From: Mel Gorman <mel@csn.ul.ie>
To: Andrea Arcangeli <aarcange@redhat.com>
Cc: linux-mm@kvack.org, Marcelo Tosatti <mtosatti@redhat.com>,
Adam Litke <agl@us.ibm.com>, Avi Kivity <avi@redhat.com>,
Izik Eidus <ieidus@redhat.com>,
Hugh Dickins <hugh.dickins@tiscali.co.uk>,
Nick Piggin <npiggin@suse.de>, Rik van Riel <riel@redhat.com>,
Dave Hansen <dave@linux.vnet.ibm.com>,
Benjamin Herrenschmidt <benh@kernel.crashing.org>,
Ingo Molnar <mingo@elte.hu>, Mike Travis <travis@sgi.com>,
KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>,
Christoph Lameter <cl@linux-foundation.org>,
Chris Wright <chrisw@sous-sol.org>,
Andrew Morton <akpm@linux-foundation.org>,
bpicco@redhat.com, Christoph Hellwig <hch@infradead.org>,
KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>,
Balbir Singh <balbir@linux.vnet.ibm.com>,
Arnd Bergmann <arnd@arndb.de>
Subject: Re: [PATCH 25 of 31] transparent hugepage core
Date: Thu, 28 Jan 2010 17:57:54 +0000 [thread overview]
Message-ID: <20100128175753.GF7139@csn.ul.ie> (raw)
In-Reply-To: <ac9bbf9e2c95840eb237.1264689219@v2.random>
Sorry for the long delay getting to this patch. I ran out of beans the
first time around. Unlike Rik, I can't handle 31 patches in one sitting.
On Thu, Jan 28, 2010 at 03:33:39PM +0100, Andrea Arcangeli wrote:
> From: Andrea Arcangeli <aarcange@redhat.com>
>
> Lately I've been working to make KVM use hugepages transparently
> without the usual restrictions of hugetlbfs. Some of the restrictions
> I'd like to see removed:
>
> 1) hugepages have to be swappable or the guest physical memory remains
> locked in RAM and can't be paged out to swap
>
It occurs to me that this infrastructure should be reusable to make allow
optional swapping of hugetlbfs. I haven't investigated the possibility properly
but it should be doable as a mount option with maybe a boot-parameter for
shared memory.
> 2) if a hugepage allocation fails, regular pages should be allocated
> instead and mixed in the same vma without any failure and without
> userland noticing
>
> 3) if some task quits and more hugepages become available in the
> buddy, guest physical memory backed by regular pages should be
> relocated on hugepages automatically in regions under
> madvise(MADV_HUGEPAGE) (ideally event driven by waking up the
> kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes
> not null)
>
> 4) avoidance of reservation and maximization of use of hugepages whenever
> possible. Reservation (needed to avoid runtime fatal faliures) may be ok for
> 1 machine with 1 database with 1 database cache with 1 database cache size
> known at boot time. It's definitely not feasible with a virtualization
> hypervisor usage like RHEV-H that runs an unknown number of virtual machines
> with an unknown size of each virtual machine with an unknown amount of
> pagecache that could be potentially useful in the host for guest not using
> O_DIRECT (aka cache=off).
>
> hugepages in the virtualization hypervisor (and also in the guest!) are
> much more important than in a regular host not using virtualization, becasue
> with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in
> case only the hypervisor uses transparent hugepages, and they decrease the
> tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and
> the linux guest both uses this patch (though the guest will limit the addition
> speedup to anonymous regions only for now...). Even more important is that the
> tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow
> paging or no-virtualization scenario. So maximizing the amount of virtual
> memory cached by the TLB pays off significantly more with NPT/EPT than without
> (even if there would be no significant speedup in the tlb-miss runtime).
>
> The first (and more tedious) part of this work requires allowing the VM to
> handle anonymous hugepages mixed with regular pages transparently on regular
> anonymous vmas. This is what this patch tries to achieve in the least intrusive
> possible way. We want hugepages and hugetlb to be used in a way so that all
> applications can benefit without changes (as usual we leverage the KVM
> virtualization design: by improving the Linux VM at large, KVM gets the
> performance boost too).
>
> The most important design choice is: always fallback to 4k allocation
> if the hugepage allocation fails! This is the _very_ opposite of some
> large pagecache patches that failed with -EIO back then if a 64k (or
> similar) allocation failed...
>
> Second important decision (to reduce the impact of the feature on the
> existing pagetable handling code) is that at any time we can split an
> hugepage into 512 regular pages and it has to be done with an
> operation that can't fail. This way the reliability of the swapping
> isn't decreased (no need to allocate memory when we are short on
> memory to swap) and it's trivial to plug a split_huge_page* one-liner
> where needed without polluting the VM. Over time we can teach
> mprotect, mremap and friends to handle pmd_trans_huge natively without
> calling split_huge_page*. The fact it can't fail isn't just for swap:
> if split_huge_page would return -ENOMEM (instead of the current void)
> we'd need to rollback the mprotect from the middle of it (ideally
> including undoing the split_vma) which would be a big change and in
> the very wrong direction (it'd likely be simpler not to call
> split_huge_page at all and to teach mprotect and friends to handle
> hugepages instead of rolling them back from the middle). In short the
> very value of split_huge_page is that it can't fail.
>
> The collapsing and madvise(MADV_HUGEPAGE) part will remain separated
> and incremental and it'll just be an "harmless" addition later if this
> initial part is agreed upon. It also should be noted that locking-wise
> replacing regular pages with hugepages is going to be very easy if
> compared to what I'm doing below in split_huge_page, as it will only
> happen when page_count(page) matches page_mapcount(page) if we can
> take the PG_lock and mmap_sem in write mode. collapse_huge_page will
> be a "best effort" that (unlike split_huge_page) can fail at the
> minimal sign of trouble and we can try again later. collapse_huge_page
> will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will
> work similar to madvise(MADV_MERGEABLE).
>
> The default I like is that transparent hugepages are used at page fault time.
> This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The
> control knob can be set to three values "always", "madvise", "never" which
> mean respectively that hugepages are always used, or only inside
> madvise(MADV_HUGEPAGE) regions, or never used.
> /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage
> allocation should defrag memory aggressively "always", only inside "madvise"
> regions, or "never".
>
As I write this, I haven't read the patch but I suspect the default will
depend on how mmap_sem is used. For example, if "always" means that down_read
is called for longer periods of time then workloads that mmap() heavily or
otherwise depend on down_write could suffer.
> The pmd_trans_splitting/pmd_trans_huge locking is very solid. The
> put_page (from get_user_page users that can't use mmu notifier like
> O_DIRECT) that runs against a __split_huge_page_refcount instead was a
> pain to serialize in a way that would result always in a coherent page
> count for both tail and head. I think my locking solution with a
> compound_lock taken only after the page_first is valid and is still a
> PageHead should be safe but it surely needs review from SMP race point
> of view. In short there is no current existing way to serialize the
> O_DIRECT final put_page against split_huge_page_refcount so I had to
> invent a new one (O_DIRECT loses knowledge on the mapping status by
> the time gup_fast returns so...). And I didn't want to impact all
> gup/gup_fast users for now, maybe if we change the gup interface
> substantially we can avoid this locking, I admit I didn't think too
> much about it because changing the gup unpinning interface would be
> invasive.
>
> If we ignored O_DIRECT we could stick to the existing compound
> refcounting code, by simply adding a
> get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu
> notifier user) would call it without FOLL_GET (and if FOLL_GET isn't
> set we'd just BUG_ON if nobody registered itself in the current task
> mmu notifier list yet). But O_DIRECT is fundamental for decent
> performance of virtualized I/O on fast storage so we can't avoid it to
> solve the race of put_page against split_huge_page_refcount to achieve
> a complete hugepage feature for KVM.
>
> Swap and oom works fine (well just like with regular pages ;).
I think that's the first time I've ever heard OOM handling described as
"fine" :)
> MMU
> notifier is handled transparently too, with the exception of the young
> bit on the pmd, that didn't have a range check but I think KVM will be
> fine because the whole point of hugepages is that EPT/NPT will also
> use a huge pmd when they notice gup returns pages with PageCompound set,
> so they won't care of a range and there's just the pmd young bit to
> check in that case.
>
> NOTE: in some cases if the L2 cache is small, this may slowdown and
> waste memory during COWs because 4M of memory are accessed in a single
> fault instead of 8k (the payoff is that after COW the program can run
> faster). So we might want to switch the copy_huge_page (and
> clear_huge_page too) to not temporal stores. I also extensively
> researched ways to avoid this cache trashing with a full prefault
> logic that would cow in 8k/16k/32k/64k up to 1M (I can send those
> patches that fully implemented prefault) but I concluded they're not
> worth it and they add an huge additional complexity and they remove all tlb
> benefits until the full hugepage has been faulted in, to save a little bit of
> memory and some cache during app startup,
FWIW, having read the available papers on transparent support, I agree that
prefault logic is unlikely to be a proven win. The complexity and overhead of
prefaulting are guaranteed and easy to measure. The benefits due to huge page
usage are a "maybe", harder to prove and depend on the workload and hardware.
