From mboxrd@z Thu Jan 1 00:00:00 1970 From: Rusty Russell Subject: Re: linux-next: manual merge of the rr tree Date: Mon, 5 Jan 2009 19:11:52 +1030 Message-ID: <200901051911.52923.rusty@rustcorp.com.au> References: <20090105143239.08b1a060.sfr@canb.auug.org.au> Mime-Version: 1.0 Content-Type: Multipart/Mixed; boundary="Boundary-00=_QfcYJrIor/epc2j" Return-path: Received: from ozlabs.org ([203.10.76.45]:34366 "EHLO ozlabs.org" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1751570AbZAEImE (ORCPT ); Mon, 5 Jan 2009 03:42:04 -0500 In-Reply-To: <20090105143239.08b1a060.sfr@canb.auug.org.au> Sender: linux-next-owner@vger.kernel.org List-ID: To: Stephen Rothwell Cc: linux-next@vger.kernel.org, Mike Travis , Ingo Molnar , Christoph Lameter --Boundary-00=_QfcYJrIor/epc2j Content-Type: text/plain; charset="utf-8" Content-Transfer-Encoding: 7bit Content-Disposition: inline On Monday 05 January 2009 14:02:39 Stephen Rothwell wrote: > Similarly with init/main.c, include/linux/percpu.h, > include/asm-generic/percpu.h and arch/x86/include/asm/percpu.h (though > against different commits/trees, of course). OK, here's the merge as I did it. I've also attached a tarball of the files post-merge. Cheers, Rusty. diff --cc arch/x86/include/asm/percpu.h index 5c0ef60,313b3d6..0000000 --- a/arch/x86/include/asm/percpu.h +++ b/arch/x86/include/asm/percpu.h diff --cc include/asm-generic/percpu.h index 627b446,1c02250..0000000 --- a/include/asm-generic/percpu.h +++ b/include/asm-generic/percpu.h @@@ -117,11 -75,10 +117,15 @@@ extern void setup_per_cpu_areas(void) #define per_cpu(var, cpu) (*((void)(cpu), &per_cpu_var(var))) #define __get_cpu_var(var) per_cpu_var(var) #define __raw_get_cpu_var(var) per_cpu_var(var) +#define read_percpu_var(var) (0, per_cpu_var(var)) +#define per_cpu_ptr(ptr, cpu) (ptr) +#define __get_cpu_ptr(ptr) (ptr) +#define __raw_get_cpu_ptr(ptr) (ptr) +#define read_percpu_ptr(ptr) (0, *(ptr)) + #ifndef SHIFT_PERCPU_PTR + # define SHIFT_PERCPU_PTR(__p, __offset) (__p) + #endif + #define per_cpu_offset(x) 0L #endif /* SMP */ diff --cc include/linux/percpu.h index dad0070,e1f8708..0000000 --- a/include/linux/percpu.h +++ b/include/linux/percpu.h @@@ -26,25 -26,46 +26,40 @@@ #define DEFINE_PER_CPU_PAGE_ALIGNED(type, name) \ __attribute__((__section__(".data.percpu.page_aligned"))) \ - PER_CPU_ATTRIBUTES __typeof__(type) per_cpu__##name + PER_CPU_ATTRIBUTES __typeof__(type) __percpu name + + #ifdef CONFIG_HAVE_ZERO_BASED_PER_CPU + #define DEFINE_PER_CPU_FIRST(type, name) \ + __attribute__((__section__(".data.percpu.first"))) \ - PER_CPU_ATTRIBUTES __typeof__(type) per_cpu__##name ++ PER_CPU_ATTRIBUTES __typeof__(type) __percpu name #else + #define DEFINE_PER_CPU_FIRST(type, name) \ + DEFINE_PER_CPU(type, name) + #endif + + #else /* !CONFIG_SMP */ + #define DEFINE_PER_CPU(type, name) \ - PER_CPU_ATTRIBUTES __typeof__(type) per_cpu__##name + PER_CPU_ATTRIBUTES __typeof__(type) __percpu name #define DEFINE_PER_CPU_SHARED_ALIGNED(type, name) \ DEFINE_PER_CPU(type, name) #define DEFINE_PER_CPU_PAGE_ALIGNED(type, name) \ DEFINE_PER_CPU(type, name) - #endif + + #define DEFINE_PER_CPU_FIRST(type, name) \ + DEFINE_PER_CPU(type, name) + + #endif /* !CONFIG_SMP */ -#define EXPORT_PER_CPU_SYMBOL(var) EXPORT_SYMBOL(per_cpu__##var) -#define EXPORT_PER_CPU_SYMBOL_GPL(var) EXPORT_SYMBOL_GPL(per_cpu__##var) +#define EXPORT_PER_CPU_SYMBOL(var) EXPORT_SYMBOL(var) +#define EXPORT_PER_CPU_SYMBOL_GPL(var) EXPORT_SYMBOL_GPL(var) -/* Enough to cover all DEFINE_PER_CPUs in kernel, including modules. */ #ifndef PERCPU_ENOUGH_ROOM -#ifdef CONFIG_MODULES -#define PERCPU_MODULE_RESERVE 8192 -#else -#define PERCPU_MODULE_RESERVE 0 -#endif +extern unsigned int percpu_reserve; -#define PERCPU_ENOUGH_ROOM \ - (__per_cpu_end - __per_cpu_start + PERCPU_MODULE_RESERVE) +#define PERCPU_ENOUGH_ROOM (__per_cpu_end - __per_cpu_start + percpu_reserve) #endif /* PERCPU_ENOUGH_ROOM */ /* diff --cc init/main.c index 8a2d82c,d1c5b8b..0000000 --- a/init/main.c +++ b/init/main.c diff --cc kernel/module.c index 99d1756,9712c52..0000000 --- a/kernel/module.c +++ b/kernel/module.c diff --git a/mm/allocpercpu.c b/mm/allocpercpu.c index fa7f356..e77284f 100644 --- a/mm/allocpercpu.c +++ b/mm/allocpercpu.c @@ -61,7 +61,7 @@ void *__alloc_percpu(unsigned long size, unsigned long align) if (WARN_ON(align > PAGE_SIZE)) align = PAGE_SIZE; - ptr = __per_cpu_start; + ptr = __per_cpu_load; for (i = 0; i < pcpu_num_used; ptr += block_size(pcpu_size[i]), i++) { /* Extra for alignment requirement. */ extra = ALIGN((unsigned long)ptr, align) - (unsigned long)ptr; @@ -107,7 +107,7 @@ EXPORT_SYMBOL_GPL(__alloc_percpu); void free_percpu(void *freeme) { unsigned int i; - void *ptr = __per_cpu_start + block_size(pcpu_size[0]); + void *ptr = __per_cpu_load + block_size(pcpu_size[0]); if (!freeme) return; @@ -147,7 +147,7 @@ void __init percpu_alloc_init(void) pcpu_size = kmalloc(sizeof(pcpu_size[0]) * pcpu_num_allocated, GFP_KERNEL); /* Static in-kernel percpu data (used). */ - pcpu_size[0] = -(__per_cpu_end-__per_cpu_start); + pcpu_size[0] = -__per_cpu_size; /* Free room. */ pcpu_size[1] = PERCPU_ENOUGH_ROOM + pcpu_size[0]; BUG_ON(pcpu_size[1] < 0); --Boundary-00=_QfcYJrIor/epc2j Content-Type: application/x-bzip-compressed-tar; name="files.tar.bz2" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="files.tar.bz2" QlpoOTFBWSZTWdrr3aYAW+R/zP69wbp//////////v////8oAAQAAAEACGCQXvvh9AABoAAHdR3t 6Oc7nawCah33ve9r1vL00+7bu7LvPrdsz5d5WfLr6+7dvlNnbmdLNtAlbZREtY9YK5PodVKjrVSR RRd2d9rto++uR72+z5vd9NXsMkunqpAKqAjfAC93ioF9sjz7271IrvHvoHvtj7e7jmei8i74T0NS oAu30NzDbAA+tx7gTbe+d9AD5vus+7Ox5efY71s2S2jH3bdtrG5uXbumnPt5Xnudmql3Ndi6lH3A 7hj21nVq3vvfYABjW1bNR9fPTwW9vrl7L5xm6+PJW7szW3M53Vplu3c1jW2ObvPd73cG2US3I97h 7LKtWnuhb3jXm8jbgezE9e4K3Z7c6NKvViudzW4RNlrl12d13lz1rGyy15TIN3XLrl3aNmGefJQa keruej7y02KktIyXb3zyqTsxNHnyfdz193PlPXMaosu3N1n17p51K+OxwDTQgTQAQIAJppoRoZTa NJpk1PSn5JPJPam1CDQaANB6QMNMggQQgTIFMaZU2Kn6p+m1UzU9J5qjQAAeoA0AAAAMJBIiCEAB BpKNNP0GVPU0fqg/UZRp6j1ANADQAAaaNMh6CFIkE0EGhTKn7TRpRtU08JPxUyB6eqPQjQ9QaBpo DygAAACJIgIAmQCTAQ0TUxMxDKnp6mmSn4JT1PU9Teoeqe1TelPUGgDQYJNREIAgmEGpiaJqeJpN GBTajygbSNqNGjQA0AGhoNB/7p/y/kSf7j5U3XMElMBCYiIG4Efn+j+iiyHtAVQBDcQ+6H3/wbVg 1r8F7MEA2DeLY5mORWImJmDfxQ5SRNDUxMhQSRDETERS0rpAcFcg3gORESJNEREERgWUjEBBQDCS pLUSiKneIh/O/aTf41/Aq5BrSEItVGCbKB9wK5/CabejVDbGBhu2gJwMAUJ+wGA8gYCabQgkQKHW RZYJYhioJnDMiKmliSqmKSChqqqSFlqRycSKppqaKAiaaGP9v+v/Rt3TEUVMBzBgOcUUFB3Zh0mr 9OOp7oM5iuMISRUxJJTEyExIUFC0ERQFBEpVBEtJSEQkyTBSEFSkVEStDSpETUkSSRExLBAULRTE BRFREUE0USwQEzE0QzSEQlIUFBNSSTQ0tTFNCVRFVAQSsUpSLEUJJESrSBEU0BElUqwBMJEUFFIl IFEJxi5MxMEsRVLIEwh+rlmpCgKCqpppGqaKCilirQQHhGiBqIim5Q5Uqn/X+d/6XNs/msK3VSKi oIYGBQioxh7ggPzyAZAUndJSZ2zhJohiqZhSqklAkiUJgoIgYJaSQgoaaCCo1OEzByTFxmiISlhI qWgImZUoKqqaFgCgGIpKYIimliSggqiqAiIYmqKoYkIpgoYgKICIqCmiYWQkKIoqCpmipmoKlKFo QoapoiKKQqkKioSiSUqhKQiIgpGJCIGliUkIGkoIIoKiRhgagoIgKgkKAhoKiaCAqmKqKUgmqZgZ BghiggpCIKqgmKIlaGKGGChkogqKGigmSgaKApmUkpogaQSkiGBlkikoYkKGICqQJLUBhEVVKEkj AhIyA0pFQFHq+96+j8y/pBjR/Cj98DlBb9/9fvuhc349vPYFYmF91NjnSW1MNDHRm5jzCr0MpWtN Aq10Z6v34GNKf5lH+JYamIQHdHWKGdqDdEx2SbaqSvE9lt/e63zGiHPIqNpolIg08LCDTbZNe3DO hkuiuDI6OwHGoNR5ZctT44IDdTYxDHYjZ0nGjVlsZH/pxL+G+X6Dr+9x/6N+377u8QBv9dYMlGHh 7RChZDoxTiwPD2Xv5L5nr1ajZhwk7Pv/JUUOqlVVQQpR04uxvXZSFZomSM6YAYMAaxt8R7I3+CmX hQu7QOfBjESWoxLOmYwFVSTEmnlkbeEwhGnbZY2Y1dGQbqIPNWV5cbZGZbXkC5IQfVmZio2zRIq9 Xb43NUHso24MjCDjImRwkIzLUwNEKBAVHVkyXJkvVtVN1dk0IZzK3Zsq9S5rkw3VmGk8mU1jVgIy Kcv4/E8fThJnxNiXdn8fPpuHIghASAQRwHKzlGEKF2evitH/7tHs2q7gwmvKkfMo6i5BIB8l0vHP 1sAOroXp6neIgJBYyKyzWylrcZLWS0uEFDSZ8eKZJGkskRGNkY7CS1tVxx8V5Qj2IzTvpxI8mU0a ZuSsLxCvQAzXGSiyVpY3QO6miktWYXWjUEW0WGECxom0GjUaaKKyzLDCqjGSqy8lHCKuEwMtbWNF 0UC3VKPCjtxummNL9iJHBcGcdNKvRp1qDjjx0zLCptmMlcK1HVK7HOWp2mgo25JsgxMBtsK+tnXk tN73XkjuQe5HWmRxNpjmmWx1kuylHY5NECs5cGm2ZCOtOqFJOIRTi0lpsejTWpLw7t6YXStC2KSI jDcK2lW9GwlYWSZFWt8QzHI8Y7LB8XHmTztKc46iMrGzTbGNY24WGczWPVrhxN5XpvEabeWxVuSm nKKqg5qqRGhaqi6oFlqJi7swOmMXaWOEEVQigpEqhyqZpt8gwzrgaZ200/GcImINGSkrSj+RpE2x ZttWrguFbkRCLBRkSgDicgoKCKlPG2a2aE4gTUZGSUJTazICKmgssGikoGiJWhTLVqaLMAyImkcs hKKamGgappKIgKCKDii7mAfLUiTL6i2IZxH+3+lmsWbFCUYb6OYPBe2MQxMC2bzDoXBhJo/cpTFq ZP/hrWL2sbXgtYXfa23vmbseab/LKNvHtqs5m6nImxtaPXMoZdnOhS4rCZ8s1lmczEUNNbP5XEEB 1zKXvgOWrMMjIjLKdxiZmU5NQQikKpZkDExuiIMi7doZm6tO3t4S7qHtPrq/NHCn0vpvnBgfzmOw s95oJ5bj5Djvo115glgoRZgogWqgKUQkDkdfC/PDQrO7++4TtcVF9lmywJ0InC/Za4/58JsW0sTi K58xHXr8y3Qs1y3u94TD+QRIlAZHmCc6e49dFJPm+PBwOcr/vVEjId7CLdnUF9NF8POLGI9zvl0D QmnC7+ejNlA0KJmcLheKUexPs39etfX6WSucHsZGGWFvzmlXBw7c3TWKR+L1xnrZjPjFONR3xmIG FGXCHl+OFYR92FuWKKGXE0oyJMOqaJmpUxtK8Gg/dU+/24KHOE4hclclPyv+X37RPTK0+JBKT8LI cWGGHoh4sPEePbTpVFKrGrsopLoH8PLAW4qcEJZ/r8uOn+rSaIdXvtciG6Rs7qaVIRwTjIRkGfGE fntLAi1xNmXmpStJBDag5NiIMppKeFlIqiojrVBiihQRkpDxbT3lFO5mtyibYaFWLZCoe2G2IeEQ OyChtDNfKcJLlBko0BqVqhiE7oHU0agJppUUpIZgIp7D8VFL9IH6IKwIE1hY86UE2pBFeEUUftf7 AmcQovTUEEX4xogYyy1K5jbpMhGsGgIhM3mJE4R+/GDoyakGhOOsdxq7aPLMgyg6Bw22WhooDUNa xjCMalCibmVNNtOvD2vViPkh/t+v36wDzbP3XKQxlgQP6v9LNaDR9rWNL9Dw/yzZ63gOMIvPDhlT TDbS52Dhh1EClZRqUZdR/FunyYLJ2T5ruFq+qmmOQ5x+77hO/A07611nbj6PZ+Sy5k4z5h+9Akqn sHMB77sMI/7iSNv1qg30AH90rh3+/HqyggsqGd3RB/f5bf+WZmcJnd9yVdinWWhh9LSSC5gBUHHm 5nAcKDrwQ9MNQGKQCnPZOP2Kzat647du/vd7Rva10hb8v9SWNbeMAK7ot0p9zCBdTd+vg38nE6aE JOigJkQF6/1D7K9+EgVRP/XL/h9xrY0y/d2eewPFWoHbFCqqRNIXFZdfr69z5YDQfbvu4YEFkSHx JIaMn2EbwNvBkQRbkNZiDiEwKD/nkP+OyeygA9mwy/m9l4EfgkeG03tcbmM2QbRdYh+uGUZPxaAt GP+lLaLMoUpgED44L5xz50mUnb4W2alDhjRxiGIZ4F+t5P5kJlnHmFaedAcvSoKGWBm6NDxVCpE4 gUUbJ0R9VAj+3nvSb+3wn5n8xUgH3Qf1iFNM1fr5k7gwmmmYICiAooiCLzxwojMAowJYIpjP2iq9 TMoFp93q9nDAZUUjdUIned/AyCxCApQkAlAPWzH8fxPd++PMlr0964bS539EgoiwUN7R+Cb+nOhk 38K3IrqlXzcczs7CXd1iN/5Uzgz+gwzoL8CER5u4ceyUCRz96+g67V2V5wZdBECj8Z4YJBsntgoN N8e14MYKMfwCTI6O6RaHxe37X/Car+MlQhP1dcBf2CwCPwLIgcL2cu7aMtHfUBd/ympGt05dmvyV QerWgsuhZfRwXFP0e8z9VHUbj1MfgMEwOCkm8T8HYTEEcezNaCYziBhVwdp+UwyMWxpAjrkdZDiA Efkc4sQaXO2+GVGylVa5a6MSOWC6GiKri/VnBYTmJC7i6A4jwYIJu0+bbmvg7/2cd28+KdAPUSuX UK4CxZgrFVQ8minn9oSWhh7hSyuEfV+u+P2LqldHwo/f30HVX8yfnex1j7ODNyKpEVIoJF9Zn9M3 +Tl9bqvk90ogkP2eNmELb9T604Yfhpw4ndD8J0zJ+8k5IUCxWFlVLQuLxa0qamDb8flzeXNykZoi hoKikCiqIRpZ0WOPpG/hGl5bMNLqhiA1wIKEWKCqhCifWvukJahvGGthu5YD5cg27pE6cv5/WIeh 7zhf/hk7fTfth2bK3xcm+mXj/gH57dTQ+EF2e2hAfds4QsBnRtBGwF5QEjy8tTbSEpHYPuevyPal wqNzXTuFoJBAIYG12omEyOmmC2yVRus/nh/IMw9UjbKsNvt3uzVs+3ZMLL7J3nq9g9ukUhAE2x1N IT3UY7/jrVhVGElSMHkNUGLz+hVad89InSMp2WSvaBNU2ZkutRgQ4mwQ6kS4gEsSAUvkYjsrNHI0 F0s5r5FrenLjB9XjTMHLd+5PDRxwKW/Iy0QK71EotSHBF+KZYZ7M8DJ7crDr2pnxKWpyqUmPeRec tgbsVwjoWcaiD80MfmfEjGWdW6lHxA0/h4olD8CMPHxT7+Mvj8h9v2iDXEfGnn7wBeSE1KIFrH19 cB+0uYe69wTcggRfaMoQWKCwiKIRZ3/b6G71baHptOiSSAR20mSbyIXsBI3gv259HXIPI24B88r8 