From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S934012AbcCNKzl (ORCPT ); Mon, 14 Mar 2016 06:55:41 -0400 Received: from mail-wm0-f66.google.com ([74.125.82.66]:36840 "EHLO mail-wm0-f66.google.com" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S1752125AbcCNKz3 (ORCPT ); Mon, 14 Mar 2016 06:55:29 -0400 Date: Mon, 14 Mar 2016 11:55:19 +0100 From: Ingo Molnar To: Linus Torvalds Cc: linux-kernel@vger.kernel.org, "Paul E. McKenney" , Thomas Gleixner , Peter Zijlstra , Andrew Morton Subject: [GIT PULL] RCU changes for v4.6 Message-ID: <20160314105519.GA2555@gmail.com> MIME-Version: 1.0 Content-Type: text/plain; charset=us-ascii Content-Disposition: inline User-Agent: Mutt/1.5.23 (2014-03-12) Sender: linux-kernel-owner@vger.kernel.org List-ID: X-Mailing-List: linux-kernel@vger.kernel.org Linus, Please pull the latest core-rcu-for-linus git tree from: git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git core-rcu-for-linus # HEAD: 3e5bfb8316d02496a3a964ca51434a45b1a784e3 Merge branch 'for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu into core/rcu The main changes in this cycle were: - Documentation updates, including RCU data structure design-level documentation. - Miscellaneous fixes. - RCU torture-test updates. (Note the somewhat larger .html/.htmlx files about RCU data structures - let us know if you think they are over the top.) Thanks, Ingo ------------------> Boqun Feng (3): sparse: Add __private to privatize members of structs RCU: Privatize rcu_node::lock irq: Privatize irq_common_data::state_use_accessors Chen Gang (1): rcu: Remove useless rcu_data_p when !PREEMPT_RCU Paul E. McKenney (24): rcutorture: Add checks for rcutorture writer starvation rcutorture: Don't keep empty console.log.diags files rcutorture: Check for self-detected stalls documentation: Add real-time requirements from CPU-bound workloads documentation: Fix control dependency and identical stores documentation: Fix memory-barriers.txt section references documentation: Add synchronize_rcu_mult() to the requirements documentation: Remove obsolete reference to RCU-protected indexes documentation: Subsequent writes ordered by rcu_dereference() documentation: Distinguish between local and global transitivity documentation: Add alternative release-acquire outcome documentation: Add documentation for RCU's major data structures documentation: Explain why rcu_read_lock() needs no barrier() documentation: Transitivity is not cumulativity documentation: Document illegality of call_rcu() from offline CPUs documentation: Explain how RCU's combining tree fights contention rcu: Assign false instead of 0 for ->core_needs_qs rcu: Update rcu_report_qs_rsp() comment rcu: Stop treating in-kernel CPU-bound workloads as errors rcu: Set rdp->gpwrap when CPU is idle rcutorture: Correct no-expedite console messages rcu: Document unique-name limitation for DEFINE_STATIC_SRCU() rcu: Catch up rcu_report_qs_rdp() comment with reality rcu: Export rcu_gp_is_normal() Paul Gortmaker (1): rcu: Make rcu/tiny_plugin.h explicitly non-modular SeongJae Park (1): documentation: Clarify compiler store-fusion example Yang Shi (1): rcu: Remove rcu_user_hooks_switch .../Design/Data-Structures/BigTreeClassicRCU.svg | 474 +++++++ .../Design/Data-Structures/BigTreeClassicRCUBH.svg | 499 +++++++ .../Data-Structures/BigTreeClassicRCUBHdyntick.svg | 695 ++++++++++ .../Data-Structures/BigTreePreemptRCUBHdyntick.svg | 741 +++++++++++ .../BigTreePreemptRCUBHdyntickCB.svg | 858 ++++++++++++ .../Design/Data-Structures/Data-Structures.html | 1395 ++++++++++++++++++++ .../Design/Data-Structures/Data-Structures.htmlx | 1295 ++++++++++++++++++ .../Design/Data-Structures/HugeTreeClassicRCU.svg | 939 +++++++++++++ .../RCU/Design/Data-Structures/TreeLevel.svg | 828 ++++++++++++ .../RCU/Design/Data-Structures/TreeMapping.svg | 305 +++++ .../Design/Data-Structures/TreeMappingLevel.svg | 380 ++++++ .../RCU/Design/Data-Structures/blkd_task.svg | 843 ++++++++++++ .../RCU/Design/Data-Structures/nxtlist.svg | 396 ++++++ .../RCU/Design/Requirements/Requirements.html | 225 +++- .../RCU/Design/Requirements/Requirements.htmlx | 121 +- Documentation/memory-barriers.txt | 141 +- include/linux/compiler.h | 12 +- include/linux/irq.h | 6 +- include/linux/rcupdate.h | 2 - include/linux/srcu.h | 19 +- kernel/irq/internals.h | 4 + kernel/rcu/rcutorture.c | 14 +- kernel/rcu/tiny_plugin.h | 15 +- kernel/rcu/tree.c | 143 +- kernel/rcu/tree.h | 42 +- kernel/rcu/tree_plugin.h | 27 +- kernel/rcu/update.c | 1 + scripts/checkpatch.pl | 3 +- .../selftests/rcutorture/bin/parse-console.sh | 6 +- 29 files changed, 10233 insertions(+), 196 deletions(-) create mode 100644 Documentation/RCU/Design/Data-Structures/BigTreeClassicRCU.svg create mode 100644 Documentation/RCU/Design/Data-Structures/BigTreeClassicRCUBH.svg create mode 100644 Documentation/RCU/Design/Data-Structures/BigTreeClassicRCUBHdyntick.svg create mode 100644 Documentation/RCU/Design/Data-Structures/BigTreePreemptRCUBHdyntick.svg create mode 100644 Documentation/RCU/Design/Data-Structures/BigTreePreemptRCUBHdyntickCB.svg create mode 100644 Documentation/RCU/Design/Data-Structures/Data-Structures.html create mode 100644 Documentation/RCU/Design/Data-Structures/Data-Structures.htmlx create mode 100644 Documentation/RCU/Design/Data-Structures/HugeTreeClassicRCU.svg create mode 100644 Documentation/RCU/Design/Data-Structures/TreeLevel.svg create mode 100644 Documentation/RCU/Design/Data-Structures/TreeMapping.svg create mode 100644 Documentation/RCU/Design/Data-Structures/TreeMappingLevel.svg create mode 100644 Documentation/RCU/Design/Data-Structures/blkd_task.svg create mode 100644 Documentation/RCU/Design/Data-Structures/nxtlist.svg diff --git a/Documentation/RCU/Design/Data-Structures/BigTreeClassicRCU.svg b/Documentation/RCU/Design/Data-Structures/BigTreeClassicRCU.svg new file mode 100644 index 000000000000..727e270b11e4 --- /dev/null +++ b/Documentation/RCU/Design/Data-Structures/BigTreeClassicRCU.svg @@ -0,0 +1,474 @@ + + + + + + + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + struct + + rcu_data + + CPU 0 + + struct + + rcu_data + + CPU 15 + + struct + + rcu_data + + CPU 1007 + + struct + + rcu_data + + CPU 1023 + + struct rcu_state + + struct + + rcu_node + + rcu_node + + struct + + struct + + rcu_node + + + + + + + + diff --git a/Documentation/RCU/Design/Data-Structures/BigTreeClassicRCUBH.svg b/Documentation/RCU/Design/Data-Structures/BigTreeClassicRCUBH.svg new file mode 100644 index 000000000000..9bbb1944f962 --- /dev/null +++ b/Documentation/RCU/Design/Data-Structures/BigTreeClassicRCUBH.svg @@ -0,0 +1,499 @@ + + + + + + + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + rcu_bh + + struct + + rcu_node + + struct + + rcu_node + + rcu_node + + struct + + struct + + rcu_data + + struct + + rcu_data + + struct + + rcu_data + + struct + + rcu_data + + struct rcu_state + + rcu_sched + + + + + + + + + + + diff --git a/Documentation/RCU/Design/Data-Structures/BigTreeClassicRCUBHdyntick.svg b/Documentation/RCU/Design/Data-Structures/BigTreeClassicRCUBHdyntick.svg new file mode 100644 index 000000000000..21ba7823479d --- /dev/null +++ b/Documentation/RCU/Design/Data-Structures/BigTreeClassicRCUBHdyntick.svg @@ -0,0 +1,695 @@ + + + + + + + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + rcu_bh + + struct + + rcu_node + + struct + + rcu_node + + rcu_node + + struct + + struct + + rcu_data + + struct + + rcu_data + + struct + + rcu_data + + struct + + rcu_data + + struct rcu_state + + struct + + rcu_dynticks + + struct + + rcu_dynticks + + struct + + rcu_dynticks + + struct + + rcu_dynticks + + rcu_sched + + + + + diff --git a/Documentation/RCU/Design/Data-Structures/BigTreePreemptRCUBHdyntick.svg b/Documentation/RCU/Design/Data-Structures/BigTreePreemptRCUBHdyntick.svg new file mode 100644 index 000000000000..15adcac036c7 --- /dev/null +++ b/Documentation/RCU/Design/Data-Structures/BigTreePreemptRCUBHdyntick.svg @@ -0,0 +1,741 @@ + + + + + + + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + rcu_bh + + struct + + rcu_node + + struct + + rcu_node + + rcu_node + + struct + + struct + + rcu_data + + struct + + rcu_data + + struct + + rcu_data + + struct + + rcu_data + + struct rcu_state + + struct + + rcu_dynticks + + struct + + rcu_dynticks + + struct + + rcu_dynticks + + struct + + rcu_dynticks + + rcu_preempt + + rcu_sched + + + + + diff --git a/Documentation/RCU/Design/Data-Structures/BigTreePreemptRCUBHdyntickCB.svg b/Documentation/RCU/Design/Data-Structures/BigTreePreemptRCUBHdyntickCB.svg new file mode 100644 index 000000000000..bbc3801470d0 --- /dev/null +++ b/Documentation/RCU/Design/Data-Structures/BigTreePreemptRCUBHdyntickCB.svg @@ -0,0 +1,858 @@ + + + + + + + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + struct + + rcu_head + + struct + + rcu_head + + struct + + rcu_head + + rcu_sched + + rcu_bh + + struct + + rcu_node + + struct + + rcu_node + + rcu_node + + struct + + struct + + rcu_data + + struct + + rcu_data + + struct + + rcu_data + + struct + + rcu_data + + struct rcu_state + + struct + + rcu_dynticks + + struct + + rcu_dynticks + + struct + + rcu_dynticks + + struct + + rcu_dynticks + + rcu_preempt + + + + + diff --git a/Documentation/RCU/Design/Data-Structures/Data-Structures.html b/Documentation/RCU/Design/Data-Structures/Data-Structures.html new file mode 100644 index 000000000000..d15744b87b99 --- /dev/null +++ b/Documentation/RCU/Design/Data-Structures/Data-Structures.html @@ -0,0 +1,1395 @@ + + + + + A Tour Through TREE_RCU's Data Structures [LWN.net] + + +

January 27, 2016

+

This article was contributed by Paul E. McKenney

+ +

Introduction

+ +This document describes RCU's major data structures and their relationship +to each other. + +
    +
  1. + Data-Structure Relationships +
  2. + The rcu_state Structure +
  3. + The rcu_node Structure +
  4. + The rcu_data Structure +
  5. + The rcu_dynticks Structure +
  6. + The rcu_head Structure +
  7. + RCU-Specific Fields in the task_struct Structure +
  8. + Accessor Functions +
+ +At the end we have the +answers to the quick quizzes. + +

Data-Structure Relationships

+ +

RCU is for all intents and purposes a large state machine, and its +data structures maintain the state in such a way as to allow RCU readers +to execute extremely quickly, while also processing the RCU grace periods +requested by updaters in an efficient and extremely scalable fashion. +The efficiency and scalability of RCU updaters is provided primarily +by a combining tree, as shown below: + +

BigTreeClassicRCU.svg + +

This diagram shows an enclosing rcu_state structure +containing a tree of rcu_node structures. +Each leaf node of the rcu_node tree has up to 16 +rcu_data structures associated with it, so that there +are NR_CPUS number of rcu_data structures, +one for each possible CPU. +This structure is adjusted at boot time, if needed, to handle the +common case where nr_cpu_ids is much less than +NR_CPUs. +For example, a number of Linux distributions set NR_CPUs=4096, +which results in a three-level rcu_node tree. +If the actual hardware has only 16 CPUs, RCU will adjust itself +at boot time, resulting in an rcu_node tree with only a single node. + +

The purpose of this combining tree is to allow per-CPU events +such as quiescent states, dyntick-idle transitions, +and CPU hotplug operations to be processed efficiently +and scalably. +Quiescent states are recorded by the per-CPU rcu_data structures, +and other events are recorded by the leaf-level rcu_node +structures. +All of these events are combined at each level of the tree until finally +grace periods are completed at the tree's root rcu_node +structure. +A grace period can be completed at the root once every CPU +(or, in the case of CONFIG_TREE_PREEMPT_RCU, task) +has passed through a quiescent state. +Once a grace period has completed, record of that fact is propagated +back down the tree. + +

As can be seen from the diagram, on a 64-bit system +a two-level tree with 64 leaves can accommodate 1,024 CPUs, with a fanout +of 64 at the root and a fanout of 16 at the leaves. + +

Quick Quiz 1: +Why isn't the fanout at the leaves also 64? +
Answer + +

If your system has more than 1,024 CPUs (or more than 512 CPUs on +a 32-bit system), then RCU will automatically add more levels to the +tree. +For example, if you are crazy enough to build a 64-bit system with 65,536 +CPUs, RCU would configure the rcu_node tree as follows: + +

HugeTreeClassicRCU.svg + +

RCU currently permits up to a four-level tree, which on a 64-bit system +accommodates up to 4,194,304 CPUs, though only a mere 524,288 CPUs for +32-bit systems. +On the other hand, you can set CONFIG_RCU_FANOUT to be +as small as 2 if you wish, which would permit only 16 CPUs, which +is useful for testing. + +