Using hugetlbfs with huge pages is also recognised to have significant costs
during startup which is faulting in pages larger than 4K. In benchmarking,
it can show up as huge pages hurting performance if the benchmark is too
short-lived.
> but they still don't improve
> substantially the cache-trashing during startup if the prefault happens in >4k
> chunks.
> One reason is that those 4k pte entries copied are still mapped on a
> perfectly cache-colored hugepage, so the trashing is the worst one can generate
> in those copies (cow of 4k page copies aren't so well colored so they trashes
> less, but again this results in software running faster after the page fault).
> Those prefault patches allowed things like a pte where post-cow pages were
> local 4k regular anon pages and the not-yet-cowed pte entries were pointing in
> the middle of some hugepage mapped read-only. If it doesn't payoff
> substantially with todays hardware it will payoff even less in the future with
> larger l2 caches, and the prefault logic would blot the VM a lot. If one is
> emebdded transparent_hugepage can be disabled during boot with sysfs or with
> the boot commandline parameter transparent_hugepage=0 (or
> transparent_hugepage=2 to restrict hugepages inside madvise regions) that will
> ensure not a single hugepage is allocated at boot time. It is simple enough to
> just disable transparent hugepage globally and let transparent hugepages be
> allocated selectively by applications in the MADV_HUGEPAGE region (both at page
> fault time, and if enabled with the collapse_huge_page too through the kernel
> daemon).
>
> This patch supports only hugepages mapped in the pmd, archs that have
> smaller hugepages will not fit in this patch alone. Also some archs like power
> have certain tlb limits that prevents mixing different page size in the same
> regions so they will not fit in this framework that requires "graceful
> fallback" to basic PAGE_SIZE in case of physical memory fragmentation.
> hugetlbfs remains a perfect fit for those because its software limits happen to
> match the hardware limits. hugetlbfs also remains a perfect fit for hugepage
> sizes like 1GByte that cannot be hoped to be found not fragmented after a
> certain system uptime and that would be very expensive to defragment with
> relocation, so requiring reservation. hugetlbfs is the "reservation way", the
> point of transparent hugepages is not to have any reservation at all and
> maximizing the use of cache and hugepages at all times automatically.
>
> Some performance result:
>
> vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3
<plug>
could have done
hugectl --heap ./largepage3
too if your version of libhugetlbfs was recent enough to have the
utilities packed.
</plug>
> memset page fault 1566023
> memset tlb miss 453854
> memset second tlb miss 453321
> random access tlb miss 41635
> random access second tlb miss 41658
> vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3
> memset page fault 1566471
> memset tlb miss 453375
> memset second tlb miss 453320
> random access tlb miss 41636
> random access second tlb miss 41637
> vmx andrea # ./largepages3
> memset page fault 1566642
> memset tlb miss 453417
> memset second tlb miss 453313
> random access tlb miss 41630
> random access second tlb miss 41647
> vmx andrea # ./largepages3
> memset page fault 1566872
> memset tlb miss 453418
> memset second tlb miss 453315
> random access tlb miss 41618
> random access second tlb miss 41659
> vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage
> vmx andrea # ./largepages3
> memset page fault 2182476
> memset tlb miss 460305
> memset second tlb miss 460179
> random access tlb miss 44483
> random access second tlb miss 44186
> vmx andrea # ./largepages3
> memset page fault 2182791
> memset tlb miss 460742
> memset second tlb miss 459962
> random access tlb miss 43981
> random access second tlb miss 43988
>
> ============
> #include <stdio.h>
> #include <stdlib.h>
> #include <string.h>
> #include <sys/time.h>
>
> #define SIZE (3UL*1024*1024*1024)
>
> int main()
> {
> char *p = malloc(SIZE), *p2;
> struct timeval before, after;
>
> gettimeofday(&before, NULL);
> memset(p, 0, SIZE);
> gettimeofday(&after, NULL);
> printf("memset page fault %Lu\n",
> (after.tv_sec-before.tv_sec)*1000000UL +
> after.tv_usec-before.tv_usec);
>
> gettimeofday(&before, NULL);
> memset(p, 0, SIZE);
> gettimeofday(&after, NULL);
> printf("memset tlb miss %Lu\n",
> (after.tv_sec-before.tv_sec)*1000000UL +
> after.tv_usec-before.tv_usec);
>
> gettimeofday(&before, NULL);
> memset(p, 0, SIZE);
> gettimeofday(&after, NULL);
> printf("memset second tlb miss %Lu\n",
> (after.tv_sec-before.tv_sec)*1000000UL +
> after.tv_usec-before.tv_usec);
>
> gettimeofday(&before, NULL);
> for (p2 = p; p2 < p+SIZE; p2 += 4096)
> *p2 = 0;
> gettimeofday(&after, NULL);
> printf("random access tlb miss %Lu\n",
> (after.tv_sec-before.tv_sec)*1000000UL +
> after.tv_usec-before.tv_usec);
>
> gettimeofday(&before, NULL);
> for (p2 = p; p2 < p+SIZE; p2 += 4096)
> *p2 = 0;
> gettimeofday(&after, NULL);
> printf("random access second tlb miss %Lu\n",
> (after.tv_sec-before.tv_sec)*1000000UL +
> after.tv_usec-before.tv_usec);
>
> return 0;
> }
> ============
>
> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
> ---
>
> diff --git a/include/linux/huge_mm.h b/include/linux/huge_mm.h
> new file mode 100644
> --- /dev/null
> +++ b/include/linux/huge_mm.h
> @@ -0,0 +1,128 @@
> +#ifndef _LINUX_HUGE_MM_H
> +#define _LINUX_HUGE_MM_H
> +
> +extern int do_huge_pmd_anonymous_page(struct mm_struct *mm,
> + struct vm_area_struct *vma,
> + unsigned long address, pmd_t *pmd,
> + unsigned int flags);
> +extern int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
> + pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
> + struct vm_area_struct *vma);
> +extern int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
> + unsigned long address, pmd_t *pmd,
> + pmd_t orig_pmd);
> +extern pgtable_t get_pmd_huge_pte(struct mm_struct *mm);
> +extern struct page *follow_trans_huge_pmd(struct mm_struct *mm,
> + unsigned long addr,
> + pmd_t *pmd,
> + unsigned int flags);
> +extern int zap_huge_pmd(struct mmu_gather *tlb,
> + struct vm_area_struct *vma,
> + pmd_t *pmd);
> +
> +enum transparent_hugepage_flag {
> + TRANSPARENT_HUGEPAGE_FLAG,
> + TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
> + TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
> + TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
> +#ifdef CONFIG_DEBUG_VM
> + TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG,
> +#endif
> +};
Will need Documentation/ updates at some point explaining these flags
and how they apply to the transparent_hugepage= boot parameter.
It's not overly important but as these are flags, it would have been
more readable to just define them as 1, 2, 4, 8 etc rather than using
1<<TRANSPARENT_HUGEPAGE_X in so many places. i.e. similar to how GFP
flags are defined and used. I know you use test_bit on these later but
it's not clear you need the locked checks and could just use
"if (flags & whatever)"
> +
> +enum page_check_address_pmd_flag {
> + PAGE_CHECK_ADDRESS_PMD_FLAG,
> + PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG,
> + PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG,
> +};
> +extern pmd_t *page_check_address_pmd(struct page *page,
> + struct mm_struct *mm,
> + unsigned long address,
> + enum page_check_address_pmd_flag flag);
> +
> +#define HPAGE_PMD_SHIFT HPAGE_SHIFT
> +#define HPAGE_PMD_MASK HPAGE_MASK
> +#define HPAGE_PMD_SIZE HPAGE_SIZE
> +
Should these be defined by the architecture? I ask because your patch notes
that architectures supporting huge pages at levels other than the PMD will
have issues. On IA-64 for example, HPAGE_SHIFT can be set as a kernel boot
parameter.
That said, these definitions work for the architecture that *is* supported.
> +#ifdef CONFIG_TRANSPARENT_HUGEPAGE
> +#define transparent_hugepage_enabled(__vma) \
> + (transparent_hugepage_flags & (1<<TRANSPARENT_HUGEPAGE_FLAG) || \
> + (transparent_hugepage_flags & \
> + (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG) && \
> + (__vma)->vm_flags & VM_HUGEPAGE))
> +#define transparent_hugepage_defrag(__vma) \
> + (transparent_hugepage_flags & \
> + (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG) || \
> + (transparent_hugepage_flags & \
> + (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG) && \
> + (__vma)->vm_flags & VM_HUGEPAGE))
> +#ifdef CONFIG_DEBUG_VM
> +#define transparent_hugepage_debug_cow() \
> + (transparent_hugepage_flags & \
> + (1<<TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG))
> +#else /* CONFIG_DEBUG_VM */
> +#define transparent_hugepage_debug_cow() 0
> +#endif /* CONFIG_DEBUG_VM */
> +
> +extern unsigned long transparent_hugepage_flags;
> +extern int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
> + pmd_t *dst_pmd, pmd_t *src_pmd,
> + struct vm_area_struct *vma,
> + unsigned long addr, unsigned long end);
> +extern int handle_pte_fault(struct mm_struct *mm,
> + struct vm_area_struct *vma, unsigned long address,
> + pte_t *pte, pmd_t *pmd, unsigned int flags);
> +extern void __split_huge_page_mm(struct mm_struct *mm, unsigned long address,
> + pmd_t *pmd);
> +extern void __split_huge_page_vma(struct vm_area_struct *vma, pmd_t *pmd);
> +extern int split_huge_page(struct page *page);
> +#define split_huge_page_mm(__mm, __addr, __pmd) \
> + do { \
> + if (unlikely(pmd_trans_huge(*(__pmd)))) \
> + __split_huge_page_mm(__mm, __addr, __pmd); \
> + } while (0)
I'm not sure what the current popular thing is but ...
