From: "Joakim Tjernlund" <Joakim.Tjernlund@lumentis.se>
To: <jan.damborsky@devcom.cz>
Cc: <brad@parker.boston.ma.us>, "Wolfgang Denk" <wd@denx.de>,
<linuxppc-dev@lists.linuxppc.org>
Subject: Re: Ethernets on SCC2 and SCC3 on mpc8xx
Date: Fri, 29 Aug 2003 00:22:24 +0200 [thread overview]
Message-ID: <006d01c36db2$e13b9310$020120b0@jockeXP> (raw)
[-- Attachment #1: Type: text/plain, Size: 323 bytes --]
Hi Jan
I have a version that supports multiple enet's in one driver.
It is a bit specific for our board and contains a lot more:
- run time settable MAC and MTU.
- optimized RX interrupt handling(up to 20% better throuput)
- improved handling of received faulty frames.
I am attaching the driver. Good luck.
Jocke
[-- Attachment #2: enet.c --]
[-- Type: application/octet-stream, Size: 34299 bytes --]
/*
* Ethernet driver for Motorola MPC8xx.
* Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
*
* I copied the basic skeleton from the lance driver, because I did not
* know how to write the Linux driver, but I did know how the LANCE worked.
*
* This version of the driver is somewhat selectable for the different
* processor/board combinations. It works for the boards I know about
* now, and should be easily modified to include others. Some of the
* configuration information is contained in "commproc.h" and the
* remainder is here.
*
* Buffer descriptors are kept in the CPM dual port RAM, and the frame
* buffers are in the host memory.
*
* Right now, I am very watseful with the buffers. I allocate memory
* pages and then divide them into 2K frame buffers. This way I know I
* have buffers large enough to hold one frame within one buffer descriptor.
* Once I get this working, I will use 64 or 128 byte CPM buffers, which
* will be much more memory efficient and will easily handle lots of
* small packets.
*
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <asm/8xx_immap.h>
#include <asm/pgtable.h>
#include <asm/mpc8xx.h>
#include <asm/bitops.h>
#include <asm/uaccess.h>
#include <asm/commproc.h>
/*
* Theory of Operation
*
* The MPC8xx CPM performs the Ethernet processing on SCC1. It can use
* an aribtrary number of buffers on byte boundaries, but must have at
* least two receive buffers to prevent constant overrun conditions.
*
* The buffer descriptors are allocated from the CPM dual port memory
* with the data buffers allocated from host memory, just like all other
* serial communication protocols. The host memory buffers are allocated
* from the free page pool, and then divided into smaller receive and
* transmit buffers. The size of the buffers should be a power of two,
* since that nicely divides the page. This creates a ring buffer
* structure similar to the LANCE and other controllers.
*
* Like the LANCE driver:
* The driver runs as two independent, single-threaded flows of control. One
* is the send-packet routine, which enforces single-threaded use by the
* cep->tx_busy flag. The other thread is the interrupt handler, which is
* single threaded by the hardware and other software.
*
* The send packet thread has partial control over the Tx ring and the
* 'cep->tx_busy' flag. It sets the tx_busy flag whenever it's queuing a Tx
* packet. If the next queue slot is empty, it clears the tx_busy flag when
* finished otherwise it sets the 'lp->tx_full' flag.
*
* The MBX has a control register external to the MPC8xx that has some
* control of the Ethernet interface. Information is in the manual for
* your board.
*
* The RPX boards have an external control/status register. Consult the
* programming documents for details unique to your board.
*
* For the TQM8xx(L) modules, there is no control register interface.
* All functions are directly controlled using I/O pins. See commproc.h.
*/
/* The transmitter timeout
*/
#define TX_TIMEOUT (1*HZ)
/* Define COPY_SMALL_FRAMES if you want to save buffer memory for small packets
* at a small performance hit */
#ifdef COPY_SMALL_FRAMES
#define RX_COPYBREAK (256-16+1) /* dev_alloc_skb() adds 16 bytes for internal use */
#endif
/* The number of Tx and Rx buffers. These are allocated from the page
* pool. The code may assume these are power of two, so it is best
* to keep them that size.
* We don't need to allocate pages for the transmitter. We just use
* the skbuffer directly.
*/
#ifdef CONFIG_ENET_BIG_BUFFERS
#define RX_RING_SIZE 64
#define TX_RING_SIZE 64 /* Must be power of two for this to work */
#else
#define RX_RING_SIZE 16
#define TX_RING_SIZE 16 /* Must be power of two for this to work */
#endif
#define TX_RING_MOD_MASK (TX_RING_SIZE-1)
#define CPM_ENET_RX_FRSIZE 1552 /* must be a multiple of cache line */
#if CPM_ENET_RX_FRSIZE % L1_CACHE_LINE_SIZE != 0
#error CPM_ENET_RX_FRSIZE must be a multiple of L1 cache size
#endif
/* The CPM stores dest/src/type, data, and checksum for receive packets.
