linux-mm.kvack.org archive mirror
 help / color / mirror / Atom feed
* Re: [PATCH 1/2] mm/slub: optimize alloc/free fastpath by removing preemption on/off
@ 2015-01-05  8:37 Hillf Danton
  2015-01-06  1:32 ` Joonsoo Kim
  0 siblings, 1 reply; 11+ messages in thread
From: Hillf Danton @ 2015-01-05  8:37 UTC (permalink / raw)
  To: 'Joonsoo Kim'
  Cc: Andrew Morton, 'Christoph Lameter',
	'Pekka Enberg', 'David Rientjes', linux-kernel,
	linux-mm, Steven Rostedt, 'Jesper Dangaard Brouer'

> 
> We had to insert a preempt enable/disable in the fastpath a while ago
> in order to guarantee that tid and kmem_cache_cpu are retrieved on the
> same cpu. It is the problem only for CONFIG_PREEMPT in which scheduler
> can move the process to other cpu during retrieving data.
> 
> Now, I reach the solution to remove preempt enable/disable in the fastpath.
> If tid is matched with kmem_cache_cpu's tid after tid and kmem_cache_cpu
> are retrieved by separate this_cpu operation, it means that they are
> retrieved on the same cpu. If not matched, we just have to retry it.
> 
> With this guarantee, preemption enable/disable isn't need at all even if
> CONFIG_PREEMPT, so this patch removes it.
> 
> I saw roughly 5% win in a fast-path loop over kmem_cache_alloc/free
> in CONFIG_PREEMPT. (14.821 ns -> 14.049 ns)
> 
> Below is the result of Christoph's slab_test reported by
> Jesper Dangaard Brouer.
> 
> * Before
> 
>  Single thread testing
>  =====================
>  1. Kmalloc: Repeatedly allocate then free test
>  10000 times kmalloc(8) -> 49 cycles kfree -> 62 cycles
>  10000 times kmalloc(16) -> 48 cycles kfree -> 64 cycles
>  10000 times kmalloc(32) -> 53 cycles kfree -> 70 cycles
>  10000 times kmalloc(64) -> 64 cycles kfree -> 77 cycles
>  10000 times kmalloc(128) -> 74 cycles kfree -> 84 cycles
>  10000 times kmalloc(256) -> 84 cycles kfree -> 114 cycles
>  10000 times kmalloc(512) -> 83 cycles kfree -> 116 cycles
>  10000 times kmalloc(1024) -> 81 cycles kfree -> 120 cycles
>  10000 times kmalloc(2048) -> 104 cycles kfree -> 136 cycles
>  10000 times kmalloc(4096) -> 142 cycles kfree -> 165 cycles
>  10000 times kmalloc(8192) -> 238 cycles kfree -> 226 cycles
>  10000 times kmalloc(16384) -> 403 cycles kfree -> 264 cycles
>  2. Kmalloc: alloc/free test
>  10000 times kmalloc(8)/kfree -> 68 cycles
>  10000 times kmalloc(16)/kfree -> 68 cycles
>  10000 times kmalloc(32)/kfree -> 69 cycles
>  10000 times kmalloc(64)/kfree -> 68 cycles
>  10000 times kmalloc(128)/kfree -> 68 cycles
>  10000 times kmalloc(256)/kfree -> 68 cycles
>  10000 times kmalloc(512)/kfree -> 74 cycles
>  10000 times kmalloc(1024)/kfree -> 75 cycles
>  10000 times kmalloc(2048)/kfree -> 74 cycles
>  10000 times kmalloc(4096)/kfree -> 74 cycles
>  10000 times kmalloc(8192)/kfree -> 75 cycles
>  10000 times kmalloc(16384)/kfree -> 510 cycles
> 
> * After
> 
>  Single thread testing
>  =====================
>  1. Kmalloc: Repeatedly allocate then free test
>  10000 times kmalloc(8) -> 46 cycles kfree -> 61 cycles
>  10000 times kmalloc(16) -> 46 cycles kfree -> 63 cycles
>  10000 times kmalloc(32) -> 49 cycles kfree -> 69 cycles
>  10000 times kmalloc(64) -> 57 cycles kfree -> 76 cycles
>  10000 times kmalloc(128) -> 66 cycles kfree -> 83 cycles
>  10000 times kmalloc(256) -> 84 cycles kfree -> 110 cycles
>  10000 times kmalloc(512) -> 77 cycles kfree -> 114 cycles
>  10000 times kmalloc(1024) -> 80 cycles kfree -> 116 cycles
>  10000 times kmalloc(2048) -> 102 cycles kfree -> 131 cycles
>  10000 times kmalloc(4096) -> 135 cycles kfree -> 163 cycles
>  10000 times kmalloc(8192) -> 238 cycles kfree -> 218 cycles
>  10000 times kmalloc(16384) -> 399 cycles kfree -> 262 cycles
>  2. Kmalloc: alloc/free test
>  10000 times kmalloc(8)/kfree -> 65 cycles
>  10000 times kmalloc(16)/kfree -> 66 cycles
>  10000 times kmalloc(32)/kfree -> 65 cycles
>  10000 times kmalloc(64)/kfree -> 66 cycles
>  10000 times kmalloc(128)/kfree -> 66 cycles
>  10000 times kmalloc(256)/kfree -> 71 cycles
>  10000 times kmalloc(512)/kfree -> 72 cycles
>  10000 times kmalloc(1024)/kfree -> 71 cycles
>  10000 times kmalloc(2048)/kfree -> 71 cycles
>  10000 times kmalloc(4096)/kfree -> 71 cycles
>  10000 times kmalloc(8192)/kfree -> 65 cycles
>  10000 times kmalloc(16384)/kfree -> 511 cycles
> 
> Most of the results are better than before.
> 
> Note that this change slightly worses performance in !CONFIG_PREEMPT,
> roughly 0.3%. Implementing each case separately would help performance,
> but, since it's so marginal, I didn't do that. This would help
> maintanance since we have same code for all cases.
> 
> Tested-by: Jesper Dangaard Brouer <brouer@redhat.com>
> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
> ---
>  mm/slub.c |   26 +++++++++++++-------------
>  1 file changed, 13 insertions(+), 13 deletions(-)
> 
> diff --git a/mm/slub.c b/mm/slub.c
> index fe376fe..0624608 100644
> --- a/mm/slub.c
> +++ b/mm/slub.c
> @@ -2398,13 +2398,15 @@ redo:
>  	 * reading from one cpu area. That does not matter as long
>  	 * as we end up on the original cpu again when doing the cmpxchg.
>  	 *
> -	 * Preemption is disabled for the retrieval of the tid because that
> -	 * must occur from the current processor. We cannot allow rescheduling
> -	 * on a different processor between the determination of the pointer
> -	 * and the retrieval of the tid.
> +	 * We should guarantee that tid and kmem_cache are retrieved on
> +	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
> +	 * to check if it is matched or not.
>  	 */
> -	preempt_disable();
> -	c = this_cpu_ptr(s->cpu_slab);
> +	do {
> +		tid = this_cpu_read(s->cpu_slab->tid);
> +		c = this_cpu_ptr(s->cpu_slab);
> +	} while (IS_ENABLED(CONFIG_PREEMPT) && unlikely(tid != c->tid));
> +	barrier();