__pmd is using in this #define twice. Hypothetically, if the third
parameter passed to this function had side-effects (e.g. pmd++), then
the expectation of the caller is that it happens once but in reality it
happens twice due to the use of #define.
For this reason, I prefer to see static inlines instead of #defines where
parameters appear more than once. Just because you do not have stupid
callers doesn't mean that someone else will add one for you in the
future.
> +#define split_huge_page_vma(__vma, __pmd) \
> + do { \
> + if (unlikely(pmd_trans_huge(*(__pmd)))) \
> + __split_huge_page_vma(__vma, __pmd); \
> + } while (0)
> +#define wait_split_huge_page(__anon_vma, __pmd) \
> + do { \
> + smp_mb(); \
> + spin_unlock_wait(&(__anon_vma)->lock); \
> + smp_mb(); \
> + VM_BUG_ON(pmd_trans_splitting(*(__pmd)) || \
> + pmd_trans_huge(*(__pmd))); \
> + } while (0)
Barriers without comments are doomed to stupid questions. Can you add a
comment on what this barrier is protecting against?
I *think* it's because spin unlocking is not a barrier (although the exact
details escape me) so presumably spin_unlock_wait() isn't one either. In
this case, you have to be sure that reads/writes to that lock that occured
since you called pmd_trans_splitting() have happened. Am I close?
> +#define HPAGE_PMD_ORDER (HPAGE_PMD_SHIFT-PAGE_SHIFT)
> +#define HPAGE_PMD_NR (1<<HPAGE_PMD_ORDER)
> +#if HPAGE_PMD_ORDER > MAX_ORDER
> +#error "hugepages can't be allocated by the buddy allocator"
> +#endif
> +
> +extern unsigned long vma_address(struct page *page, struct vm_area_struct *vma);
> +static inline int PageTransHuge(struct page *page)
> +{
> + VM_BUG_ON(PageTail(page));
> + return PageHead(page);
> +}
> +#else /* CONFIG_TRANSPARENT_HUGEPAGE */
> +#define transparent_hugepage_enabled(__vma) 0
> +#define transparent_hugepage_defrag(__vma) 0
> +#define transparent_hugepage_debug_cow() 0
> +
> +#define transparent_hugepage_flags 0UL
> +static inline int split_huge_page(struct page *page)
> +{
> + return 0;
> +}
> +#define split_huge_page_mm(__mm, __addr, __pmd) \
> + do { } while (0)
> +#define split_huge_page_vma(__vma, __pmd) \
> + do { } while (0)
> +#define wait_split_huge_page(__anon_vma, __pmd) \
> + do { } while (0)
> +#define PageTransHuge(page) 0
> +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
> +
> +#endif /* _LINUX_HUGE_MM_H */
> diff --git a/include/linux/mm.h b/include/linux/mm.h
> --- a/include/linux/mm.h
> +++ b/include/linux/mm.h
> @@ -106,6 +106,9 @@ extern unsigned int kobjsize(const void
> #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
> #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
> #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
> +#if BITS_PER_LONG > 32
> +#define VM_HUGEPAGE 0x100000000UL /* MADV_HUGEPAGE marked this vma */
> +#endif
>
#ifdef CONFIG_TRANSPARENT_HUGEPAGE ?
Because of the use of the page flag bits, I believe you are restricted to
64 bit anyway.
> #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
> #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
> @@ -234,6 +237,7 @@ struct inode;
> * files which need it (119 of them)
> */
> #include <linux/page-flags.h>
> +#include <linux/huge_mm.h>
>
> /*
> * Methods to modify the page usage count.
> diff --git a/include/linux/mm_inline.h b/include/linux/mm_inline.h
> --- a/include/linux/mm_inline.h
> +++ b/include/linux/mm_inline.h
> @@ -20,11 +20,18 @@ static inline int page_is_file_cache(str
> }
>
> static inline void
> +__add_page_to_lru_list(struct zone *zone, struct page *page, enum lru_list l,
> + struct list_head *head)
> +{
> + list_add(&page->lru, head);
> + __inc_zone_state(zone, NR_LRU_BASE + l);
> + mem_cgroup_add_lru_list(page, l);
> +}
> +
> +static inline void
> add_page_to_lru_list(struct zone *zone, struct page *page, enum lru_list l)
> {
> - list_add(&page->lru, &zone->lru[l].list);
> - __inc_zone_state(zone, NR_LRU_BASE + l);
> - mem_cgroup_add_lru_list(page, l);
> + __add_page_to_lru_list(zone, page, l, &zone->lru[l].list);
> }
>
> static inline void
> diff --git a/include/linux/swap.h b/include/linux/swap.h
> --- a/include/linux/swap.h
> +++ b/include/linux/swap.h
> @@ -205,6 +205,8 @@ extern unsigned int nr_free_pagecache_pa
> /* linux/mm/swap.c */
> extern void __lru_cache_add(struct page *, enum lru_list lru);
> extern void lru_cache_add_lru(struct page *, enum lru_list lru);
> +extern void lru_add_page_tail(struct zone* zone,
> + struct page *page, struct page *page_tail);
> extern void activate_page(struct page *);
> extern void mark_page_accessed(struct page *);
> extern void lru_add_drain(void);
> diff --git a/mm/Makefile b/mm/Makefile
> --- a/mm/Makefile
> +++ b/mm/Makefile
> @@ -40,3 +40,4 @@ obj-$(CONFIG_MEMORY_FAILURE) += memory-f
> obj-$(CONFIG_HWPOISON_INJECT) += hwpoison-inject.o
> obj-$(CONFIG_DEBUG_KMEMLEAK) += kmemleak.o
> obj-$(CONFIG_DEBUG_KMEMLEAK_TEST) += kmemleak-test.o
> +obj-$(CONFIG_TRANSPARENT_HUGEPAGE) += huge_memory.o
> diff --git a/mm/huge_memory.c b/mm/huge_memory.c
> new file mode 100644
> --- /dev/null
> +++ b/mm/huge_memory.c
> @@ -0,0 +1,849 @@
> +/*
> + * Copyright (C) 2009 Red Hat, Inc.
> + *
> + * This work is licensed under the terms of the GNU GPL, version 2. See
> + * the COPYING file in the top-level directory.
> + */
> +
> +#include <linux/mm.h>
> +#include <linux/sched.h>
> +#include <linux/highmem.h>
> +#include <linux/hugetlb.h>
> +#include <linux/mmu_notifier.h>
> +#include <linux/rmap.h>
> +#include <linux/swap.h>
> +#include <asm/tlb.h>
> +#include <asm/pgalloc.h>
> +#include "internal.h"
> +
> +unsigned long transparent_hugepage_flags __read_mostly =
> + (1<<TRANSPARENT_HUGEPAGE_FLAG)|(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG);
> +
> +#ifdef CONFIG_SYSFS
> +static ssize_t double_flag_show(struct kobject *kobj,
> + struct kobj_attribute *attr, char *buf,
> + enum transparent_hugepage_flag enabled,
> + enum transparent_hugepage_flag req_madv)
> +{
> + if (test_bit(enabled, &transparent_hugepage_flags)) {
> + VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
> + return sprintf(buf, "[always] madvise never\n");
> + } else if (test_bit(req_madv, &transparent_hugepage_flags))
> + return sprintf(buf, "always [madvise] never\n");
> + else
> + return sprintf(buf, "always madvise [never]\n");
> +}
> +static ssize_t double_flag_store(struct kobject *kobj,
> + struct kobj_attribute *attr,
> + const char *buf, size_t count,
> + enum transparent_hugepage_flag enabled,
> + enum transparent_hugepage_flag req_madv)
> +{
> + if (!memcmp("always", buf,
> + min(sizeof("always")-1, count))) {
> + set_bit(enabled, &transparent_hugepage_flags);
> + clear_bit(req_madv, &transparent_hugepage_flags);
> + } else if (!memcmp("madvise", buf,
> + min(sizeof("madvise")-1, count))) {
> + clear_bit(enabled, &transparent_hugepage_flags);
> + set_bit(req_madv, &transparent_hugepage_flags);
> + } else if (!memcmp("never", buf,
> + min(sizeof("never")-1, count))) {
> + clear_bit(enabled, &transparent_hugepage_flags);
> + clear_bit(req_madv, &transparent_hugepage_flags);
> + } else
> + return -EINVAL;
> +
> + return count;
> +}
> +
> +static ssize_t enabled_show(struct kobject *kobj,
> + struct kobj_attribute *attr, char *buf)
> +{
> + return double_flag_show(kobj, attr, buf,
> + TRANSPARENT_HUGEPAGE_FLAG,
> + TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
> +}
> +static ssize_t enabled_store(struct kobject *kobj,
> + struct kobj_attribute *attr,
> + const char *buf, size_t count)
> +{
> + return double_flag_store(kobj, attr, buf, count,
> + TRANSPARENT_HUGEPAGE_FLAG,
> + TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
> +}
> +static struct kobj_attribute enabled_attr =
> + __ATTR(enabled, 0644, enabled_show, enabled_store);
> +
> +/*
> + * Currently uses __GFP_REPEAT during allocation. Should be
> + * implemented using page migration and real defrag algorithms in
> + * future VM.