*/
#define MAX_MTU 1514 /* this is data size */
#define MIN_MTU 46 /* this is data size */
#define SCC_MAX_MTU (((CPM_ENET_RX_FRSIZE-ETH_HLEN-8)/4)*4) /* must be a multiple of 4 */
#define PKT_MAXBUF_SIZE (MAX_MTU+ETH_HLEN+4) /* allow fullsized pppoe packets and VLAN */
#define PKT_MINBUF_SIZE (MIN_MTU+ETH_HLEN+4)
#define PKT_MAXBLR_SIZE SCC_MAX_MTU
/* The CPM buffer descriptors track the ring buffers. The rx_bd_base and
* tx_bd_base always point to the base of the buffer descriptors. The
* cur_rx and cur_tx point to the currently available buffer.
* The dirty_tx tracks the current buffer that is being sent by the
* controller. The cur_tx and dirty_tx are equal under both completely
* empty and completely full conditions. The empty/ready indicator in
* the buffer descriptor determines the actual condition.
*/
struct scc_enet_private {
/* The saved address of a sent-in-place packet/buffer, for skfree(). */
struct sk_buff* tx_skbuff[TX_RING_SIZE];
ushort skb_cur;
ushort skb_dirty;
/* CPM dual port RAM relative addresses.
*/
cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
cbd_t *tx_bd_base;
cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
cbd_t *dirty_tx; /* The ring entries to be free()ed. */
scc_t *sccp;
/* Virtual addresses for the receive buffers because we can't
* do a __va() on them anymore.
*/
void *rx_vaddr[RX_RING_SIZE];
struct net_device_stats stats;
uint tx_full;
spinlock_t lock;
char scc_num;
int cpm_cr_ch;
};
int __init scc_enet_init_params(int scc_num, int cpmvec, int proff, int cpm_cr_ch);
int __init cpm_enet_init_scc_pins(int scc_num);
int __init cpm_enet_init_scc_clock(int scc_num);
static int scc_enet_open(struct net_device *dev);
static int scc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
static int scc_enet_rx(struct net_device *dev);
static void scc_enet_interrupt(void *dev_id, struct pt_regs *regs);
static int scc_enet_close(struct net_device *dev);
static struct net_device_stats *scc_enet_get_stats(struct net_device *dev);
static void set_multicast_list(struct net_device *dev);
static void cpm_enet_enable_xmit(int);
/*
* Called from net/core/dev.c: int dev_open(struct net_device *dev)
*
* If CONFIG_LUMENTISCP defined: it will be called twice, once for
* 'eth0' and once for 'eth1'.
*
* If CONFIG_LUMENTISUP defined: it will be called just once.
* I.e. for'eth0'.
*/
static int
scc_enet_open(struct net_device *dev)
{
struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv;
/* I should reset the ring buffers here, but I don't yet know
* a simple way to do that.
*/
netif_start_queue(dev);
/* enable the transmit and receive processing.
*/
cep->sccp->scc_gsmrl |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT);
return 0; /* Always succeed */
}
static int
scc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv;
volatile cbd_t *bdp;
volatile scc_enet_t *ep = (scc_enet_t *)dev->base_addr;
/* Fill in a Tx ring entry */
bdp = cep->cur_tx;
if (skb->len > (ep->sen_maxflr - 4)){
printk("eth: TX frame is too long");
}
/* Clear all of the status flags.
*/
bdp->cbd_sc &= ~BD_ENET_TX_STATS;
/* If the frame is short, tell CPM to pad it.
if (skb->len <= ETH_ZLEN)
bdp->cbd_sc |= BD_ENET_TX_PAD;
else
bdp->cbd_sc &= ~BD_ENET_TX_PAD;
*/
/* Set buffer length and buffer pointer.
*/
bdp->cbd_datlen = skb->len;
bdp->cbd_bufaddr = __pa(skb->data);
/* Save skb pointer.
*/
cep->tx_skbuff[cep->skb_cur] = skb;
cep->stats.tx_bytes += skb->len;
cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK;
/* Push the data cache so the CPM does not get stale memory
* data.
*/
flush_dcache_range((unsigned long)(skb->data),
(unsigned long)(skb->data + skb->len));
spin_lock_irq(&cep->lock);
/* Send it on its way. Tell CPM its ready, interrupt when done,
* its the last BD of the frame, and to put the CRC on the end.
*/
bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC | BD_ENET_TX_PAD);
dev->trans_start = jiffies;
/* If this was the last BD in the ring, start at the beginning again.
*/
if (bdp->cbd_sc & BD_ENET_TX_WRAP)
bdp = cep->tx_bd_base;
else
bdp++;
if (bdp->cbd_sc & BD_ENET_TX_READY) {
netif_stop_queue(dev);
cep->tx_full = 1;
}
cep->cur_tx = (cbd_t *)bdp;
spin_unlock_irq(&cep->lock);
return 0;
}
static void
scc_enet_timeout(struct net_device *dev)
{
struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv;
printk("%s: transmit timed out.\n", dev->name);
cep->stats.tx_errors++;
#ifndef final_version
{
int i;
cbd_t *bdp;
printk(" Ring data dump: cur_tx %p%s cur_rx %p.\n",
cep->cur_tx, cep->tx_full ? " (full)" : "",
cep->cur_rx);
bdp = cep->tx_bd_base;
for (i = 0 ; i < TX_RING_SIZE; i++, bdp++)
printk("%04x %04x %08x\n",
bdp->cbd_sc,
bdp->cbd_datlen,
bdp->cbd_bufaddr);
bdp = cep->rx_bd_base;
for (i = 0 ; i < RX_RING_SIZE; i++, bdp++)
printk("%04x %04x %08x\n",
bdp->cbd_sc,
bdp->cbd_datlen,
bdp->cbd_bufaddr);
}
#endif
if (!cep->tx_full)
netif_wake_queue(dev);
}
/* The interrupt handler.