jGWHgW7RTszHdZYhdZYTIsPt3gD8GwMHvSb071QnM+Mhp/FblgCARQ8V8adogOdGo39gS+1evMwF oKCukLdhIv3NBw137G83eZZrrQHJnABQ0Yd5nAHrFVQZxDXhushpX09thgEchvqtTAuhCm0i1e+H ogo3ItxGQdLT19oPzLhqdd1VJ5z5dY3pVdhrqaIxQtJX6eMfTy92NCMnVgD5VDYuicj1q00JWndW X/kzZhaqgtITmwVwtqs5CKafqLDudSEShiwXR+EfffIohHbv7slIortvu3K7o3FXH6veha7ckke5 BkYLIMbPnNp+fH1B+oz526zoDLB0JE+9pPxwwpmjt55445FaP3el8/BVVrz4qoq9b1S1UVdK226c u87IPa2CCIVDNBMEFJ0YANAU3e4aWFdayMYfOYGbwa8ifprzD1b1McxSnBWBNIQYIEBUDtuGPrkV MzFPsdgRD7Lr7ViEoSPZaPNzAakYkgi3BRkKMrNwasUuim2UxpsrRwTiM4KsOVotA1OHHEWcGsaZ lmb3V/I7oK6CwqwUMWTVtvTHr+3mpaRIlbPUcK9LQiLWXUxf9LWdb3NuNh4ZTQ1ttzvZbRNpDDkG pQLOG6EeaPRRfA0wdgFJJ5CttkvAS0zl4fGP3fX417Vx0yVuIvbIbsPk3xGD8BXOigVBDS2ZlWXx XCZldSyTrNgG8z9veskwy7pLT+p3eIhRy8iCYadCNhs1yE49u/pq9fLSfOaBD5bt07sCRGZb5iL9 SbA9aeW7abi3ZPiKFu4eIWTo5HEieSCh+ghSlTTpBIcSgsiyqNbTB9IQQN1x74ikwVl8tgn3m/X0 7sgcjwLO5KKSYkApWQ8GmS0GMKNK8OtBz8OHI5Zvd+rdDGvV8iuvCYwwuQU0L48capO+TcxpZYKl NFXX3OGUK+JGwDGpdhQ7Lnd/6vj9fbsCMdfXo56wF9NOqhtmjdkRQbaJD6fxgzXxsE9D7hWmf3Wa n8rVxWjbf162/2zn3TenpZ0XXiE1hdVtdFhWPKVlIsbQ/XusthU7t98XGUFGx+S9D8I8nXp2dnIr shByes9osHsO9lN+Yk3FYPjUPeoviZzgOe+OmPzgEtimfGcAhR2o58Zc0D+yydWn6cKZ/PbiENrW AexHToLvPa2FSfHmnxkTupnzrKAQcB/ewt7VX6luktW3JEEmBA1IZLVj5CW11ieWGvptRgRZnazo kZgYevNWy3s1hojOruIOd/R6+i6Qmbh5OzOK+fhdfK68qLB3rVcem2CFAtNb6enkSEFtrMi8dJhE JIe68fak1cmYUZ224dvkNxPXuprZXs2sRsPoPFrv6me1dRvZCxLgcluN7zxCGS4qr4k+qMGd7zkI fGrEaewQcRVYFbPS9X4Uvux+XoyYdYAZ2Ge+dvLn6vDl1M5b+kCdOOiXAjSxUuhrddMFJEMtXGMB UhI+/dPR4bGxTbkpeXbc7OnVpfbaICJGHkrR6W32obfT0oYw+rHicmIHv2w4nfNru7iZXHtvFTYq x5YfhPlnN9bKjiwUWsF/BqfUavs/0J45kL3q5GattH3x4ccvivgzByzMN6fFLRs5bQQuwYkEnTmH 1Q7gTW4yiqpXCDx1jqQjBJBBk57JPrbceYidL1Hxd/PPsmSNFXRgwX/dVNPzrEvmzx/nskwOUsWc FPEzzsVoIWNByIVwTjluhvslwbLe9mFaMDCE5w61UZVVU8N3hlz1ppUXCuXDHDtVPRuttoNud9d9 EASWcLVnACxkwTDEdSuE5FQRS3CbWPoML7uEaXWCQIHrfc3LrWwJoR43TA7y+700NEQB9caT6oOy waOnEtuhu579G+y2dp0G69GMBBEACkdhCBJIDDiDaw3GbejewTIJwdMJx8k+Bb69eEDKnI9gCzvK hVjE0YrM+aXuW20PBBTysRtlGib+fZ7/Da3XQfxIT87J95FwnjxrvamhSJhmjoogKQMspsVRTfbK tW+WdHbQNl1+r75Qamm4tmkgSHDEWhRZoisT6s826VWCYV64ePHhNXYsgQBLWue2Pa7x4SspRRQx l3yKeDQZZGM36oCkUFuMseAw95paEnocPjqzwLrQaM9+GVoMIKI8vCP6M9KrjGhEkzdgMuEnuSVx 2kWnftAMRJF5Lp0gQBIDBEHXddllhFZd+ocXLqtpiCy2QrAbppma4F+WUsLFrbotyvcYdZ3o2qjn 8dIaS2wv3RVBiRiMcoDU7KopWfFS6bqqBMAob1INiqbC/hPoE9Ne+Fn8Cl2GDZrpYdmpi/o829Di ymZcF5cKDJQvSL3P5QLZs825TYa88ekjIuNLGtInBGVHp2N1W3QLqpWXQW6IDO3Uvsr8YGJMuCPX i5iefIxv+txWfJ+a50/3K1Uhxg4IiXivoj14PaPl0QAR32VuyNw02jgjoe+tHh4qJhLN/QKyZ+s8 4tLo8H83SLm86Fzu+rHPesggV60MY+rIhoI7qVMBbX23nW2z/r242EdgUUOcwwjBtFdoHPAYY0he QhQdSzjANO6rQ64h9IY6+WYlDPVmpWN+kCk/YtQouE4ekh3SAevtUV93RrfZIy/TTRoKeMzPkQus xNFUKA1FTe3uaBlhYGCmJOjXQhQjs8YUQclsSr8ZwrBoOAthEhfw1ylWQ8xEJyIsBPWcnJdUA2c4 de5+f3b5Z86PZUDC4jZt+EQdbJSZu0YJ8Y6wFfGm7y5GnhjgJ06eedXGvFADpVd2bRPtSonlUw5E AGEWoMBgM+d8Rie6zOHORdSQ13KsGvAAm1qw2+p/09Vg5sfjOQ1DRSFub9t651T8PigYRI/bX4ZF jvvKsBcRH+fzSYem4eY4Ekz7MpRjEm0OJKYiHF+rpfGQgNEogjT5IgbexflK/N+gIBMq79hE777O nacD5eUY5qHIRSIv4WU2NczGk7gdcOuVgEufggtRq58t3Ne821C37tzQHbWuwgVvsCMtebiBIrHw +EKA4cYad8UU/pQVwunbfEZNh0LekBF5QDCO+W7+FNgvySDZogGkQksSma6lo1+Zlls1pDRGqNXO wdHArZffCs6SkvEbjOAkBcEBArsqJMLXwDUcLd23/CNzWyytfm30wK2HTt3c/P1W8PFOZymV1QxJ 9anqasU93Q5NYpu+Kmy99n/NPhVeb1m9DBEILvXQt03MxY80Mc8Vv4GyDxVuOm0A7DpxT6SkEZxc W2vgDGPnkVlWyg92bVhnjKD3YiL9rLnfXRnGd6+LKDnnnfC2zKAxEkoPuvMnit/K4tbsKO3SHT7m JFVrWnMWY/o8kM2Vvcrdp/fzar1YYgTEO6C06Ul5nzak/NJhCIUUnh0+ORFPNHuMyYh8eeBI4KYX zYYb6P6GqlX2zfl5QsU9FM3xjIBCWkBD27DygLBYNFUia3wTe19qYnkL25sg7vJxxw1WaW6pPbzJ 75L/XCYGU4cA0zO0JghIksUz0Blcba6RREcp3XzLO64K3759/qoazZNdTjji4jwxoDBF8ZmbbWzA COmDfYZbbbWy4Hw4SmlWA6hoqBjfz/yvtNBcVBIBQczWa80Rq8IHHq8fDt0p6Zv3MnvUTJMqDRHG xkZIMI6SqoKVVlFUrTKKWV/34cvloV59OnDvSznbbOu4O2mA5W6GbjO25hPQrLpjm1oUTO0qWwey AhcJPJLjBozjfEFYrAfBNdlzkm2Fgr5ubST6yDSUZMNy1Ah/YvX9wr4xbrszz22TlHuOzr0MsOiS LDy1G2BnDhhqX1rVPEiL5TbGoVE5Rc4gmF6RDBEouk3RGCRPs9I/h5N+iaCNpT8G+3qn8Q4/R9Cc ShTVIoU0dCqjKrx8ToMn49392PifrtUSCh/XAKZsJSCMURIgwRCH5X9IdgTGeNQFDf+z7fP45RAq faB/Z5wPMAMoCM/N3jbL86r8Onye7dcKgAG4AjMJSxmsf8eLkH9AaAb+7Ats5e/rl8Xzhu1/oIHj UWAMbN232V4TuS3oYeu2je7nzWYEbjKVxZnuxggSjqB9d7BpsxRT71dBkQmf4LbOLdJRiCMFDFLh 7xZjjxwvsoBXiwa+djRlu++Y6iQT4KewKwJJKCg9Y1Ud3f5eHNDx6uR3Y4VNmYRkFLgT2+2wscA8 QYFZg0aIiJlmnXGRvI45EzNGJokdWQzMRRS00UBVPCJX2712n5xP2IXUAYhFV/5MBFrnmHzIbw82 yWAiH/pPui78GUzBphAnWjM/4lRm5lCGn2mYFfYrBBAFQwQMvmS+dhDTE0Una8/HDCGjWYTEpRG/ ZhZadWyyBalD+xIY11QCaVR9h/N0KExJ1/A/UX9lUZYKY/g+v9efh9P0a2/j+3Hj7svl8/6fD0/f vuFNwQDQFLT6CD8hAHtD/MXAdQprjxBKLYWv+eIhzhD+ueYSflenYNlDH4lN8/R/mwep8HEh5HEB SsOh+JDrrmz9eqLWwUIDH84OHwIvRALUqKCP60LitPi0CfdqAVSOqp0FBh6BWGIghH4OpmoWGE2Y uQLkDNiNSkMQroA5Bk3XTXqtFj5sxp2Z/Yh0ZQY2va1Bd50d/rkN9OKT/291DT8bxkeHd8m8tb/a nVmY4MF/UuTi9XxL4Ry8A7vJIgiJKIyk/R3yj3bdynYchsRZD5D/i/jo9hnenQ3UKQv9ygo4lBvT HG/RG1W5JIH0AAC482oF2gEB+w5NoGRywCiGELlg4B1DpqHkBvy1riJeYm02ebc/HoknB5VEE1hh S/xbXkUigjljZ0VRw6evC+lBxBExyMREPhaDuFEMTBQ58rW/wcQHAcaYwXXditttkZ7Kg5EIByOG sdl+ud/Ozl9FT4s+jlPLsOYpUaEFKFK66CIm+uDaEUI5YKBA4WrOx+aMEF1hi1SP0b1AmEHXqVZ7 eU8UOL0WlSqvjdqU/2KrqYO7sGKTAehdCJrggHjeSzvF0IuMzPCBpnJp2NeDLKq5A3CwKE7iKItc dYChjT+v98PRtIFRkKkug42C9dFporsPgBICV9jWOLWYFIgR5AJVHAhIqh7rIboJ0so0VgbwRGFD e++5xeBdjYj9SKE4E4K8R2XuivZB9A4kUHAoPYcLoBh8COcDhrdLZIpMc6kp5zK8KCniR3bvGkuX f1VfmC2792A7/f0q4HJD2jDpnnyOTsUPvsstbuy3NlU9mldrkyOi2AfkZXzgDwDyE5tHjxv6uSop