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale);
>> -
>> - /* If no spurs between +/- (f_out + f_IFBW/2), then try next harmonic */
>> - if (md == ma)
>> - continue;
>> -
>> - mc = (n * ((f_LO1 + hgcs) / gc_Scale) -
>> - ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
>> - if (mc != md) {
>> - f_nsLO1 = (s32) (n * (f_LO1 / gc_Scale));
>> - f_nsLO2 = (s32) (mc * (f_LO2 / gc_Scale));
>> - f_Spur =
>> - (gc_Scale * (f_nsLO1 - f_nsLO2)) +
>> - n * (f_LO1 % gc_Scale) - mc * (f_LO2 % gc_Scale);
>> -
>> - *fp = ((f_Spur - (s32) c) / (mc - n)) + 1;
>> - *fm = (((s32) d - f_Spur) / (mc - n)) + 1;
>> - return 1;
>> - }
>> -
>> - /* Location of Zero-IF-spur to be checked */
>> - me = (n * ((f_LO1 + hgfs) / gf_Scale) +
>> - ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
>> - mf = (n * ((f_LO1 + hgfs) / gf_Scale) -
>> - ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale);
>> - if (me != mf) {
>> - f_nsLO1 = n * (f_LO1 / gf_Scale);
>> - f_nsLO2 = me * (f_LO2 / gf_Scale);
>> - f_Spur =
>> - (gf_Scale * (f_nsLO1 - f_nsLO2)) +
>> - n * (f_LO1 % gf_Scale) - me * (f_LO2 % gf_Scale);
>> -
>> - *fp = ((f_Spur + (s32) f) / (me - n)) + 1;
>> - *fm = (((s32) f - f_Spur) / (me - n)) + 1;
>> - return 1;
>> - }
>> + new_val = (old_val& ~mask) | (val& mask);
>>
>> - mb = (n * ((f_LO1 + hgcs) / gc_Scale) +
>> - ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale);
>> - if (ma != mb) {
>> - f_nsLO1 = n * (f_LO1 / gc_Scale);
>> - f_nsLO2 = ma * (f_LO2 / gc_Scale);
>> - f_Spur =
>> - (gc_Scale * (f_nsLO1 - f_nsLO2)) +
>> - n * (f_LO1 % gc_Scale) - ma * (f_LO2 % gc_Scale);
>> -
>> - *fp = (((s32) d + f_Spur) / (ma - n)) + 1;
>> - *fm = (-(f_Spur + (s32) c) / (ma - n)) + 1;
>> - return 1;
>> - }
>> - }
>> + if (new_val != old_val)
>> + mt2063_write(state, reg, new_val);
>>
>> - /* No spurs found */
>> return 0;
>> }
>>
>> -/*
>> - * MT_AvoidSpurs() - Main entry point to avoid spurs.
>> - * Checks for existing spurs in present LO1, LO2 freqs
>> - * and if present, chooses spur-free LO1, LO2 combination
>> - * that tunes the same input/output frequencies.
>> - */
>> -static u32 MT2063_AvoidSpurs(struct MT2063_AvoidSpursData_t *pAS_Info)
>> +static void mt2063_shutdown(struct mt2063_state *state,
>> + enum MT2063_Mask_Bits sd)
>> {
>> - u32 status = 0;
>> - u32 fm, fp; /* restricted range on LO's */
>> - pAS_Info->bSpurAvoided = 0;
>> - pAS_Info->nSpursFound = 0;
>> -
>> - dprintk(2, "\n");
>> -
>> - if (pAS_Info->maxH1 == 0)
>> - return 0;
>> + dprintk(1, "\n");
>>
>> /*
>> - * Avoid LO Generated Spurs
>> - *
>> - * Make sure that have no LO-related spurs within the IF output
>> - * bandwidth.
>> + * set all power bits
>> *
>> - * If there is an LO spur in this band, start at the current IF1 frequency
>> - * and work out until we find a spur-free frequency or run up against the
>> - * 1st IF SAW band edge. Use temporary copies of fLO1 and fLO2 so that they
>> - * will be unchanged if a spur-free setting is not found.
>> */
>> - pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info,&fm,&fp);
>> - if (pAS_Info->bSpurPresent) {
>> - u32 zfIF1 = pAS_Info->f_LO1 - pAS_Info->f_in; /* current attempt at a 1st IF */
>> - u32 zfLO1 = pAS_Info->f_LO1; /* current attempt at an LO1 freq */
>> - u32 zfLO2 = pAS_Info->f_LO2; /* current attempt at an LO2 freq */
>> - u32 delta_IF1;
>> - u32 new_IF1;
>> -
>> - /*
>> - ** Spur was found, attempt to find a spur-free 1st IF
>> - */
>> - do {
>> - pAS_Info->nSpursFound++;
>> -
>> - /* Raise f_IF1_upper, if needed */
>> - MT2063_AddExclZone(pAS_Info, zfIF1 - fm, zfIF1 + fp);
>> -
>> - /* Choose next IF1 that is closest to f_IF1_CENTER */
>> - new_IF1 = MT2063_ChooseFirstIF(pAS_Info);
>> -
>> - if (new_IF1> zfIF1) {
>> - pAS_Info->f_LO1 += (new_IF1 - zfIF1);
>> - pAS_Info->f_LO2 += (new_IF1 - zfIF1);
>> - } else {
>> - pAS_Info->f_LO1 -= (zfIF1 - new_IF1);
>> - pAS_Info->f_LO2 -= (zfIF1 - new_IF1);
>> - }
>> - zfIF1 = new_IF1;
>> -
>> - if (zfIF1> pAS_Info->f_if1_Center)
>> - delta_IF1 = zfIF1 - pAS_Info->f_if1_Center;
>> - else
>> - delta_IF1 = pAS_Info->f_if1_Center - zfIF1;
>> -
>> - pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info,&fm,&fp);
>> - /*
>> - * Continue while the new 1st IF is still within the 1st IF bandwidth
>> - * and there is a spur in the band (again)
>> - */
>> - } while ((2 * delta_IF1 + pAS_Info->f_out_bw<= pAS_Info->f_if1_bw)&& pAS_Info->bSpurPresent);
>> -
>> - /*
>> - * Use the LO-spur free values found. If the search went all
>> - * the way to the 1st IF band edge and always found spurs, just
>> - * leave the original choice. It's as "good" as any other.
>> - */
>> - if (pAS_Info->bSpurPresent == 1) {
>> - status |= MT2063_SPUR_PRESENT_ERR;
>> - pAS_Info->f_LO1 = zfLO1;
>> - pAS_Info->f_LO2 = zfLO2;
>> - } else
>> - pAS_Info->bSpurAvoided = 1;
>> - }
>> -
>> - status |=
>> - ((pAS_Info->
>> - nSpursFound<< MT2063_SPUR_SHIFT)& MT2063_SPUR_CNT_MASK);
>> -
>> - return status;
>> -}
>> -
>> -/*
>> - * Constants used by the tuning algorithm
>> - */
>> -#define MT2063_REF_FREQ (16000000UL) /* Reference oscillator Frequency (in Hz) */
>> -#define MT2063_IF1_BW (22000000UL) /* The IF1 filter bandwidth (in Hz) */
>> -#define MT2063_TUNE_STEP_SIZE (50000UL) /* Tune in steps of 50 kHz */
>> -#define MT2063_SPUR_STEP_HZ (250000UL) /* Step size (in Hz) to move IF1 when avoiding spurs */
>> -#define MT2063_ZIF_BW (2000000UL) /* Zero-IF spur-free bandwidth (in Hz) */
>> -#define MT2063_MAX_HARMONICS_1 (15UL) /* Highest intra-tuner LO Spur Harmonic to be avoided */
>> -#define MT2063_MAX_HARMONICS_2 (5UL) /* Highest inter-tuner LO Spur Harmonic to be avoided */
>> -#define MT2063_MIN_LO_SEP (1000000UL) /* Minimum inter-tuner LO frequency separation */
>> -#define MT2063_LO1_FRACN_AVOID (0UL) /* LO1 FracN numerator avoid region (in Hz) */
>> -#define MT2063_LO2_FRACN_AVOID (199999UL) /* LO2 FracN numerator avoid region (in Hz) */
>> -#define MT2063_MIN_FIN_FREQ (44000000UL) /* Minimum input frequency (in Hz) */
>> -#define MT2063_MAX_FIN_FREQ (1100000000UL) /* Maximum input frequency (in Hz) */
>> -#define MT2063_MIN_FOUT_FREQ (36000000UL) /* Minimum output frequency (in Hz) */
>> -#define MT2063_MAX_FOUT_FREQ (57000000UL) /* Maximum output frequency (in Hz) */
>> -#define MT2063_MIN_DNC_FREQ (1293000000UL) /* Minimum LO2 frequency (in Hz) */
>> -#define MT2063_MAX_DNC_FREQ (1614000000UL) /* Maximum LO2 frequency (in Hz) */
>> -#define MT2063_MIN_UPC_FREQ (1396000000UL) /* Minimum LO1 frequency (in Hz) */
>> -#define MT2063_MAX_UPC_FREQ (2750000000UL) /* Maximum LO1 frequency (in Hz) */
>> -
>> -/*
>> - * Define the supported Part/Rev codes for the MT2063
>> - */
>> -#define MT2063_B0 (0x9B)
>> -#define MT2063_B1 (0x9C)
>> -#define MT2063_B2 (0x9D)
>> -#define MT2063_B3 (0x9E)
>> -
>> -/**
>> - * mt2063_lockStatus - Checks to see if LO1 and LO2 are locked
>> - *
>> - * @state: struct mt2063_state pointer
>> - *
>> - * This function returns 0, if no lock, 1 if locked and a value< 1 if error
>> - */
>> -static unsigned int mt2063_lockStatus(struct mt2063_state *state)
>> -{
>> - const u32 nMaxWait = 100; /* wait a maximum of 100 msec */
>> - const u32 nPollRate = 2; /* poll status bits every 2 ms */
>> - const u32 nMaxLoops = nMaxWait / nPollRate;
>> - const u8 LO1LK = 0x80;
>> - u8 LO2LK = 0x08;
>> - u32 status;
>> - u32 nDelays = 0;
>> -
>> - dprintk(2, "\n");
>> -
>> - /* LO2 Lock bit was in a different place for B0 version */
>> - if (state->tuner_id == MT2063_B0)
>> - LO2LK = 0x40;
>> -
>> - do {
>> - status = mt2063_read(state, MT2063_REG_LO_STATUS,
>> - &state->reg[MT2063_REG_LO_STATUS], 1);
>> -
>> - if (status< 0)
>> - return status;
>> -
>> - if ((state->reg[MT2063_REG_LO_STATUS]& (LO1LK | LO2LK)) ==
>> - (LO1LK | LO2LK)) {
>> - return TUNER_STATUS_LOCKED | TUNER_STATUS_STEREO;
>> - }
>> - msleep(nPollRate); /* Wait between retries */
>> - } while (++nDelays< nMaxLoops);
>> -
>> - /*
>> - * Got no lock or partial lock
>> - */
>> - return 0;
>> -}
>> -
>> -/*
>> - * Constants for setting receiver modes.