* This is called from the CPM handler, not the MPC core interrupt.
*/
static void
scc_enet_interrupt(void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = dev_id;
volatile struct scc_enet_private *cep;
volatile cbd_t *bdp;
ushort int_events;
int must_restart;
cep = (struct scc_enet_private *)dev->priv;
/* Get the interrupt events that caused us to be here.
*/
int_events = cep->sccp->scc_scce;
cep->sccp->scc_scce = int_events;
must_restart = 0;
/* Handle receive event in its own function.
*/
if (int_events & SCCE_ENET_RXF)
scc_enet_rx(dev_id);
/* Check for a transmit error. The manual is a little unclear
* about this, so the debug code until I get it figured out. It
* appears that if TXE is set, then TXB is not set. However,
* if carrier sense is lost during frame transmission, the TXE
* bit is set, "and continues the buffer transmission normally."
* I don't know if "normally" implies TXB is set when the buffer
* descriptor is closed.....trial and error :-).
*/
/* Transmit OK, or non-fatal error. Update the buffer descriptors.
*/
if (int_events & (SCCE_ENET_TXE | SCCE_ENET_TXB)) {
spin_lock(&cep->lock);
bdp = cep->dirty_tx;
while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) {
if ((bdp==cep->cur_tx) && (cep->tx_full == 0))
break;
if (bdp->cbd_sc & (BD_ENET_TX_HB | BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL | BD_ENET_TX_RCMASK)) {
if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
cep->stats.tx_heartbeat_errors++;
if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
cep->stats.tx_window_errors++;
if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
cep->stats.tx_aborted_errors++;
if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
cep->stats.tx_fifo_errors++;
if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
cep->stats.tx_carrier_errors++;
/* Check retry counter, i.e. collision counter */
if (bdp->cbd_sc & BD_ENET_TX_RCMASK){
/* Note that counter cannot go higher than 15 */
cep->stats.collisions+=(bdp->cbd_sc & BD_ENET_TX_RCMASK)>>2;
}
/* No heartbeat or Lost carrier are not really bad errors.
* The others require a restart transmit command.
*/
if (bdp->cbd_sc &
(BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
must_restart = 1;
cep->stats.tx_errors++;
}
}
cep->stats.tx_packets++;
/* Free the sk buffer associated with this last transmit.
*/
dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]);
cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK;
/* Update pointer to next buffer descriptor to be transmitted.
*/
if (bdp->cbd_sc & BD_ENET_TX_WRAP)
bdp = cep->tx_bd_base;
else
bdp++;
/* I don't know if we can be held off from processing these
* interrupts for more than one frame time. I really hope
* not. In such a case, we would now want to check the
* currently available BD (cur_tx) and determine if any
* buffers between the dirty_tx and cur_tx have also been
* sent. We would want to process anything in between that
* does not have BD_ENET_TX_READY set.
*/
/* Since we have freed up a buffer, the ring is no longer
* full.
*/
if (cep->tx_full) {
cep->tx_full = 0;
if (netif_queue_stopped(dev))
netif_wake_queue(dev);
}
cep->dirty_tx = (cbd_t *)bdp;
}
if (must_restart) {
volatile cpm8xx_t *cp;
/* Some transmit errors cause the transmitter to shut
* down. We now issue a restart transmit. Since the
* errors close the BD and update the pointers, the restart
* _should_ pick up without having to reset any of our
* pointers either.
*/
cp = cpmp;
cp->cp_cpcr =
mk_cr_cmd(cep->cpm_cr_ch, CPM_CR_RESTART_TX) | CPM_CR_FLG;
while (cp->cp_cpcr & CPM_CR_FLG);
}
spin_unlock(&cep->lock);
}
/* Check for receive busy, i.e. packets coming but no place to
* put them. This "can't happen" because the receive interrupt
* is tossing previous frames.
*/
if (int_events & SCCE_ENET_BSY) {
cep->stats.rx_dropped++;
printk("CPM ENET ethernet: BSY can't happen.\n");
}
return;
}
/* During a receive, the cur_rx points to the current incoming buffer.
* When we update through the ring, if the next incoming buffer has
* not been given to the system, we just set the empty indicator,
* effectively tossing the packet.
*/
static int
scc_enet_rx(struct net_device *dev)
{
struct scc_enet_private *cep;
volatile cbd_t *bdp;
struct sk_buff *skb, *skb_tmp;
ushort pkt_len;
cep = (struct scc_enet_private *)dev->priv;
/* First, grab all of the stats for the incoming packet.