This multi-level combining tree allows us to get most of the +performance and scalability +benefits of partitioning, even though RCU grace-period detection is +inherently a global operation. +The trick here is that only the last CPU to report a quiescent state +into a given rcu_node structure need advance to the rcu_node +structure at the next level up the tree. +This means that at the leaf-level rcu_node structure, only +one access out of sixteen will progress up the tree. +For the internal rcu_node structures, the situation is even +more extreme: Only one access out of sixty-four will progress up +the tree. +Because the vast majority of the CPUs do not progress up the tree, +the lock contention remains roughly constant up the tree. +No matter how many CPUs there are in the system, at most 64 quiescent-state +reports per grace period will progress all the way to the root +rcu_node structure, thus ensuring that the lock contention +on that root rcu_node structure remains acceptably low. + +

In effect, the combining tree acts like a big shock absorber, +keeping lock contention under control at all tree levels regardless +of the level of loading on the system. + +

The Linux kernel actually supports multiple flavors of RCU +running concurrently, so RCU builds separate data structures for each +flavor. +For example, for CONFIG_TREE_RCU=y kernels, RCU provides +rcu_sched and rcu_bh, as shown below: + +

BigTreeClassicRCUBH.svg + +

Energy efficiency is increasingly important, and for that +reason the Linux kernel provides CONFIG_NO_HZ_IDLE, which +turns off the scheduling-clock interrupts on idle CPUs, which in +turn allows those CPUs to attain deeper sleep states and to consume +less energy. +CPUs whose scheduling-clock interrupts have been turned off are +said to be in dyntick-idle mode. +RCU must handle dyntick-idle CPUs specially +because RCU would otherwise wake up each CPU on every grace period, +which would defeat the whole purpose of CONFIG_NO_HZ_IDLE. +RCU uses the rcu_dynticks structure to track +which CPUs are in dyntick idle mode, as shown below: + +

BigTreeClassicRCUBHdyntick.svg + +

However, if a CPU is in dyntick-idle mode, it is in that mode +for all flavors of RCU. +Therefore, a single rcu_dynticks structure is allocated per +CPU, and all of a given CPU's rcu_data structures share +that rcu_dynticks, as shown in the figure. + +

Kernels built with CONFIG_TREE_PREEMPT_RCU support +rcu_preempt in addition to rcu_sched and rcu_bh, as shown below: + +

BigTreePreemptRCUBHdyntick.svg + +

RCU updaters wait for normal grace periods by registering +RCU callbacks, either directly via call_rcu() and +friends (namely call_rcu_bh() and call_rcu_sched()), +there being a separate interface per flavor of RCU) +or indirectly via synchronize_rcu() and friends. +RCU callbacks are represented by rcu_head structures, +which are queued on rcu_data structures while they are +waiting for a grace period to elapse, as shown in the following figure: + +

BigTreePreemptRCUBHdyntickCB.svg + +

This figure shows how TREE_RCU's and +TREE_PREEMPT_RCU's major data structures are related. +Lesser data structures will be introduced with the algorithms that +make use of them. + +

Note that each of the data structures in the above figure has +its own synchronization: + +

    +
  1. Each rcu_state structures has a lock and a mutex, + and some fields are protected by the corresponding root + rcu_node structure's lock. +
  2. Each rcu_node structure has a spinlock. +
  3. The fields in rcu_data are private to the corresponding + CPU, although a few can be read and written by other CPUs. +
  4. Similarly, the fields in rcu_dynticks are private + to the corresponding CPU, although a few can be read by + other CPUs. +
+ +

It is important to note that different data structures can have +very different ideas about the state of RCU at any given time. +For but one example, awareness of the start or end of a given RCU +grace period propagates slowly through the data structures. +This slow propagation is absolutely necessary for RCU to have good +read-side performance. +If this balkanized implementation seems foreign to you, one useful +trick is to consider each instance of these data structures to be +a different person, each having the usual slightly different +view of reality. + +

The general role of each of these data structures is as +follows: + +

    +
  1. rcu_state: + This structure forms the interconnection between the + rcu_node and rcu_data structures, + tracks grace periods, serves as short-term repository + for callbacks orphaned by CPU-hotplug events, + maintains rcu_barrier() state, + tracks expedited grace-period state, + and maintains state used to force quiescent states when + grace periods extend too long, +
  2. rcu_node: This structure forms the combining + tree that propagates quiescent-state + information from the leaves to the root, and also propagates + grace-period information from the root to the leaves. + It provides local copies of the grace-period state in order + to allow this information to be accessed in a synchronized + manner without suffering the scalability limitations that + would otherwise be imposed by global locking. + In CONFIG_TREE_PREEMPT_RCU kernels, it manages the lists + of tasks that have blocked while in their current + RCU read-side critical section. + In CONFIG_TREE_PREEMPT_RCU with + CONFIG_RCU_BOOST, it manages the + per-rcu_node priority-boosting + kernel threads (kthreads) and state. + Finally, it records CPU-hotplug state in order to determine + which CPUs should be ignored during a given grace period. +
  3. rcu_data: This per-CPU structure is the + focus of quiescent-state detection and RCU callback queuing. + It also tracks its relationship to the corresponding leaf + rcu_node structure to allow more-efficient + propagation of quiescent states up the rcu_node + combining tree. + Like the rcu_node structure, it provides a local + copy of the grace-period information to allow for-free + synchronized + access to this information from the corresponding CPU. + Finally, this structure records past dyntick-idle state + for the corresponding CPU and also tracks statistics. +
  4. rcu_dynticks: + This per-CPU structure tracks the current dyntick-idle + state for the corresponding CPU. + Unlike the other three structures, the rcu_dynticks + structure is not replicated per RCU flavor. +
  5. rcu_head: + This structure represents RCU callbacks, and is the + only structure allocated and managed by RCU users. + The rcu_head structure is normally embedded + within the RCU-protected data structure. +
+ +

If all you wanted from this article was a general notion of how +RCU's data structures are related, you are done. +Otherwise, each of the following sections give more details on +the rcu_state, rcu_node, rcu_data, +and rcu_dynticks data structures. + +

+The rcu_state Structure

+ +

The rcu_state structure is the base structure that +represents a flavor of RCU. +This structure forms the interconnection between the +rcu_node and rcu_data structures, +tracks grace periods, contains the lock used to +synchronize with CPU-hotplug events, +and maintains state used to force quiescent states when +grace periods extend too long, + +

A few of the rcu_state structure's fields are discussed, +singly and in groups, in the following sections. +The more specialized fields are covered in the discussion of their +use. + +

Relationship to rcu_node and rcu_data Structures
+ +This portion of the rcu_state structure is declared +as follows: + +
+  1   struct rcu_node node[NUM_RCU_NODES];
+  2   struct rcu_node *level[NUM_RCU_LVLS + 1];
+  3   struct rcu_data __percpu *rda;
+
+ +

Quick Quiz 2: +Wait a minute! +You said that the rcu_node structures formed a tree, +but they are declared as a flat array! +What gives? +
Answer + +

The rcu_node tree is embedded into the +->node[] array as shown in the following figure: + +

TreeMapping.svg + +

One interesting consequence of this mapping is that a +breadth-first traversal of the tree is implemented as a simple +linear scan of the array, which is in fact what the +rcu_for_each_node_breadth_first() macro does. +This macro is used at the beginning and ends of grace periods. + +

Each entry of the ->level array references +the first rcu_node structure on the corresponding level +of the tree, for example, as shown below: + +

TreeMappingLevel.svg + +

The zeroth element of the array references the root +rcu_node structure, the first element references the +first child of the root rcu_node, and finally the second +element references the first leaf rcu_node structure. + +

Quick Quiz 3: +Given that this array represents a tree, why can't the diagram that +includes the ->level array be planar? +
Answer + +

Finally, the ->rda field references a per-CPU +pointer to the corresponding CPU's rcu_data structure. + +

All of these fields are constant once initialization is complete, +and therefore need no protection. + +

Grace-Period Tracking
+ +

This portion of the rcu_state structure is declared +as follows: + +

+  1   unsigned long gpnum;
+  2   unsigned long completed;
+
+ +

RCU grace periods are numbered, and +the ->gpnum field contains the number of the grace +period that started most recently. +The ->completed field contains the number of the +grace period that completed most recently. +If the two fields are equal, the RCU grace period that most recently +started has already completed, and therefore the corresponding +flavor of RCU is idle. +If ->gpnum is one greater than ->completed, +then ->gpnum gives the number of the current RCU +grace period, which has not yet completed. +Any other combination of values indicates that something is broken. +These two fields are protected by the root rcu_node's +->lock field. + +

There are ->gpnum and ->completed fields +in the rcu_node and rcu_data structures +as well. +The fields in the rcu_state structure represent the +most current values, and those of the other structures are compared +in order to detect the start of a new grace period in a distributed +fashion. +The values flow from rcu_state to rcu_node +(down the tree from the root to the leaves) to rcu_data. + +

Miscellaneous
+ +

This portion of the rcu_state structure is declared +as follows: + +

+  1   unsigned long gp_max;
+  2   char abbr;
+  3   char *name;
+
+ +

The ->gp_max field tracks the duration of the longest +grace period in jiffies. +It is protected by the root rcu_node's ->lock. + +

The ->name field points to the name of the RCU flavor +(for example, “rcu_sched”), and is constant. +The ->abbr field contains a one-character abbreviation, +for example, “s” for RCU-sched. + +

+The rcu_node Structure

+ +

The rcu_node structures form the combining +tree that propagates quiescent-state +information from the leaves to the root and also that propagates +grace-period information from the root down to the leaves. +They provides local copies of the grace-period state in order +to allow this information to be accessed in a synchronized +manner without suffering the scalability limitations that +would otherwise be imposed by global locking. +In CONFIG_TREE_PREEMPT_RCU kernels, they manage the lists +of tasks that have blocked while in their current +RCU read-side critical section. +In CONFIG_TREE_PREEMPT_RCU with +CONFIG_RCU_BOOST, they manage the +per-rcu_node priority-boosting +kernel threads (kthreads) and state. +Finally, they record CPU-hotplug state in order to determine +which CPUs should be ignored during a given grace period. + +

The rcu_node structure's fields are discussed, +singly and in groups, in the following sections. + +

Connection to Combining Tree
+ +

This portion of the rcu_node structure is declared +as follows: + +

+  1   struct rcu_node *parent;
+  2   u8 level;
+  3   u8 grpnum;
+  4   unsigned long grpmask;
+  5   int grplo;
+  6   int grphi;
+
+ +

The ->parent pointer references the rcu_node +one level up in the tree, and is NULL for the root +rcu_node. +The RCU implementation makes heavy use of this field to push quiescent +states up the tree. +The ->level field gives the level in the tree, with +the root being at level zero, its children at level one, and so on. +The ->grpnum field gives this node's position within +the children of its parent, so this number can range between 0 and 31 +on 32-bit systems and between 0 and 63 on 64-bit systems. +The ->level and ->grpnum fields are +used only during initialization and for tracing. +The ->grpmask field is the bitmask counterpart of +->grpnum, and therefore always has exactly one bit set. +This mask is used to clear the bit corresponding to this rcu_node +structure in its parent's bitmasks, which are described later. +Finally, the ->grplo and ->grphi fields +contain the lowest and highest numbered CPU served by this +rcu_node structure, respectively. + +

All of these fields are constant, and thus do not require any +synchronization. + +

Synchronization
+ +

This field of the rcu_node structure is declared +as follows: + +

+  1   raw_spinlock_t lock;
+
+ +

This field is used to protect the remaining fields in this structure, +unless otherwise stated. +That said, all of the fields in this structure can be accessed without +locking for tracing purposes. +Yes, this can result in confusing traces, but better some tracing confusion +than to be heisenbugged out of existence. + +

Grace-Period Tracking
+ +

This portion of the rcu_node structure is declared +as follows: + +

+  1   unsigned long gpnum;
+  2   unsigned long completed;
+
+ +

These fields are the counterparts of the fields of the same name in +the rcu_state structure. +They each may lag up to one behind their rcu_state +counterparts. +If a given rcu_node structure's ->gpnum and +->complete fields are equal, then this rcu_node +structure believes that RCU is idle. +Otherwise, as with the rcu_state structure, +the ->gpnum field will be one greater than the +->complete fields, with ->gpnum +indicating which grace period this rcu_node believes +is still being waited for. + +

The >gpnum field of each rcu_node +structure is updated at the beginning +of each grace period, and the ->completed fields are +updated at the end of each grace period. + +

Quiescent-State Tracking
+ +

These fields manage the propagation of quiescent states up the +combining tree. + +

This portion of the rcu_node structure has fields +as follows: + +

+  1   unsigned long qsmask;
+  2   unsigned long expmask;
+  3   unsigned long qsmaskinit;
+  4   unsigned long expmaskinit;
+
+ +

The ->qsmask field tracks which of this +rcu_node structure's children still need to report +quiescent states for the current normal grace period. +Such children will have a value of 1 in their corresponding bit. +Note that the leaf rcu_node structures should be +thought of as having rcu_data structures as their +children. +Similarly, the ->expmask field tracks which +of this rcu_node structure's children still need to report +quiescent states for the current expedited grace period. +An expedited grace period has +the same conceptual properties as a normal grace period, but the +expedited implementation accepts extreme CPU overhead to obtain +much lower grace-period latency, for example, consuming a few +tens of microseconds worth of CPU time to reduce grace-period +duration from milliseconds to tens of microseconds. +The ->qsmaskinit field tracks which of this +rcu_node structure's children cover for at least +one online CPU. +This mask is used to initialize ->qsmask, +and ->expmaskinit is used to initialize +->expmask and the beginning of the +normal and expedited grace periods, respectively. + +

Quick Quiz 4: +Why are these bitmasks protected by locking? +Come on, haven't you heard of atomic instructions??? +
Answer + +

Blocked-Task Management
+ +

TREE_PREEMPT_RCU allows tasks to be preempted in the +midst of their RCU read-side critical sections, and these tasks +must be tracked explicitly. +The details of exactly why and how they are tracked will be covered +in a separate article on RCU read-side processing. +For now, it is enough to know that the rcu_node +structure tracks them. + +

+  1   struct list_head blkd_tasks;
+  2   struct list_head *gp_tasks;
+  3   struct list_head *exp_tasks;
+  4   bool wait_blkd_tasks;
+
+ +