>> - * (6 modes defined at this time, enumerated by mt2063_delivery_sys)
>> - * (DNC1GC& DNC2GC are the values, which are used, when the specific
>> - * DNC Output is selected, the other is always off)
>> - *
>> - * enum mt2063_delivery_sys
>> - * -------------+----------------------------------------------
>> - * Mode 0 : | MT2063_CABLE_QAM
>> - * Mode 1 : | MT2063_CABLE_ANALOG
>> - * Mode 2 : | MT2063_OFFAIR_COFDM
>> - * Mode 3 : | MT2063_OFFAIR_COFDM_SAWLESS
>> - * Mode 4 : | MT2063_OFFAIR_ANALOG
>> - * Mode 5 : | MT2063_OFFAIR_8VSB
>> - * --------------+----------------------------------------------
>> - *
>> - * |<---------- Mode -------------->|
>> - * Reg Field | 0 | 1 | 2 | 3 | 4 | 5 |
>> - * ------------+-----+-----+-----+-----+-----+-----+
>> - * RFAGCen | OFF | OFF | OFF | OFF | OFF | OFF
>> - * LNARin | 0 | 0 | 3 | 3 | 3 | 3
>> - * FIFFQen | 1 | 1 | 1 | 1 | 1 | 1
>> - * FIFFq | 0 | 0 | 0 | 0 | 0 | 0
>> - * DNC1gc | 0 | 0 | 0 | 0 | 0 | 0
>> - * DNC2gc | 0 | 0 | 0 | 0 | 0 | 0
>> - * GCU Auto | 1 | 1 | 1 | 1 | 1 | 1
>> - * LNA max Atn | 31 | 31 | 31 | 31 | 31 | 31
>> - * LNA Target | 44 | 43 | 43 | 43 | 43 | 43
>> - * ign RF Ovl | 0 | 0 | 0 | 0 | 0 | 0
>> - * RF max Atn | 31 | 31 | 31 | 31 | 31 | 31
>> - * PD1 Target | 36 | 36 | 38 | 38 | 36 | 38
>> - * ign FIF Ovl | 0 | 0 | 0 | 0 | 0 | 0
>> - * FIF max Atn | 5 | 5 | 5 | 5 | 5 | 5
>> - * PD2 Target | 40 | 33 | 42 | 42 | 33 | 42
>> - */
>> -
>> -enum mt2063_delivery_sys {
>> - MT2063_CABLE_QAM = 0,
>> - MT2063_CABLE_ANALOG,
>> - MT2063_OFFAIR_COFDM,
>> - MT2063_OFFAIR_COFDM_SAWLESS,
>> - MT2063_OFFAIR_ANALOG,
>> - MT2063_OFFAIR_8VSB,
>> - MT2063_NUM_RCVR_MODES
>> -};
>> -
>> -static const char *mt2063_mode_name[] = {
>> - [MT2063_CABLE_QAM] = "digital cable",
>> - [MT2063_CABLE_ANALOG] = "analog cable",
>> - [MT2063_OFFAIR_COFDM] = "digital offair",
>> - [MT2063_OFFAIR_COFDM_SAWLESS] = "digital offair without SAW",
>> - [MT2063_OFFAIR_ANALOG] = "analog offair",
>> - [MT2063_OFFAIR_8VSB] = "analog offair 8vsb",
>> -};
>> -
>> -static const u8 RFAGCEN[] = { 0, 0, 0, 0, 0, 0 };
>> -static const u8 LNARIN[] = { 0, 0, 3, 3, 3, 3 };
>> -static const u8 FIFFQEN[] = { 1, 1, 1, 1, 1, 1 };
>> -static const u8 FIFFQ[] = { 0, 0, 0, 0, 0, 0 };
>> -static const u8 DNC1GC[] = { 0, 0, 0, 0, 0, 0 };
>> -static const u8 DNC2GC[] = { 0, 0, 0, 0, 0, 0 };
>> -static const u8 ACLNAMAX[] = { 31, 31, 31, 31, 31, 31 };
>> -static const u8 LNATGT[] = { 44, 43, 43, 43, 43, 43 };
>> -static const u8 RFOVDIS[] = { 0, 0, 0, 0, 0, 0 };
>> -static const u8 ACRFMAX[] = { 31, 31, 31, 31, 31, 31 };
>> -static const u8 PD1TGT[] = { 36, 36, 38, 38, 36, 38 };
>> -static const u8 FIFOVDIS[] = { 0, 0, 0, 0, 0, 0 };
>> -static const u8 ACFIFMAX[] = { 29, 29, 29, 29, 29, 29 };
>> -static const u8 PD2TGT[] = { 40, 33, 38, 42, 30, 38 };
>> -
>> -/*
>> - * mt2063_set_dnc_output_enable()
>> - */
>> -static u32 mt2063_get_dnc_output_enable(struct mt2063_state *state,
>> - enum MT2063_DNC_Output_Enable *pValue)
>> -{
>> - dprintk(2, "\n");
>> -
>> - if ((state->reg[MT2063_REG_DNC_GAIN]& 0x03) == 0x03) { /* if DNC1 is off */
>> - if ((state->reg[MT2063_REG_VGA_GAIN]& 0x03) == 0x03) /* if DNC2 is off */
>> - *pValue = MT2063_DNC_NONE;
>> - else
>> - *pValue = MT2063_DNC_2;
>> - } else { /* DNC1 is on */
>> - if ((state->reg[MT2063_REG_VGA_GAIN]& 0x03) == 0x03) /* if DNC2 is off */
>> - *pValue = MT2063_DNC_1;
>> - else
>> - *pValue = MT2063_DNC_BOTH;
>> - }
>> - return 0;
>> -}
>> -
>> -/*
>> - * mt2063_set_dnc_output_enable()
>> - */
>> -static u32 mt2063_set_dnc_output_enable(struct mt2063_state *state,
>> - enum MT2063_DNC_Output_Enable nValue)
>> -{
>> - u32 status = 0; /* Status to be returned */
>> - u8 val = 0;
>> -
>> - dprintk(2, "\n");
>> -
>> - /* selects, which DNC output is used */
>> - switch (nValue) {
>> - case MT2063_DNC_NONE:
>> - val = (state->reg[MT2063_REG_DNC_GAIN]& 0xFC) | 0x03; /* Set DNC1GC=3 */
>> - if (state->reg[MT2063_REG_DNC_GAIN] !=
>> - val)
>> - status |=
>> - mt2063_setreg(state,
>> - MT2063_REG_DNC_GAIN,
>> - val);
>> -
>> - val = (state->reg[MT2063_REG_VGA_GAIN]& 0xFC) | 0x03; /* Set DNC2GC=3 */
>> - if (state->reg[MT2063_REG_VGA_GAIN] !=
>> - val)
>> - status |=
>> - mt2063_setreg(state,
>> - MT2063_REG_VGA_GAIN,
>> - val);
>> -
>> - val = (state->reg[MT2063_REG_RSVD_20]& ~0x40); /* Set PD2MUX=0 */
>> - if (state->reg[MT2063_REG_RSVD_20] !=
>> - val)
>> - status |=
>> - mt2063_setreg(state,
>> - MT2063_REG_RSVD_20,
>> - val);
>> -
>> - break;
>> - case MT2063_DNC_1:
>> - val = (state->reg[MT2063_REG_DNC_GAIN]& 0xFC) | (DNC1GC[state->rcvr_mode]& 0x03); /* Set DNC1GC=x */
>> - if (state->reg[MT2063_REG_DNC_GAIN] !=
>> - val)
>> - status |=
>> - mt2063_setreg(state,
>> - MT2063_REG_DNC_GAIN,
>> - val);
>> -
>> - val = (state->reg[MT2063_REG_VGA_GAIN]& 0xFC) | 0x03; /* Set DNC2GC=3 */
>> - if (state->reg[MT2063_REG_VGA_GAIN] !=
>> - val)
>> - status |=
>> - mt2063_setreg(state,
>> - MT2063_REG_VGA_GAIN,
>> - val);
>> -
>> - val = (state->reg[MT2063_REG_RSVD_20]& ~0x40); /* Set PD2MUX=0 */
>> - if (state->reg[MT2063_REG_RSVD_20] !=
>> - val)
>> - status |=
>> - mt2063_setreg(state,
>> - MT2063_REG_RSVD_20,
>> - val);
>> -
>> - break;
>> - case MT2063_DNC_2:
>> - val = (state->reg[MT2063_REG_DNC_GAIN]& 0xFC) | 0x03; /* Set DNC1GC=3 */
>> - if (state->reg[MT2063_REG_DNC_GAIN] !=
>> - val)
>> - status |=
>> - mt2063_setreg(state,
>> - MT2063_REG_DNC_GAIN,
>> - val);
>> -
>> - val = (state->reg[MT2063_REG_VGA_GAIN]& 0xFC) | (DNC2GC[state->rcvr_mode]& 0x03); /* Set DNC2GC=x */
>> - if (state->reg[MT2063_REG_VGA_GAIN] !=
>> - val)
>> - status |=
>> - mt2063_setreg(state,
>> - MT2063_REG_VGA_GAIN,
>> - val);
>> -
>> - val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */
>> - if (state->reg[MT2063_REG_RSVD_20] !=
>> - val)
>> - status |=
>> - mt2063_setreg(state,
>> - MT2063_REG_RSVD_20,
>> - val);
>> -
>> - break;
>> - case MT2063_DNC_BOTH:
>> - val = (state->reg[MT2063_REG_DNC_GAIN]& 0xFC) | (DNC1GC[state->rcvr_mode]& 0x03); /* Set DNC1GC=x */
>> - if (state->reg[MT2063_REG_DNC_GAIN] !=
>> - val)
>> - status |=
>> - mt2063_setreg(state,
>> - MT2063_REG_DNC_GAIN,
>> - val);
>> -
>> - val = (state->reg[MT2063_REG_VGA_GAIN]& 0xFC) | (DNC2GC[state->rcvr_mode]& 0x03); /* Set DNC2GC=x */
>> - if (state->reg[MT2063_REG_VGA_GAIN] !=
>> - val)
>> - status |=
>> - mt2063_setreg(state,
>> - MT2063_REG_VGA_GAIN,
>> - val);
>> -
>> - val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */
>> - if (state->reg[MT2063_REG_RSVD_20] !=
>> - val)
>> - status |=
>> - mt2063_setreg(state,
>> - MT2063_REG_RSVD_20,
>> - val);
>> -
>> - break;
>> - default:
>> - break;
>> - }
>> -
>> - return status;
>> -}
>> -
>> -/*
>> - * MT2063_SetReceiverMode() - Set the MT2063 receiver mode, according with
>> - * the selected enum mt2063_delivery_sys type.
>> - *
>> - * (DNC1GC& DNC2GC are the values, which are used, when the specific
>> - * DNC Output is selected, the other is always off)
>> - *
>> - * @state: ptr to mt2063_state structure
>> - * @Mode: desired reciever delivery system
>> - *
>> - * Note: Register cache must be valid for it to work
>> - */
>> -
>> -static u32 MT2063_SetReceiverMode(struct mt2063_state *state,
>> - enum mt2063_delivery_sys Mode)
>> -{
>> - u32 status = 0; /* Status to be returned */
>> - u8 val;
>> - u32 longval;
>> -
>> - dprintk(2, "\n");
>> -
>> - if (Mode>= MT2063_NUM_RCVR_MODES)
>> - status = -ERANGE;
>> -
>> - /* RFAGCen */
>> - if (status>= 0) {
>> - val =
>> - (state->
>> - reg[MT2063_REG_PD1_TGT]& (u8) ~0x40) | (RFAGCEN[Mode]
>> - ? 0x40 :
>> - 0x00);
>> - if (state->reg[MT2063_REG_PD1_TGT] != val)
>> - status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
>> - }
>> -
>> - /* LNARin */
>> - if (status>= 0) {
>> - u8 val = (state->reg[MT2063_REG_CTRL_2C]& (u8) ~0x03) |
>> - (LNARIN[Mode]& 0x03);
>> - if (state->reg[MT2063_REG_CTRL_2C] != val)
>> - status |= mt2063_setreg(state, MT2063_REG_CTRL_2C, val);
>> - }
>> -
>> - /* FIFFQEN and FIFFQ */
>> - if (status>= 0) {
>> - val =
>> - (state->
>> - reg[MT2063_REG_FIFF_CTRL2]& (u8) ~0xF0) |
>> - (FIFFQEN[Mode]<< 7) | (FIFFQ[Mode]<< 4);
>> - if (state->reg[MT2063_REG_FIFF_CTRL2] != val) {
>> - status |=
>> - mt2063_setreg(state, MT2063_REG_FIFF_CTRL2, val);
>> - /* trigger FIFF calibration, needed after changing FIFFQ */
>> - val =
>> - (state->reg[MT2063_REG_FIFF_CTRL] | (u8) 0x01);
>> - status |=
>> - mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
>> - val =
>> - (state->
>> - reg[MT2063_REG_FIFF_CTRL]& (u8) ~0x01);
>> - status |=
>> - mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val);
>> - }
>> - }
>> -
>> - /* DNC1GC& DNC2GC */
>> - status |= mt2063_get_dnc_output_enable(state,&longval);
>> - status |= mt2063_set_dnc_output_enable(state, longval);
>> -
>> - /* acLNAmax */
>> - if (status>= 0) {
>> - u8 val = (state->reg[MT2063_REG_LNA_OV]& (u8) ~0x1F) |
>> - (ACLNAMAX[Mode]& 0x1F);
>> - if (state->reg[MT2063_REG_LNA_OV] != val)
>> - status |= mt2063_setreg(state, MT2063_REG_LNA_OV, val);
>> - }
>> -
>> - /* LNATGT */
>> - if (status>= 0) {
>> - u8 val = (state->reg[MT2063_REG_LNA_TGT]& (u8) ~0x3F) |
>> - (LNATGT[Mode]& 0x3F);
>> - if (state->reg[MT2063_REG_LNA_TGT] != val)
>> - status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
>> - }
>> -
>> - /* ACRF */
>> - if (status>= 0) {
>> - u8 val = (state->reg[MT2063_REG_RF_OV]& (u8) ~0x1F) |
>> - (ACRFMAX[Mode]& 0x1F);
>> - if (state->reg[MT2063_REG_RF_OV] != val)
>> - status |= mt2063_setreg(state, MT2063_REG_RF_OV, val);
>> - }
>> -
>> - /* PD1TGT */
>> - if (status>= 0) {
>> - u8 val = (state->reg[MT2063_REG_PD1_TGT]& (u8) ~0x3F) |
>> - (PD1TGT[Mode]& 0x3F);
>> - if (state->reg[MT2063_REG_PD1_TGT] != val)
>> - status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
>> - }
>> -
>> - /* FIFATN */
>> - if (status>= 0) {
>> - u8 val = ACFIFMAX[Mode];
>> - if (state->reg[MT2063_REG_PART_REV] != MT2063_B3&& val> 5)
>> - val = 5;
>> - val = (state->reg[MT2063_REG_FIF_OV]& (u8) ~0x1F) |
>> - (val& 0x1F);
>> - if (state->reg[MT2063_REG_FIF_OV] != val)
>> - status |= mt2063_setreg(state, MT2063_REG_FIF_OV, val);
>> - }
>> -
>> - /* PD2TGT */
>> - if (status>= 0) {
>> - u8 val = (state->reg[MT2063_REG_PD2_TGT]& (u8) ~0x3F) |
>> - (PD2TGT[Mode]& 0x3F);
>> - if (state->reg[MT2063_REG_PD2_TGT] != val)
>> - status |= mt2063_setreg(state, MT2063_REG_PD2_TGT, val);
>> - }
>> -
>> - /* Ignore ATN Overload */
>> - if (status>= 0) {
>> - val = (state->reg[MT2063_REG_LNA_TGT]& (u8) ~0x80) |
>> - (RFOVDIS[Mode] ? 0x80 : 0x00);
>> - if (state->reg[MT2063_REG_LNA_TGT] != val)
>> - status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val);
>> - }
>> -
>> - /* Ignore FIF Overload */
>> - if (status>= 0) {
>> - val = (state->reg[MT2063_REG_PD1_TGT]& (u8) ~0x80) |
>> - (FIFOVDIS[Mode] ? 0x80 : 0x00);
>> - if (state->reg[MT2063_REG_PD1_TGT] != val)
>> - status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val);
>> - }
>> -
>> - if (status>= 0) {
>> - state->rcvr_mode = Mode;
>> - dprintk(1, "mt2063 mode changed to %s\n",
>> - mt2063_mode_name[state->rcvr_mode]);
>> - }
>> -
>> - return status;
>> -}
>> -
>> -/*
>> - * MT2063_ClearPowerMaskBits () - Clears the power-down mask bits for various
>> - * sections of the MT2063
>> - *
>> - * @Bits: Mask bits to be cleared.