* These get messed up if we get called due to a busy condition.
*/
bdp = cep->cur_rx;
for (;;) {
if (bdp->cbd_sc & BD_ENET_RX_EMPTY)
break;
#define RX_BD_ERRORS (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_CL)
if(bdp->cbd_sc & RX_BD_ERRORS){ /* Receive errors ? */
cep->stats.rx_errors++;
if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) /* Frame too long or too short. */
cep->stats.rx_length_errors++;
if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
cep->stats.rx_frame_errors++;
if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
cep->stats.rx_crc_errors++;
if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
cep->stats.rx_fifo_errors++;
if (bdp->cbd_sc & BD_ENET_RX_CL) /* Late collision */
cep->stats.collisions++;
} else {
/* Process the incoming frame.
*/
cep->stats.rx_packets++;
pkt_len = bdp->cbd_datlen;
cep->stats.rx_bytes += pkt_len;
pkt_len -= 4; /* The packet length includes FCS, but we don't want to
* include that when passing upstream as it messes up
* bridging applications. */
#ifdef COPY_SMALL_FRAMES
/* Allocate the next buffer now so we are sure to have one when needed
* This does 16 byte alignment, exactly what we need(L1_CACHE aligned). */
if(pkt_len < RX_COPYBREAK){
skb_tmp = __dev_alloc_skb(pkt_len + 2, GFP_ATOMIC | GFP_DMA);
skb_reserve(skb_tmp, 2); /* make the IP header L1 cache aligned */
} else
#endif
skb_tmp = __dev_alloc_skb(CPM_ENET_RX_FRSIZE, GFP_ATOMIC | GFP_DMA);
if (skb_tmp == NULL) {
printk("%s: Memory squeeze, dropping packet.\n", dev->name);
cep->stats.rx_dropped++;
} else {
skb = cep->rx_vaddr[bdp - cep->rx_bd_base];
#ifdef COPY_SMALL_FRAMES
if(pkt_len < RX_COPYBREAK) {
typeof(skb) skb_swap = skb;
memcpy(skb_put(skb_tmp, pkt_len), skb->data, pkt_len);
/* swap the skb and skb_tmp */
skb = skb_tmp;
skb_tmp = skb_swap;
}
else
#endif
{
skb_put(skb, pkt_len); /* Make room */
bdp->cbd_bufaddr = __pa(skb_tmp->data);
cep->rx_vaddr[bdp - cep->rx_bd_base] = skb_tmp;
}
invalidate_dcache_range((unsigned long) skb_tmp->data,
(unsigned long) skb_tmp->data + CPM_ENET_RX_FRSIZE);
skb->dev = dev;
skb->protocol=eth_type_trans(skb, dev);
netif_rx(skb);
}
}
/* Clear the status flags for this buffer.
*/
bdp->cbd_sc &= ~BD_ENET_RX_STATS;
/* Mark the buffer empty.
*/
bdp->cbd_sc |= BD_ENET_RX_EMPTY;
/* Update BD pointer to next entry.
*/
if (bdp->cbd_sc & BD_ENET_RX_WRAP)
bdp = cep->rx_bd_base;
else
bdp++;
}
cep->cur_rx = (cbd_t *)bdp;
return 0;
}
static int
scc_enet_close(struct net_device *dev)
{
struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv;
/* Don't know what to do yet.
*/
cep->sccp->scc_gsmrl &= ~(SCC_GSMRL_ENR | SCC_GSMRL_ENT);
netif_stop_queue(dev);
return 0;
}
static struct net_device_stats *scc_enet_get_stats(struct net_device *dev)
{
struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv;
return &cep->stats;
}
static int change_mtu(struct net_device *dev, int new_mtu)
{
volatile scc_enet_t *ep;
if ((new_mtu < MIN_MTU ) || (new_mtu > MAX_MTU))
return -EINVAL;
ep = (scc_enet_t *)dev->base_addr;
ep->sen_maxflr = new_mtu + ETH_HLEN + 4; /* maximum frame length register */
dev->mtu = new_mtu;
printk("ENET: change_mtu: %d\n",new_mtu);
return 0;
}
static int set_mac_address(struct net_device *dev, void *addr)
{
volatile scc_enet_t *ep;
unsigned char *eap;
struct sockaddr *mac = addr;
int i;
if(netif_running(dev))
return -EBUSY;
/* Get pointer to SCC area in parameter RAM. */
ep = (scc_enet_t *)dev->base_addr;
eap = (unsigned char *)&(ep->sen_paddrh);
/* cli(); */
for (i=5; i>=0; i--)
*eap++ = dev->dev_addr[i] = mac->sa_data[i];
/* sti(); */
return 0;
}
/* Set or clear the multicast filter for this adaptor.
* Skeleton taken from sunlance driver.
* The CPM Ethernet implementation allows Multicast as well as individual
* MAC address filtering. Some of the drivers check to make sure it is
* a group multicast address, and discard those that are not. I guess I
* will do the same for now, but just remove the test if you want
* individual filtering as well (do the upper net layers want or support
* this kind of feature?).
