linux-nvme.lists.infradead.org archive mirror
 help / color / mirror / Atom feed
* [PATCH v3 0/3] NVMe: Add support for SG_IO
@ 2013-03-05  1:40 Vishal Verma
  2013-03-05  1:40 ` [PATCH v3 1/3] NVMe: Rename nvme.c to nvme-core.c Vishal Verma
                   ` (3 more replies)
  0 siblings, 4 replies; 5+ messages in thread
From: Vishal Verma @ 2013-03-05  1:40 UTC (permalink / raw)


These patches allow the nvme driver to handle the SG_IO ioctl.
Applications may send any supported SCSI Command through the
SG_IO framework. The supported command list as well as the
translation reference is available on www.nvmexpress.org

Vishal Verma (3):
  NVMe: Rename nvme.c to nvme-core.c
  NVMe: Move dev, ns, iod structs to nvme.c
  NVMe: Add nvme-scsi.c

 drivers/block/Makefile    |    1 +
 drivers/block/nvme-core.c | 1760 +++++++++++++++++++++++++++
 drivers/block/nvme-scsi.c | 2941 +++++++++++++++++++++++++++++++++++++++++++++
 drivers/block/nvme.c      | 1808 ----------------------------
 include/linux/nvme.h      |  107 ++
 5 files changed, 4809 insertions(+), 1808 deletions(-)
 create mode 100644 drivers/block/nvme-core.c
 create mode 100644 drivers/block/nvme-scsi.c
 delete mode 100644 drivers/block/nvme.c

^ permalink raw reply	[flat|nested] 5+ messages in thread

* [PATCH v3 1/3] NVMe: Rename nvme.c to nvme-core.c
  2013-03-05  1:40 [PATCH v3 0/3] NVMe: Add support for SG_IO Vishal Verma
@ 2013-03-05  1:40 ` Vishal Verma
  2013-03-05  1:40 ` [PATCH v3 2/3] NVMe: Move dev, ns, iod structs to nvme.c Vishal Verma
                   ` (2 subsequent siblings)
  3 siblings, 0 replies; 5+ messages in thread
From: Vishal Verma @ 2013-03-05  1:40 UTC (permalink / raw)


In preparation for adding nvme-scsi.c
It is preferable to retain the module name 'nvme'

Signed-off-by: Vishal Verma <vishal.l.verma at intel.com>
---
 drivers/block/Makefile    |    1 +
 drivers/block/nvme-core.c | 1808 +++++++++++++++++++++++++++++++++++++++++++++
 drivers/block/nvme.c      | 1808 ---------------------------------------------
 3 files changed, 1809 insertions(+), 1808 deletions(-)
 create mode 100644 drivers/block/nvme-core.c
 delete mode 100644 drivers/block/nvme.c

diff --git a/drivers/block/Makefile b/drivers/block/Makefile
index 17e82df..dd192b6 100644
--- a/drivers/block/Makefile
+++ b/drivers/block/Makefile
@@ -41,4 +41,5 @@ obj-$(CONFIG_BLK_DEV_DRBD)     += drbd/
 obj-$(CONFIG_BLK_DEV_RBD)     += rbd.o
 obj-$(CONFIG_BLK_DEV_PCIESSD_MTIP32XX)	+= mtip32xx/
 