C3h25jkRUoHZ2Gyr0N6ETL8EuFwBQcRptZdsM95AyiuUsGKa//ALRBCRVXk7d0oPYm9MeG/rgE9h 2FYQo76LjQgIOQ+AFSGDseQkzs44HWxeiIge1BeLMRYGEhxOgJNdWRidjxHMriN911YpE2H4iB6s gKCHt/QbpZ0ffsPVY5W5wkPu/IHsCwYpvhpm4YXmAbYB2XR4OPd/YyjUKri5h5vb+wcO+qzlyVrH HuDoLfogwJv835PUNCmn1W/0TGnfP9RFgJ9a6f1D86DfBVVDaXxyJ5XMs8BwSPR7w3UkmiChAoDz Smz3fqxWkhHkyWUl6+G6HlzKMaAWjZbLuEldcoMy4xp1BoiobPX3N20w2/ui5GEY+oxipA+84J4G q8SJFkSmKdoUkkmll5+56X59zzImd9tc7ST1qsjsyrgBVkUQhJZetDvuoM/qN7wKpTKaYgeqP3g9 pRoKHeY/XTwb0qzZVMsQmW4PkbZRqYjnGztiwyiPiYdioDAgkcIKGdNOc/23PgZZHg8hzch6+1e/ mlihS3JGXvsXBRqyaUpal+Fi3f++2+ouPt122dFdLJPzZh/kSzlHtmNGVO/pUcXJ6mVBU2ZclHaq zgTJHQFOgziw1DsQ6cT8sBzhtduiG3cIjDkij5O5fQdv5flz7o6Snzwq/8b+Wfgs5LKwjm4hd8fO DeZW8WeS+wsd7rB1ZfQUCnWl3o4fXzzEeY6xdrTFJh6jccTJrV1WblBrY48ey4RFloEd0Onnf7VH pA46QfI2NNQO+Dw7/FRhfGhka78Wf03AO/qKXOVTwkNqTw1lIgUmjqoieGJXAtZ33C36iJytIy9D raNdn762JJJIa4958uMjfWaV/HNguOpA7Z28jMUA8gKTHmGlIi6Kk4YhIsBKFjIO5hDrn9tOv0cL IYcp3AnxWyTDgAeACZASutW+Sql61HwqaXx3vgigLEJXASfcY3XT92++PVPpp4MNVxEbUnIdecKd OEdbIPQP2vavroTtHecH830v1/bp3oVHtvX4lGwhS5CHS6DbEAbnJFHY82wZaFi2PCRJun7rpx8q 4yo3A9MQ8mQ4eFidYiaoOBsautds/ZHLEMKOWyPCMnXHpYW1tx0cbA0M/lDDzfDhuMjiReRYopLW e6oY6s+sT74WShHd2mBgvvWGhvQ4Bn4IDoCMnrJpw0T26yJAJCtlOD8CpNS/aPlHwz3z4Zr1QGoe tH+Ho/mVx49VrzKo8Wj1wF6SqjCbY38yv0cu8WTeyPfnultOqTWnGAPqVnnpJ38tLnHE0avG382x hzfLXAPGtSS3HEK4xG9c4QlZBiZBbXiw6CBtaqxa6nEztpWj21fzQn669VbjOVeNHIEPJcoh4XNP oV/MK2yJ2qIp3xJTkNQNcf15Wzx5QyYdY0DEZ8wV9p/2CyEgwgxpgiZoqCSKDKyyCwGUmJWCmgiC lSIKaIqKEpqIWqAiCmkqYiUqiJoKSYIqIgoGYpmCJIpCqmmqQpKIqSSkoaEia+aHKlKSmmmJKKaK oqqRKKTu+3DKg4hHayIL98KUim2N2QlKkRwRTr+riG4dzhBm8NQtBSiEBIn59YBqUKN315jTuETc IRA0umDIpQKyTIaiYQD9cBLf30o+n6RA9Iekh3T2wPC1B7WfFkx4Gfdn4ScQ5oz1nBPxP3HSGhEJ 8gT5vT52F49QW7CYnGtHDg9+r/HqsRNgJ5Wedz7Fiba0kbhHRFRaYDaFooWd7UQVYkJhYPCdWEeU 1Qi9jeJuQutWGwhsWsRNG6KHW9nuzNQNXHviHI0/N0f0sv5b773Cm6CIbaQh+PsHTmzlLQwN7zuw CSTh4LpzSDxM6fPfhKJEim9Q1oeCpE+3YZojoYTPcB+PaRDAeYBCirLxuBqThTLfPrduaQ6beEa3 I2DXJysggTkd0Ygi4LbO6Magx+S1WNvr9gxFhthtOgp7cfdLqpI1GWcY8Gkn11GFBbjaMLRECEd2 PzSEXxnsGgJizdUcoY3q9k7yIp2fTlP6KD6CKaCxbxa10O+wEblorsiJhqU8IpXm/d6bOIu57ciY 417IIzfDt5XieUxIWDaTczc8XQMotPQHWoXIpEfoaQTtgMLB58K61ujUYpOfiEol9o3ViGyXdbC2 dtkhQDZop4aZK4jkolZMCNN0Q89n7+Ik2JI83rdMEQCQCQTvHla08vvf6JBWE7rXniOzDHkncMed TqhpigXRF/QnAmMZsXJGU9aVyWSACEqDB7RBFhZkmNlkQaleNyVavTTaLobj167QAK6BZL0au3e7 Haq85b9+FkZwGDcFSyjcswbgTMwLCXHWJeeXHO8UOKz0j3SsNuehw4dbEvGl8YDrChbiiw29L43x MFugTn0gaNvThzEbg2VuIUgXKTnQGC3b4C1AUHn0S9MhuI2a0JKsCFt278VwzlFZ6Av05tkAO4ab +YAdyFACURLvYsBBegp9/2W1v+3D8FeH892Pgd7B5AUAeyNcIN0D4i6u/3FywBlitB8XOnsiBc76 kTI2QoXOBoSaZV4COvWzZyw3mbgwsmwzpNGMKDQahAaYIKwq3EEOyegT+L+hCpgt4BgkQHBIN4oZ VRlY/NwQPriEgCdOYKTHV6BUXFAaxGNBQYIIdJGCd1i9j78/IBt07Px5P3B+qk9tXipsXG/1/fX3 1TbDYIXMCk9yJwo8zM0nWUQryOH5zFnVUTuInuthxdFN1+02JeWVs/0y3GrTdFt+/t14r1FsXyPt RL4kcVsKk8inlCLVw/kfdbw55zGjwdRRG5PJe+p5vy7h1sRVL7NFd+JwcNZUSH+Fk5w/YNoUnc9s oXPdl3I2PRxZB1D/MeNL8Ip/deratF3zDqzrh9Kb05ASoICPaEu9YA+Ko/1ZP3yvaboCRbPWuEBh 1uF7JtPQMtNpU5lnLUhuNvXEVrXdg7ixZSFL23tI0U53tw9A+hfdIYfDrbRgxNCpmPi+8X9pj6LL Z10hvG4cggGnB24paDF1FS/E8SIALNTnCwhU9AvrmwSDU5aoANtxk15FOD84IEHZ5fCBP4/3aBdp qpMwr89lVEaBzCiiWIaKVg/2WRqMqkpoqYaRIJooCJDJ3owpiIqKSNmiQKhCpTREpfh3ff/V+vly 5PPuK9B2sD96ebJlDKU+dlTcnH45NMQ3IGrF4D8E6CHvme31W0NlQlUU9SLthng0TOmo5RMSIWgb YnqunMT/T652iXH5vpoD+c/iD6uQf5LcQPyMJEMapkhnVQZF0BP8Pp/t/T/1+9X25CQk52SWB0o2 JQT1cm91JFBPf/iHRB43PZ0rTMwDZd/bPtIURIT8H9v1cO/KgNdP3GgWdt+nRLp/vtfrdNbHojrB NRA5OD0kDnlwxyJwDDZ6duABj+5Qo/DCsQLrqgpUQjmsc4VRPdYlqB07blFn83qdA43I/YU4Cskw LHWGjLCBU98NtyGHjI4Ak/4rEa0mmv7coc5zTf2aZaoOuBrfacaoTb/t+ARkEhEUComkaDAZ/aLE FUuS5Ox3d7Yb/w/PuH7R+H7vv93bZ8D7vfHu936IRT51X1T+mQmIdwHkAQBuAUAKA/2R+FXT8bn/ KYELDsbQKNQWL74oF69BJyUE5KCR99L6ZbFBKT6yeqcdybNQ9XU/ExsOQTPz2hlwFvXWgc/pr/CH KPxEDO1bI2+2v4cr2/d/0/9VnunTE4fzutokP317deeuPiX0ftN+eCpe1TtmKgxRk4Cc93ZdBV/3 8WyH5Qvmn1CtzZEC50UaAhIXqEqQgH4mAan22Vpmc/iMn3b9nzZdQ4+HGZmukzNGffVtoG0N6a8S QGc56Pq82b4htvp9WgO1gG6Tl5kjrM+kiOHvtDPVEcNCWmL1jrIe+IvPc7w7cmb62IPmvSkjzg8M qDOK9LUeO2sJhFcIIb9lAc4VPxRwxo67Ctd1JmRZYpyj07D++3xQTxg4wGMxr6rH3Xtm5kJETCYk Ybd11LVFi/TJ4ecih6lRH8XY8VxJVFHhT7t/UOzm1jvMKMUFKqDf5mF8VmNxk0AbP3naZXcrGLGy LtgzBXFFdfReY6SLb7/J5HJU8VQGjEC7NQMulRznpuXMZr4EWdKonHiqPezcKL4YZs5udRMo5SWC 2cbup0mQmzqHkqjaaiRcsP6L63bpd7Sj2wn2Z5p0UwwnVcpv2GGuG1uEYRn06rnCKkMZwuBe8hch 1UC5a56RfrYD0InBQBO/Cjw3ca2VyxuofjQ72cWV9tVv7bKVsdzTN1UPolN0UPBJoh6Kwyy81hFw 6td3HxznX5q1kiE6YoyPFAIj3a9wmMkdCzi0F5x6omShREP8U8WpwPXDy/DiaBs4RsUdFEWI8yJI wQKyUzm0oaKcJvcRY6EI9bCeoeRkmmT8jLiS0vdq74GRgqMRkzt3FHypuuBvtzzrTG93py3v9f12 efC3DbmY65fLrs3P+vd+r8IhAiyKsg9kT98VAKCok/jcMD9Uo5agKFsYqKEqInjMK0K5EwjolDWl yZyYwmYsByduv8MbYdTtKSkK4h/HHEP6JB5wpuNBs5aH7JU3L7rZJSGMUbuVDbKi0GxBDCKH8QwK +8Znw7ufh3eoMfXY0BAzD4QNPd9gmcRBqYnIjlAhBNEAAREMqDvZL+a2sT2fFiMqDz865kAebXzn Qv7yPE1gW+s/CZf52/IBoFfx2Yn50moB/+ZH+jvDRcQIXgJ+UZgP4j9Cu/J4NTSG7N4/LoVqZCYO aXApdDauG4UidOPEbcshsZj74dLKFI/oNwYgcx0A5/F2WWoL/HQZCjuCcaP44Yd3Ay2uMFeR5nYJ Qpdgeg5B3zXbe8wr3Z80+LBfdpYP0UtSJI4H5cTmm8gcqoTuzLZ1GAeIclv0GenSB2kPdCEUUTkD kHTjGIu6AoiQCCZDDDAITGDoNjZqhFwV5wZEycIhwMgnTO3GuBPEy2O07eR0hc0xh/iyu90ZEQS9 eIKEHww2pix1g0RcQDfAe3d1+HXuew/k/62M6w9OEmjImGkoNfLGsYaWw1b83zD0l+PQdAHiH94O VgP4b06hNicmoWaW2eLCCESi6z0dcZTZb8Bwe3s5ocnVE4h3hEvY3kdO5B2MNOvsQTu1EvyaG5gm zhmoPohmBflswHFdfDocDTkJvOzI8iHmjITmdTfovAp4sLIewOHUSz24YjlRCDCL1YaQ9mApjJMc eK+nwOEeT/KwWl6f3VVWKkrC1qqiJp/VIe/tT294efMFDfgIR0DQuVYCg7AKqebCdAzA9Srmz8Xq