*/
static void set_multicast_list(struct net_device *dev)
{
struct scc_enet_private *cep;
struct dev_mc_list *dmi;
u_char *mcptr, *tdptr;
volatile scc_enet_t *ep;
int i, j;
cep = (struct scc_enet_private *)dev->priv;
/* Get pointer to SCC area in parameter RAM.
*/
ep = (scc_enet_t *)dev->base_addr;
if (dev->flags&IFF_PROMISC) {
cep->sccp->scc_pmsr |= SCC_PMSR_PRO;
} else {
cep->sccp->scc_pmsr &= ~SCC_PMSR_PRO;
if (dev->flags & IFF_ALLMULTI) {
/* Catch all multicast addresses, so set the
* filter to all 1's.
*/
ep->sen_gaddr1 = 0xffff;
ep->sen_gaddr2 = 0xffff;
ep->sen_gaddr3 = 0xffff;
ep->sen_gaddr4 = 0xffff;
}
else {
/* Clear filter and add the addresses in the list.
*/
ep->sen_gaddr1 = 0;
ep->sen_gaddr2 = 0;
ep->sen_gaddr3 = 0;
ep->sen_gaddr4 = 0;
dmi = dev->mc_list;
for (i=0; i<dev->mc_count; i++, dmi = dmi->next) {
/* Only support group multicast for now.
*/
if (!(dmi->dmi_addr[0] & 1))
continue;
/* The address in dmi_addr is LSB first,
* and taddr is MSB first. We have to
* copy bytes MSB first from dmi_addr.
*/
mcptr = (u_char *)dmi->dmi_addr + 5;
tdptr = (u_char *)&ep->sen_taddrh;
for (j=0; j<6; j++)
*tdptr++ = *mcptr--;
/* Ask CPM to run CRC and set bit in
* filter mask.
*/
cpmp->cp_cpcr = mk_cr_cmd(cep->cpm_cr_ch, CPM_CR_SET_GADDR) | CPM_CR_FLG;
/* this delay is necessary here -- Cort */
udelay(10);
while (cpmp->cp_cpcr & CPM_CR_FLG);
}
}
}
}
int __init scc_enet_init(void)
{
bd_t *bd = (bd_t *)__res;
/*
* Always initialize eth0 on SCC1.
*/
scc_enet_init_params(0, CPMVEC_SCC1, PROFF_SCC1, CPM_CR_CH_SCC1);
if(bd->board_type == CU_BOARDTYPE || bd->board_type == CU2_BOARDTYPE){
/*
* On a CP board initialize eth1 on SCC2.
*/
scc_enet_init_params(1, CPMVEC_SCC2, PROFF_SCC2, CPM_CR_CH_SCC2);
if(bd->board_type == CU2_BOARDTYPE){
scc_enet_init_params(3, CPMVEC_SCC4, PROFF_SCC4, CPM_CR_CH_SCC4);
}
}
return 0;
}
/* Initialize the CPM Ethernet on SCC. If EPPC-Bug loaded us, or performed
* some other network I/O, a whole bunch of this has already been set up.
* It is no big deal if we do it again, we just have to disable the
* transmit and receive to make sure we don't catch the CPM with some
* inconsistent control information.
*/
int __init scc_enet_init_params(int scc_num, int cpmvec, int proff, int cpm_cr_ch)
{
struct net_device *dev;
struct scc_enet_private *cep;
int i, j, k;
unsigned char *eap;
bd_t *bd;
volatile cbd_t *bdp;
volatile cpm8xx_t *cp;
volatile scc_t *sccp;
volatile scc_enet_t *ep;
volatile immap_t *immap;
cp = cpmp; /* Get pointer to Communication Processor */
immap = (immap_t *)(mfspr(IMMR) & 0xFFFF0000); /* and to internal registers */
bd = (bd_t *)__res;
/* Allocate some private information.
*/
cep = (struct scc_enet_private *)kmalloc(sizeof(*cep), GFP_KERNEL);
if (cep == NULL)
return -ENOMEM;
__clear_user(cep,sizeof(*cep));
spin_lock_init(&cep->lock);
/* Create an Ethernet device instance.
*/
dev = init_etherdev(0, 0);
/* Get pointer to SCC area in parameter RAM.
*/
ep = (scc_enet_t *)(&cp->cp_dparam[proff]);
/* And another to the SCC register area.
*/
sccp = (volatile scc_t *)(&cp->cp_scc[scc_num]);
cep->sccp = (scc_t *)sccp; /* Keep the pointer handy */
cep->scc_num = scc_num;
cep->cpm_cr_ch = cpm_cr_ch;
/* Disable receive and transmit in case EPPC-Bug started it.
*/
sccp->scc_gsmrl &= ~(SCC_GSMRL_ENR | SCC_GSMRL_ENT);
/* Init physical pins
*/
cpm_enet_init_scc_pins(scc_num);
/* Configure Serial Interface clock routing.
*/
cpm_enet_init_scc_clock(scc_num);
/* Manual says set SDDR, but I can't find anything with that
* name. I think it is a misprint, and should be SDCR. This
* has already been set by the communication processor initialization.