>> - *
>> - * See definition of MT2063_Mask_Bits type for description
>> - * of each of the power bits.
>> - */
>> -static u32 MT2063_ClearPowerMaskBits(struct mt2063_state *state,
>> - enum MT2063_Mask_Bits Bits)
>> -{
>> - u32 status = 0;
>> -
>> - dprintk(2, "\n");
>> - Bits = (enum MT2063_Mask_Bits)(Bits& MT2063_ALL_SD); /* Only valid bits for this tuner */
>> - if ((Bits& 0xFF00) != 0) {
>> - state->reg[MT2063_REG_PWR_2]&= ~(u8) (Bits>> 8);
>> - status |=
>> - mt2063_write(state,
>> - MT2063_REG_PWR_2,
>> - &state->reg[MT2063_REG_PWR_2], 1);
>> - }
>> - if ((Bits& 0xFF) != 0) {
>> - state->reg[MT2063_REG_PWR_1]&= ~(u8) (Bits& 0xFF);
>> - status |=
>> - mt2063_write(state,
>> - MT2063_REG_PWR_1,
>> - &state->reg[MT2063_REG_PWR_1], 1);
>> - }
>> -
>> - return status;
>> -}
>> -
>> -/*
>> - * MT2063_SoftwareShutdown() - Enables or disables software shutdown function.
>> - * When Shutdown is 1, any section whose power
>> - * mask is set will be shutdown.
>> - */
>> -static u32 MT2063_SoftwareShutdown(struct mt2063_state *state, u8 Shutdown)
>> -{
>> - u32 status;
>> -
>> - dprintk(2, "\n");
>> - if (Shutdown == 1)
>> - state->reg[MT2063_REG_PWR_1] |= 0x04;
>> - else
>> - state->reg[MT2063_REG_PWR_1]&= ~0x04;
>> -
>> - status = mt2063_write(state,
>> - MT2063_REG_PWR_1,
>> - &state->reg[MT2063_REG_PWR_1], 1);
>> -
>> - if (Shutdown != 1) {
>> - state->reg[MT2063_REG_BYP_CTRL] =
>> - (state->reg[MT2063_REG_BYP_CTRL]& 0x9F) | 0x40;
>> - status |=
>> - mt2063_write(state,
>> - MT2063_REG_BYP_CTRL,
>> - &state->reg[MT2063_REG_BYP_CTRL],
>> - 1);
>> - state->reg[MT2063_REG_BYP_CTRL] =
>> - (state->reg[MT2063_REG_BYP_CTRL]& 0x9F);
>> - status |=
>> - mt2063_write(state,
>> - MT2063_REG_BYP_CTRL,
>> - &state->reg[MT2063_REG_BYP_CTRL],
>> - 1);
>> + if (sd == MT2063_NONE_SD) {
>> + mt2063_write(state, MT2063_REG_PWR_1, 0x00);
>> + mt2063_write(state, MT2063_REG_PWR_2, 0x00);
>> + } else {
>> + mt2063_set_reg_mask(state, MT2063_REG_PWR_1,
>> + sd& 0xff, sd& 0xff);
>> + mt2063_set_reg_mask(state, MT2063_REG_PWR_2, sd>> 8,
>> + sd>> 8);
>> }
>> -
>> - return status;
>> -}
>> -
>> -static u32 MT2063_Round_fLO(u32 f_LO, u32 f_LO_Step, u32 f_ref)
>> -{
>> - return f_ref * (f_LO / f_ref)
>> - + f_LO_Step * (((f_LO % f_ref) + (f_LO_Step / 2)) / f_LO_Step);
>> }
>>
>> -/**
>> - * fLO_FractionalTerm() - Calculates the portion contributed by FracN / denom.
>> - * This function preserves maximum precision without
>> - * risk of overflow. It accurately calculates
>> - * f_ref * num / denom to within 1 HZ with fixed math.
>> - *
>> - * @num : Fractional portion of the multiplier
>> - * @denom: denominator portion of the ratio
>> - * @f_Ref: SRO frequency.
>> - *
>> - * This calculation handles f_ref as two separate 14-bit fields.
>> - * Therefore, a maximum value of 2^28-1 may safely be used for f_ref.
>> - * This is the genesis of the magic number "14" and the magic mask value of
>> - * 0x03FFF.
>> - *
>> - * This routine successfully handles denom values up to and including 2^18.
>> - * Returns: f_ref * num / denom
>> - */
>> -static u32 MT2063_fLO_FractionalTerm(u32 f_ref, u32 num, u32 denom)
>> -{
>> - u32 t1 = (f_ref>> 14) * num;
>> - u32 term1 = t1 / denom;
>> - u32 loss = t1 % denom;
>> - u32 term2 =
>> - (((f_ref& 0x00003FFF) * num + (loss<< 14)) + (denom / 2)) / denom;
>> - return (term1<< 14) + term2;
>> -}
>> -
>> -/*
>> - * CalcLO1Mult()- Calculates Integer divider value and the numerator
>> - * value for a FracN PLL.
>> - *
>> - * This function assumes that the f_LO and f_Ref are
>> - * evenly divisible by f_LO_Step.
>> - *
>> - * @Div: OUTPUT: Whole number portion of the multiplier
>> - * @FracN: OUTPUT: Fractional portion of the multiplier
>> - * @f_LO: desired LO frequency.
>> - * @f_LO_Step: Minimum step size for the LO (in Hz).
>> - * @f_Ref: SRO frequency.
>> - * @f_Avoid: Range of PLL frequencies to avoid near integer multiples
>> - * of f_Ref (in Hz).
>> - *
>> - * Returns: Recalculated LO frequency.
>> - */
>> -static u32 MT2063_CalcLO1Mult(u32 *Div,
>> - u32 *FracN,
>> - u32 f_LO,
>> - u32 f_LO_Step, u32 f_Ref)
>> +static int mt2063_set_mode(struct mt2063_state *state, enum mt2063_delsys Mode)
>> {
>> - /* Calculate the whole number portion of the divider */
>> - *Div = f_LO / f_Ref;
>> -
>> - /* Calculate the numerator value (round to nearest f_LO_Step) */
>> - *FracN =
>> - (64 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
>> - (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);
>> + dprintk(1, "\n");
>>
>> - return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, 64);
>> -}
>> + /* check, if mode outside */
>> + if (Mode> 5)
>> + return -EINVAL;
>>
>> -/**
>> - * CalcLO2Mult() - Calculates Integer divider value and the numerator
>> - * value for a FracN PLL.
>> - *
>> - * This function assumes that the f_LO and f_Ref are
>> - * evenly divisible by f_LO_Step.
>> - *
>> - * @Div: OUTPUT: Whole number portion of the multiplier
>> - * @FracN: OUTPUT: Fractional portion of the multiplier
>> - * @f_LO: desired LO frequency.
>> - * @f_LO_Step: Minimum step size for the LO (in Hz).
>> - * @f_Ref: SRO frequency.
>> - * @f_Avoid: Range of PLL frequencies to avoid near
>> - * integer multiples of f_Ref (in Hz).
>> - *
>> - * Returns: Recalculated LO frequency.
>> - */
>> -static u32 MT2063_CalcLO2Mult(u32 *Div,
>> - u32 *FracN,
>> - u32 f_LO,
>> - u32 f_LO_Step, u32 f_Ref)
>> -{
>> - /* Calculate the whole number portion of the divider */
>> - *Div = f_LO / f_Ref;
>> + /* set LNA R in (75 Ohm ??) */
>> + mt2063_set_reg_mask(state, MT2063_REG_CTRL_2C, LNARIN[Mode], 0x03);
>>
>> - /* Calculate the numerator value (round to nearest f_LO_Step) */
>> - *FracN =
>> - (8191 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) +
>> - (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step);
>> + /* set LNA Target */
>> + mt2063_set_reg_mask(state, MT2063_REG_LNA_TGT, LNATGT[Mode], 0x3f);
>>
>> - return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN,
>> - 8191);
>> + /* PD1 Target */
>> + mt2063_set_reg_mask(state, MT2063_REG_PD1_TGT, PD1TGT[Mode], 0x3f);
>> +
>> + /* PD2 Target */
>> + mt2063_set_reg_mask(state, MT2063_REG_PD2_TGT, PD2TGT[Mode], 0x3f);
>> +
>> + /* Ignore ATN Overload */
>> + if (RFOVDIS[Mode])
>> + mt2063_set_reg_mask(state, MT2063_REG_LNA_TGT, 0x80, 0x80);
>> + else
>> + mt2063_set_reg_mask(state, MT2063_REG_LNA_TGT, 0x00, 0x80);
>> +
>> + /* Ignore FIF Overload */
>> + if (FIFOVDIS[Mode])
>> + mt2063_set_reg_mask(state, MT2063_REG_PD1_TGT, 0x80, 0x80);
>> + else
>> + mt2063_set_reg_mask(state, MT2063_REG_PD1_TGT, 0x00, 0x80);
>> +
>> + dprintk(1, "mode changed to %s\n", mt2063_mode_name[Mode]);
>> + return 0;
>> }
>>
>> -/*
>> - * FindClearTuneFilter() - Calculate the corrrect ClearTune filter to be
>> - * used for a given input frequency.
>> - *
>> - * @state: ptr to tuner data structure
>> - * @f_in: RF input center frequency (in Hz).
>> - *
>> - * Returns: ClearTune filter number (0-31)
>> - */
>> -static u32 FindClearTuneFilter(struct mt2063_state *state, u32 f_in)
>> +#define MT2063_IF1 1510000
>> +#define MT2063_OSC 16000
>> +
>> +static int mt2063_tune(struct mt2063_state *state)
>> {
>> - u32 RFBand;
>> - u32 idx; /* index loop */
>> + u32 f_lo1, f_lo2;
>> + u32 div1, num1, div2;
>> + u32 num2;
>> + bool lock = false;
>> +
>> + dprintk(1, "\n");
>>
>> /*
>> - ** Find RF Band setting
>> + * it use ClearTune in auto mode, so it doesn't set ClearTune RF Band.