CXqwer8koUwT41I6zG7M69Z/goOGoZu5BNsGsBkCz0sKV9TSKCeSZKEIrsyaJAEuhgM5eHNLgVQg UmBGl5fCCN6Ww2IqPlJt9gMD5sVUN56XrgONgNerIuCKHo9fuC7YoxwELu89gdiJv8iSEIRolbtm KnXk/7Ow0yPM1PEA3NnsexIdhueTH35HqfjkJ2G5O3PhqOdK76bu4TmD4RfRnsmHPx6bLyqJeHNH iCeyI8jjhuDdodDsowdfceH6tIe5wVS0w6lsIoo5skRRZgdyag9JLTqB3dNd4EJ64L1Cc/n2gHRd Cc+ELjHlvkFFTESA0u6BYEnEwiaClGIZroFnYuA6Gg55wXktFjANMg2q2vt/2QTgQmLpnRpQWJNj jt7i/IDubgYHwgTN+4V3nm7l7rCVCL1MqdpNhqfAm0WGMhA9MT3kW4mPBVtw4LhdoLqYO5J/aZSs OJn0KWgGtgmxff1OyozDkvpA6PzbebAFMChD3TkC0hzZiieJpYAgGCsNgaIkDOPKgsEP5xOxyTLM xDZSyAG5yQdI/JFkBfzuYGI5pRnXyPASbCimImZ652EF8j4uBAOwOz47AuhF8CsKFGC4Bih6jQ9I rvTfkPf61OhrNmG4MAUIYK4LudkXghhuVMCZgHuNt8QyzB2AvWHH4QQ7S03hinnQU9tIHcSxEPWR CiMfJKRoh0zTVUyPYqb8e4YJuOFA6mogSKrxAu7DxwYRNDfnXeRdmVhLEISiPWBvb7SDiBbESIOh jncDup/QYc454q5AZuY1DU2OAmAakApEiAYFkg1v7Sh+YgYrECzK1VLGuZvxxGIPgpBHAjdDcJ43 j0xrC9dMJljN0REpWspECvu8vqyG5HWwz7VnOc0MfbETzhBwW36dt/NMLxc+LtweAeYUYHnBfCSE IWAg/yYoZexME7AQOoT8WGERUFoe6eHx3IGTf0LtMDzBJJ4kfgCGUxMgWangUEMkIkgh6GTzTXh3 T28uV1Sc/XXEO9WLF7CNawhz8OQi3025wOEgadNTo9IamdNDq72BFJo7G9AaujNDRsFrxVzcRMGd SopNUuWtiHrXW4dwGYYjbHEugTLD4uIckX0kObA4v6MmnmR9hEHLtH+PD4h6ByKVPvG2barbietF MEAO8jn3gwnGISu94oWwA2hZ0oDxu3QHsxJEpjwu6ga97huTcGKZZCmEJ2wuS5jg2NYCfZhcSI6M VLaAeT1NeVeERjUQTaVS7xuuQw7vHaBuh+DceX6T7/uf3fpmGfefsoMY8NSQmkzZxF0o/7W1z9+j 85Dvz+aS20slhd/j66DuB0eu46hoyYU5weLIBk4sGLBBEsxg0ELmtQOIp56UiY5s1sNegAziB9f5 o/5B9QNwDvlqB7lgOTP3/4P4v/H8XIbOSLq10csBrKuzTaYwJmQfefwSc2fc3mAsmhBGA7s9AH/v n/s//j/zvOzWRw0h7UT8dh/wT+n/onOwPZT/PNYfcR3xV6qFHSe5vrDKf6z3tRlWLN/BXelzoL0+ A/f+FGP8QP9f2KhoYDASZmRolCWnRn1HLdmYzQo0jIyQtoH8bHgbqO2Lu+/XSPd2yipeX2f2tbCY cwMggpitRxoxrwogGUWTWJItVUmwjbPJ+z/t7MT8/+/GcuvZQYRXAxNg2/KfmYd05ofXQr/4BA4n 7vPd90gft/YiT7v+ifpf0p+8/oHcf25BiBjWQUbtoG/+0VblG0wZjRiGBmETEfHOSDvP7Fyyckp/ YQ/WxDYEvIQhgOwK1vWTg7Dl+EDM6+44EsPNdglHV6O64Zm823yIG4z/cTaVUcEdMjlRGBmHWNzC knNXOtTmG7lJJTkBjtdgQiHFi0XDea5ELDqPAhNtt8dhj5B28rpudTACtwwO0DNQoE3WdXIIpM1p qYhwO0Vp3X7Hfw2rfFd5xHYYZon7Te5LycOvM/Ft+d+IHtCeYfXkHSy/b+6zf+XJDQRVVVEVURjg +v9hmFhV1P3E/OIf7E0T/KgfxIQXCJy7FFFFGGYNBQ0FBGffHdAf48hhjWsYQwGNdJELABmmgzA2 qlS9ql6mFWlpKpYRbEfr+v63j2vwq3+5e9bFIDQG1Coq0zx/0Fu2zD9kY6urOF7Oaf3+Q/uOnm83 nXfZZG3JKpO4N8EH22ERmWZFVYWMVzzLWUWYQVREMsFkkSgIYfrQ6cXFb/MOP4AWj3tuHA0LCc/v Srbi2GrlY3tj12L9DfyeZ1xFvtwNiVaErZgIU7GYMyw9Qft4LsjxfWZUkpBDqin2xiQExDNESSUp HsOkSRRne9ezG50ULe7NmgZhpekY3s3PH/acLOYRQaWJ/wgkjQcofzN6pcLfme9/9g4GvhIVVnJX YQeGe15cWSS2Z3JlFSbe9DHsDab952nE8dmzbyGFyrNpk4uKpduCbjQNAyMEh08S+wyZ2j2jrNxr 1JDYqSmNneKiiqptg9myqqiK82UQ7YVFFWYJM+rmcOJZcCwYRfHx3pp4YnW3KNm1FbKNQ4qMjiJ9 dH8kpJ7uetzPefGdj3WxtZZ0+0I6UcY2m5qbk+ai+pVFw/YVralbONJFxJ0QypDH+tMOqEFiCa4P IM9knyzRJX40HvmBSJJIs4kqgrBOI4INRrd5BrY/uhcjyJvbbFdkLugdtMl3AxOYUXDJFq/UblIl ju2j3Glwx9AHDsxsbsXI7TDEW7np2lqeDwtRLnIMgLuGA64BnD2RLyTvo6m+ddeCDl9S12o575Zx 1mb7UsNmsYSpbyXdlY5Shvr5gPAPI4GufUHIdRCwDyXw7F2z0yZFNw0VQlJxlpTKhZnDiul777Sy WgQi3SDsuX1e6gxOoOPDl0HbAdpBsNHwjajxNGa6hTuW8lgSTqYexp+M5Pi+yODg56+gNes9ZTtm JRmUnBYUxcHnXL/b2dwayhIVQbi4czfKJrvCymCI5unr6YsYMMBxEIDvPA3lvA28g68jqcM5bA1O T2l8u0TicSsxykXFdsA3wWoy4Y9ZUYyRqJxZh7JNbIZ797kPCGncbB1VM8Otm7HA36Khk3G3KZMP adxfYmO3YC4CgjOUOIWYyaCHZ05lr5OucLGzeSWLGD0IG6ysR2VJT7tgwfVDiVCQg2RtjhJByE8I U7TiHXz8uOud7XCiykx1V5QJvvOrBMEncFE7nr2COt8p19NZaPGh8GlS0306N6XXN2RkkjLJW3LL ZXSwdlZaJosI3T6h4eqRbyB8dw9JqtoO8nGkVsbcGE7LsFuI3KIl++256bScRxMOKHA8gbqakcBK YxM1IPHxANgGBuJ3M35UO0dVyOdy7xIYgGioZdliEnLsNcIbN+Bd7x2plpQdSTM9nuf7aTyOl8dY VKUAdIXCVyf0h/B2OAwzVL/m86ue6ZPsTVZ9rQd+hdmqWROOKvM8aKiByIjyIqvjyyJYKlVJGNdt pULMMFLJmZVUFs0BrYZxwb1RjlLBjMrtlIWdEvX7ovgdDq+sjIOMG0hbkXcrjuBPI2SSfT/8fPiY npoeE19BCRIEhFEFMlXwZcIYA7JL34cfk/H0Tl24KSEJCRRg6zzNYfH7YvfloiB8xTVeatVRpTMC Q1IGX+nFxMwMLxFOsnUqoLx8XDu7pJCUFj2vBrtMSwnlAso7LoeeOgoae4PvQ+tmcNNCibmzCg+Q IjaJ+KLh8AP8o+3sFDL65lKwxjZvuqqCR9W55nSMPlq3uycTvGtaaRiaSxqNuM5RjDi97A3dq+Qa 1whvRYVx2JpdXR+22j1SZZC0IVgqGf6Ho5sKmkxgtLiKCINoH42EtiB4oR6bqy5zfvMLWMPo1Etw FrkKkeQvhER+P0PxNIdED9758KQAZh+MmwJT8JgePw73EPjjiQEtUnyR49PZvgIIAgIoxSQ70iJn +eVDVYe0Hh6dunZ3awdOXyRWWJG+40DQXlYpnnT8Aq2FC+xHmRi5AKTAeqculrIM0Ir6EAP3ZTiT WL2iH9FF2NVDXkjztVigOoVMhpp6+y7tMfj6XfQeReivK1sZBxkZyF8J7XqDwFXrxnYQ+Xx6ToJx J9yaMO/kb/FIeQDEWCgEUOvmV813sdd1JvSoKKiLYVHxfOAYS4GZjlGTZoOWzqcr10EwkewA+vB/ LJTJ/SnsOq55csAfPgDmKKosURD1JocuT75JE+36c5PEQWSUaLOJQYO7k6Zjpix7HcVWootJ7zSR xpbaVzi+KiEIJmcWT68NSDZnSR3Mwxph2PHR8693m90/CZh+4kPpGJqHAIwnD+3A/X+32bWZrUIh GsYbWxJCFXT7ze6ctNtIQYkwkkB2ESyyhEx4dff7IlPiZ+QuzcljqhDgdYIe2N/WfptUt5lpUMI2 HY68Nfyq90PhD5PrnU8HHCZSrkQr0F2x/nApgTckDZAN+E9cPlendi9/kVUoqxyJOqgVD6oNEULz +kjWa+Et6vV+cPEv/x7SvmgfDpbtccB3k/wmHkgJzQ9t1qEooiQSiIClJIaoExmtni8yjoefI16A SRYjX7o42kd+dUbJkcFEzGoPp5U+GKsFcNqZx3AH44xQUWa8wP6r0d3rfQ0HexvBjETYDEzOl6AG RIH+NrlnPfjkwOZCOp2gUeMB0h8Hzy98c+2oRCcyhSXlKrhBaYj2MSRXtms1XQagwJaQUxEpXWwY 2tsLYnuYZotaNAzZo0FBsQM0SgQSGMVLFgzyrfvQo6nO511JlU6nB6Ddsgekp8mbZTS0gPNjfndD 0j4p2EJ+RANnn7jYvUAUiHyOhNwwO0GSlLPSNh7g9/xSOF7RxqXnDMakgRqNOA0qJatI21JQMQKS ba+TpIF6EDH5QN+ZNXGiIKDq0pJt1686de0m4OKcmYSXMjWIK1RAwabRQW0dzj8HuXvwRliqhci1 mWjMdwGG8MI2lBC7k0QhDGcBBDNCvE0xqx1jIXJuTqgZO5j2ITvxoEunNm06b2htWM6GVYOy9ELw EbTkxwsrtgokwGxRxtTXf6pBgN9URb1Z0OEwgSEkCNnwD4LinSOOvkXvVtLNQSICkw59tFYqCx4j SeYnzsNro9q59/RYHvcH9WWs3G8eNyN3HjIWsidY9SDaGC/aeBZpwGijI41VQII+xZ/N82eIgydP sAPRUekfrnCYFPjkksLLBw3eM8TU06XKXpR4IqktlNMoKK9SUTQKgiZWJDDy0WB+bW9mQ4RVOzFP BUMssT5aN2SwTNSjQ3ZFxIN4lkA+iNbzLbA0UFASJxJiQ5vA0FJSUIfcLz5eenafRNNNRGBx0eZ6 