*/
/* Allocate space for the buffer descriptors in the DP ram.
* These are relative offsets in the DP ram address space.
* Initialize base addresses for the buffer descriptors.
*/
i = m8xx_cpm_dpalloc(sizeof(cbd_t) * RX_RING_SIZE);
ep->sen_genscc.scc_rbase = i;
cep->rx_bd_base = (cbd_t *)&cp->cp_dpmem[i];
i = m8xx_cpm_dpalloc(sizeof(cbd_t) * TX_RING_SIZE);
ep->sen_genscc.scc_tbase = i;
cep->tx_bd_base = (cbd_t *)&cp->cp_dpmem[i];
cep->dirty_tx = cep->cur_tx = cep->tx_bd_base;
cep->cur_rx = cep->rx_bd_base;
/* Issue init Rx BD command for SCC.
* Manual says to perform an Init Rx parameters here. We have
* to perform both Rx and Tx because the SCC may have been
* already running.
* In addition, we have to do it later because we don't yet have
* all of the BD control/status set properly.
*/
/* Initialize function code registers for big-endian.
*/
ep->sen_genscc.scc_rfcr = SCC_EB;
ep->sen_genscc.scc_tfcr = SCC_EB;
/* Set maximum bytes per receive buffer.
* This appears to be an Ethernet frame size, not the buffer
* fragment size. It must be a multiple of four.
*/
ep->sen_genscc.scc_mrblr = PKT_MAXBLR_SIZE;
/* Set CRC preset and mask.
*/
ep->sen_cpres = 0xffffffff;
ep->sen_cmask = 0xdebb20e3;
ep->sen_crcec = 0; /* CRC Error counter */
ep->sen_alec = 0; /* alignment error counter */
ep->sen_disfc = 0; /* discard frame counter */
ep->sen_pads = 0x8888; /* Tx short frame pad character */
ep->sen_retlim = 15; /* Retry limit threshold */
ep->sen_maxflr = PKT_MAXBUF_SIZE; /* maximum frame length register */
ep->sen_minflr = PKT_MINBUF_SIZE; /* minimum frame length register */
ep->sen_maxd1 = PKT_MAXBLR_SIZE; /* maximum DMA1 length */
ep->sen_maxd2 = PKT_MAXBLR_SIZE; /* maximum DMA2 length */
/* Clear hash tables.
*/
ep->sen_gaddr1 = 0;
ep->sen_gaddr2 = 0;
ep->sen_gaddr3 = 0;
ep->sen_gaddr4 = 0;
ep->sen_iaddr1 = 0;
ep->sen_iaddr2 = 0;
ep->sen_iaddr3 = 0;
ep->sen_iaddr4 = 0;
/* Set Ethernet station address.
*
* If we performed a MBX diskless boot, the Ethernet controller
* has been initialized and we copy the address out into our
* own structure.
*
* All other types of boards supply the address in the board
* information structure, so we copy that into the controller.
*/
eap = (unsigned char *)&(ep->sen_paddrh);
for (i=5; i>=0; i--)
*eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i];
ep->sen_pper = 0; /* 'cause the book says so */
ep->sen_taddrl = 0; /* temp address (LSB) */
ep->sen_taddrm = 0;
ep->sen_taddrh = 0; /* temp address (MSB) */
/* Now allocate the host memory pages and initialize the
* buffer descriptors.
*/
bdp = cep->tx_bd_base;
for (i=0; i<TX_RING_SIZE; i++) {
/* Initialize the BD for every fragment in the page.
*/
bdp->cbd_sc = 0;
bdp->cbd_bufaddr = 0;
bdp++;
}
/* Set the last buffer to wrap.
*/
bdp--;
bdp->cbd_sc |= BD_SC_WRAP;
bdp = cep->rx_bd_base;
k = 0;
/* Initialize the BDs. */
for (j=0; j < RX_RING_SIZE; j++) {
struct sk_buff * skb = __dev_alloc_skb(CPM_ENET_RX_FRSIZE, GFP_ATOMIC|GFP_DMA);
invalidate_dcache_range((unsigned long) skb->data,
(unsigned long) skb->data + CPM_ENET_RX_FRSIZE);
bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR;
bdp->cbd_bufaddr = __pa(skb->data);
cep->rx_vaddr[k++] = skb;
bdp++;
}
/* Set the last buffer to wrap.
*/
bdp--;
bdp->cbd_sc |= BD_SC_WRAP;
/* Let's re-initialize the channel now. We have to do it later
* than the manual describes because we have just now finished
* the BD initialization.
*/
cp->cp_cpcr = mk_cr_cmd(cep->cpm_cr_ch, CPM_CR_INIT_TRX) | CPM_CR_FLG;
while (cp->cp_cpcr & CPM_CR_FLG);
cep->skb_cur = cep->skb_dirty = 0;
sccp->scc_scce = 0xffff; /* Clear any pending events */
/* Enable interrupts for transmit error, complete frame
* received, and any transmit buffer we have also set the
* interrupt flag.