The ->blkd_tasks field is a list header for +the list of blocked and preempted tasks. +As tasks undergo context switches within RCU read-side critical +sections, their task_struct structures are enqueued +(via the task_struct's ->rcu_node_entry +field) onto the head of the ->blkd_tasks list for the +leaf rcu_node structure corresponding to the CPU +on which the outgoing context switch executed. +As these tasks later exit their RCU read-side critical sections, +they remove themselves from the list. +This list is therefore in reverse time order, so that if one of the tasks +is blocking the current grace period, all subsequent tasks must +also be blocking that same grace period. +Therefore, a single pointer into this list suffices to track +all tasks blocking a given grace period. +That pointer is stored in ->gp_tasks for normal +grace periods and in ->exp_tasks for expedited +grace periods. +These last two fields are NULL if either there is +no grace period in flight or if there are no blocked tasks +preventing that grace period from completing. +If either of these two pointers is referencing a task that +removes itself from the ->blkd_tasks list, +then that task must advance the pointer to the next task on +the list, or set the pointer to NULL if there +are no subsequent tasks on the list. + +

For example, suppose that tasks T1, T2, and T3 are +all hard-affinitied to the largest-numbered CPU in the system. +Then if task T1 blocked in an RCU read-side +critical section, then an expedited grace period started, +then task T2 blocked in an RCU read-side critical section, +then a normal grace period started, and finally task 3 blocked +in an RCU read-side critical section, then the state of the +last leaf rcu_node structure's blocked-task list +would be as shown below: + +

blkd_task.svg + +

Task T1 is blocking both grace periods, task T2 is +blocking only the normal grace period, and task T3 is blocking +neither grace period. +Note that these tasks will not remove themselves from this list +immediately upon resuming execution. +They will instead remain on the list until they execute the outermost +rcu_read_unlock() that ends their RCU read-side critical +section. + +

+The ->wait_blkd_tasks field indicates whether or not +the current grace period is waiting on a blocked task. + +

Sizing the rcu_node Array
+ +

The rcu_node array is sized via a series of +C-preprocessor expressions as follows: + +

+ 1 #ifdef CONFIG_RCU_FANOUT
+ 2 #define RCU_FANOUT CONFIG_RCU_FANOUT
+ 3 #else
+ 4 # ifdef CONFIG_64BIT
+ 5 # define RCU_FANOUT 64
+ 6 # else
+ 7 # define RCU_FANOUT 32
+ 8 # endif
+ 9 #endif
+10
+11 #ifdef CONFIG_RCU_FANOUT_LEAF
+12 #define RCU_FANOUT_LEAF CONFIG_RCU_FANOUT_LEAF
+13 #else
+14 # ifdef CONFIG_64BIT
+15 # define RCU_FANOUT_LEAF 64
+16 # else
+17 # define RCU_FANOUT_LEAF 32
+18 # endif
+19 #endif
+20
+21 #define RCU_FANOUT_1        (RCU_FANOUT_LEAF)
+22 #define RCU_FANOUT_2        (RCU_FANOUT_1 * RCU_FANOUT)
+23 #define RCU_FANOUT_3        (RCU_FANOUT_2 * RCU_FANOUT)
+24 #define RCU_FANOUT_4        (RCU_FANOUT_3 * RCU_FANOUT)
+25
+26 #if NR_CPUS <= RCU_FANOUT_1
+27 #  define RCU_NUM_LVLS        1
+28 #  define NUM_RCU_LVL_0        1
+29 #  define NUM_RCU_NODES        NUM_RCU_LVL_0
+30 #  define NUM_RCU_LVL_INIT    { NUM_RCU_LVL_0 }
+31 #  define RCU_NODE_NAME_INIT  { "rcu_node_0" }
+32 #  define RCU_FQS_NAME_INIT   { "rcu_node_fqs_0" }
+33 #  define RCU_EXP_NAME_INIT   { "rcu_node_exp_0" }
+34 #elif NR_CPUS <= RCU_FANOUT_2
+35 #  define RCU_NUM_LVLS        2
+36 #  define NUM_RCU_LVL_0        1
+37 #  define NUM_RCU_LVL_1        DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_1)
+38 #  define NUM_RCU_NODES        (NUM_RCU_LVL_0 + NUM_RCU_LVL_1)
+39 #  define NUM_RCU_LVL_INIT    { NUM_RCU_LVL_0, NUM_RCU_LVL_1 }
+40 #  define RCU_NODE_NAME_INIT  { "rcu_node_0", "rcu_node_1" }
+41 #  define RCU_FQS_NAME_INIT   { "rcu_node_fqs_0", "rcu_node_fqs_1" }
+42 #  define RCU_EXP_NAME_INIT   { "rcu_node_exp_0", "rcu_node_exp_1" }
+43 #elif NR_CPUS <= RCU_FANOUT_3
+44 #  define RCU_NUM_LVLS        3
+45 #  define NUM_RCU_LVL_0        1
+46 #  define NUM_RCU_LVL_1        DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_2)
+47 #  define NUM_RCU_LVL_2        DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_1)
+48 #  define NUM_RCU_NODES        (NUM_RCU_LVL_0 + NUM_RCU_LVL_1 + NUM_RCU_LVL_2)
+49 #  define NUM_RCU_LVL_INIT    { NUM_RCU_LVL_0, NUM_RCU_LVL_1, NUM_RCU_LVL_2 }
+50 #  define RCU_NODE_NAME_INIT  { "rcu_node_0", "rcu_node_1", "rcu_node_2" }
+51 #  define RCU_FQS_NAME_INIT   { "rcu_node_fqs_0", "rcu_node_fqs_1", "rcu_node_fqs_2" }
+52 #  define RCU_EXP_NAME_INIT   { "rcu_node_exp_0", "rcu_node_exp_1", "rcu_node_exp_2" }
+53 #elif NR_CPUS <= RCU_FANOUT_4
+54 #  define RCU_NUM_LVLS        4
+55 #  define NUM_RCU_LVL_0        1
+56 #  define NUM_RCU_LVL_1        DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_3)
+57 #  define NUM_RCU_LVL_2        DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_2)
+58 #  define NUM_RCU_LVL_3        DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_1)
+59 #  define NUM_RCU_NODES        (NUM_RCU_LVL_0 + NUM_RCU_LVL_1 + NUM_RCU_LVL_2 + NUM_RCU_LVL_3)
+60 #  define NUM_RCU_LVL_INIT    { NUM_RCU_LVL_0, NUM_RCU_LVL_1, NUM_RCU_LVL_2, NUM_RCU_LVL_3 }
+61 #  define RCU_NODE_NAME_INIT  { "rcu_node_0", "rcu_node_1", "rcu_node_2", "rcu_node_3" }
+62 #  define RCU_FQS_NAME_INIT   { "rcu_node_fqs_0", "rcu_node_fqs_1", "rcu_node_fqs_2", "rcu_node_fqs_3" }
+63 #  define RCU_EXP_NAME_INIT   { "rcu_node_exp_0", "rcu_node_exp_1", "rcu_node_exp_2", "rcu_node_exp_3" }
+64 #else
+65 # error "CONFIG_RCU_FANOUT insufficient for NR_CPUS"
+66 #endif
+
+ +

The maximum number of levels in the rcu_node structure +is currently limited to four, as specified by lines 21-24 +and the structure of the subsequent “if” statement. +For 32-bit systems, this allows 16*32*32*32=524,288 CPUs, which +should be sufficient for the next few years at least. +For 64-bit systems, 16*64*64*64=4,194,304 CPUs is allowed, which +should see us through the next decade or so. +This four-level tree also allows kernels built with +CONFIG_RCU_FANOUT=8 to support up to 4096 CPUs, +which might be useful in very large systems having eight CPUs per +socket (but please note that no one has yet shown any measurable +performance degradation due to misaligned socket and rcu_node +boundaries). +In addition, building kernels with a full four levels of rcu_node +tree permits better testing of RCU's combining-tree code. + +

The RCU_FANOUT symbol controls how many children +are permitted at each non-leaf level of the rcu_node tree. +If the CONFIG_RCU_FANOUT Kconfig option is not specified, +it is set based on the word size of the system, which is also +the Kconfig default. + +

The RCU_FANOUT_LEAF symbol controls how many CPUs are +handled by each leaf rcu_node structure. +Experience has shown that allowing a given leaf rcu_node +structure to handle 64 CPUs, as permitted by the number of bits in +the ->qsmask field on a 64-bit system, results in +excessive contention for the leaf rcu_node structures' +->lock fields. +The number of CPUs per leaf rcu_node structure is therefore +limited to 16 given the default value of CONFIG_RCU_FANOUT_LEAF. +If CONFIG_RCU_FANOUT_LEAF is unspecified, the value +selected is based on the word size of the system, just as for +CONFIG_RCU_FANOUT. +Lines 11-19 perform this computation. + +

Lines 21-24 compute the maximum number of CPUs supported by +a single-level (which contains a single rcu_node structure), +two-level, three-level, and four-level rcu_node tree, +respectively, given the fanout specified by RCU_FANOUT +and RCU_FANOUT_LEAF. +These numbers of CPUs are retained in the +RCU_FANOUT_1, +RCU_FANOUT_2, +RCU_FANOUT_3, and +RCU_FANOUT_4 +C-preprocessor variables, respectively. + +

These variables are used to control the C-preprocessor #if +statement spanning lines 26-66 that computes the number of +rcu_node structures required for each level of the tree, +as well as the number of levels required. +The number of levels is placed in the NUM_RCU_LVLS +C-preprocessor variable by lines 27, 35, 44, and 54. +The number of rcu_node structures for the topmost level +of the tree is always exactly one, and this value is unconditionally +placed into NUM_RCU_LVL_0 by lines 28, 36, 45, and 55. +The rest of the levels (if any) of the rcu_node tree +are computed by dividing the maximum number of CPUs by the +fanout supported by the number of levels from the current level down, +rounding up. This computation is performed by lines 37, +46-47, and 56-58. +Lines 31-33, 40-42, 50-52, and 62-63 create initializers +for lockdep lock-class names. +Finally, lines 64-66 produce an error if the maximum number of +CPUs is too large for the specified fanout. + +

+The rcu_data Structure

+ +

The rcu_data maintains the per-CPU state for the +corresponding flavor of RCU. +The fields in this structure may be accessed only from the corresponding +CPU (and from tracing) unless otherwise stated. +This structure is the +focus of quiescent-state detection and RCU callback queuing. +It also tracks its relationship to the corresponding leaf +rcu_node structure to allow more-efficient +propagation of quiescent states up the rcu_node +combining tree. +Like the rcu_node structure, it provides a local +copy of the grace-period information to allow for-free +synchronized +access to this information from the corresponding CPU. +Finally, this structure records past dyntick-idle state +for the corresponding CPU and also tracks statistics. + +

The rcu_data structure's fields are discussed, +singly and in groups, in the following sections. + +

Connection to Other Data Structures
+ +

This portion of the rcu_data structure is declared +as follows: + +

+  1   int cpu;
+  2   struct rcu_state *rsp;
+  3   struct rcu_node *mynode;
+  4   struct rcu_dynticks *dynticks;
+  5   unsigned long grpmask;
+  6   bool beenonline;
+
+ +

The ->cpu field contains the number of the +corresponding CPU, the ->rsp pointer references +the corresponding rcu_state structure (and is most frequently +used to locate the name of the corresponding flavor of RCU for tracing), +and the ->mynode field references the corresponding +rcu_node structure. +The ->mynode is used to propagate quiescent states +up the combining tree. +

The ->dynticks pointer references the +rcu_dynticks structure corresponding to this +CPU. +Recall that a single per-CPU instance of the rcu_dynticks +structure is shared among all flavors of RCU. +These first four fields are constant and therefore require not +synchronization. + +

The ->grpmask field indicates the bit in +the ->mynode->qsmask corresponding to this +rcu_data structure, and is also used when propagating +quiescent states. +The ->beenonline flag is set whenever the corresponding +CPU comes online, which means that the debugfs tracing need not dump +out any rcu_data structure for which this flag is not set. + +

Quiescent-State and Grace-Period Tracking
+ +

This portion of the rcu_data structure is declared +as follows: + +

+  1   unsigned long completed;
+  2   unsigned long gpnum;
+  3   bool cpu_no_qs;
+  4   bool core_needs_qs;
+  5   bool gpwrap;
+  6   unsigned long rcu_qs_ctr_snap;
+
+ +

The completed and gpnum +fields are the counterparts of the fields of the same name +in the rcu_state and rcu_node structures. +They may each lag up to one behind their rcu_node +counterparts, but in CONFIG_NO_HZ_IDLE and +CONFIG_NO_HZ_FULL kernels can lag +arbitrarily far behind for CPUs in dyntick-idle mode (but these counters +will catch up upon exit from dyntick-idle mode). +If a given rcu_data structure's ->gpnum and +->complete fields are equal, then this rcu_data +structure believes that RCU is idle. +Otherwise, as with the rcu_state and rcu_node +structure, +the ->gpnum field will be one greater than the +->complete fields, with ->gpnum +indicating which grace period this rcu_data believes +is still being waited for. + +

Quick Quiz 5: +All this replication of the grace period numbers can only cause +massive confusion. +Why not just keep a global pair of counters and be done with it??? +
Answer + +

The ->cpu_no_qs flag indicates that the +CPU has not yet passed through a quiescent state, +while the ->core_needs_qs flag indicates that the +RCU core needs a quiescent state from the corresponding CPU. +The ->gpwrap field indicates that the corresponding +CPU has remained idle for so long that the completed +and gpnum counters are in danger of overflow, which +will cause the CPU to disregard the values of its counters on +its next exit from idle. +Finally, the rcu_qs_ctr_snap field is used to detect +cases where a given operation has resulted in a quiescent state +for all flavors of RCU, for example, cond_resched_rcu_qs(). + +

RCU Callback Handling
+ +

In the absence of CPU-hotplug events, RCU callbacks are invoked by +the same CPU that registered them. +This is strictly a cache-locality optimization: callbacks can and +do get invoked on CPUs other than the one that registered them. +After all, if the CPU that registered a given callback has gone +offline before the callback can be invoked, there really is no other +choice. + +

This portion of the rcu_data structure is declared +as follows: + +

+ 1 struct rcu_head *nxtlist;
+ 2 struct rcu_head **nxttail[RCU_NEXT_SIZE];
+ 3 unsigned long nxtcompleted[RCU_NEXT_SIZE];
+ 4 long qlen_lazy;
+ 5 long qlen;
+ 6 long qlen_last_fqs_check;
+ 7 unsigned long n_force_qs_snap;
+ 8 unsigned long n_cbs_invoked;
+ 9 unsigned long n_cbs_orphaned;
+10 unsigned long n_cbs_adopted;
+11 long blimit;
+
+ +