j5Q9VFLXxOPp5eV/N1z2JjLXoNs6zZFAUc3ftK7Q8u3yHoUPCflCJBfiUlKBuFEMhKph+qBGsCAJ 2riBkRemswHIpVoCkDj+TBkQNtz2cke80IcXoKDUC4Ml5ggQREwKzGxgVX0soiamTyIEw4gAQquR lI3xQpq1a0Y9GtPeGkk2tKL8GiN4g5hTR5+kG9YBNjSLzxRMxkcbhbqtkxBEbzK2J5CMSQPpJejg F24NIEUdkRXAa2QB5lkIsIiycQwLqA4SS1Dck1CCoMajJSUrHczKTVNMQavo+3njh8DTRzxCZ+9W 4+/iaONhBFVjcNm8UaYaUzUM8M4xqitTjGWNROYGTVFFJFrRmFpYd5g6JdwGEBRoiBnZvEIuI09+ HEAcuWPODJ5ZhShQuNk0tAqht5msK+/MqCg7Zu7Zs5b4ze1jtYlFIdGkYN4MJImAwfO4lhtaIoGl iEZUxkJFOi0YJEGGGJsYcYmGBRVpBk3giLZMDgIJRBUsSLYl/QmDc09/KnnPBswgeQzt8tDjsB2F nx3oBTSKOHygCycssKqgMevgfJ3/VafFh4wh+wcPHD5sOR280vj4C9J4+q+t5dUtcQezcFFAU0lC lMNJrmdk6ndr95UJBJBBhzu1NxjwtVX3p5rQbA3PAtbvvAKx2anTYbK/P0wdgb5CVImqCGtuVqIK AnCBDlist8tMtnc9Ju8hUVE48IUwZA+Tk2Ol2ioHtQm2bXbDaTgOIW4JZgGKfRwCgRRFAFhw73Jv PxBAYChFJEkRUVFUjKNRESh0sClARQWmE7WSGuzzfW6kCBpzdpU7q62eTrGdGa49vg/lOedxAKHS iQWhUGghAUnfvribTbkbyObZNGQgm5S7lAiUUadwiiG8oDj8/zh08NIBTiHpNVBZ17ZGAV4aM+Sk bM1EAZ+nDpnbArWO86PlOMo4D/yYbPKadDjti3R2+FGbx0rGEGMWcECgSSAsWA6HTeHXVzzPzdvA q6AeNroHLA4OewAlhgkGbFQ1QDkKGFvaqBvQt1vvmmcEdKT6K7kKt0tqeiZr5DPLStujEMBsgEtO 7Jl59YcENupdkQmfkOzQWBLDuIPMdemIG0bLP6p2sNpsN93iZe9xmVjVQ6XUY/TOcu41S63yX0Nd eYwNxKJC424tThuCjSF4zUiVy72Tb4CjEi0jDY3FXmOUBzmXp8jh+aoyQOd+TfBzno+Tvp7LjE8d OBrLRkVMnLdNLUBSALDNCyVrdDWsKX65rYje1O2sKHQcQzBQ/J07upYLBt1xFKFtlrDK0XJ6dQ4c Hrvl4LLboU7EyWeU1cISIZNm/Uc8Z5Bun3nltZGgMEVjFNFF05faRw7CpoATCA4guIIaXcIkqRGE 3Us4tvRxtkDPM84AEnN09kW2DzJk3SOo2gdL0b6wLg564QgcvbQhnEjGWrt0sOnGLhdjPIzObWCR o4SZaQi9tzxUi/SKOcceGIIxshkPvO/btqRBRuVbmDHYaVWAWntrpvO5hDOMlU3rLxwTuxlZDEOx GI0ZvjWzdcLmOEnM6MmEM8rOxKBgcliHNDKsJzYWMj21JjnO4TdxyWJg3crG40sMvTEJXGPu3hSM 0zGanRnOLVIcbhtzNUOcSdUi2Jl92Q23Yk2TA41vilaZBS3iw11cXhgESGwai9nG1ggqcOARSpMX wE88UbWcRFsBRlcJFxSScVGGEDBnWB0SoiYio1YQWtCAyQiRCRdI1AvF8FM7teje3nBDm9bOkSwD IGDW5Inw+OS3xYTNUJuAqopN0IxdNR02xwqtXQXo1xdElqyqEXqhbAZC5Yvq1rp6Ao7VfMRjDxjA c1h3zhxVvZaGvWd32wqlLBRIM5DuxVYgS4Vy3B0ed3FXDo84maJlG7ebjbGMGzIMg4oa9UC9BDF8 JDJAwFYSwcGThhLMOCZSKozomJdrxw8VTmygFAPONcj2NqEyLlVc5BHLXQaVx8pHyxKa89GS8ZmY WDEZ0DFV0Z1sXTrwFXKuXgWxYSYyJmIXnBxoixHROBwQRinU9hi9SLv8DQHTkY4eCS6pKd9EKgd2 BhUYuymuS8aBoYr2sXIiGWdTi+KJOrLBwhtlRZBXpBe0IKGh++nYBsElNdvQfpjbac4Pqh1C6D2l gsUnwgyUWnalzThDYIhPd+nveD2KB8xwKIjPIoMzzoQQ7AO5ExxxMEFn+LVGOtgvtoKgKRWEbUHU gIl6aCZAgIh/wAYYfQPsf2kdQQ6V3F5t7t/bYZ6Vm+rva0PSqza7RNgQDeNh7X2tq1wGYBzMpmAY WDsKOrBe68vsV8E2x1aRdXBBQd2Hvvja3I/THSRkWs0gQNg9U66naBY0HR+826fJXeLYzWQZnuTi +uC2InuJxpqZmGngywzYCmA11Ya7kMFtAK7osmUVA2J+wicIaVaWwMAR8DcQ2/s8VmeqCQARZBPk gUSCwPib0+z5/n0EU5kj6jp3o3iRNUARVzwyT2QNBjg4ny8dvLqdvHuPmoGpsYBUhAUpPMEvRMmF mA0+Zg0Uxoy4frVuXGQGoEJ/HwqURUARQpIQN72Z7PdR4+GzGVUikCIX3eyFhSyJcet1PIJBQPqs O3dh20QPLLg4aWJae/Q0GKA7UcLo68IQ8e0r6lcfc6B05fb6HEtPcy010YbmgP0eAoFtZ3T9od49 uhd2AGXTaExqrxA+uOHj0goD1yhIBapp4FFumqmWqBePzgWYMbcEe2yH3/LcCnQ9cCKRiCE25exQ YeR15hbHHaQLu24GIEx6dO9UcHuuoIcH1DRyPCGgyx8kvE1zFvBluASjSOCy3V7JhAKtXE7aO52H adxuKdXDQxPFLrwp1eY0dEpzTT5d6WQ4SoHACDR0nEhULTOjgWoOEEQPSbEC+mamG7McwwxKTD6b BW6hE2SB8cVX39QL/GveL3xGoxD2WTbVX9lB7slDUnbnVuPfSWtOycbFQxgY0otXCvGkeIDhrxFv TLnzzNSoKZfn9loygta2jAuFgOdOHuVtbzvmvUrTxVQ/1ZR9pgIbhCBW9R6h9qZmkiOzhx4ceRxo yTZFuQEHiYNigxdePI0KAcknQH9iGkTenuZSG6hYUIMFgnjUAO3b2DIs8IswxkCFN4FA0DbbDTFy GmrvYulia+o1ovxYZYt5zxbSmSigoDCSIpyMPPMLIMKWoqU8+uk0PGMgyFJPIgwhI7jXZPPahlxD 4OVB01pNXFjvkYCtIonYENx3FBpDdv3DRbA93t+eYBmpjs5gWB6sYRkaAhWOLAGE6SmhcPoj6atT 9smEfYZ9pmitEbxwzOvQimFjh4Zuj8ohCCGOA9yet7E9sfVEQnylJaFmIiutWAmKjosgyGMoqK1m BX6soRlYRoYOPCxZXFWhNltntir1JMkhzBSCCySvGa0VBQp1bbC7W7cYjQXRDAGYMNi/QQQ7MUD0 wA0QF9peSZ7aBEDOvYbbaTYUgHBE6JJMiYYmepfk794juYRU0AeiHrF1kD2c5cjqJ9bTDOaLSH57 oRg3KDlAhKlE83mmW8FjCHJmJV1DQ85dr9Qu8qknMgdToAhnc6EDQBIgOwQpgVia2A+e+G2tuPz3 bvhNKnA8fTzwZTigfQ9qe0+069UlyI1gS5eNKDGOEIDGEYB4wI/j37zDAjOz8bWwuoZ89ezRojCE nPuFXt8fR20cDMKe56nk0yElJQPTrFCd3BBEj7z14hqoLWIpqFDcombQN6vhYH3RsteJCKjo7GAo V2xoVacJI44S7gUTXAtFrRqIhwMw0UwRoO/n+D8N+lBA5mxsDxqojKqQpgvshnjjLkMAaBFYiw7E pFIsZvP3qDi8jt169WCAjvkG+yrRNwObxwC4YjXxTEMhBT1zH0aawyh6rwFPIlD0iHvKlJoqIiii hiZ1g8IcH6N1t321o4JWazfiKdfi4gUQLBRfDKjTZhZU4Uo5ZDhmDWsdXxk4cak5fG+k5fBIMVmG ro9llAsQTdUtUODbqcLOMDVoo0ALCOAkJQLMjNQskhKeP32Dyzn++btJgqN8mVrA+WhXyaB8sRsL +9foQfsDMr10QZhFHWULtljxwglAm6IhIpIohqj+WIEStLkCZI0JSJEBShgG/F6lrANEFgskyNHw ufk6zgZxIVdb27oZp0KHAtKLGioIgHvUKkYCgIapxFERVRVSRBFSOcAvAfTqfENszSUTPCGQMg8T CkM9AwVjPVV+9Td4mwE7gBSSvYHpMfyKZWgkUBPrrj9VQDxZ8fMhIcJk+zifWhPTt4CkCntBEWR4 4EfU/bbDbJ1kJhQNsIts9U0AU6QqsBRggnDZXn4mudt5w5Sp+REQFKA9yB+r8fF3Yzi0HxiLYgiV FkQ2MQqKG8bylEpbanGYzHnyKtlne6W4H3vLDBcqqeFb90ROu1tZXcSin4M7Nyg67VQkSRFaEofx QCZClUiUoUppQ/CWZFDGkBsV9psDWdFZiIa5HhmYjkfr+oDX2aRUzSHkECCHI+KGe3HtH9riCGYd /Y5wwFeOHy6MkOSascLA8T6k6xP345cOOe9uC+85ScC9JAtT/qLcSIGUDSC84t7N1Ko3N4lQsV5D N/A5Rox0x2bYydoAuz6PT//531TptYsQhAJADpXHt8PXvwwxtWN8Kx1Xt7as1XkuEcIEtNa28zb1 XhvWt7LS6Ohyg9gNAhsE2es9pSUgKKEBglVmY8y0a1IOlLTClRKSYce3feWr7+dxLVIkpFPlLJCh PmwfqQz8f0bua68Zp6hvY7zYd4Md3f+rFhnNwIJxbBrLgn3WxlBEmxm51eMS4sPfd5A+uqPH8fHM j1VkdJQzZXHHwdbNlGVzbWlsfz0ZWrhyGNaBxpDfAB8XxOcrwPvv4MSkiKpIqEozMvofuPozbuBE 0xKBRz9VprzzQj6IRL7Plcx/bE4WoGbHeEuZoM27GbB1FakwVdhTBhFBYWovp9mOH0mOOWkHn2CH pMVIQBkd8T83YFL2jiF/NJqCqszGWYGJocionWGExqpyBwzMCRNEGpTaaSH2hmGBrLSsei7Mho4V XBzhImZIfpU/J3og8HTmdHkB8hAUpQRLVFLQkERMEMUQxIUUUAIkIqwRAUA9GqoKizOT3vw9Ar1/ 015HtIDD5dlknPU3pYhw615nnR6j4RM3yzQiAiCWaKpqRqlkgppgpoKCouhYF0McOZmdk++ACk+s