>> + *
>> + * first IF Filter Center frequency (f_if1) is static setted to 1510 MHz
>> + * the reference osc is always 16 MHz
>> + *
>> + * f_if1 = (f_ref / 8) * (FIFFC + 640)
>> + *
>> + * f_if2_of = (f_if1 (f_ref / 64)) - ( 8 * FIFFC) - 4992
>> + *
>> + * f_lo1 = f_in + f_if1
>> + *
>> + * f_lo2 = f_lo1 - f_in - f_if2
>> + *
>> */
>> - RFBand = 31; /* def when f_in> all */
>> - for (idx = 0; idx< 31; ++idx) {
>> - if (state->CTFiltMax[idx]>= f_in) {
>> - RFBand = idx;
>> - break;
>> + f_lo1 = state->frequency + MT2063_IF1;
>> + /* rounding it to a multiple of 250 kHz */
>> + f_lo1 = (f_lo1 / 250) * 250;
>> +
>> + f_lo2 = f_lo1 - state->frequency - state->if2;
>> + /* rounding it to a multiple of 50 kHz */
>> + f_lo2 = ((f_lo2 + 25) / 50) * 50;
>> +
>> + /* TODO: spuck check */
>> +
>> + /* f_lo1 = 16MHz * (div1 + num1/64) */
>> + num1 = f_lo1 / (MT2063_OSC / 64);
>> + div1 = num1 / 64;
>> + num1&= 0x3f;
>> +
>> + /* f_lo2 = 16MHz * (div2 + num2/8192) */
>> + num2 = f_lo2 * 64 / (MT2063_OSC / 128);
>> + div2 = num2 / 8192;
>> + num2&= 0x1fff;
>> +
>> + state->frequency = f_lo1 - f_lo2 - state->if2;
>> +
>> + dprintk(2, "Input frequency: %d kHz\n", state->frequency);
>> + dprintk(2, "first IF Filter central frequency: %d kHz\n", 1510000);
>> + dprintk(2, "IF Output frequency: %d kHz\n", state->if2);
>> + dprintk(2, "LO1 frequency: %d kHz\n", f_lo1);
>> + dprintk(2, "LO1 div: %d, 0x%02x\n", div1, div1);
>> + dprintk(2, "LO1 num: %d/64, 0x%02x\n", num1, num1);
>> + dprintk(2, "LO2 frequency: %d kHz\n", f_lo2);
>> + dprintk(2, "LO2 div: %d, 0x%02x\n", div2, div2);
>> + dprintk(2, "LO2 num: %d/8192, 0x%04x\n", num2, num2);
>> +
>> + /* set first IF filter center frequency */
>> + mt2063_write(state, MT2063_REG_FIFFC, 115);
>> +
>> + /* set LO1 */
>> + mt2063_write(state, MT2063_REG_LO1CQ_1, (div1& 0xff));
>> + mt2063_write(state, MT2063_REG_LO1CQ_2, (num1& 0x3f));
>> + /* set LO2, the lastest value with reset */
>> + mt2063_write(state, MT2063_REG_LO2CQ_1, (((div2& 0x7f)<< 1) |
>> + ((num2& 0x1000)>> 12)));
>> + mt2063_write(state, MT2063_REG_LO2CQ_2, ((num2& 0x0ff0)>> 4));
>> + mt2063_write(state, MT2063_REG_LO2CQ_3, ( 0xe0 | (num2& 0x000f)));
>> +
>> + /* wait util it's lock */
>> + do {
>> + u8 status;
>> + /* read LO status bit */
>> + mt2063_read(state, MT2063_REG_LO_STATUS,&status);
>> +
>> + if (state->tuner_id == MT2063_B0) {
>> + if ((status& 0xc0) == 0xc0)
>> + lock = true;
>> + } else {
>> + if ((status& 0x88) == 0x88)
>> + lock = true;
>> }
>> - }
>> - return RFBand;
>> + } while (!lock);
>> +
>> + return 0;
>> }
>>
>> -/*
>> - * MT2063_Tune() - Change the tuner's tuned frequency to RFin.
>> - */
>> -static u32 MT2063_Tune(struct mt2063_state *state, u32 f_in)
>> -{ /* RF input center frequency */
>> +static int mt2063_set_analog_params(struct dvb_frontend *fe,
>> + struct analog_parameters *params)
>> +{
>> + struct mt2063_state *state = fe->tuner_priv;
>> + u32 freq, bw;
>> + int ret = 0;
>>
>> - u32 status = 0;
>> - u32 LO1; /* 1st LO register value */
>> - u32 Num1; /* Numerator for LO1 reg. value */
>> - u32 f_IF1; /* 1st IF requested */
>> - u32 LO2; /* 2nd LO register value */
>> - u32 Num2; /* Numerator for LO2 reg. value */
>> - u32 ofLO1, ofLO2; /* last time's LO frequencies */
>> - u8 fiffc = 0x80; /* FIFF center freq from tuner */
>> - u32 fiffof; /* Offset from FIFF center freq */
>> - const u8 LO1LK = 0x80; /* Mask for LO1 Lock bit */
>> - u8 LO2LK = 0x08; /* Mask for LO2 Lock bit */
>> - u8 val;
>> - u32 RFBand;
>> -
>> - dprintk(2, "\n");
>> - /* Check the input and output frequency ranges */
>> - if ((f_in< MT2063_MIN_FIN_FREQ) || (f_in> MT2063_MAX_FIN_FREQ))
>> - return -EINVAL;
>> + dprintk(1, "\n");
>>
>> - if ((state->AS_Data.f_out< MT2063_MIN_FOUT_FREQ)
>> - || (state->AS_Data.f_out> MT2063_MAX_FOUT_FREQ))
>> - return -EINVAL;
>> + mutex_lock(&state->lock);
>>
>> - /*
>> - * Save original LO1 and LO2 register values
>> - */
>> - ofLO1 = state->AS_Data.f_LO1;
>> - ofLO2 = state->AS_Data.f_LO2;
>> + /* open gate */
>> + if (fe->ops.i2c_gate_ctrl)
>> + fe->ops.i2c_gate_ctrl(fe, 1);
>>
>> - /*
>> - * Find and set RF Band setting
>> - */
>> - if (state->ctfilt_sw == 1) {
>> - val = (state->reg[MT2063_REG_CTUNE_CTRL] | 0x08);
>> - if (state->reg[MT2063_REG_CTUNE_CTRL] != val) {
>> - status |=
>> - mt2063_setreg(state, MT2063_REG_CTUNE_CTRL, val);
>> - }
>> - val = state->reg[MT2063_REG_CTUNE_OV];
>> - RFBand = FindClearTuneFilter(state, f_in);
>> - state->reg[MT2063_REG_CTUNE_OV] =
>> - (u8) ((state->reg[MT2063_REG_CTUNE_OV]& ~0x1F)
>> - | RFBand);
>> - if (state->reg[MT2063_REG_CTUNE_OV] != val) {
>> - status |=
>> - mt2063_setreg(state, MT2063_REG_CTUNE_OV, val);
>> - }
>> - }
>> + /* all calculation is in kHz */
>> + freq = params->frequency / 1000;
>>
>> - /*
>> - * Read the FIFF Center Frequency from the tuner
>> - */
>> - if (status>= 0) {
>> - status |=
>> - mt2063_read(state,
>> - MT2063_REG_FIFFC,
>> - &state->reg[MT2063_REG_FIFFC], 1);
>> - fiffc = state->reg[MT2063_REG_FIFFC];
>> + switch(params->mode) {
>> + case V4L2_TUNER_RADIO:
>> + state->mode = MT2063_OFFAIR_ANALOG;
>> + state->if2 = 38900;
>> + bw = 8000; /* TODO */
>> + break;
>> + case V4L2_TUNER_ANALOG_TV:
>> + state->mode = MT2063_CABLE_ANALOG;
>> + state->if2 = 38900;
>> + if (params->std& ~V4L2_STD_MN)
>> + bw = 6000;
>> + else if (params->std& V4L2_STD_PAL_G)
>> + bw = 7000;
>> + else
>> + bw = 8000;
>> + break;
>> + default:
>> + ret = -EINVAL;
>> + goto err;
>> }
>> - /*
>> - * Assign in the requested values
>> - */
>> - state->AS_Data.f_in = f_in;
>> - /* Request a 1st IF such that LO1 is on a step size */
>> - state->AS_Data.f_if1_Request =
>> - MT2063_Round_fLO(state->AS_Data.f_if1_Request + f_in,
>> - state->AS_Data.f_LO1_Step,
>> - state->AS_Data.f_ref) - f_in;
>>
>> - /*
>> - * Calculate frequency settings. f_IF1_FREQ + f_in is the
>> - * desired LO1 frequency
>> - */
>> - MT2063_ResetExclZones(&state->AS_Data);
>> + state->frequency = freq;
>> + state->bw = bw;
>>
>> - f_IF1 = MT2063_ChooseFirstIF(&state->AS_Data);
>> + dprintk(2, "Set input frequency to %d kHz.\n", freq);
>>
>> - state->AS_Data.f_LO1 =
>> - MT2063_Round_fLO(f_IF1 + f_in, state->AS_Data.f_LO1_Step,
>> - state->AS_Data.f_ref);
>> + ret = mt2063_set_mode(state, state->mode);
>> + if (ret< 0)
>> + goto err;
>>
>> - state->AS_Data.f_LO2 =
>> - MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
>> - state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
>> + ret = mt2063_tune(state);
>>
>> - /*
>> - * Check for any LO spurs in the output bandwidth and adjust
>> - * the LO settings to avoid them if needed
>> - */
>> - status |= MT2063_AvoidSpurs(&state->AS_Data);
>> - /*
>> - * MT_AvoidSpurs spurs may have changed the LO1& LO2 values.
>> - * Recalculate the LO frequencies and the values to be placed
>> - * in the tuning registers.
>> - */
>> - state->AS_Data.f_LO1 =
>> - MT2063_CalcLO1Mult(&LO1,&Num1, state->AS_Data.f_LO1,
>> - state->AS_Data.f_LO1_Step, state->AS_Data.f_ref);
>> - state->AS_Data.f_LO2 =
>> - MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in,
>> - state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
>> - state->AS_Data.f_LO2 =
>> - MT2063_CalcLO2Mult(&LO2,&Num2, state->AS_Data.f_LO2,
>> - state->AS_Data.f_LO2_Step, state->AS_Data.f_ref);
>> +err:
>> + /* close gate */
>> + if (fe->ops.i2c_gate_ctrl)
>> + fe->ops.i2c_gate_ctrl(fe, 0);
>>
>> - /*
>> - * Check the upconverter and downconverter frequency ranges
>> - */
>> - if ((state->AS_Data.f_LO1< MT2063_MIN_UPC_FREQ)
>> - || (state->AS_Data.f_LO1> MT2063_MAX_UPC_FREQ))
>> - status |= MT2063_UPC_RANGE;
>> - if ((state->AS_Data.f_LO2< MT2063_MIN_DNC_FREQ)
>> - || (state->AS_Data.f_LO2> MT2063_MAX_DNC_FREQ))
>> - status |= MT2063_DNC_RANGE;
>> - /* LO2 Lock bit was in a different place for B0 version */
>> - if (state->tuner_id == MT2063_B0)
>> - LO2LK = 0x40;
>> + mutex_unlock(&state->lock);
>> + return ret;
>> +}
>>
>> - /*
>> - * If we have the same LO frequencies and we're already locked,
>> - * then skip re-programming the LO registers.
>> - */
>> - if ((ofLO1 != state->AS_Data.f_LO1)
>> - || (ofLO2 != state->AS_Data.f_LO2)
>> - || ((state->reg[MT2063_REG_LO_STATUS]& (LO1LK | LO2LK)) !=
>> - (LO1LK | LO2LK))) {
>> - /*
>> - * Calculate the FIFFOF register value
>> - *
>> - * IF1_Actual
>> - * FIFFOF = ------------ - 8 * FIFFC - 4992
>> - * f_ref/64
>> - */
>> - fiffof =
>> - (state->AS_Data.f_LO1 -
>> - f_in) / (state->AS_Data.f_ref / 64) - 8 * (u32) fiffc -
>> - 4992;
>> - if (fiffof> 0xFF)
>> - fiffof = 0xFF;
>> -
>> - /*
>> - * Place all of the calculated values into the local tuner
>> - * register fields.
