From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org X-Spam-Level: X-Spam-Status: No, score=-11.1 required=3.0 tests=BAYES_00,DKIMWL_WL_HIGH, DKIM_SIGNED,DKIM_VALID,DKIM_VALID_AU,HEADER_FROM_DIFFERENT_DOMAINS, INCLUDES_PATCH,MAILING_LIST_MULTI,SPF_HELO_NONE,SPF_PASS autolearn=ham autolearn_force=no version=3.4.0 Received: from mail.kernel.org (mail.kernel.org [198.145.29.99]) by smtp.lore.kernel.org (Postfix) with ESMTP id 35CDAC433E0 for ; Mon, 1 Feb 2021 18:32:08 +0000 (UTC) Received: from kanga.kvack.org (kanga.kvack.org [205.233.56.17]) by mail.kernel.org (Postfix) with ESMTP id 750F864E3C for ; Mon, 1 Feb 2021 18:32:07 +0000 (UTC) DMARC-Filter: OpenDMARC Filter v1.3.2 mail.kernel.org 750F864E3C Authentication-Results: mail.kernel.org; dmarc=fail (p=none dis=none) header.from=redhat.com Authentication-Results: mail.kernel.org; spf=pass smtp.mailfrom=owner-linux-mm@kvack.org Received: by kanga.kvack.org (Postfix) id D47646B007E; Mon, 1 Feb 2021 13:32:06 -0500 (EST) Received: by kanga.kvack.org (Postfix, from userid 40) id CF4506B0080; Mon, 1 Feb 2021 13:32:06 -0500 (EST) X-Delivered-To: int-list-linux-mm@kvack.org Received: by kanga.kvack.org (Postfix, from userid 63042) id BBABB6B0081; Mon, 1 Feb 2021 13:32:06 -0500 (EST) X-Delivered-To: linux-mm@kvack.org Received: from forelay.hostedemail.com (smtprelay0103.hostedemail.com [216.40.44.103]) by kanga.kvack.org (Postfix) with ESMTP id A54626B007E for ; Mon, 1 Feb 2021 13:32:06 -0500 (EST) Received: from smtpin16.hostedemail.com (10.5.19.251.rfc1918.com [10.5.19.251]) by forelay02.hostedemail.com (Postfix) with ESMTP id 31F223631 for ; Mon, 1 Feb 2021 18:32:06 +0000 (UTC) X-FDA: 77770543452.16.board39_5f01ed4275c4 Received: from filter.hostedemail.com (10.5.16.251.rfc1918.com [10.5.16.251]) by smtpin16.hostedemail.com (Postfix) with ESMTP id E6A86100E690C for ; Mon, 1 Feb 2021 18:32:05 +0000 (UTC) X-HE-Tag: board39_5f01ed4275c4 X-Filterd-Recvd-Size: 8165 Received: from us-smtp-delivery-124.mimecast.com (us-smtp-delivery-124.mimecast.com [216.205.24.124]) by imf28.hostedemail.com (Postfix) with ESMTP for ; Mon, 1 Feb 2021 18:32:05 +0000 (UTC) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=redhat.com; s=mimecast20190719; t=1612204324; h=from:from:reply-to:subject:subject:date:date:message-id:message-id: to:to:cc:cc:mime-version:mime-version:content-type:content-type: in-reply-to:in-reply-to:references:references; bh=eGnMVrjYoL74O1671GF2bpk9Mg2hYvXBiXlmuuE5Fo4=; b=jIwvncTvqton9+fvjufPpBQgYUvljB8lTYpbZHoO/X2He0N7ZDz6YLuurKQ+QIeFaqMHE3 B6IvGKSbZPReN8YDLz6LlJwdmKNxipqUdzD/DWEsHsZuzFSvksrYwKFeWhCs6HGYZVk0MV CTk0Ex6VXwNSgkFX0OZ/OIdWNiXVTX0= Received: from mail-qk1-f197.google.com (mail-qk1-f197.google.com [209.85.222.197]) (Using TLS) by relay.mimecast.com with ESMTP id us-mta-33-1PrFOrEBO4ed0rhBqEGYaA-1; Mon, 01 Feb 2021 13:32:03 -0500 X-MC-Unique: 1PrFOrEBO4ed0rhBqEGYaA-1 Received: by mail-qk1-f197.google.com with SMTP id s66so13959726qkh.10 for ; Mon, 01 Feb 2021 10:32:03 -0800 (PST) X-Google-DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=1e100.net; s=20161025; h=x-gm-message-state:date:from:to:cc:subject:message-id:references :mime-version:content-disposition:in-reply-to; bh=eGnMVrjYoL74O1671GF2bpk9Mg2hYvXBiXlmuuE5Fo4=; b=bUpZ2bpGsP5SEC7gjt0fmTRcWqULjxBuTYGCz+Rxne0jWvz8X6UpY+9IdL5xIY0PEm Q6gGEADmdcs4LEb63hP4/7KsslJ+YpljrS0MZvnbi50hNbq+FsnchPCxdyysq7FXN+/i dHTgfXZV3zEm3Ipv7yEpPCB82EtexHXRdqwkDRDjtnEy5Ds8+4mGL5SespT5y3dV/x59 SETKarlVrINt2WKzbPXmH9I94Ub+j9QRd3fM6JbsRG5yOP15cBZzvepujXj4m0O27cST jFGyCjE8pAIDSQfcfagYM7NWz7Uju153gRO+odY/rGJMd/LlbXVa4vH6G0niAivPkebo m2UA== X-Gm-Message-State: AOAM531mVKlx+oPlLOzBhYRwFgMMOUu3aWCU2DUVpAAPz2XyhuPJmyBa zhqKUVLWcF5cMzr4Q7U/j1+0NZwSN7ykc1rrnqLILKD9FPzL1kSMf/ePdvGJT+Hz7lCw9hDQWXU 2JqEAlxaqHCg= X-Received: by 2002:a05:622a:28d:: with SMTP id z13mr16655670qtw.87.1612204322672; Mon, 01 Feb 2021 10:32:02 -0800 (PST) X-Google-Smtp-Source: ABdhPJwJK+spTGER3hyW35kxmeQAWfZPyW2Gmvh9OEvQWvWgtG63iuN5ASuXAcAlEgsKAZT0riy1Tw== X-Received: by 2002:a05:622a:28d:: with SMTP id z13mr16655618qtw.87.1612204322354; Mon, 01 Feb 2021 10:32:02 -0800 (PST) Received: from xz-x1 ([142.126.83.202]) by smtp.gmail.com with ESMTPSA id m21sm14447098qtq.52.2021.02.01.10.32.00 (version=TLS1_3 cipher=TLS_AES_256_GCM_SHA384 bits=256/256); Mon, 01 Feb 2021 10:32:01 -0800 (PST) Date: Mon, 1 Feb 2021 13:31:59 -0500 From: Peter Xu To: Axel Rasmussen Cc: Alexander Viro , Alexey Dobriyan , Andrea Arcangeli , Andrew Morton , Anshuman Khandual , Catalin Marinas , Chinwen Chang , Huang Ying , Ingo Molnar , Jann Horn , Jerome Glisse , Lokesh Gidra , "Matthew Wilcox (Oracle)" , Michael Ellerman , Michal =?utf-8?Q?Koutn=C3=BD?= , Michel Lespinasse , Mike Kravetz , Mike Rapoport , Nicholas Piggin , Shaohua Li , Shawn Anastasio , Steven Rostedt , Steven Price , Vlastimil Babka , linux-kernel@vger.kernel.org, linux-fsdevel@vger.kernel.org, linux-mm@kvack.org, Adam Ruprecht , Cannon Matthews , "Dr . David Alan Gilbert" , David Rientjes , Oliver Upton Subject: Re: [PATCH v3 5/9] userfaultfd: add minor fault registration mode Message-ID: <20210201183159.GF260413@xz-x1> References: <20210128224819.2651899-1-axelrasmussen@google.com> <20210128224819.2651899-6-axelrasmussen@google.com> MIME-Version: 1.0 In-Reply-To: <20210128224819.2651899-6-axelrasmussen@google.com> Authentication-Results: relay.mimecast.com; auth=pass smtp.auth=CUSA124A263 smtp.mailfrom=peterx@redhat.com X-Mimecast-Spam-Score: 0 X-Mimecast-Originator: redhat.com Content-Type: text/plain; charset=utf-8 Content-Disposition: inline X-Bogosity: Ham, tests=bogofilter, spamicity=0.000000, version=1.2.4 Sender: owner-linux-mm@kvack.org Precedence: bulk X-Loop: owner-majordomo@kvack.org List-ID: On Thu, Jan 28, 2021 at 02:48:15PM -0800, Axel Rasmussen wrote: > This feature allows userspace to intercept "minor" faults. By "minor" > faults, I mean the following situation: > > Let there exist two mappings (i.e., VMAs) to the same page(s) (shared > memory). One of the mappings is registered with userfaultfd (in minor > mode), and the other is not. Via