* [PATCH v10 1/2] Documentation/x86: Move protecton key documentation to arch neutral directory
2018-01-22 18:28 [PATCH v10 0/2] Documentation, powerpc, x86 : Memory Protection Keys Ram Pai
@ 2018-01-22 18:28 ` Ram Pai
2018-01-22 18:28 ` [PATCH v10 2/2] Documentation/vm: PowerPC specific updates to memory protection keys Ram Pai
1 sibling, 0 replies; 3+ messages in thread
From: Ram Pai @ 2018-01-22 18:28 UTC (permalink / raw)
To: corbet, linux-doc
Cc: mpe, linuxppc-dev, linux-mm, x86, linux-arch, linux-kernel, mingo,
akpm, dave.hansen, benh, paulus, khandual, aneesh.kumar,
bsingharora, hbabu, mhocko, bauerman, ebiederm, linuxram, arnd
Since PowerPC and Intel both support memory protection keys, moving
the documenation to arch-neutral directory.
Signed-off-by: Ram Pai <linuxram@us.ibm.com>
---
Documentation/vm/protection-keys.txt | 90 +++++++++++++++++++++++++++++++++
Documentation/x86/protection-keys.txt | 90 ---------------------------------
2 files changed, 90 insertions(+), 90 deletions(-)
create mode 100644 Documentation/vm/protection-keys.txt
delete mode 100644 Documentation/x86/protection-keys.txt
diff --git a/Documentation/vm/protection-keys.txt b/Documentation/vm/protection-keys.txt
new file mode 100644
index 0000000..ecb0d2d
--- /dev/null
+++ b/Documentation/vm/protection-keys.txt
@@ -0,0 +1,90 @@
+Memory Protection Keys for Userspace (PKU aka PKEYs) is a feature
+which is found on Intel's Skylake "Scalable Processor" Server CPUs.
+It will be avalable in future non-server parts.
+
+For anyone wishing to test or use this feature, it is available in
+Amazon's EC2 C5 instances and is known to work there using an Ubuntu
+17.04 image.
+
+Memory Protection Keys provides a mechanism for enforcing page-based
+protections, but without requiring modification of the page tables
+when an application changes protection domains. It works by
+dedicating 4 previously ignored bits in each page table entry to a
+"protection key", giving 16 possible keys.
+
+There is also a new user-accessible register (PKRU) with two separate
+bits (Access Disable and Write Disable) for each key. Being a CPU
+register, PKRU is inherently thread-local, potentially giving each
+thread a different set of protections from every other thread.
+
+There are two new instructions (RDPKRU/WRPKRU) for reading and writing
+to the new register. The feature is only available in 64-bit mode,
+even though there is theoretically space in the PAE PTEs. These
+permissions are enforced on data access only and have no effect on
+instruction fetches.
+
+=========================== Syscalls ===========================
+
+There are 3 system calls which directly interact with pkeys:
+
+ int pkey_alloc(unsigned long flags, unsigned long init_access_rights)
+ int pkey_free(int pkey);
+ int pkey_mprotect(unsigned long start, size_t len,
+ unsigned long prot, int pkey);
+
+Before a pkey can be used, it must first be allocated with
+pkey_alloc(). An application calls the WRPKRU instruction
+directly in order to change access permissions to memory covered
+with a key. In this example WRPKRU is wrapped by a C function
+called pkey_set().
+
+ int real_prot = PROT_READ|PROT_WRITE;
+ pkey = pkey_alloc(0, PKEY_DISABLE_WRITE);
+ ptr = mmap(NULL, PAGE_SIZE, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
+ ret = pkey_mprotect(ptr, PAGE_SIZE, real_prot, pkey);
+ ... application runs here
+
+Now, if the application needs to update the data at 'ptr', it can
+gain access, do the update, then remove its write access:
+
+ pkey_set(pkey, 0); // clear PKEY_DISABLE_WRITE
+ *ptr = foo; // assign something
+ pkey_set(pkey, PKEY_DISABLE_WRITE); // set PKEY_DISABLE_WRITE again
+
+Now when it frees the memory, it will also free the pkey since it
+is no longer in use:
+
+ munmap(ptr, PAGE_SIZE);
+ pkey_free(pkey);
+
+(Note: pkey_set() is a wrapper for the RDPKRU and WRPKRU instructions.