>> - */
>> - if (status>= 0) {
>> - state->reg[MT2063_REG_LO1CQ_1] = (u8) (LO1& 0xFF); /* DIV1q */
>> - state->reg[MT2063_REG_LO1CQ_2] = (u8) (Num1& 0x3F); /* NUM1q */
>> - state->reg[MT2063_REG_LO2CQ_1] = (u8) (((LO2& 0x7F)<< 1) /* DIV2q */
>> - |(Num2>> 12)); /* NUM2q (hi) */
>> - state->reg[MT2063_REG_LO2CQ_2] = (u8) ((Num2& 0x0FF0)>> 4); /* NUM2q (mid) */
>> - state->reg[MT2063_REG_LO2CQ_3] = (u8) (0xE0 | (Num2& 0x000F)); /* NUM2q (lo) */
>> -
>> - /*
>> - * Now write out the computed register values
>> - * IMPORTANT: There is a required order for writing
>> - * (0x05 must follow all the others).
>> - */
>> - status |= mt2063_write(state, MT2063_REG_LO1CQ_1,&state->reg[MT2063_REG_LO1CQ_1], 5); /* 0x01 - 0x05 */
>> - if (state->tuner_id == MT2063_B0) {
>> - /* Re-write the one-shot bits to trigger the tune operation */
>> - status |= mt2063_write(state, MT2063_REG_LO2CQ_3,&state->reg[MT2063_REG_LO2CQ_3], 1); /* 0x05 */
>> - }
>> - /* Write out the FIFF offset only if it's changing */
>> - if (state->reg[MT2063_REG_FIFF_OFFSET] !=
>> - (u8) fiffof) {
>> - state->reg[MT2063_REG_FIFF_OFFSET] =
>> - (u8) fiffof;
>> - status |=
>> - mt2063_write(state,
>> - MT2063_REG_FIFF_OFFSET,
>> - &state->
>> - reg[MT2063_REG_FIFF_OFFSET],
>> - 1);
>> - }
>> - }
>> +static int mt2063_set_params(struct dvb_frontend *fe)
>> +{
>> + struct mt2063_state *state = fe->tuner_priv;
>> + struct dtv_frontend_properties *c =&fe->dtv_property_cache;
>> + u32 freq, bw;
>> + int ret = 0;
>> +
>> + dprintk(1, "\n");
>> +
>> + mutex_lock(&state->lock);
>> +
>> + /* open gate */
>> + if (fe->ops.i2c_gate_ctrl)
>> + fe->ops.i2c_gate_ctrl(fe, 1);
>> +
>> + /* all calculation is in kHz */
>> + freq = c->frequency / 1000;
>>
>> - /*
>> - * Check for LO's locking
>> - */
>> -
>> - if (status< 0)
>> - return status;
>> -
>> - status = mt2063_lockStatus(state);
>> - if (status< 0)
>> - return status;
>> - if (!status)
>> - return -EINVAL; /* Couldn't lock */
>> -
>> - /*
>> - * If we locked OK, assign calculated data to mt2063_state structure
>> - */
>> - state->f_IF1_actual = state->AS_Data.f_LO1 - f_in;
>> + switch (c->delivery_system) {
>> + case SYS_DVBT:
>> + if (c->bandwidth_hz == 0) {
>> + ret = -EINVAL;
>> + goto err;
>> + }
>> + bw = c->bandwidth_hz / 1000;
>> + state->mode = MT2063_OFFAIR_COFDM;
>> + state->if2 = 36000;
>> + break;
>> + case SYS_DVBC_ANNEX_A:
>> + case SYS_DVBC_ANNEX_C:
>> + bw = c->bandwidth_hz / 1000;
>> + state->mode = MT2063_CABLE_QAM;
>> + state->if2 = 36000;
>> + break;
>> + case SYS_ATSC:
>> + /* TODO */
>> + default:
>> + ret = -EINVAL;
>> + goto err;
>> }
>>
>> - return status;
>> -}
>> + state->frequency = freq;
>> + /* for spurcheck */
>> + state->bw = bw;
>>
>> -static const u8 MT2063B0_defaults[] = {
>> - /* Reg, Value */
>> - 0x19, 0x05,
>> - 0x1B, 0x1D,
>> - 0x1C, 0x1F,
>> - 0x1D, 0x0F,
>> - 0x1E, 0x3F,
>> - 0x1F, 0x0F,
>> - 0x20, 0x3F,
>> - 0x22, 0x21,
>> - 0x23, 0x3F,
>> - 0x24, 0x20,
>> - 0x25, 0x3F,
>> - 0x27, 0xEE,
>> - 0x2C, 0x27, /* bit at 0x20 is cleared below */
>> - 0x30, 0x03,
>> - 0x2C, 0x07, /* bit at 0x20 is cleared here */
>> - 0x2D, 0x87,
>> - 0x2E, 0xAA,
>> - 0x28, 0xE1, /* Set the FIFCrst bit here */
>> - 0x28, 0xE0, /* Clear the FIFCrst bit here */
>> - 0x00
>> -};
>> + dprintk(2, "Set input frequency to %d kHz.\n", freq);
>>
>> -/* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
>> -static const u8 MT2063B1_defaults[] = {
>> - /* Reg, Value */
>> - 0x05, 0xF0,
>> - 0x11, 0x10, /* New Enable AFCsd */
>> - 0x19, 0x05,
>> - 0x1A, 0x6C,
>> - 0x1B, 0x24,
>> - 0x1C, 0x28,
>> - 0x1D, 0x8F,
>> - 0x1E, 0x14,
>> - 0x1F, 0x8F,
>> - 0x20, 0x57,
>> - 0x22, 0x21, /* New - ver 1.03 */
>> - 0x23, 0x3C, /* New - ver 1.10 */
>> - 0x24, 0x20, /* New - ver 1.03 */
>> - 0x2C, 0x24, /* bit at 0x20 is cleared below */
>> - 0x2D, 0x87, /* FIFFQ=0 */
>> - 0x2F, 0xF3,
>> - 0x30, 0x0C, /* New - ver 1.11 */
>> - 0x31, 0x1B, /* New - ver 1.11 */
>> - 0x2C, 0x04, /* bit at 0x20 is cleared here */
>> - 0x28, 0xE1, /* Set the FIFCrst bit here */
>> - 0x28, 0xE0, /* Clear the FIFCrst bit here */
>> - 0x00
>> -};
>> + ret = mt2063_set_mode(state, state->mode);
>> + if (ret< 0)
>> + goto err;
>>
>> -/* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */
>> -static const u8 MT2063B3_defaults[] = {
>> - /* Reg, Value */
>> - 0x05, 0xF0,
>> - 0x19, 0x3D,
>> - 0x2C, 0x24, /* bit at 0x20 is cleared below */
>> - 0x2C, 0x04, /* bit at 0x20 is cleared here */
>> - 0x28, 0xE1, /* Set the FIFCrst bit here */
>> - 0x28, 0xE0, /* Clear the FIFCrst bit here */
>> - 0x00
>> -};
>> + ret = mt2063_tune(state);
>> +
>> +err:
>> + /* close gate */
>> + if (fe->ops.i2c_gate_ctrl)
>> + fe->ops.i2c_gate_ctrl(fe, 0);
>> +
>> + mutex_unlock(&state->lock);
>> + return ret;
>> +}
>>
>> static int mt2063_init(struct dvb_frontend *fe)
>> {
>> - u32 status;
>> struct mt2063_state *state = fe->tuner_priv;
>> - u8 all_resets = 0xF0; /* reset/load bits */
>> const u8 *def = NULL;
>> - char *step;
>> - u32 FCRUN;
>> - s32 maxReads;
>> - u32 fcu_osc;
>> - u32 i;
>> -
>> - dprintk(2, "\n");
>> -
>> - state->rcvr_mode = MT2063_CABLE_QAM;
>> -
>> - /* Read the Part/Rev code from the tuner */
>> - status = mt2063_read(state, MT2063_REG_PART_REV,
>> - &state->reg[MT2063_REG_PART_REV], 1);
>> - if (status< 0) {
>> - printk(KERN_ERR "Can't read mt2063 part ID\n");
>> - return status;
>> - }
>> + u8 xo_lock = 1, i;
>>
>> - /* Check the part/rev code */
>> - switch (state->reg[MT2063_REG_PART_REV]) {
>> - case MT2063_B0:
>> - step = "B0";
>> - break;
>> - case MT2063_B1:
>> - step = "B1";
>> - break;
>> - case MT2063_B2:
>> - step = "B2";
>> - break;
>> - case MT2063_B3:
>> - step = "B3";
>> - break;
>> - default:
>> - printk(KERN_ERR "mt2063: Unknown mt2063 device ID (0x%02x)\n",
>> - state->reg[MT2063_REG_PART_REV]);
>> - return -ENODEV; /* Wrong tuner Part/Rev code */
>> - }
>> + dprintk(1, "\n");
>>
>> - /* Check the 2nd byte of the Part/Rev code from the tuner */
>> - status = mt2063_read(state, MT2063_REG_RSVD_3B,
>> - &state->reg[MT2063_REG_RSVD_3B], 1);
>> + mutex_lock(&state->lock);
>>
>> - /* b7 != 0 ==> NOT MT2063 */
>> - if (status< 0 || ((state->reg[MT2063_REG_RSVD_3B]& 0x80) != 0x00)) {
>> - printk(KERN_ERR "mt2063: Unknown part ID (0x%02x%02x)\n",
>> - state->reg[MT2063_REG_PART_REV],
>> - state->reg[MT2063_REG_RSVD_3B]);
>> - return -ENODEV; /* Wrong tuner Part/Rev code */
>> - }
>> + /* open gate */
>> + if (fe->ops.i2c_gate_ctrl)
>> + fe->ops.i2c_gate_ctrl(fe, 1);
>> +
>> + /* power on */
>> + mt2063_shutdown(state, MT2063_NONE_SD);
>>
>> - printk(KERN_INFO "mt2063: detected a mt2063 %s\n", step);
>> + /* reset */
>> + mt2063_write(state, MT2063_REG_LO2CQ_3, 0xf0);
>> +
>> + /* debug dump */
>> + if (debug>= 3) {
>> + /* print all register after reset */
>> + u8 reg[64];
>> + /* fill all reg */
>> + for (i = 0; i< 64; i++) {
>> + mt2063_read(state, i,®[i]);
>> + }
>> + print_hex_dump(KERN_DEBUG, "mt2063: ",
>> + DUMP_PREFIX_OFFSET, 16, 1, reg, 64, false);
>> + }
>>
>> - /* Reset the tuner */
>> - status = mt2063_write(state, MT2063_REG_LO2CQ_3,&all_resets, 1);
>> - if (status< 0)
>> - return status;
>> -
>> - /* change all of the default values that vary from the HW reset values */
>> - /* def = (state->reg[PART_REV] == MT2063_B0) ? MT2063B0_defaults : MT2063B1_defaults; */
>> - switch (state->reg[MT2063_REG_PART_REV]) {
>> + /* load defaults */
>> + switch (state->tuner_id) {
>> case MT2063_B3:
>> def = MT2063B3_defaults;
>> break;
>> -
>> case MT2063_B1:
>> def = MT2063B1_defaults;
>> break;
>> -
>> case MT2063_B0:
>> def = MT2063B0_defaults;
>> break;
>> -
>> default:
>> - return -ENODEV;
>> + def = MT2063B1_defaults;
>> break;
>> }
>>
>> - while (status>= 0&& *def) {
>> + while (*def) {
>> u8 reg = *def++;
>> u8 val = *def++;
>> - status = mt2063_write(state, reg,&val, 1);
>> + mt2063_write(state, reg, val);
>> }
>> - if (status< 0)
>> - return status;
>>
>> - /* Wait for FIFF location to complete. */
>> - FCRUN = 1;
>> - maxReads = 10;
>> - while (status>= 0&& (FCRUN != 0)&& (maxReads--> 0)) {
>> + /* wait to lock */
>> + while (!xo_lock) {
>> msleep(2);
>> - status = mt2063_read(state,
>> - MT2063_REG_XO_STATUS,
>> - &state->
>> - reg[MT2063_REG_XO_STATUS], 1);
>> - FCRUN = (state->reg[MT2063_REG_XO_STATUS]& 0x40)>> 6;
>> + mt2063_read(state, MT2063_REG_XO_STATUS,&xo_lock);
>> + xo_lock = (xo_lock& 0x40)>> 6;