Help maintenance more if barrier is documented in commit message.
> 
>  	/*
>  	 * The transaction ids are globally unique per cpu and per operation on
> @@ -2412,8 +2414,6 @@ redo:
>  	 * occurs on the right processor and that there was no operation on the
>  	 * linked list in between.
>  	 */
> -	tid = c->tid;
> -	preempt_enable();
> 
>  	object = c->freelist;
>  	page = c->page;
> @@ -2659,11 +2659,11 @@ redo:
>  	 * data is retrieved via this pointer. If we are on the same cpu
>  	 * during the cmpxchg then the free will succedd.
>  	 */
> -	preempt_disable();
> -	c = this_cpu_ptr(s->cpu_slab);
> -
> -	tid = c->tid;
> -	preempt_enable();
> +	do {
> +		tid = this_cpu_read(s->cpu_slab->tid);
> +		c = this_cpu_ptr(s->cpu_slab);
> +	} while (IS_ENABLED(CONFIG_PREEMPT) && unlikely(tid != c->tid));
> +	barrier();
> 
ditto
>  	if (likely(page == c->page)) {
>  		set_freepointer(s, object, c->freelist);
> --
> 1.7.9.5

--
To unsubscribe, send a message with 'unsubscribe linux-mm' in
the body to majordomo@kvack.org.  For more info on Linux MM,
see: http://www.linux-mm.org/ .
Don't email: <a href=mailto:"dont@kvack.org"> email@kvack.org </a>