+ An example implementation can be found in
+ tools/testing/selftests/x86/protection_keys.c)
+
+=========================== Behavior ===========================
+
+The kernel attempts to make protection keys consistent with the
+behavior of a plain mprotect(). For instance if you do this:
+
+ mprotect(ptr, size, PROT_NONE);
+ something(ptr);
+
+you can expect the same effects with protection keys when doing this:
+
+ pkey = pkey_alloc(0, PKEY_DISABLE_WRITE | PKEY_DISABLE_READ);
+ pkey_mprotect(ptr, size, PROT_READ|PROT_WRITE, pkey);
+ something(ptr);
+
+That should be true whether something() is a direct access to 'ptr'
+like:
+
+ *ptr = foo;
+
+or when the kernel does the access on the application's behalf like
+with a read():
+
+ read(fd, ptr, 1);
+
+The kernel will send a SIGSEGV in both cases, but si_code will be set
+to SEGV_PKERR when violating protection keys versus SEGV_ACCERR when
+the plain mprotect() permissions are violated.
diff --git a/Documentation/x86/protection-keys.txt b/Documentation/x86/protection-keys.txt
deleted file mode 100644
index ecb0d2d..0000000
--- a/Documentation/x86/protection-keys.txt
+++ /dev/null
@@ -1,90 +0,0 @@
-Memory Protection Keys for Userspace (PKU aka PKEYs) is a feature
-which is found on Intel's Skylake "Scalable Processor" Server CPUs.
-It will be avalable in future non-server parts.
-
-For anyone wishing to test or use this feature, it is available in
-Amazon's EC2 C5 instances and is known to work there using an Ubuntu
-17.04 image.
-
-Memory Protection Keys provides a mechanism for enforcing page-based
-protections, but without requiring modification of the page tables
-when an application changes protection domains. It works by
-dedicating 4 previously ignored bits in each page table entry to a
-"protection key", giving 16 possible keys.
-
-There is also a new user-accessible register (PKRU) with two separate
-bits (Access Disable and Write Disable) for each key. Being a CPU
-register, PKRU is inherently thread-local, potentially giving each
-thread a different set of protections from every other thread.
-
-There are two new instructions (RDPKRU/WRPKRU) for reading and writing
-to the new register. The feature is only available in 64-bit mode,
-even though there is theoretically space in the PAE PTEs. These
-permissions are enforced on data access only and have no effect on
-instruction fetches.
-
-=========================== Syscalls ===========================
-
-There are 3 system calls which directly interact with pkeys:
-
- int pkey_alloc(unsigned long flags, unsigned long init_access_rights)
- int pkey_free(int pkey);
- int pkey_mprotect(unsigned long start, size_t len,
- unsigned long prot, int pkey);
-
-Before a pkey can be used, it must first be allocated with
-pkey_alloc(). An application calls the WRPKRU instruction
-directly in order to change access permissions to memory covered
-with a key. In this example WRPKRU is wrapped by a C function
-called pkey_set().
-
- int real_prot = PROT_READ|PROT_WRITE;
- pkey = pkey_alloc(0, PKEY_DISABLE_WRITE);
- ptr = mmap(NULL, PAGE_SIZE, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
- ret = pkey_mprotect(ptr, PAGE_SIZE, real_prot, pkey);
- ... application runs here
-
-Now, if the application needs to update the data at 'ptr', it can
-gain access, do the update, then remove its write access:
-
- pkey_set(pkey, 0); // clear PKEY_DISABLE_WRITE
- *ptr = foo; // assign something
- pkey_set(pkey, PKEY_DISABLE_WRITE); // set PKEY_DISABLE_WRITE again
-
-Now when it frees the memory, it will also free the pkey since it
-is no longer in use:
-
- munmap(ptr, PAGE_SIZE);
- pkey_free(pkey);
-
-(Note: pkey_set() is a wrapper for the RDPKRU and WRPKRU instructions.