+nvme-y 		:= nvme-core.o
 swim_mod-y	:= swim.o swim_asm.o
diff --git a/drivers/block/nvme-core.c b/drivers/block/nvme-core.c
new file mode 100644
index 0000000..993c014
--- /dev/null
+++ b/drivers/block/nvme-core.c
@@ -0,0 +1,1808 @@
+/*
+ * NVM Express device driver
+ * Copyright (c) 2011, Intel Corporation.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+#include <linux/nvme.h>
+#include <linux/bio.h>
+#include <linux/bitops.h>
+#include <linux/blkdev.h>
+#include <linux/delay.h>
+#include <linux/errno.h>
+#include <linux/fs.h>
+#include <linux/genhd.h>
+#include <linux/idr.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/kdev_t.h>
+#include <linux/kthread.h>
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/pci.h>
+#include <linux/poison.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/types.h>
+
+#include <asm-generic/io-64-nonatomic-lo-hi.h>
+
+#define NVME_Q_DEPTH 1024
+#define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
+#define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
+#define NVME_MINORS 64
+#define NVME_IO_TIMEOUT	(5 * HZ)
+#define ADMIN_TIMEOUT	(60 * HZ)
+
+static int nvme_major;
+module_param(nvme_major, int, 0);
+
+static int use_threaded_interrupts;
+module_param(use_threaded_interrupts, int, 0);
+
+static DEFINE_SPINLOCK(dev_list_lock);
+static LIST_HEAD(dev_list);
+static struct task_struct *nvme_thread;
+
+/*
+ * Represents an NVM Express device.  Each nvme_dev is a PCI function.
+ */
+struct nvme_dev {
+	struct list_head node;
+	struct nvme_queue **queues;
+	u32 __iomem *dbs;
+	struct pci_dev *pci_dev;
+	struct dma_pool *prp_page_pool;
+	struct dma_pool *prp_small_pool;
+	int instance;
+	int queue_count;
+	int db_stride;
+	u32 ctrl_config;
+	struct msix_entry *entry;
+	struct nvme_bar __iomem *bar;
+	struct list_head namespaces;
+	char serial[20];
+	char model[40];
+	char firmware_rev[8];
+	u32 max_hw_sectors;
+};
+
+/*
+ * An NVM Express namespace is equivalent to a SCSI LUN
+ */
+struct nvme_ns {
+	struct list_head list;
+
+	struct nvme_dev *dev;
+	struct request_queue *queue;
+	struct gendisk *disk;
+
+	int ns_id;
+	int lba_shift;
+};
+
+/*
+ * An NVM Express queue.  Each device has at least two (one for admin
+ * commands and one for I/O commands).
+ */
+struct nvme_queue {
+	struct device *q_dmadev;
+	struct nvme_dev *dev;
+	spinlock_t q_lock;
+	struct nvme_command *sq_cmds;
+	volatile struct nvme_completion *cqes;
+	dma_addr_t sq_dma_addr;
+	dma_addr_t cq_dma_addr;
+	wait_queue_head_t sq_full;
+	wait_queue_t sq_cong_wait;
+	struct bio_list sq_cong;
+	u32 __iomem *q_db;
+	u16 q_depth;
+	u16 cq_vector;
+	u16 sq_head;
+	u16 sq_tail;
+	u16 cq_head;
+	u16 cq_phase;
+	unsigned long cmdid_data[];
+};
+
+/*
+ * Check we didin't inadvertently grow the command struct
+ */
+static inline void _nvme_check_size(void)
+{
+	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
+	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
+	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
+	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
+	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
+	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
+	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
+	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
+	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
+	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
+}
+
+typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
+						struct nvme_completion *);
+
+struct nvme_cmd_info {
+	nvme_completion_fn fn;
+	void *ctx;
+	unsigned long timeout;
+};
+
+static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
+{
+	return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
+}
+
+/**
+ * alloc_cmdid() - Allocate a Command ID
+ * @nvmeq: The queue that will be used for this command
+ * @ctx: A pointer that will be passed to the handler
+ * @handler: The function to call on completion
+ *
+ * Allocate a Command ID for a queue.  The data passed in will
+ * be passed to the completion handler.  This is implemented by using
+ * the bottom two bits of the ctx pointer to store the handler ID.
+ * Passing in a pointer that's not 4-byte aligned will cause a BUG.
+ * We can change this if it becomes a problem.
+ *
+ * May be called with local interrupts disabled and the q_lock held,
+ * or with interrupts enabled and no locks held.
+ */
+static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
+				nvme_completion_fn handler, unsigned timeout)
+{
+	int depth = nvmeq->q_depth - 1;
+	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
+	int cmdid;
+
+	do {
+		cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
+		if (cmdid >= depth)
+			return -EBUSY;
+	} while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
+
+	info[cmdid].fn = handler;
+	info[cmdid].ctx = ctx;
+	info[cmdid].timeout = jiffies + timeout;
+	return cmdid;
+}
+
+static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
+				nvme_completion_fn handler, unsigned timeout)
+{
+	int cmdid;
+	wait_event_killable(nvmeq->sq_full,
+		(cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
+	return (cmdid < 0) ? -EINTR : cmdid;
+}
+
+/* Special values must be less than 0x1000 */
+#define CMD_CTX_BASE		((void *)POISON_POINTER_DELTA)
+#define CMD_CTX_CANCELLED	(0x30C + CMD_CTX_BASE)
+#define CMD_CTX_COMPLETED	(0x310 + CMD_CTX_BASE)
+#define CMD_CTX_INVALID		(0x314 + CMD_CTX_BASE)
+#define CMD_CTX_FLUSH		(0x318 + CMD_CTX_BASE)
+
+static void special_completion(struct nvme_dev *dev, void *ctx,
+						struct nvme_completion *cqe)
+{
+	if (ctx == CMD_CTX_CANCELLED)
+		return;
+	if (ctx == CMD_CTX_FLUSH)
+		return;
+	if (ctx == CMD_CTX_COMPLETED) {
+		dev_warn(&dev->pci_dev->dev,
+				"completed id %d twice on queue %d\n",
+				cqe->command_id, le16_to_cpup(&cqe->sq_id));
+		return;
+	}
+	if (ctx == CMD_CTX_INVALID) {
+		dev_warn(&dev->pci_dev->dev,
+				"invalid id %d completed on queue %d\n",
+				cqe->command_id, le16_to_cpup(&cqe->sq_id));
+		return;
+	}
+
+	dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
+}
+
+/*
+ * Called with local interrupts disabled and the q_lock held.  May not sleep.
+ */
+static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
+						nvme_completion_fn *fn)
+{
+	void *ctx;
+	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
+
+	if (cmdid >= nvmeq->q_depth) {
+		*fn = special_completion;
+		return CMD_CTX_INVALID;
+	}
+	if (fn)
+		*fn = info[cmdid].fn;
+	ctx = info[cmdid].ctx;
+	info[cmdid].fn = special_completion;
+	info[cmdid].ctx = CMD_CTX_COMPLETED;
+	clear_bit(cmdid, nvmeq->cmdid_data);
+	wake_up(&nvmeq->sq_full);
+	return ctx;
+}
+
+static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
+						nvme_completion_fn *fn)
+{
+	void *ctx;
+	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
+	if (fn)
+		*fn = info[cmdid].fn;
+	ctx = info[cmdid].ctx;
+	info[cmdid].fn = special_completion;
+	info[cmdid].ctx = CMD_CTX_CANCELLED;
+	return ctx;
+}
+
+static struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
+{
+	return dev->queues[get_cpu() + 1];
+}
+
+static void put_nvmeq(struct nvme_queue *nvmeq)
+{
+	put_cpu();
+}
+
+/**
+ * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
+ * @nvmeq: The queue to use
+ * @cmd: The command to send
+ *
+ * Safe to use from interrupt context
+ */
+static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
+{
+	unsigned long flags;
+	u16 tail;
+	spin_lock_irqsave(&nvmeq->q_lock, flags);
+	tail = nvmeq->sq_tail;
+	memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
+	if (++tail == nvmeq->q_depth)
+		tail = 0;
+	writel(tail, nvmeq->q_db);
+	nvmeq->sq_tail = tail;
+	spin_unlock_irqrestore(&nvmeq->q_lock, flags);
+
+	return 0;
+}
+
+/*
+ * The nvme_iod describes the data in an I/O, including the list of PRP
+ * entries.  You can't see it in this data structure because C doesn't let
+ * me express that.  Use nvme_alloc_iod to ensure there's enough space
+ * allocated to store the PRP list.
+ */
+struct nvme_iod {
+	void *private;		/* For the use of the submitter of the I/O */
+	int npages;		/* In the PRP list. 0 means small pool in use */
+	int offset;		/* Of PRP list */
+	int nents;		/* Used in scatterlist */
+	int length;		/* Of data, in bytes */
+	dma_addr_t first_dma;
+	struct scatterlist sg[0];
+};
+
+static __le64 **iod_list(struct nvme_iod *iod)
+{
+	return ((void *)iod) + iod->offset;
+}
+
+/*
+ * Will slightly overestimate the number of pages needed.  This is OK
+ * as it only leads to a small amount of wasted memory for the lifetime of
+ * the I/O.
+ */
+static int nvme_npages(unsigned size)
+{
+	unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
+	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
+}
+
+static struct nvme_iod *
+nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
+{
+	struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
+				sizeof(__le64 *) * nvme_npages(nbytes) +
+				sizeof(struct scatterlist) * nseg, gfp);
+
+	if (iod) {
+		iod->offset = offsetof(struct nvme_iod, sg[nseg]);
+		iod->npages = -1;
+		iod->length = nbytes;
+		iod->nents = 0;
+	}
+
+	return iod;
+}
+
+static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
+{
+	const int last_prp = PAGE_SIZE / 8 - 1;
+	int i;
+	__le64 **list = iod_list(iod);
+	dma_addr_t prp_dma = iod->first_dma;
+
+	if (iod->npages == 0)
+		dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
+	for (i = 0; i < iod->npages; i++) {
+		__le64 *prp_list = list[i];
+		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
+		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
+		prp_dma = next_prp_dma;
+	}
+	kfree(iod);
+}
+
+static void requeue_bio(struct nvme_dev *dev, struct bio *bio)
+{
+	struct nvme_queue *nvmeq = get_nvmeq(dev);
+	if (bio_list_empty(&nvmeq->sq_cong))
+		add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
+	bio_list_add(&nvmeq->sq_cong, bio);
+	put_nvmeq(nvmeq);
+	wake_up_process(nvme_thread);
+}
+
+static void bio_completion(struct nvme_dev *dev, void *ctx,
+						struct nvme_completion *cqe)
+{
+	struct nvme_iod *iod = ctx;
+	struct bio *bio = iod->private;
+	u16 status = le16_to_cpup(&cqe->status) >> 1;
+
+	if (iod->nents)
+		dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
+			bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
+	nvme_free_iod(dev, iod);
+	if (status) {
+		bio_endio(bio, -EIO);
+	} else if (bio->bi_vcnt > bio->bi_idx) {
+		requeue_bio(dev, bio);
+	} else {
+		bio_endio(bio, 0);
+	}
+}
+
+/* length is in bytes.  gfp flags indicates whether we may sleep. */
+static int nvme_setup_prps(struct nvme_dev *dev,
+			struct nvme_common_command *cmd, struct nvme_iod *iod,
+			int total_len, gfp_t gfp)
+{
+	struct dma_pool *pool;
+	int length = total_len;
+	struct scatterlist *sg = iod->sg;
+	int dma_len = sg_dma_len(sg);
+	u64 dma_addr = sg_dma_address(sg);
+	int offset = offset_in_page(dma_addr);
+	__le64 *prp_list;
+	__le64 **list = iod_list(iod);
+	dma_addr_t prp_dma;
+	int nprps, i;
+
+	cmd->prp1 = cpu_to_le64(dma_addr);
+	length -= (PAGE_SIZE - offset);
+	if (length <= 0)
+		return total_len;
+
+	dma_len -= (PAGE_SIZE - offset);
+	if (dma_len) {
+		dma_addr += (PAGE_SIZE - offset);
+	} else {
+		sg = sg_next(sg);
+		dma_addr = sg_dma_address(sg);
+		dma_len = sg_dma_len(sg);
+	}
+
+	if (length <= PAGE_SIZE) {
+		cmd->prp2 = cpu_to_le64(dma_addr);
+		return total_len;
+	}
+
+	nprps = DIV_ROUND_UP(length, PAGE_SIZE);
+	if (nprps <= (256 / 8)) {
+		pool = dev->prp_small_pool;
+		iod->npages = 0;
+	} else {
+		pool = dev->prp_page_pool;
+		iod->npages = 1;
+	}
+
+	prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
+	if (!prp_list) {
+		cmd->prp2 = cpu_to_le64(dma_addr);
+		iod->npages = -1;
+		return (total_len - length) + PAGE_SIZE;
+	}
+	list[0] = prp_list;
+	iod->first_dma = prp_dma;
+	cmd->prp2 = cpu_to_le64(prp_dma);
+	i = 0;
+	for (;;) {
+		if (i == PAGE_SIZE / 8) {
+			__le64 *old_prp_list = prp_list;
+			prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
+			if (!prp_list)
+				return total_len - length;
+			list[iod->npages++] = prp_list;
+			prp_list[0] = old_prp_list[i - 1];
+			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
+			i = 1;
+		}
+		prp_list[i++] = cpu_to_le64(dma_addr);
+		dma_len -= PAGE_SIZE;
+		dma_addr += PAGE_SIZE;
+		length -= PAGE_SIZE;
+		if (length <= 0)
+			break;
+		if (dma_len > 0)
+			continue;
+		BUG_ON(dma_len < 0);
+		sg = sg_next(sg);
+		dma_addr = sg_dma_address(sg);
+		dma_len = sg_dma_len(sg);
+	}
+
+	return total_len;
+}
+
+/* NVMe scatterlists require no holes in the virtual address */
+#define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)	((vec2)->bv_offset || \
+			(((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
+
+static int nvme_map_bio(struct device *dev, struct nvme_iod *iod,
+		struct bio *bio, enum dma_data_direction dma_dir, int psegs)
+{
+	struct bio_vec *bvec, *bvprv = NULL;
+	struct scatterlist *sg = NULL;
+	int i, old_idx, length = 0, nsegs = 0;
+
+	sg_init_table(iod->sg, psegs);
+	old_idx = bio->bi_idx;
+	bio_for_each_segment(bvec, bio, i) {
+		if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
+			sg->length += bvec->bv_len;
+		} else {
+			if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
+				break;
+			sg = sg ? sg + 1 : iod->sg;
+			sg_set_page(sg, bvec->bv_page, bvec->bv_len,
+							bvec->bv_offset);
+			nsegs++;
+		}
+		length += bvec->bv_len;
+		bvprv = bvec;
+	}
+	bio->bi_idx = i;
+	iod->nents = nsegs;
+	sg_mark_end(sg);
+	if (dma_map_sg(dev, iod->sg, iod->nents, dma_dir) == 0) {
+		bio->bi_idx = old_idx;
+		return -ENOMEM;
+	}
+	return length;
+}
+
+static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
+								int cmdid)
+{
+	struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
+
+	memset(cmnd, 0, sizeof(*cmnd));
+	cmnd->common.opcode = nvme_cmd_flush;
+	cmnd->common.command_id = cmdid;
+	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
+
+	if (++nvmeq->sq_tail == nvmeq->q_depth)
+		nvmeq->sq_tail = 0;
+	writel(nvmeq->sq_tail, nvmeq->q_db);
+
+	return 0;
+}
+
+static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
+{
+	int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
+					special_completion, NVME_IO_TIMEOUT);
+	if (unlikely(cmdid < 0))
+		return cmdid;
+
+	return nvme_submit_flush(nvmeq, ns, cmdid);
+}
+
+/*
+ * Called with local interrupts disabled and the q_lock held.  May not sleep.
+ */
+static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
+								struct bio *bio)
+{
+	struct nvme_command *cmnd;
+	struct nvme_iod *iod;
+	enum dma_data_direction dma_dir;
+	int cmdid, length, result = -ENOMEM;
+	u16 control;
+	u32 dsmgmt;
+	int psegs = bio_phys_segments(ns->queue, bio);
+
+	if ((bio->bi_rw & REQ_FLUSH) && psegs) {
+		result = nvme_submit_flush_data(nvmeq, ns);
+		if (result)
+			return result;
+	}
+
+	iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
+	if (!iod)
+		goto nomem;
+	iod->private = bio;
+
+	result = -EBUSY;
+	cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
+	if (unlikely(cmdid < 0))
+		goto free_iod;
+
+	if ((bio->bi_rw & REQ_FLUSH) && !psegs)
+		return nvme_submit_flush(nvmeq, ns, cmdid);
+
+	control = 0;
+	if (bio->bi_rw & REQ_FUA)
+		control |= NVME_RW_FUA;
+	if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
+		control |= NVME_RW_LR;
+
+	dsmgmt = 0;
+	if (bio->bi_rw & REQ_RAHEAD)
+		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
+
+	cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
+
+	memset(cmnd, 0, sizeof(*cmnd));
+	if (bio_data_dir(bio)) {
+		cmnd->rw.opcode = nvme_cmd_write;
+		dma_dir = DMA_TO_DEVICE;
+	} else {
+		cmnd->rw.opcode = nvme_cmd_read;
+		dma_dir = DMA_FROM_DEVICE;
+	}
+
+	result = nvme_map_bio(nvmeq->q_dmadev, iod, bio, dma_dir, psegs);
+	if (result < 0)
+		goto free_cmdid;
+	length = result;
+
+	cmnd->rw.command_id = cmdid;
+	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
+	length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
+								GFP_ATOMIC);
+	cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
+	cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
+	cmnd->rw.control = cpu_to_le16(control);
+	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
+
+	bio->bi_sector += length >> 9;
+
+	if (++nvmeq->sq_tail == nvmeq->q_depth)
+		nvmeq->sq_tail = 0;
+	writel(nvmeq->sq_tail, nvmeq->q_db);
+
+	return 0;
+
+ free_cmdid:
+	free_cmdid(nvmeq, cmdid, NULL);
+ free_iod:
+	nvme_free_iod(nvmeq->dev, iod);
+ nomem:
+	return result;
+}
+
+static void nvme_make_request(struct request_queue *q, struct bio *bio)
+{
+	struct nvme_ns *ns = q->queuedata;
+	struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
+	int result = -EBUSY;
+
+	spin_lock_irq(&nvmeq->q_lock);
+	if (bio_list_empty(&nvmeq->sq_cong))
+		result = nvme_submit_bio_queue(nvmeq, ns, bio);
+	if (unlikely(result)) {
+		if (bio_list_empty(&nvmeq->sq_cong))
+			add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
+		bio_list_add(&nvmeq->sq_cong, bio);
+	}
+
+	spin_unlock_irq(&nvmeq->q_lock);
+	put_nvmeq(nvmeq);
+}
+
+static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
+{
+	u16 head, phase;
+
+	head = nvmeq->cq_head;
+	phase = nvmeq->cq_phase;
+
+	for (;;) {
+		void *ctx;
+		nvme_completion_fn fn;
+		struct nvme_completion cqe = nvmeq->cqes[head];
+		if ((le16_to_cpu(cqe.status) & 1) != phase)
+			break;
+		nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
+		if (++head == nvmeq->q_depth) {
+			head = 0;
+			phase = !phase;
+		}
+
+		ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
+		fn(nvmeq->dev, ctx, &cqe);
+	}
+
+	/* If the controller ignores the cq head doorbell and continuously
+	 * writes to the queue, it is theoretically possible to wrap around
+	 * the queue twice and mistakenly return IRQ_NONE.  Linux only
+	 * requires that 0.1% of your interrupts are handled, so this isn't
+	 * a big problem.
+	 */
+	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
+		return IRQ_NONE;
+
+	writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
+	nvmeq->cq_head = head;
+	nvmeq->cq_phase = phase;
+
+	return IRQ_HANDLED;
+}
+
+static irqreturn_t nvme_irq(int irq, void *data)
+{
+	irqreturn_t result;
+	struct nvme_queue *nvmeq = data;
+	spin_lock(&nvmeq->q_lock);
+	result = nvme_process_cq(nvmeq);
+	spin_unlock(&nvmeq->q_lock);
+	return result;
+}
+
+static irqreturn_t nvme_irq_check(int irq, void *data)
+{
+	struct nvme_queue *nvmeq = data;
+	struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
+	if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
+		return IRQ_NONE;
+	return IRQ_WAKE_THREAD;
+}
+
+static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
+{
+	spin_lock_irq(&nvmeq->q_lock);
+	cancel_cmdid(nvmeq, cmdid, NULL);
+	spin_unlock_irq(&nvmeq->q_lock);
+}
+
+struct sync_cmd_info {
+	struct task_struct *task;
+	u32 result;
+	int status;
+};
+
+static void sync_completion(struct nvme_dev *dev, void *ctx,
+						struct nvme_completion *cqe)
+{
+	struct sync_cmd_info *cmdinfo = ctx;
+	cmdinfo->result = le32_to_cpup(&cqe->result);
+	cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
+	wake_up_process(cmdinfo->task);
+}
+
+/*
+ * Returns 0 on success.  If the result is negative, it's a Linux error code;
+ * if the result is positive, it's an NVM Express status code
+ */
+static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
+			struct nvme_command *cmd, u32 *result, unsigned timeout)
+{
+	int cmdid;
+	struct sync_cmd_info cmdinfo;
+
+	cmdinfo.task = current;
+	cmdinfo.status = -EINTR;
+
+	cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
+								timeout);
+	if (cmdid < 0)
+		return cmdid;
+	cmd->common.command_id = cmdid;
+
+	set_current_state(TASK_KILLABLE);
+	nvme_submit_cmd(nvmeq, cmd);
+	schedule();
+
+	if (cmdinfo.status == -EINTR) {
+		nvme_abort_command(nvmeq, cmdid);
+		return -EINTR;
+	}
+
+	if (result)
+		*result = cmdinfo.result;
+
+	return cmdinfo.status;
+}
+
+static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
+								u32 *result)
+{
+	return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
+}
+
+static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
+{
+	int status;
+	struct nvme_command c;
+
+	memset(&c, 0, sizeof(c));
+	c.delete_queue.opcode = opcode;
+	c.delete_queue.qid = cpu_to_le16(id);
+
+	status = nvme_submit_admin_cmd(dev, &c, NULL);
+	if (status)
+		return -EIO;
+	return 0;
+}
+
+static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
+						struct nvme_queue *nvmeq)
+{
+	int status;
+	struct nvme_command c;
+	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
+
+	memset(&c, 0, sizeof(c));
+	c.create_cq.opcode = nvme_admin_create_cq;
+	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
+	c.create_cq.cqid = cpu_to_le16(qid);
+	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
+	c.create_cq.cq_flags = cpu_to_le16(flags);
+	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
+
+	status = nvme_submit_admin_cmd(dev, &c, NULL);
+	if (status)
+		return -EIO;
+	return 0;
+}
+
+static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
+						struct nvme_queue *nvmeq)
+{
+	int status;
+	struct nvme_command c;
+	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
+
+	memset(&c, 0, sizeof(c));
+	c.create_sq.opcode = nvme_admin_create_sq;
+	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
+	c.create_sq.sqid = cpu_to_le16(qid);
+	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
+	c.create_sq.sq_flags = cpu_to_le16(flags);
+	c.create_sq.cqid = cpu_to_le16(qid);
+
+	status = nvme_submit_admin_cmd(dev, &c, NULL);
+	if (status)
+		return -EIO;
+	return 0;
+}
+
+static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
+{
+	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
+}
+
+static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
+{
+	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
+}
+
+static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
+							dma_addr_t dma_addr)
+{
+	struct nvme_command c;
+
+	memset(&c, 0, sizeof(c));
+	c.identify.opcode = nvme_admin_identify;
+	c.identify.nsid = cpu_to_le32(nsid);
+	c.identify.prp1 = cpu_to_le64(dma_addr);
+	c.identify.cns = cpu_to_le32(cns);
+
+	return nvme_submit_admin_cmd(dev, &c, NULL);
+}
+
+static int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
+					dma_addr_t dma_addr, u32 *result)
+{
+	struct nvme_command c;
+
+	memset(&c, 0, sizeof(c));
+	c.features.opcode = nvme_admin_get_features;
+	c.features.nsid = cpu_to_le32(nsid);
+	c.features.prp1 = cpu_to_le64(dma_addr);
+	c.features.fid = cpu_to_le32(fid);
+
+	return nvme_submit_admin_cmd(dev, &c, result);
+}
+
+static int nvme_set_features(struct nvme_dev *dev, unsigned fid,
+			unsigned dword11, dma_addr_t dma_addr, u32 *result)
+{
+	struct nvme_command c;
+
+	memset(&c, 0, sizeof(c));
+	c.features.opcode = nvme_admin_set_features;
+	c.features.prp1 = cpu_to_le64(dma_addr);
+	c.features.fid = cpu_to_le32(fid);
+	c.features.dword11 = cpu_to_le32(dword11);
+
+	return nvme_submit_admin_cmd(dev, &c, result);
+}
+
+/**
+ * nvme_cancel_ios - Cancel outstanding I/Os
+ * @queue: The queue to cancel I/Os on
+ * @timeout: True to only cancel I/Os which have timed out
+ */
+static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
+{
+	int depth = nvmeq->q_depth - 1;
+	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
+	unsigned long now = jiffies;
+	int cmdid;
+
+	for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
+		void *ctx;
+		nvme_completion_fn fn;
+		static struct nvme_completion cqe = {
+			.status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1,
+		};
+
+		if (timeout && !time_after(now, info[cmdid].timeout))
+			continue;
+		dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d\n", cmdid);
+		ctx = cancel_cmdid(nvmeq, cmdid, &fn);
+		fn(nvmeq->dev, ctx, &cqe);
+	}
+}
+
+static void nvme_free_queue_mem(struct nvme_queue *nvmeq)
+{
+	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
+				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
+	dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
+					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
+	kfree(nvmeq);
+}
+
+static void nvme_free_queue(struct nvme_dev *dev, int qid)
+{
+	struct nvme_queue *nvmeq = dev->queues[qid];
+	int vector = dev->entry[nvmeq->cq_vector].vector;
+
+	spin_lock_irq(&nvmeq->q_lock);
+	nvme_cancel_ios(nvmeq, false);
+	while (bio_list_peek(&nvmeq->sq_cong)) {
+		struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
+		bio_endio(bio, -EIO);
+	}
+	spin_unlock_irq(&nvmeq->q_lock);
+
+	irq_set_affinity_hint(vector, NULL);
+	free_irq(vector, nvmeq);
+
+	/* Don't tell the adapter to delete the admin queue */
+	if (qid) {
+		adapter_delete_sq(dev, qid);
+		adapter_delete_cq(dev, qid);
+	}
+
+	nvme_free_queue_mem(nvmeq);
+}
+
+static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
+							int depth, int vector)
+{
+	struct device *dmadev = &dev->pci_dev->dev;
+	unsigned extra = DIV_ROUND_UP(depth, 8) + (depth *
+						sizeof(struct nvme_cmd_info));
+	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
+	if (!nvmeq)
+		return NULL;
+
+	nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
+					&nvmeq->cq_dma_addr, GFP_KERNEL);
+	if (!nvmeq->cqes)
+		goto free_nvmeq;
+	memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
+
+	nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
+					&nvmeq->sq_dma_addr, GFP_KERNEL);
+	if (!nvmeq->sq_cmds)
+		goto free_cqdma;
+
+	nvmeq->q_dmadev = dmadev;
+	nvmeq->dev = dev;
+	spin_lock_init(&nvmeq->q_lock);
+	nvmeq->cq_head = 0;
+	nvmeq->cq_phase = 1;
+	init_waitqueue_head(&nvmeq->sq_full);
+	init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
+	bio_list_init(&nvmeq->sq_cong);
+	nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
+	nvmeq->q_depth = depth;
+	nvmeq->cq_vector = vector;
+
+	return nvmeq;
+
+ free_cqdma:
+	dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
+							nvmeq->cq_dma_addr);
+ free_nvmeq:
+	kfree(nvmeq);
+	return NULL;
+}
+
+static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
+							const char *name)
+{
+	if (use_threaded_interrupts)
+		return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
+					nvme_irq_check, nvme_irq,
+					IRQF_DISABLED | IRQF_SHARED,
+					name, nvmeq);
+	return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
+				IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
+}
+
+static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
+					int qid, int cq_size, int vector)
+{
+	int result;
+	struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
+
+	if (!nvmeq)
+		return ERR_PTR(-ENOMEM);
+
+	result = adapter_alloc_cq(dev, qid, nvmeq);
+	if (result < 0)
+		goto free_nvmeq;
+
+	result = adapter_alloc_sq(dev, qid, nvmeq);
+	if (result < 0)
+		goto release_cq;
+
+	result = queue_request_irq(dev, nvmeq, "nvme");
+	if (result < 0)
+		goto release_sq;
+
+	return nvmeq;
+
+ release_sq:
+	adapter_delete_sq(dev, qid);
+ release_cq:
+	adapter_delete_cq(dev, qid);
+ free_nvmeq:
+	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
+				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
+	dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
+					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
+	kfree(nvmeq);
+	return ERR_PTR(result);
+}
+
+static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
+{
+	int result = 0;
+	u32 aqa;
+	u64 cap;
+	unsigned long timeout;
+	struct nvme_queue *nvmeq;
+
+	dev->dbs = ((void __iomem *)dev->bar) + 4096;
+
+	nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
+	if (!nvmeq)
+		return -ENOMEM;
+
+	aqa = nvmeq->q_depth - 1;
+	aqa |= aqa << 16;
+
+	dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
+	dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
+	dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
+	dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
+
+	writel(0, &dev->bar->cc);
+	writel(aqa, &dev->bar->aqa);
+	writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
+	writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
+	writel(dev->ctrl_config, &dev->bar->cc);
+
+	cap = readq(&dev->bar->cap);
+	timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
+	dev->db_stride = NVME_CAP_STRIDE(cap);
+
+	while (!result && !(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
+		msleep(100);
+		if (fatal_signal_pending(current))
+			result = -EINTR;
+		if (time_after(jiffies, timeout)) {
+			dev_err(&dev->pci_dev->dev,
+				"Device not ready; aborting initialisation\n");
+			result = -ENODEV;
+		}
+	}
+
+	if (result) {
+		nvme_free_queue_mem(nvmeq);
+		return result;
+	}
+
+	result = queue_request_irq(dev, nvmeq, "nvme admin");
+	dev->queues[0] = nvmeq;
+	return result;
+}
+
+static struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
+				unsigned long addr, unsigned length)
+{
+	int i, err, count, nents, offset;
+	struct scatterlist *sg;
+	struct page **pages;
+	struct nvme_iod *iod;
+
+	if (addr & 3)
+		return ERR_PTR(-EINVAL);
+	if (!length)
+		return ERR_PTR(-EINVAL);
+
+	offset = offset_in_page(addr);
+	count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
+	pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
+	if (!pages)
+		return ERR_PTR(-ENOMEM);
+
+	err = get_user_pages_fast(addr, count, 1, pages);
+	if (err < count) {
+		count = err;
+		err = -EFAULT;
+		goto put_pages;
+	}
+
+	iod = nvme_alloc_iod(count, length, GFP_KERNEL);
+	sg = iod->sg;
+	sg_init_table(sg, count);
+	for (i = 0; i < count; i++) {
+		sg_set_page(&sg[i], pages[i],
+				min_t(int, length, PAGE_SIZE - offset), offset);
+		length -= (PAGE_SIZE - offset);
+		offset = 0;
+	}
+	sg_mark_end(&sg[i - 1]);
+	iod->nents = count;
+
+	err = -ENOMEM;
+	nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
+				write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
+	if (!nents)
+		goto free_iod;
+
+	kfree(pages);
+	return iod;
+
+ free_iod:
+	kfree(iod);
+ put_pages:
+	for (i = 0; i < count; i++)
+		put_page(pages[i]);
+	kfree(pages);
+	return ERR_PTR(err);
+}
+
+static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
+			struct nvme_iod *iod)
+{
+	int i;
+
+	dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
+				write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
+
+	for (i = 0; i < iod->nents; i++)
+		put_page(sg_page(&iod->sg[i]));
+}
+
+static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
+{
+	struct nvme_dev *dev = ns->dev;
+	struct nvme_queue *nvmeq;
+	struct nvme_user_io io;
+	struct nvme_command c;
+	unsigned length;
+	int status;
+	struct nvme_iod *iod;
+
+	if (copy_from_user(&io, uio, sizeof(io)))
+		return -EFAULT;
+	length = (io.nblocks + 1) << ns->lba_shift;
+
+	switch (io.opcode) {
+	case nvme_cmd_write:
+	case nvme_cmd_read:
+	case nvme_cmd_compare:
+		iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
+		break;
+	default:
+		return -EINVAL;
+	}
+
+	if (IS_ERR(iod))
+		return PTR_ERR(iod);
+
+	memset(&c, 0, sizeof(c));
+	c.rw.opcode = io.opcode;
+	c.rw.flags = io.flags;
+	c.rw.nsid = cpu_to_le32(ns->ns_id);
+	c.rw.slba = cpu_to_le64(io.slba);
+	c.rw.length = cpu_to_le16(io.nblocks);
+	c.rw.control = cpu_to_le16(io.control);
+	c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
+	c.rw.reftag = io.reftag;
+	c.rw.apptag = io.apptag;
+	c.rw.appmask = io.appmask;
+	/* XXX: metadata */
+	length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
+
+	nvmeq = get_nvmeq(dev);
+	/*
+	 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
+	 * disabled.  We may be preempted at any point, and be rescheduled
+	 * to a different CPU.  That will cause cacheline bouncing, but no
+	 * additional races since q_lock already protects against other CPUs.
+	 */
+	put_nvmeq(nvmeq);
+	if (length != (io.nblocks + 1) << ns->lba_shift)
+		status = -ENOMEM;
+	else
+		status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
+
+	nvme_unmap_user_pages(dev, io.opcode & 1, iod);
+	nvme_free_iod(dev, iod);
+	return status;
+}
+
+static int nvme_user_admin_cmd(struct nvme_dev *dev,
+					struct nvme_admin_cmd __user *ucmd)
+{
+	struct nvme_admin_cmd cmd;
+	struct nvme_command c;
+	int status, length;
+	struct nvme_iod *uninitialized_var(iod);
+
+	if (!capable(CAP_SYS_ADMIN))
+		return -EACCES;
+	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
+		return -EFAULT;
+
+	memset(&c, 0, sizeof(c));
+	c.common.opcode = cmd.opcode;
+	c.common.flags = cmd.flags;
+	c.common.nsid = cpu_to_le32(cmd.nsid);
+	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
+	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
+	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
+	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
+	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
+	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
+	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
+	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
+
+	length = cmd.data_len;
+	if (cmd.data_len) {
+		iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
+								length);
+		if (IS_ERR(iod))
+			return PTR_ERR(iod);
+		length = nvme_setup_prps(dev, &c.common, iod, length,
+								GFP_KERNEL);
+	}
+
+	if (length != cmd.data_len)
+		status = -ENOMEM;
+	else
+		status = nvme_submit_admin_cmd(dev, &c, &cmd.result);
+
+	if (cmd.data_len) {
+		nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
+		nvme_free_iod(dev, iod);
+	}
+
+	if (!status && copy_to_user(&ucmd->result, &cmd.result,
+							sizeof(cmd.result)))
+		status = -EFAULT;
+
+	return status;
+}
+
+static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
+							unsigned long arg)
+{
+	struct nvme_ns *ns = bdev->bd_disk->private_data;
+
+	switch (cmd) {
+	case NVME_IOCTL_ID:
+		return ns->ns_id;
+	case NVME_IOCTL_ADMIN_CMD:
+		return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
+	case NVME_IOCTL_SUBMIT_IO:
+		return nvme_submit_io(ns, (void __user *)arg);
+	default:
+		return -ENOTTY;
+	}
+}
+
+static const struct block_device_operations nvme_fops = {
+	.owner		= THIS_MODULE,
+	.ioctl		= nvme_ioctl,
+	.compat_ioctl	= nvme_ioctl,
+};
+
+static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
+{
+	while (bio_list_peek(&nvmeq->sq_cong)) {
+		struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
+		struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
+		if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
+			bio_list_add_head(&nvmeq->sq_cong, bio);
+			break;
+		}
+		if (bio_list_empty(&nvmeq->sq_cong))
+			remove_wait_queue(&nvmeq->sq_full,
+							&nvmeq->sq_cong_wait);
+	}
+}
+
+static int nvme_kthread(void *data)
+{
+	struct nvme_dev *dev;
+
+	while (!kthread_should_stop()) {
+		__set_current_state(TASK_RUNNING);
+		spin_lock(&dev_list_lock);
+		list_for_each_entry(dev, &dev_list, node) {
+			int i;
+			for (i = 0; i < dev->queue_count; i++) {
+				struct nvme_queue *nvmeq = dev->queues[i];
+				if (!nvmeq)
+					continue;
+				spin_lock_irq(&nvmeq->q_lock);
+				if (nvme_process_cq(nvmeq))
+					printk("process_cq did something\n");
+				nvme_cancel_ios(nvmeq, true);
+				nvme_resubmit_bios(nvmeq);
+				spin_unlock_irq(&nvmeq->q_lock);
+			}
+		}
+		spin_unlock(&dev_list_lock);
+		set_current_state(TASK_INTERRUPTIBLE);
+		schedule_timeout(HZ);
+	}
+	return 0;
+}
+
+static DEFINE_IDA(nvme_index_ida);
+
+static int nvme_get_ns_idx(void)
+{
+	int index, error;
+
+	do {
+		if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
+			return -1;
+
+		spin_lock(&dev_list_lock);
+		error = ida_get_new(&nvme_index_ida, &index);
+		spin_unlock(&dev_list_lock);
+	} while (error == -EAGAIN);
+
+	if (error)
+		index = -1;
+	return index;
+}
+
+static void nvme_put_ns_idx(int index)
+{
+	spin_lock(&dev_list_lock);
+	ida_remove(&nvme_index_ida, index);
+	spin_unlock(&dev_list_lock);
+}
+
+static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
+			struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
+{
+	struct nvme_ns *ns;
+	struct gendisk *disk;
+	int lbaf;
+
+	if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
+		return NULL;
+
+	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
+	if (!ns)
+		return NULL;
+	ns->queue = blk_alloc_queue(GFP_KERNEL);
+	if (!ns->queue)
+		goto out_free_ns;
+	ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
+	queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
+	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
+/*	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); */
+	blk_queue_make_request(ns->queue, nvme_make_request);
+	ns->dev = dev;
+	ns->queue->queuedata = ns;
+
+	disk = alloc_disk(NVME_MINORS);
+	if (!disk)
+		goto out_free_queue;
+	ns->ns_id = nsid;
+	ns->disk = disk;
+	lbaf = id->flbas & 0xf;
+	ns->lba_shift = id->lbaf[lbaf].ds;
+	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
+	if (dev->max_hw_sectors)
+		blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
+
+	disk->major = nvme_major;
+	disk->minors = NVME_MINORS;
+	disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
+	disk->fops = &nvme_fops;
+	disk->private_data = ns;
+	disk->queue = ns->queue;
+	disk->driverfs_dev = &dev->pci_dev->dev;
+	sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
+	set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
+
+	return ns;
+
+ out_free_queue:
+	blk_cleanup_queue(ns->queue);
+ out_free_ns:
+	kfree(ns);
+	return NULL;
+}
+
+static void nvme_ns_free(struct nvme_ns *ns)
+{
+	int index = ns->disk->first_minor / NVME_MINORS;
+	put_disk(ns->disk);
+	nvme_put_ns_idx(index);
+	blk_cleanup_queue(ns->queue);
+	kfree(ns);
+}
+
+static int set_queue_count(struct nvme_dev *dev, int count)
+{
+	int status;
+	u32 result;
+	u32 q_count = (count - 1) | ((count - 1) << 16);
+
+	status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
+								&result);
+	if (status)
+		return -EIO;
+	return min(result & 0xffff, result >> 16) + 1;
+}
+
+static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
+{
+	int result, cpu, i, nr_io_queues, db_bar_size, q_depth;
+
+	nr_io_queues = num_online_cpus();
+	result = set_queue_count(dev, nr_io_queues);
+	if (result < 0)
+		return result;
+	if (result < nr_io_queues)
+		nr_io_queues = result;
+
+	/* Deregister the admin queue's interrupt */
+	free_irq(dev->entry[0].vector, dev->queues[0]);
+
+	db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
+	if (db_bar_size > 8192) {
+		iounmap(dev->bar);
+		dev->bar = ioremap(pci_resource_start(dev->pci_dev, 0),
+								db_bar_size);
+		dev->dbs = ((void __iomem *)dev->bar) + 4096;
+		dev->queues[0]->q_db = dev->dbs;
+	}
+
+	for (i = 0; i < nr_io_queues; i++)
+		dev->entry[i].entry = i;
+	for (;;) {
+		result = pci_enable_msix(dev->pci_dev, dev->entry,
+								nr_io_queues);
+		if (result == 0) {
+			break;
+		} else if (result > 0) {
+			nr_io_queues = result;
+			continue;
+		} else {
+			nr_io_queues = 1;
+			break;
+		}
+	}
+
+	result = queue_request_irq(dev, dev->queues[0], "nvme admin");
+	/* XXX: handle failure here */
+
+	cpu = cpumask_first(cpu_online_mask);
+	for (i = 0; i < nr_io_queues; i++) {
+		irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
+		cpu = cpumask_next(cpu, cpu_online_mask);
+	}
+
+	q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
+								NVME_Q_DEPTH);
+	for (i = 0; i < nr_io_queues; i++) {
+		dev->queues[i + 1] = nvme_create_queue(dev, i + 1, q_depth, i);
+		if (IS_ERR(dev->queues[i + 1]))
+			return PTR_ERR(dev->queues[i + 1]);
+		dev->queue_count++;
+	}
+
+	for (; i < num_possible_cpus(); i++) {
+		int target = i % rounddown_pow_of_two(dev->queue_count - 1);
+		dev->queues[i + 1] = dev->queues[target + 1];
+	}
+
+	return 0;
+}
+
+static void nvme_free_queues(struct nvme_dev *dev)
+{
+	int i;
+
+	for (i = dev->queue_count - 1; i >= 0; i--)
+		nvme_free_queue(dev, i);
+}
+
+static int __devinit nvme_dev_add(struct nvme_dev *dev)
+{
+	int res, nn, i;
+	struct nvme_ns *ns, *next;
+	struct nvme_id_ctrl *ctrl;
+	struct nvme_id_ns *id_ns;
+	void *mem;
+	dma_addr_t dma_addr;
+
+	res = nvme_setup_io_queues(dev);
+	if (res)
+		return res;
+
+	mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
+								GFP_KERNEL);
+
+	res = nvme_identify(dev, 0, 1, dma_addr);
+	if (res) {
+		res = -EIO;
+		goto out_free;
+	}
+
+	ctrl = mem;
+	nn = le32_to_cpup(&ctrl->nn);
+	memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
+	memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
+	memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
+	if (ctrl->mdts) {
+		int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
+		dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
+	}
+
+	id_ns = mem;
+	for (i = 1; i <= nn; i++) {
+		res = nvme_identify(dev, i, 0, dma_addr);
+		if (res)
+			continue;
+
+		if (id_ns->ncap == 0)
+			continue;
+
+		res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
+							dma_addr + 4096, NULL);
+		if (res)
+			continue;
+
+		ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
+		if (ns)
+			list_add_tail(&ns->list, &dev->namespaces);
+	}
+	list_for_each_entry(ns, &dev->namespaces, list)
+		add_disk(ns->disk);
+
+	goto out;
+
+ out_free:
+	list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
+		list_del(&ns->list);
+		nvme_ns_free(ns);
+	}
+
+ out:
+	dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
+	return res;
+}
+
+static int nvme_dev_remove(struct nvme_dev *dev)
+{
+	struct nvme_ns *ns, *next;
+
+	spin_lock(&dev_list_lock);
+	list_del(&dev->node);
+	spin_unlock(&dev_list_lock);
+
+	list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
+		list_del(&ns->list);
+		del_gendisk(ns->disk);
+		nvme_ns_free(ns);
+	}
+
+	nvme_free_queues(dev);
+
+	return 0;
+}
+
+static int nvme_setup_prp_pools(struct nvme_dev *dev)
+{
+	struct device *dmadev = &dev->pci_dev->dev;
+	dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
+						PAGE_SIZE, PAGE_SIZE, 0);
+	if (!dev->prp_page_pool)
+		return -ENOMEM;
+
+	/* Optimisation for I/Os between 4k and 128k */
+	dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
+						256, 256, 0);
+	if (!dev->prp_small_pool) {
+		dma_pool_destroy(dev->prp_page_pool);
+		return -ENOMEM;
+	}
+	return 0;
+}
+
+static void nvme_release_prp_pools(struct nvme_dev *dev)
+{
+	dma_pool_destroy(dev->prp_page_pool);
+	dma_pool_destroy(dev->prp_small_pool);
+}
+
+static DEFINE_IDA(nvme_instance_ida);
+
+static int nvme_set_instance(struct nvme_dev *dev)
+{
+	int instance, error;
+
+	do {
+		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
+			return -ENODEV;
+
+		spin_lock(&dev_list_lock);
+		error = ida_get_new(&nvme_instance_ida, &instance);
+		spin_unlock(&dev_list_lock);
+	} while (error == -EAGAIN);
+
+	if (error)
+		return -ENODEV;
+
+	dev->instance = instance;
+	return 0;
+}
+
+static void nvme_release_instance(struct nvme_dev *dev)
+{
+	spin_lock(&dev_list_lock);
+	ida_remove(&nvme_instance_ida, dev->instance);
+	spin_unlock(&dev_list_lock);
+}
+
+static int __devinit nvme_probe(struct pci_dev *pdev,
+						const struct pci_device_id *id)
+{
+	int bars, result = -ENOMEM;
+	struct nvme_dev *dev;
+
+	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
+	if (!dev)
+		return -ENOMEM;
+	dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
+								GFP_KERNEL);
+	if (!dev->entry)
+		goto free;
+	dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
+								GFP_KERNEL);
+	if (!dev->queues)
+		goto free;
+
+	if (pci_enable_device_mem(pdev))
+		goto free;
+	pci_set_master(pdev);
+	bars = pci_select_bars(pdev, IORESOURCE_MEM);
+	if (pci_request_selected_regions(pdev, bars, "nvme"))
+		goto disable;
+
+	INIT_LIST_HEAD(&dev->namespaces);
+	dev->pci_dev = pdev;
+	pci_set_drvdata(pdev, dev);
+	dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
+	dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
+	result = nvme_set_instance(dev);
+	if (result)
+		goto disable;
+
+	dev->entry[0].vector = pdev->irq;
+
+	result = nvme_setup_prp_pools(dev);
+	if (result)
+		goto disable_msix;
+
+	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
+	if (!dev->bar) {
+		result = -ENOMEM;
+		goto disable_msix;
+	}
+
+	result = nvme_configure_admin_queue(dev);
+	if (result)
+		goto unmap;
+	dev->queue_count++;
+
+	spin_lock(&dev_list_lock);
+	list_add(&dev->node, &dev_list);
+	spin_unlock(&dev_list_lock);
+
+	result = nvme_dev_add(dev);
+	if (result)
+		goto delete;
+
+	return 0;
+
+ delete:
+	spin_lock(&dev_list_lock);
+	list_del(&dev->node);
+	spin_unlock(&dev_list_lock);
+
+	nvme_free_queues(dev);
+ unmap:
+	iounmap(dev->bar);
+ disable_msix:
+	pci_disable_msix(pdev);
+	nvme_release_instance(dev);
+	nvme_release_prp_pools(dev);
+ disable:
+	pci_disable_device(pdev);
+	pci_release_regions(pdev);
+ free:
+	kfree(dev->queues);
+	kfree(dev->entry);
+	kfree(dev);
+	return result;
+}
+
+static void __devexit nvme_remove(struct pci_dev *pdev)
+{
+	struct nvme_dev *dev = pci_get_drvdata(pdev);
+	nvme_dev_remove(dev);
+	pci_disable_msix(pdev);
+	iounmap(dev->bar);
+	nvme_release_instance(dev);
+	nvme_release_prp_pools(dev);
+	pci_disable_device(pdev);
+	pci_release_regions(pdev);
+	kfree(dev->queues);
+	kfree(dev->entry);
+	kfree(dev);
+}
+
+/* These functions are yet to be implemented */
+#define nvme_error_detected NULL
+#define nvme_dump_registers NULL
+#define nvme_link_reset NULL
+#define nvme_slot_reset NULL
+#define nvme_error_resume NULL
+#define nvme_suspend NULL
+#define nvme_resume NULL
+
+static const struct pci_error_handlers nvme_err_handler = {
+	.error_detected	= nvme_error_detected,
+	.mmio_enabled	= nvme_dump_registers,
+	.link_reset	= nvme_link_reset,
+	.slot_reset	= nvme_slot_reset,
+	.resume		= nvme_error_resume,
+};
+
+/* Move to pci_ids.h later */
+#define PCI_CLASS_STORAGE_EXPRESS	0x010802
+
+static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
+	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
+	{ 0, }
+};
+MODULE_DEVICE_TABLE(pci, nvme_id_table);
+
+static struct pci_driver nvme_driver = {
+	.name		= "nvme",
+	.id_table	= nvme_id_table,
+	.probe		= nvme_probe,
+	.remove		= __devexit_p(nvme_remove),
+	.suspend	= nvme_suspend,
+	.resume		= nvme_resume,
+	.err_handler	= &nvme_err_handler,
+};
+
+static int __init nvme_init(void)
+{
+	int result;
+
+	nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
+	if (IS_ERR(nvme_thread))
+		return PTR_ERR(nvme_thread);
+
+	result = register_blkdev(nvme_major, "nvme");
+	if (result < 0)
+		goto kill_kthread;
+	else if (result > 0)
+		nvme_major = result;
+
+	result = pci_register_driver(&nvme_driver);
+	if (result)
+		goto unregister_blkdev;
+	return 0;
+
+ unregister_blkdev:
+	unregister_blkdev(nvme_major, "nvme");
+ kill_kthread:
+	kthread_stop(nvme_thread);
+	return result;
+}
+
+static void __exit nvme_exit(void)
+{
+	pci_unregister_driver(&nvme_driver);
+	unregister_blkdev(nvme_major, "nvme");
+	kthread_stop(nvme_thread);
+}
+
+MODULE_AUTHOR("Matthew Wilcox <willy at linux.intel.com>");
+MODULE_LICENSE("GPL");
+MODULE_VERSION("0.8");
+module_init(nvme_init);
+module_exit(nvme_exit);
diff --git a/drivers/block/nvme.c b/drivers/block/nvme.c
deleted file mode 100644
index 993c014..0000000
--- a/drivers/block/nvme.c
+++ /dev/null
@@ -1,1808 +0,0 @@
-/*