> + */
> +static ssize_t defrag_show(struct kobject *kobj,
> + struct kobj_attribute *attr, char *buf)
> +{
> + return double_flag_show(kobj, attr, buf,
> + TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
> + TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
> +}
> +static ssize_t defrag_store(struct kobject *kobj,
> + struct kobj_attribute *attr,
> + const char *buf, size_t count)
> +{
> + return double_flag_store(kobj, attr, buf, count,
> + TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
> + TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
> +}
> +static struct kobj_attribute defrag_attr =
> + __ATTR(defrag, 0644, defrag_show, defrag_store);
> +
> +#ifdef CONFIG_DEBUG_VM
> +static ssize_t single_flag_show(struct kobject *kobj,
> + struct kobj_attribute *attr, char *buf,
> + enum transparent_hugepage_flag flag)
> +{
> + if (test_bit(flag, &transparent_hugepage_flags))
> + return sprintf(buf, "[yes] no\n");
> + else
> + return sprintf(buf, "yes [no]\n");
> +}
> +static ssize_t single_flag_store(struct kobject *kobj,
> + struct kobj_attribute *attr,
> + const char *buf, size_t count,
> + enum transparent_hugepage_flag flag)
> +{
> + if (!memcmp("yes", buf,
> + min(sizeof("yes")-1, count))) {
> + set_bit(flag, &transparent_hugepage_flags);
> + } else if (!memcmp("no", buf,
> + min(sizeof("no")-1, count))) {
> + clear_bit(flag, &transparent_hugepage_flags);
> + } else
> + return -EINVAL;
> +
> + return count;
> +}
> +
> +static ssize_t debug_cow_show(struct kobject *kobj,
> + struct kobj_attribute *attr, char *buf)
> +{
> + return single_flag_show(kobj, attr, buf,
> + TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
> +}
> +static ssize_t debug_cow_store(struct kobject *kobj,
> + struct kobj_attribute *attr,
> + const char *buf, size_t count)
> +{
> + return single_flag_store(kobj, attr, buf, count,
> + TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
> +}
> +static struct kobj_attribute debug_cow_attr =
> + __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
> +#endif /* CONFIG_DEBUG_VM */
> +
> +static struct attribute *hugepage_attr[] = {
> + &enabled_attr.attr,
> + &defrag_attr.attr,
> +#ifdef CONFIG_DEBUG_VM
> + &debug_cow_attr.attr,
> +#endif
> + NULL,
> +};
> +
> +static struct attribute_group hugepage_attr_group = {
> + .attrs = hugepage_attr,
> + .name = "transparent_hugepage",
> +};
> +#endif /* CONFIG_SYSFS */
> +
> +static int __init ksm_init(void)
> +{
> +#ifdef CONFIG_SYSFS
> + int err;
> +
> + err = sysfs_create_group(mm_kobj, &hugepage_attr_group);
> + if (err)
> + printk(KERN_ERR "hugepage: register sysfs failed\n");
> +#endif
> + return 0;
> +}
> +module_init(ksm_init)
> +
ksm_init.... I'm not seeing the connection to KSM. I suspect you cut&pasted
from ksm.c there and forgot to rename it. It's not important as the static
avoids collisions but it looks odd.
> +static int __init setup_transparent_hugepage(char *str)
> +{
> + if (!str)
> + return 0;
> + transparent_hugepage_flags = simple_strtoul(str, &str, 0);
> + return 1;
> +}
> +__setup("transparent_hugepage=", setup_transparent_hugepage);
> +
The parameters are never sanity checked. This means that flags that should be
mutually exclusive can be set at the same time. e.g. TRANSPARENT_HUGEPAGE_FLAG
and TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG.
I didn't check how important this is, but prehaps you should be using the
same helper functions as used in sysfs.
> +
> +static void prepare_pmd_huge_pte(pgtable_t pgtable,
> + struct mm_struct *mm)
> +{
> + VM_BUG_ON(spin_can_lock(&mm->page_table_lock));
> +
> + /* FIFO */
> + if (!mm->pmd_huge_pte)
> + INIT_LIST_HEAD(&pgtable->lru);
> + else
> + list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
> + mm->pmd_huge_pte = pgtable;
> +}
> +
> +static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
> +{
> + if (likely(vma->vm_flags & VM_WRITE))
> + pmd = pmd_mkwrite(pmd);
> + return pmd;
> +}
> +
> +static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
> + struct vm_area_struct *vma,
> + unsigned long address, pmd_t *pmd,
> + struct page *page,
> + unsigned long haddr)
> +{
> + int ret = 0;
> + pgtable_t pgtable;
> +
> + VM_BUG_ON(!PageCompound(page));
> + pgtable = pte_alloc_one(mm, address);
> + if (unlikely(!pgtable)) {
> + put_page(page);
> + return VM_FAULT_OOM;
> + }
> +
> + clear_huge_page(page, haddr, HPAGE_PMD_NR);
> + __SetPageUptodate(page);
> +
> + /*
> + * spin_lock() below is not the equivalent of smp_wmb(), so
> + * this is needed to avoid the clear_huge_page writes to
> + * become visible after the set_pmd_at() write.
> + */
> + smp_wmb();
> +
I'm not seeing the equivalent barrier in do_anonymous_page() between
when the page is zero'd and the PTE inserted. What am I missing?
> + spin_lock(&mm->page_table_lock);
> + if (unlikely(!pmd_none(*pmd))) {
> + spin_unlock(&mm->page_table_lock);
> + put_page(page);
> + pte_free(mm, pgtable);
> + } else {
> + pmd_t entry;
> + entry = mk_pmd(page, vma->vm_page_prot);
> + entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
> + entry = pmd_mkhuge(entry);
> + page_add_new_anon_rmap(page, vma, haddr);
> + set_pmd_at(mm, haddr, pmd, entry);
> + prepare_pmd_huge_pte(pgtable, mm);
> + add_mm_counter(mm, anon_rss, HPAGE_PMD_NR);
> + spin_unlock(&mm->page_table_lock);
> + }
> +
> + return ret;
> +}
> +
> +static inline struct page *alloc_hugepage(int defrag)
> +{
> + return alloc_pages(GFP_HIGHUSER_MOVABLE|__GFP_COMP|
> + (defrag ? __GFP_REPEAT : 0)|__GFP_NOWARN,
> + HPAGE_PMD_ORDER);
> +}
> +
> +int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
> + unsigned long address, pmd_t *pmd,
> + unsigned int flags)
> +{
> + struct page *page;
> + unsigned long haddr = address & HPAGE_PMD_MASK;
> + pte_t *pte;
> +
> + if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
> + if (unlikely(anon_vma_prepare(vma)))
> + return VM_FAULT_OOM;
> + page = alloc_hugepage(transparent_hugepage_defrag(vma));
> + if (unlikely(!page))
> + goto out;
> +
Something to consider here performance-wise when transparent-hugepage is
defaulted to "always".
alloc_hugepage() is potentially very expensive. You could enter direct
reclaim, lumpy reclaim, wakeup kswapd etc. If you want to optimistically
use huge pages, it might have less impact for !defrag to imply !__GFP_WAIT.
On the other hand, if memory compaction is merged (my test machines are
still tied up, hence no release since), one would be happy for it to compact,
but not necessarily enter direct reclaim.
It's a tricky one.....