- An example implementation can be found in
- tools/testing/selftests/x86/protection_keys.c)
-
-=========================== Behavior ===========================
-
-The kernel attempts to make protection keys consistent with the
-behavior of a plain mprotect(). For instance if you do this:
-
- mprotect(ptr, size, PROT_NONE);
- something(ptr);
-
-you can expect the same effects with protection keys when doing this:
-
- pkey = pkey_alloc(0, PKEY_DISABLE_WRITE | PKEY_DISABLE_READ);
- pkey_mprotect(ptr, size, PROT_READ|PROT_WRITE, pkey);
- something(ptr);
-
-That should be true whether something() is a direct access to 'ptr'
-like:
-
- *ptr = foo;
-
-or when the kernel does the access on the application's behalf like
-with a read():
-
- read(fd, ptr, 1);
-
-The kernel will send a SIGSEGV in both cases, but si_code will be set
-to SEGV_PKERR when violating protection keys versus SEGV_ACCERR when
-the plain mprotect() permissions are violated.
--
1.7.1
^ permalink raw reply related [flat|nested] 3+ messages in thread
* [PATCH v10 2/2] Documentation/vm: PowerPC specific updates to memory protection keys
2018-01-22 18:28 [PATCH v10 0/2] Documentation, powerpc, x86 : Memory Protection Keys Ram Pai
2018-01-22 18:28 ` [PATCH v10 1/2] Documentation/x86: Move protecton key documentation to arch neutral directory Ram Pai
@ 2018-01-22 18:28 ` Ram Pai
1 sibling, 0 replies; 3+ messages in thread
From: Ram Pai @ 2018-01-22 18:28 UTC (permalink / raw)
To: corbet, linux-doc
Cc: mpe, linuxppc-dev, linux-mm, x86, linux-arch, linux-kernel, mingo,
akpm, dave.hansen, benh, paulus, khandual, aneesh.kumar,
bsingharora, hbabu, mhocko, bauerman, ebiederm, linuxram, arnd
Add documentation updates that capture PowerPC specific changes.
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Signed-off-by: Ram Pai <linuxram@us.ibm.com>
---
Documentation/vm/protection-keys.txt | 84 +++++++++++++++++++++++++--------
1 files changed, 63 insertions(+), 21 deletions(-)
diff --git a/Documentation/vm/protection-keys.txt b/Documentation/vm/protection-keys.txt
index ecb0d2d..7a4cbce 100644
--- a/Documentation/vm/protection-keys.txt
+++ b/Documentation/vm/protection-keys.txt
@@ -1,27 +1,52 @@
Memory Protection Keys for Userspace (PKU aka PKEYs) is a feature
which is found on Intel's Skylake "Scalable Processor" Server CPUs.
-It will be avalable in future non-server parts.
+It will be available in future non-server parts.
For anyone wishing to test or use this feature, it is available in
Amazon's EC2 C5 instances and is known to work there using an Ubuntu
17.04 image.
-Memory Protection Keys provides a mechanism for enforcing page-based
-protections, but without requiring modification of the page tables
-when an application changes protection domains. It works by
-dedicating 4 previously ignored bits in each page table entry to a
-"protection key", giving 16 possible keys.
+This feature is available on PowerPC 5 and higher CPUs.
-There is also a new user-accessible register (PKRU) with two separate
-bits (Access Disable and Write Disable) for each key. Being a CPU
-register, PKRU is inherently thread-local, potentially giving each
-thread a different set of protections from every other thread.
+Memory Protection Keys provide a mechanism for enforcing page-based
+protections, but without requiring modification of the page tables when an
+application changes protection domains.
-There are two new instructions (RDPKRU/WRPKRU) for reading and writing
-to the new register. The feature is only available in 64-bit mode,
-even though there is theoretically space in the PAE PTEs. These
-permissions are enforced on data access only and have no effect on
-instruction fetches.