The ->nxtlist pointer and the +->nxttail[] array form a four-segment list with +older callbacks near the head and newer ones near the tail. +Each segment contains callbacks with the corresponding relationship +to the current grace period. +The pointer out of the end of each of the four segments is referenced +by the element of the ->nxttail[] array indexed by +RCU_DONE_TAIL (for callbacks handled by a prior grace period), +RCU_WAIT_TAIL (for callbacks waiting on the current grace period), +RCU_NEXT_READY_TAIL (for callbacks that will wait on the next +grace period), and +RCU_NEXT_TAIL (for callbacks that are not yet associated +with a specific grace period) +respectively, as shown in the following figure. + +

nxtlist.svg + +

In this figure, the ->nxtlist pointer references the +first +RCU callback in the list. +The ->nxttail[RCU_DONE_TAIL] array element references +the ->nxtlist pointer itself, indicating that none +of the callbacks is ready to invoke. +The ->nxttail[RCU_WAIT_TAIL] array element references callback +CB 2's ->next pointer, which indicates that +CB 1 and CB 2 are both waiting on the current grace period. +The ->nxttail[RCU_NEXT_READY_TAIL] array element +references the same RCU callback that ->nxttail[RCU_WAIT_TAIL] +does, which indicates that there are no callbacks waiting on the next +RCU grace period. +The ->nxttail[RCU_NEXT_TAIL] array element references +CB 4's ->next pointer, indicating that all the +remaining RCU callbacks have not yet been assigned to an RCU grace +period. +Note that the ->nxttail[RCU_NEXT_TAIL] array element +always references the last RCU callback's ->next pointer +unless the callback list is empty, in which case it references +the ->nxtlist pointer. + +

CPUs advance their callbacks from the +RCU_NEXT_TAIL to the RCU_NEXT_READY_TAIL to the +RCU_WAIT_TAIL to the RCU_DONE_TAIL list segments +as grace periods advance. +The CPU advances the callbacks in its rcu_data structure +whenever it notices that another RCU grace period has completed. +The CPU detects the completion of an RCU grace period by noticing +that the value of its rcu_data structure's +->completed field differs from that of its leaf +rcu_node structure. +Recall that each rcu_node structure's +->completed field is updated at the end of each +grace period. + +

The ->nxtcompleted[] array records grace-period +numbers corresponding to the list segments. +This allows CPUs that go idle for extended periods to determine +which of their callbacks are ready to be invoked after reawakening. + +

The ->qlen counter contains the number of +callbacks in ->nxtlist, and the +->qlen_lazy contains the number of those callbacks that +are known to only free memory, and whose invocation can therefore +be safely deferred. +The ->qlen_last_fqs_check and +->n_force_qs_snap coordinate the forcing of quiescent +states from call_rcu() and friends when callback +lists grow excessively long. + +

The ->n_cbs_invoked, +->n_cbs_orphaned, and ->n_cbs_adopted +fields count the number of callbacks invoked, +sent to other CPUs when this CPU goes offline, +and received from other CPUs when those other CPUs go offline. +Finally, the ->blimit counter is the maximum number of +RCU callbacks that may be invoked at a given time. + +

Dyntick-Idle Handling
+ +

This portion of the rcu_data structure is declared +as follows: + +

+  1   int dynticks_snap;
+  2   unsigned long dynticks_fqs;
+
+ +The ->dynticks_snap field is used to take a snapshot +of the corresponding CPU's dyntick-idle state when forcing +quiescent states, and is therefore accessed from other CPUs. +Finally, the ->dynticks_fqs field is used to +count the number of times this CPU is determined to be in +dyntick-idle state, and is used for tracing and debugging purposes. + +

+The rcu_dynticks Structure

+ +

The rcu_dynticks maintains the per-CPU dyntick-idle state +for the corresponding CPU. +Unlike the other structures, rcu_dynticks is not +replicated over the different flavors of RCU. +The fields in this structure may be accessed only from the corresponding +CPU (and from tracing) unless otherwise stated. +Its fields are as follows: + +

+  1   int dynticks_nesting;
+  2   int dynticks_nmi_nesting;
+  3   atomic_t dynticks;
+
+ +

The ->dynticks_nesting field counts the +nesting depth of normal interrupts. +In addition, this counter is incremented when exiting dyntick-idle +mode and decremented when entering it. +This counter can therefore be thought of as counting the number +of reasons why this CPU cannot be permitted to enter dyntick-idle +mode, aside from non-maskable interrupts (NMIs). +NMIs are counted by the ->dynticks_nmi_nesting +field, except that NMIs that interrupt non-dyntick-idle execution +are not counted. + +

Finally, the ->dynticks field counts the corresponding +CPU's transitions to and from dyntick-idle mode, so that this counter +has an even value when the CPU is in dyntick-idle mode and an odd +value otherwise. + +

Quick Quiz 6: +Why not just count all NMIs? +Wouldn't that be simpler and less error prone? +
Answer + +

Additional fields are present for some special-purpose +builds, and are discussed separately. + +

+The rcu_head Structure

+ +

Each rcu_head structure represents an RCU callback. +These structures are normally embedded within RCU-protected data +structures whose algorithms use asynchronous grace periods. +In contrast, when using algorithms that block waiting for RCU grace periods, +RCU users need not provide rcu_head structures. + +

The rcu_head structure has fields as follows: + +

+  1   struct rcu_head *next;
+  2   void (*func)(struct rcu_head *head);
+
+ +

The ->next field is used +to link the rcu_head structures together in the +lists within the rcu_data structures. +The ->func field is a pointer to the function +to be called when the callback is ready to be invoked, and +this function is passed a pointer to the rcu_head +structure. +However, kfree_rcu() uses the ->func +field to record the offset of the rcu_head +structure within the enclosing RCU-protected data structure. + +

Both of these fields are used internally by RCU. +From the viewpoint of RCU users, this structure is an +opaque “cookie”. + +

Quick Quiz 7: +Given that the callback function ->func +is passed a pointer to the rcu_head structure, +how is that function supposed to find the beginning of the +enclosing RCU-protected data structure? +
Answer + +

+RCU-Specific Fields in the task_struct Structure

+ +

The CONFIG_TREE_PREEMPT_RCU implementation uses some +additional fields in the task_struct structure: + +

+ 1 #ifdef CONFIG_PREEMPT_RCU
+ 2   int rcu_read_lock_nesting;
+ 3   union rcu_special rcu_read_unlock_special;
+ 4   struct list_head rcu_node_entry;
+ 5   struct rcu_node *rcu_blocked_node;
+ 6 #endif /* #ifdef CONFIG_PREEMPT_RCU */
+ 7 #ifdef CONFIG_TASKS_RCU
+ 8   unsigned long rcu_tasks_nvcsw;
+ 9   bool rcu_tasks_holdout;
+10   struct list_head rcu_tasks_holdout_list;
+11   int rcu_tasks_idle_cpu;
+12 #endif /* #ifdef CONFIG_TASKS_RCU */
+
+ +

The ->rcu_read_lock_nesting field records the +nesting level for RCU read-side critical sections, and +the ->rcu_read_unlock_special field is a bitmask +that records special conditions that require rcu_read_unlock() +to do additional work. +The ->rcu_node_entry field is used to form lists of +tasks that have blocked within preemptible-RCU read-side critical +sections and the ->rcu_blocked_node field references +the rcu_node structure whose list this task is a member of, +or NULL if it is not blocked within a preemptible-RCU +read-side critical section. + +

The ->rcu_tasks_nvcsw field tracks the number of +voluntary context switches that this task had undergone at the +beginning of the current tasks-RCU grace period, +->rcu_tasks_holdout is set if the current tasks-RCU +grace period is waiting on this task, ->rcu_tasks_holdout_list +is a list element enqueuing this task on the holdout list, +and ->rcu_tasks_idle_cpu tracks which CPU this +idle task is running, but only if the task is currently running, +that is, if the CPU is currently idle. + +

Quick Quiz 8: +Why is ->rcu_boosted required, given that there is +a RCU_READ_UNLOCK_BOOSTED bit in +->rcu_read_unlock_special? +
Answer + +

+Accessor Functions

+ +

The following listing shows the +rcu_get_root(), rcu_for_each_node_breadth_first, +rcu_for_each_nonleaf_node_breadth_first(), and +rcu_for_each_leaf_node() function and macros: + +

+  1 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
+  2 {
+  3   return &rsp->node[0];
+  4 }
+  5
+  6 #define rcu_for_each_node_breadth_first(rsp, rnp) \
+  7   for ((rnp) = &(rsp)->node[0]; \
+  8        (rnp) < &(rsp)->node[NUM_RCU_NODES]; (rnp)++)
+  9
+ 10 #define rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) \
+ 11   for ((rnp) = &(rsp)->node[0]; \
+ 12        (rnp) < (rsp)->level[NUM_RCU_LVLS - 1]; (rnp)++)
+ 13
+ 14 #define rcu_for_each_leaf_node(rsp, rnp) \
+ 15   for ((rnp) = (rsp)->level[NUM_RCU_LVLS - 1]; \
+ 16        (rnp) < &(rsp)->node[NUM_RCU_NODES]; (rnp)++)
+
+ +

The rcu_get_root() simply returns a pointer to the +first element of the specified rcu_state structure's +->node[] array, which is the root rcu_node +structure. + +

As noted earlier, the rcu_for_each_node_breadth_first() +macro takes advantage of the layout of the rcu_node +structures in the rcu_state structure's +->node[] array, performing a breadth-first traversal by +simply traversing the array in order. +The rcu_for_each_nonleaf_node_breadth_first() macro operates +similarly, but traverses only the first part of the array, thus excluding +the leaf rcu_node structures. +Finally, the rcu_for_each_leaf_node() macro traverses only +the last part of the array, thus traversing only the leaf +rcu_node structures. + +

Quick Quiz 9: +What do rcu_for_each_nonleaf_node_breadth_first() and +rcu_for_each_leaf_node() do if the rcu_node tree +contains only a single node? +
Answer + +

+Summary

+ +So each flavor of RCU is represented by an rcu_state structure, +which contains a combining tree of rcu_node and +rcu_data structures. +Finally, in CONFIG_NO_HZ_IDLE kernels, each CPU's dyntick-idle +state is tracked by an rcu_dynticks structure. + +If you made it this far, you are well prepared to read the code +walkthroughs in the other articles in this series. + +

+Acknowledgments

+ +I owe thanks to Cyrill Gorcunov, Mathieu Desnoyers, Dhaval Giani, Paul +Turner, Abhishek Srivastava, Matt Kowalczyk, and Serge Hallyn +for helping me get this document into a more human-readable state. + +

+Legal Statement

+ +

This work represents the view of the author and does not necessarily +represent the view of IBM. + +

Linux is a registered trademark of Linus Torvalds. + +

Other company, product, and service names may be trademarks or +service marks of others. + + +

+Answers to Quick Quizzes

+ + +

Quick Quiz 1: +Why isn't the fanout at the leaves also 64? + + +

Answer: +Because there are more types of events that affect the leaf-level +rcu_node structures than further up the tree. +Therefore, if the leaf rcu_node structures have +fanout of 64, the contention on these structures' ->structures +becomes excessive. +Experimentation on a wide variety of systems has shown that a fanout +of 16 works well for the leaves of the rcu_node tree. + +

Of course, further experience with systems having hundreds or +thousands of CPUs may demonstrate that the fanout for the non-leaf +rcu_node structures must also be reduced. +Such reduction can be easily carried out when and if it proves necessary. +In the meantime, if you are using such a system and running into +contention problems on the non-leaf rcu_node structures, +you may use the CONFIG_RCU_FANOUT kernel configuration +parameter to reduce the non-leaf fanout as needed. + +

Kernels built for systems with strong NUMA characteristics might +also need to adjust CONFIG_RCU_FANOUT so that the +domains of the rcu_node structures align with hardware +boundaries. +However, there has thus far been no need for this. + + +

Back to Quick Quiz 1. + + +

Quick Quiz 2: +Wait a minute! +You said that the rcu_node structures formed a tree, +but they are declared as a flat array! +What gives? + + +

Answer: +The tree is laid out in the array. +The first node In the array is the head, the next set of nodes in the +array are children of the head node, and so on until the last set of +nodes in the array are the leaves. + +

See the following diagrams to see how this works. + + +

Back to Quick Quiz 2. + + +

Quick Quiz 3: +Given that this array represents a tree, why can't the diagram that +includes the ->level array be planar? + + +

Answer: +It can be planar, it is just that it looks uglier that way. +But don't take my word for it, draw it yourself! + +

But if you draw the tree to be tree-shaped rather than +array-shaped, it is easy to draw a planar representation: + +

TreeLevel.svg + + +

Back to Quick Quiz 3. + + +

Quick Quiz 4: +Why are these bitmasks protected by locking? +Come on, haven't you heard of atomic instructions??? + + +

Answer: +Lockless grace-period computation! Such a tantalizing possibility! + +

But consider the following sequence of events: + +

    +
  1. CPU 0 has been in dyntick-idle mode for quite + some time. + When it wakes up, it notices that the current RCU + grace period needs it to report in, so it sets a + flag where the scheduling clock interrupt will find it. +
  2. Meanwhile, CPU 1 is running force_quiescent_state(), + and notices that CPU 0 has been in dyntick idle mode, + which qualifies as an extended quiescent state. +
  3. CPU 0's scheduling clock interrupt fires in the + middle of an RCU read-side critical section, and notices + that the RCU core needs something, so commences RCU softirq + processing. +
  4. CPU 0's softirq handler executes and is just about ready + to report its quiescent state up the rcu_node + tree. +
  5. But CPU 1 beats it to the punch, completing the current + grace period and starting a new one. +
  6. CPU 0 now reports its quiescent state for the wrong + grace period. + That grace period might now end before the RCU read-side + critical section. + If that happens, disaster will ensue. +
+ +

So the locking is absolutely required in order to coordinate clearing +of the bits with the grace-period numbers in ->gpnum +and ->completed. + + +

Back to Quick Quiz 4. + + +

Quick Quiz 5: +All this replication of the grace period numbers can only cause +massive confusion. +Why not just keep a global pair of counters and be done with it??? + + +

Answer: +Because if there was only a single global pair of grace-period numbers, +there would need to be a single global lock to allow safely accessing +and updating them. +And if we are not going to have a single global lock, we need to carefully +manage the numbers on a per-node basis. +Recall from the answer to a previous Quick Quiz that the consequences +of applying a previously sampled quiescent state to the wrong +grace period are quite severe. + + +

Back to Quick Quiz 5. + + +

Quick Quiz 6: +Why not just count all NMIs? +Wouldn't that be simpler and less error prone? + + +