> + return __do_huge_pmd_anonymous_page(mm, vma, address, pmd,
> + page, haddr);
> + }
> +out:
> + pte = pte_alloc_map(mm, vma, pmd, address);
> + if (!pte)
> + return VM_FAULT_OOM;
> + return handle_pte_fault(mm, vma, address, pte, pmd, flags);
> +}
> +
> +int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
> + pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
> + struct vm_area_struct *vma)
> +{
> + struct page *src_page;
> + pmd_t pmd;
> + pgtable_t pgtable;
> + int ret;
> +
> + ret = -ENOMEM;
> + pgtable = pte_alloc_one(dst_mm, addr);
> + if (unlikely(!pgtable))
> + goto out;
> +
> + spin_lock(&dst_mm->page_table_lock);
> + spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
> +
> + ret = -EAGAIN;
> + pmd = *src_pmd;
> + if (unlikely(!pmd_trans_huge(pmd)))
> + goto out_unlock;
> + if (unlikely(pmd_trans_splitting(pmd))) {
> + /* split huge page running from under us */
> + spin_unlock(&src_mm->page_table_lock);
> + spin_unlock(&dst_mm->page_table_lock);
> +
> + wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
> + goto out;
> + }
> + src_page = pmd_page(pmd);
> + VM_BUG_ON(!PageHead(src_page));
> + get_page(src_page);
> + page_dup_rmap(src_page);
> + add_mm_counter(dst_mm, anon_rss, HPAGE_PMD_NR);
> +
> + pmdp_set_wrprotect(src_mm, addr, src_pmd);
> + pmd = pmd_mkold(pmd_wrprotect(pmd));
> + set_pmd_at(dst_mm, addr, dst_pmd, pmd);
> + prepare_pmd_huge_pte(pgtable, dst_mm);
> +
> + ret = 0;
> +out_unlock:
> + spin_unlock(&src_mm->page_table_lock);
> + spin_unlock(&dst_mm->page_table_lock);
> +out:
> + return ret;
> +}
> +
> +/* no "address" argument so destroys page coloring of some arch */
> +pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
> +{
> + pgtable_t pgtable;
> +
> + VM_BUG_ON(spin_can_lock(&mm->page_table_lock));
> +
> + /* FIFO */
> + pgtable = mm->pmd_huge_pte;
> + if (list_empty(&pgtable->lru))
> + mm->pmd_huge_pte = NULL;
> + else {
> + mm->pmd_huge_pte = list_entry(pgtable->lru.next,
> + struct page, lru);
> + list_del(&pgtable->lru);
> + }
> + return pgtable;
> +}
> +
> +static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
> + struct vm_area_struct *vma,
> + unsigned long address,
> + pmd_t *pmd, pmd_t orig_pmd,
> + struct page *page,
> + unsigned long haddr)
> +{
> + pgtable_t pgtable;
> + pmd_t _pmd;
> + int ret = 0, i;
> + struct page **pages;
> +
> + pages = kzalloc(sizeof(struct page *) * HPAGE_PMD_NR,
> + GFP_KERNEL);
Is kzalloc really necessary? It's fixed-size and you initialise it so
why not just kmalloc()?
> + if (unlikely(!pages)) {
> + ret |= VM_FAULT_OOM;
> + goto out;
> + }
> +
> + for (i = 0; i < HPAGE_PMD_NR; i++) {
> + pages[i] = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
> + vma, address);
> + if (unlikely(!pages[i])) {
> + while (--i >= 0)
> + put_page(pages[i]);
> + kfree(pages);
> + ret |= VM_FAULT_OOM;
> + goto out;
> + }
> + }
> +
> + spin_lock(&mm->page_table_lock);
> + if (unlikely(!pmd_same(*pmd, orig_pmd)))
> + goto out_free_pages;
> + else
> + get_page(page);
> + spin_unlock(&mm->page_table_lock);
> +
> + for (i = 0; i < HPAGE_PMD_NR; i++) {
> + copy_user_highpage(pages[i], page + i,
> + haddr + PAGE_SHIFT*i, vma);
> + __SetPageUptodate(pages[i]);
> + cond_resched();
> + }
> +
> + spin_lock(&mm->page_table_lock);
> + if (unlikely(!pmd_same(*pmd, orig_pmd)))
> + goto out_free_pages;
> + else
> + put_page(page);
> +
> + pmdp_clear_flush_notify(vma, haddr, pmd);
> + /* leave pmd empty until pte is filled */
> +
> + pgtable = get_pmd_huge_pte(mm);
> + pmd_populate(mm, &_pmd, pgtable);
> +
> + for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
> + pte_t *pte, entry;
> + entry = mk_pte(pages[i], vma->vm_page_prot);
> + entry = maybe_mkwrite(pte_mkdirty(entry), vma);
> + page_add_new_anon_rmap(pages[i], vma, haddr);
> + pte = pte_offset_map(&_pmd, haddr);
> + VM_BUG_ON(!pte_none(*pte));
> + set_pte_at(mm, haddr, pte, entry);
> + pte_unmap(pte);
> + }
> + kfree(pages);
> +
> + mm->nr_ptes++;
> + smp_wmb(); /* make pte visible before pmd */
> + pmd_populate(mm, pmd, pgtable);
> + page_remove_rmap(page);
> + spin_unlock(&mm->page_table_lock);
> +
> + ret |= VM_FAULT_WRITE;
> + put_page(page);
> +
> +out:
> + return ret;
> +
> +out_free_pages:
> + spin_unlock(&mm->page_table_lock);
> + for (i = 0; i < HPAGE_PMD_NR; i++)
> + put_page(pages[i]);
> + kfree(pages);
> + goto out;
> +}
> +
> +int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
> + unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
> +{
> + int ret = 0;
> + struct page *page, *new_page;
> + unsigned long haddr;
> +
> + VM_BUG_ON(!vma->anon_vma);
> + spin_lock(&mm->page_table_lock);
> + if (unlikely(!pmd_same(*pmd, orig_pmd)))
> + goto out_unlock;
> +
> + page = pmd_page(orig_pmd);
> + VM_BUG_ON(!PageCompound(page) || !PageHead(page));
> + haddr = address & HPAGE_PMD_MASK;
> + if (page_mapcount(page) == 1) {
> + pmd_t entry;
> + entry = pmd_mkyoung(orig_pmd);
> + entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
> + if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
> + update_mmu_cache(vma, address, entry);
> + ret |= VM_FAULT_WRITE;
> + goto out_unlock;
> + }
> + spin_unlock(&mm->page_table_lock);
> +
> + new_page = alloc_hugepage(transparent_hugepage_defrag(vma));
> + if (unlikely(transparent_hugepage_debug_cow()) && new_page) {
> + put_page(new_page);
> + new_page = NULL;
> + }
> + if (unlikely(!new_page))
> + return do_huge_pmd_wp_page_fallback(mm, vma, address,
> + pmd, orig_pmd, page, haddr);
> +
> + copy_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
> + __SetPageUptodate(new_page);
> +
> + /*
> + * spin_lock() below is not the equivalent of smp_wmb(), so
> + * this is needed to avoid the copy_huge_page writes to become
> + * visible after the set_pmd_at() write.
> + */
> + smp_wmb();
> +
You do that here but not for the wp_page_fallback in the same type of
setup. Can you point out the obvious thing I'm missing?
> + spin_lock(&mm->page_table_lock);
> + if (unlikely(!pmd_same(*pmd, orig_pmd)))
> + put_page(new_page);
> + else {
> + pmd_t entry;
> + entry = mk_pmd(new_page, vma->vm_page_prot);
> + entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
> + entry = pmd_mkhuge(entry);
> + pmdp_clear_flush_notify(vma, haddr, pmd);
> + page_add_new_anon_rmap(new_page, vma, haddr);
> + set_pmd_at(mm, haddr, pmd, entry);
> + update_mmu_cache(vma, address, entry);
> + page_remove_rmap(page);
> + put_page(page);
> + ret |= VM_FAULT_WRITE;
> + }
> +out_unlock:
> + spin_unlock(&mm->page_table_lock);
> + return ret;
> +}
> +
> +struct page *follow_trans_huge_pmd(struct mm_struct *mm,
> + unsigned long addr,
> + pmd_t *pmd,
> + unsigned int flags)
> +{
> + struct page *page = NULL;
> +
> + VM_BUG_ON(spin_can_lock(&mm->page_table_lock));
> +
> + if (flags & FOLL_WRITE && !pmd_write(*pmd))
> + goto out;
> +
> + page = pmd_page(*pmd);
> + VM_BUG_ON(!PageHead(page));
> + if (flags & FOLL_TOUCH) {
> + pmd_t _pmd;
> + /*
> + * We should set the dirty bit only for FOLL_WRITE but
> + * for now the dirty bit in the pmd is meaningless.
> + * And if the dirty bit will become meaningful and
> + * we'll only set it with FOLL_WRITE, an atomic
> + * set_bit will be required on the pmd to set the
> + * young bit, instead of the current set_pmd_at.
> + */
> + _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
> + set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
> + }
> + page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
> + VM_BUG_ON(!PageCompound(page));
> + if (flags & FOLL_GET)
> + get_page(page);
> +
> +out:
> + return page;
> +}
> +
> +int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
> + pmd_t *pmd)
> +{
> + int ret = 0;
> +
> + spin_lock(&tlb->mm->page_table_lock);
> + if (likely(pmd_trans_huge(*pmd))) {
> + if (unlikely(pmd_trans_splitting(*pmd))) {
> + spin_unlock(&tlb->mm->page_table_lock);
> + wait_split_huge_page(vma->anon_vma,
> + pmd);
> + } else {
> + struct page *page;
> + pgtable_t pgtable;
> + pgtable = get_pmd_huge_pte(tlb->mm);
> + page = pmd_page(*pmd);
> + pmd_clear(pmd);
> + page_remove_rmap(page);
> + VM_BUG_ON(page_mapcount(page) < 0);
> + add_mm_counter(tlb->mm, anon_rss, -HPAGE_PMD_NR);
> + spin_unlock(&tlb->mm->page_table_lock);
> + VM_BUG_ON(!PageHead(page));
> + tlb_remove_page(tlb, page);
> + pte_free(tlb->mm, pgtable);
> + ret = 1;
> + }
> + } else
> + spin_unlock(&tlb->mm->page_table_lock);
> +
> + return ret;
> +}
> +
> +pmd_t *page_check_address_pmd(struct page *page,
> + struct mm_struct *mm,
> + unsigned long address,
> + enum page_check_address_pmd_flag flag)
> +{
> + pgd_t *pgd;
> + pud_t *pud;
> + pmd_t *pmd, *ret = NULL;
> +
> + if (address & ~HPAGE_PMD_MASK)
> + goto out;
> +
> + pgd = pgd_offset(mm, address);
> + if (!pgd_present(*pgd))
> + goto out;
> +
> + pud = pud_offset(pgd, address);
> + if (!pud_present(*pud))
> + goto out;
> +
> + pmd = pmd_offset(pud, address);
> + if (pmd_none(*pmd))
> + goto out;
> + VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
> + pmd_trans_splitting(*pmd));
> + if (pmd_trans_huge(*pmd) && pmd_page(*pmd) == page) {
> + VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
> + !pmd_trans_splitting(*pmd));
> + ret = pmd;
> + }
> +out:
> + return ret;
> +}
> +
> +static int __split_huge_page_splitting(struct page *page,
> + struct vm_area_struct *vma,
> + unsigned long address)
> +{
> + struct mm_struct *mm = vma->vm_mm;
> + pmd_t *pmd;
> + int ret = 0;
> +
> + spin_lock(&mm->page_table_lock);
> + pmd = page_check_address_pmd(page, mm, address,
> + PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
> + if (pmd) {
> + /*
> + * We can't temporarily set the pmd to null in order
> + * to split it, the pmd must remain marked huge at all
> + * times or the VM won't take the pmd_trans_huge paths
> + * and it won't wait on the anon_vma->lock to
> + * serialize against split_huge_page*.