>> }
>>
>> - if (FCRUN != 0 || status< 0)
>> - return -ENODEV;
>> -
>> - status = mt2063_read(state,
>> - MT2063_REG_FIFFC,
>> - &state->reg[MT2063_REG_FIFFC], 1);
>> - if (status< 0)
>> - return status;
>> -
>> - /* Read back all the registers from the tuner */
>> - status = mt2063_read(state,
>> - MT2063_REG_PART_REV,
>> - state->reg, MT2063_REG_END_REGS);
>> - if (status< 0)
>> - return status;
>> -
>> - /* Initialize the tuner state. */
>> - state->tuner_id = state->reg[MT2063_REG_PART_REV];
>> - state->AS_Data.f_ref = MT2063_REF_FREQ;
>> - state->AS_Data.f_if1_Center = (state->AS_Data.f_ref / 8) *
>> - ((u32) state->reg[MT2063_REG_FIFFC] + 640);
>> - state->AS_Data.f_if1_bw = MT2063_IF1_BW;
>> - state->AS_Data.f_out = 43750000UL;
>> - state->AS_Data.f_out_bw = 6750000UL;
>> - state->AS_Data.f_zif_bw = MT2063_ZIF_BW;
>> - state->AS_Data.f_LO1_Step = state->AS_Data.f_ref / 64;
>> - state->AS_Data.f_LO2_Step = MT2063_TUNE_STEP_SIZE;
>> - state->AS_Data.maxH1 = MT2063_MAX_HARMONICS_1;
>> - state->AS_Data.maxH2 = MT2063_MAX_HARMONICS_2;
>> - state->AS_Data.f_min_LO_Separation = MT2063_MIN_LO_SEP;
>> - state->AS_Data.f_if1_Request = state->AS_Data.f_if1_Center;
>> - state->AS_Data.f_LO1 = 2181000000UL;
>> - state->AS_Data.f_LO2 = 1486249786UL;
>> - state->f_IF1_actual = state->AS_Data.f_if1_Center;
>> - state->AS_Data.f_in = state->AS_Data.f_LO1 - state->f_IF1_actual;
>> - state->AS_Data.f_LO1_FracN_Avoid = MT2063_LO1_FRACN_AVOID;
>> - state->AS_Data.f_LO2_FracN_Avoid = MT2063_LO2_FRACN_AVOID;
>> - state->num_regs = MT2063_REG_END_REGS;
>> - state->AS_Data.avoidDECT = MT2063_AVOID_BOTH;
>> - state->ctfilt_sw = 0;
>> -
>> - state->CTFiltMax[0] = 69230000;
>> - state->CTFiltMax[1] = 105770000;
>> - state->CTFiltMax[2] = 140350000;
>> - state->CTFiltMax[3] = 177110000;
>> - state->CTFiltMax[4] = 212860000;
>> - state->CTFiltMax[5] = 241130000;
>> - state->CTFiltMax[6] = 274370000;
>> - state->CTFiltMax[7] = 309820000;
>> - state->CTFiltMax[8] = 342450000;
>> - state->CTFiltMax[9] = 378870000;
>> - state->CTFiltMax[10] = 416210000;
>> - state->CTFiltMax[11] = 456500000;
>> - state->CTFiltMax[12] = 495790000;
>> - state->CTFiltMax[13] = 534530000;
>> - state->CTFiltMax[14] = 572610000;
>> - state->CTFiltMax[15] = 598970000;
>> - state->CTFiltMax[16] = 635910000;
>> - state->CTFiltMax[17] = 672130000;
>> - state->CTFiltMax[18] = 714840000;
>> - state->CTFiltMax[19] = 739660000;
>> - state->CTFiltMax[20] = 770410000;
>> - state->CTFiltMax[21] = 814660000;
>> - state->CTFiltMax[22] = 846950000;
>> - state->CTFiltMax[23] = 867820000;
>> - state->CTFiltMax[24] = 915980000;
>> - state->CTFiltMax[25] = 947450000;
>> - state->CTFiltMax[26] = 983110000;
>> - state->CTFiltMax[27] = 1021630000;
>> - state->CTFiltMax[28] = 1061870000;
>> - state->CTFiltMax[29] = 1098330000;
>> - state->CTFiltMax[30] = 1138990000;
>> + /* set RF AGC on */
>> + mt2063_set_reg_mask(state, MT2063_REG_PD1_TGT, 0x40, 0x40);
>>
>> - /*
>> - ** Fetch the FCU osc value and use it and the fRef value to
>> - ** scale all of the Band Max values
>> - */
>> + /* first IF Filter Queue enable and first IF Filter queue */
>> + mt2063_set_reg_mask(state, MT2063_REG_FIFF_CTRL2,
>> + (1<< 7) | (0<< 4), 0xf0);
>> + /* trigger FIFF calibration, needed after changing FIFFQ */
>> + mt2063_set_reg_mask(state, MT2063_REG_FIFF_CTRL, 0x01, 0x01);
>> + mt2063_set_reg_mask(state, MT2063_REG_FIFF_CTRL, 0x00, 0x01);
>> +
>> + /* set DNC1 GC on */
>> + mt2063_set_reg_mask(state, MT2063_REG_DNC_GAIN, 0x00, 0x03);
>> + /* set DNC2 GC on */
>> + mt2063_set_reg_mask(state, MT2063_REG_VGA_GAIN, 0x00, 0x03);
>> + /* set PD2MUX = 0 */
>> + mt2063_set_reg_mask(state, MT2063_REG_RSVD_20, 0x00, 0x40);
>>
>> - state->reg[MT2063_REG_CTUNE_CTRL] = 0x0A;
>> - status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
>> - &state->reg[MT2063_REG_CTUNE_CTRL], 1);
>> - if (status< 0)
>> - return status;
>> -
>> - /* Read the ClearTune filter calibration value */
>> - status = mt2063_read(state, MT2063_REG_FIFFC,
>> - &state->reg[MT2063_REG_FIFFC], 1);
>> - if (status< 0)
>> - return status;
>> -
>> - fcu_osc = state->reg[MT2063_REG_FIFFC];
>> -
>> - state->reg[MT2063_REG_CTUNE_CTRL] = 0x00;
>> - status = mt2063_write(state, MT2063_REG_CTUNE_CTRL,
>> - &state->reg[MT2063_REG_CTUNE_CTRL], 1);
>> - if (status< 0)
>> - return status;
>> -
>> - /* Adjust each of the values in the ClearTune filter cross-over table */
>> - for (i = 0; i< 31; i++)
>> - state->CTFiltMax[i] = (state->CTFiltMax[i] / 768) * (fcu_osc + 640);
>> -
>> - status = MT2063_SoftwareShutdown(state, 1);
>> - if (status< 0)
>> - return status;
>> - status = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
>> - if (status< 0)
>> - return status;
>> + /* ac LNA max */
>> + mt2063_set_reg_mask(state, MT2063_REG_LNA_OV, 0x1f, 0x1f);
>>
>> - state->init = true;
>> -
>> - return 0;
>> -}
>> + /* ac RF max */
>> + mt2063_set_reg_mask(state, MT2063_REG_RF_OV, 0x1f, 0x1f);
>>
>> -static int mt2063_get_status(struct dvb_frontend *fe, u32 *tuner_status)
>> -{
>> - struct mt2063_state *state = fe->tuner_priv;
>> - int status;
>> + /* first IF ATN */
>> + if (state->tuner_id == MT2063_B0)
>> + mt2063_set_reg_mask(state, MT2063_REG_FIF_OV, 5, 0x1f);
>> + else
>> + mt2063_set_reg_mask(state, MT2063_REG_FIF_OV, 29, 0x1f);
>>
>> - dprintk(2, "\n");
>> + /* set ClearTune in auto mode */
>> + mt2063_set_reg_mask(state, MT2063_REG_CTUNE_CTRL, 0x00, 0x08);
>>
>> - if (!state->init)
>> - return -ENODEV;
>> + /* set Bypass in auto mode */
>> + mt2063_set_reg_mask(state, MT2063_REG_BYP_CTRL, 0x00, 0x80);
>>
>> - *tuner_status = 0;
>> - status = mt2063_lockStatus(state);
>> - if (status< 0)
>> - return status;
>> - if (status)
>> - *tuner_status = TUNER_STATUS_LOCKED;
>> + /* close gate */
>> + if (fe->ops.i2c_gate_ctrl)
>> + fe->ops.i2c_gate_ctrl(fe, 0);
>>
>> - dprintk(1, "Tuner status: %d", *tuner_status);
>> + mutex_unlock(&state->lock);
>>
>> return 0;
>> }
>>
>> -static int mt2063_release(struct dvb_frontend *fe)
>> +static int mt2063_sleep(struct dvb_frontend *fe)
>> {
>> struct mt2063_state *state = fe->tuner_priv;
>>
>> - dprintk(2, "\n");
>> -
>> - fe->tuner_priv = NULL;
>> - kfree(state);
>> -
>> - return 0;
>> -}
>> + dprintk(1, "\n");
>> + mutex_lock(&state->lock);
>>
>> -static int mt2063_set_analog_params(struct dvb_frontend *fe,
>> - struct analog_parameters *params)
>> -{
>> - struct mt2063_state *state = fe->tuner_priv;
>> - s32 pict_car;
>> - s32 pict2chanb_vsb;
>> - s32 ch_bw;
>> - s32 if_mid;
>> - s32 rcvr_mode;
>> - int status;
>> -
>> - dprintk(2, "\n");
>> -
>> - if (!state->init) {
>> - status = mt2063_init(fe);
>> - if (status< 0)
>> - return status;
>> - }
>> + /* open gate */
>> + if (fe->ops.i2c_gate_ctrl)
>> + fe->ops.i2c_gate_ctrl(fe, 1);
>>
>> - switch (params->mode) {
>> - case V4L2_TUNER_RADIO:
>> - pict_car = 38900000;
>> - ch_bw = 8000000;
>> - pict2chanb_vsb = -(ch_bw / 2);
>> - rcvr_mode = MT2063_OFFAIR_ANALOG;
>> - break;
>> - case V4L2_TUNER_ANALOG_TV:
>> - rcvr_mode = MT2063_CABLE_ANALOG;
>> - if (params->std& ~V4L2_STD_MN) {
>> - pict_car = 38900000;
>> - ch_bw = 6000000;
>> - pict2chanb_vsb = -1250000;
>> - } else if (params->std& V4L2_STD_PAL_G) {
>> - pict_car = 38900000;
>> - ch_bw = 7000000;
>> - pict2chanb_vsb = -1250000;
>> - } else { /* PAL/SECAM standards */
>> - pict_car = 38900000;
>> - ch_bw = 8000000;
>> - pict2chanb_vsb = -1250000;
>> - }
>> - break;
>> - default:
>> - return -EINVAL;
>> - }
>> - if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));
>> + /* set all power bits off */
>> + mt2063_shutdown(state, MT2063_ALL_SD);
>>
>> - state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */
>> - state->AS_Data.f_out = if_mid;
>> - state->AS_Data.f_out_bw = ch_bw + 750000;
>> - status = MT2063_SetReceiverMode(state, rcvr_mode);
>> - if (status< 0)
>> - return status;
>> -
>> - dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
>> - params->frequency, ch_bw, pict2chanb_vsb);
>> -
>> - status = MT2063_Tune(state, (params->frequency + (pict2chanb_vsb + (ch_bw / 2))));
>> - if (status< 0)
>> - return status;
>> + /* close gate */
>> + if (fe->ops.i2c_gate_ctrl)
>> + fe->ops.i2c_gate_ctrl(fe, 0);
>>
>> - state->frequency = params->frequency;
>> + mutex_unlock(&state->lock);
>> return 0;
>> }
>>
>> -/*
>> - * As defined on EN 300 429, the DVB-C roll-off factor is 0.15.