Answer: +It seems simpler only until you think hard about how to go about +updating the rcu_dynticks structure's +->dynticks field. + + +

Back to Quick Quiz 6. + + +

Quick Quiz 7: +Given that the callback function ->func +is passed a pointer to the rcu_head structure, +how is that function supposed to find the beginning of the +enclosing RCU-protected data structure? + + +

Answer: +In actual practice, there is a separate callback function per +type of RCU-protected data structure. +The callback function can therefore use the container_of() +macro in the Linux kernel (or other pointer-manipulation facilities +in other software environments) to find the beginning of the +enclosing structure. + + +

Back to Quick Quiz 7. + + +

Quick Quiz 8: +Why is ->rcu_boosted required, given that there is +a RCU_READ_UNLOCK_BOOSTED bit in +->rcu_read_unlock_special? + + +

Answer: +The ->rcu_read_unlock_special field may only be +updated by the task itself. +By definition, RCU priority boosting must be carried out by some +other task. +This other task cannot safely update the boosted task's +->rcu_read_unlock_special field without the use of +expensive atomic instructions. +The ->rcu_boosted field is therefore used by the +boosting task to let the boosted task know that it has been boosted. +The boosted task makes use of the +RCU_READ_UNLOCK_BOOSTED bit in +->rcu_read_unlock_special +when deboosting itself. + + +

Back to Quick Quiz 8. + + +

Quick Quiz 9: +What do rcu_for_each_nonleaf_node_breadth_first() and +rcu_for_each_leaf_node() do if the rcu_node tree +contains only a single node? + + +

Answer: +In the single-node case, +rcu_for_each_nonleaf_node_breadth_first() is a no-op +and rcu_for_each_leaf_node() traverses the single node. + + +

Back to Quick Quiz 9. + + + + diff --git a/Documentation/RCU/Design/Data-Structures/Data-Structures.htmlx b/Documentation/RCU/Design/Data-Structures/Data-Structures.htmlx new file mode 100644 index 000000000000..8e88e3e7e2ef --- /dev/null +++ b/Documentation/RCU/Design/Data-Structures/Data-Structures.htmlx @@ -0,0 +1,1295 @@ + + + A Tour Through TREE_RCU's Data Structures [LWN.net] + + +

January 27, 2016

+

This article was contributed by Paul E. McKenney

+ +

Introduction

+ +This document describes RCU's major data structures and their relationship +to each other. + +
    +
  1. + Data-Structure Relationships +
  2. + The rcu_state Structure +
  3. + The rcu_node Structure +
  4. + The rcu_data Structure +
  5. + The rcu_dynticks Structure +
  6. + The rcu_head Structure +
  7. + RCU-Specific Fields in the task_struct Structure +
  8. + Accessor Functions +
+ +At the end we have the +answers to the quick quizzes. + +

Data-Structure Relationships

+ +

RCU is for all intents and purposes a large state machine, and its +data structures maintain the state in such a way as to allow RCU readers +to execute extremely quickly, while also processing the RCU grace periods +requested by updaters in an efficient and extremely scalable fashion. +The efficiency and scalability of RCU updaters is provided primarily +by a combining tree, as shown below: + +

BigTreeClassicRCU.svg + +

This diagram shows an enclosing rcu_state structure +containing a tree of rcu_node structures. +Each leaf node of the rcu_node tree has up to 16 +rcu_data structures associated with it, so that there +are NR_CPUS number of rcu_data structures, +one for each possible CPU. +This structure is adjusted at boot time, if needed, to handle the +common case where nr_cpu_ids is much less than +NR_CPUs. +For example, a number of Linux distributions set NR_CPUs=4096, +which results in a three-level rcu_node tree. +If the actual hardware has only 16 CPUs, RCU will adjust itself +at boot time, resulting in an rcu_node tree with only a single node. + +

The purpose of this combining tree is to allow per-CPU events +such as quiescent states, dyntick-idle transitions, +and CPU hotplug operations to be processed efficiently +and scalably. +Quiescent states are recorded by the per-CPU rcu_data structures, +and other events are recorded by the leaf-level rcu_node +structures. +All of these events are combined at each level of the tree until finally +grace periods are completed at the tree's root rcu_node +structure. +A grace period can be completed at the root once every CPU +(or, in the case of CONFIG_TREE_PREEMPT_RCU, task) +has passed through a quiescent state. +Once a grace period has completed, record of that fact is propagated +back down the tree. + +

As can be seen from the diagram, on a 64-bit system +a two-level tree with 64 leaves can accommodate 1,024 CPUs, with a fanout +of 64 at the root and a fanout of 16 at the leaves. + +

@@QQ@@ +Why isn't the fanout at the leaves also 64? +

@@QQA@@ +Because there are more types of events that affect the leaf-level +rcu_node structures than further up the tree. +Therefore, if the leaf rcu_node structures have +fanout of 64, the contention on these structures' ->structures +becomes excessive. +Experimentation on a wide variety of systems has shown that a fanout +of 16 works well for the leaves of the rcu_node tree. + +

Of course, further experience with systems having hundreds or +thousands of CPUs may demonstrate that the fanout for the non-leaf +rcu_node structures must also be reduced. +Such reduction can be easily carried out when and if it proves necessary. +In the meantime, if you are using such a system and running into +contention problems on the non-leaf rcu_node structures, +you may use the CONFIG_RCU_FANOUT kernel configuration +parameter to reduce the non-leaf fanout as needed. + +

Kernels built for systems with strong NUMA characteristics might +also need to adjust CONFIG_RCU_FANOUT so that the +domains of the rcu_node structures align with hardware +boundaries. +However, there has thus far been no need for this. +

@@QQE@@ + +

If your system has more than 1,024 CPUs (or more than 512 CPUs on +a 32-bit system), then RCU will automatically add more levels to the +tree. +For example, if you are crazy enough to build a 64-bit system with 65,536 +CPUs, RCU would configure the rcu_node tree as follows: + +

HugeTreeClassicRCU.svg + +

RCU currently permits up to a four-level tree, which on a 64-bit system +accommodates up to 4,194,304 CPUs, though only a mere 524,288 CPUs for +32-bit systems. +On the other hand, you can set CONFIG_RCU_FANOUT to be +as small as 2 if you wish, which would permit only 16 CPUs, which +is useful for testing. + +

This multi-level combining tree allows us to get most of the +performance and scalability +benefits of partitioning, even though RCU grace-period detection is +inherently a global operation. +The trick here is that only the last CPU to report a quiescent state +into a given rcu_node structure need advance to the rcu_node +structure at the next level up the tree. +This means that at the leaf-level rcu_node structure, only +one access out of sixteen will progress up the tree. +For the internal rcu_node structures, the situation is even +more extreme: Only one access out of sixty-four will progress up +the tree. +Because the vast majority of the CPUs do not progress up the tree, +the lock contention remains roughly constant up the tree. +No matter how many CPUs there are in the system, at most 64 quiescent-state +reports per grace period will progress all the way to the root +rcu_node structure, thus ensuring that the lock contention +on that root rcu_node structure remains acceptably low. + +

In effect, the combining tree acts like a big shock absorber, +keeping lock contention under control at all tree levels regardless +of the level of loading on the system. + +

The Linux kernel actually supports multiple flavors of RCU +running concurrently, so RCU builds separate data structures for each +flavor. +For example, for CONFIG_TREE_RCU=y kernels, RCU provides +rcu_sched and rcu_bh, as shown below: + +

BigTreeClassicRCUBH.svg + +

Energy efficiency is increasingly important, and for that +reason the Linux kernel provides CONFIG_NO_HZ_IDLE, which +turns off the scheduling-clock interrupts on idle CPUs, which in +turn allows those CPUs to attain deeper sleep states and to consume +less energy. +CPUs whose scheduling-clock interrupts have been turned off are +said to be in dyntick-idle mode. +RCU must handle dyntick-idle CPUs specially +because RCU would otherwise wake up each CPU on every grace period, +which would defeat the whole purpose of CONFIG_NO_HZ_IDLE. +RCU uses the rcu_dynticks structure to track +which CPUs are in dyntick idle mode, as shown below: + +

BigTreeClassicRCUBHdyntick.svg + +

However, if a CPU is in dyntick-idle mode, it is in that mode +for all flavors of RCU. +Therefore, a single rcu_dynticks structure is allocated per +CPU, and all of a given CPU's rcu_data structures share +that rcu_dynticks, as shown in the figure. + +

Kernels built with CONFIG_TREE_PREEMPT_RCU support +rcu_preempt in addition to rcu_sched and rcu_bh, as shown below: + +

BigTreePreemptRCUBHdyntick.svg + +

RCU updaters wait for normal grace periods by registering +RCU callbacks, either directly via call_rcu() and +friends (namely call_rcu_bh() and call_rcu_sched()), +there being a separate interface per flavor of RCU) +or indirectly via synchronize_rcu() and friends. +RCU callbacks are represented by rcu_head structures, +which are queued on rcu_data structures while they are +waiting for a grace period to elapse, as shown in the following figure: + +

BigTreePreemptRCUBHdyntickCB.svg + +

This figure shows how TREE_RCU's and +TREE_PREEMPT_RCU's major data structures are related. +Lesser data structures will be introduced with the algorithms that +make use of them. + +

Note that each of the data structures in the above figure has +its own synchronization: + +

    +
  1. Each rcu_state structures has a lock and a mutex, + and some fields are protected by the corresponding root + rcu_node structure's lock. +
  2. Each rcu_node structure has a spinlock. +
  3. The fields in rcu_data are private to the corresponding + CPU, although a few can be read and written by other CPUs. +
  4. Similarly, the fields in rcu_dynticks are private + to the corresponding CPU, although a few can be read by + other CPUs. +
+ +

It is important to note that different data structures can have +very different ideas about the state of RCU at any given time. +For but one example, awareness of the start or end of a given RCU +grace period propagates slowly through the data structures. +This slow propagation is absolutely necessary for RCU to have good +read-side performance. +If this balkanized implementation seems foreign to you, one useful +trick is to consider each instance of these data structures to be +a different person, each having the usual slightly different +view of reality. + +

The general role of each of these data structures is as +follows: + +

    +
  1. rcu_state: + This structure forms the interconnection between the + rcu_node and rcu_data structures, + tracks grace periods, serves as short-term repository + for callbacks orphaned by CPU-hotplug events, + maintains rcu_barrier() state, + tracks expedited grace-period state, + and maintains state used to force quiescent states when + grace periods extend too long, +
  2. rcu_node: This structure forms the combining + tree that propagates quiescent-state + information from the leaves to the root, and also propagates + grace-period information from the root to the leaves. + It provides local copies of the grace-period state in order + to allow this information to be accessed in a synchronized + manner without suffering the scalability limitations that + would otherwise be imposed by global locking. + In CONFIG_TREE_PREEMPT_RCU kernels, it manages the lists + of tasks that have blocked while in their current + RCU read-side critical section. + In CONFIG_TREE_PREEMPT_RCU with + CONFIG_RCU_BOOST, it manages the + per-rcu_node priority-boosting + kernel threads (kthreads) and state. + Finally, it records CPU-hotplug state in order to determine + which CPUs should be ignored during a given grace period. +
  3. rcu_data: This per-CPU structure is the + focus of quiescent-state detection and RCU callback queuing. + It also tracks its relationship to the corresponding leaf + rcu_node structure to allow more-efficient + propagation of quiescent states up the rcu_node + combining tree. + Like the rcu_node structure, it provides a local + copy of the grace-period information to allow for-free + synchronized + access to this information from the corresponding CPU. + Finally, this structure records past dyntick-idle state + for the corresponding CPU and also tracks statistics. +
  4. rcu_dynticks: + This per-CPU structure tracks the current dyntick-idle + state for the corresponding CPU. + Unlike the other three structures, the rcu_dynticks + structure is not replicated per RCU flavor. +
  5. rcu_head: + This structure represents RCU callbacks, and is the + only structure allocated and managed by RCU users. + The rcu_head structure is normally embedded + within the RCU-protected data structure. +
+ +

If all you wanted from this article was a general notion of how +RCU's data structures are related, you are done. +Otherwise, each of the following sections give more details on +the rcu_state, rcu_node, rcu_data, +and rcu_dynticks data structures. + +

+The rcu_state Structure

+ +

The rcu_state structure is the base structure that +represents a flavor of RCU. +This structure forms the interconnection between the +rcu_node and rcu_data structures, +tracks grace periods, contains the lock used to +synchronize with CPU-hotplug events, +and maintains state used to force quiescent states when +grace periods extend too long, + +

A few of the rcu_state structure's fields are discussed, +singly and in groups, in the following sections. +The more specialized fields are covered in the discussion of their +use. + +

Relationship to rcu_node and rcu_data Structures
+ +This portion of the rcu_state structure is declared +as follows: + +
+  1   struct rcu_node node[NUM_RCU_NODES];
+  2   struct rcu_node *level[NUM_RCU_LVLS + 1];
+  3   struct rcu_data __percpu *rda;
+
+ +

@@QQ@@ +Wait a minute! +You said that the rcu_node structures formed a tree, +but they are declared as a flat array! +What gives? +

@@QQA@@ +The tree is laid out in the array. +The first node In the array is the head, the next set of nodes in the +array are children of the head node, and so on until the last set of +nodes in the array are the leaves. + +

See the following diagrams to see how this works. +

@@QQE@@ + +

The rcu_node tree is embedded into the +->node[] array as shown in the following figure: + +

TreeMapping.svg + +

One interesting consequence of this mapping is that a +breadth-first traversal of the tree is implemented as a simple +linear scan of the array, which is in fact what the +rcu_for_each_node_breadth_first() macro does. +This macro is used at the beginning and ends of grace periods. + +

Each entry of the ->level array references +the first rcu_node structure on the corresponding level +of the tree, for example, as shown below: + +

TreeMappingLevel.svg + +

The zeroth element of the array references the root +rcu_node structure, the first element references the +first child of the root rcu_node, and finally the second +element references the first leaf rcu_node structure. + +

@@QQ@@ +Given that this array represents a tree, why can't the diagram that +includes the ->level array be planar? +

@@QQA@@ +It can be planar, it is just that it looks uglier that way. +But don't take my word for it, draw it yourself! + +

But if you draw the tree to be tree-shaped rather than +array-shaped, it is easy to draw a planar representation: + +

TreeLevel.svg +

@@QQE@@ + +

Finally, the ->rda field references a per-CPU +pointer to the corresponding CPU's rcu_data structure. + +

All of these fields are constant once initialization is complete, +and therefore need no protection. + +