> + */
heh, that is an understatement for the problems that could occur if you set
the PMD to NULL.
> + pmdp_splitting_flush_notify(vma, address, pmd);
> + ret = 1;
> + }
> + spin_unlock(&mm->page_table_lock);
> +
> + return ret;
> +}
> +
> +static void __split_huge_page_refcount(struct page *page)
> +{
> + int i;
> + unsigned long head_index = page->index;
> + struct zone *zone = page_zone(page);
> +
> + /* prevent PageLRU to go away from under us, and freeze lru stats */
hmm, it's not a "now" thing but I suspect it would be preferable to isolate
from the LRU, release the LRU lock, do what you need to do and then add the
pages in batch back onto the LRU.
> + spin_lock_irq(&zone->lru_lock);
> + compound_lock(page);
> +
> + for (i = 1; i < HPAGE_PMD_NR; i++) {
> + struct page *page_tail = page + i;
> +
> + /* tail_page->_count cannot change */
> + atomic_sub(atomic_read(&page_tail->_count), &page->_count);
> + BUG_ON(page_count(page) <= 0);
> + atomic_add(page_mapcount(page) + 1, &page_tail->_count);
> + BUG_ON(atomic_read(&page_tail->_count) <= 0);
> +
> + /* after clearing PageTail the gup refcount can be released */
> + smp_mb();
> +
> + page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
> + page_tail->flags |= (page->flags &
> + ((1L << PG_referenced) |
> + (1L << PG_swapbacked) |
> + (1L << PG_mlocked) |
> + (1L << PG_uptodate)));
> + page_tail->flags |= (1L << PG_dirty);
> +
> + /*
> + * 1) clear PageTail before overwriting first_page
> + * 2) clear PageTail before clearing PageHead for VM_BUG_ON
> + */
> + smp_wmb();
> +
You have the LRU taken with an interrupt-safe lock. Who else could be
manipulating the struct page to make this barrier necessary?
> + /*
> + * __split_huge_page_splitting() already set the
> + * splitting bit in all pmd that could map this
> + * hugepage, that will ensure no CPU can alter the
> + * mapcount on the head page. The mapcount is only
> + * accounted in the head page and it has to be
> + * transferred to all tail pages in the below code. So
> + * for this code to be safe, the split the mapcount
> + * can't change. But that doesn't mean userland can't
> + * keep changing and reading the page contents while
> + * we transfer the mapcount, so the pmd splitting
> + * status is achieved setting a reserved bit in the
> + * pmd, not by clearing the present bit.
> + */
> + BUG_ON(page_mapcount(page_tail));
> + page_tail->_mapcount = page->_mapcount;
> +
> + BUG_ON(page_tail->mapping);
> + page_tail->mapping = page->mapping;
> +
> + page_tail->index = ++head_index;
> +
> + BUG_ON(!PageAnon(page_tail));
> + BUG_ON(!PageUptodate(page_tail));
> + BUG_ON(!PageDirty(page_tail));
> + BUG_ON(!PageSwapBacked(page_tail));
> +
> + lru_add_page_tail(zone, page, page_tail);
> +
> + put_page(page_tail);
> + }
> +
> + ClearPageCompound(page);
> + compound_unlock(page);
> + spin_unlock_irq(&zone->lru_lock);
> +
> + BUG_ON(page_count(page) <= 0);
> +}
> +
> +static int __split_huge_page_map(struct page *page,
> + struct vm_area_struct *vma,
> + unsigned long address)
> +{
> + struct mm_struct *mm = vma->vm_mm;
> + pmd_t *pmd, _pmd;
> + int ret = 0, i;
> + pgtable_t pgtable;
> + unsigned long haddr;
> +
> + spin_lock(&mm->page_table_lock);
> + pmd = page_check_address_pmd(page, mm, address,
> + PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
> + if (pmd) {
> + pgtable = get_pmd_huge_pte(mm);
> + pmd_populate(mm, &_pmd, pgtable);
> +
> + for (i = 0, haddr = address; i < HPAGE_PMD_NR;
> + i++, haddr += PAGE_SIZE) {
> + pte_t *pte, entry;
> + BUG_ON(PageCompound(page+i));
> + entry = mk_pte(page + i, vma->vm_page_prot);
> + entry = maybe_mkwrite(pte_mkdirty(entry), vma);
> + if (!pmd_write(*pmd))
> + entry = pte_wrprotect(entry);
> + else
> + BUG_ON(page_mapcount(page) != 1);
> + if (!pmd_young(*pmd))
> + entry = pte_mkold(entry);
> + pte = pte_offset_map(&_pmd, haddr);
> + BUG_ON(!pte_none(*pte));
> + set_pte_at(mm, haddr, pte, entry);
> + pte_unmap(pte);
> + }
> +
> + mm->nr_ptes++;
> + smp_wmb(); /* make pte visible before pmd */
> + pmd_populate(mm, pmd, pgtable);
> + flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
> + ret = 1;
> + }
> + spin_unlock(&mm->page_table_lock);
> +
> + return ret;
> +}
> +
> +/* must be called with anon_vma->lock hold */
> +static void __split_huge_page(struct page *page,
> + struct anon_vma *anon_vma)
> +{
> + int mapcount, mapcount2;
> + struct vm_area_struct *vma;
> +
> + BUG_ON(!PageHead(page));
> + BUG_ON(PageTail(page));
> +
> + mapcount = 0;
> + list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
> + unsigned long addr = vma_address(page, vma);
> + if (addr == -EFAULT)
> + continue;
> + mapcount += __split_huge_page_splitting(page, vma, addr);
> + }
> + BUG_ON(mapcount != page_mapcount(page));
> +
> + __split_huge_page_refcount(page);
> +
> + mapcount2 = 0;
> + list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
> + unsigned long addr = vma_address(page, vma);
> + if (addr == -EFAULT)
> + continue;
> + mapcount2 += __split_huge_page_map(page, vma, addr);
> + }
> + BUG_ON(mapcount != mapcount2);
> +}
> +
> +/* must run with mmap_sem to prevent vma to go away */
held for read?
Either way, this is what I was thinking of with worklodas that mmap/munmap
heavily potentially suffering with transparent_hugepages set to "always"
by default.
I don't think it's a *severe* problem as such but when documentation exists
on this feature, it is something worth mentioning.