*/
sccp->scc_sccm = (SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB);
/* Install our interrupt handler.
*/
cpm_install_handler(cpmvec, scc_enet_interrupt, dev);
/* Set GSMR_H to enable all normal operating modes.
* Set GSMR_L to enable Ethernet to MC68160.
*/
sccp->scc_gsmrh = 0;
sccp->scc_gsmrl = (SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 | SCC_GSMRL_MODE_ENET);
/* Set sync/delimiters.
*/
sccp->scc_dsr = 0xd555;
/* Set processing mode. Use Ethernet CRC, catch broadcast, and
* start frame search 22 bit times after RENA.
*/
sccp->scc_pmsr = (SCC_PMSR_ENCRC | SCC_PMSR_NIB22);
#ifdef CONFIG_SCC_ENET_FULL_DUPLEX
sccp->scc_pmsr |= SCC_PMSR_LPB | SCC_PMSR_FDE;
printk("Enet %d: Full duplex enabled\n", scc_num);
#endif
/* It is now OK to enable the Ethernet transmitter.
* Unfortunately, there are board implementation differences here.
*/
cpm_enet_enable_xmit(scc_num);
#if defined(CONFIG_RPXLITE) || defined(CONFIG_RPXCLASSIC)
/* And while we are here, set the configuration to enable ethernet.
*/
*((volatile uint *)RPX_CSR_ADDR) &= ~BCSR0_ETHLPBK;
*((volatile uint *)RPX_CSR_ADDR) |=
(BCSR0_ETHEN | BCSR0_COLTESTDIS | BCSR0_FULLDPLXDIS);
#endif
dev->base_addr = (unsigned long)ep;
dev->priv = cep;
#if 0
dev->name = "CPM_ENET";
#endif
/* The CPM Ethernet specific entries in the device structure. */
dev->open = scc_enet_open;
dev->hard_start_xmit = scc_enet_start_xmit;
dev->tx_timeout = scc_enet_timeout;
dev->watchdog_timeo = TX_TIMEOUT;
dev->stop = scc_enet_close;
dev->get_stats = scc_enet_get_stats;
dev->set_multicast_list = set_multicast_list;
dev->set_mac_address = set_mac_address;
dev->change_mtu = change_mtu;
printk("%s: CPM ENET Version 0.3, ", dev->name);
for (i=0; i<5; i++)
printk("%02x:", dev->dev_addr[i]);
printk("%02x\n", dev->dev_addr[5]);
return 0;
}
/* Cookbook style from the MPC860 manual.....
* Not all of this is necessary if EPPC-Bug has initialized
* the network.
* So far we are lucky, all board configurations use the same
* pins, or at least the same I/O Port for these functions.....
* It can't last though......
*/
int __init cpm_enet_init_scc_pins(int scc_num)
{
volatile immap_t *immap = (immap_t *)IMAP_ADDR;
switch (scc_num) {
case 0: /* SCC1 */
/* Configure port A pins for Txd and Rxd.
*/
immap->im_ioport.iop_papar |= (PA1_ENET_RXD | PA1_ENET_TXD);
immap->im_ioport.iop_padir &= ~(PA1_ENET_RXD | PA1_ENET_TXD);
immap->im_ioport.iop_paodr &= ~PA1_ENET_TXD;
/* Configure port C pins to enable CLSN and RENA.
*/
immap->im_ioport.iop_pcpar &= ~(PC1_ENET_CLSN | PC1_ENET_RENA);
immap->im_ioport.iop_pcdir &= ~(PC1_ENET_CLSN | PC1_ENET_RENA);
immap->im_ioport.iop_pcso |= (PC1_ENET_CLSN | PC1_ENET_RENA);
/* Configure port A for TCLK and RCLK.
*/
immap->im_ioport.iop_papar |= (PA1_ENET_TCLK | PA1_ENET_RCLK);
immap->im_ioport.iop_padir &= ~(PA1_ENET_TCLK | PA1_ENET_RCLK);
break;
case 1: /* SCC2 */
/* Configure port A pins for Txd and Rxd.
*/
immap->im_ioport.iop_papar |= (PA2_ENET_RXD | PA2_ENET_TXD);
immap->im_ioport.iop_padir &= ~(PA2_ENET_RXD | PA2_ENET_TXD);
immap->im_ioport.iop_paodr &= ~PA2_ENET_TXD;
/* Configure port C pins to enable CLSN and RENA.
*/
immap->im_ioport.iop_pcpar &= ~(PC2_ENET_CLSN | PC2_ENET_RENA);
immap->im_ioport.iop_pcdir &= ~(PC2_ENET_CLSN | PC2_ENET_RENA);
immap->im_ioport.iop_pcso |= (PC2_ENET_CLSN | PC2_ENET_RENA);
/* Configure port A for TCLK and RCLK.
* eth1 on CP board: TCLK: CLK3 0x0400
* RCLK: CLK4 0x0800
*/
immap->im_ioport.iop_papar |= (PA2_ENET_TCLK | PA2_ENET_RCLK);
immap->im_ioport.iop_padir &= ~(PA2_ENET_TCLK | PA2_ENET_RCLK);
break;
case 3: /* SCC4 */
/* Configure port D pins for Txd and Rxd.