Ofea3QxnuLnyw8oiuXkJiWMJCFNzJl45GRz0GH7Nkm5zzzKKJ3hlJQfHRhxBveOSX257rQScTgQG QA3LAMhSgoW0mEyJQnOYkUPEZOXyLy2c8n2TbqT2+DbtuVjkVrue+K+UR4CG0Ow9R6S43gGhx6VZ Nl8rD2tz0Qi130HhYo3/1YYj82eXzx6uod6LVX2Y5JQqHgQGB34KFdPLsCUwkX78ZCeAhLDs67vl 4Frwu78MU3hZ/hbZPHKnuZlpwCYIyABnDmbwfPJhzzuh93SaQEYD5g2lN7NNtjQMINBcss3FYDE4 8Bn0jqyTIGP0blFAzqZycnThnXXbRGRRkH563n/768ncJmOWEKxRqBsZxlge/hnmTwOpvNXdSVzA vj9ygfBk95AJVBpJYDgGxh2gFBa5BXBoTFqGwrReaeV2alsC5RVkA2564Ml9gGNk3+BPfXXofJJ6 bnQA4UGtkIo+LFmFgKWUIMZXGz24QGSQeQhpxqvQ9WhWNkGQyxDdrdsMHMD7Q0TMqBkImEabRtou AQYImMba0Gs0swkdRuWD2Mz30NG9xXymHMdhtxYdScaFNrjsKMwYFNywpcQoKZzM7/unpES+WzFO BxZ6efS0I9K7rlyBDbocErK/ehLhz5mQsZasKGglg8JoS8dHHwC3EMGQGQQwiRBvq4nZtg7G20sk 9ZItMNFR8r+V8YicNba4zizbJlay6enGYUjMkQhtJyGRqdFUUsREYStORZg5ENbZAxxGpFocZsZW kBTTgAwGhNyccWA7ZMcxFpXUgG4DUqbuYn+qbMZO0pOOb3M1kSLNe2ZuPI4dbSpZbW1g5xzY6lWG ddNQRSpWoX3nLt6KCbNBoPqRCPSE1cD+kzOyejvPm8eeHpvpwDaFdN5F68A59DXXuX7MICcJBoF8 JMGPxaVZjJMcL2byr64Pd3Tu6liS+ZJE9jo+yH933ItRU7YCm7UuPlBDxk2BCG63i/H42sITAhzh 4do+zNAFpMpUaaEf30LbYze2JX9fFibgApPfcoUKUiQyycgPOEb8OAwXfFSSvPjfrZ3uVf019Fw+ Y51hTw9pxYQL74KUTQYRbVK8i/cmmwqsVBRoV+KbYXE9rc1g1ndU77Oy6fV74MKkgapIpJ4IB3IK dBmqPqoMdM8ZoVQPhsQ7nUG6II92Vjb2qkLrlmIfIAbbGPvNARcEU36Hx/eiYYbDewK3Q/Xr/tZ4 8Pm4lndvMw8BdJkKVLSE4eS3r+Nd03dqLizsHJKvHYgRoZ6fJbfJz4h+FO55yZnsHBlpDS6clTsu iZLgVl+kPgG2BueQNHDUBQ6WQ4XBiUpAbOgh/rso12+GqbO+EjUW0Oqb8XZ3XRs4TKURoCVVJSlJ 6hxpWHeB4po6+GinckRvDTwGYkdE0jY1tn4n7TSDBZE5jr83w7uWswYujLdAlzPwNNQ8kz2nH8qs xzkkM0ahTN++p8Mj94sUXqieJlcyEJ0C2KWxBzphF55gdoKluoTEKT1oe4JeckSe0gzMYycpQDiQ NQZJQA5FBjAGEDEhQyzGGKEdxON8+i9nLSzZ43HUXgEetnDbps8OXnei1jhe8lpwC/GecUpIEi7k unIK+TorucoX8cidqh4unMzAHGBw1QeuOL32qp7r7fkwWWkmnFznF2gv/Cij+GqUigisMMp77qTI xDpAZsxDEoMMiDI25gMPWYhsX3Ov6p1unbCbwtHJlkhMikhLgrWKPbo909WcbWCVXF4z75pqDDE4 6WKjRis7JqMhCA3HHGweqQeSOOOMckZWjs7kjjjym8VKZZKvByvq3CMHWn1ijDc1TszbYxMMfYfW Pec3V1uSE1FJCYM+O1oTbeiRuMBng0aeEQahMNyw+yX8kLZX1A2FMyYhuSAckZhHkeWc8uOeR066 NbNsKj1kyEKAmkXDezQbZjrrF+dLdEdZpzljaMF5gG8d4iUBmA/viR1vL6NjaSjCLmxHATEcmPzt EzRIxt2JFOHGcYUbQcheTjnrtjD5dN7aAwKOMhyKL5Jh70IZgPguSblcDseX0+eB8SlCDQchnFDf zDv3vwJNSayVHcc193zgHOyQySlWhNmzpUyeZaN5XzYiLhbaQcI8pEHpmBcinN44KoKufi9p66ca 7xcZxcsFg3UAlWKzA5W8D8c3CZRaU0lzJdT6yvNW9Cez+ialM/TmCDJMGyFqZU4EcIyVy2ySXnJS GRuZg3gYrd4laaGF4npaOMmhyXbVSPPDNGKRwOWA6qDaNyA5BuOc1arRvTIZC0Azell/+ViSWfbe OrijCfXCyEODt0WF5mMMEfigNrIMVtwVdPTjkusKdcNZS8wtKtoVSLUjCj5aUkUaDg1MdG2mypsT 4mq/TlgPCcicPJcMFliuNQAeGtsc8w1KSaL6w9HCmrVDSdAPMklJAgYnfjdu1/DhnDT0PmBpWEY9 5xkG2xDNTGZrK2aase4N5yR22PS4THEuas3zdN8wmcM7OQiBdU7Wt/D3ppkS+Vj0gOML7TLH1swt z2GB+PXlmHQygeUKgaVpTUoqmE6SiNRvsboi+xd5hseDkZPDZNPATkmWVmK6c1rJWl0WocgwdGZF pcdRJIjEBUT3CCFZkEIGAg6Hy4zjRDcYdPzI0bQ5Eg0IFLRErBFCOswKQCkaAiEIgSDpp+Tp4aCB QpQSjkZnCOtKAcq45GofVIHGokxOuYdAqjo86ejMckEOy1WIEgRWAQBFRNLFEFAEURRERLBEpIFQ SFSJBTQAQ+CkKGEQhARoHXjv3mOIUWvaREMyCUoIHPkYgfxHFBhMqGmixF6zfVbIuMR/NlITCi2c DOi4HQ2cNb7umZ2XR0aAcCUhMoc018bvS6+CeTwNc62Q77umn3OHx2Cr5Y5DpYoHtOyyfCFygN/d bXAp2UdVNu1N73iF1ULuo+dUKIYjNkWLlgaTqU0AcwPIrPY9LmACRyQyEHGoVJP2+ONDx+HZoQ1b zFKInUhSJZiUFK6tbxzeI8tHFrJwhaRrIlMghlzLCmgLZasW7KLiwtqkxoyslwg4cD32kNErh5ca QyQzeJLEUOHiRVgAuIQWfEoaaEZuRJmnHYARInvqR8/yPbss8sowkE39FR8MPODKhRVHX56KJcU7 qIwDcJt3ipEQdz0HvsmcwBn3mB831QV8xpiE+X71XdfJ8XDJohK9KCTKH8KGz0E+ZKEw4zWiQNqq J3rQ6DAweD21HJE9MiMZFODKfe4GTXZkFD99lb9xnHbeJZ7WBNhENARQgkMjG+RKPxAL/VH+vBxL RPf74CnhFYT4ezYu19+ZzOZBS0kUSQSNIJdoBwUcvZ9CAIGyf1uMTGZyMoRKENSqPhA0tI0CIFKJ nHoe0HUBfmVO0i92vq+vOC8cN+LvTXszCmKiBhAtGxKKKAjte98Cd2a3fpr6gVTwQ5cudVHkn31Q 35+TnQbLCbBhBSMgQkhEGRE5hx/u7AoPdVXE5wIjtDTYV4J3A9o5DyRIfOOJPPEP6RIxANCe/vLi clfQRerB12xcIKBpIn5YwJd1G3q8FFitnqQJvQ0Zqm+RDcwLZlS0FbxL+jV0W2yHqqvvbsCxuD9P SxpvRDsiLIoxZ66vY32PXoH1mN3AUcxEagh1nefwj5jw4r66A9cJjz8vHnp8Eo+Wx0YIgpBkKyQ6 +8G9fDhgNVaYEO/8nTgImflnvYbZ9qloVJoXSm4TyPUB4IMv1LFAQx9CKIf5pWBXXPXDJSrCT0uN Dsj1IHg0ibcTPfdMO8NIRUvCHddu9Ds0QreVU3NeD8wNKmNaoUS3MkWQLLO3Wj5AMSLKmkS+Rht2 HWUR9cX+yefAQ3xtyhHyN1h606ghPqNSi6D2VPa+wX6alRYiLTAPembu8IQd9vWNBoQ0PNRI8LU+ 1/hDPVJhiSrWHrHrGdr3Y0pRu4QMgPAijJymQG0497n5vCb8DYemg+xiOhVSSSaj7pC7xVFDnq/c MTj9hHZGNQhJBhREH6q0waov0NJ8fr/B8byzEPwhfz2Ux3Bt7un3/toJm51j9m/yXPyccM9zPe1G OuSW1rnIqTNJv77h1MRB2nROYZQTJBpjJzECWISSSbq+3IfnSSF7XNr7cLgXyLbbQ0imIH7uAgbb gbIkb/m6RMucQDrVJ5ARWNm50zvgcC8sQinumwzLkaf5aax4FwGCUxUFWIGJ8xNuo9ne/a/oHM0G izuOrRteQlffohWYlCd1FzI231HIMRIgI1DQ0LSIdkTgZaGF7R/Mly1tEk3fU8kPaD2RhD7OcB72 XZgl9ZvSpmAXoyxqqPagcDywxSvDFwCkqJLRJrbWJ8ODuWemvpeh6kqDJ4ypCe3PBsx3EEot01Gb J5MqFxqilSDFnWcmwX5d1ivax65Y4G+2+wXO8OvbH51VyC71iUQO8/VQYJ8+Vo7jTNkgRAgOwwmt XI44X0Uw72OByK4R0JAOPr6linlMxs4fTz9OiAJhCfbPV5O41vCsghlyxPPsDQg4wSeLAWEUmBs8 j5ysHCqrIl7324oyAzohUjx1zZPRh25PUt6ss65ge02m9mqQSCNtTGyHDDAqE15Tds1snWwUA3CR 0g4x9clilqN3+tJlmYiaeSqiWguwg9bFKvu8izoA76ei8johNCR6bJ/AfNH4w+YPNZikaEDdXgZs t8z27sFMTorC5YjdQIXLENWSu1sgSkMLRYKQtIOgjAoRqOGYzDlJmsGEKJY5SNmB7iVjGxrMgXVq zEy4xhvGiFNxTMIaPXmTrDIKyTCSt5lRJqyaInFINLJNQiY0WCg0PHBQkij3FKEjRGWf1g6rC/m+ urgOprmC9bgta3GYJWpkkwhaiBfEOLKxVZzhRUS7oKRoKKulVEZbKQVyYxG8AqwtgXZAs1WwMdUZ k0SVyvVJcJkNM1RmWOarkaKMkafnMlbZo1Rsqc3U3XRGoTDGoklR1lSfTAIgGLEwIMIkV5K67AqZ jx7wRj0wwdIyA3E1B49vMcgDGPInbVTZKFQYAuiwi8IlLPEQELOaNBh6Ty5qB518tsXM2KZERSQD J8/I9WvliDXiP4eO7Z4PF7OOPThZ5iThJ0+XGbzO+E9EC4bIpAdxPzJCQXeEvSOQiBDEUhFdinQ9 bqYZ+BU6ONocPm9RcHjOxH4QjK+GfNhBzVNU1kx6kk1ara3IWN4WDJCtElzISXGkjAKysVLGFDVN NVFfSWQpsfH7vSnGEdTMiDJJHCn61PcIGgN3NP2TzQ8N2D3HJK48DjrU0wPV+B6ShQoIq7FB/Tuo 