> +void __split_huge_page_vma(struct vm_area_struct *vma, pmd_t *pmd)
> +{
> + struct page *page;
> + struct anon_vma *anon_vma;
> + struct mm_struct *mm;
> +
> + BUG_ON(vma->vm_flags & VM_HUGETLB);
> +
> + mm = vma->vm_mm;
> +
> + anon_vma = vma->anon_vma;
> +
> + spin_lock(&anon_vma->lock);
> + BUG_ON(pmd_trans_splitting(*pmd));
> + spin_lock(&mm->page_table_lock);
> + if (unlikely(!pmd_trans_huge(*pmd))) {
> + spin_unlock(&mm->page_table_lock);
> + spin_unlock(&anon_vma->lock);
> + return;
> + }
> + page = pmd_page(*pmd);
> + spin_unlock(&mm->page_table_lock);
> +
> + __split_huge_page(page, anon_vma);
> +
> + spin_unlock(&anon_vma->lock);
> + BUG_ON(pmd_trans_huge(*pmd));
> +}
> +
> +/* must run with mmap_sem to prevent vma to go away */
> +void __split_huge_page_mm(struct mm_struct *mm,
> + unsigned long address,
> + pmd_t *pmd)
> +{
> + struct vm_area_struct *vma;
> +
> + vma = find_vma(mm, address);
> + BUG_ON(vma->vm_start > address);
> + BUG_ON(vma->vm_mm != mm);
> +
> + __split_huge_page_vma(vma, pmd);
> +}
> +
> +int split_huge_page(struct page *page)
> +{
> + struct anon_vma *anon_vma;
> + int ret = 1;
> +
> + BUG_ON(!PageAnon(page));
> + anon_vma = page_lock_anon_vma(page);
> + if (!anon_vma)
> + goto out;
> + ret = 0;
> + if (!PageCompound(page))
> + goto out_unlock;
> +
> + BUG_ON(!PageSwapBacked(page));
> + __split_huge_page(page, anon_vma);
> +
> + BUG_ON(PageCompound(page));
> +out_unlock:
> + page_unlock_anon_vma(anon_vma);
> +out:
> + return ret;
> +}
> diff --git a/mm/memory.c b/mm/memory.c
> --- a/mm/memory.c
> +++ b/mm/memory.c
> @@ -647,9 +647,9 @@ out_set_pte:
> return 0;
> }
>
> -static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
> - pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
> - unsigned long addr, unsigned long end)
> +int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
> + pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
> + unsigned long addr, unsigned long end)
> {
> pte_t *orig_src_pte, *orig_dst_pte;
> pte_t *src_pte, *dst_pte;
> @@ -722,6 +722,16 @@ static inline int copy_pmd_range(struct
> src_pmd = pmd_offset(src_pud, addr);
> do {
> next = pmd_addr_end(addr, end);
> + if (pmd_trans_huge(*src_pmd)) {
> + int err;
> + err = copy_huge_pmd(dst_mm, src_mm,
> + dst_pmd, src_pmd, addr, vma);
> + if (err == -ENOMEM)
> + return -ENOMEM;
> + if (!err)
> + continue;
> + /* fall through */
> + }
> if (pmd_none_or_clear_bad(src_pmd))
> continue;
> if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
> @@ -918,6 +928,15 @@ static inline unsigned long zap_pmd_rang
> pmd = pmd_offset(pud, addr);
> do {
> next = pmd_addr_end(addr, end);
> + if (pmd_trans_huge(*pmd)) {
> + if (next-addr != HPAGE_PMD_SIZE)
> + split_huge_page_vma(vma, pmd);
> + else if (zap_huge_pmd(tlb, vma, pmd)) {
> + (*zap_work)--;
> + continue;
> + }
> + /* fall through */
> + }
> if (pmd_none_or_clear_bad(pmd)) {
> (*zap_work)--;
> continue;
> @@ -1185,11 +1204,27 @@ struct page *follow_page(struct vm_area_
> pmd = pmd_offset(pud, address);
> if (pmd_none(*pmd))
> goto no_page_table;
> - if (pmd_huge(*pmd)) {
> + if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
> BUG_ON(flags & FOLL_GET);
> page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
> goto out;
> }
> + if (pmd_trans_huge(*pmd)) {
> + spin_lock(&mm->page_table_lock);
> + if (likely(pmd_trans_huge(*pmd))) {
> + if (unlikely(pmd_trans_splitting(*pmd))) {
> + spin_unlock(&mm->page_table_lock);
> + wait_split_huge_page(vma->anon_vma, pmd);
> + } else {
> + page = follow_trans_huge_pmd(mm, address,
> + pmd, flags);
> + spin_unlock(&mm->page_table_lock);
> + goto out;
> + }
> + } else
> + spin_unlock(&mm->page_table_lock);
> + /* fall through */
> + }
> if (unlikely(pmd_bad(*pmd)))
> goto no_page_table;
>
> @@ -1298,6 +1333,7 @@ int __get_user_pages(struct task_struct
> pmd = pmd_offset(pud, pg);
> if (pmd_none(*pmd))
> return i ? : -EFAULT;
> + VM_BUG_ON(pmd_trans_huge(*pmd));
> pte = pte_offset_map(pmd, pg);
> if (pte_none(*pte)) {
> pte_unmap(pte);
> @@ -2949,9 +2985,9 @@ static int do_nonlinear_fault(struct mm_
> * but allow concurrent faults), and pte mapped but not yet locked.
> * We return with mmap_sem still held, but pte unmapped and unlocked.
> */
> -static inline int handle_pte_fault(struct mm_struct *mm,
> - struct vm_area_struct *vma, unsigned long address,
> - pte_t *pte, pmd_t *pmd, unsigned int flags)
> +int handle_pte_fault(struct mm_struct *mm,
> + struct vm_area_struct *vma, unsigned long address,
> + pte_t *pte, pmd_t *pmd, unsigned int flags)
> {
> pte_t entry;
> spinlock_t *ptl;
> @@ -3027,6 +3063,22 @@ int handle_mm_fault(struct mm_struct *mm
> pmd = pmd_alloc(mm, pud, address);
> if (!pmd)
> return VM_FAULT_OOM;
> + if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
> + if (!vma->vm_ops)
> + return do_huge_pmd_anonymous_page(mm, vma, address,
> + pmd, flags);
> + } else {
> + pmd_t orig_pmd = *pmd;
> + barrier();
> + if (pmd_trans_huge(orig_pmd)) {
> + if (flags & FAULT_FLAG_WRITE &&
> + !pmd_write(orig_pmd) &&
> + !pmd_trans_splitting(orig_pmd))
> + return do_huge_pmd_wp_page(mm, vma, address,
> + pmd, orig_pmd);
> + return 0;
> + }
> + }
> pte = pte_alloc_map(mm, vma, pmd, address);
> if (!pte)
> return VM_FAULT_OOM;
> @@ -3167,6 +3219,7 @@ static int follow_pte(struct mm_struct *
> goto out;
>
> pmd = pmd_offset(pud, address);
> + VM_BUG_ON(pmd_trans_huge(*pmd));
> if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
> goto out;
>
> diff --git a/mm/rmap.c b/mm/rmap.c
> --- a/mm/rmap.c
> +++ b/mm/rmap.c
> @@ -56,6 +56,7 @@
> #include <linux/memcontrol.h>
> #include <linux/mmu_notifier.h>
> #include <linux/migrate.h>
> +#include <linux/hugetlb.h>
>
> #include <asm/tlbflush.h>
>
> @@ -229,7 +230,7 @@ void page_unlock_anon_vma(struct anon_vm
> * Returns virtual address or -EFAULT if page's index/offset is not
> * within the range mapped the @vma.
> */
> -static inline unsigned long
> +inline unsigned long
> vma_address(struct page *page, struct vm_area_struct *vma)
> {
> pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
> @@ -343,35 +344,17 @@ int page_referenced_one(struct page *pag
> unsigned long *vm_flags)
> {
> struct mm_struct *mm = vma->vm_mm;
> - pte_t *pte;
> - spinlock_t *ptl;
> int referenced = 0;
>
> - pte = page_check_address(page, mm, address, &ptl, 0);
> - if (!pte)
> - goto out;
> -
> /*
> * Don't want to elevate referenced for mlocked page that gets this far,
> * in order that it progresses to try_to_unmap and is moved to the
> * unevictable list.
> */
> if (vma->vm_flags & VM_LOCKED) {
> - *mapcount = 1; /* break early from loop */
> + *mapcount = 0; /* break early from loop */
> *vm_flags |= VM_LOCKED;
> - goto out_unmap;
> - }
> -
> - if (ptep_clear_flush_young_notify(vma, address, pte)) {
> - /*
> - * Don't treat a reference through a sequentially read
> - * mapping as such. If the page has been used in
> - * another mapping, we will catch it; if this other
> - * mapping is already gone, the unmap path will have
> - * set PG_referenced or activated the page.
> - */
> - if (likely(!VM_SequentialReadHint(vma)))
> - referenced++;
> + goto out;
> }
>
> /* Pretend the page is referenced if the task has the
> @@ -380,9 +363,39 @@ int page_referenced_one(struct page *pag
> rwsem_is_locked(&mm->mmap_sem))
> referenced++;
>
> -out_unmap:
> + if (unlikely(PageTransHuge(page))) {
> + pmd_t *pmd;
> +
> + spin_lock(&mm->page_table_lock);
> + pmd = page_check_address_pmd(page, mm, address,
> + PAGE_CHECK_ADDRESS_PMD_FLAG);
> + if (pmd && !pmd_trans_splitting(*pmd) &&
> + pmdp_clear_flush_young_notify(vma, address, pmd))
> + referenced++;
> + spin_unlock(&mm->page_table_lock);
> + } else {
> + pte_t *pte;
> + spinlock_t *ptl;
> +
> + pte = page_check_address(page, mm, address, &ptl, 0);
> + if (!pte)
> + goto out;
> +
> + if (ptep_clear_flush_young_notify(vma, address, pte)) {
> + /*
> + * Don't treat a reference through a sequentially read
> + * mapping as such. If the page has been used in
> + * another mapping, we will catch it; if this other
> + * mapping is already gone, the unmap path will have
> + * set PG_referenced or activated the page.