- * NVM Express device driver
- * Copyright (c) 2011, Intel Corporation.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms and conditions of the GNU General Public License,
- * version 2, as published by the Free Software Foundation.
- *
- * This program is distributed in the hope it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc.,
- * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
- */
-
-#include <linux/nvme.h>
-#include <linux/bio.h>
-#include <linux/bitops.h>
-#include <linux/blkdev.h>
-#include <linux/delay.h>
-#include <linux/errno.h>
-#include <linux/fs.h>
-#include <linux/genhd.h>
-#include <linux/idr.h>
-#include <linux/init.h>
-#include <linux/interrupt.h>
-#include <linux/io.h>
-#include <linux/kdev_t.h>
-#include <linux/kthread.h>
-#include <linux/kernel.h>
-#include <linux/mm.h>
-#include <linux/module.h>
-#include <linux/moduleparam.h>
-#include <linux/pci.h>
-#include <linux/poison.h>
-#include <linux/sched.h>
-#include <linux/slab.h>
-#include <linux/types.h>
-
-#include <asm-generic/io-64-nonatomic-lo-hi.h>
-
-#define NVME_Q_DEPTH 1024
-#define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
-#define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
-#define NVME_MINORS 64
-#define NVME_IO_TIMEOUT	(5 * HZ)
-#define ADMIN_TIMEOUT	(60 * HZ)
-
-static int nvme_major;
-module_param(nvme_major, int, 0);
-
-static int use_threaded_interrupts;
-module_param(use_threaded_interrupts, int, 0);
-
-static DEFINE_SPINLOCK(dev_list_lock);
-static LIST_HEAD(dev_list);
-static struct task_struct *nvme_thread;
-
-/*
- * Represents an NVM Express device.  Each nvme_dev is a PCI function.
- */
-struct nvme_dev {
-	struct list_head node;
-	struct nvme_queue **queues;
-	u32 __iomem *dbs;
-	struct pci_dev *pci_dev;
-	struct dma_pool *prp_page_pool;
-	struct dma_pool *prp_small_pool;
-	int instance;
-	int queue_count;
-	int db_stride;
-	u32 ctrl_config;
-	struct msix_entry *entry;
-	struct nvme_bar __iomem *bar;
-	struct list_head namespaces;
-	char serial[20];
-	char model[40];
-	char firmware_rev[8];
-	u32 max_hw_sectors;
-};
-
-/*
- * An NVM Express namespace is equivalent to a SCSI LUN
- */
-struct nvme_ns {
-	struct list_head list;
-
-	struct nvme_dev *dev;
-	struct request_queue *queue;
-	struct gendisk *disk;
-
-	int ns_id;
-	int lba_shift;
-};
-
-/*
- * An NVM Express queue.  Each device has at least two (one for admin
- * commands and one for I/O commands).
- */
-struct nvme_queue {
-	struct device *q_dmadev;
-	struct nvme_dev *dev;
-	spinlock_t q_lock;
-	struct nvme_command *sq_cmds;
-	volatile struct nvme_completion *cqes;
-	dma_addr_t sq_dma_addr;
-	dma_addr_t cq_dma_addr;
-	wait_queue_head_t sq_full;
-	wait_queue_t sq_cong_wait;
-	struct bio_list sq_cong;
-	u32 __iomem *q_db;
-	u16 q_depth;
-	u16 cq_vector;
-	u16 sq_head;
-	u16 sq_tail;
-	u16 cq_head;
-	u16 cq_phase;
-	unsigned long cmdid_data[];
-};
-
-/*
- * Check we didin't inadvertently grow the command struct
- */
-static inline void _nvme_check_size(void)
-{
-	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
-	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
-	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
-	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
-	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
-	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
-	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
-	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
-	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
-	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
-}
-
-typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
-						struct nvme_completion *);
-
-struct nvme_cmd_info {
-	nvme_completion_fn fn;
-	void *ctx;
-	unsigned long timeout;
-};
-
-static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
-{
-	return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
-}
-
-/**
- * alloc_cmdid() - Allocate a Command ID
- * @nvmeq: The queue that will be used for this command
- * @ctx: A pointer that will be passed to the handler
- * @handler: The function to call on completion
- *
- * Allocate a Command ID for a queue.  The data passed in will
- * be passed to the completion handler.  This is implemented by using
- * the bottom two bits of the ctx pointer to store the handler ID.
- * Passing in a pointer that's not 4-byte aligned will cause a BUG.
- * We can change this if it becomes a problem.
- *
- * May be called with local interrupts disabled and the q_lock held,
- * or with interrupts enabled and no locks held.
- */
-static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
-				nvme_completion_fn handler, unsigned timeout)
-{
-	int depth = nvmeq->q_depth - 1;
-	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
-	int cmdid;
-
-	do {
-		cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
-		if (cmdid >= depth)
-			return -EBUSY;
-	} while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
-
-	info[cmdid].fn = handler;
-	info[cmdid].ctx = ctx;
-	info[cmdid].timeout = jiffies + timeout;
-	return cmdid;
-}
-
-static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
-				nvme_completion_fn handler, unsigned timeout)
-{
-	int cmdid;
-	wait_event_killable(nvmeq->sq_full,
-		(cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
-	return (cmdid < 0) ? -EINTR : cmdid;
-}
-
-/* Special values must be less than 0x1000 */
-#define CMD_CTX_BASE		((void *)POISON_POINTER_DELTA)
-#define CMD_CTX_CANCELLED	(0x30C + CMD_CTX_BASE)
-#define CMD_CTX_COMPLETED	(0x310 + CMD_CTX_BASE)
-#define CMD_CTX_INVALID		(0x314 + CMD_CTX_BASE)
-#define CMD_CTX_FLUSH		(0x318 + CMD_CTX_BASE)
-
-static void special_completion(struct nvme_dev *dev, void *ctx,
-						struct nvme_completion *cqe)
-{
-	if (ctx == CMD_CTX_CANCELLED)
-		return;
-	if (ctx == CMD_CTX_FLUSH)
-		return;
-	if (ctx == CMD_CTX_COMPLETED) {
-		dev_warn(&dev->pci_dev->dev,
-				"completed id %d twice on queue %d\n",
-				cqe->command_id, le16_to_cpup(&cqe->sq_id));
-		return;
-	}
-	if (ctx == CMD_CTX_INVALID) {
-		dev_warn(&dev->pci_dev->dev,
-				"invalid id %d completed on queue %d\n",
-				cqe->command_id, le16_to_cpup(&cqe->sq_id));
-		return;
-	}
-
-	dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
-}
-
-/*
- * Called with local interrupts disabled and the q_lock held.  May not sleep.
- */
-static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
-						nvme_completion_fn *fn)
-{
-	void *ctx;
-	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
-
-	if (cmdid >= nvmeq->q_depth) {
-		*fn = special_completion;
-		return CMD_CTX_INVALID;
-	}
-	if (fn)
-		*fn = info[cmdid].fn;
-	ctx = info[cmdid].ctx;
-	info[cmdid].fn = special_completion;
-	info[cmdid].ctx = CMD_CTX_COMPLETED;
-	clear_bit(cmdid, nvmeq->cmdid_data);
-	wake_up(&nvmeq->sq_full);
-	return ctx;
-}
-
-static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
-						nvme_completion_fn *fn)
-{
-	void *ctx;
-	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
-	if (fn)
-		*fn = info[cmdid].fn;
-	ctx = info[cmdid].ctx;
-	info[cmdid].fn = special_completion;
-	info[cmdid].ctx = CMD_CTX_CANCELLED;
-	return ctx;
-}
-
-static struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
-{
-	return dev->queues[get_cpu() + 1];
-}
-
-static void put_nvmeq(struct nvme_queue *nvmeq)
-{
-	put_cpu();
-}
-
-/**
- * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
- * @nvmeq: The queue to use
- * @cmd: The command to send
- *
- * Safe to use from interrupt context
- */
-static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
-{
-	unsigned long flags;
-	u16 tail;
-	spin_lock_irqsave(&nvmeq->q_lock, flags);
-	tail = nvmeq->sq_tail;
-	memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
-	if (++tail == nvmeq->q_depth)
-		tail = 0;
-	writel(tail, nvmeq->q_db);
-	nvmeq->sq_tail = tail;
-	spin_unlock_irqrestore(&nvmeq->q_lock, flags);
-
-	return 0;
-}
-
-/*
- * The nvme_iod describes the data in an I/O, including the list of PRP
- * entries.  You can't see it in this data structure because C doesn't let
- * me express that.  Use nvme_alloc_iod to ensure there's enough space
- * allocated to store the PRP list.
- */
-struct nvme_iod {
-	void *private;		/* For the use of the submitter of the I/O */
-	int npages;		/* In the PRP list. 0 means small pool in use */
-	int offset;		/* Of PRP list */
-	int nents;		/* Used in scatterlist */
-	int length;		/* Of data, in bytes */
-	dma_addr_t first_dma;
-	struct scatterlist sg[0];
-};
-
-static __le64 **iod_list(struct nvme_iod *iod)
-{
-	return ((void *)iod) + iod->offset;
-}
-
-/*
- * Will slightly overestimate the number of pages needed.  This is OK
- * as it only leads to a small amount of wasted memory for the lifetime of
- * the I/O.
- */
-static int nvme_npages(unsigned size)
-{
-	unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
-	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
-}
-
-static struct nvme_iod *
-nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
-{
-	struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
-				sizeof(__le64 *) * nvme_npages(nbytes) +
-				sizeof(struct scatterlist) * nseg, gfp);
-
-	if (iod) {
-		iod->offset = offsetof(struct nvme_iod, sg[nseg]);
-		iod->npages = -1;
-		iod->length = nbytes;
-		iod->nents = 0;
-	}
-
-	return iod;
-}
-
-static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
-{
-	const int last_prp = PAGE_SIZE / 8 - 1;
-	int i;
-	__le64 **list = iod_list(iod);
-	dma_addr_t prp_dma = iod->first_dma;
-
-	if (iod->npages == 0)
-		dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
-	for (i = 0; i < iod->npages; i++) {
-		__le64 *prp_list = list[i];
-		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
-		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
-		prp_dma = next_prp_dma;
-	}
-	kfree(iod);
-}
-
-static void requeue_bio(struct nvme_dev *dev, struct bio *bio)
-{
-	struct nvme_queue *nvmeq = get_nvmeq(dev);
-	if (bio_list_empty(&nvmeq->sq_cong))
-		add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
-	bio_list_add(&nvmeq->sq_cong, bio);
-	put_nvmeq(nvmeq);
-	wake_up_process(nvme_thread);
-}
-
-static void bio_completion(struct nvme_dev *dev, void *ctx,
-						struct nvme_completion *cqe)
-{
-	struct nvme_iod *iod = ctx;
-	struct bio *bio = iod->private;
-	u16 status = le16_to_cpup(&cqe->status) >> 1;
-
-	if (iod->nents)
-		dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
-			bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
-	nvme_free_iod(dev, iod);
-	if (status) {
-		bio_endio(bio, -EIO);
-	} else if (bio->bi_vcnt > bio->bi_idx) {
-		requeue_bio(dev, bio);
-	} else {
-		bio_endio(bio, 0);
-	}
-}
-
-/* length is in bytes.  gfp flags indicates whether we may sleep. */
-static int nvme_setup_prps(struct nvme_dev *dev,
-			struct nvme_common_command *cmd, struct nvme_iod *iod,
-			int total_len, gfp_t gfp)
-{
-	struct dma_pool *pool;
-	int length = total_len;
-	struct scatterlist *sg = iod->sg;
-	int dma_len = sg_dma_len(sg);
-	u64 dma_addr = sg_dma_address(sg);
-	int offset = offset_in_page(dma_addr);
-	__le64 *prp_list;
-	__le64 **list = iod_list(iod);
-	dma_addr_t prp_dma;
-	int nprps, i;
-
-	cmd->prp1 = cpu_to_le64(dma_addr);
-	length -= (PAGE_SIZE - offset);
-	if (length <= 0)
-		return total_len;
-
-	dma_len -= (PAGE_SIZE - offset);
-	if (dma_len) {
-		dma_addr += (PAGE_SIZE - offset);
-	} else {
-		sg = sg_next(sg);
-		dma_addr = sg_dma_address(sg);
-		dma_len = sg_dma_len(sg);
-	}
-
-	if (length <= PAGE_SIZE) {
-		cmd->prp2 = cpu_to_le64(dma_addr);
-		return total_len;
-	}
-
-	nprps = DIV_ROUND_UP(length, PAGE_SIZE);
-	if (nprps <= (256 / 8)) {
-		pool = dev->prp_small_pool;
-		iod->npages = 0;
-	} else {
-		pool = dev->prp_page_pool;
-		iod->npages = 1;
-	}
-
-	prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
-	if (!prp_list) {
-		cmd->prp2 = cpu_to_le64(dma_addr);
-		iod->npages = -1;
-		return (total_len - length) + PAGE_SIZE;
-	}
-	list[0] = prp_list;
-	iod->first_dma = prp_dma;
-	cmd->prp2 = cpu_to_le64(prp_dma);
-	i = 0;
-	for (;;) {
-		if (i == PAGE_SIZE / 8) {
-			__le64 *old_prp_list = prp_list;
-			prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
-			if (!prp_list)
-				return total_len - length;
-			list[iod->npages++] = prp_list;
-			prp_list[0] = old_prp_list[i - 1];
-			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
-			i = 1;
-		}
-		prp_list[i++] = cpu_to_le64(dma_addr);
-		dma_len -= PAGE_SIZE;
-		dma_addr += PAGE_SIZE;
-		length -= PAGE_SIZE;
-		if (length <= 0)
-			break;
-		if (dma_len > 0)
-			continue;
-		BUG_ON(dma_len < 0);
-		sg = sg_next(sg);
-		dma_addr = sg_dma_address(sg);
-		dma_len = sg_dma_len(sg);
-	}
-
-	return total_len;
-}
-
-/* NVMe scatterlists require no holes in the virtual address */
-#define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)	((vec2)->bv_offset || \
-			(((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
-
-static int nvme_map_bio(struct device *dev, struct nvme_iod *iod,
-		struct bio *bio, enum dma_data_direction dma_dir, int psegs)
-{
-	struct bio_vec *bvec, *bvprv = NULL;
-	struct scatterlist *sg = NULL;
-	int i, old_idx, length = 0, nsegs = 0;
-
-	sg_init_table(iod->sg, psegs);
-	old_idx = bio->bi_idx;
-	bio_for_each_segment(bvec, bio, i) {
-		if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
-			sg->length += bvec->bv_len;
-		} else {
-			if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
-				break;
-			sg = sg ? sg + 1 : iod->sg;
-			sg_set_page(sg, bvec->bv_page, bvec->bv_len,
-							bvec->bv_offset);
-			nsegs++;
-		}
-		length += bvec->bv_len;
-		bvprv = bvec;
-	}
-	bio->bi_idx = i;
-	iod->nents = nsegs;
-	sg_mark_end(sg);
-	if (dma_map_sg(dev, iod->sg, iod->nents, dma_dir) == 0) {
-		bio->bi_idx = old_idx;
-		return -ENOMEM;
-	}
-	return length;
-}
-
-static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
-								int cmdid)
-{
-	struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
-
-	memset(cmnd, 0, sizeof(*cmnd));
-	cmnd->common.opcode = nvme_cmd_flush;
-	cmnd->common.command_id = cmdid;
-	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
-
-	if (++nvmeq->sq_tail == nvmeq->q_depth)
-		nvmeq->sq_tail = 0;
-	writel(nvmeq->sq_tail, nvmeq->q_db);
-
-	return 0;
-}
-
-static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
-{
-	int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
-					special_completion, NVME_IO_TIMEOUT);
-	if (unlikely(cmdid < 0))
-		return cmdid;
-
-	return nvme_submit_flush(nvmeq, ns, cmdid);
-}
-
-/*
- * Called with local interrupts disabled and the q_lock held.  May not sleep.
- */
-static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
-								struct bio *bio)
-{
-	struct nvme_command *cmnd;
-	struct nvme_iod *iod;
-	enum dma_data_direction dma_dir;
-	int cmdid, length, result = -ENOMEM;
-	u16 control;
-	u32 dsmgmt;
-	int psegs = bio_phys_segments(ns->queue, bio);
-
-	if ((bio->bi_rw & REQ_FLUSH) && psegs) {
-		result = nvme_submit_flush_data(nvmeq, ns);
-		if (result)
-			return result;
-	}
-
-	iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
-	if (!iod)
-		goto nomem;
-	iod->private = bio;
-
-	result = -EBUSY;
-	cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
-	if (unlikely(cmdid < 0))
-		goto free_iod;
-
-	if ((bio->bi_rw & REQ_FLUSH) && !psegs)
-		return nvme_submit_flush(nvmeq, ns, cmdid);
-
-	control = 0;
-	if (bio->bi_rw & REQ_FUA)
-		control |= NVME_RW_FUA;
-	if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
-		control |= NVME_RW_LR;
-
-	dsmgmt = 0;
-	if (bio->bi_rw & REQ_RAHEAD)
-		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
-
-	cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
-
-	memset(cmnd, 0, sizeof(*cmnd));
-	if (bio_data_dir(bio)) {
-		cmnd->rw.opcode = nvme_cmd_write;
-		dma_dir = DMA_TO_DEVICE;
-	} else {
-		cmnd->rw.opcode = nvme_cmd_read;
-		dma_dir = DMA_FROM_DEVICE;
-	}
-
-	result = nvme_map_bio(nvmeq->q_dmadev, iod, bio, dma_dir, psegs);
-	if (result < 0)
-		goto free_cmdid;
-	length = result;
-
-	cmnd->rw.command_id = cmdid;
-	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
-	length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
-								GFP_ATOMIC);
-	cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
-	cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
-	cmnd->rw.control = cpu_to_le16(control);
-	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
-
-	bio->bi_sector += length >> 9;
-
-	if (++nvmeq->sq_tail == nvmeq->q_depth)
-		nvmeq->sq_tail = 0;
-	writel(nvmeq->sq_tail, nvmeq->q_db);
-
-	return 0;
-
- free_cmdid:
-	free_cmdid(nvmeq, cmdid, NULL);
- free_iod:
-	nvme_free_iod(nvmeq->dev, iod);
- nomem:
-	return result;
-}
-
-static void nvme_make_request(struct request_queue *q, struct bio *bio)
-{
-	struct nvme_ns *ns = q->queuedata;
-	struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
-	int result = -EBUSY;
-
-	spin_lock_irq(&nvmeq->q_lock);
-	if (bio_list_empty(&nvmeq->sq_cong))
-		result = nvme_submit_bio_queue(nvmeq, ns, bio);
-	if (unlikely(result)) {
-		if (bio_list_empty(&nvmeq->sq_cong))
-			add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
-		bio_list_add(&nvmeq->sq_cong, bio);
-	}
-
-	spin_unlock_irq(&nvmeq->q_lock);
-	put_nvmeq(nvmeq);
-}
-
-static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
-{
-	u16 head, phase;
-
-	head = nvmeq->cq_head;
-	phase = nvmeq->cq_phase;
-
-	for (;;) {
-		void *ctx;
-		nvme_completion_fn fn;
-		struct nvme_completion cqe = nvmeq->cqes[head];
-		if ((le16_to_cpu(cqe.status) & 1) != phase)
-			break;
-		nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
-		if (++head == nvmeq->q_depth) {
-			head = 0;
-			phase = !phase;
-		}
-
-		ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
-		fn(nvmeq->dev, ctx, &cqe);
-	}
-
-	/* If the controller ignores the cq head doorbell and continuously
-	 * writes to the queue, it is theoretically possible to wrap around
-	 * the queue twice and mistakenly return IRQ_NONE.  Linux only
-	 * requires that 0.1% of your interrupts are handled, so this isn't
-	 * a big problem.
-	 */
-	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
-		return IRQ_NONE;
-
-	writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
-	nvmeq->cq_head = head;
-	nvmeq->cq_phase = phase;
-
-	return IRQ_HANDLED;
-}
-
-static irqreturn_t nvme_irq(int irq, void *data)
-{
-	irqreturn_t result;
-	struct nvme_queue *nvmeq = data;
-	spin_lock(&nvmeq->q_lock);
-	result = nvme_process_cq(nvmeq);
-	spin_unlock(&nvmeq->q_lock);
-	return result;
-}
-
-static irqreturn_t nvme_irq_check(int irq, void *data)
-{
-	struct nvme_queue *nvmeq = data;
-	struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
-	if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
-		return IRQ_NONE;
-	return IRQ_WAKE_THREAD;
-}
-
-static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
-{
-	spin_lock_irq(&nvmeq->q_lock);
-	cancel_cmdid(nvmeq, cmdid, NULL);
-	spin_unlock_irq(&nvmeq->q_lock);
-}
-
-struct sync_cmd_info {
-	struct task_struct *task;
-	u32 result;
-	int status;
-};
-
-static void sync_completion(struct nvme_dev *dev, void *ctx,
-						struct nvme_completion *cqe)
-{
-	struct sync_cmd_info *cmdinfo = ctx;
-	cmdinfo->result = le32_to_cpup(&cqe->result);
-	cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
-	wake_up_process(cmdinfo->task);
-}
-
-/*
- * Returns 0 on success.  If the result is negative, it's a Linux error code;
- * if the result is positive, it's an NVM Express status code
- */
-static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
-			struct nvme_command *cmd, u32 *result, unsigned timeout)
-{
-	int cmdid;
-	struct sync_cmd_info cmdinfo;
-
-	cmdinfo.task = current;
-	cmdinfo.status = -EINTR;
-
-	cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
-								timeout);
-	if (cmdid < 0)
-		return cmdid;
-	cmd->common.command_id = cmdid;
-
-	set_current_state(TASK_KILLABLE);
-	nvme_submit_cmd(nvmeq, cmd);
-	schedule();
-
-	if (cmdinfo.status == -EINTR) {
-		nvme_abort_command(nvmeq, cmdid);
-		return -EINTR;
-	}
-
-	if (result)
-		*result = cmdinfo.result;
-
-	return cmdinfo.status;
-}
-
-static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
-								u32 *result)
-{
-	return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
-}
-
-static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
-{
-	int status;
-	struct nvme_command c;
-
-	memset(&c, 0, sizeof(c));
-	c.delete_queue.opcode = opcode;
-	c.delete_queue.qid = cpu_to_le16(id);
-
-	status = nvme_submit_admin_cmd(dev, &c, NULL);
-	if (status)
-		return -EIO;
-	return 0;
-}
-
-static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
-						struct nvme_queue *nvmeq)
-{
-	int status;
-	struct nvme_command c;
-	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
-
-	memset(&c, 0, sizeof(c));
-	c.create_cq.opcode = nvme_admin_create_cq;
-	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
-	c.create_cq.cqid = cpu_to_le16(qid);
-	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
-	c.create_cq.cq_flags = cpu_to_le16(flags);
-	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
-
-	status = nvme_submit_admin_cmd(dev, &c, NULL);
-	if (status)
-		return -EIO;
-	return 0;
-}
-
-static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
-						struct nvme_queue *nvmeq)
-{
-	int status;
-	struct nvme_command c;
-	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
-
-	memset(&c, 0, sizeof(c));
-	c.create_sq.opcode = nvme_admin_create_sq;
-	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
-	c.create_sq.sqid = cpu_to_le16(qid);
-	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
-	c.create_sq.sq_flags = cpu_to_le16(flags);
-	c.create_sq.cqid = cpu_to_le16(qid);
-
-	status = nvme_submit_admin_cmd(dev, &c, NULL);
-	if (status)
-		return -EIO;
-	return 0;
-}
-
-static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
-{
-	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
-}
-
-static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
-{
-	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
-}
-
-static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
-							dma_addr_t dma_addr)
-{
-	struct nvme_command c;
-
-	memset(&c, 0, sizeof(c));
-	c.identify.opcode = nvme_admin_identify;
-	c.identify.nsid = cpu_to_le32(nsid);
-	c.identify.prp1 = cpu_to_le64(dma_addr);
-	c.identify.cns = cpu_to_le32(cns);
-
-	return nvme_submit_admin_cmd(dev, &c, NULL);
-}
-
-static int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
-					dma_addr_t dma_addr, u32 *result)
-{
-	struct nvme_command c;
-
-	memset(&c, 0, sizeof(c));
-	c.features.opcode = nvme_admin_get_features;
-	c.features.nsid = cpu_to_le32(nsid);
-	c.features.prp1 = cpu_to_le64(dma_addr);
-	c.features.fid = cpu_to_le32(fid);
-
-	return nvme_submit_admin_cmd(dev, &c, result);
-}
-
-static int nvme_set_features(struct nvme_dev *dev, unsigned fid,
-			unsigned dword11, dma_addr_t dma_addr, u32 *result)
-{
-	struct nvme_command c;
-
-	memset(&c, 0, sizeof(c));
-	c.features.opcode = nvme_admin_set_features;
-	c.features.prp1 = cpu_to_le64(dma_addr);
-	c.features.fid = cpu_to_le32(fid);
-	c.features.dword11 = cpu_to_le32(dword11);
-
-	return nvme_submit_admin_cmd(dev, &c, result);
-}
-
-/**
- * nvme_cancel_ios - Cancel outstanding I/Os
- * @queue: The queue to cancel I/Os on
- * @timeout: True to only cancel I/Os which have timed out
- */
-static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
-{
-	int depth = nvmeq->q_depth - 1;
-	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
-	unsigned long now = jiffies;
-	int cmdid;
-
-	for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
-		void *ctx;
-		nvme_completion_fn fn;
-		static struct nvme_completion cqe = {
-			.status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1,
-		};
-
-		if (timeout && !time_after(now, info[cmdid].timeout))
-			continue;
-		dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d\n", cmdid);
-		ctx = cancel_cmdid(nvmeq, cmdid, &fn);
-		fn(nvmeq->dev, ctx, &cqe);
-	}
-}
-
-static void nvme_free_queue_mem(struct nvme_queue *nvmeq)
-{
-	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
-				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
-	dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
-					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
-	kfree(nvmeq);
-}
-
-static void nvme_free_queue(struct nvme_dev *dev, int qid)
-{
-	struct nvme_queue *nvmeq = dev->queues[qid];
-	int vector = dev->entry[nvmeq->cq_vector].vector;
-
-	spin_lock_irq(&nvmeq->q_lock);
-	nvme_cancel_ios(nvmeq, false);
-	while (bio_list_peek(&nvmeq->sq_cong)) {
-		struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
-		bio_endio(bio, -EIO);
-	}
-	spin_unlock_irq(&nvmeq->q_lock);
-
-	irq_set_affinity_hint(vector, NULL);
-	free_irq(vector, nvmeq);
-
-	/* Don't tell the adapter to delete the admin queue */
-	if (qid) {
-		adapter_delete_sq(dev, qid);
-		adapter_delete_cq(dev, qid);
-	}
-
-	nvme_free_queue_mem(nvmeq);
-}
-
-static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
-							int depth, int vector)
-{
-	struct device *dmadev = &dev->pci_dev->dev;
-	unsigned extra = DIV_ROUND_UP(depth, 8) + (depth *
-						sizeof(struct nvme_cmd_info));
-	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
-	if (!nvmeq)
-		return NULL;
-
-	nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
-					&nvmeq->cq_dma_addr, GFP_KERNEL);
-	if (!nvmeq->cqes)
-		goto free_nvmeq;
-	memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
-
-	nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
-					&nvmeq->sq_dma_addr, GFP_KERNEL);
-	if (!nvmeq->sq_cmds)
-		goto free_cqdma;
-
-	nvmeq->q_dmadev = dmadev;
-	nvmeq->dev = dev;
-	spin_lock_init(&nvmeq->q_lock);
-	nvmeq->cq_head = 0;
-	nvmeq->cq_phase = 1;
-	init_waitqueue_head(&nvmeq->sq_full);
-	init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
-	bio_list_init(&nvmeq->sq_cong);
-	nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
-	nvmeq->q_depth = depth;
-	nvmeq->cq_vector = vector;
-
-	return nvmeq;
-
- free_cqdma:
-	dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
-							nvmeq->cq_dma_addr);
- free_nvmeq:
-	kfree(nvmeq);
-	return NULL;
-}
-
-static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
-							const char *name)
-{
-	if (use_threaded_interrupts)
-		return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
-					nvme_irq_check, nvme_irq,
-					IRQF_DISABLED | IRQF_SHARED,
-					name, nvmeq);
-	return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
-				IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
-}
-
-static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
-					int qid, int cq_size, int vector)
-{
-	int result;
-	struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
-
-	if (!nvmeq)
-		return ERR_PTR(-ENOMEM);
-
-	result = adapter_alloc_cq(dev, qid, nvmeq);
-	if (result < 0)
-		goto free_nvmeq;
-
-	result = adapter_alloc_sq(dev, qid, nvmeq);
-	if (result < 0)
-		goto release_cq;
-
-	result = queue_request_irq(dev, nvmeq, "nvme");
-	if (result < 0)
-		goto release_sq;
-
-	return nvmeq;
-
- release_sq:
-	adapter_delete_sq(dev, qid);
- release_cq:
-	adapter_delete_cq(dev, qid);
- free_nvmeq:
-	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
-				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
-	dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
-					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
-	kfree(nvmeq);
-	return ERR_PTR(result);
-}
-
-static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
-{
-	int result = 0;
-	u32 aqa;
-	u64 cap;
-	unsigned long timeout;
-	struct nvme_queue *nvmeq;
-
-	dev->dbs = ((void __iomem *)dev->bar) + 4096;
-
-	nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
-	if (!nvmeq)
-		return -ENOMEM;
-
-	aqa = nvmeq->q_depth - 1;
-	aqa |= aqa << 16;
-
-	dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
-	dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
-	dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
-	dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
-
-	writel(0, &dev->bar->cc);
-	writel(aqa, &dev->bar->aqa);
-	writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
-	writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
-	writel(dev->ctrl_config, &dev->bar->cc);
-
-	cap = readq(&dev->bar->cap);
-	timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
-	dev->db_stride = NVME_CAP_STRIDE(cap);
-
-	while (!result && !(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
-		msleep(100);
-		if (fatal_signal_pending(current))
-			result = -EINTR;
-		if (time_after(jiffies, timeout)) {
-			dev_err(&dev->pci_dev->dev,
-				"Device not ready; aborting initialisation\n");
-			result = -ENODEV;
-		}
-	}
-
-	if (result) {
-		nvme_free_queue_mem(nvmeq);
-		return result;
-	}
-
-	result = queue_request_irq(dev, nvmeq, "nvme admin");
-	dev->queues[0] = nvmeq;
-	return result;
-}
-
-static struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
-				unsigned long addr, unsigned length)
-{
-	int i, err, count, nents, offset;
-	struct scatterlist *sg;
-	struct page **pages;
-	struct nvme_iod *iod;
-
-	if (addr & 3)
-		return ERR_PTR(-EINVAL);
-	if (!length)
-		return ERR_PTR(-EINVAL);
-
-	offset = offset_in_page(addr);
-	count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
-	pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
-	if (!pages)
-		return ERR_PTR(-ENOMEM);
-
-	err = get_user_pages_fast(addr, count, 1, pages);
-	if (err < count) {
-		count = err;
-		err = -EFAULT;
-		goto put_pages;
-	}
-
-	iod = nvme_alloc_iod(count, length, GFP_KERNEL);
-	sg = iod->sg;
-	sg_init_table(sg, count);
-	for (i = 0; i < count; i++) {
-		sg_set_page(&sg[i], pages[i],
-				min_t(int, length, PAGE_SIZE - offset), offset);
-		length -= (PAGE_SIZE - offset);
-		offset = 0;
-	}
-	sg_mark_end(&sg[i - 1]);
-	iod->nents = count;
-
-	err = -ENOMEM;
-	nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
-				write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
-	if (!nents)
-		goto free_iod;
-
-	kfree(pages);
-	return iod;
-
- free_iod:
-	kfree(iod);
- put_pages:
-	for (i = 0; i < count; i++)
-		put_page(pages[i]);
-	kfree(pages);
-	return ERR_PTR(err);
-}
-
-static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
-			struct nvme_iod *iod)
-{
-	int i;
-
-	dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
-				write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
-
-	for (i = 0; i < iod->nents; i++)
-		put_page(sg_page(&iod->sg[i]));
-}
-
-static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
-{
-	struct nvme_dev *dev = ns->dev;
-	struct nvme_queue *nvmeq;
-	struct nvme_user_io io;
-	struct nvme_command c;
-	unsigned length;
-	int status;
-	struct nvme_iod *iod;
-
-	if (copy_from_user(&io, uio, sizeof(io)))
-		return -EFAULT;
-	length = (io.nblocks + 1) << ns->lba_shift;
-
-	switch (io.opcode) {
-	case nvme_cmd_write:
-	case nvme_cmd_read:
-	case nvme_cmd_compare:
-		iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
-		break;
-	default:
-		return -EINVAL;
-	}
-
-	if (IS_ERR(iod))
-		return PTR_ERR(iod);
-
-	memset(&c, 0, sizeof(c));
-	c.rw.opcode = io.opcode;
-	c.rw.flags = io.flags;
-	c.rw.nsid = cpu_to_le32(ns->ns_id);
-	c.rw.slba = cpu_to_le64(io.slba);
-	c.rw.length = cpu_to_le16(io.nblocks);
-	c.rw.control = cpu_to_le16(io.control);
-	c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
-	c.rw.reftag = io.reftag;
-	c.rw.apptag = io.apptag;
-	c.rw.appmask = io.appmask;
-	/* XXX: metadata */
-	length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
-
-	nvmeq = get_nvmeq(dev);
-	/*
-	 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
-	 * disabled.  We may be preempted at any point, and be rescheduled
-	 * to a different CPU.  That will cause cacheline bouncing, but no
-	 * additional races since q_lock already protects against other CPUs.
-	 */
-	put_nvmeq(nvmeq);
-	if (length != (io.nblocks + 1) << ns->lba_shift)
-		status = -ENOMEM;
-	else
-		status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
-
-	nvme_unmap_user_pages(dev, io.opcode & 1, iod);
-	nvme_free_iod(dev, iod);
-	return status;
-}
-
-static int nvme_user_admin_cmd(struct nvme_dev *dev,
-					struct nvme_admin_cmd __user *ucmd)
-{
-	struct nvme_admin_cmd cmd;
-	struct nvme_command c;
-	int status, length;
-	struct nvme_iod *uninitialized_var(iod);
-
-	if (!capable(CAP_SYS_ADMIN))
-		return -EACCES;
-	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
-		return -EFAULT;
-
-	memset(&c, 0, sizeof(c));
-	c.common.opcode = cmd.opcode;
-	c.common.flags = cmd.flags;
-	c.common.nsid = cpu_to_le32(cmd.nsid);
-	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
-	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
-	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
-	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
-	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
-	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
-	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
-	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
-
-	length = cmd.data_len;
-	if (cmd.data_len) {
-		iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
-								length);
-		if (IS_ERR(iod))
-			return PTR_ERR(iod);
-		length = nvme_setup_prps(dev, &c.common, iod, length,
-								GFP_KERNEL);
-	}
-
-	if (length != cmd.data_len)
-		status = -ENOMEM;
-	else
-		status = nvme_submit_admin_cmd(dev, &c, &cmd.result);
-
-	if (cmd.data_len) {
-		nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
-		nvme_free_iod(dev, iod);
-	}
-
-	if (!status && copy_to_user(&ucmd->result, &cmd.result,
-							sizeof(cmd.result)))
-		status = -EFAULT;
-
-	return status;
-}
-
-static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
-							unsigned long arg)
-{
-	struct nvme_ns *ns = bdev->bd_disk->private_data;
-
-	switch (cmd) {
-	case NVME_IOCTL_ID:
-		return ns->ns_id;
-	case NVME_IOCTL_ADMIN_CMD:
-		return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
-	case NVME_IOCTL_SUBMIT_IO:
-		return nvme_submit_io(ns, (void __user *)arg);
-	default:
-		return -ENOTTY;
-	}
-}
-
-static const struct block_device_operations nvme_fops = {
-	.owner		= THIS_MODULE,
-	.ioctl		= nvme_ioctl,
-	.compat_ioctl	= nvme_ioctl,
-};
-
-static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
-{
-	while (bio_list_peek(&nvmeq->sq_cong)) {
-		struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
-		struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
-		if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
-			bio_list_add_head(&nvmeq->sq_cong, bio);
-			break;
-		}
-		if (bio_list_empty(&nvmeq->sq_cong))
-			remove_wait_queue(&nvmeq->sq_full,
-							&nvmeq->sq_cong_wait);
-	}
-}
-
-static int nvme_kthread(void *data)
-{
-	struct nvme_dev *dev;
-
-	while (!kthread_should_stop()) {
-		__set_current_state(TASK_RUNNING);
-		spin_lock(&dev_list_lock);
-		list_for_each_entry(dev, &dev_list, node) {
-			int i;
-			for (i = 0; i < dev->queue_count; i++) {
-				struct nvme_queue *nvmeq = dev->queues[i];
-				if (!nvmeq)
-					continue;
-				spin_lock_irq(&nvmeq->q_lock);
-				if (nvme_process_cq(nvmeq))
-					printk("process_cq did something\n");
-				nvme_cancel_ios(nvmeq, true);
-				nvme_resubmit_bios(nvmeq);
-				spin_unlock_irq(&nvmeq->q_lock);
-			}
-		}
-		spin_unlock(&dev_list_lock);
-		set_current_state(TASK_INTERRUPTIBLE);
-		schedule_timeout(HZ);
-	}
-	return 0;
-}
-
-static DEFINE_IDA(nvme_index_ida);
-
-static int nvme_get_ns_idx(void)
-{
-	int index, error;
-
-	do {
-		if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
-			return -1;
-
-		spin_lock(&dev_list_lock);
-		error = ida_get_new(&nvme_index_ida, &index);
-		spin_unlock(&dev_list_lock);
-	} while (error == -EAGAIN);
-
-	if (error)
-		index = -1;
-	return index;
-}
-
-static void nvme_put_ns_idx(int index)
-{
-	spin_lock(&dev_list_lock);
-	ida_remove(&nvme_index_ida, index);
-	spin_unlock(&dev_list_lock);
-}
-
-static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
-			struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
-{
-	struct nvme_ns *ns;
-	struct gendisk *disk;
-	int lbaf;
-
-	if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
-		return NULL;
-
-	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
-	if (!ns)
-		return NULL;
-	ns->queue = blk_alloc_queue(GFP_KERNEL);
-	if (!ns->queue)
-		goto out_free_ns;
-	ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
-	queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
-	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
-/*	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); */
-	blk_queue_make_request(ns->queue, nvme_make_request);
-	ns->dev = dev;
-	ns->queue->queuedata = ns;
-
-	disk = alloc_disk(NVME_MINORS);
-	if (!disk)
-		goto out_free_queue;
-	ns->ns_id = nsid;
-	ns->disk = disk;
-	lbaf = id->flbas & 0xf;
-	ns->lba_shift = id->lbaf[lbaf].ds;
-	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
-	if (dev->max_hw_sectors)
-		blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
-
-	disk->major = nvme_major;
-	disk->minors = NVME_MINORS;
-	disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
-	disk->fops = &nvme_fops;
-	disk->private_data = ns;
-	disk->queue = ns->queue;
-	disk->driverfs_dev = &dev->pci_dev->dev;
-	sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
-	set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
-
-	return ns;
-
- out_free_queue:
-	blk_cleanup_queue(ns->queue);
- out_free_ns:
-	kfree(ns);
-	return NULL;
-}
-
-static void nvme_ns_free(struct nvme_ns *ns)
-{
-	int index = ns->disk->first_minor / NVME_MINORS;
-	put_disk(ns->disk);
-	nvme_put_ns_idx(index);
-	blk_cleanup_queue(ns->queue);
-	kfree(ns);
-}
-
-static int set_queue_count(struct nvme_dev *dev, int count)
-{
-	int status;
-	u32 result;
-	u32 q_count = (count - 1) | ((count - 1) << 16);
-
-	status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
-								&result);
-	if (status)
-		return -EIO;
-	return min(result & 0xffff, result >> 16) + 1;
-}
-
-static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
-{
-	int result, cpu, i, nr_io_queues, db_bar_size, q_depth;
-
-	nr_io_queues = num_online_cpus();
-	result = set_queue_count(dev, nr_io_queues);
-	if (result < 0)
-		return result;
-	if (result < nr_io_queues)
-		nr_io_queues = result;
-
-	/* Deregister the admin queue's interrupt */
-	free_irq(dev->entry[0].vector, dev->queues[0]);
-
-	db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
-	if (db_bar_size > 8192) {
-		iounmap(dev->bar);
-		dev->bar = ioremap(pci_resource_start(dev->pci_dev, 0),
-								db_bar_size);
-		dev->dbs = ((void __iomem *)dev->bar) + 4096;
-		dev->queues[0]->q_db = dev->dbs;
-	}
-
-	for (i = 0; i < nr_io_queues; i++)
-		dev->entry[i].entry = i;
-	for (;;) {
-		result = pci_enable_msix(dev->pci_dev, dev->entry,
-								nr_io_queues);
-		if (result == 0) {
-			break;
-		} else if (result > 0) {
-			nr_io_queues = result;
-			continue;
-		} else {
-			nr_io_queues = 1;
-			break;
-		}
-	}
-
-	result = queue_request_irq(dev, dev->queues[0], "nvme admin");
-	/* XXX: handle failure here */
-
-	cpu = cpumask_first(cpu_online_mask);
-	for (i = 0; i < nr_io_queues; i++) {
-		irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
-		cpu = cpumask_next(cpu, cpu_online_mask);
-	}
-
-	q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
-								NVME_Q_DEPTH);
-	for (i = 0; i < nr_io_queues; i++) {
-		dev->queues[i + 1] = nvme_create_queue(dev, i + 1, q_depth, i);
-		if (IS_ERR(dev->queues[i + 1]))
-			return PTR_ERR(dev->queues[i + 1]);
-		dev->queue_count++;
-	}
-
-	for (; i < num_possible_cpus(); i++) {
-		int target = i % rounddown_pow_of_two(dev->queue_count - 1);
-		dev->queues[i + 1] = dev->queues[target + 1];
-	}
-
-	return 0;
-}
-
-static void nvme_free_queues(struct nvme_dev *dev)
-{
-	int i;
-
-	for (i = dev->queue_count - 1; i >= 0; i--)
-		nvme_free_queue(dev, i);
-}
-
-static int __devinit nvme_dev_add(struct nvme_dev *dev)
-{
-	int res, nn, i;
-	struct nvme_ns *ns, *next;
-	struct nvme_id_ctrl *ctrl;
-	struct nvme_id_ns *id_ns;
-	void *mem;
-	dma_addr_t dma_addr;
-
-	res = nvme_setup_io_queues(dev);
-	if (res)
-		return res;
-
-	mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
-								GFP_KERNEL);
-
-	res = nvme_identify(dev, 0, 1, dma_addr);
-	if (res) {
-		res = -EIO;
-		goto out_free;
-	}
-
-	ctrl = mem;
-	nn = le32_to_cpup(&ctrl->nn);
-	memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
-	memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
-	memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
-	if (ctrl->mdts) {
-		int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
-		dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
-	}
-
-	id_ns = mem;
-	for (i = 1; i <= nn; i++) {
-		res = nvme_identify(dev, i, 0, dma_addr);
-		if (res)
-			continue;
-
-		if (id_ns->ncap == 0)
-			continue;
-
-		res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
-							dma_addr + 4096, NULL);
-		if (res)
-			continue;
-
-		ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
-		if (ns)
-			list_add_tail(&ns->list, &dev->namespaces);
-	}
-	list_for_each_entry(ns, &dev->namespaces, list)
-		add_disk(ns->disk);
-
-	goto out;
-
- out_free:
-	list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
-		list_del(&ns->list);
-		nvme_ns_free(ns);
-	}
-
- out:
-	dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
-	return res;
-}
-
-static int nvme_dev_remove(struct nvme_dev *dev)
-{
-	struct nvme_ns *ns, *next;
-
-	spin_lock(&dev_list_lock);
-	list_del(&dev->node);
-	spin_unlock(&dev_list_lock);
-
-	list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
-		list_del(&ns->list);
-		del_gendisk(ns->disk);
-		nvme_ns_free(ns);
-	}
-
-	nvme_free_queues(dev);
-
-	return 0;
-}
-
-static int nvme_setup_prp_pools(struct nvme_dev *dev)
-{
-	struct device *dmadev = &dev->pci_dev->dev;
-	dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
-						PAGE_SIZE, PAGE_SIZE, 0);
-	if (!dev->prp_page_pool)
-		return -ENOMEM;
-
-	/* Optimisation for I/Os between 4k and 128k */
-	dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
-						256, 256, 0);
-	if (!dev->prp_small_pool) {
-		dma_pool_destroy(dev->prp_page_pool);
-		return -ENOMEM;
-	}
-	return 0;
-}
-
-static void nvme_release_prp_pools(struct nvme_dev *dev)
-{
-	dma_pool_destroy(dev->prp_page_pool);
-	dma_pool_destroy(dev->prp_small_pool);
-}
-
-static DEFINE_IDA(nvme_instance_ida);
-
-static int nvme_set_instance(struct nvme_dev *dev)
-{
-	int instance, error;
-
-	do {
-		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
-			return -ENODEV;
-
-		spin_lock(&dev_list_lock);
-		error = ida_get_new(&nvme_instance_ida, &instance);
-		spin_unlock(&dev_list_lock);
-	} while (error == -EAGAIN);
-
-	if (error)
-		return -ENODEV;
-
-	dev->instance = instance;
-	return 0;
-}
-
-static void nvme_release_instance(struct nvme_dev *dev)
-{
-	spin_lock(&dev_list_lock);
-	ida_remove(&nvme_instance_ida, dev->instance);
-	spin_unlock(&dev_list_lock);
-}
-
-static int __devinit nvme_probe(struct pci_dev *pdev,
-						const struct pci_device_id *id)
-{
-	int bars, result = -ENOMEM;
-	struct nvme_dev *dev;
-
-	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
-	if (!dev)
-		return -ENOMEM;
-	dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
-								GFP_KERNEL);
-	if (!dev->entry)
-		goto free;
-	dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
-								GFP_KERNEL);
-	if (!dev->queues)
-		goto free;
-
-	if (pci_enable_device_mem(pdev))
-		goto free;
-	pci_set_master(pdev);
-	bars = pci_select_bars(pdev, IORESOURCE_MEM);
-	if (pci_request_selected_regions(pdev, bars, "nvme"))
-		goto disable;
-
-	INIT_LIST_HEAD(&dev->namespaces);
-	dev->pci_dev = pdev;
-	pci_set_drvdata(pdev, dev);
-	dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
-	dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
-	result = nvme_set_instance(dev);
-	if (result)
-		goto disable;
-
-	dev->entry[0].vector = pdev->irq;
-
-	result = nvme_setup_prp_pools(dev);
-	if (result)
-		goto disable_msix;
-
-	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
-	if (!dev->bar) {
-		result = -ENOMEM;
-		goto disable_msix;
-	}
-
-	result = nvme_configure_admin_queue(dev);
-	if (result)
-		goto unmap;
-	dev->queue_count++;
-
-	spin_lock(&dev_list_lock);
-	list_add(&dev->node, &dev_list);
-	spin_unlock(&dev_list_lock);
-
-	result = nvme_dev_add(dev);
-	if (result)
-		goto delete;
-
-	return 0;
-
- delete:
-	spin_lock(&dev_list_lock);
-	list_del(&dev->node);
-	spin_unlock(&dev_list_lock);
-
-	nvme_free_queues(dev);
- unmap:
-	iounmap(dev->bar);
- disable_msix:
-	pci_disable_msix(pdev);
-	nvme_release_instance(dev);
-	nvme_release_prp_pools(dev);
- disable:
-	pci_disable_device(pdev);
-	pci_release_regions(pdev);
- free:
-	kfree(dev->queues);
-	kfree(dev->entry);
-	kfree(dev);
-	return result;
-}
-
-static void __devexit nvme_remove(struct pci_dev *pdev)
-{
-	struct nvme_dev *dev = pci_get_drvdata(pdev);
-	nvme_dev_remove(dev);
-	pci_disable_msix(pdev);
-	iounmap(dev->bar);
-	nvme_release_instance(dev);
-	nvme_release_prp_pools(dev);
-	pci_disable_device(pdev);
-	pci_release_regions(pdev);
-	kfree(dev->queues);
-	kfree(dev->entry);
-	kfree(dev);
-}
-
-/* These functions are yet to be implemented */
-#define nvme_error_detected NULL
-#define nvme_dump_registers NULL
-#define nvme_link_reset NULL
-#define nvme_slot_reset NULL
-#define nvme_error_resume NULL
-#define nvme_suspend NULL
-#define nvme_resume NULL
-
-static const struct pci_error_handlers nvme_err_handler = {
-	.error_detected	= nvme_error_detected,
-	.mmio_enabled	= nvme_dump_registers,
-	.link_reset	= nvme_link_reset,
-	.slot_reset	= nvme_slot_reset,
-	.resume		= nvme_error_resume,
-};
-
-/* Move to pci_ids.h later */
-#define PCI_CLASS_STORAGE_EXPRESS	0x010802
-
-static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
-	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
-	{ 0, }
-};
-MODULE_DEVICE_TABLE(pci, nvme_id_table);
-
-static struct pci_driver nvme_driver = {
-	.name		= "nvme",
-	.id_table	= nvme_id_table,
-	.probe		= nvme_probe,
-	.remove		= __devexit_p(nvme_remove),
-	.suspend	= nvme_suspend,
-	.resume		= nvme_resume,
-	.err_handler	= &nvme_err_handler,
-};
-
-static int __init nvme_init(void)
-{
-	int result;
-
-	nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
-	if (IS_ERR(nvme_thread))
-		return PTR_ERR(nvme_thread);
-
-	result = register_blkdev(nvme_major, "nvme");
-	if (result < 0)
-		goto kill_kthread;
-	else if (result > 0)
-		nvme_major = result;
-
-	result = pci_register_driver(&nvme_driver);
-	if (result)
-		goto unregister_blkdev;
-	return 0;
-
- unregister_blkdev:
-	unregister_blkdev(nvme_major, "nvme");
- kill_kthread:
-	kthread_stop(nvme_thread);
-	return result;
-}
-
-static void __exit nvme_exit(void)
-{
-	pci_unregister_driver(&nvme_driver);
-	unregister_blkdev(nvme_major, "nvme");
-	kthread_stop(nvme_thread);
-}
-
-MODULE_AUTHOR("Matthew Wilcox <willy at linux.intel.com>");
-MODULE_LICENSE("GPL");
-MODULE_VERSION("0.8");
-module_init(nvme_init);
-module_exit(nvme_exit);
-- 
1.7.0.4