Grace-Period Tracking
+ +

This portion of the rcu_state structure is declared +as follows: + +

+  1   unsigned long gpnum;
+  2   unsigned long completed;
+
+ +

RCU grace periods are numbered, and +the ->gpnum field contains the number of the grace +period that started most recently. +The ->completed field contains the number of the +grace period that completed most recently. +If the two fields are equal, the RCU grace period that most recently +started has already completed, and therefore the corresponding +flavor of RCU is idle. +If ->gpnum is one greater than ->completed, +then ->gpnum gives the number of the current RCU +grace period, which has not yet completed. +Any other combination of values indicates that something is broken. +These two fields are protected by the root rcu_node's +->lock field. + +

There are ->gpnum and ->completed fields +in the rcu_node and rcu_data structures +as well. +The fields in the rcu_state structure represent the +most current values, and those of the other structures are compared +in order to detect the start of a new grace period in a distributed +fashion. +The values flow from rcu_state to rcu_node +(down the tree from the root to the leaves) to rcu_data. + +

Miscellaneous
+ +

This portion of the rcu_state structure is declared +as follows: + +

+  1   unsigned long gp_max;
+  2   char abbr;
+  3   char *name;
+
+ +

The ->gp_max field tracks the duration of the longest +grace period in jiffies. +It is protected by the root rcu_node's ->lock. + +

The ->name field points to the name of the RCU flavor +(for example, “rcu_sched”), and is constant. +The ->abbr field contains a one-character abbreviation, +for example, “s” for RCU-sched. + +

+The rcu_node Structure

+ +

The rcu_node structures form the combining +tree that propagates quiescent-state +information from the leaves to the root and also that propagates +grace-period information from the root down to the leaves. +They provides local copies of the grace-period state in order +to allow this information to be accessed in a synchronized +manner without suffering the scalability limitations that +would otherwise be imposed by global locking. +In CONFIG_TREE_PREEMPT_RCU kernels, they manage the lists +of tasks that have blocked while in their current +RCU read-side critical section. +In CONFIG_TREE_PREEMPT_RCU with +CONFIG_RCU_BOOST, they manage the +per-rcu_node priority-boosting +kernel threads (kthreads) and state. +Finally, they record CPU-hotplug state in order to determine +which CPUs should be ignored during a given grace period. + +

The rcu_node structure's fields are discussed, +singly and in groups, in the following sections. + +

Connection to Combining Tree
+ +

This portion of the rcu_node structure is declared +as follows: + +

+  1   struct rcu_node *parent;
+  2   u8 level;
+  3   u8 grpnum;
+  4   unsigned long grpmask;
+  5   int grplo;
+  6   int grphi;
+
+ +

The ->parent pointer references the rcu_node +one level up in the tree, and is NULL for the root +rcu_node. +The RCU implementation makes heavy use of this field to push quiescent +states up the tree. +The ->level field gives the level in the tree, with +the root being at level zero, its children at level one, and so on. +The ->grpnum field gives this node's position within +the children of its parent, so this number can range between 0 and 31 +on 32-bit systems and between 0 and 63 on 64-bit systems. +The ->level and ->grpnum fields are +used only during initialization and for tracing. +The ->grpmask field is the bitmask counterpart of +->grpnum, and therefore always has exactly one bit set. +This mask is used to clear the bit corresponding to this rcu_node +structure in its parent's bitmasks, which are described later. +Finally, the ->grplo and ->grphi fields +contain the lowest and highest numbered CPU served by this +rcu_node structure, respectively. + +

All of these fields are constant, and thus do not require any +synchronization. + +

Synchronization
+ +

This field of the rcu_node structure is declared +as follows: + +

+  1   raw_spinlock_t lock;
+
+ +

This field is used to protect the remaining fields in this structure, +unless otherwise stated. +That said, all of the fields in this structure can be accessed without +locking for tracing purposes. +Yes, this can result in confusing traces, but better some tracing confusion +than to be heisenbugged out of existence. + +

Grace-Period Tracking
+ +

This portion of the rcu_node structure is declared +as follows: + +

+  1   unsigned long gpnum;
+  2   unsigned long completed;
+
+ +

These fields are the counterparts of the fields of the same name in +the rcu_state structure. +They each may lag up to one behind their rcu_state +counterparts. +If a given rcu_node structure's ->gpnum and +->complete fields are equal, then this rcu_node +structure believes that RCU is idle. +Otherwise, as with the rcu_state structure, +the ->gpnum field will be one greater than the +->complete fields, with ->gpnum +indicating which grace period this rcu_node believes +is still being waited for. + +

The >gpnum field of each rcu_node +structure is updated at the beginning +of each grace period, and the ->completed fields are +updated at the end of each grace period. + +

Quiescent-State Tracking
+ +

These fields manage the propagation of quiescent states up the +combining tree. + +

This portion of the rcu_node structure has fields +as follows: + +

+  1   unsigned long qsmask;
+  2   unsigned long expmask;
+  3   unsigned long qsmaskinit;
+  4   unsigned long expmaskinit;
+
+ +

The ->qsmask field tracks which of this +rcu_node structure's children still need to report +quiescent states for the current normal grace period. +Such children will have a value of 1 in their corresponding bit. +Note that the leaf rcu_node structures should be +thought of as having rcu_data structures as their +children. +Similarly, the ->expmask field tracks which +of this rcu_node structure's children still need to report +quiescent states for the current expedited grace period. +An expedited grace period has +the same conceptual properties as a normal grace period, but the +expedited implementation accepts extreme CPU overhead to obtain +much lower grace-period latency, for example, consuming a few +tens of microseconds worth of CPU time to reduce grace-period +duration from milliseconds to tens of microseconds. +The ->qsmaskinit field tracks which of this +rcu_node structure's children cover for at least +one online CPU. +This mask is used to initialize ->qsmask, +and ->expmaskinit is used to initialize +->expmask and the beginning of the +normal and expedited grace periods, respectively. + +

@@QQ@@ +Why are these bitmasks protected by locking? +Come on, haven't you heard of atomic instructions??? +

@@QQA@@ +Lockless grace-period computation! Such a tantalizing possibility! + +

But consider the following sequence of events: + +

    +
  1. CPU 0 has been in dyntick-idle mode for quite + some time. + When it wakes up, it notices that the current RCU + grace period needs it to report in, so it sets a + flag where the scheduling clock interrupt will find it. +
  2. Meanwhile, CPU 1 is running force_quiescent_state(), + and notices that CPU 0 has been in dyntick idle mode, + which qualifies as an extended quiescent state. +
  3. CPU 0's scheduling clock interrupt fires in the + middle of an RCU read-side critical section, and notices + that the RCU core needs something, so commences RCU softirq + processing. +
  4. CPU 0's softirq handler executes and is just about ready + to report its quiescent state up the rcu_node + tree. +
  5. But CPU 1 beats it to the punch, completing the current + grace period and starting a new one. +
  6. CPU 0 now reports its quiescent state for the wrong + grace period. + That grace period might now end before the RCU read-side + critical section. + If that happens, disaster will ensue. +
+ +

So the locking is absolutely required in order to coordinate clearing +of the bits with the grace-period numbers in ->gpnum +and ->completed. +

@@QQE@@ + +

Blocked-Task Management
+ +

TREE_PREEMPT_RCU allows tasks to be preempted in the +midst of their RCU read-side critical sections, and these tasks +must be tracked explicitly. +The details of exactly why and how they are tracked will be covered +in a separate article on RCU read-side processing. +For now, it is enough to know that the rcu_node +structure tracks them. + +

+  1   struct list_head blkd_tasks;
+  2   struct list_head *gp_tasks;
+  3   struct list_head *exp_tasks;
+  4   bool wait_blkd_tasks;
+
+ +

The ->blkd_tasks field is a list header for +the list of blocked and preempted tasks. +As tasks undergo context switches within RCU read-side critical +sections, their task_struct structures are enqueued +(via the task_struct's ->rcu_node_entry +field) onto the head of the ->blkd_tasks list for the +leaf rcu_node structure corresponding to the CPU +on which the outgoing context switch executed. +As these tasks later exit their RCU read-side critical sections, +they remove themselves from the list. +This list is therefore in reverse time order, so that if one of the tasks +is blocking the current grace period, all subsequent tasks must +also be blocking that same grace period. +Therefore, a single pointer into this list suffices to track +all tasks blocking a given grace period. +That pointer is stored in ->gp_tasks for normal +grace periods and in ->exp_tasks for expedited +grace periods. +These last two fields are NULL if either there is +no grace period in flight or if there are no blocked tasks +preventing that grace period from completing. +If either of these two pointers is referencing a task that +removes itself from the ->blkd_tasks list, +then that task must advance the pointer to the next task on +the list, or set the pointer to NULL if there +are no subsequent tasks on the list. + +

For example, suppose that tasks T1, T2, and T3 are +all hard-affinitied to the largest-numbered CPU in the system. +Then if task T1 blocked in an RCU read-side +critical section, then an expedited grace period started, +then task T2 blocked in an RCU read-side critical section, +then a normal grace period started, and finally task 3 blocked +in an RCU read-side critical section, then the state of the +last leaf rcu_node structure's blocked-task list +would be as shown below: + +

blkd_task.svg + +

Task T1 is blocking both grace periods, task T2 is +blocking only the normal grace period, and task T3 is blocking +neither grace period. +Note that these tasks will not remove themselves from this list +immediately upon resuming execution. +They will instead remain on the list until they execute the outermost +rcu_read_unlock() that ends their RCU read-side critical +section. + +

+The ->wait_blkd_tasks field indicates whether or not +the current grace period is waiting on a blocked task. + +

Sizing the rcu_node Array
+ +

The rcu_node array is sized via a series of +C-preprocessor expressions as follows: + +

+ 1 #ifdef CONFIG_RCU_FANOUT
+ 2 #define RCU_FANOUT CONFIG_RCU_FANOUT
+ 3 #else
+ 4 # ifdef CONFIG_64BIT
+ 5 # define RCU_FANOUT 64
+ 6 # else
+ 7 # define RCU_FANOUT 32
+ 8 # endif
+ 9 #endif
+10
+11 #ifdef CONFIG_RCU_FANOUT_LEAF
+12 #define RCU_FANOUT_LEAF CONFIG_RCU_FANOUT_LEAF
+13 #else
+14 # ifdef CONFIG_64BIT
+15 # define RCU_FANOUT_LEAF 64
+16 # else
+17 # define RCU_FANOUT_LEAF 32
+18 # endif
+19 #endif
+20
+21 #define RCU_FANOUT_1        (RCU_FANOUT_LEAF)
+22 #define RCU_FANOUT_2        (RCU_FANOUT_1 * RCU_FANOUT)
+23 #define RCU_FANOUT_3        (RCU_FANOUT_2 * RCU_FANOUT)
+24 #define RCU_FANOUT_4        (RCU_FANOUT_3 * RCU_FANOUT)
+25
+26 #if NR_CPUS <= RCU_FANOUT_1
+27 #  define RCU_NUM_LVLS        1
+28 #  define NUM_RCU_LVL_0        1
+29 #  define NUM_RCU_NODES        NUM_RCU_LVL_0
+30 #  define NUM_RCU_LVL_INIT    { NUM_RCU_LVL_0 }
+31 #  define RCU_NODE_NAME_INIT  { "rcu_node_0" }
+32 #  define RCU_FQS_NAME_INIT   { "rcu_node_fqs_0" }
+33 #  define RCU_EXP_NAME_INIT   { "rcu_node_exp_0" }
+34 #elif NR_CPUS <= RCU_FANOUT_2
+35 #  define RCU_NUM_LVLS        2
+36 #  define NUM_RCU_LVL_0        1
+37 #  define NUM_RCU_LVL_1        DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_1)
+38 #  define NUM_RCU_NODES        (NUM_RCU_LVL_0 + NUM_RCU_LVL_1)
+39 #  define NUM_RCU_LVL_INIT    { NUM_RCU_LVL_0, NUM_RCU_LVL_1 }
+40 #  define RCU_NODE_NAME_INIT  { "rcu_node_0", "rcu_node_1" }
+41 #  define RCU_FQS_NAME_INIT   { "rcu_node_fqs_0", "rcu_node_fqs_1" }
+42 #  define RCU_EXP_NAME_INIT   { "rcu_node_exp_0", "rcu_node_exp_1" }
+43 #elif NR_CPUS <= RCU_FANOUT_3
+44 #  define RCU_NUM_LVLS        3
+45 #  define NUM_RCU_LVL_0        1
+46 #  define NUM_RCU_LVL_1        DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_2)
+47 #  define NUM_RCU_LVL_2        DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_1)
+48 #  define NUM_RCU_NODES        (NUM_RCU_LVL_0 + NUM_RCU_LVL_1 + NUM_RCU_LVL_2)
+49 #  define NUM_RCU_LVL_INIT    { NUM_RCU_LVL_0, NUM_RCU_LVL_1, NUM_RCU_LVL_2 }
+50 #  define RCU_NODE_NAME_INIT  { "rcu_node_0", "rcu_node_1", "rcu_node_2" }
+51 #  define RCU_FQS_NAME_INIT   { "rcu_node_fqs_0", "rcu_node_fqs_1", "rcu_node_fqs_2" }
+52 #  define RCU_EXP_NAME_INIT   { "rcu_node_exp_0", "rcu_node_exp_1", "rcu_node_exp_2" }
+53 #elif NR_CPUS <= RCU_FANOUT_4
+54 #  define RCU_NUM_LVLS        4
+55 #  define NUM_RCU_LVL_0        1
+56 #  define NUM_RCU_LVL_1        DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_3)
+57 #  define NUM_RCU_LVL_2        DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_2)
+58 #  define NUM_RCU_LVL_3        DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_1)
+59 #  define NUM_RCU_NODES        (NUM_RCU_LVL_0 + NUM_RCU_LVL_1 + NUM_RCU_LVL_2 + NUM_RCU_LVL_3)
+60 #  define NUM_RCU_LVL_INIT    { NUM_RCU_LVL_0, NUM_RCU_LVL_1, NUM_RCU_LVL_2, NUM_RCU_LVL_3 }
+61 #  define RCU_NODE_NAME_INIT  { "rcu_node_0", "rcu_node_1", "rcu_node_2", "rcu_node_3" }
+62 #  define RCU_FQS_NAME_INIT   { "rcu_node_fqs_0", "rcu_node_fqs_1", "rcu_node_fqs_2", "rcu_node_fqs_3" }
+63 #  define RCU_EXP_NAME_INIT   { "rcu_node_exp_0", "rcu_node_exp_1", "rcu_node_exp_2", "rcu_node_exp_3" }
+64 #else
+65 # error "CONFIG_RCU_FANOUT insufficient for NR_CPUS"
+66 #endif
+
+ +