^ permalink raw reply	[flat|nested] 11+ messages in thread
* [PATCH 1/2] mm/slub: optimize alloc/free fastpath by removing preemption on/off
@ 2015-01-05  1:36 Joonsoo Kim
  2015-01-05 14:52 ` Christoph Lameter
  2015-01-06  3:03 ` Davidlohr Bueso
  0 siblings, 2 replies; 11+ messages in thread
From: Joonsoo Kim @ 2015-01-05  1:36 UTC (permalink / raw)
  To: Andrew Morton
  Cc: Christoph Lameter, Pekka Enberg, David Rientjes, Joonsoo Kim,
	linux-mm, linux-kernel, Jesper Dangaard Brouer, rostedt,
	Thomas Gleixner

We had to insert a preempt enable/disable in the fastpath a while ago
in order to guarantee that tid and kmem_cache_cpu are retrieved on the
same cpu. It is the problem only for CONFIG_PREEMPT in which scheduler
can move the process to other cpu during retrieving data.

Now, I reach the solution to remove preempt enable/disable in the fastpath.
If tid is matched with kmem_cache_cpu's tid after tid and kmem_cache_cpu
are retrieved by separate this_cpu operation, it means that they are
retrieved on the same cpu. If not matched, we just have to retry it.

With this guarantee, preemption enable/disable isn't need at all even if
CONFIG_PREEMPT, so this patch removes it.

I saw roughly 5% win in a fast-path loop over kmem_cache_alloc/free
in CONFIG_PREEMPT. (14.821 ns -> 14.049 ns)

Below is the result of Christoph's slab_test reported by
Jesper Dangaard Brouer.

* Before

 Single thread testing
 =====================
 1. Kmalloc: Repeatedly allocate then free test
 10000 times kmalloc(8) -> 49 cycles kfree -> 62 cycles
 10000 times kmalloc(16) -> 48 cycles kfree -> 64 cycles
 10000 times kmalloc(32) -> 53 cycles kfree -> 70 cycles
 10000 times kmalloc(64) -> 64 cycles kfree -> 77 cycles
 10000 times kmalloc(128) -> 74 cycles kfree -> 84 cycles
 10000 times kmalloc(256) -> 84 cycles kfree -> 114 cycles
 10000 times kmalloc(512) -> 83 cycles kfree -> 116 cycles
 10000 times kmalloc(1024) -> 81 cycles kfree -> 120 cycles
 10000 times kmalloc(2048) -> 104 cycles kfree -> 136 cycles
 10000 times kmalloc(4096) -> 142 cycles kfree -> 165 cycles
 10000 times kmalloc(8192) -> 238 cycles kfree -> 226 cycles
 10000 times kmalloc(16384) -> 403 cycles kfree -> 264 cycles
 2. Kmalloc: alloc/free test
 10000 times kmalloc(8)/kfree -> 68 cycles
 10000 times kmalloc(16)/kfree -> 68 cycles
 10000 times kmalloc(32)/kfree -> 69 cycles
 10000 times kmalloc(64)/kfree -> 68 cycles
 10000 times kmalloc(128)/kfree -> 68 cycles
 10000 times kmalloc(256)/kfree -> 68 cycles
 10000 times kmalloc(512)/kfree -> 74 cycles
 10000 times kmalloc(1024)/kfree -> 75 cycles
 10000 times kmalloc(2048)/kfree -> 74 cycles
 10000 times kmalloc(4096)/kfree -> 74 cycles
 10000 times kmalloc(8192)/kfree -> 75 cycles
 10000 times kmalloc(16384)/kfree -> 510 cycles

* After

 Single thread testing
 =====================
 1. Kmalloc: Repeatedly allocate then free test
 10000 times kmalloc(8) -> 46 cycles kfree -> 61 cycles
 10000 times kmalloc(16) -> 46 cycles kfree -> 63 cycles
 10000 times kmalloc(32) -> 49 cycles kfree -> 69 cycles
 10000 times kmalloc(64) -> 57 cycles kfree -> 76 cycles
 10000 times kmalloc(128) -> 66 cycles kfree -> 83 cycles
 10000 times kmalloc(256) -> 84 cycles kfree -> 110 cycles
 10000 times kmalloc(512) -> 77 cycles kfree -> 114 cycles
 10000 times kmalloc(1024) -> 80 cycles kfree -> 116 cycles
 10000 times kmalloc(2048) -> 102 cycles kfree -> 131 cycles
 10000 times kmalloc(4096) -> 135 cycles kfree -> 163 cycles
 10000 times kmalloc(8192) -> 238 cycles kfree -> 218 cycles
 10000 times kmalloc(16384) -> 399 cycles kfree -> 262 cycles
 2. Kmalloc: alloc/free test
 10000 times kmalloc(8)/kfree -> 65 cycles
 10000 times kmalloc(16)/kfree -> 66 cycles
 10000 times kmalloc(32)/kfree -> 65 cycles
 10000 times kmalloc(64)/kfree -> 66 cycles
 10000 times kmalloc(128)/kfree -> 66 cycles
 10000 times kmalloc(256)/kfree -> 71 cycles
 10000 times kmalloc(512)/kfree -> 72 cycles
 10000 times kmalloc(1024)/kfree -> 71 cycles
 10000 times kmalloc(2048)/kfree -> 71 cycles
 10000 times kmalloc(4096)/kfree -> 71 cycles
 10000 times kmalloc(8192)/kfree -> 65 cycles
 10000 times kmalloc(16384)/kfree -> 511 cycles