^ permalink raw reply related	[flat|nested] 5+ messages in thread

* [PATCH v3 2/3] NVMe: Move dev, ns, iod structs to nvme.c
  2013-03-05  1:40 [PATCH v3 0/3] NVMe: Add support for SG_IO Vishal Verma
  2013-03-05  1:40 ` [PATCH v3 1/3] NVMe: Rename nvme.c to nvme-core.c Vishal Verma
@ 2013-03-05  1:40 ` Vishal Verma
  2013-03-05  1:40 ` [PATCH v3 3/3] NVMe: Add nvme-scsi.c Vishal Verma
  2013-03-28  1:17 ` [PATCH v3 0/3] NVMe: Add support for SG_IO Matthew Wilcox
  3 siblings, 0 replies; 5+ messages in thread
From: Vishal Verma @ 2013-03-05  1:40 UTC (permalink / raw)


nvme-scsi.c uses nvme_dev, nvme_ns, and nvme_iod.
Move the structure definitions to nvme.h

Signed-off-by: Vishal Verma <vishal.l.verma at intel.com>
---
 drivers/block/nvme-core.c |   53 -----------------------------------
 include/linux/nvme.h      |   67 +++++++++++++++++++++++++++++++++++++++++++++
 2 files changed, 67 insertions(+), 53 deletions(-)

diff --git a/drivers/block/nvme-core.c b/drivers/block/nvme-core.c
index 993c014..310b6f2 100644
--- a/drivers/block/nvme-core.c
+++ b/drivers/block/nvme-core.c
@@ -60,43 +60,6 @@ static LIST_HEAD(dev_list);
 static struct task_struct *nvme_thread;
 
 /*
- * Represents an NVM Express device.  Each nvme_dev is a PCI function.
- */
-struct nvme_dev {
-	struct list_head node;
-	struct nvme_queue **queues;
-	u32 __iomem *dbs;
-	struct pci_dev *pci_dev;
-	struct dma_pool *prp_page_pool;
-	struct dma_pool *prp_small_pool;
-	int instance;
-	int queue_count;
-	int db_stride;
-	u32 ctrl_config;
-	struct msix_entry *entry;
-	struct nvme_bar __iomem *bar;
-	struct list_head namespaces;
-	char serial[20];
-	char model[40];
-	char firmware_rev[8];
-	u32 max_hw_sectors;
-};
-
-/*
- * An NVM Express namespace is equivalent to a SCSI LUN
- */
-struct nvme_ns {
-	struct list_head list;
-
-	struct nvme_dev *dev;
-	struct request_queue *queue;
-	struct gendisk *disk;
-
-	int ns_id;
-	int lba_shift;
-};
-
-/*
  * An NVM Express queue.  Each device has at least two (one for admin
  * commands and one for I/O commands).
  */
@@ -294,22 +257,6 @@ static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
 	return 0;
 }
 
-/*
- * The nvme_iod describes the data in an I/O, including the list of PRP
- * entries.  You can't see it in this data structure because C doesn't let
- * me express that.  Use nvme_alloc_iod to ensure there's enough space
- * allocated to store the PRP list.
- */
-struct nvme_iod {
-	void *private;		/* For the use of the submitter of the I/O */
-	int npages;		/* In the PRP list. 0 means small pool in use */
-	int offset;		/* Of PRP list */
-	int nents;		/* Used in scatterlist */
-	int length;		/* Of data, in bytes */
-	dma_addr_t first_dma;
-	struct scatterlist sg[0];
-};
-
 static __le64 **iod_list(struct nvme_iod *iod)
 {
 	return ((void *)iod) + iod->offset;
diff --git a/include/linux/nvme.h b/include/linux/nvme.h
index 4fa3b0b..968d175 100644
--- a/include/linux/nvme.h
+++ b/include/linux/nvme.h
@@ -461,4 +461,71 @@ struct nvme_admin_cmd {
 #define NVME_IOCTL_ADMIN_CMD	_IOWR('N', 0x41, struct nvme_admin_cmd)
 #define NVME_IOCTL_SUBMIT_IO	_IOW('N', 0x42, struct nvme_user_io)
 
+#ifdef __KERNEL__
+#include <linux/pci.h>
+
+/*
+ * Represents an NVM Express device.  Each nvme_dev is a PCI function.
+ */
+struct nvme_dev {
+	struct list_head node;
+	struct nvme_queue **queues;
+	u32 __iomem *dbs;
+	struct pci_dev *pci_dev;
+	struct dma_pool *prp_page_pool;
+	struct dma_pool *prp_small_pool;
+	int instance;
+	int queue_count;
+	int db_stride;
+	u32 ctrl_config;
+	struct msix_entry *entry;
+	struct nvme_bar __iomem *bar;
+	struct list_head namespaces;
+	char serial[20];
+	char model[40];
+	char firmware_rev[8];
+	u16 vendor_id;
+	u32 max_hw_sectors;
+};
+
+/*
+ * An NVM Express namespace is equivalent to a SCSI LUN
+ */
+struct nvme_ns {
+	struct list_head list;
+
+	struct nvme_dev *dev;
+	struct request_queue *queue;
+	struct gendisk *disk;
+
+	int ns_id;
+	int lba_shift;
+	u64 mode_select_num_blocks;
+	u32 mode_select_block_len;
+};
+
+/*
+ * The nvme_iod describes the data in an I/O, including the list of PRP
+ * entries.  You can't see it in this data structure because C doesn't let
+ * me express that.  Use nvme_alloc_iod to ensure there's enough space
+ * allocated to store the PRP list.
+ */
+struct nvme_iod {
+	void *private;		/* For the use of the submitter of the I/O */
+	int npages;		/* In the PRP list. 0 means small pool in use */
+	int offset;		/* Of PRP list */
+	int nents;		/* Used in scatterlist */
+	int length;		/* Of data, in bytes */
+	dma_addr_t first_dma;
+	struct scatterlist sg[0];
+};
+
+/**
+ * nvme_free_iod - frees an nvme_iod
+ * @dev: The device that the I/O was submitted to
+ * @iod: The memory to free
+ */
+
+#endif
+
 #endif /* _LINUX_NVME_H */
-- 
1.7.0.4

^ permalink raw reply related	[flat|nested] 5+ messages in thread

* [PATCH v3 3/3] NVMe: Add nvme-scsi.c
  2013-03-05  1:40 [PATCH v3 0/3] NVMe: Add support for SG_IO Vishal Verma
  2013-03-05  1:40 ` [PATCH v3 1/3] NVMe: Rename nvme.c to nvme-core.c Vishal Verma
  2013-03-05  1:40 ` [PATCH v3 2/3] NVMe: Move dev, ns, iod structs to nvme.c Vishal Verma
@ 2013-03-05  1:40 ` Vishal Verma
  2013-03-28  1:17 ` [PATCH v3 0/3] NVMe: Add support for SG_IO Matthew Wilcox
  3 siblings, 0 replies; 5+ messages in thread
From: Vishal Verma @ 2013-03-05  1:40 UTC (permalink / raw)


Translates SCSI commands in SG_IO ioctl to NVMe commands.
Uses the scsi-nvme translation spec from nvmexpress.org as reference.

Signed-off-by: Vishal Verma <vishal.l.verma at intel.com>
---
 drivers/block/Makefile    |    2 +-
 drivers/block/nvme-core.c |   39 +-
 drivers/block/nvme-scsi.c | 2941 +++++++++++++++++++++++++++++++++++++++++++++
 include/linux/nvme.h      |   40 +
 4 files changed, 3004 insertions(+), 18 deletions(-)
 create mode 100644 drivers/block/nvme-scsi.c

diff --git a/drivers/block/Makefile b/drivers/block/Makefile
index dd192b6..8b678fc 100644
--- a/drivers/block/Makefile
+++ b/drivers/block/Makefile
@@ -41,5 +41,5 @@ obj-$(CONFIG_BLK_DEV_DRBD)     += drbd/
 obj-$(CONFIG_BLK_DEV_RBD)     += rbd.o
 obj-$(CONFIG_BLK_DEV_PCIESSD_MTIP32XX)	+= mtip32xx/
 
-nvme-y 		:= nvme-core.o
+nvme-y 		:= nvme-core.o nvme-scsi.o
 swim_mod-y	:= swim.o swim_asm.o
diff --git a/drivers/block/nvme-core.c b/drivers/block/nvme-core.c
index 310b6f2..26e4a76 100644
--- a/drivers/block/nvme-core.c
+++ b/drivers/block/nvme-core.c
@@ -39,6 +39,7 @@
 #include <linux/sched.h>
 #include <linux/slab.h>
 #include <linux/types.h>
+#include <scsi/sg.h>
 
 #include <asm-generic/io-64-nonatomic-lo-hi.h>
 
@@ -46,7 +47,6 @@
 #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
 #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
 #define NVME_MINORS 64
-#define NVME_IO_TIMEOUT	(5 * HZ)
 #define ADMIN_TIMEOUT	(60 * HZ)
 
 static int nvme_major;
@@ -94,6 +94,7 @@ static inline void _nvme_check_size(void)
 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
+	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
@@ -224,12 +225,12 @@ static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
 	return ctx;
 }
 
-static struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
+struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
 {
 	return dev->queues[get_cpu() + 1];
 }
 
-static void put_nvmeq(struct nvme_queue *nvmeq)
+void put_nvmeq(struct nvme_queue *nvmeq)
 {
 	put_cpu();
 }
@@ -290,7 +291,7 @@ nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
 	return iod;
 }
 
-static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
+void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
 {
 	const int last_prp = PAGE_SIZE / 8 - 1;
 	int i;
@@ -339,9 +340,8 @@ static void bio_completion(struct nvme_dev *dev, void *ctx,
 }
 
 /* length is in bytes.  gfp flags indicates whether we may sleep. */
-static int nvme_setup_prps(struct nvme_dev *dev,
-			struct nvme_common_command *cmd, struct nvme_iod *iod,
-			int total_len, gfp_t gfp)
+int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd,
+			struct nvme_iod *iod, int total_len, gfp_t gfp)
 {
 	struct dma_pool *pool;
 	int length = total_len;
@@ -474,7 +474,7 @@ static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
 	return 0;
 }
 
-static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
+int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
 {
 	int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
 					special_completion, NVME_IO_TIMEOUT);
@@ -671,8 +671,8 @@ static void sync_completion(struct nvme_dev *dev, void *ctx,
  * Returns 0 on success.  If the result is negative, it's a Linux error code;
  * if the result is positive, it's an NVM Express status code
  */
-static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
-			struct nvme_command *cmd, u32 *result, unsigned timeout)
+int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
+						u32 *result, unsigned timeout)
 {
 	int cmdid;
 	struct sync_cmd_info cmdinfo;
@@ -701,7 +701,7 @@ static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
 	return cmdinfo.status;
 }
 
-static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
+int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
 								u32 *result)
 {
 	return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
@@ -774,7 +774,7 @@ static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
 }
 
-static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
+int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
 							dma_addr_t dma_addr)
 {
 	struct nvme_command c;
@@ -788,7 +788,7 @@ static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
 	return nvme_submit_admin_cmd(dev, &c, NULL);
 }
 
-static int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
+int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
 					dma_addr_t dma_addr, u32 *result)
 {
 	struct nvme_command c;
@@ -802,8 +802,8 @@ static int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
 	return nvme_submit_admin_cmd(dev, &c, result);
 }
 
-static int nvme_set_features(struct nvme_dev *dev, unsigned fid,
-			unsigned dword11, dma_addr_t dma_addr, u32 *result)
+int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
+					dma_addr_t dma_addr, u32 *result)
 {
 	struct nvme_command c;
 
@@ -1021,7 +1021,7 @@ static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
 	return result;
 }
 
-static struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
+struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
 				unsigned long addr, unsigned length)
 {
 	int i, err, count, nents, offset;
@@ -1077,7 +1077,7 @@ static struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
 	return ERR_PTR(err);
 }
 