*/
immap->im_ioport.iop_pdpar |= (PD4_ENET_RXD | PD4_ENET_TXD);
/* Make sure PDDIR is zero otherwise RXD and TXD wont work on PD pins! */
immap->im_ioport.iop_pddir &= ~(PD4_ENET_RXD | PD4_ENET_TXD);
/* Configure port C pins to enable CLSN and RENA.
*/
immap->im_ioport.iop_pcpar &= ~(PC4_ENET_CLSN | PC4_ENET_RENA);
immap->im_ioport.iop_pcdir &= ~(PC4_ENET_CLSN | PC4_ENET_RENA);
immap->im_ioport.iop_pcso |= (PC4_ENET_CLSN | PC4_ENET_RENA);
/* Configure port A for TCLK and RCLK.
* eth2 on CP board: TCLK: CLK7 0x8000
* RCLK: CLK8 0x4000
*/
immap->im_ioport.iop_papar |= (PA4_ENET_TCLK | PA4_ENET_RCLK);
immap->im_ioport.iop_padir &= ~(PA4_ENET_TCLK | PA4_ENET_RCLK);
break;
default:
break;
}
return 0;
}
int __init cpm_enet_init_scc_clock(int scc_num)
{
volatile cpm8xx_t *cp = cpmp;
/* First, clear all SCC bits to zero, then set the ones we want.
*/
switch (scc_num) {
case 0:
cp->cp_sicr &= ~SICR_ENET_MASK_1;
/*
* 'First ethernet, eth0:
* TCLK: CLK1 RCLK: CLK2
*/
cp->cp_sicr |= SICR_ENET_CLKRT_1; /* 0x0000002C */
break;
case 1:
/*
* 'Second ethernet, eth1:
* TCLK: CLK3 RCLK: CLK4
*/
cp->cp_sicr &= ~SICR_ENET_MASK_2; /* 0x0000ff00 */
cp->cp_sicr |= SICR_ENET_CLKRT_2; /* 0x00003E00 */
break;
case 3:
/*
* eth2:
* TCLK: CLK7 RCLK: CLK8
*/
cp->cp_sicr &= ~SICR_ENET_MASK_4; /* 0xff000000 */
cp->cp_sicr |= SICR_ENET_CLKRT_4; /* 0x3E000000 */
break;
default:
break;
}
return 0;
}
static void cpm_enet_enable_xmit(int scc_num)
{
volatile immap_t *immap = (immap_t *)IMAP_ADDR;
volatile cpm8xx_t *cp = cpmp;
switch (scc_num) {
case 0: /* SCC1 */
cp->cp_pbpar |= PB1_ENET_TENA;
cp->cp_pbdir |= PB1_ENET_TENA;
break;
case 1: /* SCC2 */
cp->cp_pbpar |= PB2_ENET_TENA;
cp->cp_pbdir |= PB2_ENET_TENA;
break;
case 3: /* SCC4 */
immap->im_ioport.iop_pdpar |= PD4_ENET_TENA;
/* Make sure PDDIR is zero otherwise TENA wont work on PD pins! */
immap->im_ioport.iop_pddir &= ~PD4_ENET_TENA;
break;
default:
break;
}
}
next reply other threads:[~2003-08-28 22:22 UTC|newest]
Thread overview: 10+ messages / expand[flat|nested] mbox.gz Atom feed top
2003-08-28 22:22 Joakim Tjernlund [this message]
-- strict thread matches above, loose matches on Subject: below --
2003-08-13 20:20 Ethernets on SCC2 and SCC3 on mpc8xx Iain Barker
2003-08-14 6:37 ` Jan Damborsky
2003-08-13 16:39 Jan Damborsky
2003-08-13 14:45 Jan Damborsky
2003-08-13 13:33 Jan Damborsky
2003-08-13 16:47 ` Wolfgang Denk
[not found] ` <3F3B2C84.7020506@devcom.cz>
2003-08-14 16:46 ` Dan Malek
2003-08-15 15:38 ` Jan Damborsky
2003-08-21 16:28 ` Brad Parker
Reply instructions:
You may reply publicly to this message via plain-text email
using any one of the following methods:
* Save the following mbox file, import it into your mail client,
and reply-to-all from there: mbox
Avoid top-posting and favor interleaved quoting:
https://en.wikipedia.org/wiki/Posting_style#Interleaved_style
* Reply using the --to, --cc, and --in-reply-to
switches of git-send-email(1):
git send-email \
--in-reply-to='006d01c36db2$e13b9310$020120b0@jockeXP' \
--to=joakim.tjernlund@lumentis.se \
--cc=brad@parker.boston.ma.us \
--cc=jan.damborsky@devcom.cz \
--cc=linuxppc-dev@lists.linuxppc.org \
--cc=wd@denx.de \
/path/to/YOUR_REPLY
https://kernel.org/pub/software/scm/git/docs/git-send-email.html
* If your mail client supports setting the In-Reply-To header
via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line
before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).