The maximum number of levels in the rcu_node structure +is currently limited to four, as specified by lines 21-24 +and the structure of the subsequent “if” statement. +For 32-bit systems, this allows 16*32*32*32=524,288 CPUs, which +should be sufficient for the next few years at least. +For 64-bit systems, 16*64*64*64=4,194,304 CPUs is allowed, which +should see us through the next decade or so. +This four-level tree also allows kernels built with +CONFIG_RCU_FANOUT=8 to support up to 4096 CPUs, +which might be useful in very large systems having eight CPUs per +socket (but please note that no one has yet shown any measurable +performance degradation due to misaligned socket and rcu_node +boundaries). +In addition, building kernels with a full four levels of rcu_node +tree permits better testing of RCU's combining-tree code. + +

The RCU_FANOUT symbol controls how many children +are permitted at each non-leaf level of the rcu_node tree. +If the CONFIG_RCU_FANOUT Kconfig option is not specified, +it is set based on the word size of the system, which is also +the Kconfig default. + +

The RCU_FANOUT_LEAF symbol controls how many CPUs are +handled by each leaf rcu_node structure. +Experience has shown that allowing a given leaf rcu_node +structure to handle 64 CPUs, as permitted by the number of bits in +the ->qsmask field on a 64-bit system, results in +excessive contention for the leaf rcu_node structures' +->lock fields. +The number of CPUs per leaf rcu_node structure is therefore +limited to 16 given the default value of CONFIG_RCU_FANOUT_LEAF. +If CONFIG_RCU_FANOUT_LEAF is unspecified, the value +selected is based on the word size of the system, just as for +CONFIG_RCU_FANOUT. +Lines 11-19 perform this computation. + +

Lines 21-24 compute the maximum number of CPUs supported by +a single-level (which contains a single rcu_node structure), +two-level, three-level, and four-level rcu_node tree, +respectively, given the fanout specified by RCU_FANOUT +and RCU_FANOUT_LEAF. +These numbers of CPUs are retained in the +RCU_FANOUT_1, +RCU_FANOUT_2, +RCU_FANOUT_3, and +RCU_FANOUT_4 +C-preprocessor variables, respectively. + +

These variables are used to control the C-preprocessor #if +statement spanning lines 26-66 that computes the number of +rcu_node structures required for each level of the tree, +as well as the number of levels required. +The number of levels is placed in the NUM_RCU_LVLS +C-preprocessor variable by lines 27, 35, 44, and 54. +The number of rcu_node structures for the topmost level +of the tree is always exactly one, and this value is unconditionally +placed into NUM_RCU_LVL_0 by lines 28, 36, 45, and 55. +The rest of the levels (if any) of the rcu_node tree +are computed by dividing the maximum number of CPUs by the +fanout supported by the number of levels from the current level down, +rounding up. This computation is performed by lines 37, +46-47, and 56-58. +Lines 31-33, 40-42, 50-52, and 62-63 create initializers +for lockdep lock-class names. +Finally, lines 64-66 produce an error if the maximum number of +CPUs is too large for the specified fanout. + +

+The rcu_data Structure

+ +

The rcu_data maintains the per-CPU state for the +corresponding flavor of RCU. +The fields in this structure may be accessed only from the corresponding +CPU (and from tracing) unless otherwise stated. +This structure is the +focus of quiescent-state detection and RCU callback queuing. +It also tracks its relationship to the corresponding leaf +rcu_node structure to allow more-efficient +propagation of quiescent states up the rcu_node +combining tree. +Like the rcu_node structure, it provides a local +copy of the grace-period information to allow for-free +synchronized +access to this information from the corresponding CPU. +Finally, this structure records past dyntick-idle state +for the corresponding CPU and also tracks statistics. + +

The rcu_data structure's fields are discussed, +singly and in groups, in the following sections. + +

Connection to Other Data Structures
+ +

This portion of the rcu_data structure is declared +as follows: + +

+  1   int cpu;
+  2   struct rcu_state *rsp;
+  3   struct rcu_node *mynode;
+  4   struct rcu_dynticks *dynticks;
+  5   unsigned long grpmask;
+  6   bool beenonline;
+
+ +

The ->cpu field contains the number of the +corresponding CPU, the ->rsp pointer references +the corresponding rcu_state structure (and is most frequently +used to locate the name of the corresponding flavor of RCU for tracing), +and the ->mynode field references the corresponding +rcu_node structure. +The ->mynode is used to propagate quiescent states +up the combining tree. +

The ->dynticks pointer references the +rcu_dynticks structure corresponding to this +CPU. +Recall that a single per-CPU instance of the rcu_dynticks +structure is shared among all flavors of RCU. +These first four fields are constant and therefore require not +synchronization. + +

The ->grpmask field indicates the bit in +the ->mynode->qsmask corresponding to this +rcu_data structure, and is also used when propagating +quiescent states. +The ->beenonline flag is set whenever the corresponding +CPU comes online, which means that the debugfs tracing need not dump +out any rcu_data structure for which this flag is not set. + +

Quiescent-State and Grace-Period Tracking
+ +

This portion of the rcu_data structure is declared +as follows: + +

+  1   unsigned long completed;
+  2   unsigned long gpnum;
+  3   bool cpu_no_qs;
+  4   bool core_needs_qs;
+  5   bool gpwrap;
+  6   unsigned long rcu_qs_ctr_snap;
+
+ +

The completed and gpnum +fields are the counterparts of the fields of the same name +in the rcu_state and rcu_node structures. +They may each lag up to one behind their rcu_node +counterparts, but in CONFIG_NO_HZ_IDLE and +CONFIG_NO_HZ_FULL kernels can lag +arbitrarily far behind for CPUs in dyntick-idle mode (but these counters +will catch up upon exit from dyntick-idle mode). +If a given rcu_data structure's ->gpnum and +->complete fields are equal, then this rcu_data +structure believes that RCU is idle. +Otherwise, as with the rcu_state and rcu_node +structure, +the ->gpnum field will be one greater than the +->complete fields, with ->gpnum +indicating which grace period this rcu_data believes +is still being waited for. + +

@@QQ@@ +All this replication of the grace period numbers can only cause +massive confusion. +Why not just keep a global pair of counters and be done with it??? +

@@QQA@@ +Because if there was only a single global pair of grace-period numbers, +there would need to be a single global lock to allow safely accessing +and updating them. +And if we are not going to have a single global lock, we need to carefully +manage the numbers on a per-node basis. +Recall from the answer to a previous Quick Quiz that the consequences +of applying a previously sampled quiescent state to the wrong +grace period are quite severe. +

@@QQE@@ + +

The ->cpu_no_qs flag indicates that the +CPU has not yet passed through a quiescent state, +while the ->core_needs_qs flag indicates that the +RCU core needs a quiescent state from the corresponding CPU. +The ->gpwrap field indicates that the corresponding +CPU has remained idle for so long that the completed +and gpnum counters are in danger of overflow, which +will cause the CPU to disregard the values of its counters on +its next exit from idle. +Finally, the rcu_qs_ctr_snap field is used to detect +cases where a given operation has resulted in a quiescent state +for all flavors of RCU, for example, cond_resched_rcu_qs(). + +

RCU Callback Handling
+ +

In the absence of CPU-hotplug events, RCU callbacks are invoked by +the same CPU that registered them. +This is strictly a cache-locality optimization: callbacks can and +do get invoked on CPUs other than the one that registered them. +After all, if the CPU that registered a given callback has gone +offline before the callback can be invoked, there really is no other +choice. + +

This portion of the rcu_data structure is declared +as follows: + +

+ 1 struct rcu_head *nxtlist;
+ 2 struct rcu_head **nxttail[RCU_NEXT_SIZE];
+ 3 unsigned long nxtcompleted[RCU_NEXT_SIZE];
+ 4 long qlen_lazy;
+ 5 long qlen;
+ 6 long qlen_last_fqs_check;
+ 7 unsigned long n_force_qs_snap;
+ 8 unsigned long n_cbs_invoked;
+ 9 unsigned long n_cbs_orphaned;
+10 unsigned long n_cbs_adopted;
+11 long blimit;
+
+ +

The ->nxtlist pointer and the +->nxttail[] array form a four-segment list with +older callbacks near the head and newer ones near the tail. +Each segment contains callbacks with the corresponding relationship +to the current grace period. +The pointer out of the end of each of the four segments is referenced +by the element of the ->nxttail[] array indexed by +RCU_DONE_TAIL (for callbacks handled by a prior grace period), +RCU_WAIT_TAIL (for callbacks waiting on the current grace period), +RCU_NEXT_READY_TAIL (for callbacks that will wait on the next +grace period), and +RCU_NEXT_TAIL (for callbacks that are not yet associated +with a specific grace period) +respectively, as shown in the following figure. + +

nxtlist.svg + +

In this figure, the ->nxtlist pointer references the +first +RCU callback in the list. +The ->nxttail[RCU_DONE_TAIL] array element references +the ->nxtlist pointer itself, indicating that none +of the callbacks is ready to invoke. +The ->nxttail[RCU_WAIT_TAIL] array element references callback +CB 2's ->next pointer, which indicates that +CB 1 and CB 2 are both waiting on the current grace period. +The ->nxttail[RCU_NEXT_READY_TAIL] array element +references the same RCU callback that ->nxttail[RCU_WAIT_TAIL] +does, which indicates that there are no callbacks waiting on the next +RCU grace period. +The ->nxttail[RCU_NEXT_TAIL] array element references +CB 4's ->next pointer, indicating that all the +remaining RCU callbacks have not yet been assigned to an RCU grace +period. +Note that the ->nxttail[RCU_NEXT_TAIL] array element +always references the last RCU callback's ->next pointer +unless the callback list is empty, in which case it references +the ->nxtlist pointer. + +

CPUs advance their callbacks from the +RCU_NEXT_TAIL to the RCU_NEXT_READY_TAIL to the +RCU_WAIT_TAIL to the RCU_DONE_TAIL list segments +as grace periods advance. +The CPU advances the callbacks in its rcu_data structure +whenever it notices that another RCU grace period has completed. +The CPU detects the completion of an RCU grace period by noticing +that the value of its rcu_data structure's +->completed field differs from that of its leaf +rcu_node structure. +Recall that each rcu_node structure's +->completed field is updated at the end of each +grace period. + +

The ->nxtcompleted[] array records grace-period +numbers corresponding to the list segments. +This allows CPUs that go idle for extended periods to determine +which of their callbacks are ready to be invoked after reawakening. + +

The ->qlen counter contains the number of +callbacks in ->nxtlist, and the +->qlen_lazy contains the number of those callbacks that +are known to only free memory, and whose invocation can therefore +be safely deferred. +The ->qlen_last_fqs_check and +->n_force_qs_snap coordinate the forcing of quiescent +states from call_rcu() and friends when callback +lists grow excessively long. + +

The ->n_cbs_invoked, +->n_cbs_orphaned, and ->n_cbs_adopted +fields count the number of callbacks invoked, +sent to other CPUs when this CPU goes offline, +and received from other CPUs when those other CPUs go offline. +Finally, the ->blimit counter is the maximum number of +RCU callbacks that may be invoked at a given time. + +

Dyntick-Idle Handling
+ +

This portion of the rcu_data structure is declared +as follows: + +

+  1   int dynticks_snap;
+  2   unsigned long dynticks_fqs;
+
+ +The ->dynticks_snap field is used to take a snapshot +of the corresponding CPU's dyntick-idle state when forcing +quiescent states, and is therefore accessed from other CPUs. +Finally, the ->dynticks_fqs field is used to +count the number of times this CPU is determined to be in +dyntick-idle state, and is used for tracing and debugging purposes. + +

+The rcu_dynticks Structure

+ +

The rcu_dynticks maintains the per-CPU dyntick-idle state +for the corresponding CPU. +Unlike the other structures, rcu_dynticks is not +replicated over the different flavors of RCU. +The fields in this structure may be accessed only from the corresponding +CPU (and from tracing) unless otherwise stated. +Its fields are as follows: + +

+  1   int dynticks_nesting;
+  2   int dynticks_nmi_nesting;
+  3   atomic_t dynticks;
+
+ +

The ->dynticks_nesting field counts the +nesting depth of normal interrupts. +In addition, this counter is incremented when exiting dyntick-idle +mode and decremented when entering it. +This counter can therefore be thought of as counting the number +of reasons why this CPU cannot be permitted to enter dyntick-idle +mode, aside from non-maskable interrupts (NMIs). +NMIs are counted by the ->dynticks_nmi_nesting +field, except that NMIs that interrupt non-dyntick-idle execution +are not counted. + +

Finally, the ->dynticks field counts the corresponding +CPU's transitions to and from dyntick-idle mode, so that this counter +has an even value when the CPU is in dyntick-idle mode and an odd +value otherwise. + +

@@QQ@@ +Why not just count all NMIs? +Wouldn't that be simpler and less error prone? +

@@QQA@@ +It seems simpler only until you think hard about how to go about +updating the rcu_dynticks structure's +->dynticks field. +

@@QQE@@ + +

Additional fields are present for some special-purpose +builds, and are discussed separately. + +

+The rcu_head Structure

+ +

Each rcu_head structure represents an RCU callback. +These structures are normally embedded within RCU-protected data +structures whose algorithms use asynchronous grace periods. +In contrast, when using algorithms that block waiting for RCU grace periods, +RCU users need not provide rcu_head structures. + +

The rcu_head structure has fields as follows: + +

+  1   struct rcu_head *next;
+  2   void (*func)(struct rcu_head *head);
+
+ +

The ->next field is used +to link the rcu_head structures together in the +lists within the rcu_data structures. +The ->func field is a pointer to the function +to be called when the callback is ready to be invoked, and +this function is passed a pointer to the rcu_head +structure. +However, kfree_rcu() uses the ->func +field to record the offset of the rcu_head +structure within the enclosing RCU-protected data structure. + +

Both of these fields are used internally by RCU. +From the viewpoint of RCU users, this structure is an +opaque “cookie”. + +

@@QQ@@ +Given that the callback function ->func +is passed a pointer to the rcu_head structure, +how is that function supposed to find the beginning of the +enclosing RCU-protected data structure? +