> + */
> + if (likely(!VM_SequentialReadHint(vma)))
> + referenced++;
> + }
> + pte_unmap_unlock(pte, ptl);
> + }
> +
> (*mapcount)--;
> - pte_unmap_unlock(pte, ptl);
>
> if (referenced)
> *vm_flags |= vma->vm_flags;
> diff --git a/mm/swap.c b/mm/swap.c
> --- a/mm/swap.c
> +++ b/mm/swap.c
> @@ -461,6 +461,43 @@ void __pagevec_release(struct pagevec *p
>
> EXPORT_SYMBOL(__pagevec_release);
>
> +/* used by __split_huge_page_refcount() */
> +void lru_add_page_tail(struct zone* zone,
> + struct page *page, struct page *page_tail)
> +{
> + int active;
> + enum lru_list lru;
> + const int file = 0;
> + struct list_head *head;
> +
> + VM_BUG_ON(!PageHead(page));
> + VM_BUG_ON(PageCompound(page_tail));
> + VM_BUG_ON(PageLRU(page_tail));
> + VM_BUG_ON(!spin_is_locked(&zone->lru_lock));
> +
> + SetPageLRU(page_tail);
> +
> + if (page_evictable(page_tail, NULL)) {
> + if (PageActive(page)) {
> + SetPageActive(page_tail);
> + active = 1;
> + lru = LRU_ACTIVE_ANON;
> + } else {
> + active = 0;
> + lru = LRU_INACTIVE_ANON;
> + }
> + update_page_reclaim_stat(zone, page_tail, file, active);
> + if (likely(PageLRU(page)))
> + head = page->lru.prev;
> + else
> + head = &zone->lru[lru].list;
> + __add_page_to_lru_list(zone, page_tail, lru, head);
> + } else {
> + SetPageUnevictable(page_tail);
> + add_page_to_lru_list(zone, page_tail, LRU_UNEVICTABLE);
> + }
> +}
> +
> /*
> * Add the passed pages to the LRU, then drop the caller's refcount
> * on them. Reinitialises the caller's pagevec.
>
Broadly speaking, this was a lot more understandable than I was expecting
and I did not find any major snags or difficulties. However, I've also ran
out of beans again so I'll be taking another break before moving onto the
rest of the set :)
--
Mel Gorman
Part-time Phd Student Linux Technology Center
University of Limerick IBM Dublin Software Lab
--
To unsubscribe, send a message with 'unsubscribe linux-mm' in
the body to majordomo@kvack.org. For more info on Linux MM,
see: http://www.linux-mm.org/ .
Don't email: <a href=mailto:"dont@kvack.org"> email@kvack.org </a>
next prev parent reply other threads:[~2010-01-28 17:58 UTC|newest]
Thread overview: 50+ messages / expand[flat|nested] mbox.gz Atom feed top
2010-01-28 14:33 [PATCH 00 of 31] Transparent Hugepage support #8 Andrea Arcangeli
2010-01-28 14:33 ` [PATCH 01 of 31] define MADV_HUGEPAGE Andrea Arcangeli
2010-01-28 20:30 ` Arnd Bergmann
2010-01-28 14:33 ` [PATCH 02 of 31] compound_lock Andrea Arcangeli
2010-01-28 14:33 ` [PATCH 03 of 31] alter compound get_page/put_page Andrea Arcangeli
2010-01-28 14:33 ` [PATCH 04 of 31] update futex compound knowledge Andrea Arcangeli
2010-01-28 16:11 ` Mel Gorman
2010-02-01 7:45 ` Andrea Arcangeli
2010-01-28 14:33 ` [PATCH 05 of 31] fix bad_page to show the real reason the page is bad Andrea Arcangeli
2010-01-28 14:33 ` [PATCH 06 of 31] clear compound mapping Andrea Arcangeli
2010-01-28 14:33 ` [PATCH 07 of 31] add native_set_pmd_at Andrea Arcangeli
2010-01-28 14:33 ` [PATCH 08 of 31] add pmd paravirt ops Andrea Arcangeli
2010-01-28 14:33 ` [PATCH 09 of 31] no paravirt version of pmd ops Andrea Arcangeli
2010-01-28 14:33 ` [PATCH 10 of 31] export maybe_mkwrite Andrea Arcangeli
2010-01-28 14:33 ` [PATCH 11 of 31] comment reminder in destroy_compound_page Andrea Arcangeli
2010-01-28 14:33 ` [PATCH 12 of 31] config_transparent_hugepage Andrea Arcangeli
2010-01-28 14:33 ` [PATCH 13 of 31] special pmd_trans_* functions Andrea Arcangeli
2010-01-28 14:33 ` [PATCH 14 of 31] add pmd mangling generic functions Andrea Arcangeli
2010-01-28 14:33 ` [PATCH 15 of 31] add pmd mangling functions to x86 Andrea Arcangeli
2010-01-28 14:33 ` [PATCH 16 of 31] bail out gup_fast on splitting pmd Andrea Arcangeli
2010-01-28 14:33 ` [PATCH 17 of 31] pte alloc trans splitting Andrea Arcangeli
2010-01-28 14:33 ` [PATCH 18 of 31] add pmd mmu_notifier helpers Andrea Arcangeli
2010-01-28 14:33 ` [PATCH 19 of 31] clear page compound Andrea Arcangeli
2010-01-28 14:33 ` [PATCH 20 of 31] add pmd_huge_pte to mm_struct Andrea Arcangeli
2010-01-28 14:33 ` [PATCH 21 of 31] split_huge_page_mm/vma Andrea Arcangeli
2010-01-28 14:33 ` [PATCH 22 of 31] split_huge_page paging Andrea Arcangeli
2010-01-28 14:33 ` [PATCH 23 of 31] clear_copy_huge_page Andrea Arcangeli
2010-01-28 14:33 ` [PATCH 24 of 31] kvm mmu transparent hugepage support Andrea Arcangeli
2010-01-28 14:33 ` [PATCH 25 of 31] transparent hugepage core Andrea Arcangeli
2010-01-28 17:57 ` Mel Gorman [this message]
2010-01-28 18:05 ` Rik van Riel
2010-01-28 18:07 ` Mel Gorman
2010-01-28 22:36 ` Andrea Arcangeli
2010-01-28 22:43 ` Andrea Arcangeli
2010-01-29 0:00 ` Andrea Arcangeli
2010-01-29 15:29 ` Mel Gorman
2010-01-29 18:59 ` Andrea Arcangeli
2010-01-31 20:24 ` Andrea Arcangeli
2010-02-01 13:27 ` Andrea Arcangeli
2010-02-01 13:53 ` Mel Gorman
2010-01-28 14:33 ` [PATCH 26 of 31] madvise(MADV_HUGEPAGE) Andrea Arcangeli
2010-01-28 14:33 ` [PATCH 27 of 31] pmd_trans_huge migrate bugcheck Andrea Arcangeli
2010-01-28 14:33 ` [PATCH 28 of 31] memcg compound Andrea Arcangeli
2010-01-28 14:33 ` [PATCH 29 of 31] memcg huge memory Andrea Arcangeli
2010-01-28 14:33 ` [PATCH 30 of 31] transparent hugepage vmstat Andrea Arcangeli
2010-01-28 14:33 ` [PATCH 31 of 31] khugepaged Andrea Arcangeli
2010-01-28 17:05 ` [PATCH 00 of 31] Transparent Hugepage support #8 Andrea Arcangeli
-- strict thread matches above, loose matches on Subject: below --
2010-01-26 13:51 [PATCH 00 of 31] Transparent Hugepage support #7 Andrea Arcangeli
2010-01-26 13:52 ` [PATCH 25 of 31] transparent hugepage core Andrea Arcangeli
2010-01-26 22:34 ` Rik van Riel
2010-01-25 17:18 [PATCH 00 of 31] Transparent Hugepage support #6 Andrea Arcangeli
2010-01-25 17:19 ` [PATCH 25 of 31] transparent hugepage core Andrea Arcangeli
Reply instructions:
You may reply publicly to this message via plain-text email
using any one of the following methods:
* Save the following mbox file, import it into your mail client,
and reply-to-all from there: mbox
Avoid top-posting and favor interleaved quoting:
https://en.wikipedia.org/wiki/Posting_style#Interleaved_style
* Reply using the --to, --cc, and --in-reply-to
switches of git-send-email(1):
git send-email \
--in-reply-to=20100128175753.GF7139@csn.ul.ie \
--to=mel@csn.ul.ie \
--cc=aarcange@redhat.com \
--cc=agl@us.ibm.com \
--cc=akpm@linux-foundation.org \
--cc=arnd@arndb.de \
--cc=avi@redhat.com \
--cc=balbir@linux.vnet.ibm.com \
--cc=benh@kernel.crashing.org \
--cc=bpicco@redhat.com \
--cc=chrisw@sous-sol.org \
--cc=cl@linux-foundation.org \
--cc=dave@linux.vnet.ibm.com \
--cc=hch@infradead.org \
--cc=hugh.dickins@tiscali.co.uk \
--cc=ieidus@redhat.com \
--cc=kamezawa.hiroyu@jp.fujitsu.com \
--cc=kosaki.motohiro@jp.fujitsu.com \
--cc=linux-mm@kvack.org \
--cc=mingo@elte.hu \
--cc=mtosatti@redhat.com \
--cc=npiggin@suse.de \
--cc=riel@redhat.com \
--cc=travis@sgi.com \
/path/to/YOUR_REPLY
https://kernel.org/pub/software/scm/git/docs/git-send-email.html
* If your mail client supports setting the In-Reply-To header
via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line
before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).