+It works by dedicating bits in each page table entry to a "protection key".
+There is also a user-accessible register with two separate bits for each
+key. Being a CPU register, the user-accessible register is inherently
+thread-local, potentially giving each thread a different set of protections
+from every other thread.
+
+On Intel:
+
+ Four previously ignored bits in the page table entry are used giving
+ 16 possible keys.
+
+ The user accessible register(PKRU) has a bit each per key to disable
+ access and to disable write.
+
+ The feature is only available in 64-bit mode, even though there is
+ theoretically space in the PAE PTEs. These permissions are enforced on
+ data access only and have no effect on instruction fetches.
+
+On PowerPC:
+
+ Five bits in the page table entry are used giving 32 possible keys.
+ This support is currently for Hash Page Table mode only.
+
+ The user accessible register(AMR) has a bit each per key to disable
+ read and write. Access-disable can be achieved by disabling
+ read and write.
+
+ 'mtspr 0xd, mem' reads the AMR register
+ 'mfspr mem, 0xd' writes into the AMR register.
+
+ Execution can be disabled by allocating a key with execute-disabled
+ permission. The execute-permissions on the key; however, cannot be
+ changed through a user accessible register. The CPU will not allow
+ execution of instruction in pages that are associated with
+ execute-disabled key.
=========================== Syscalls ===========================
@@ -33,9 +58,9 @@ There are 3 system calls which directly interact with pkeys:
unsigned long prot, int pkey);
Before a pkey can be used, it must first be allocated with
-pkey_alloc(). An application calls the WRPKRU instruction
+pkey_alloc(). An application calls the WRPKRU/AMR instruction
directly in order to change access permissions to memory covered
-with a key. In this example WRPKRU is wrapped by a C function
+with a key. In this example WRPKRU/AMR is wrapped by a C function
called pkey_set().
int real_prot = PROT_READ|PROT_WRITE;
@@ -57,11 +82,11 @@ is no longer in use:
munmap(ptr, PAGE_SIZE);
pkey_free(pkey);
-(Note: pkey_set() is a wrapper for the RDPKRU and WRPKRU instructions.
+(Note: pkey_set() is a wrapper for the RDPKRU,WRPKRU or AMR instructions.
An example implementation can be found in
- tools/testing/selftests/x86/protection_keys.c)
+ tools/testing/selftests/vm/protection_keys.c)
-=========================== Behavior ===========================
+=========================== Behavior =================================
The kernel attempts to make protection keys consistent with the
behavior of a plain mprotect(). For instance if you do this:
@@ -71,7 +96,7 @@ behavior of a plain mprotect(). For instance if you do this:
you can expect the same effects with protection keys when doing this:
- pkey = pkey_alloc(0, PKEY_DISABLE_WRITE | PKEY_DISABLE_READ);
+ pkey = pkey_alloc(0, PKEY_DISABLE_ACCESS);
pkey_mprotect(ptr, size, PROT_READ|PROT_WRITE, pkey);
something(ptr);
@@ -88,3 +113,20 @@ with a read():
The kernel will send a SIGSEGV in both cases, but si_code will be set
to SEGV_PKERR when violating protection keys versus SEGV_ACCERR when
the plain mprotect() permissions are violated.
+
+====================================================================
+ Differences
+
+The following differences exist between x86 and power.
+
+a) powerpc (PowerPC8 onwards) *also* allows creation of a key with
+ execute-disabled.
+ The following is allowed
+ pkey = pkey_alloc(0, PKEY_DISABLE_EXECUTE);
+
+b) On powerpc the access/write permission on a key can be modified by
+ programming the AMR register from the signal handler. The changes
+ persist across signal boundaries. On x86, the PKRU specific fpregs
+ entry must be modified to change the access/write permission on
+ a key.
+=====================================================================
--
1.7.1
^ permalink raw reply related [flat|nested] 3+ messages in thread