Most of the results are better than before.

Note that this change slightly worses performance in !CONFIG_PREEMPT,
roughly 0.3%. Implementing each case separately would help performance,
but, since it's so marginal, I didn't do that. This would help
maintanance since we have same code for all cases.

Tested-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
---
 mm/slub.c |   26 +++++++++++++-------------
 1 file changed, 13 insertions(+), 13 deletions(-)

diff --git a/mm/slub.c b/mm/slub.c
index fe376fe..0624608 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -2398,13 +2398,15 @@ redo:
 	 * reading from one cpu area. That does not matter as long
 	 * as we end up on the original cpu again when doing the cmpxchg.
 	 *
-	 * Preemption is disabled for the retrieval of the tid because that
-	 * must occur from the current processor. We cannot allow rescheduling
-	 * on a different processor between the determination of the pointer
-	 * and the retrieval of the tid.
+	 * We should guarantee that tid and kmem_cache are retrieved on
+	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
+	 * to check if it is matched or not.
 	 */
-	preempt_disable();
-	c = this_cpu_ptr(s->cpu_slab);
+	do {
+		tid = this_cpu_read(s->cpu_slab->tid);
+		c = this_cpu_ptr(s->cpu_slab);
+	} while (IS_ENABLED(CONFIG_PREEMPT) && unlikely(tid != c->tid));
+	barrier();
 
 	/*
 	 * The transaction ids are globally unique per cpu and per operation on
@@ -2412,8 +2414,6 @@ redo:
 	 * occurs on the right processor and that there was no operation on the
 	 * linked list in between.
 	 */
-	tid = c->tid;
-	preempt_enable();
 
 	object = c->freelist;
 	page = c->page;
@@ -2659,11 +2659,11 @@ redo:
 	 * data is retrieved via this pointer. If we are on the same cpu
 	 * during the cmpxchg then the free will succedd.
 	 */
-	preempt_disable();
-	c = this_cpu_ptr(s->cpu_slab);
-
-	tid = c->tid;
-	preempt_enable();
+	do {
+		tid = this_cpu_read(s->cpu_slab->tid);
+		c = this_cpu_ptr(s->cpu_slab);
+	} while (IS_ENABLED(CONFIG_PREEMPT) && unlikely(tid != c->tid));
+	barrier();
 
 	if (likely(page == c->page)) {
 		set_freepointer(s, object, c->freelist);
-- 
1.7.9.5

--
To unsubscribe, send a message with 'unsubscribe linux-mm' in
the body to majordomo@kvack.org.  For more info on Linux MM,
see: http://www.linux-mm.org/ .
Don't email: <a href=mailto:"dont@kvack.org"> email@kvack.org </a>

^ permalink raw reply related	[flat|nested] 11+ messages in thread

end of thread, other threads:[~2015-01-09  3:34 UTC | newest]

Thread overview: 11+ messages (download: mbox.gz follow: Atom feed
-- links below jump to the message on this page --
2015-01-05  8:37 [PATCH 1/2] mm/slub: optimize alloc/free fastpath by removing preemption on/off Hillf Danton
2015-01-06  1:32 ` Joonsoo Kim
2015-01-06  2:25   ` Steven Rostedt
2015-01-06  8:27     ` Joonsoo Kim
  -- strict thread matches above, loose matches on Subject: below --
2015-01-05  1:36 Joonsoo Kim
2015-01-05 14:52 ` Christoph Lameter
2015-01-06  3:03 ` Davidlohr Bueso
2015-01-06  8:09   ` Joonsoo Kim
2015-01-06 17:02     ` Davidlohr Bueso
2015-01-08  7:44       ` Joonsoo Kim
2015-01-09  3:34         ` Christoph Lameter

This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).