-static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
+void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
 			struct nvme_iod *iod)
 {
 	int i;
@@ -1213,6 +1213,10 @@ static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
 		return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
 	case NVME_IOCTL_SUBMIT_IO:
 		return nvme_submit_io(ns, (void __user *)arg);
+	case SG_GET_VERSION_NUM:
+		return nvme_sg_get_version_num((void __user *)arg);
+	case SG_IO:
+		return nvme_sg_io(ns, (void __user *)arg);
 	default:
 		return -ENOTTY;
 	}
@@ -1470,6 +1474,7 @@ static int __devinit nvme_dev_add(struct nvme_dev *dev)
 	memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
 	memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
 	memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
+	dev->vendor_id = le16_to_cpup(&ctrl->vid);
 	if (ctrl->mdts) {
 		int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
 		dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
diff --git a/drivers/block/nvme-scsi.c b/drivers/block/nvme-scsi.c
new file mode 100644
index 0000000..f60a53f
--- /dev/null
+++ b/drivers/block/nvme-scsi.c
@@ -0,0 +1,2941 @@
+/*
+ * NVM Express device driver
+ * Copyright (c) 2011, Intel Corporation.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+/*
+ * Refer SCSI-NVMe Translation spec for details on how
+ * each command is translated.
+ */
+
+#include <linux/nvme.h>
+#include <linux/bio.h>
+#include <linux/bitops.h>
+#include <linux/blkdev.h>
+#include <linux/delay.h>
+#include <linux/errno.h>
+#include <linux/fs.h>
+#include <linux/genhd.h>
+#include <linux/idr.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/kdev_t.h>
+#include <linux/kthread.h>
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/pci.h>
+#include <linux/poison.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/types.h>
+#include <linux/version.h>
+#include <scsi/sg.h>
+#include <scsi/scsi.h>
+
+
+static int sg_version_num = 30534;	/* 2 digits for each component */
+
+#define SNTI_TRANSLATION_SUCCESS			0
+#define SNTI_INTERNAL_ERROR				1
+
+/* VPD Page Codes */
+#define VPD_SUPPORTED_PAGES				0x00
+#define VPD_SERIAL_NUMBER				0x80
+#define VPD_DEVICE_IDENTIFIERS				0x83
+#define VPD_EXTENDED_INQUIRY				0x86
+#define VPD_BLOCK_DEV_CHARACTERISTICS			0xB1
+
+/* CDB offsets */
+#define REPORT_LUNS_CDB_ALLOC_LENGTH_OFFSET		6
+#define REPORT_LUNS_SR_OFFSET				2
+#define READ_CAP_16_CDB_ALLOC_LENGTH_OFFSET		10
+#define REQUEST_SENSE_CDB_ALLOC_LENGTH_OFFSET		4
+#define REQUEST_SENSE_DESC_OFFSET			1
+#define REQUEST_SENSE_DESC_MASK				0x01
+#define DESCRIPTOR_FORMAT_SENSE_DATA_TYPE		1
+#define INQUIRY_EVPD_BYTE_OFFSET			1
+#define INQUIRY_PAGE_CODE_BYTE_OFFSET			2
+#define INQUIRY_EVPD_BIT_MASK				1
+#define INQUIRY_CDB_ALLOCATION_LENGTH_OFFSET		3
+#define START_STOP_UNIT_CDB_IMMED_OFFSET		1
+#define START_STOP_UNIT_CDB_IMMED_MASK			0x1
+#define START_STOP_UNIT_CDB_POWER_COND_MOD_OFFSET	3
+#define START_STOP_UNIT_CDB_POWER_COND_MOD_MASK		0xF
+#define START_STOP_UNIT_CDB_POWER_COND_OFFSET		4
+#define START_STOP_UNIT_CDB_POWER_COND_MASK		0xF0
+#define START_STOP_UNIT_CDB_NO_FLUSH_OFFSET		4
+#define START_STOP_UNIT_CDB_NO_FLUSH_MASK		0x4
+#define START_STOP_UNIT_CDB_START_OFFSET		4
+#define START_STOP_UNIT_CDB_START_MASK			0x1
+#define WRITE_BUFFER_CDB_MODE_OFFSET			1
+#define WRITE_BUFFER_CDB_MODE_MASK			0x1F
+#define WRITE_BUFFER_CDB_BUFFER_ID_OFFSET		2
+#define WRITE_BUFFER_CDB_BUFFER_OFFSET_OFFSET		3
+#define WRITE_BUFFER_CDB_PARM_LIST_LENGTH_OFFSET	6
+#define FORMAT_UNIT_CDB_FORMAT_PROT_INFO_OFFSET		1
+#define FORMAT_UNIT_CDB_FORMAT_PROT_INFO_MASK		0xC0
+#define FORMAT_UNIT_CDB_FORMAT_PROT_INFO_SHIFT		6
+#define FORMAT_UNIT_CDB_LONG_LIST_OFFSET		1
+#define FORMAT_UNIT_CDB_LONG_LIST_MASK			0x20
+#define FORMAT_UNIT_CDB_FORMAT_DATA_OFFSET		1
+#define FORMAT_UNIT_CDB_FORMAT_DATA_MASK		0x10
+#define FORMAT_UNIT_SHORT_PARM_LIST_LEN			4
+#define FORMAT_UNIT_LONG_PARM_LIST_LEN			8
+#define FORMAT_UNIT_PROT_INT_OFFSET			3
+#define FORMAT_UNIT_PROT_FIELD_USAGE_OFFSET		0
+#define FORMAT_UNIT_PROT_FIELD_USAGE_MASK		0x07
+
+/* Misc. defines */
+#define NIBBLE_SHIFT					4
+#define FIXED_SENSE_DATA				0x70
+#define DESC_FORMAT_SENSE_DATA				0x72
+#define FIXED_SENSE_DATA_ADD_LENGTH			10
+#define LUN_ENTRY_SIZE					8
+#define LUN_DATA_HEADER_SIZE				8
+#define ALL_LUNS_RETURNED				0x02
+#define ALL_WELL_KNOWN_LUNS_RETURNED			0x01
+#define RESTRICTED_LUNS_RETURNED			0x00
+#define NVME_POWER_STATE_START_VALID			0x00
+#define NVME_POWER_STATE_ACTIVE				0x01
+#define NVME_POWER_STATE_IDLE				0x02
+#define NVME_POWER_STATE_STANDBY			0x03
+#define NVME_POWER_STATE_LU_CONTROL			0x07
+#define POWER_STATE_0					0
+#define POWER_STATE_1					1
+#define POWER_STATE_2					2
+#define POWER_STATE_3					3
+#define DOWNLOAD_SAVE_ACTIVATE				0x05
+#define DOWNLOAD_SAVE_DEFER_ACTIVATE			0x0E
+#define ACTIVATE_DEFERRED_MICROCODE			0x0F
+#define FORMAT_UNIT_IMMED_MASK				0x2
+#define FORMAT_UNIT_IMMED_OFFSET			1
+#define KELVIN_TEMP_FACTOR				273
+#define FIXED_FMT_SENSE_DATA_SIZE			18
+#define DESC_FMT_SENSE_DATA_SIZE			8
+
+/* SCSI/NVMe defines and bit masks */
+#define INQ_STANDARD_INQUIRY_PAGE			0x00
+#define INQ_SUPPORTED_VPD_PAGES_PAGE			0x00
+#define INQ_UNIT_SERIAL_NUMBER_PAGE			0x80
+#define INQ_DEVICE_IDENTIFICATION_PAGE			0x83
+#define INQ_EXTENDED_INQUIRY_DATA_PAGE			0x86
+#define INQ_BDEV_CHARACTERISTICS_PAGE			0xB1
+#define INQ_SERIAL_NUMBER_LENGTH			0x14
+#define INQ_NUM_SUPPORTED_VPD_PAGES			5
+#define VERSION_SPC_4					0x06
+#define ACA_UNSUPPORTED					0
+#define STANDARD_INQUIRY_LENGTH				36
+#define ADDITIONAL_STD_INQ_LENGTH			31
+#define EXTENDED_INQUIRY_DATA_PAGE_LENGTH		0x3C
+#define RESERVED_FIELD					0
+
+/* SCSI READ/WRITE Defines */
+#define IO_CDB_WP_MASK					0xE0
+#define IO_CDB_WP_SHIFT					5
+#define IO_CDB_FUA_MASK					0x8
+#define IO_6_CDB_LBA_OFFSET				0
+#define IO_6_CDB_LBA_MASK				0x001FFFFF
+#define IO_6_CDB_TX_LEN_OFFSET				4
+#define IO_6_DEFAULT_TX_LEN				256
+#define IO_10_CDB_LBA_OFFSET				2
+#define IO_10_CDB_TX_LEN_OFFSET				7
+#define IO_10_CDB_WP_OFFSET				1
+#define IO_10_CDB_FUA_OFFSET				1
+#define IO_12_CDB_LBA_OFFSET				2
+#define IO_12_CDB_TX_LEN_OFFSET				6
+#define IO_12_CDB_WP_OFFSET				1
+#define IO_12_CDB_FUA_OFFSET				1
+#define IO_16_CDB_FUA_OFFSET				1
+#define IO_16_CDB_WP_OFFSET				1
+#define IO_16_CDB_LBA_OFFSET				2
+#define IO_16_CDB_TX_LEN_OFFSET				10
+
+/* Mode Sense/Select defines */
+#define MODE_PAGE_INFO_EXCEP				0x1C
+#define MODE_PAGE_CACHING				0x08
+#define MODE_PAGE_CONTROL				0x0A
+#define MODE_PAGE_POWER_CONDITION			0x1A
+#define MODE_PAGE_RETURN_ALL				0x3F
+#define MODE_PAGE_BLK_DES_LEN				0x08
+#define MODE_PAGE_LLBAA_BLK_DES_LEN			0x10
+#define MODE_PAGE_CACHING_LEN				0x14
+#define MODE_PAGE_CONTROL_LEN				0x0C
+#define MODE_PAGE_POW_CND_LEN				0x28
+#define MODE_PAGE_INF_EXC_LEN				0x0C
+#define MODE_PAGE_ALL_LEN				0x54
+#define MODE_SENSE6_MPH_SIZE				4
+#define MODE_SENSE6_ALLOC_LEN_OFFSET			4
+#define MODE_SENSE_PAGE_CONTROL_OFFSET			2
+#define MODE_SENSE_PAGE_CONTROL_MASK			0xC0
+#define MODE_SENSE_PAGE_CODE_OFFSET			2
+#define MODE_SENSE_PAGE_CODE_MASK			0x3F
+#define MODE_SENSE_LLBAA_OFFSET				1
+#define MODE_SENSE_LLBAA_MASK				0x10
+#define MODE_SENSE_LLBAA_SHIFT				4
+#define MODE_SENSE_DBD_OFFSET				1
+#define MODE_SENSE_DBD_MASK				8
+#define MODE_SENSE_DBD_SHIFT				3
+#define MODE_SENSE10_MPH_SIZE				8
+#define MODE_SENSE10_ALLOC_LEN_OFFSET			7
+#define MODE_SELECT_CDB_PAGE_FORMAT_OFFSET		1
+#define MODE_SELECT_CDB_SAVE_PAGES_OFFSET		1
+#define MODE_SELECT_6_CDB_PARAM_LIST_LENGTH_OFFSET	4
+#define MODE_SELECT_10_CDB_PARAM_LIST_LENGTH_OFFSET	7
+#define MODE_SELECT_CDB_PAGE_FORMAT_MASK		0x10
+#define MODE_SELECT_CDB_SAVE_PAGES_MASK			0x1
+#define MODE_SELECT_6_BD_OFFSET				3
+#define MODE_SELECT_10_BD_OFFSET			6
+#define MODE_SELECT_10_LLBAA_OFFSET			4
+#define MODE_SELECT_10_LLBAA_MASK			1
+#define MODE_SELECT_6_MPH_SIZE				4
+#define MODE_SELECT_10_MPH_SIZE				8
+#define CACHING_MODE_PAGE_WCE_MASK			0x04
+#define MODE_SENSE_BLK_DESC_ENABLED			0
+#define MODE_SENSE_BLK_DESC_COUNT			1
+#define MODE_SELECT_PAGE_CODE_MASK			0x3F
+#define SHORT_DESC_BLOCK				8
+#define LONG_DESC_BLOCK					16
+#define MODE_PAGE_POW_CND_LEN_FIELD			0x26
+#define MODE_PAGE_INF_EXC_LEN_FIELD			0x0A
+#define MODE_PAGE_CACHING_LEN_FIELD			0x12
+#define MODE_PAGE_CONTROL_LEN_FIELD			0x0A
+#define MODE_SENSE_PC_CURRENT_VALUES			0
+
+/* Log Sense defines */
+#define LOG_PAGE_SUPPORTED_LOG_PAGES_PAGE		0x00
+#define LOG_PAGE_SUPPORTED_LOG_PAGES_LENGTH		0x07
+#define LOG_PAGE_INFORMATIONAL_EXCEPTIONS_PAGE		0x2F
+#define LOG_PAGE_TEMPERATURE_PAGE			0x0D
+#define LOG_SENSE_CDB_SP_OFFSET				1
+#define LOG_SENSE_CDB_SP_NOT_ENABLED			0
+#define LOG_SENSE_CDB_PC_OFFSET				2
+#define LOG_SENSE_CDB_PC_MASK				0xC0
+#define LOG_SENSE_CDB_PC_SHIFT				6
+#define LOG_SENSE_CDB_PC_CUMULATIVE_VALUES		1
+#define LOG_SENSE_CDB_PAGE_CODE_MASK			0x3F
+#define LOG_SENSE_CDB_ALLOC_LENGTH_OFFSET		7
+#define REMAINING_INFO_EXCP_PAGE_LENGTH			0x8
+#define LOG_INFO_EXCP_PAGE_LENGTH			0xC
+#define REMAINING_TEMP_PAGE_LENGTH			0xC
+#define LOG_TEMP_PAGE_LENGTH				0x10
+#define LOG_TEMP_UNKNOWN				0xFF
+#define SUPPORTED_LOG_PAGES_PAGE_LENGTH			0x3
+
+/* Read Capacity defines */
+#define READ_CAP_10_RESP_SIZE				8
+#define READ_CAP_16_RESP_SIZE				32
+
+/* NVMe Namespace and Command Defines */
+#define NVME_GET_SMART_LOG_PAGE				0x02
+#define NVME_GET_FEAT_TEMP_THRESH			0x04
+#define BYTES_TO_DWORDS					4
+#define NVME_MAX_FIRMWARE_SLOT				7
+
+/* Report LUNs defines */
+#define REPORT_LUNS_FIRST_LUN_OFFSET			8
+
+/* SCSI ADDITIONAL SENSE Codes */
+
+#define SCSI_ASC_NO_SENSE				0x00
+#define SCSI_ASC_PERIPHERAL_DEV_WRITE_FAULT		0x03
+#define SCSI_ASC_LUN_NOT_READY				0x04
+#define SCSI_ASC_WARNING				0x0B
+#define SCSI_ASC_LOG_BLOCK_GUARD_CHECK_FAILED		0x10
+#define SCSI_ASC_LOG_BLOCK_APPTAG_CHECK_FAILED		0x10
+#define SCSI_ASC_LOG_BLOCK_REFTAG_CHECK_FAILED		0x10
+#define SCSI_ASC_UNRECOVERED_READ_ERROR			0x11
+#define SCSI_ASC_MISCOMPARE_DURING_VERIFY		0x1D
+#define SCSI_ASC_ACCESS_DENIED_INVALID_LUN_ID		0x20
+#define SCSI_ASC_ILLEGAL_COMMAND			0x20
+#define SCSI_ASC_ILLEGAL_BLOCK				0x21
+#define SCSI_ASC_INVALID_CDB				0x24
+#define SCSI_ASC_INVALID_LUN				0x25
+#define SCSI_ASC_INVALID_PARAMETER			0x26
+#define SCSI_ASC_FORMAT_COMMAND_FAILED			0x31
+#define SCSI_ASC_INTERNAL_TARGET_FAILURE		0x44
+
+/* SCSI ADDITIONAL SENSE Code Qualifiers */
+
+#define SCSI_ASCQ_CAUSE_NOT_REPORTABLE			0x00
+#define SCSI_ASCQ_FORMAT_COMMAND_FAILED			0x01
+#define SCSI_ASCQ_LOG_BLOCK_GUARD_CHECK_FAILED		0x01
+#define SCSI_ASCQ_LOG_BLOCK_APPTAG_CHECK_FAILED		0x02
+#define SCSI_ASCQ_LOG_BLOCK_REFTAG_CHECK_FAILED		0x03
+#define SCSI_ASCQ_FORMAT_IN_PROGRESS			0x04
+#define SCSI_ASCQ_POWER_LOSS_EXPECTED			0x08
+#define SCSI_ASCQ_INVALID_LUN_ID			0x09
+
+/**
+ * DEVICE_SPECIFIC_PARAMETER in mode parameter header (see sbc2r16) to
+ * enable DPOFUA support type 0x10 value.
+ */
+#define DEVICE_SPECIFIC_PARAMETER			0
+#define VPD_ID_DESCRIPTOR_LENGTH sizeof(VPD_IDENTIFICATION_DESCRIPTOR)
+
+/* MACROs to extract information from CDBs */
+
+#define GET_OPCODE(cdb)		cdb[0]
+
+#define GET_U8_FROM_CDB(cdb, index) (cdb[index] << 0)
+
+#define GET_U16_FROM_CDB(cdb, index) ((cdb[index] << 8) | (cdb[index + 1] << 0))
+
+#define GET_U24_FROM_CDB(cdb, index) ((cdb[index] << 16) | \
+(cdb[index + 1] <<  8) | \
+(cdb[index + 2] <<  0))
+
+#define GET_U32_FROM_CDB(cdb, index) ((cdb[index] << 24) | \
+(cdb[index + 1] << 16) | \
+(cdb[index + 2] <<  8) | \
+(cdb[index + 3] <<  0))
+
+#define GET_U64_FROM_CDB(cdb, index) ((((u64)cdb[index]) << 56) | \
+(((u64)cdb[index + 1]) << 48) | \
+(((u64)cdb[index + 2]) << 40) | \
+(((u64)cdb[index + 3]) << 32) | \
+(((u64)cdb[index + 4]) << 24) | \
+(((u64)cdb[index + 5]) << 16) | \
+(((u64)cdb[index + 6]) <<  8) | \
+(((u64)cdb[index + 7]) <<  0))
+
+/* Inquiry Helper Macros */
+#define GET_INQ_EVPD_BIT(cdb) \
+((GET_U8_FROM_CDB(cdb, INQUIRY_EVPD_BYTE_OFFSET) &		\
+INQUIRY_EVPD_BIT_MASK) ? 1 : 0)
+
+#define GET_INQ_PAGE_CODE(cdb)					\
+(GET_U8_FROM_CDB(cdb, INQUIRY_PAGE_CODE_BYTE_OFFSET))
+
+#define GET_INQ_ALLOC_LENGTH(cdb)				\
+(GET_U16_FROM_CDB(cdb, INQUIRY_CDB_ALLOCATION_LENGTH_OFFSET))
+
+/* Report LUNs Helper Macros */
+#define GET_REPORT_LUNS_ALLOC_LENGTH(cdb)			\
+(GET_U32_FROM_CDB(cdb, REPORT_LUNS_CDB_ALLOC_LENGTH_OFFSET))
+
+/* Read Capacity Helper Macros */
+#define GET_READ_CAP_16_ALLOC_LENGTH(cdb)			\
+(GET_U32_FROM_CDB(cdb, READ_CAP_16_CDB_ALLOC_LENGTH_OFFSET))
+
+#define IS_READ_CAP_16(cdb)					\
+((cdb[0] == SERVICE_ACTION_IN && cdb[1] == SAI_READ_CAPACITY_16) ? 1 : 0)
+
+/* Request Sense Helper Macros */
+#define GET_REQUEST_SENSE_ALLOC_LENGTH(cdb)			\
+(GET_U8_FROM_CDB(cdb, REQUEST_SENSE_CDB_ALLOC_LENGTH_OFFSET))
+
+/* Mode Sense Helper Macros */
+#define GET_MODE_SENSE_DBD(cdb)					\
+((GET_U8_FROM_CDB(cdb, MODE_SENSE_DBD_OFFSET) & MODE_SENSE_DBD_MASK) >>	\
+MODE_SENSE_DBD_SHIFT)
+
+#define GET_MODE_SENSE_LLBAA(cdb)				\
+((GET_U8_FROM_CDB(cdb, MODE_SENSE_LLBAA_OFFSET) &		\
+MODE_SENSE_LLBAA_MASK) >> MODE_SENSE_LLBAA_SHIFT)
+
+#define GET_MODE_SENSE_MPH_SIZE(cdb10)				\
+(cdb10 ? MODE_SENSE10_MPH_SIZE : MODE_SENSE6_MPH_SIZE)
+
+
+/* Struct to gather data that needs to be extracted from a SCSI CDB.
+   Not conforming to any particular CDB variant, but compatible with all. */
+
+struct nvme_trans_io_cdb {
+	u8 fua;
+	u8 prot_info;
+	u64 lba;
+	u32 xfer_len;
+};
+
+
+/* Internal Helper Functions */
+
+
+/* Copy data to userspace memory */
+
+static int nvme_trans_copy_to_user(struct sg_io_hdr *hdr, void *from,
+								unsigned long n)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	unsigned long not_copied;
+	int i;
+	void *index = from;
+	size_t remaining = n;
+	size_t xfer_len;
+
+	if (hdr->iovec_count > 0) {
+		struct sg_iovec *sgl = hdr->dxferp;
+
+		for (i = 0; i < hdr->iovec_count; i++) {
+			xfer_len = min(remaining, sgl[i].iov_len);
+			not_copied = copy_to_user(__user sgl[i].iov_base, index,
+								xfer_len);
+			if (not_copied) {
+				res = -EFAULT;
+				break;
+			}
+			index += xfer_len;
+			remaining -= xfer_len;
+			if (remaining == 0)
+				break;
+		}
+		return res;
+	}
+	not_copied = copy_to_user(__user hdr->dxferp, from, n);
+	if (not_copied)
+		res = -EFAULT;
+	return res;
+}
+
+/* Copy data from userspace memory */
+
+static int nvme_trans_copy_from_user(struct sg_io_hdr *hdr, void *to,
+								unsigned long n)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	unsigned long not_copied;
+	int i;
+	void *index = to;
+	size_t remaining = n;
+	size_t xfer_len;
+
+	if (hdr->iovec_count > 0) {
+		struct sg_iovec *sgl = hdr->dxferp;
+
+		for (i = 0; i < hdr->iovec_count; i++) {
+			xfer_len = min(remaining, sgl[i].iov_len);
+			not_copied = copy_from_user(index,
+					__user sgl[i].iov_base, xfer_len);
+			if (not_copied) {
+				res = -EFAULT;
+				break;
+			}
+			index += xfer_len;
+			remaining -= xfer_len;
+			if (remaining == 0)
+				break;
+		}
+		return res;
+	}
+
+	not_copied = copy_from_user(to, __user hdr->dxferp, n);
+	if (not_copied)
+		res = -EFAULT;
+	return res;
+}
+
+/* Status/Sense Buffer Writeback */
+
+static int nvme_trans_completion(struct sg_io_hdr *hdr, u8 status, u8 sense_key,
+				 u8 asc, u8 ascq)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	u8 xfer_len;
+	u8 resp[DESC_FMT_SENSE_DATA_SIZE];
+
+	if (scsi_status_is_good(status)) {
+		hdr->status = SAM_STAT_GOOD;
+		hdr->masked_status = GOOD;
+		hdr->host_status = DID_OK;
+		hdr->driver_status = DRIVER_OK;
+		hdr->sb_len_wr = 0;
+	} else {
+		hdr->status = status;
+		hdr->masked_status = status >> 1;
+		hdr->host_status = DID_OK;
+		hdr->driver_status = DRIVER_OK;
+
+		memset(resp, 0, DESC_FMT_SENSE_DATA_SIZE);
+		resp[0] = DESC_FORMAT_SENSE_DATA;
+		resp[1] = sense_key;
+		resp[2] = asc;
+		resp[3] = ascq;
+
+		xfer_len = min_t(u8, hdr->mx_sb_len, DESC_FMT_SENSE_DATA_SIZE);
+		hdr->sb_len_wr = xfer_len;
+		if (copy_to_user(__user hdr->sbp, resp, xfer_len) > 0)
+			res = -EFAULT;
+	}
+
+	return res;
+}
+
+static int nvme_trans_status_code(struct sg_io_hdr *hdr, int nvme_sc)
+{
+	u8 status, sense_key, asc, ascq;
+	int res = SNTI_TRANSLATION_SUCCESS;
+
+	/* For non-nvme (Linux) errors, simply return the error code */
+	if (nvme_sc < 0)
+		return nvme_sc;
+
+	/* Mask DNR, More, and reserved fields */
+	nvme_sc &= 0x7FF;
+
+	switch (nvme_sc) {
+	/* Generic Command Status */
+	case NVME_SC_SUCCESS:
+		status = SAM_STAT_GOOD;
+		sense_key = NO_SENSE;
+		asc = SCSI_ASC_NO_SENSE;
+		ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
+		break;
+	case NVME_SC_INVALID_OPCODE:
+		status = SAM_STAT_CHECK_CONDITION;
+		sense_key = ILLEGAL_REQUEST;
+		asc = SCSI_ASC_ILLEGAL_COMMAND;
+		ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
+		break;
+	case NVME_SC_INVALID_FIELD:
+		status = SAM_STAT_CHECK_CONDITION;
+		sense_key = ILLEGAL_REQUEST;
+		asc = SCSI_ASC_INVALID_CDB;
+		ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
+		break;
+	case NVME_SC_DATA_XFER_ERROR:
+		status = SAM_STAT_CHECK_CONDITION;
+		sense_key = MEDIUM_ERROR;
+		asc = SCSI_ASC_NO_SENSE;
+		ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
+		break;
+	case NVME_SC_POWER_LOSS:
+		status = SAM_STAT_TASK_ABORTED;
+		sense_key = ABORTED_COMMAND;
+		asc = SCSI_ASC_WARNING;
+		ascq = SCSI_ASCQ_POWER_LOSS_EXPECTED;
+		break;
+	case NVME_SC_INTERNAL:
+		status = SAM_STAT_CHECK_CONDITION;
+		sense_key = HARDWARE_ERROR;
+		asc = SCSI_ASC_INTERNAL_TARGET_FAILURE;
+		ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
+		break;
+	case NVME_SC_ABORT_REQ:
+		status = SAM_STAT_TASK_ABORTED;
+		sense_key = ABORTED_COMMAND;
+		asc = SCSI_ASC_NO_SENSE;
+		ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
+		break;
+	case NVME_SC_ABORT_QUEUE:
+		status = SAM_STAT_TASK_ABORTED;
+		sense_key = ABORTED_COMMAND;
+		asc = SCSI_ASC_NO_SENSE;
+		ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
+		break;
+	case NVME_SC_FUSED_FAIL:
+		status = SAM_STAT_TASK_ABORTED;
+		sense_key = ABORTED_COMMAND;
+		asc = SCSI_ASC_NO_SENSE;
+		ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
+		break;
+	case NVME_SC_FUSED_MISSING:
+		status = SAM_STAT_TASK_ABORTED;
+		sense_key = ABORTED_COMMAND;
+		asc = SCSI_ASC_NO_SENSE;
+		ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
+		break;
+	case NVME_SC_INVALID_NS:
+		status = SAM_STAT_CHECK_CONDITION;
+		sense_key = ILLEGAL_REQUEST;
+		asc = SCSI_ASC_ACCESS_DENIED_INVALID_LUN_ID;
+		ascq = SCSI_ASCQ_INVALID_LUN_ID;
+		break;
+	case NVME_SC_LBA_RANGE:
+		status = SAM_STAT_CHECK_CONDITION;
+		sense_key = ILLEGAL_REQUEST;
+		asc = SCSI_ASC_ILLEGAL_BLOCK;
+		ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
+		break;
+	case NVME_SC_CAP_EXCEEDED:
+		status = SAM_STAT_CHECK_CONDITION;
+		sense_key = MEDIUM_ERROR;
+		asc = SCSI_ASC_NO_SENSE;
+		ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
+		break;
+	case NVME_SC_NS_NOT_READY:
+		status = SAM_STAT_CHECK_CONDITION;
+		sense_key = NOT_READY;
+		asc = SCSI_ASC_LUN_NOT_READY;
+		ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
+		break;
+
+	/* Command Specific Status */
+	case NVME_SC_INVALID_FORMAT:
+		status = SAM_STAT_CHECK_CONDITION;
+		sense_key = ILLEGAL_REQUEST;
+		asc = SCSI_ASC_FORMAT_COMMAND_FAILED;
+		ascq = SCSI_ASCQ_FORMAT_COMMAND_FAILED;
+		break;
+	case NVME_SC_BAD_ATTRIBUTES:
+		status = SAM_STAT_CHECK_CONDITION;
+		sense_key = ILLEGAL_REQUEST;
+		asc = SCSI_ASC_INVALID_CDB;
+		ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
+		break;
+
+	/* Media Errors */
+	case NVME_SC_WRITE_FAULT:
+		status = SAM_STAT_CHECK_CONDITION;
+		sense_key = MEDIUM_ERROR;
+		asc = SCSI_ASC_PERIPHERAL_DEV_WRITE_FAULT;
+		ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
+		break;
+	case NVME_SC_READ_ERROR:
+		status = SAM_STAT_CHECK_CONDITION;
+		sense_key = MEDIUM_ERROR;
+		asc = SCSI_ASC_UNRECOVERED_READ_ERROR;
+		ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
+		break;
+	case NVME_SC_GUARD_CHECK:
+		status = SAM_STAT_CHECK_CONDITION;
+		sense_key = MEDIUM_ERROR;
+		asc = SCSI_ASC_LOG_BLOCK_GUARD_CHECK_FAILED;
+		ascq = SCSI_ASCQ_LOG_BLOCK_GUARD_CHECK_FAILED;
+		break;
+	case NVME_SC_APPTAG_CHECK:
+		status = SAM_STAT_CHECK_CONDITION;
+		sense_key = MEDIUM_ERROR;
+		asc = SCSI_ASC_LOG_BLOCK_APPTAG_CHECK_FAILED;
+		ascq = SCSI_ASCQ_LOG_BLOCK_APPTAG_CHECK_FAILED;
+		break;
+	case NVME_SC_REFTAG_CHECK:
+		status = SAM_STAT_CHECK_CONDITION;
+		sense_key = MEDIUM_ERROR;
+		asc = SCSI_ASC_LOG_BLOCK_REFTAG_CHECK_FAILED;
+		ascq = SCSI_ASCQ_LOG_BLOCK_REFTAG_CHECK_FAILED;
+		break;
+	case NVME_SC_COMPARE_FAILED:
+		status = SAM_STAT_CHECK_CONDITION;
+		sense_key = MISCOMPARE;
+		asc = SCSI_ASC_MISCOMPARE_DURING_VERIFY;
+		ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
+		break;
+	case NVME_SC_ACCESS_DENIED:
+		status = SAM_STAT_CHECK_CONDITION;
+		sense_key = ILLEGAL_REQUEST;
+		asc = SCSI_ASC_ACCESS_DENIED_INVALID_LUN_ID;
+		ascq = SCSI_ASCQ_INVALID_LUN_ID;
+		break;
+
+	/* Unspecified/Default */
+	case NVME_SC_CMDID_CONFLICT:
+	case NVME_SC_CMD_SEQ_ERROR:
+	case NVME_SC_CQ_INVALID:
+	case NVME_SC_QID_INVALID:
+	case NVME_SC_QUEUE_SIZE:
+	case NVME_SC_ABORT_LIMIT:
+	case NVME_SC_ABORT_MISSING:
+	case NVME_SC_ASYNC_LIMIT:
+	case NVME_SC_FIRMWARE_SLOT:
+	case NVME_SC_FIRMWARE_IMAGE:
+	case NVME_SC_INVALID_VECTOR:
+	case NVME_SC_INVALID_LOG_PAGE:
+	default:
+		status = SAM_STAT_CHECK_CONDITION;
+		sense_key = ILLEGAL_REQUEST;
+		asc = SCSI_ASC_NO_SENSE;
+		ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
+		break;
+	}
+
+	res = nvme_trans_completion(hdr, status, sense_key, asc, ascq);
+
+	return res;
+}
+
+/* INQUIRY Helper Functions */
+
+static int nvme_trans_standard_inquiry_page(struct nvme_ns *ns,
+					struct sg_io_hdr *hdr, u8 *inq_response,
+					int alloc_len)
+{
+	struct nvme_dev *dev = ns->dev;
+	dma_addr_t dma_addr;
+	void *mem;
+	struct nvme_id_ns *id_ns;
+	int res = SNTI_TRANSLATION_SUCCESS;
+	int nvme_sc;
+	int xfer_len;
+	u8 resp_data_format = 0x02;
+	u8 protect;
+	u8 cmdque = 0x01 << 1;
+
+	mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns),
+				&dma_addr, GFP_KERNEL);
+	if (mem == NULL) {
+		res = -ENOMEM;
+		goto out_dma;
+	}
+
+	/* nvme ns identify - use DPS value for PROTECT field */
+	nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
+	res = nvme_trans_status_code(hdr, nvme_sc);
+	/*
+	 * If nvme_sc was -ve, res will be -ve here.
+	 * If nvme_sc was +ve, the status would bace been translated, and res
+	 *  can only be 0 or -ve.
+	 *    - If 0 && nvme_sc > 0, then go into next if where res gets nvme_sc
+	 *    - If -ve, return because its a Linux error.
+	 */
+	if (res)
+		goto out_free;
+	if (nvme_sc) {
+		res = nvme_sc;
+		goto out_free;
+	}
+	id_ns = mem;
+	(id_ns->dps) ? (protect = 0x01) : (protect = 0);
+
+	memset(inq_response, 0, STANDARD_INQUIRY_LENGTH);
+	inq_response[2] = VERSION_SPC_4;
+	inq_response[3] = resp_data_format;	/*normaca=0 | hisup=0 */
+	inq_response[4] = ADDITIONAL_STD_INQ_LENGTH;
+	inq_response[5] = protect;	/* sccs=0 | acc=0 | tpgs=0 | pc3=0 */
+	inq_response[7] = cmdque;	/* wbus16=0 | sync=0 | vs=0 */
+	strncpy(&inq_response[8], "NVMe    ", 8);
+	strncpy(&inq_response[16], dev->model, 16);
+	strncpy(&inq_response[32], dev->firmware_rev, 4);
+
+	xfer_len = min(alloc_len, STANDARD_INQUIRY_LENGTH);
+	res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
+
+ out_free:
+	dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem,
+			  dma_addr);
+ out_dma:
+	return res;
+}
+
+static int nvme_trans_supported_vpd_pages(struct nvme_ns *ns,
+					struct sg_io_hdr *hdr, u8 *inq_response,
+					int alloc_len)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	int xfer_len;
+
+	memset(inq_response, 0, STANDARD_INQUIRY_LENGTH);
+	inq_response[1] = INQ_SUPPORTED_VPD_PAGES_PAGE;   /* Page Code */
+	inq_response[3] = INQ_NUM_SUPPORTED_VPD_PAGES;    /* Page Length */
+	inq_response[4] = INQ_SUPPORTED_VPD_PAGES_PAGE;
+	inq_response[5] = INQ_UNIT_SERIAL_NUMBER_PAGE;
+	inq_response[6] = INQ_DEVICE_IDENTIFICATION_PAGE;
+	inq_response[7] = INQ_EXTENDED_INQUIRY_DATA_PAGE;
+	inq_response[8] = INQ_BDEV_CHARACTERISTICS_PAGE;
+
+	xfer_len = min(alloc_len, STANDARD_INQUIRY_LENGTH);
+	res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
+
+	return res;
+}
+
+static int nvme_trans_unit_serial_page(struct nvme_ns *ns,
+					struct sg_io_hdr *hdr, u8 *inq_response,
+					int alloc_len)
+{
+	struct nvme_dev *dev = ns->dev;
+	int res = SNTI_TRANSLATION_SUCCESS;
+	int xfer_len;
+
+	memset(inq_response, 0, STANDARD_INQUIRY_LENGTH);
+	inq_response[1] = INQ_UNIT_SERIAL_NUMBER_PAGE; /* Page Code */
+	inq_response[3] = INQ_SERIAL_NUMBER_LENGTH;    /* Page Length */
+	strncpy(&inq_response[4], dev->serial, INQ_SERIAL_NUMBER_LENGTH);
+
+	xfer_len = min(alloc_len, STANDARD_INQUIRY_LENGTH);
+	res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
+
+	return res;
+}
+
+static int nvme_trans_device_id_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
+					u8 *inq_response, int alloc_len)
+{
+	struct nvme_dev *dev = ns->dev;
+	dma_addr_t dma_addr;
+	void *mem;
+	struct nvme_id_ctrl *id_ctrl;
+	int res = SNTI_TRANSLATION_SUCCESS;
+	int nvme_sc;
+	u8 ieee[4];
+	int xfer_len;
+	u32 tmp_id = cpu_to_be64(ns->ns_id);
+
+	mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns),
+					&dma_addr, GFP_KERNEL);
+	if (mem == NULL) {
+		res = -ENOMEM;
+		goto out_dma;
+	}
+
+	/* nvme controller identify */
+	nvme_sc = nvme_identify(dev, 0, 1, dma_addr);
+	res = nvme_trans_status_code(hdr, nvme_sc);
+	if (res)
+		goto out_free;
+	if (nvme_sc) {
+		res = nvme_sc;
+		goto out_free;
+	}
+	id_ctrl = mem;
+
+	/* Since SCSI tried to save 4 bits... [SPC-4(r34) Table 591] */
+	ieee[0] = id_ctrl->ieee[0] << 4;
+	ieee[1] = id_ctrl->ieee[0] >> 4 | id_ctrl->ieee[1] << 4;
+	ieee[2] = id_ctrl->ieee[1] >> 4 | id_ctrl->ieee[2] << 4;
+	ieee[3] = id_ctrl->ieee[2] >> 4;
+
+	memset(inq_response, 0, STANDARD_INQUIRY_LENGTH);
+	inq_response[1] = INQ_DEVICE_IDENTIFICATION_PAGE;    /* Page Code */
+	inq_response[3] = 20;      /* Page Length */
+	/* Designation Descriptor start */
+	inq_response[4] = 0x01;    /* Proto ID=0h | Code set=1h */
+	inq_response[5] = 0x03;    /* PIV=0b | Asso=00b | Designator Type=3h */
+	inq_response[6] = 0x00;    /* Rsvd */
+	inq_response[7] = 16;      /* Designator Length */
+	/* Designator start */
+	inq_response[8] = 0x60 | ieee[3]; /* NAA=6h | IEEE ID MSB, High nibble*/
+	inq_response[9] = ieee[2];        /* IEEE ID */
+	inq_response[10] = ieee[1];       /* IEEE ID */
+	inq_response[11] = ieee[0];       /* IEEE ID| Vendor Specific ID... */
+	inq_response[12] = (dev->vendor_id & 0xFF00) >> 8;
+	inq_response[13] = (dev->vendor_id & 0x00FF);
+	inq_response[14] = dev->serial[0];
+	inq_response[15] = dev->serial[1];
+	inq_response[16] = dev->model[0];
+	inq_response[17] = dev->model[1];
+	memcpy(&inq_response[18], &tmp_id, sizeof(u32));
+	/* Last 2 bytes are zero */
+
+	xfer_len = min(alloc_len, STANDARD_INQUIRY_LENGTH);
+	res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
+
+ out_free:
+	dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem,
+			  dma_addr);
+ out_dma:
+	return res;
+}
+
+static int nvme_trans_ext_inq_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
+					int alloc_len)
+{
+	u8 *inq_response;
+	int res = SNTI_TRANSLATION_SUCCESS;
+	int nvme_sc;
+	struct nvme_dev *dev = ns->dev;
+	dma_addr_t dma_addr;
+	void *mem;
+	struct nvme_id_ctrl *id_ctrl;
+	struct nvme_id_ns *id_ns;
+	int xfer_len;
+	u8 microcode = 0x80;
+	u8 spt;
+	u8 spt_lut[8] = {0, 0, 2, 1, 4, 6, 5, 7};
+	u8 grd_chk, app_chk, ref_chk, protect;
+	u8 uask_sup = 0x20;
+	u8 v_sup;
+	u8 luiclr = 0x01;
+
+	inq_response = kmalloc(EXTENDED_INQUIRY_DATA_PAGE_LENGTH, GFP_KERNEL);
+	if (inq_response == NULL) {
+		res = -ENOMEM;
+		goto out_mem;
+	}
+
+	mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns),
+							&dma_addr, GFP_KERNEL);
+	if (mem == NULL) {
+		res = -ENOMEM;
+		goto out_dma;
+	}
+
+	/* nvme ns identify */
+	nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
+	res = nvme_trans_status_code(hdr, nvme_sc);
+	if (res)
+		goto out_free;
+	if (nvme_sc) {
+		res = nvme_sc;
+		goto out_free;
+	}
+	id_ns = mem;
+	spt = spt_lut[(id_ns->dpc) & 0x07] << 3;
+	(id_ns->dps) ? (protect = 0x01) : (protect = 0);
+	grd_chk = protect << 2;
+	app_chk = protect << 1;
+	ref_chk = protect;
+
+	/* nvme controller identify */
+	nvme_sc = nvme_identify(dev, 0, 1, dma_addr);
+	res = nvme_trans_status_code(hdr, nvme_sc);
+	if (res)
+		goto out_free;
+	if (nvme_sc) {
+		res = nvme_sc;
+		goto out_free;
+	}
+	id_ctrl = mem;
+	v_sup = id_ctrl->vwc;
+
+	memset(inq_response, 0, EXTENDED_INQUIRY_DATA_PAGE_LENGTH);
+	inq_response[1] = INQ_EXTENDED_INQUIRY_DATA_PAGE;    /* Page Code */
+	inq_response[2] = 0x00;    /* Page Length MSB */
+	inq_response[3] = 0x3C;    /* Page Length LSB */
+	inq_response[4] = microcode | spt | grd_chk | app_chk | ref_chk;
+	inq_response[5] = uask_sup;
+	inq_response[6] = v_sup;
+	inq_response[7] = luiclr;
+	inq_response[8] = 0;
+	inq_response[9] = 0;
+
+	xfer_len = min(alloc_len, EXTENDED_INQUIRY_DATA_PAGE_LENGTH);
+	res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
+
+ out_free:
+	dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem,
+			  dma_addr);
+ out_dma:
+	kfree(inq_response);
+ out_mem:
+	return res;
+}
+