7h41J3huPHt+puMBiwHnR8M0enypghpXubTHssyGKKE8E7fy1ghtQpQ/R1geYskXtW54eEMrsbmf CxwuuqpDCcBhefYVKuBF/rMMkU4GjD1PGWRvbQqDvV2wSPSwUqjJQiRaBcnJZTYHl5h5RkQPYQXg EF7BG45POxeGff9WR9DnswyQ6usBoRegiGuuvn/Chs4PcPN5xEkUJJzQpDOxJ8kAuG7Aky/XwcWu gAmyUyiGQIWIUIhilcCkY2ibSIItQgGeVFQ9o19J2SEUdg+zPBE3VIM9xuJfk6E/McddwHIoNmn0 8ewDUxfbLTJoDl2dhyQLKpoSJBiNy4hYTRIHKrMDLxlyNGBkypQaKIszMrAwyQyWkoFyAwRwcxMg whiSQSkKAcQ3s4h0IQSCeJBzA57A43mRTkDhAhSVGzBBlbSzwcdmWPVQCS7h7wbIERygPgj9SOeg DDZ0jkjE3+HCzMRYgyhakzODbPMRz9fp1Xw++1s/eShap+cAZDAXYED7X2qwmXycWT5q1W1aLAZB IwRdmebVuC/dr4iLXPlaCrK/ff0wSgissKNzoMExIadsaUMAQzHD1OC+17wECA5DR+XW62lAKU2I DghjfYN9Buh/U0L3m8cRGBNUN34Jv7Up7+L2YQCiOTUKUhRi0v0OrYThHt3IKFGE8vlebidEDYgg 0CBm4x0daklKnDe1QJG0uZK437YB4i+wYTxIxlSMhNxZmutljSB/c3wMDgSLKGuvHG3jQyRjKuM0 4rI7826VkgYKJxKqEdfkMQPV2v4xjPfrW6rcIeRDyU5ZdOu1eGwsDYbuFto714gHlhw3V7UoVxl2 UhM3JG4GQR42F8dOnfvvbOY/rm9QKWOIszBRbQGBCHOhDi51T2jWAgHI1mxxAaLWu0ZwDD1sILi0 BA+jDB6z2tOwNIfzTeOcPRwsdfhcMGY9RGZexuUqUyn42dni9PEPojhLwHY+3bAnc6JIcDUOKmNj Z4okKk0TNQAjR88J2wnQ2iGkB3tOSNKGDKCU8OdZeYe1nb3eFB9OvlgDJYMRHHHMsEPoEAICmnYW 6m6PhM7UERqo6m+8WgE25SjLvGnDmj0rQL57LW857hONPJiY8x05yI3wkG7+EGEHUkW6HjAlOyO4 8DZ4boeki+5hrMgdYuLBEoYIGxkPGYwTjnzdqgNwm8mQE4ZvNrOObCmPXHOJcm5Frwvk2L+EONDM zgeBDRCDBDBNYCHa01Qfi2dvj4zCIqsQzNT0QtFB4iBgJpEj43ZIA3a7EBORQJiWVp7HQwCAGOtH vag+VlzJ4R4+OALo+fUObrhZwyM0PEHG3oaeTFCWJm7RXLJoyyjY70J7l7em0+FL9x9Zs4j04mEv nISJgkxtEtGfZFhZBSB/UGv0PEvym5d1fuTes0zJUMbpYSdLH36qGxsyoqowImhNtNLxA8AOf53D 4xBwUq7ySapYtjOhUmWQoEFD8SHSwzcM1UhYzew9f47t7pdowK03Ho8aTu77yyiad5RsO4gBG5U9 crI3eLXowHfE3iR1EMnJrbE3Qkr1VqS/ST6EN21AodOZVoUljJDOSjVtk4w1FYYnpaT49kiW2vcy MIzy406sUvsZ7oWxRY5hSnZ7yQ5wPfzOHdQmpziMA5KIjQwlAyYHDYogWhhktkPK/Zsa2bZAWA41 AjQzphFMDdps353ABMaF9Qg8GyyEcb9mBlQLGAewzuej3Ic8+QMZ2kMPDWN5AYG/1qioPXSJGMxd ZyNmGKl6Vc4EY5De9abXcbV+VPpI5I3a24hhKkSPNTsQjRFOwp5WECiPZt5kGbXTY2YWl6ZB2b+C 6vyw+ZiXTiHCD+SLhFgNGTlXJWZEwl2nxMrvoDSsJny6lg1nXluq1dt7zC+gdIoSCE0KqdAelrVq lK1aNTlBeI98JOgCx3GjVNvN4ZJm9PY6JKTNmAGs3B6RGJDP14ZY20M20kfBe8eEEtapJCAVYul1 1Itth1ubp6uHHhxTXTIVRkyKlNs5DAm7G4d+KByZmtQt8mMqVWFiUfaGJFVJFEltuXpOO/wGg5Qe maROJW3SElQWJsOFNNgpMIPZihxDqOIdEWMPa0JuKOpyKtnxB4lm++Q/Ru08wMJIHqGSsbT0RSi5 9Am1tFGGvuYU+yPYRmeVq3OOCkEE89askGkWiohQpCdmeiijrIxBJCQ/VQWkge5i/uxEGsCRtkJg 1ZbGiJlgnaQG5Y78xd+k9xzcTwAYegT3pt0MBudgPP33DenEnCe7us+PiXocIe0C5reImNSvlgOY ChEjJyik2cmjEUScZGhg1uxLhGLRUMzTqcJwv4CSuxJMGQ8yUyI45BXDjLxsoIJRIJIXNj4V6G3h Y1ZY1S7ARTiqdzvBR9XboO7d8Xa/F14qvZzwTcXSlasZxmjazhQzVxnPUbOxBQNs4Yn5bbOA0ygK ygNzLEEtEIJIIONimDZMECRcOyWx4lOkf2mdqxV6rhaDbK3U2XM69t0AWA5373nXGQJufyzKFfPj VO+qF3dcnRm000dNrO+cN9WMO5cvaKAkBhUjW20wQJSp0+0CziKLLJzWbKKuzI0114lzic8YGc7z HkowYCE2JMa7yACLC7oFZxYwN0E5kjDoCwSyQwxDQ+KzELd04e+5xK45IYdIb1qvdvXKzjJzzCxo zTWVXzXWKdkmLqqXO70DGZiYcCS65eABLMZ1njZn3EYS0DAi2MCTBtRhqqQHpqkQQGKO0hqgbSNr pmnWAKnUEFDazfodbY2uK3mk0EMv8BwrVWcIZ0Tm8smBtYIEpKYHRiTaKFN2RotdGXIUxuYUOB4W btDQ5Gpl41pHDSWxRkibIjTjsDB3QdCSCPtPEwKEOqYot1OKiYeHbqZPFPTpIX0ZEskBNO7iBCHV ME4jL3Im2b2B1l24usYxdRpAcEXvDiSHFQotOTdYoNAHO43CvarnDtx1pCNvtjmIdco4M3ArGzrs afQKNMg4DahLc8uQq0LaBU5PFGobBIYzjhJyjtrvsuFsiwihsOm1vyME2EGgyAhzo1lEEIulrFeO lJS60QlW022xSZUaMRZJJtIxaZpdxoNoGynF6jRwktHajTbTYRySNXpow6Fw0OjmnPXDwnMcwA27 8DukKGhegPnXE4ZjjDkKVQRUUFUEVFHs7Otc7SEI1+CxVpsD099iyx9XI28Xy1UxfUpDscITQX+y CLpljGHo9OAopkQmI4dqgdXjEx9bEpZAmVnGa7YZVawxa0Qbty7hwgwJcMFwpzRg8Y8BePS9nKZC NvizJQosgQCgNAlumnq9LYJ6hSpSi85uFoImjTMsCNDozI4NFIUqBgyt8GgnegllCxCXquYZfRKl U84Ind8nzbLbp8DIQdmXhlEkWyuzXcEg1EMEA+OPWAAGT9aGetOAoGZQwE65irYSGH+DjU0YbT5v C1EPRPbiIcTj6CSIKd8BXLT0cgyJIhiBTDPppAopofYb4lB2dOceA3wH4A2HGoR72xI+jLzWnHGi ONNog2SOSDIhwWqKEUEaRGNbrsupTFykJZshVIYuotKJSFCqKgYPMolrisi5QHLyK1r67XXb2Ki8 Hy8jzle6XiWSMJDACFMsQJHJCgwJ8S5K3h033BnvZIFMK1ONlsK4ZDeK8deBz6oiBDEzNS9YBgpI oDJzKMCXHAyCswFyUgIwhyYwPB/W9J+g7y+lwr0HbuMbN2Rha2iJyAhbAPTuFvEJegMRRpeJ0qDA CuIOiJCDgbPUyiKQaIHkweoehl9Hwsdsbh2M3MwsNuY4hNZ7dR+we9pHriKfXOoPYkgXOtmOxMR6 RUkUCRy0DCNRQpsCibovIdE6Ni/jqDg7+FdkL8w7PXQ6RLDI6X8rgXF3/o7rEzhgpR13B9MF6yQC Rk74pUTWYPdCwkIu4A9MDxAhuKABMeXw5V9MrkbThLO77HWwaQunp8gVHiCLiwXIeRgYMkzVEe6P SkGosGwo33hs5/AV4pFAxgm0fOgyZtUo3eOExnTEsrwAUW1/u5OTCJIeuiuVcwuQUTVgH3nSHadn b9dbzXYpY3rQReABMKbhEnXvz7o/JHaDhhgD8eGJSnvM7Bpda4tz9o8GsH91QEHXjVBtp/kdurDJ ITT/nvDCDYE89llhwxbRWtVDmUdIwaqjMwwE7/FUNhV+x3mpicYCaKiJFRKw9BuahTr+GWe8SO5p D6KJ53MHAoPUNR4MKM2xV6NUVQVMFiYGNEZh4F1o7gu9F8WCZuBHD14tEWooeUcHLQsiCZRWxZQi bNuBlKLiypQeug2xDrQegiw/b9O4PcaUZwGpK0TcCcWDIQjYNzkxmDYeheNjnf6f4T6P4Kj+hGTj /8TxIZN+/u4jHhVIVRRR+pLCCEEBIeDcGTfEqqShY7RBuX6n029HvEdooNj8nzL5Ln5nGPkfq8vZ gvoMKSE+wKa+Kt2ljwweHxGESCU7gyaGV+00e0wEwYCDgewFxedCPnugniPkVBCKv+FG5ED7Y1Eh hED8YnfOtHGFu2nxlrWOtxvyih9OlGcRwIwOBqaJXFsWNvyQcXcque8o86PJzg7emIT64m9JuD5h j00bwZ9ZzKOv4PePr28TbLyG6kaRjJ2ODneiQ8Dn8W1jBFlKoFabSgQiKMGxMpinokNSEQRFFCET pRNdE10fQ/DBe0NPnGLP8yeiwEXPr2z/B9DgaZfo9RnOXqwyLUOEPs8SiEB2RVwZtdD+FmxADanf hVeuX1wmIHB8wflHah9JdqSOBNsRdtk2R76pYGb+K1ir1bWOec49r8KpD0JVflh6K/kPG+BMiOVy Zy0lqpUusEDIQHu48MyF3zOXP47MgJIaoY6dQNKdiA/3kA6/Q8oGI3AYY0g4w6QQSCbe0/dwh3gG nWMhAyKcK4VEOUDVw7i8VNGqafyQ5aihDzEPlpdrQBd7PFlGK+NhJvGGiwEkSXEPh4+oxEqJls2G 1RIKMlg9yBoPnyTfG7m7nc64RpibQ0y2wGD65Djk4fS8ajDcDoXDMzyzyQxGBiBBTbHCwlEC5A1N W86tbcMHT8p5LCKsIqAFlIHDNdDEFDe0OAAciDvMtSexOiApqecO0lgzH5YqpgUD8LSlAUotKAUE ZPwD4SZCawD/orLIwO6GIoiDacQq6lEwrIHJBGbKzAKTIcIwwDAkLMMbMgHCjEf/ulNoD//F3JFO FCQ2uvdpgA== --Boundary-00=_QfcYJrIor/epc2j--