>> - * So, the amount of the needed bandwith is given by:
>> - * Bw = Symbol_rate * (1 + 0.15)
>> - * As such, the maximum symbol rate supported by 6 MHz is given by:
>> - * max_symbol_rate = 6 MHz / 1.15 = 5217391 Bauds
>> - */
>> -#define MAX_SYMBOL_RATE_6MHz 5217391
>> -
>> -static int mt2063_set_params(struct dvb_frontend *fe)
>> +static int mt2063_release(struct dvb_frontend *fe)
>> {
>> - struct dtv_frontend_properties *c =&fe->dtv_property_cache;
>> struct mt2063_state *state = fe->tuner_priv;
>> - int status;
>> - s32 pict_car;
>> - s32 pict2chanb_vsb;
>> - s32 ch_bw;
>> - s32 if_mid;
>> - s32 rcvr_mode;
>> -
>> - if (!state->init) {
>> - status = mt2063_init(fe);
>> - if (status< 0)
>> - return status;
>> - }
>> -
>> - dprintk(2, "\n");
>> -
>> - if (c->bandwidth_hz == 0)
>> - return -EINVAL;
>> - if (c->bandwidth_hz<= 6000000)
>> - ch_bw = 6000000;
>> - else if (c->bandwidth_hz<= 7000000)
>> - ch_bw = 7000000;
>> - else
>> - ch_bw = 8000000;
>> -
>> - switch (c->delivery_system) {
>> - case SYS_DVBT:
>> - rcvr_mode = MT2063_OFFAIR_COFDM;
>> - pict_car = 36125000;
>> - pict2chanb_vsb = -(ch_bw / 2);
>> - break;
>> - case SYS_DVBC_ANNEX_A:
>> - case SYS_DVBC_ANNEX_C:
>> - rcvr_mode = MT2063_CABLE_QAM;
>> - pict_car = 36125000;
>> - pict2chanb_vsb = -(ch_bw / 2);
>> - break;
>> - default:
>> - return -EINVAL;
>> - }
>> - if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2));
>> -
>> - state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */
>> - state->AS_Data.f_out = if_mid;
>> - state->AS_Data.f_out_bw = ch_bw + 750000;
>> - status = MT2063_SetReceiverMode(state, rcvr_mode);
>> - if (status< 0)
>> - return status;
>> -
>> - dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n",
>> - c->frequency, ch_bw, pict2chanb_vsb);
>> -
>> - status = MT2063_Tune(state, (c->frequency + (pict2chanb_vsb + (ch_bw / 2))));
>> -
>> - if (status< 0)
>> - return status;
>> -
>> - state->frequency = c->frequency;
>> - return 0;
>> -}
>>
>> -static int mt2063_get_if_frequency(struct dvb_frontend *fe, u32 *freq)
>> -{
>> - struct mt2063_state *state = fe->tuner_priv;
>> + dprintk(1,"\n");
>>
>> - dprintk(2, "\n");
>> + mutex_lock(&mt2063_list_mutex);
>>
>> - if (!state->init)
>> - return -ENODEV;
>> + if (state)
>> + hybrid_tuner_release_state(state);
>>
>> - *freq = state->AS_Data.f_out;
>> + mutex_unlock(&mt2063_list_mutex);
>>
>> - dprintk(1, "IF frequency: %d\n", *freq);
>> + fe->tuner_priv = NULL;
>>
>> return 0;
>> }
>>
>> -static int mt2063_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
>> +static int mt2063_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
>> {
>> struct mt2063_state *state = fe->tuner_priv;
>>
>> - dprintk(2, "\n");
>> -
>> - if (!state->init)
>> - return -ENODEV;
>> + dprintk(1, "\n");
>>
>> - *bw = state->AS_Data.f_out_bw - 750000;
>> + *frequency = state->if2 * 1000;
>>
>> - dprintk(1, "bandwidth: %d\n", *bw);
>> + dprintk(2, "if frequency is %d kHz\n", state->if2);
>>
>> return 0;
>> }
>>
>> static struct dvb_tuner_ops mt2063_ops = {
>> .info = {
>> - .name = "MT2063 Silicon Tuner",
>> - .frequency_min = 45000000,
>> - .frequency_max = 850000000,
>> - .frequency_step = 0,
>> - },
>> -
>> + .name = "MT2063 Silicon Tuner",
>> + .frequency_min = 48000000, /* 48 MHz */
>> + .frequency_max = 1002000000, /* 1002 MHz */
>> + .frequency_step = 50000, /* 50 kHz */
>> + },
>> + .release = mt2063_release,
>> .init = mt2063_init,
>> - .sleep = MT2063_Sleep,
>> - .get_status = mt2063_get_status,
>> + .sleep = mt2063_sleep,
>> +
>> + .set_params = mt2063_set_params,
>> .set_analog_params = mt2063_set_analog_params,
>> - .set_params = mt2063_set_params,
>> .get_if_frequency = mt2063_get_if_frequency,
>> - .get_bandwidth = mt2063_get_bandwidth,
>> - .release = mt2063_release,
>> + /* TODO */
>> };
>>
>> -struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe,
>> - struct mt2063_config *config,
>> - struct i2c_adapter *i2c)
>> +static int mt2063_find_chip(struct mt2063_state *state)
>> {
>> - struct mt2063_state *state = NULL;
>> + int err;
>> + u8 chip = 0, chip_hi = 0;
>> + char *step;
>> + struct dvb_frontend *fe = state->frontend;
>>
>> - dprintk(2, "\n");
>> + dprintk(1, "\n");
>>
>> - state = kzalloc(sizeof(struct mt2063_state), GFP_KERNEL);
>> - if (state == NULL)
>> - goto error;
>> -
>> - state->config = config;
>> - state->i2c = i2c;
>> - state->frontend = fe;
>> - state->reference = config->refclock / 1000; /* kHz */
>> - fe->tuner_priv = state;
>> - fe->ops.tuner_ops = mt2063_ops;
>> + /* open gate */
>> + if (fe->ops.i2c_gate_ctrl)
>> + fe->ops.i2c_gate_ctrl(fe, 1);
>>
>> - printk(KERN_INFO "%s: Attaching MT2063\n", __func__);
>> - return fe;
>> + /* Read the Part/Rev code from the tuner */
>> + err = mt2063_read(state, MT2063_REG_PART_REV,&chip);
>> + if (err< 0) {
>> + printk(KERN_ERR "Can't read mt2063 part ID\n");
>> + return -ENODEV;
>> + }
>>
>> -error:
>> - kfree(state);
>> - return NULL;
>> -}
>> -EXPORT_SYMBOL_GPL(mt2063_attach);
>> + /* Check the part/rev code */
>> + switch (chip) {
>> + case MT2063_B0:
>> + step = "B0";
>> + break;
>> + case MT2063_B1:
>> + step = "B1";
>> + break;
>> + case MT2063_B2:
>> + step = "B2";
>> + break;
>> + case MT2063_B3:
>> + step = "B3";
>> + break;
>> + default:
>> + printk(KERN_ERR "mt2063: Unknown mt2063 device ID (0x%02x)\n",
>> + chip);
>> + return -ENODEV;
>> + }
>>
>> -/*
>> - * Ancillary routines visible outside mt2063
>> - * FIXME: Remove them in favor of using standard tuner callbacks
>> - */
>> -unsigned int tuner_MT2063_SoftwareShutdown(struct dvb_frontend *fe)
>> -{
>> - struct mt2063_state *state = fe->tuner_priv;
>> - int err = 0;
>> + /* Check the 2nd byte of the Part/Rev code from the tuner */
>> + mt2063_read(state, MT2063_REG_RSVD_3B,&chip_hi);
>> + if ((chip_hi& 0x80) != 0x00) {
>> + printk(KERN_ERR "mt2063: Unknown part ID (0x%02x%02x)\n",
>> + chip, chip_hi);
>> + return -ENODEV;
>> + }
>>
>> - dprintk(2, "\n");
>> + printk(KERN_INFO "mt2063: detected a mt2063 rev %s", step);
>> + state->tuner_id = chip;
>>
>> - err = MT2063_SoftwareShutdown(state, 1);
>> - if (err< 0)
>> - printk(KERN_ERR "%s: Couldn't shutdown\n", __func__);
>> + /* close gate */
>> + if (fe->ops.i2c_gate_ctrl)
>> + fe->ops.i2c_gate_ctrl(fe, 0);
>>
>> - return err;
>> + return 0;
>> }
>> -EXPORT_SYMBOL_GPL(tuner_MT2063_SoftwareShutdown);
>>
>> -unsigned int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend *fe)
>> +struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe,
>> + struct mt2063_config *config,
>> + struct i2c_adapter *i2c)
>> {
>> - struct mt2063_state *state = fe->tuner_priv;
>> - int err = 0;
>> + struct mt2063_state *state = NULL;
>> + int instance, ret;
>> +
>> + dprintk(1, "\n");
>>
>> - dprintk(2, "\n");
>> + mutex_lock(&mt2063_list_mutex);
>>
>> - err = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD);
>> - if (err< 0)
>> - printk(KERN_ERR "%s: Invalid parameter\n", __func__);
>> + instance = hybrid_tuner_request_state(struct mt2063_state, state,
>> + hybrid_tuner_instance_list,
>> + i2c, config->tuner_address,
>> + "mt2063");
>> +
>> + switch(instance) {
>> + case 0:
>> + goto fail;
>> + case 1:
>> + /* new instance */
>> + state->i2c = i2c;
>> + state->i2c_addr = config->tuner_address;
>> + /* find chip */
>> + mutex_init(&state->lock);
>> + state->frontend = fe;
>> + ret = mt2063_find_chip(state);
>> + if (ret< 0)
>> + goto fail;
>> + fe->tuner_priv = state;
>> + fe->ops.tuner_ops = mt2063_ops;
>> + break;
>> + default:
>> + fe->tuner_priv = state;
>> + fe->ops.tuner_ops = mt2063_ops;
>> + break;
>> + }
>> + mutex_unlock(&mt2063_list_mutex);
>>
>> - return err;
>> + return fe;
>> +
>> +fail:
>> + hybrid_tuner_release_state(state);
>> + mutex_unlock(&mt2063_list_mutex);
>> + return NULL;
>> }
>> -EXPORT_SYMBOL_GPL(tuner_MT2063_ClearPowerMaskBits);
>> +EXPORT_SYMBOL_GPL(mt2063_attach);
>>
>> MODULE_AUTHOR("Mauro Carvalho Chehab<mchehab@redhat.com>");
>> MODULE_DESCRIPTION("MT2063 Silicon tuner");
>> MODULE_LICENSE("GPL");
>> +MODULE_VERSION("0.2");
>> Index: patchwork/drivers/media/common/tuners/mt2063.h
>> ===================================================================
>> --- patchwork.orig/drivers/media/common/tuners/mt2063.h
>> +++ patchwork/drivers/media/common/tuners/mt2063.h
>> @@ -1,3 +1,25 @@
>> +/*
>> + * Driver for microtune mt2063 tuner
>> + *
>> + * Copyright (c) 2012 Stefan Ringel<linuxtv@stefanringel.de>
>> + * Copyright (c) 2011 Mauro Carvalho Chehab<mchehab@redhat.com>
>> + *
>> + * This driver came from a driver originally written by:
>> + * Henry Wang<Henry.wang@AzureWave.com>
>> + * Made publicly available by Terratec, at:
>> + * http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
>> + * The original driver's license is GPL, as declared with MODULE_LICENSE()
>> + *
>> + * This program is free software; you can redistribute it and/or modify
>> + * it under the terms of the GNU General Public License as published by
>> + * the Free Software Foundation under version 2 of the License.
>> + *
>> + * This program is distributed in the hope that it will be useful,
>> + * but WITHOUT ANY WARRANTY; without even the implied warranty of
>> + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
>> + * GNU General Public License for more details.
>> + */
>> +
>> #ifndef __MT2063_H__
>> #define __MT2063_H__
>>
>> @@ -10,27 +32,19 @@ struct mt2063_config {
>>
>> #if defined(CONFIG_MEDIA_TUNER_MT2063) || (defined(CONFIG_MEDIA_TUNER_MT2063_MODULE)&& defined(MODULE))
>> struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe,
>> - struct mt2063_config *config,
>> - struct i2c_adapter *i2c);
>> + struct mt2063_config *config,
>> + struct i2c_adapter *i2c);
>>
>> #else
>>
>> static inline struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe,
>> - struct mt2063_config *config,
>> - struct i2c_adapter *i2c)
>> + struct mt2063_config *config,
>> + struct i2c_adapter *i2c)
>> {
>> - printk(KERN_WARNING "%s: Driver disabled by Kconfig\n", __func__);
>> + printk(KERN_WARNING "%s: Driver disable by Kconfig\n", __func__);
>> return NULL;
>> }
>>
>> -int mt2063_setTune(struct dvb_frontend *fe, u32 f_in,
>> - u32 bw_in,
>> - enum MTTune_atv_standard tv_type);
>> -
>> -/* FIXME: Should use the standard DVB attachment interfaces */
>> -unsigned int tuner_MT2063_SoftwareShutdown(struct dvb_frontend *fe);
>> -unsigned int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend *fe);
>> -
>> -#endif /* CONFIG_DVB_MT2063 */
>> +#endif /* CONFIG_MEDIA_TUNER_MT2063 */
>>
>> #endif /* __MT2063_H__ */
>> Index: patchwork/drivers/media/common/tuners/mt2063_priv.h
>> ===================================================================
>> --- /dev/null
>> +++ patchwork/drivers/media/common/tuners/mt2063_priv.h
>> @@ -0,0 +1,234 @@
>> +/*
>> + * Driver for microtune mt2063 tuner
>> + *
>> + * Copyright (c) 2012 Stefan Ringel<linuxtv@stefanringel.de>
>> + * Copyright (c) 2011 Mauro Carvalho Chehab<mchehab@redhat.com>
>> + *
>> + * This driver came from a driver originally written by:
>> + * Henry Wang<Henry.wang@AzureWave.com>
>> + * Made publicly available by Terratec, at:
>> + * http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz
>> + * The original driver's license is GPL, as declared with MODULE_LICENSE()
>> + *
>> + * This program is free software; you can redistribute it and/or modify
>> + * it under the terms of the GNU General Public License as published by
>> + * the Free Software Foundation under version 2 of the License.