the non-UFFD mapping, the underlying > pages have already been allocated & filled with some contents. The UFFD > mapping has not yet been faulted in; when it is touched for the first > time, this results in what I'm calling a "minor" fault. As a concrete > example, when working with hugetlbfs, we have huge_pte_none(), but > find_lock_page() finds an existing page. > > This commit adds the new registration mode, and sets the relevant flag > on the VMAs being registered. In the hugetlb fault path, if we find > that we have huge_pte_none(), but find_lock_page() does indeed find an > existing page, then we have a "minor" fault, and if the VMA has the > userfaultfd registration flag, we call into userfaultfd to handle it. When re-read, now I'm thinking whether we should restrict the minor fault scenario with shared mappings always, assuming there's one mapping with uffd and the other one without, while the non-uffd can modify the data before an UFFDIO_CONTINUE kicking the uffd process. To me, it's really more about page cache and that's all.. So I'm wondering whether below would be simpler and actually clearer on defining minor faults, comparing to the above whole two paragraphs. For example, the scemantics do not actually need two mappings: For shared memory, userfaultfd missing fault used to only report the event if the page cache does not exist for the current fault process. Here we define userfaultfd minor fault as the case where the missing page fault does have a backing page cache (so only the pgtable entry is missing). It should not affect most of your code, but only one below [1]. [...] > @@ -1302,9 +1301,26 @@ static inline bool vma_can_userfault(struct vm_area_struct *vma, > unsigned long vm_flags) > { > /* FIXME: add WP support to hugetlbfs and shmem */ > - return vma_is_anonymous(vma) || > - ((is_vm_hugetlb_page(vma) || vma_is_shmem(vma)) && > - !(vm_flags & VM_UFFD_WP)); > + if (vm_flags & VM_UFFD_WP) { > + if (is_vm_hugetlb_page(vma) || vma_is_shmem(vma)) > + return false; > + } > + > + if (vm_flags & VM_UFFD_MINOR) { > + /* > + * The use case for minor registration (intercepting minor > + * faults) is to handle the case where a page is present, but > + * needs to be modified before it can be used. This requires > + * two mappings: one with UFFD registration, and one without. > + * So, it only makes sense to do this with shared memory. > + */ > + /* FIXME: Add minor fault interception for shmem. */ > + if (!(is_vm_hugetlb_page(vma) && (vma->vm_flags & VM_SHARED))) > + return false; [1] So here we also restrict the mapping be shared. My above comment on the commit message is also another way to ask whether we could also allow it to happen with non-shared mappings as long as there's a page cache. If so, we could drop the VM_SHARED check here. It won't affect your existing use case for sure, it just gives more possibility that maybe it could also be used on non-shared mappings due to some reason in the future. What do you think? The rest looks good to me. Thanks, -- Peter Xu