+static int nvme_trans_bdev_char_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
+					int alloc_len)
+{
+	u8 *inq_response;
+	int res = SNTI_TRANSLATION_SUCCESS;
+	int xfer_len;
+
+	inq_response = kmalloc(EXTENDED_INQUIRY_DATA_PAGE_LENGTH, GFP_KERNEL);
+	if (inq_response == NULL) {
+		res = -ENOMEM;
+		goto out_mem;
+	}
+
+	memset(inq_response, 0, EXTENDED_INQUIRY_DATA_PAGE_LENGTH);
+	inq_response[1] = INQ_BDEV_CHARACTERISTICS_PAGE;    /* Page Code */
+	inq_response[2] = 0x00;    /* Page Length MSB */
+	inq_response[3] = 0x3C;    /* Page Length LSB */
+	inq_response[4] = 0x00;    /* Medium Rotation Rate MSB */
+	inq_response[5] = 0x01;    /* Medium Rotation Rate LSB */
+	inq_response[6] = 0x00;    /* Form Factor */
+
+	xfer_len = min(alloc_len, EXTENDED_INQUIRY_DATA_PAGE_LENGTH);
+	res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
+
+	kfree(inq_response);
+ out_mem:
+	return res;
+}
+
+/* LOG SENSE Helper Functions */
+
+static int nvme_trans_log_supp_pages(struct nvme_ns *ns, struct sg_io_hdr *hdr,
+					int alloc_len)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	int xfer_len;
+	u8 *log_response;
+
+	log_response = kmalloc(LOG_PAGE_SUPPORTED_LOG_PAGES_LENGTH, GFP_KERNEL);
+	if (log_response == NULL) {
+		res = -ENOMEM;
+		goto out_mem;
+	}
+	memset(log_response, 0, LOG_PAGE_SUPPORTED_LOG_PAGES_LENGTH);
+
+	log_response[0] = LOG_PAGE_SUPPORTED_LOG_PAGES_PAGE;
+	/* Subpage=0x00, Page Length MSB=0 */
+	log_response[3] = SUPPORTED_LOG_PAGES_PAGE_LENGTH;
+	log_response[4] = LOG_PAGE_SUPPORTED_LOG_PAGES_PAGE;
+	log_response[5] = LOG_PAGE_INFORMATIONAL_EXCEPTIONS_PAGE;
+	log_response[6] = LOG_PAGE_TEMPERATURE_PAGE;
+
+	xfer_len = min(alloc_len, LOG_PAGE_SUPPORTED_LOG_PAGES_LENGTH);
+	res = nvme_trans_copy_to_user(hdr, log_response, xfer_len);
+
+	kfree(log_response);
+ out_mem:
+	return res;
+}
+
+static int nvme_trans_log_info_exceptions(struct nvme_ns *ns,
+					struct sg_io_hdr *hdr, int alloc_len)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	int xfer_len;
+	u8 *log_response;
+	struct nvme_command c;
+	struct nvme_dev *dev = ns->dev;
+	struct nvme_smart_log *smart_log;
+	dma_addr_t dma_addr;
+	void *mem;
+	u8 temp_c;
+	u16 temp_k;
+
+	log_response = kmalloc(LOG_INFO_EXCP_PAGE_LENGTH, GFP_KERNEL);
+	if (log_response == NULL) {
+		res = -ENOMEM;
+		goto out_mem;
+	}
+	memset(log_response, 0, LOG_INFO_EXCP_PAGE_LENGTH);
+
+	mem = dma_alloc_coherent(&dev->pci_dev->dev,
+					sizeof(struct nvme_smart_log),
+					&dma_addr, GFP_KERNEL);
+	if (mem == NULL) {
+		res = -ENOMEM;
+		goto out_dma;
+	}
+
+	/* Get SMART Log Page */
+	memset(&c, 0, sizeof(c));
+	c.common.opcode = nvme_admin_get_log_page;
+	c.common.nsid = cpu_to_le32(0xFFFFFFFF);
+	c.common.prp1 = cpu_to_le64(dma_addr);
+	c.common.cdw10[0] = cpu_to_le32(((sizeof(struct nvme_smart_log) /
+			BYTES_TO_DWORDS) << 16) | NVME_GET_SMART_LOG_PAGE);
+	res = nvme_submit_admin_cmd(dev, &c, NULL);
+	if (res != NVME_SC_SUCCESS) {
+		temp_c = LOG_TEMP_UNKNOWN;
+	} else {
+		smart_log = mem;
+		temp_k = (smart_log->temperature[1] << 8) +
+				(smart_log->temperature[0]);
+		temp_c = temp_k - KELVIN_TEMP_FACTOR;
+	}
+
+	log_response[0] = LOG_PAGE_INFORMATIONAL_EXCEPTIONS_PAGE;
+	/* Subpage=0x00, Page Length MSB=0 */
+	log_response[3] = REMAINING_INFO_EXCP_PAGE_LENGTH;
+	/* Informational Exceptions Log Parameter 1 Start */
+	/* Parameter Code=0x0000 bytes 4,5 */
+	log_response[6] = 0x23; /* DU=0, TSD=1, ETC=0, TMC=0, FMT_AND_LNK=11b */
+	log_response[7] = 0x04; /* PARAMETER LENGTH */
+	/* Add sense Code and qualifier = 0x00 each */
+	/* Use Temperature from NVMe Get Log Page, convert to C from K */
+	log_response[10] = temp_c;
+
+	xfer_len = min(alloc_len, LOG_INFO_EXCP_PAGE_LENGTH);
+	res = nvme_trans_copy_to_user(hdr, log_response, xfer_len);
+
+	dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_smart_log),
+			  mem, dma_addr);
+ out_dma:
+	kfree(log_response);
+ out_mem:
+	return res;
+}
+
+static int nvme_trans_log_temperature(struct nvme_ns *ns, struct sg_io_hdr *hdr,
+					int alloc_len)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	int xfer_len;
+	u8 *log_response;
+	struct nvme_command c;
+	struct nvme_dev *dev = ns->dev;
+	struct nvme_smart_log *smart_log;
+	dma_addr_t dma_addr;
+	void *mem;
+	u32 feature_resp;
+	u8 temp_c_cur, temp_c_thresh;
+	u16 temp_k;
+
+	log_response = kmalloc(LOG_TEMP_PAGE_LENGTH, GFP_KERNEL);
+	if (log_response == NULL) {
+		res = -ENOMEM;
+		goto out_mem;
+	}
+	memset(log_response, 0, LOG_TEMP_PAGE_LENGTH);
+
+	mem = dma_alloc_coherent(&dev->pci_dev->dev,
+					sizeof(struct nvme_smart_log),
+					&dma_addr, GFP_KERNEL);
+	if (mem == NULL) {
+		res = -ENOMEM;
+		goto out_dma;
+	}
+
+	/* Get SMART Log Page */
+	memset(&c, 0, sizeof(c));
+	c.common.opcode = nvme_admin_get_log_page;
+	c.common.nsid = cpu_to_le32(0xFFFFFFFF);
+	c.common.prp1 = cpu_to_le64(dma_addr);
+	c.common.cdw10[0] = cpu_to_le32(((sizeof(struct nvme_smart_log) /
+			BYTES_TO_DWORDS) << 16) | NVME_GET_SMART_LOG_PAGE);
+	res = nvme_submit_admin_cmd(dev, &c, NULL);
+	if (res != NVME_SC_SUCCESS) {
+		temp_c_cur = LOG_TEMP_UNKNOWN;
+	} else {
+		smart_log = mem;
+		temp_k = (smart_log->temperature[1] << 8) +
+				(smart_log->temperature[0]);
+		temp_c_cur = temp_k - KELVIN_TEMP_FACTOR;
+	}
+
+	/* Get Features for Temp Threshold */
+	res = nvme_get_features(dev, NVME_FEAT_TEMP_THRESH, 0, 0,
+								&feature_resp);
+	if (res != NVME_SC_SUCCESS)
+		temp_c_thresh = LOG_TEMP_UNKNOWN;
+	else
+		temp_c_thresh = (feature_resp & 0xFFFF) - KELVIN_TEMP_FACTOR;
+
+	log_response[0] = LOG_PAGE_TEMPERATURE_PAGE;
+	/* Subpage=0x00, Page Length MSB=0 */
+	log_response[3] = REMAINING_TEMP_PAGE_LENGTH;
+	/* Temperature Log Parameter 1 (Temperature) Start */
+	/* Parameter Code = 0x0000 */
+	log_response[6] = 0x01;		/* Format and Linking = 01b */
+	log_response[7] = 0x02;		/* Parameter Length */
+	/* Use Temperature from NVMe Get Log Page, convert to C from K */
+	log_response[9] = temp_c_cur;
+	/* Temperature Log Parameter 2 (Reference Temperature) Start */
+	log_response[11] = 0x01;	/* Parameter Code = 0x0001 */
+	log_response[12] = 0x01;	/* Format and Linking = 01b */
+	log_response[13] = 0x02;	/* Parameter Length */
+	/* Use Temperature Thresh from NVMe Get Log Page, convert to C from K */
+	log_response[15] = temp_c_thresh;
+
+	xfer_len = min(alloc_len, LOG_TEMP_PAGE_LENGTH);
+	res = nvme_trans_copy_to_user(hdr, log_response, xfer_len);
+
+	dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_smart_log),
+			  mem, dma_addr);
+ out_dma:
+	kfree(log_response);
+ out_mem:
+	return res;
+}
+
+/* MODE SENSE Helper Functions */
+
+static int nvme_trans_fill_mode_parm_hdr(u8 *resp, int len, u8 cdb10, u8 llbaa,
+					u16 mode_data_length, u16 blk_desc_len)
+{
+	/* Quick check to make sure I don't stomp on my own memory... */
+	if ((cdb10 && len < 8) || (!cdb10 && len < 4))
+		return SNTI_INTERNAL_ERROR;
+
+	if (cdb10) {
+		resp[0] = (mode_data_length & 0xFF00) >> 8;
+		resp[1] = (mode_data_length & 0x00FF);
+		/* resp[2] and [3] are zero */
+		resp[4] = llbaa;
+		resp[5] = RESERVED_FIELD;
+		resp[6] = (blk_desc_len & 0xFF00) >> 8;
+		resp[7] = (blk_desc_len & 0x00FF);
+	} else {
+		resp[0] = (mode_data_length & 0x00FF);
+		/* resp[1] and [2] are zero */
+		resp[3] = (blk_desc_len & 0x00FF);
+	}
+
+	return SNTI_TRANSLATION_SUCCESS;
+}
+
+static int nvme_trans_fill_blk_desc(struct nvme_ns *ns, struct sg_io_hdr *hdr,
+				    u8 *resp, int len, u8 llbaa)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	int nvme_sc;
+	struct nvme_dev *dev = ns->dev;
+	dma_addr_t dma_addr;
+	void *mem;
+	struct nvme_id_ns *id_ns;
+	u8 flbas;
+	u32 lba_length;
+
+	if (llbaa == 0 && len < MODE_PAGE_BLK_DES_LEN)
+		return SNTI_INTERNAL_ERROR;
+	else if (llbaa > 0 && len < MODE_PAGE_LLBAA_BLK_DES_LEN)
+		return SNTI_INTERNAL_ERROR;
+
+	mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns),
+							&dma_addr, GFP_KERNEL);
+	if (mem == NULL) {
+		res = -ENOMEM;
+		goto out;
+	}
+
+	/* nvme ns identify */
+	nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
+	res = nvme_trans_status_code(hdr, nvme_sc);
+	if (res)
+		goto out_dma;
+	if (nvme_sc) {
+		res = nvme_sc;
+		goto out_dma;
+	}
+	id_ns = mem;
+	flbas = (id_ns->flbas) & 0x0F;
+	lba_length = (1 << (id_ns->lbaf[flbas].ds));
+
+	if (llbaa == 0) {
+		u32 tmp_cap = cpu_to_be32(id_ns->ncap);
+		/* Byte 4 is reserved */
+		u32 tmp_len = cpu_to_be32(lba_length) & 0x00FFFFFF;
+
+		memcpy(resp, &tmp_cap, sizeof(u32));
+		memcpy(&resp[4], &tmp_len, sizeof(u32));
+	} else {
+		u64 tmp_cap = cpu_to_be64(id_ns->ncap);
+		u32 tmp_len = cpu_to_be32(lba_length);
+
+		memcpy(resp, &tmp_cap, sizeof(u64));
+		/* Bytes 8, 9, 10, 11 are reserved */
+		memcpy(&resp[12], &tmp_len, sizeof(u32));
+	}
+
+ out_dma:
+	dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem,
+			  dma_addr);
+ out:
+	return res;
+}
+
+static int nvme_trans_fill_control_page(struct nvme_ns *ns,
+					struct sg_io_hdr *hdr, u8 *resp,
+					int len)
+{
+	if (len < MODE_PAGE_CONTROL_LEN)
+		return SNTI_INTERNAL_ERROR;
+
+	resp[0] = MODE_PAGE_CONTROL;
+	resp[1] = MODE_PAGE_CONTROL_LEN_FIELD;
+	resp[2] = 0x0E;		/* TST=000b, TMF_ONLY=0, DPICZ=1,
+				 * D_SENSE=1, GLTSD=1, RLEC=0 */
+	resp[3] = 0x12;		/* Q_ALGO_MODIFIER=1h, NUAR=0, QERR=01b */
+	/* Byte 4:  VS=0, RAC=0, UA_INT=0, SWP=0 */
+	resp[5] = 0x40;		/* ATO=0, TAS=1, ATMPE=0, RWWP=0, AUTOLOAD=0 */
+	/* resp[6] and [7] are obsolete, thus zero */
+	resp[8] = 0xFF;		/* Busy timeout period = 0xffff */
+	resp[9] = 0xFF;
+	/* Bytes 10,11: Extended selftest completion time = 0x0000 */
+
+	return SNTI_TRANSLATION_SUCCESS;
+}
+
+static int nvme_trans_fill_caching_page(struct nvme_ns *ns,
+					struct sg_io_hdr *hdr,
+					u8 *resp, int len)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	int nvme_sc;
+	struct nvme_dev *dev = ns->dev;
+	u32 feature_resp;
+	u8 vwc;
+
+	if (len < MODE_PAGE_CACHING_LEN)
+		return SNTI_INTERNAL_ERROR;
+
+	nvme_sc = nvme_get_features(dev, NVME_FEAT_VOLATILE_WC, 0, 0,
+								&feature_resp);
+	res = nvme_trans_status_code(hdr, nvme_sc);
+	if (res)
+		goto out;
+	if (nvme_sc) {
+		res = nvme_sc;
+		goto out;
+	}
+	vwc = feature_resp & 0x00000001;
+
+	resp[0] = MODE_PAGE_CACHING;
+	resp[1] = MODE_PAGE_CACHING_LEN_FIELD;
+	resp[2] = vwc << 2;
+
+ out:
+	return res;
+}
+
+static int nvme_trans_fill_pow_cnd_page(struct nvme_ns *ns,
+					struct sg_io_hdr *hdr, u8 *resp,
+					int len)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+
+	if (len < MODE_PAGE_POW_CND_LEN)
+		return SNTI_INTERNAL_ERROR;
+
+	resp[0] = MODE_PAGE_POWER_CONDITION;
+	resp[1] = MODE_PAGE_POW_CND_LEN_FIELD;
+	/* All other bytes are zero */
+
+	return res;
+}
+
+static int nvme_trans_fill_inf_exc_page(struct nvme_ns *ns,
+					struct sg_io_hdr *hdr, u8 *resp,
+					int len)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+
+	if (len < MODE_PAGE_INF_EXC_LEN)
+		return SNTI_INTERNAL_ERROR;
+
+	resp[0] = MODE_PAGE_INFO_EXCEP;
+	resp[1] = MODE_PAGE_INF_EXC_LEN_FIELD;
+	resp[2] = 0x88;
+	/* All other bytes are zero */
+
+	return res;
+}
+
+static int nvme_trans_fill_all_pages(struct nvme_ns *ns, struct sg_io_hdr *hdr,
+				     u8 *resp, int len)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	u16 mode_pages_offset_1 = 0;
+	u16 mode_pages_offset_2, mode_pages_offset_3, mode_pages_offset_4;
+
+	mode_pages_offset_2 = mode_pages_offset_1 + MODE_PAGE_CACHING_LEN;
+	mode_pages_offset_3 = mode_pages_offset_2 + MODE_PAGE_CONTROL_LEN;
+	mode_pages_offset_4 = mode_pages_offset_3 + MODE_PAGE_POW_CND_LEN;
+
+	res = nvme_trans_fill_caching_page(ns, hdr, &resp[mode_pages_offset_1],
+					MODE_PAGE_CACHING_LEN);
+	if (res != SNTI_TRANSLATION_SUCCESS)
+		goto out;
+	res = nvme_trans_fill_control_page(ns, hdr, &resp[mode_pages_offset_2],
+					MODE_PAGE_CONTROL_LEN);
+	if (res != SNTI_TRANSLATION_SUCCESS)
+		goto out;
+	res = nvme_trans_fill_pow_cnd_page(ns, hdr, &resp[mode_pages_offset_3],
+					MODE_PAGE_POW_CND_LEN);
+	if (res != SNTI_TRANSLATION_SUCCESS)
+		goto out;
+	res = nvme_trans_fill_inf_exc_page(ns, hdr, &resp[mode_pages_offset_4],
+					MODE_PAGE_INF_EXC_LEN);
+	if (res != SNTI_TRANSLATION_SUCCESS)
+		goto out;
+
+ out:
+	return res;
+}
+
+static inline int nvme_trans_get_blk_desc_len(u8 dbd, u8 llbaa)
+{
+	if (dbd == MODE_SENSE_BLK_DESC_ENABLED) {
+		/* SPC-4: len = 8 x Num_of_descriptors if llbaa = 0, 16x if 1 */
+		return 8 * (llbaa + 1) * MODE_SENSE_BLK_DESC_COUNT;
+	} else {
+		return 0;
+	}
+}
+
+static int nvme_trans_mode_page_create(struct nvme_ns *ns,
+					struct sg_io_hdr *hdr, u8 *cmd,
+					u16 alloc_len, u8 cdb10,
+					int (*mode_page_fill_func)
+					(struct nvme_ns *,
+					struct sg_io_hdr *hdr, u8 *, int),
+					u16 mode_pages_tot_len)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	int xfer_len;
+	u8 *response;
+	u8 dbd, llbaa;
+	u16 resp_size;
+	int mph_size;
+	u16 mode_pages_offset_1;
+	u16 blk_desc_len, blk_desc_offset, mode_data_length;
+
+	dbd = GET_MODE_SENSE_DBD(cmd);
+	llbaa = GET_MODE_SENSE_LLBAA(cmd);
+	mph_size = GET_MODE_SENSE_MPH_SIZE(cdb10);
+	blk_desc_len = nvme_trans_get_blk_desc_len(dbd, llbaa);
+
+	resp_size = mph_size + blk_desc_len + mode_pages_tot_len;
+	/* Refer spc4r34 Table 440 for calculation of Mode data Length field */
+	mode_data_length = 3 + (3 * cdb10) + blk_desc_len + mode_pages_tot_len;
+
+	blk_desc_offset = mph_size;
+	mode_pages_offset_1 = blk_desc_offset + blk_desc_len;
+
+	response = kmalloc(resp_size, GFP_KERNEL);
+	if (response == NULL) {
+		res = -ENOMEM;
+		goto out_mem;
+	}
+	memset(response, 0, resp_size);
+
+	res = nvme_trans_fill_mode_parm_hdr(&response[0], mph_size, cdb10,
+					llbaa, mode_data_length, blk_desc_len);
+	if (res != SNTI_TRANSLATION_SUCCESS)
+		goto out_free;
+	if (blk_desc_len > 0) {
+		res = nvme_trans_fill_blk_desc(ns, hdr,
+					       &response[blk_desc_offset],
+					       blk_desc_len, llbaa);
+		if (res != SNTI_TRANSLATION_SUCCESS)
+			goto out_free;
+	}
+	res = mode_page_fill_func(ns, hdr, &response[mode_pages_offset_1],
+					mode_pages_tot_len);
+	if (res != SNTI_TRANSLATION_SUCCESS)
+		goto out_free;
+
+	xfer_len = min(alloc_len, resp_size);
+	res = nvme_trans_copy_to_user(hdr, response, xfer_len);
+
+ out_free:
+	kfree(response);
+ out_mem:
+	return res;
+}
+
+/* Read Capacity Helper Functions */
+
+static void nvme_trans_fill_read_cap(u8 *response, struct nvme_id_ns *id_ns,
+								u8 cdb16)
+{
+	u8 flbas;
+	u32 lba_length;
+	u64 rlba;
+	u8 prot_en;
+	u8 p_type_lut[4] = {0, 0, 1, 2};
+	u64 tmp_rlba;
+	u32 tmp_rlba_32;
+	u32 tmp_len;
+
+	flbas = (id_ns->flbas) & 0x0F;
+	lba_length = (1 << (id_ns->lbaf[flbas].ds));
+	rlba = le64_to_cpup(&id_ns->nsze) - 1;
+	(id_ns->dps) ? (prot_en = 0x01) : (prot_en = 0);
+
+	if (!cdb16) {
+		if (rlba > 0xFFFFFFFF)
+			rlba = 0xFFFFFFFF;
+		tmp_rlba_32 = cpu_to_be32(rlba);
+		tmp_len = cpu_to_be32(lba_length);
+		memcpy(response, &tmp_rlba_32, sizeof(u32));
+		memcpy(&response[4], &tmp_len, sizeof(u32));
+	} else {
+		tmp_rlba = cpu_to_be64(rlba);
+		tmp_len = cpu_to_be32(lba_length);
+		memcpy(response, &tmp_rlba, sizeof(u64));
+		memcpy(&response[8], &tmp_len, sizeof(u32));
+		response[12] = (p_type_lut[id_ns->dps & 0x3] << 1) | prot_en;
+		/* P_I_Exponent = 0x0 | LBPPBE = 0x0 */
+		/* LBPME = 0 | LBPRZ = 0 | LALBA = 0x00 */
+		/* Bytes 16-31 - Reserved */
+	}
+}
+
+/* Start Stop Unit Helper Functions */
+
+static int nvme_trans_power_state(struct nvme_ns *ns, struct sg_io_hdr *hdr,
+						u8 pc, u8 pcmod, u8 start)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	int nvme_sc;
+	struct nvme_dev *dev = ns->dev;
+	dma_addr_t dma_addr;
+	void *mem;
+	struct nvme_id_ctrl *id_ctrl;
+	int lowest_pow_st;	/* max npss = lowest power consumption */
+	unsigned ps_desired = 0;
+
+	/* NVMe Controller Identify */
+	mem = dma_alloc_coherent(&dev->pci_dev->dev,
+				sizeof(struct nvme_id_ctrl),
+				&dma_addr, GFP_KERNEL);
+	if (mem == NULL) {
+		res = -ENOMEM;
+		goto out;
+	}
+	nvme_sc = nvme_identify(dev, 0, 1, dma_addr);
+	res = nvme_trans_status_code(hdr, nvme_sc);
+	if (res)
+		goto out_dma;
+	if (nvme_sc) {
+		res = nvme_sc;
+		goto out_dma;
+	}
+	id_ctrl = mem;
+	lowest_pow_st = id_ctrl->npss - 1;
+
+	switch (pc) {
+	case NVME_POWER_STATE_START_VALID:
+		/* Action unspecified if POWER CONDITION MODIFIER != 0 */
+		if (pcmod == 0 && start == 0x1)
+			ps_desired = POWER_STATE_0;
+		if (pcmod == 0 && start == 0x0)
+			ps_desired = lowest_pow_st;
+		break;
+	case NVME_POWER_STATE_ACTIVE:
+		/* Action unspecified if POWER CONDITION MODIFIER != 0 */
+		if (pcmod == 0)
+			ps_desired = POWER_STATE_0;
+		break;
+	case NVME_POWER_STATE_IDLE:
+		/* Action unspecified if POWER CONDITION MODIFIER != [0,1,2] */
+		/* min of desired state and (lps-1) because lps is STOP */
+		if (pcmod == 0x0)
+			ps_desired = min(POWER_STATE_1, (lowest_pow_st - 1));
+		else if (pcmod == 0x1)
+			ps_desired = min(POWER_STATE_2, (lowest_pow_st - 1));
+		else if (pcmod == 0x2)
+			ps_desired = min(POWER_STATE_3, (lowest_pow_st - 1));
+		break;
+	case NVME_POWER_STATE_STANDBY:
+		/* Action unspecified if POWER CONDITION MODIFIER != [0,1] */
+		if (pcmod == 0x0)
+			ps_desired = max(0, (lowest_pow_st - 2));
+		else if (pcmod == 0x1)
+			ps_desired = max(0, (lowest_pow_st - 1));
+		break;
+	case NVME_POWER_STATE_LU_CONTROL:
+	default:
+		res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
+				ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
+				SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
+		break;
+	}
+	nvme_sc = nvme_set_features(dev, NVME_FEAT_POWER_MGMT, ps_desired, 0,
+				    NULL);
+	res = nvme_trans_status_code(hdr, nvme_sc);
+	if (res)
+		goto out_dma;
+	if (nvme_sc)
+		res = nvme_sc;
+ out_dma:
+	dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ctrl), mem,
+			  dma_addr);
+ out:
+	return res;
+}
+
+/* Write Buffer Helper Functions */
+/* Also using this for Format Unit with hdr passed as NULL, and buffer_id, 0 */
+
+static int nvme_trans_send_fw_cmd(struct nvme_ns *ns, struct sg_io_hdr *hdr,
+					u8 opcode, u32 tot_len, u32 offset,
+					u8 buffer_id)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	int nvme_sc;
+	struct nvme_dev *dev = ns->dev;
+	struct nvme_command c;
+	struct nvme_iod *iod = NULL;
+	unsigned length;
+
+	memset(&c, 0, sizeof(c));
+	c.common.opcode = opcode;
+	if (opcode == nvme_admin_download_fw) {
+		if (hdr->iovec_count > 0) {
+			/* Assuming SGL is not allowed for this command */
+			res = nvme_trans_completion(hdr,
+						SAM_STAT_CHECK_CONDITION,
+						ILLEGAL_REQUEST,
+						SCSI_ASC_INVALID_CDB,
+						SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
+			goto out;
+		}
+		iod = nvme_map_user_pages(dev, DMA_TO_DEVICE,
+				(unsigned long)hdr->dxferp, tot_len);
+		if (IS_ERR(iod)) {
+			res = PTR_ERR(iod);
+			goto out;
+		}
+		length = nvme_setup_prps(dev, &c.common, iod, tot_len,
+								GFP_KERNEL);
+		if (length != tot_len) {
+			res = -ENOMEM;
+			goto out_unmap;
+		}
+
+		c.dlfw.numd = (tot_len/BYTES_TO_DWORDS) - 1;
+		c.dlfw.offset = offset/BYTES_TO_DWORDS;
+	} else if (opcode == nvme_admin_activate_fw) {
+		c.common.cdw10[0] = buffer_id;
+		/* AA=01b Replace & activate at reset */
+		c.common.cdw10[0] |= 0x00000008;
+	}
+
+	nvme_sc = nvme_submit_admin_cmd(dev, &c, NULL);
+	res = nvme_trans_status_code(hdr, nvme_sc);
+	if (res)
+		goto out_unmap;
+	if (nvme_sc)
+		res = nvme_sc;
+
+ out_unmap:
+	if (opcode == nvme_admin_download_fw) {
+		nvme_unmap_user_pages(dev, DMA_TO_DEVICE, iod);
+		nvme_free_iod(dev, iod);
+	}
+ out:
+	return res;
+}
+
+/* Mode Select Helper Functions */
+
+static inline void nvme_trans_modesel_get_bd_len(u8 *parm_list, u8 cdb10,
+						u16 *bd_len, u8 *llbaa)
+{
+	if (cdb10) {
+		/* 10 Byte CDB */
+		*bd_len = (parm_list[MODE_SELECT_10_BD_OFFSET] << 8) +
+			parm_list[MODE_SELECT_10_BD_OFFSET + 1];
+		*llbaa = parm_list[MODE_SELECT_10_LLBAA_OFFSET] &&
+				MODE_SELECT_10_LLBAA_MASK;
+	} else {
+		/* 6 Byte CDB */
+		*bd_len = parm_list[MODE_SELECT_6_BD_OFFSET];
+	}
+}
+
+static void nvme_trans_modesel_save_bd(struct nvme_ns *ns, u8 *parm_list,
+					u16 idx, u16 bd_len, u8 llbaa)
+{
+	u16 bd_num;
+
+	bd_num = bd_len / ((llbaa == 0) ?
+			SHORT_DESC_BLOCK : LONG_DESC_BLOCK);
+	/* Store block descriptor info if a FORMAT UNIT comes later */
+	/* TODO Saving 1st BD info; what to do if multiple BD received? */
+	if (llbaa == 0) {
+		/* Standard Block Descriptor - spc4r34 7.5.5.1 */
+		ns->mode_select_num_blocks =
+				(parm_list[idx + 1] << 16) +
+				(parm_list[idx + 2] << 8) +
+				(parm_list[idx + 3]);
+
+		ns->mode_select_block_len =
+				(parm_list[idx + 5] << 16) +
+				(parm_list[idx + 6] << 8) +
+				(parm_list[idx + 7]);
+	} else {
+		/* Long LBA Block Descriptor - sbc3r27 6.4.2.3 */
+		ns->mode_select_num_blocks =
+				(((u64)parm_list[idx + 0]) << 56) +
+				(((u64)parm_list[idx + 1]) << 48) +
+				(((u64)parm_list[idx + 2]) << 40) +
+				(((u64)parm_list[idx + 3]) << 32) +
+				(((u64)parm_list[idx + 4]) << 24) +
+				(((u64)parm_list[idx + 5]) << 16) +
+				(((u64)parm_list[idx + 6]) << 8) +
+				((u64)parm_list[idx + 7]);
+
+		ns->mode_select_block_len =
+				(parm_list[idx + 12] << 24) +
+				(parm_list[idx + 13] << 16) +
+				(parm_list[idx + 14] << 8) +
+				(parm_list[idx + 15]);
+	}
+}
+
+static u16 nvme_trans_modesel_get_mp(struct nvme_ns *ns, struct sg_io_hdr *hdr,
+					u8 *mode_page, u8 page_code)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	int nvme_sc;
+	struct nvme_dev *dev = ns->dev;
+	unsigned dword11;
+
+	switch (page_code) {
+	case MODE_PAGE_CACHING:
+		dword11 = ((mode_page[2] & CACHING_MODE_PAGE_WCE_MASK) ? 1 : 0);
+		nvme_sc = nvme_set_features(dev, NVME_FEAT_VOLATILE_WC, dword11,
+					    0, NULL);
+		res = nvme_trans_status_code(hdr, nvme_sc);
+		if (res)
+			break;
+		if (nvme_sc) {
+			res = nvme_sc;
+			break;
+		}
+		break;
+	case MODE_PAGE_CONTROL:
+		break;
+	case MODE_PAGE_POWER_CONDITION:
+		/* Verify the OS is not trying to set timers */
+		if ((mode_page[2] & 0x01) != 0 || (mode_page[3] & 0x0F) != 0) {
+			res = nvme_trans_completion(hdr,
+						SAM_STAT_CHECK_CONDITION,
+						ILLEGAL_REQUEST,
+						SCSI_ASC_INVALID_PARAMETER,
+						SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
+			if (!res)
+				res = SNTI_INTERNAL_ERROR;
+			break;
+		}
+		break;
+	default:
+		res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
+					ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
+					SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
+		if (!res)
+			res = SNTI_INTERNAL_ERROR;
+		break;
+	}
+
+	return res;
+}
+
+static int nvme_trans_modesel_data(struct nvme_ns *ns, struct sg_io_hdr *hdr,
+					u8 *cmd, u16 parm_list_len, u8 pf,
+					u8 sp, u8 cdb10)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	u8 *parm_list;
+	u16 bd_len;
+	u8 llbaa = 0;
+	u16 index, saved_index;
+	u8 page_code;
+	u16 mp_size;
+
+	/* Get parm list from data-in/out buffer */
+	parm_list = kmalloc(parm_list_len, GFP_KERNEL);
+	if (parm_list == NULL) {
+		res = -ENOMEM;
+		goto out;
+	}
+
+	res = nvme_trans_copy_from_user(hdr, parm_list, parm_list_len);
+	if (res != SNTI_TRANSLATION_SUCCESS)
+		goto out_mem;
+
+	nvme_trans_modesel_get_bd_len(parm_list, cdb10, &bd_len, &llbaa);
+	index = (cdb10) ? (MODE_SELECT_10_MPH_SIZE) : (MODE_SELECT_6_MPH_SIZE);
+
+	if (bd_len != 0) {
+		/* Block Descriptors present, parse */
+		nvme_trans_modesel_save_bd(ns, parm_list, index, bd_len, llbaa);
+		index += bd_len;
+	}
+	saved_index = index;
+
+	/* Multiple mode pages may be present; iterate through all */
+	/* In 1st Iteration, don't do NVME Command, only check for CDB errors */
+	do {
+		page_code = parm_list[index] & MODE_SELECT_PAGE_CODE_MASK;
+		mp_size = parm_list[index + 1] + 2;
+		if ((page_code != MODE_PAGE_CACHING) &&
+		    (page_code != MODE_PAGE_CONTROL) &&
+		    (page_code != MODE_PAGE_POWER_CONDITION)) {
+			res = nvme_trans_completion(hdr,
+						SAM_STAT_CHECK_CONDITION,
+						ILLEGAL_REQUEST,
+						SCSI_ASC_INVALID_CDB,
+						SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
+			goto out_mem;
+		}
+		index += mp_size;
+	} while (index < parm_list_len);
+
+	/* In 2nd Iteration, do the NVME Commands */
+	index = saved_index;
+	do {
+		page_code = parm_list[index] & MODE_SELECT_PAGE_CODE_MASK;
+		mp_size = parm_list[index + 1] + 2;
+		res = nvme_trans_modesel_get_mp(ns, hdr, &parm_list[index],
+								page_code);
+		if (res != SNTI_TRANSLATION_SUCCESS)
+			break;
+		index += mp_size;
+	} while (index < parm_list_len);
+
+ out_mem:
+	kfree(parm_list);
+ out:
+	return res;
+}
+
+/* Format Unit Helper Functions */
+
+static int nvme_trans_fmt_set_blk_size_count(struct nvme_ns *ns,
+					     struct sg_io_hdr *hdr)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	int nvme_sc;
+	struct nvme_dev *dev = ns->dev;
+	dma_addr_t dma_addr;
+	void *mem;
+	struct nvme_id_ns *id_ns;
+	u8 flbas;
+
+	/*
+	 * SCSI Expects a MODE SELECT would have been issued prior to
+	 * a FORMAT UNIT, and the block size and number would be used
+	 * from the block descriptor in it. If a MODE SELECT had not
+	 * been issued, FORMAT shall use the current values for both.
+	 */
+
+	if (ns->mode_select_num_blocks == 0 || ns->mode_select_block_len == 0) {
+		mem = dma_alloc_coherent(&dev->pci_dev->dev,
+			sizeof(struct nvme_id_ns), &dma_addr, GFP_KERNEL);
+		if (mem == NULL) {
+			res = -ENOMEM;
+			goto out;
+		}
+		/* nvme ns identify */
+		nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
+		res = nvme_trans_status_code(hdr, nvme_sc);
+		if (res)
+			goto out_dma;
+		if (nvme_sc) {
+			res = nvme_sc;
+			goto out_dma;
+		}
+		id_ns = mem;
+
+		if (ns->mode_select_num_blocks == 0)
+			ns->mode_select_num_blocks = id_ns->ncap;
+		if (ns->mode_select_block_len == 0) {
+			flbas = (id_ns->flbas) & 0x0F;
+			ns->mode_select_block_len =
+						(1 << (id_ns->lbaf[flbas].ds));
+		}
+ out_dma:
+		dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns),
+				  mem, dma_addr);
+	}
+ out:
+	return res;
+}
+
+static int nvme_trans_fmt_get_parm_header(struct sg_io_hdr *hdr, u8 len,
+					u8 format_prot_info, u8 *nvme_pf_code)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	u8 *parm_list;
+	u8 pf_usage, pf_code;
+
+	parm_list = kmalloc(len, GFP_KERNEL);
+	if (parm_list == NULL) {
+		res = -ENOMEM;
+		goto out;
+	}
+	res = nvme_trans_copy_from_user(hdr, parm_list, len);
+	if (res != SNTI_TRANSLATION_SUCCESS)
+		goto out_mem;
+
+	if ((parm_list[FORMAT_UNIT_IMMED_OFFSET] &
+				FORMAT_UNIT_IMMED_MASK) != 0) {
+		res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
+					ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
+					SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
+		goto out_mem;
+	}
+
+	if (len == FORMAT_UNIT_LONG_PARM_LIST_LEN &&
+	    (parm_list[FORMAT_UNIT_PROT_INT_OFFSET] & 0x0F) != 0) {
+		res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
+					ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
+					SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
+		goto out_mem;
+	}
+	pf_usage = parm_list[FORMAT_UNIT_PROT_FIELD_USAGE_OFFSET] &
+			FORMAT_UNIT_PROT_FIELD_USAGE_MASK;
+	pf_code = (pf_usage << 2) | format_prot_info;
+	switch (pf_code) {
+	case 0:
+		*nvme_pf_code = 0;
+		break;
+	case 2:
+		*nvme_pf_code = 1;
+		break;
+	case 3:
+		*nvme_pf_code = 2;
+		break;
+	case 7:
+		*nvme_pf_code = 3;
+		break;
+	default:
+		res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
+					ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
+					SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
+		break;
+	}
+
+ out_mem:
+	kfree(parm_list);
+ out:
+	return res;
+}
+
+static int nvme_trans_fmt_send_cmd(struct nvme_ns *ns, struct sg_io_hdr *hdr,
+				   u8 prot_info)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	int nvme_sc;
+	struct nvme_dev *dev = ns->dev;
+	dma_addr_t dma_addr;
+	void *mem;
+	struct nvme_id_ns *id_ns;
+	u8 i;
+	u8 flbas, nlbaf;
+	u8 selected_lbaf = 0xFF;
+	u32 cdw10 = 0;
+	struct nvme_command c;
+
+	/* Loop thru LBAF's in id_ns to match reqd lbaf, put in cdw10 */
+	mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns),
+							&dma_addr, GFP_KERNEL);
+	if (mem == NULL) {
+		res = -ENOMEM;
+		goto out;
+	}
+	/* nvme ns identify */
+	nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
+	res = nvme_trans_status_code(hdr, nvme_sc);
+	if (res)
+		goto out_dma;
+	if (nvme_sc) {
+		res = nvme_sc;
+		goto out_dma;
+	}
+	id_ns = mem;
+	flbas = (id_ns->flbas) & 0x0F;
+	nlbaf = id_ns->nlbaf;
+
+	for (i = 0; i < nlbaf; i++) {
+		if (ns->mode_select_block_len == (1 << (id_ns->lbaf[i].ds))) {
+			selected_lbaf = i;
+			break;
+		}
+	}
+	if (selected_lbaf > 0x0F) {
+		res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
+				ILLEGAL_REQUEST, SCSI_ASC_INVALID_PARAMETER,
+				SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
+	}
+	if (ns->mode_select_num_blocks != id_ns->ncap) {
+		res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
+				ILLEGAL_REQUEST, SCSI_ASC_INVALID_PARAMETER,
+				SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
+	}
+
+	cdw10 |= prot_info << 5;
+	cdw10 |= selected_lbaf & 0x0F;
+	memset(&c, 0, sizeof(c));
+	c.format.opcode = nvme_admin_format_nvm;
+	c.format.nsid = ns->ns_id;
+	c.format.cdw10 = cpu_to_le32(cdw10);
+
+	nvme_sc = nvme_submit_admin_cmd(dev, &c, NULL);
+	res = nvme_trans_status_code(hdr, nvme_sc);
+	if (res)
+		goto out_dma;
+	if (nvme_sc)
+		res = nvme_sc;
+
+ out_dma:
+	dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem,
+			  dma_addr);
+ out:
+	return res;
+}
+
+/* Read/Write Helper Functions */
+
+static inline void nvme_trans_get_io_cdb6(u8 *cmd,
+					struct nvme_trans_io_cdb *cdb_info)
+{
+	cdb_info->fua = 0;
+	cdb_info->prot_info = 0;
+	cdb_info->lba = GET_U32_FROM_CDB(cmd, IO_6_CDB_LBA_OFFSET) &
+					IO_6_CDB_LBA_MASK;
+	cdb_info->xfer_len = GET_U8_FROM_CDB(cmd, IO_6_CDB_TX_LEN_OFFSET);
+
+	/* sbc3r27 sec 5.32 - TRANSFER LEN of 0 implies a 256 Block transfer */
+	if (cdb_info->xfer_len == 0)
+		cdb_info->xfer_len = IO_6_DEFAULT_TX_LEN;
+}
+
+static inline void nvme_trans_get_io_cdb10(u8 *cmd,
+					struct nvme_trans_io_cdb *cdb_info)
+{
+	cdb_info->fua = GET_U8_FROM_CDB(cmd, IO_10_CDB_FUA_OFFSET) &
+					IO_CDB_FUA_MASK;
+	cdb_info->prot_info = GET_U8_FROM_CDB(cmd, IO_10_CDB_WP_OFFSET) &
+					IO_CDB_WP_MASK >> IO_CDB_WP_SHIFT;
+	cdb_info->lba = GET_U32_FROM_CDB(cmd, IO_10_CDB_LBA_OFFSET);
+	cdb_info->xfer_len = GET_U16_FROM_CDB(cmd, IO_10_CDB_TX_LEN_OFFSET);
+}
+
+static inline void nvme_trans_get_io_cdb12(u8 *cmd,
+					struct nvme_trans_io_cdb *cdb_info)
+{
+	cdb_info->fua = GET_U8_FROM_CDB(cmd, IO_12_CDB_FUA_OFFSET) &
+					IO_CDB_FUA_MASK;
+	cdb_info->prot_info = GET_U8_FROM_CDB(cmd, IO_12_CDB_WP_OFFSET) &
+					IO_CDB_WP_MASK >> IO_CDB_WP_SHIFT;
+	cdb_info->lba = GET_U32_FROM_CDB(cmd, IO_12_CDB_LBA_OFFSET);
+	cdb_info->xfer_len = GET_U32_FROM_CDB(cmd, IO_12_CDB_TX_LEN_OFFSET);
+}
+
+static inline void nvme_trans_get_io_cdb16(u8 *cmd,
+					struct nvme_trans_io_cdb *cdb_info)
+{
+	cdb_info->fua = GET_U8_FROM_CDB(cmd, IO_16_CDB_FUA_OFFSET) &
+					IO_CDB_FUA_MASK;
+	cdb_info->prot_info = GET_U8_FROM_CDB(cmd, IO_16_CDB_WP_OFFSET) &
+					IO_CDB_WP_MASK >> IO_CDB_WP_SHIFT;
+	cdb_info->lba = GET_U64_FROM_CDB(cmd, IO_16_CDB_LBA_OFFSET);
+	cdb_info->xfer_len = GET_U32_FROM_CDB(cmd, IO_16_CDB_TX_LEN_OFFSET);
+}
+
+static inline u32 nvme_trans_io_get_num_cmds(struct sg_io_hdr *hdr,
+					struct nvme_trans_io_cdb *cdb_info,
+					u32 max_blocks)
+{
+	/* If using iovecs, send one nvme command per vector */
+	if (hdr->iovec_count > 0)
+		return hdr->iovec_count;
+	else if (cdb_info->xfer_len > max_blocks)
+		return ((cdb_info->xfer_len - 1) / max_blocks) + 1;
+	else
+		return 1;
+}
+
+static u16 nvme_trans_io_get_control(struct nvme_ns *ns,
+					struct nvme_trans_io_cdb *cdb_info)
+{
+	u16 control = 0;
+
+	/* When Protection information support is added, implement here */
+
+	if (cdb_info->fua > 0)
+		control |= NVME_RW_FUA;
+
+	return control;
+}
+
+static int nvme_trans_do_nvme_io(struct nvme_ns *ns, struct sg_io_hdr *hdr,
+				struct nvme_trans_io_cdb *cdb_info, u8 is_write)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	int nvme_sc;
+	struct nvme_dev *dev = ns->dev;
+	struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
+	u32 num_cmds;
+	struct nvme_iod *iod;
+	u64 unit_len;
+	u64 unit_num_blocks;	/* Number of blocks to xfer in each nvme cmd */
+	u32 retcode;
+	u32 i = 0;
+	u64 nvme_offset = 0;
+	void *next_mapping_addr;
+	struct nvme_command c;
+	u8 opcode = (is_write ? nvme_cmd_write : nvme_cmd_read);
+	u16 control;
+	u32 max_blocks = (dev->max_hw_sectors << 9) >> ns->lba_shift;
+
+	num_cmds = nvme_trans_io_get_num_cmds(hdr, cdb_info, max_blocks);
+
+	/*
+	 * This loop handles two cases.
+	 * First, when an SGL is used in the form of an iovec list:
+	 *   - Use iov_base as the next mapping address for the nvme command_id
+	 *   - Use iov_len as the data transfer length for the command.
+	 * Second, when we have a single buffer
+	 *   - If larger than max_blocks, split into chunks, offset
+	 *        each nvme command accordingly.
+	 */
+	for (i = 0; i < num_cmds; i++) {
+		memset(&c, 0, sizeof(c));
+		if (hdr->iovec_count > 0) {
+			struct sg_iovec *sgl = hdr->dxferp;
+
+			unit_len = sgl[i].iov_len;
+			unit_num_blocks = unit_len >> ns->lba_shift;
+			next_mapping_addr = sgl[i].iov_base;
+		} else {
+			unit_num_blocks = min((u64)max_blocks,
+					(cdb_info->xfer_len - nvme_offset));
+			unit_len = unit_num_blocks << ns->lba_shift;
+			next_mapping_addr = hdr->dxferp +
+					((1 << ns->lba_shift) * nvme_offset);
+		}
+
+		c.rw.opcode = opcode;
+		c.rw.nsid = cpu_to_le32(ns->ns_id);
+		c.rw.slba = cpu_to_le64(cdb_info->lba + nvme_offset);
+		c.rw.length = cpu_to_le16(unit_num_blocks - 1);
+		control = nvme_trans_io_get_control(ns, cdb_info);
+		c.rw.control = cpu_to_le16(control);
+
+		iod = nvme_map_user_pages(dev,
+			(is_write) ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
+			(unsigned long)next_mapping_addr, unit_len);
+		if (IS_ERR(iod)) {
+			res = PTR_ERR(iod);
+			goto out;
+		}
+		retcode = nvme_setup_prps(dev, &c.common, iod, unit_len,
+							GFP_KERNEL);
+		if (retcode != unit_len) {
+			nvme_unmap_user_pages(dev,
+				(is_write) ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
+				iod);
+			nvme_free_iod(dev, iod);
+			res = -ENOMEM;
+			goto out;
+		}
+
+		nvme_offset += unit_num_blocks;
+
+		nvmeq = get_nvmeq(dev);
+		/*
+		 * Since nvme_submit_sync_cmd sleeps, we can't keep
+		 * preemption disabled.  We may be preempted at any
+		 * point, and be rescheduled to a different CPU.  That
+		 * will cause cacheline bouncing, but no additional
+		 * races since q_lock already protects against other
+		 * CPUs.
+		 */
+		put_nvmeq(nvmeq);
+		nvme_sc = nvme_submit_sync_cmd(nvmeq, &c, NULL,
+						NVME_IO_TIMEOUT);
+		if (nvme_sc != NVME_SC_SUCCESS) {
+			nvme_unmap_user_pages(dev,
+				(is_write) ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
+				iod);
+			nvme_free_iod(dev, iod);
+			res = nvme_trans_status_code(hdr, nvme_sc);
+			goto out;
+		}
+		nvme_unmap_user_pages(dev,
+				(is_write) ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
+				iod);
+		nvme_free_iod(dev, iod);
+	}
+	res = nvme_trans_status_code(hdr, NVME_SC_SUCCESS);
+
+ out:
+	return res;
+}
+
+
+/* SCSI Command Translation Functions */
+
+static int nvme_trans_io(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 is_write,
+							u8 *cmd)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	struct nvme_trans_io_cdb cdb_info;
+	u8 opcode = cmd[0];
+	u64 xfer_bytes;
+	u64 sum_iov_len = 0;
+	struct sg_iovec *sgl;
+	int i;
+
+	/* Extract Fields from CDB */
+	switch (opcode) {
+	case WRITE_6:
+	case READ_6:
+		nvme_trans_get_io_cdb6(cmd, &cdb_info);
+		break;
+	case WRITE_10:
+	case READ_10:
+		nvme_trans_get_io_cdb10(cmd, &cdb_info);
+		break;
+	case WRITE_12:
+	case READ_12:
+		nvme_trans_get_io_cdb12(cmd, &cdb_info);
+		break;
+	case WRITE_16:
+	case READ_16:
+		nvme_trans_get_io_cdb16(cmd, &cdb_info);
+		break;
+	default:
+		/* Will never really reach here */
+		res = SNTI_INTERNAL_ERROR;
+		goto out;
+	}
+
+	/* Calculate total length of transfer (in bytes) */
+	if (hdr->iovec_count > 0) {
+		sgl = hdr->dxferp;
+		for (i = 0; i < hdr->iovec_count; i++) {
+			sum_iov_len += sgl[i].iov_len;
+			/* IO vector sizes should be multiples of block size */
+			if (sgl[i].iov_len % (1 << ns->lba_shift) != 0) {
+				res = nvme_trans_completion(hdr,
+						SAM_STAT_CHECK_CONDITION,
+						ILLEGAL_REQUEST,
+						SCSI_ASC_INVALID_PARAMETER,
+						SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
+				goto out;
+			}
+		}
+	} else {
+		sum_iov_len = hdr->dxfer_len;
+	}
+
+	/* As Per sg ioctl howto, if the lengths differ, use the lower one */
+	xfer_bytes = min(((u64)hdr->dxfer_len), sum_iov_len);
+
+	/* If block count and actual data buffer size dont match, error out */
+	if ((xfer_bytes / (1 << ns->lba_shift)) != cdb_info.xfer_len) {
+		res = -EINVAL;
+		goto out;
+	}
+
+	/* Check for 0 length transfer - it is not illegal */
+	if (cdb_info.xfer_len == 0)
+		goto out;
+
+	/* Send NVMe IO Command(s) */
+	res = nvme_trans_do_nvme_io(ns, hdr, &cdb_info, is_write);
+	if (res != SNTI_TRANSLATION_SUCCESS)
+		goto out;
+
+ out:
+	return res;
+}
+
+static int nvme_trans_inquiry(struct nvme_ns *ns, struct sg_io_hdr *hdr,
+							u8 *cmd)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	u8 evpd;
+	u8 page_code;
+	int alloc_len;
+	u8 *inq_response;
+
+	evpd = GET_INQ_EVPD_BIT(cmd);
+	page_code = GET_INQ_PAGE_CODE(cmd);
+	alloc_len = GET_INQ_ALLOC_LENGTH(cmd);
+
+	inq_response = kmalloc(STANDARD_INQUIRY_LENGTH, GFP_KERNEL);
+	if (inq_response == NULL) {
+		res = -ENOMEM;
+		goto out_mem;
+	}
+
+	if (evpd == 0) {
+		if (page_code == INQ_STANDARD_INQUIRY_PAGE) {
+			res = nvme_trans_standard_inquiry_page(ns, hdr,
+						inq_response, alloc_len);
+		} else {
+			res = nvme_trans_completion(hdr,
+						SAM_STAT_CHECK_CONDITION,
+						ILLEGAL_REQUEST,
+						SCSI_ASC_INVALID_CDB,
+						SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
+		}
+	} else {
+		switch (page_code) {
+		case VPD_SUPPORTED_PAGES:
+			res = nvme_trans_supported_vpd_pages(ns, hdr,
+						inq_response, alloc_len);
+			break;
+		case VPD_SERIAL_NUMBER:
+			res = nvme_trans_unit_serial_page(ns, hdr, inq_response,
+								alloc_len);
+			break;
+		case VPD_DEVICE_IDENTIFIERS:
+			res = nvme_trans_device_id_page(ns, hdr, inq_response,
+								alloc_len);
+			break;
+		case VPD_EXTENDED_INQUIRY:
+			res = nvme_trans_ext_inq_page(ns, hdr, alloc_len);
+			break;
+		case VPD_BLOCK_DEV_CHARACTERISTICS:
+			res = nvme_trans_bdev_char_page(ns, hdr, alloc_len);
+			break;
+		default:
+			res = nvme_trans_completion(hdr,
+						SAM_STAT_CHECK_CONDITION,
+						ILLEGAL_REQUEST,
+						SCSI_ASC_INVALID_CDB,
+						SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
+			break;
+		}
+	}
+	kfree(inq_response);
+ out_mem:
+	return res;
+}
+
+static int nvme_trans_log_sense(struct nvme_ns *ns, struct sg_io_hdr *hdr,
+							u8 *cmd)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	u16 alloc_len;
+	u8 sp;
+	u8 pc;
+	u8 page_code;
+
+	sp = GET_U8_FROM_CDB(cmd, LOG_SENSE_CDB_SP_OFFSET);
+	if (sp != LOG_SENSE_CDB_SP_NOT_ENABLED) {
+		res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
+					ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
+					SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
+		goto out;
+	}
+	pc = GET_U8_FROM_CDB(cmd, LOG_SENSE_CDB_PC_OFFSET);
+	page_code = pc & LOG_SENSE_CDB_PAGE_CODE_MASK;
+	pc = (pc & LOG_SENSE_CDB_PC_MASK) >> LOG_SENSE_CDB_PC_SHIFT;
+	if (pc != LOG_SENSE_CDB_PC_CUMULATIVE_VALUES) {
+		res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
+					ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
+					SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
+		goto out;
+	}
+	alloc_len = GET_U16_FROM_CDB(cmd, LOG_SENSE_CDB_ALLOC_LENGTH_OFFSET);
+	switch (page_code) {
+	case LOG_PAGE_SUPPORTED_LOG_PAGES_PAGE:
+		res = nvme_trans_log_supp_pages(ns, hdr, alloc_len);
+		break;
+	case LOG_PAGE_INFORMATIONAL_EXCEPTIONS_PAGE:
+		res = nvme_trans_log_info_exceptions(ns, hdr, alloc_len);
+		break;
+	case LOG_PAGE_TEMPERATURE_PAGE:
+		res = nvme_trans_log_temperature(ns, hdr, alloc_len);
+		break;
+	default:
+		res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
+					ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
+					SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
+		break;
+	}
+
+ out:
+	return res;
+}
+
+static int nvme_trans_mode_select(struct nvme_ns *ns, struct sg_io_hdr *hdr,
+							u8 *cmd)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	u8 cdb10 = 0;
+	u16 parm_list_len;
+	u8 page_format;
+	u8 save_pages;
+
+	page_format = GET_U8_FROM_CDB(cmd, MODE_SELECT_CDB_PAGE_FORMAT_OFFSET);
+	page_format &= MODE_SELECT_CDB_PAGE_FORMAT_MASK;
+
+	save_pages = GET_U8_FROM_CDB(cmd, MODE_SELECT_CDB_SAVE_PAGES_OFFSET);
+	save_pages &= MODE_SELECT_CDB_SAVE_PAGES_MASK;
+
+	if (GET_OPCODE(cmd) == MODE_SELECT) {
+		parm_list_len = GET_U8_FROM_CDB(cmd,
+				MODE_SELECT_6_CDB_PARAM_LIST_LENGTH_OFFSET);
+	} else {
+		parm_list_len = GET_U16_FROM_CDB(cmd,
+				MODE_SELECT_10_CDB_PARAM_LIST_LENGTH_OFFSET);
+		cdb10 = 1;
+	}
+
+	if (parm_list_len != 0) {
+		/*
+		 * According to SPC-4 r24, a paramter list length field of 0
+		 * shall not be considered an error
+		 */
+		res = nvme_trans_modesel_data(ns, hdr, cmd, parm_list_len,
+						page_format, save_pages, cdb10);
+	}
+
+	return res;
+}
+
+static int nvme_trans_mode_sense(struct nvme_ns *ns, struct sg_io_hdr *hdr,
+							u8 *cmd)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	u16 alloc_len;
+	u8 cdb10 = 0;
+	u8 page_code;
+	u8 pc;
+
+	if (GET_OPCODE(cmd) == MODE_SENSE) {
+		alloc_len = GET_U8_FROM_CDB(cmd, MODE_SENSE6_ALLOC_LEN_OFFSET);
+	} else {
+		alloc_len = GET_U16_FROM_CDB(cmd,
+						MODE_SENSE10_ALLOC_LEN_OFFSET);
+		cdb10 = 1;
+	}
+
+	pc = GET_U8_FROM_CDB(cmd, MODE_SENSE_PAGE_CONTROL_OFFSET) &
+						MODE_SENSE_PAGE_CONTROL_MASK;
+	if (pc != MODE_SENSE_PC_CURRENT_VALUES) {
+		res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
+					ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
+					SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
+		goto out;
+	}
+
+	page_code = GET_U8_FROM_CDB(cmd, MODE_SENSE_PAGE_CODE_OFFSET) &
+					MODE_SENSE_PAGE_CODE_MASK;
+	switch (page_code) {
+	case MODE_PAGE_CACHING:
+		res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len,
+						cdb10,
+						&nvme_trans_fill_caching_page,
+						MODE_PAGE_CACHING_LEN);
+		break;
+	case MODE_PAGE_CONTROL:
+		res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len,
+						cdb10,
+						&nvme_trans_fill_control_page,
+						MODE_PAGE_CONTROL_LEN);
+		break;
+	case MODE_PAGE_POWER_CONDITION:
+		res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len,
+						cdb10,
+						&nvme_trans_fill_pow_cnd_page,
+						MODE_PAGE_POW_CND_LEN);
+		break;
+	case MODE_PAGE_INFO_EXCEP:
+		res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len,
+						cdb10,
+						&nvme_trans_fill_inf_exc_page,
+						MODE_PAGE_INF_EXC_LEN);
+		break;
+	case MODE_PAGE_RETURN_ALL:
+		res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len,
+						cdb10,
+						&nvme_trans_fill_all_pages,
+						MODE_PAGE_ALL_LEN);
+		break;
+	default:
+		res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
+					ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
+					SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
+		break;
+	}
+
+ out:
+	return res;
+}
+
+static int nvme_trans_read_capacity(struct nvme_ns *ns, struct sg_io_hdr *hdr,
+							u8 *cmd)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	int nvme_sc;
+	u32 alloc_len = READ_CAP_10_RESP_SIZE;
+	u32 resp_size = READ_CAP_10_RESP_SIZE;
+	u32 xfer_len;
+	u8 cdb16;
+	struct nvme_dev *dev = ns->dev;
+	dma_addr_t dma_addr;
+	void *mem;
+	struct nvme_id_ns *id_ns;
+	u8 *response;
+
+	cdb16 = IS_READ_CAP_16(cmd);
+	if (cdb16) {
+		alloc_len = GET_READ_CAP_16_ALLOC_LENGTH(cmd);
+		resp_size = READ_CAP_16_RESP_SIZE;
+	}
+
+	mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns),
+							&dma_addr, GFP_KERNEL);
+	if (mem == NULL) {
+		res = -ENOMEM;
+		goto out;
+	}
+	/* nvme ns identify */
+	nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
+	res = nvme_trans_status_code(hdr, nvme_sc);
+	if (res)
+		goto out_dma;
+	if (nvme_sc) {
+		res = nvme_sc;
+		goto out_dma;
+	}
+	id_ns = mem;
+
+	response = kmalloc(resp_size, GFP_KERNEL);
+	if (response == NULL) {
+		res = -ENOMEM;
+		goto out_dma;
+	}
+	memset(response, 0, resp_size);
+	nvme_trans_fill_read_cap(response, id_ns, cdb16);
+
+	xfer_len = min(alloc_len, resp_size);
+	res = nvme_trans_copy_to_user(hdr, response, xfer_len);
+
+	kfree(response);
+ out_dma:
+	dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem,
+			  dma_addr);
+ out:
+	return res;
+}
+
+static int nvme_trans_report_luns(struct nvme_ns *ns, struct sg_io_hdr *hdr,
+							u8 *cmd)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	int nvme_sc;
+	u32 alloc_len, xfer_len, resp_size;
+	u8 select_report;
+	u8 *response;
+	struct nvme_dev *dev = ns->dev;
+	dma_addr_t dma_addr;
+	void *mem;
+	struct nvme_id_ctrl *id_ctrl;
+	u32 ll_length, lun_id;
+	u8 lun_id_offset = REPORT_LUNS_FIRST_LUN_OFFSET;
+	u32 tmp_len;
+
+	alloc_len = GET_REPORT_LUNS_ALLOC_LENGTH(cmd);
+	select_report = GET_U8_FROM_CDB(cmd, REPORT_LUNS_SR_OFFSET);
+
+	if ((select_report != ALL_LUNS_RETURNED) &&
+	    (select_report != ALL_WELL_KNOWN_LUNS_RETURNED) &&
+	    (select_report != RESTRICTED_LUNS_RETURNED)) {
+		res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
+					ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
+					SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
+		goto out;
+	} else {
+		/* NVMe Controller Identify */
+		mem = dma_alloc_coherent(&dev->pci_dev->dev,
+					sizeof(struct nvme_id_ctrl),
+					&dma_addr, GFP_KERNEL);
+		if (mem == NULL) {
+			res = -ENOMEM;
+			goto out;
+		}
+		nvme_sc = nvme_identify(dev, 0, 1, dma_addr);
+		res = nvme_trans_status_code(hdr, nvme_sc);
+		if (res)
+			goto out_dma;
+		if (nvme_sc) {
+			res = nvme_sc;
+			goto out_dma;
+		}
+		id_ctrl = mem;
+		ll_length = id_ctrl->nn * LUN_ENTRY_SIZE;
+		resp_size = ll_length + LUN_DATA_HEADER_SIZE;
+
+		if (alloc_len < resp_size) {
+			res = nvme_trans_completion(hdr,
+					SAM_STAT_CHECK_CONDITION,
+					ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
+					SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
+			goto out_dma;
+		}
+
+		response = kmalloc(resp_size, GFP_KERNEL);
+		if (response == NULL) {
+			res = -ENOMEM;
+			goto out_dma;
+		}
+		memset(response, 0, resp_size);
+
+		/* The first LUN ID will always be 0 per the SAM spec */
+		for (lun_id = 0; lun_id < id_ctrl->nn; lun_id++) {
+			/*
+			 * Set the LUN Id and then increment to the next LUN
+			 * location in the parameter data.
+			 */
+			u64 tmp_id = cpu_to_be64(lun_id);
+			memcpy(&response[lun_id_offset], &tmp_id, sizeof(u64));
+			lun_id_offset += LUN_ENTRY_SIZE;
+		}
+		tmp_len = cpu_to_be32(ll_length);
+		memcpy(response, &tmp_len, sizeof(u32));
+	}
+
+	xfer_len = min(alloc_len, resp_size);
+	res = nvme_trans_copy_to_user(hdr, response, xfer_len);
+
+	kfree(response);
+ out_dma:
+	dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ctrl), mem,
+			  dma_addr);
+ out:
+	return res;
+}
+
+static int nvme_trans_request_sense(struct nvme_ns *ns, struct sg_io_hdr *hdr,
+							u8 *cmd)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	u8 alloc_len, xfer_len, resp_size;
+	u8 desc_format;
+	u8 *response;
+
+	alloc_len = GET_REQUEST_SENSE_ALLOC_LENGTH(cmd);
+	desc_format = GET_U8_FROM_CDB(cmd, REQUEST_SENSE_DESC_OFFSET);
+	desc_format &= REQUEST_SENSE_DESC_MASK;
+
+	resp_size = ((desc_format) ? (DESC_FMT_SENSE_DATA_SIZE) :
+					(FIXED_FMT_SENSE_DATA_SIZE));
+	response = kmalloc(resp_size, GFP_KERNEL);
+	if (response == NULL) {
+		res = -ENOMEM;
+		goto out;
+	}
+	memset(response, 0, resp_size);
+
+	if (desc_format == DESCRIPTOR_FORMAT_SENSE_DATA_TYPE) {
+		/* Descriptor Format Sense Data */
+		response[0] = DESC_FORMAT_SENSE_DATA;
+		response[1] = NO_SENSE;
+		/* TODO How is LOW POWER CONDITION ON handled? (byte 2) */
+		response[2] = SCSI_ASC_NO_SENSE;
+		response[3] = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
+		/* SDAT_OVFL = 0 | Additional Sense Length = 0 */
+	} else {
+		/* Fixed Format Sense Data */
+		response[0] = FIXED_SENSE_DATA;
+		/* Byte 1 = Obsolete */
+		response[2] = NO_SENSE; /* FM, EOM, ILI, SDAT_OVFL = 0 */
+		/* Bytes 3-6 - Information - set to zero */
+		response[7] = FIXED_SENSE_DATA_ADD_LENGTH;
+		/* Bytes 8-11 - Cmd Specific Information - set to zero */
+		response[12] = SCSI_ASC_NO_SENSE;
+		response[13] = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
+		/* Byte 14 = Field Replaceable Unit Code = 0 */
+		/* Bytes 15-17 - SKSV=0; Sense Key Specific = 0 */
+	}
+
+	xfer_len = min(alloc_len, resp_size);
+	res = nvme_trans_copy_to_user(hdr, response, xfer_len);
+
+	kfree(response);
+ out:
+	return res;
+}
+
+static int nvme_trans_security_protocol(struct nvme_ns *ns,
+					struct sg_io_hdr *hdr,
+					u8 *cmd)
+{
+	return nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
+				ILLEGAL_REQUEST, SCSI_ASC_ILLEGAL_COMMAND,
+				SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
+}
+
+static int nvme_trans_start_stop(struct nvme_ns *ns, struct sg_io_hdr *hdr,
+							u8 *cmd)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	int nvme_sc;
+	struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
+	u8 immed, pcmod, pc, no_flush, start;
+
+	immed = GET_U8_FROM_CDB(cmd, START_STOP_UNIT_CDB_IMMED_OFFSET);
+	pcmod = GET_U8_FROM_CDB(cmd, START_STOP_UNIT_CDB_POWER_COND_MOD_OFFSET);
+	pc = GET_U8_FROM_CDB(cmd, START_STOP_UNIT_CDB_POWER_COND_OFFSET);
+	no_flush = GET_U8_FROM_CDB(cmd, START_STOP_UNIT_CDB_NO_FLUSH_OFFSET);
+	start = GET_U8_FROM_CDB(cmd, START_STOP_UNIT_CDB_START_OFFSET);
+
+	immed &= START_STOP_UNIT_CDB_IMMED_MASK;
+	pcmod &= START_STOP_UNIT_CDB_POWER_COND_MOD_MASK;
+	pc = (pc & START_STOP_UNIT_CDB_POWER_COND_MASK) >> NIBBLE_SHIFT;
+	no_flush &= START_STOP_UNIT_CDB_NO_FLUSH_MASK;
+	start &= START_STOP_UNIT_CDB_START_MASK;
+
+	if (immed != 0) {
+		res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
+					ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
+					SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
+	} else {
+		if (no_flush == 0) {
+			/* Issue NVME FLUSH command prior to START STOP UNIT */
+			nvme_sc = nvme_submit_flush_data(nvmeq, ns);
+			put_nvmeq(nvmeq);
+			res = nvme_trans_status_code(hdr, nvme_sc);
+			if (res)
+				goto out;
+			if (nvme_sc) {
+				res = nvme_sc;
+				goto out;
+			}
+		}
+		/* Setup the expected power state transition */
+		res = nvme_trans_power_state(ns, hdr, pc, pcmod, start);
+	}
+
+ out:
+	return res;
+}
+
+static int nvme_trans_synchronize_cache(struct nvme_ns *ns,
+					struct sg_io_hdr *hdr, u8 *cmd)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	int nvme_sc;
+	struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
+	put_nvmeq(nvmeq);
+	nvme_sc = nvme_submit_flush_data(nvmeq, ns);
+	res = nvme_trans_status_code(hdr, nvme_sc);
+	if (res)
+		goto out;
+	if (nvme_sc)
+		res = nvme_sc;
+
+ out:
+	return res;
+}
+
+static int nvme_trans_format_unit(struct nvme_ns *ns, struct sg_io_hdr *hdr,
+							u8 *cmd)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	u8 parm_hdr_len = 0;
+	u8 nvme_pf_code = 0;
+	u8 format_prot_info, long_list, format_data;
+
+	format_prot_info = GET_U8_FROM_CDB(cmd,
+				FORMAT_UNIT_CDB_FORMAT_PROT_INFO_OFFSET);
+	long_list = GET_U8_FROM_CDB(cmd, FORMAT_UNIT_CDB_LONG_LIST_OFFSET);
+	format_data = GET_U8_FROM_CDB(cmd, FORMAT_UNIT_CDB_FORMAT_DATA_OFFSET);
+
+	format_prot_info = (format_prot_info &
+				FORMAT_UNIT_CDB_FORMAT_PROT_INFO_MASK) >>
+				FORMAT_UNIT_CDB_FORMAT_PROT_INFO_SHIFT;
+	long_list &= FORMAT_UNIT_CDB_LONG_LIST_MASK;
+	format_data &= FORMAT_UNIT_CDB_FORMAT_DATA_MASK;
+
+	if (format_data != 0) {
+		if (format_prot_info != 0) {
+			if (long_list == 0)
+				parm_hdr_len = FORMAT_UNIT_SHORT_PARM_LIST_LEN;
+			else
+				parm_hdr_len = FORMAT_UNIT_LONG_PARM_LIST_LEN;
+		}
+	} else if (format_data == 0 && format_prot_info != 0) {
+		res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
+					ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
+					SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
+		goto out;
+	}
+
+	/* Get parm header from data-in/out buffer */
+	/*
+	 * According to the translation spec, the only fields in the parameter
+	 * list we are concerned with are in the header. So allocate only that.
+	 */
+	if (parm_hdr_len > 0) {
+		res = nvme_trans_fmt_get_parm_header(hdr, parm_hdr_len,
+					format_prot_info, &nvme_pf_code);
+		if (res != SNTI_TRANSLATION_SUCCESS)
+			goto out;
+	}
+
+	/* Attempt to activate any previously downloaded firmware image */
+	res = nvme_trans_send_fw_cmd(ns, hdr, nvme_admin_activate_fw, 0, 0, 0);
+
+	/* Determine Block size and count and send format command */
+	res = nvme_trans_fmt_set_blk_size_count(ns, hdr);
+	if (res != SNTI_TRANSLATION_SUCCESS)
+		goto out;
+
+	res = nvme_trans_fmt_send_cmd(ns, hdr, nvme_pf_code);
+
+ out:
+	return res;
+}
+
+static int nvme_trans_test_unit_ready(struct nvme_ns *ns,
+					struct sg_io_hdr *hdr,
+					u8 *cmd)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	struct nvme_dev *dev = ns->dev;
+
+	if (!(readl(&dev->bar->csts) & NVME_CSTS_RDY))
+		res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
+					    NOT_READY, SCSI_ASC_LUN_NOT_READY,
+					    SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
+	else
+		res = nvme_trans_completion(hdr, SAM_STAT_GOOD, NO_SENSE, 0, 0);
+
+	return res;
+}
+
+static int nvme_trans_write_buffer(struct nvme_ns *ns, struct sg_io_hdr *hdr,
+							u8 *cmd)
+{
+	int res = SNTI_TRANSLATION_SUCCESS;
+	u32 buffer_offset, parm_list_length;
+	u8 buffer_id, mode;
+
+	parm_list_length =
+		GET_U24_FROM_CDB(cmd, WRITE_BUFFER_CDB_PARM_LIST_LENGTH_OFFSET);
+	if (parm_list_length % BYTES_TO_DWORDS != 0) {
+		/* NVMe expects Firmware file to be a whole number of DWORDS */
+		res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
+					ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
+					SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
+		goto out;
+	}
+	buffer_id = GET_U8_FROM_CDB(cmd, WRITE_BUFFER_CDB_BUFFER_ID_OFFSET);
+	if (buffer_id > NVME_MAX_FIRMWARE_SLOT) {
+		res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
+					ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
+					SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
+		goto out;
+	}
+	mode = GET_U8_FROM_CDB(cmd, WRITE_BUFFER_CDB_MODE_OFFSET) &
+						WRITE_BUFFER_CDB_MODE_MASK;
+	buffer_offset =
+		GET_U24_FROM_CDB(cmd, WRITE_BUFFER_CDB_BUFFER_OFFSET_OFFSET);
+
+	switch (mode) {
+	case DOWNLOAD_SAVE_ACTIVATE:
+		res = nvme_trans_send_fw_cmd(ns, hdr, nvme_admin_download_fw,
+						parm_list_length, buffer_offset,
+						buffer_id);
+		if (res != SNTI_TRANSLATION_SUCCESS)
+			goto out;
+		res = nvme_trans_send_fw_cmd(ns, hdr, nvme_admin_activate_fw,
+						parm_list_length, buffer_offset,
+						buffer_id);
+		break;
+	case DOWNLOAD_SAVE_DEFER_ACTIVATE:
+		res = nvme_trans_send_fw_cmd(ns, hdr, nvme_admin_download_fw,
+						parm_list_length, buffer_offset,
+						buffer_id);
+		break;
+	case ACTIVATE_DEFERRED_MICROCODE:
+		res = nvme_trans_send_fw_cmd(ns, hdr, nvme_admin_activate_fw,
+						parm_list_length, buffer_offset,
+						buffer_id);
+		break;
+	default:
+		res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
+					ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
+					SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
+		break;
+	}
+
+ out:
+	return res;
+}
+
+static int nvme_scsi_translate(struct nvme_ns *ns, struct sg_io_hdr *hdr)
+{
+	u8 cmd[BLK_MAX_CDB];
+	int retcode;
+	unsigned int opcode;
+
+	if (hdr->cmdp == NULL)
+		return -EMSGSIZE;
+	if (copy_from_user(cmd, hdr->cmdp, hdr->cmd_len))
+		return -EFAULT;
+
+	opcode = cmd[0];
+
+	switch (opcode) {
+	case READ_6:
+	case READ_10:
+	case READ_12:
+	case READ_16:
+		retcode = nvme_trans_io(ns, hdr, 0, cmd);
+		break;
+	case WRITE_6:
+	case WRITE_10:
+	case WRITE_12:
+	case WRITE_16:
+		retcode = nvme_trans_io(ns, hdr, 1, cmd);
+		break;
+	case INQUIRY:
+		retcode = nvme_trans_inquiry(ns, hdr, cmd);
+		break;
+	case LOG_SENSE:
+		retcode = nvme_trans_log_sense(ns, hdr, cmd);
+		break;
+	case MODE_SELECT:
+	case MODE_SELECT_10:
+		retcode = nvme_trans_mode_select(ns, hdr, cmd);
+		break;
+	case MODE_SENSE:
+	case MODE_SENSE_10:
+		retcode = nvme_trans_mode_sense(ns, hdr, cmd);
+		break;
+	case READ_CAPACITY:
+		retcode = nvme_trans_read_capacity(ns, hdr, cmd);
+		break;
+	case SERVICE_ACTION_IN:
+		if (IS_READ_CAP_16(cmd))
+			retcode = nvme_trans_read_capacity(ns, hdr, cmd);
+		else
+			goto out;
+		break;
+	case REPORT_LUNS:
+		retcode = nvme_trans_report_luns(ns, hdr, cmd);
+		break;
+	case REQUEST_SENSE:
+		retcode = nvme_trans_request_sense(ns, hdr, cmd);
+		break;
+	case SECURITY_PROTOCOL_IN:
+	case SECURITY_PROTOCOL_OUT:
+		retcode = nvme_trans_security_protocol(ns, hdr, cmd);
+		break;
+	case START_STOP:
+		retcode = nvme_trans_start_stop(ns, hdr, cmd);
+		break;
+	case SYNCHRONIZE_CACHE:
+		retcode = nvme_trans_synchronize_cache(ns, hdr, cmd);
+		break;
+	case FORMAT_UNIT:
+		retcode = nvme_trans_format_unit(ns, hdr, cmd);
+		break;
+	case TEST_UNIT_READY:
+		retcode = nvme_trans_test_unit_ready(ns, hdr, cmd);
+		break;
+	case WRITE_BUFFER:
+		retcode = nvme_trans_write_buffer(ns, hdr, cmd);
+		break;
+	default:
+ out:
+		retcode = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
+				ILLEGAL_REQUEST, SCSI_ASC_ILLEGAL_COMMAND,
+				SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
+		break;
+	}
+	return retcode;
+}
+
+int nvme_sg_io(struct nvme_ns *ns, struct sg_io_hdr __user *u_hdr)
+{
+	struct sg_io_hdr hdr;
+	int retcode;
+
+	if (!capable(CAP_SYS_ADMIN))
+		return -EACCES;
+	if (copy_from_user(&hdr, u_hdr, sizeof(hdr)))
+		return -EFAULT;
+	if (hdr.interface_id != 'S')
+		return -EINVAL;
+	if (hdr.cmd_len > BLK_MAX_CDB)
+		return -EINVAL;
+
+	retcode = nvme_scsi_translate(ns, &hdr);
+	if (retcode < 0)
+		return retcode;
+	if (retcode > 0)
+		retcode = SNTI_TRANSLATION_SUCCESS;
+	if (copy_to_user(__user u_hdr, &hdr, sizeof(sg_io_hdr_t)) > 0)
+		return -EFAULT;
+
+	return retcode;
+}
+
+int nvme_sg_get_version_num(int __user *ip)
+{
+	return put_user(sg_version_num, ip);
+}
diff --git a/include/linux/nvme.h b/include/linux/nvme.h
index 968d175..152c134 100644
--- a/include/linux/nvme.h
+++ b/include/linux/nvme.h
@@ -362,6 +362,16 @@ struct nvme_download_firmware {
 	__u32			rsvd12[4];
 };
 