>> + *
>> + * This program is distributed in the hope that it will be useful,
>> + * but WITHOUT ANY WARRANTY; without even the implied warranty of
>> + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
>> + * GNU General Public License for more details.
>> + */
>> +
>> +#include "tuner-i2c.h"
>> +
>> +#ifndef __MT2063_PRIV_H__
>> +#define __MT2063_PRIV_H__
>> +
>> +#define MT2063_REG_PART_REV 0x00 /* Part/Rev Code */
>> +#define MT2063_REG_LO1CQ_1 0x01 /* LO1C Queued Byte 1 */
>> +#define MT2063_REG_LO1CQ_2 0x02 /* LO1C Queued Byte 2 */
>> +#define MT2063_REG_LO2CQ_1 0x03 /* LO2C Queued Byte 1 */
>> +#define MT2063_REG_LO2CQ_2 0x04 /* LO2C Queued Byte 2 */
>> +#define MT2063_REG_LO2CQ_3 0x05 /* LO2C Queued Byte 3 */
>> +#define MT2063_REG_RSVD_06 0x06
>> +#define MT2063_REG_LO_STATUS 0x07 /* LO Status */
>> +#define MT2063_REG_FIFFC 0x08 /* FIFF Center */
>> +#define MT2063_REG_CLEARTUNE 0x09 /* ClearTune Filter */
>> +#define MT2063_REG_ADC_OUT 0x0a /* ADC Output */
>> +#define MT2063_REG_LO1C_1 0x0b /* LO1C Byte 1 */
>> +#define MT2063_REG_LO1C_2 0x0c /* LO1C Byte 2 */
>> +#define MT2063_REG_LO2C_1 0x0d /* LO2C Byte 1 */
>> +#define MT2063_REG_LO2C_2 0x0e /* LO2C Byte 2 */
>> +#define MT2063_REG_LO2C_3 0x0f /* LO2C Byte 3 */
>> +#define MT2063_REG_RSVD_10 0x10
>> +#define MT2063_REG_PWR_1 0x11 /* Power Byte 1 */
>> +#define MT2063_REG_PWR_2 0x12 /* Power Byte 2 */
>> +#define MT2063_REG_TEMP_STATUS 0x13 /* Temperature Status */
>> +#define MT2063_REG_XO_STATUS 0x14 /* Crystal Status */
>> +#define MT2063_REG_RF_STATUS 0x15 /* RF Attn Status */
>> +#define MT2063_REG_FIF_STATUS 0x16 /* FIF Attn Status */
>> +#define MT2063_REG_LNA_OV 0x17 /* LNA Attn Override */
>> +#define MT2063_REG_RF_OV 0x18 /* RF Attn Override */
>> +#define MT2063_REG_FIF_OV 0x19 /* FIF Attn Override */
>> +#define MT2063_REG_LNA_TGT 0x1a /* LNA Target */
>> +#define MT2063_REG_PD1_TGT 0x1b /* Power Detection 1 Target */
>> +#define MT2063_REG_PD2_TGT 0x1c /* Power Detection 2 Target */
>> +#define MT2063_REG_RSVD_1D 0x1d
>> +#define MT2063_REG_RSVD_1E 0x1e
>> +#define MT2063_REG_RSVD_1F 0x1f
>> +#define MT2063_REG_RSVD_20 0x20
>> +#define MT2063_REG_BYP_CTRL 0x21 /* Bypass Control */
>> +#define MT2063_REG_RSVD_22 0x22
>> +#define MT2063_REG_RSVD_23 0x23
>> +#define MT2063_REG_RSVD_24 0x24
>> +#define MT2063_REG_RSVD_25 0x25
>> +#define MT2063_REG_RSVD_26 0x26
>> +#define MT2063_REG_RSVD_27 0x27
>> +#define MT2063_REG_FIFF_CTRL 0x28 /* FIFF Control */
>> +#define MT2063_REG_FIFF_OFFSET 0x29 /* FIFF Offset */
>> +#define MT2063_REG_CTUNE_CTRL 0x2a /* ClearTune Control */
>> +#define MT2063_REG_CTUNE_OV 0x2b /* ClearTune Override */
>> +#define MT2063_REG_CTRL_2C 0x2c
>> +#define MT2063_REG_FIFF_CTRL2 0x2d /* FIFF Control 2 */
>> +#define MT2063_REG_RSVD_2E 0x2e
>> +#define MT2063_REG_DNC_GAIN 0x2f /* DNC Gain Control */
>> +#define MT2063_REG_VGA_GAIN 0x30 /* VGA Gain Control */
>> +#define MT2063_REG_RSVD_31 0x31
>> +#define MT2063_REG_TEMP_SEL 0x32 /* Temperature Selection */
>> +#define MT2063_REG_RSVD_33 0x33
>> +#define MT2063_REG_RSVD_34 0x34
>> +#define MT2063_REG_RSVD_35 0x35
>> +#define MT2063_REG_RSVD_36 0x36
>> +#define MT2063_REG_RSVD_37 0x37
>> +#define MT2063_REG_RSVD_38 0x38
>> +#define MT2063_REG_RSVD_39 0x39
>> +#define MT2063_REG_RSVD_3A 0x3a
>> +#define MT2063_REG_RSVD_3B 0x3b
>> +#define MT2063_REG_RSVD_3C 0x3c
>> +
>> +/*
>> + * Chip ID's
>> + */
>> +#define MT2063_B0 0x9b
>> +#define MT2063_B1 0x9c
>> +#define MT2063_B2 0x9d
>> +#define MT2063_B3 0x9e
>> +
>> +
>> +/*
>> + * tuner defaults for each tuner
>> + */
>> +static const u8 MT2063B0_defaults[] = {
>> + /* Reg, Value */
>> + 0x19, 0x05,
>> + 0x1b, 0x1d,
>> + 0x1c, 0x1f,
>> + 0x1d, 0x0f,
>> + 0x1e, 0x3f,
>> + 0x1f, 0x0f,
>> + 0x20, 0x3f,
>> + 0x22, 0x21,
>> + 0x23, 0x3f,
>> + 0x24, 0x20,
>> + 0x25, 0x3f,
>> + 0x27, 0xee,
>> + 0x2c, 0x27, /* bit at 0x20 is cleared below */
>> + 0x30, 0x03,
>> + 0x2c, 0x07, /* bit at 0x20 is cleared here */
>> + 0x2d, 0x87,
>> + 0x2e, 0xaa,
>> + 0x28, 0xe1, /* Set the FIFCrst bit here */
>> + 0x28, 0xe0, /* Clear the FIFCrst bit here */
>> + 0x00
>> +};
>> +
>> +static const u8 MT2063B1_defaults [] = {
>> + 0x11, 0x10, /* new EnableAFCsd */
>> + 0x19, 0x05,
>> + 0x1a, 0x6c,
>> + 0x1b, 0x24,
>> + 0x1c, 0x28,
>> + 0x1d, 0x8f,
>> + 0x1e, 0x14,
>> + 0x1f, 0x8f,
>> + 0x20, 0x57,
>> + 0x22, 0x21,
>> + 0x23, 0x3c,
>> + 0x24, 0x20,
>> + 0x2c, 0x24, /* bit at 0x20 is cleared below */
>> + 0x2d, 0x87,
>> + 0x2f, 0xf3,
>> + 0x30, 0x0c,
>> + 0x31, 0x1b,
>> + 0x2c, 0x04, /* bit at 0x20 is cleared here */
>> + 0x28, 0xe1, /* Set the FIFCrst bit here */
>> + 0x28, 0xe0, /* Clear the FIFCrst bit here */
>> + 0x00
>> +};
>> +
>> +static const u8 MT2063B3_defaults [] = {
>> + 0x19, 0x3d,
>> + 0x2c, 0x24, /* bit at 0x20 is cleared below */
>> + 0x2c, 0x04, /* bit at 0x20 is cleared here */
>> + 0x28, 0xe1, /* Set the FIFCrst bit here */
>> + 0x28, 0xe0, /* Clear the FIFCrst bit here */
>> + 0x00
>> +};
>> +
>> +/*
>> + * Parameter for function MT2063_SetPowerMask that specifies the power down
>> + * of various sections of the MT2063.
>> + */
>> +enum MT2063_Mask_Bits {
>> + MT2063_REG_SD = 0x0040, /* Shutdown regulator */
>> + MT2063_SRO_SD = 0x0020, /* Shutdown SRO */
>> + MT2063_AFC_SD = 0x0010, /* Shutdown AFC A/D */
>> + MT2063_PD_SD = 0x0002, /* Enable power detector shutdown */
>> + MT2063_PDADC_SD = 0x0001, /* Enable power detector A/D shutdown */
>> + MT2063_VCO_SD = 0x8000, /* Enable VCO shutdown */
>> + MT2063_LTX_SD = 0x4000, /* Enable LTX shutdown */
>> + MT2063_LT1_SD = 0x2000, /* Enable LT1 shutdown */
>> + MT2063_LNA_SD = 0x1000, /* Enable LNA shutdown */
>> + MT2063_UPC_SD = 0x0800, /* Enable upconverter shutdown */
>> + MT2063_DNC_SD = 0x0400, /* Enable downconverter shutdown */
>> + MT2063_VGA_SD = 0x0200, /* Enable VGA shutdown */
>> + MT2063_AMP_SD = 0x0100, /* Enable AMP shutdown */
>> + MT2063_ALL_SD = 0xFF73, /* All shutdown bits for this tuner */
>> + MT2063_NONE_SD = 0x0000 /* No shutdown bits */
>> +};
>> +
>> +enum mt2063_delsys {
>> + MT2063_CABLE_QAM = 0, /* dvb-c */
>> + MT2063_CABLE_ANALOG, /* analog tv */
>> + MT2063_OFFAIR_COFDM, /* dvb-t */
>> + MT2063_OFFAIR_COFDM_SAWLESS, /* dvb-t sawless */
>> + MT2063_OFFAIR_ANALOG, /* analog radio */
>> + MT2063_OFFAIR_8VSB, /* atsc */
>> +};
>> +
>> +static const char *mt2063_mode_name[] = {
>> + [MT2063_CABLE_QAM] = "digital cable",
>> + [MT2063_CABLE_ANALOG] = "analog cable",
>> + [MT2063_OFFAIR_COFDM] = "digital offair",
>> + [MT2063_OFFAIR_COFDM_SAWLESS] = "digital offair without sawless",
>> + [MT2063_OFFAIR_ANALOG] = "analog offair",
>> + [MT2063_OFFAIR_8VSB] = "digital offair 8vsb/ATSC",
>> +};
>> +
>> +static const u8 LNARIN [] = { 0, 0, 3, 3, 3, 3 };
>> +static const u8 LNATGT [] = { 44, 43, 43, 43, 43, 43 };
>> +static const u8 RFOVDIS [] = { 0, 0, 0, 0, 0, 0 };
>> +static const u8 PD1TGT [] = { 36, 36, 38, 38, 36, 38 };
>> +static const u8 FIFOVDIS [] = { 0, 0, 0, 0, 0, 0 };
>> +static const u8 PD2TGT [] = { 40, 33, 42, 42, 33, 42 };
>> +
>> +/*
>> + * main structure of mt2063
>> + */
>> +struct mt2063_state {
>> + /* i2c adapter */
>> + struct i2c_adapter *i2c;
>> + u8 i2c_addr;
>> +
>> + /* hybrid stuff */
>> + struct list_head hybrid_tuner_instance_list;
>> + struct tuner_i2c_props i2c_props;
>> +
>> + /* device lock for remote calls */
>> + struct mutex lock;
>> +
>> + /* device configurations */
>> + const struct mt2063_config *config;
>> + struct dvb_tuner_ops ops;
>> + struct dvb_frontend *frontend;
>> + struct tuner_state status; /* ? */
>> + u32 frequency; /* input frequency in kHz */
>> + u32 if2; /* if output frequency in kHz */
>> + u32 bw; /* bandwidth spurcheck */
>> + u32 tuner_id;
>> + enum mt2063_delsys mode;
>> +};
>> +
>> +
>> +#endif /* __MT2063_PRIV_H__ */
>
^ permalink raw reply [flat|nested] 4+ messages in thread
end of thread, other threads:[~2012-02-14 16:40 UTC | newest]
Thread overview: 4+ messages (download: mbox.gz follow: Atom feed
-- links below jump to the message on this page --
2012-01-09 16:37 [PATCH] mt2063: rework tuner driver linuxtv
2012-01-26 20:05 ` Mauro Carvalho Chehab
2012-02-14 16:30 ` Stefan Ringel
2012-02-14 16:40 ` Mauro Carvalho Chehab
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).