+struct nvme_format_cmd {
+	__u8			opcode;
+	__u8			flags;
+	__u16			command_id;
+	__le32			nsid;
+	__u64			rsvd2[4];
+	__le32			cdw10;
+	__u32			rsvd11[5];
+};
+
 struct nvme_command {
 	union {
 		struct nvme_common_command common;
@@ -372,6 +382,7 @@ struct nvme_command {
 		struct nvme_create_sq create_sq;
 		struct nvme_delete_queue delete_queue;
 		struct nvme_download_firmware dlfw;
+		struct nvme_format_cmd format;
 	};
 };
 
@@ -388,6 +399,7 @@ enum {
 	NVME_SC_FUSED_FAIL		= 0x9,
 	NVME_SC_FUSED_MISSING		= 0xa,
 	NVME_SC_INVALID_NS		= 0xb,
+	NVME_SC_CMD_SEQ_ERROR		= 0xc,
 	NVME_SC_LBA_RANGE		= 0x80,
 	NVME_SC_CAP_EXCEEDED		= 0x81,
 	NVME_SC_NS_NOT_READY		= 0x82,
@@ -504,6 +516,8 @@ struct nvme_ns {
 	u32 mode_select_block_len;
 };
 
+#define NVME_IO_TIMEOUT	(5 * HZ)
+
 /*
  * The nvme_iod describes the data in an I/O, including the list of PRP
  * entries.  You can't see it in this data structure because C doesn't let
@@ -525,6 +539,32 @@ struct nvme_iod {
  * @dev: The device that the I/O was submitted to
  * @iod: The memory to free
  */
+void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod);
+
+int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd,
+			struct nvme_iod *iod, int total_len, gfp_t gfp);
+struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
+				unsigned long addr, unsigned length);
+void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
+			struct nvme_iod *iod);
+struct nvme_queue *get_nvmeq(struct nvme_dev *dev);
+void put_nvmeq(struct nvme_queue *nvmeq);
+int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
+						u32 *result, unsigned timeout);
+int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns);
+int nvme_submit_admin_cmd(struct nvme_dev *, struct nvme_command *,
+							u32 *result);
+int nvme_identify(struct nvme_dev *, unsigned nsid, unsigned cns,
+							dma_addr_t dma_addr);
+int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
+			dma_addr_t dma_addr, u32 *result);
+int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
+			dma_addr_t dma_addr, u32 *result);
+
+struct sg_io_hdr;
+
+int nvme_sg_io(struct nvme_ns *ns, struct sg_io_hdr __user *u_hdr);
+int nvme_sg_get_version_num(int __user *ip);
 
 #endif
 
-- 
1.7.0.4

^ permalink raw reply related	[flat|nested] 5+ messages in thread

* [PATCH v3 0/3] NVMe: Add support for SG_IO
  2013-03-05  1:40 [PATCH v3 0/3] NVMe: Add support for SG_IO Vishal Verma
                   ` (2 preceding siblings ...)
  2013-03-05  1:40 ` [PATCH v3 3/3] NVMe: Add nvme-scsi.c Vishal Verma
@ 2013-03-28  1:17 ` Matthew Wilcox
  3 siblings, 0 replies; 5+ messages in thread
From: Matthew Wilcox @ 2013-03-28  1:17 UTC (permalink / raw)


On Mon, Mar 04, 2013@06:40:55PM -0700, Vishal Verma wrote:
> These patches allow the nvme driver to handle the SG_IO ioctl.
> Applications may send any supported SCSI Command through the
> SG_IO framework. The supported command list as well as the
> translation reference is available on www.nvmexpress.org
> 
> Vishal Verma (3):
>   NVMe: Rename nvme.c to nvme-core.c
>   NVMe: Move dev, ns, iod structs to nvme.c
>   NVMe: Add nvme-scsi.c

I ended up modifying these patche before committing them.

 - I split out the addition of the format command into its own patch.
   It's significant enough to be worth doing separately.
 - The comment on nvme_free_iod() was part of the second patch instead of
   the final patch, for some reason.
 - I moved the additions to the nvme_ns data structure to the final patch
   (was part of the second patch).
 - Instead of storing the vendor_id from the identify result, just use the
   pci_dev's ->vendor element.

Hope I didn't break anything in the process :-)

^ permalink raw reply	[flat|nested] 5+ messages in thread

end of thread, other threads:[~2013-03-28  1:17 UTC | newest]

Thread overview: 5+ messages (download: mbox.gz follow: Atom feed
-- links below jump to the message on this page --
2013-03-05  1:40 [PATCH v3 0/3] NVMe: Add support for SG_IO Vishal Verma
2013-03-05  1:40 ` [PATCH v3 1/3] NVMe: Rename nvme.c to nvme-core.c Vishal Verma
2013-03-05  1:40 ` [PATCH v3 2/3] NVMe: Move dev, ns, iod structs to nvme.c Vishal Verma
2013-03-05  1:40 ` [PATCH v3 3/3] NVMe: Add nvme-scsi.c Vishal Verma
2013-03-28  1:17 ` [PATCH v3 0/3] NVMe: Add support for SG_IO Matthew Wilcox

This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).