@@QQA@@ +In actual practice, there is a separate callback function per +type of RCU-protected data structure. +The callback function can therefore use the container_of() +macro in the Linux kernel (or other pointer-manipulation facilities +in other software environments) to find the beginning of the +enclosing structure. +

@@QQE@@ + +

+RCU-Specific Fields in the task_struct Structure

+ +

The CONFIG_TREE_PREEMPT_RCU implementation uses some +additional fields in the task_struct structure: + +

+ 1 #ifdef CONFIG_PREEMPT_RCU
+ 2   int rcu_read_lock_nesting;
+ 3   union rcu_special rcu_read_unlock_special;
+ 4   struct list_head rcu_node_entry;
+ 5   struct rcu_node *rcu_blocked_node;
+ 6 #endif /* #ifdef CONFIG_PREEMPT_RCU */
+ 7 #ifdef CONFIG_TASKS_RCU
+ 8   unsigned long rcu_tasks_nvcsw;
+ 9   bool rcu_tasks_holdout;
+10   struct list_head rcu_tasks_holdout_list;
+11   int rcu_tasks_idle_cpu;
+12 #endif /* #ifdef CONFIG_TASKS_RCU */
+
+ +

The ->rcu_read_lock_nesting field records the +nesting level for RCU read-side critical sections, and +the ->rcu_read_unlock_special field is a bitmask +that records special conditions that require rcu_read_unlock() +to do additional work. +The ->rcu_node_entry field is used to form lists of +tasks that have blocked within preemptible-RCU read-side critical +sections and the ->rcu_blocked_node field references +the rcu_node structure whose list this task is a member of, +or NULL if it is not blocked within a preemptible-RCU +read-side critical section. + +

The ->rcu_tasks_nvcsw field tracks the number of +voluntary context switches that this task had undergone at the +beginning of the current tasks-RCU grace period, +->rcu_tasks_holdout is set if the current tasks-RCU +grace period is waiting on this task, ->rcu_tasks_holdout_list +is a list element enqueuing this task on the holdout list, +and ->rcu_tasks_idle_cpu tracks which CPU this +idle task is running, but only if the task is currently running, +that is, if the CPU is currently idle. + +

@@QQ@@ +Why is ->rcu_boosted required, given that there is +a RCU_READ_UNLOCK_BOOSTED bit in +->rcu_read_unlock_special? +

@@QQA@@ +The ->rcu_read_unlock_special field may only be +updated by the task itself. +By definition, RCU priority boosting must be carried out by some +other task. +This other task cannot safely update the boosted task's +->rcu_read_unlock_special field without the use of +expensive atomic instructions. +The ->rcu_boosted field is therefore used by the +boosting task to let the boosted task know that it has been boosted. +The boosted task makes use of the +RCU_READ_UNLOCK_BOOSTED bit in +->rcu_read_unlock_special +when deboosting itself. +

@@QQE@@ + +

+Accessor Functions

+ +

The following listing shows the +rcu_get_root(), rcu_for_each_node_breadth_first, +rcu_for_each_nonleaf_node_breadth_first(), and +rcu_for_each_leaf_node() function and macros: + +

+  1 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
+  2 {
+  3   return &rsp->node[0];
+  4 }
+  5
+  6 #define rcu_for_each_node_breadth_first(rsp, rnp) \
+  7   for ((rnp) = &(rsp)->node[0]; \
+  8        (rnp) < &(rsp)->node[NUM_RCU_NODES]; (rnp)++)
+  9
+ 10 #define rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) \
+ 11   for ((rnp) = &(rsp)->node[0]; \
+ 12        (rnp) < (rsp)->level[NUM_RCU_LVLS - 1]; (rnp)++)
+ 13
+ 14 #define rcu_for_each_leaf_node(rsp, rnp) \
+ 15   for ((rnp) = (rsp)->level[NUM_RCU_LVLS - 1]; \
+ 16        (rnp) < &(rsp)->node[NUM_RCU_NODES]; (rnp)++)
+
+ +

The rcu_get_root() simply returns a pointer to the +first element of the specified rcu_state structure's +->node[] array, which is the root rcu_node +structure. + +

As noted earlier, the rcu_for_each_node_breadth_first() +macro takes advantage of the layout of the rcu_node +structures in the rcu_state structure's +->node[] array, performing a breadth-first traversal by +simply traversing the array in order. +The rcu_for_each_nonleaf_node_breadth_first() macro operates +similarly, but traverses only the first part of the array, thus excluding +the leaf rcu_node structures. +Finally, the rcu_for_each_leaf_node() macro traverses only +the last part of the array, thus traversing only the leaf +rcu_node structures. + +

@@QQ@@ +What do rcu_for_each_nonleaf_node_breadth_first() and +rcu_for_each_leaf_node() do if the rcu_node tree +contains only a single node? +

@@QQA@@ +In the single-node case, +rcu_for_each_nonleaf_node_breadth_first() is a no-op +and rcu_for_each_leaf_node() traverses the single node. +

@@QQE@@ + +

+Summary

+ +So each flavor of RCU is represented by an rcu_state structure, +which contains a combining tree of rcu_node and +rcu_data structures. +Finally, in CONFIG_NO_HZ_IDLE kernels, each CPU's dyntick-idle +state is tracked by an rcu_dynticks structure. + +If you made it this far, you are well prepared to read the code +walkthroughs in the other articles in this series. + +

+Acknowledgments

+ +I owe thanks to Cyrill Gorcunov, Mathieu Desnoyers, Dhaval Giani, Paul +Turner, Abhishek Srivastava, Matt Kowalczyk, and Serge Hallyn +for helping me get this document into a more human-readable state. + +

+Legal Statement

+ +

This work represents the view of the author and does not necessarily +represent the view of IBM. + +

Linux is a registered trademark of Linus Torvalds. + +

Other company, product, and service names may be trademarks or +service marks of others. + + +

@@QQAL@@ + + + diff --git a/Documentation/RCU/Design/Data-Structures/HugeTreeClassicRCU.svg b/Documentation/RCU/Design/Data-Structures/HugeTreeClassicRCU.svg new file mode 100644 index 000000000000..2bf12b468206 --- /dev/null +++ b/Documentation/RCU/Design/Data-Structures/HugeTreeClassicRCU.svg @@ -0,0 +1,939 @@ + + + + + + + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + rcu_node + + struct + + struct + + rcu_node + + struct + + rcu_node + + rcu_node + + struct + + rcu_node + + struct + + struct + + rcu_node + + CPU 0 + + struct + + rcu_data + + CPU 15 + + struct + + rcu_data + + struct + + rcu_data + + CPU 21823 + + CPU 21839 + + rcu_data + + struct + + struct + + rcu_data + + CPU 43679 + + CPU 43695 + + rcu_data + + struct + + struct + + rcu_data + + CPU 65519 + + CPU 65535 + + rcu_data + + struct + + struct rcu_state + + struct + + rcu_node + + diff --git a/Documentation/RCU/Design/Data-Structures/TreeLevel.svg b/Documentation/RCU/Design/Data-Structures/TreeLevel.svg new file mode 100644 index 000000000000..7a7eb3bac95c --- /dev/null +++ b/Documentation/RCU/Design/Data-Structures/TreeLevel.svg @@ -0,0 +1,828 @@ + + + + + + + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + rcu_node + + struct + + struct + + rcu_node + + struct + + rcu_node + + rcu_node + + struct + + rcu_node + + struct + + struct + + rcu_node + + ->level[0] + + ->level[1] + + ->level[2] + + struct + + rcu_node + + CPU 15 + + CPU 0 + + CPU 65535 + + CPU 65519 + + CPU 43695 + + CPU 43679 + + CPU 21839 + + CPU 21823 + + struct rcu_state + + diff --git a/Documentation/RCU/Design/Data-Structures/TreeMapping.svg b/Documentation/RCU/Design/Data-Structures/TreeMapping.svg new file mode 100644 index 000000000000..729cfa9e6cdb --- /dev/null +++ b/Documentation/RCU/Design/Data-Structures/TreeMapping.svg @@ -0,0 +1,305 @@ + + + + + + + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 0:7 + + 4:7 + + 0:1 + + 2:3 + + 4:5 + + 6:7 + + 0:3 + + struct rcu_state + + diff --git a/Documentation/RCU/Design/Data-Structures/TreeMappingLevel.svg b/Documentation/RCU/Design/Data-Structures/TreeMappingLevel.svg new file mode 100644 index 000000000000..5b416a4b8453 --- /dev/null +++ b/Documentation/RCU/Design/Data-Structures/TreeMappingLevel.svg @@ -0,0 +1,380 @@ + + + + + + + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ->level[0] + + ->level[1] + + ->level[2] + + 0:7 + + 4:7 + + 0:1 + + 2:3 + + 4:5 + + 6:7 + + 0:3 + + struct rcu_state + + + + + + + + + diff --git a/Documentation/RCU/Design/Data-Structures/blkd_task.svg b/Documentation/RCU/Design/Data-Structures/blkd_task.svg new file mode 100644 index 000000000000..00e810bb8419 --- /dev/null +++ b/Documentation/RCU/Design/Data-Structures/blkd_task.svg @@ -0,0 +1,843 @@ + + + + + + + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + rcu_bh + + struct + + rcu_node + + struct + + rcu_node + + struct + + rcu_data + + struct + + rcu_data + + struct + + rcu_data + + struct + + rcu_data + + struct rcu_state + + struct + + rcu_dynticks + + struct + + rcu_dynticks + + struct + + rcu_dynticks + + struct + + rcu_dynticks + + rcu_sched + + T3 + + T2 + + T1 + + + + + + + + + + + + + rcu_node + + struct + + blkd_tasks + + gp_tasks + + exp_tasks + + diff --git a/Documentation/RCU/Design/Data-Structures/nxtlist.svg b/Documentation/RCU/Design/Data-Structures/nxtlist.svg new file mode 100644 index 000000000000..abc4cc73a097 --- /dev/null +++ b/Documentation/RCU/Design/Data-Structures/nxtlist.svg @@ -0,0 +1,396 @@ + + + + + + + + + + + + image/svg+xml + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + nxtlist + + nxttail[RCU_DONE_TAIL] + + nxttail[RCU_WAIT_TAIL] + + nxttail[RCU_NEXT_READY_TAIL] + + nxttail[RCU_NEXT_TAIL] + + CB 1 + + next + + CB 3 + + next + + CB 4 + + next + + CB 2 + + next + + diff --git a/Documentation/RCU/Design/Requirements/Requirements.html b/Documentation/RCU/Design/Requirements/Requirements.html index a725f9900ec8..01e12b86e81f 100644 --- a/Documentation/RCU/Design/Requirements/Requirements.html +++ b/Documentation/RCU/Design/Requirements/Requirements.html @@ -1,5 +1,5 @@ - + @@ -583,6 +583,17 @@ The first and second guarantees require unbelievably strict ordering! Are all these memory barriers really required?
Answer +

Quick Quiz 7: +You claim that rcu_read_lock() and rcu_read_unlock() +generate absolutely no code in some kernel builds. +This means that the compiler might arbitrarily rearrange consecutive +RCU read-side critical sections. +Given such rearrangement, if a given RCU read-side critical section +is done, how can you be sure that all prior RCU read-side critical +sections are done? +Won't the compiler rearrangements make that impossible to determine? +
Answer +

Note that these memory-barrier requirements do not replace the fundamental RCU requirement that a grace period wait for all pre-existing readers. @@ -626,9 +637,9 @@ inconvenience can be avoided through use of the call_rcu() and kfree_rcu() API members described later in this document. -

Quick Quiz 7: +

Quick Quiz 8: But how does the upgrade-to-write operation exclude other readers? -
Answer +
Answer

This guarantee allows lookup code to be shared between read-side @@ -714,9 +725,9 @@ to do significant reordering. This is by design: Any significant ordering constraints would slow down these fast-path APIs. -

Quick Quiz 8: +

Quick Quiz 9: Can't the compiler also reorder this code? -
Answer +
Answer

Readers Do Not Exclude Updaters

@@ -769,10 +780,10 @@ new readers can start immediately after synchronize_rcu() starts, and synchronize_rcu() is under no obligation to wait for these new readers. -

Quick Quiz 9: +

Quick Quiz 10: Suppose that synchronize_rcu() did wait until all readers had completed. Would the updater be able to rely on this? -
Answer +
Answer

Grace Periods Don't Partition Read-Side Critical Sections

@@ -969,11 +980,11 @@ grace period. As a result, an RCU read-side critical section cannot partition a pair of RCU grace periods. -

Quick Quiz 10: +

Quick Quiz 11: How long a sequence of grace periods, each separated by an RCU read-side critical section, would be required to partition the RCU read-side critical sections at the beginning and end of the chain? -
Answer +
Answer

Disabling Preemption Does Not Block Grace Periods

@@ -1127,9 +1138,9 @@ synchronization primitives be legal within RCU read-side critical sections, including spinlocks, sequence locks, atomic operations, reference counters, and memory barriers. -

Quick Quiz 11: +

Quick Quiz 12: What about sleeping locks? -
Answer +
Answer

It often comes as a surprise that many algorithms do not require a @@ -1343,7 +1354,8 @@ situations where neither synchronize_rcu() nor synchronize_rcu_expedited() would be legal, including within preempt-disable code, local_bh_disable() code, interrupt-disable code, and interrupt handlers. -However, even call_rcu() is illegal within NMI handlers. +However, even call_rcu() is illegal within NMI handlers +and from offline CPUs. The callback function (remove_gp_cb() in this case) will be executed within softirq (software interrupt) environment within the Linux kernel, @@ -1354,12 +1366,12 @@ write an RCU callback function that takes too long. Long-running operations should be relegated to separate threads or (in the Linux kernel) workqueues. -

Quick Quiz 12: +

Quick Quiz 13: Why does line 19 use rcu_access_pointer()? After all, call_rcu() on line 25 stores into the structure, which would interact badly with concurrent insertions. Doesn't this mean that rcu_dereference() is required? -
Answer +
Answer

However, all that remove_gp_cb() is doing is @@ -1406,14 +1418,14 @@ This was due to the fact that RCU was not heavily used within DYNIX/ptx, so the very few places that needed something like synchronize_rcu() simply open-coded it. -

Quick Quiz 13: +

Quick Quiz 14: Earlier it was claimed that call_rcu() and kfree_rcu() allowed updaters to avoid being blocked by readers. But how can that be correct, given that the invocation of the callback and the freeing of the memory (respectively) must still wait for a grace period to elapse? -
Answer +
Answer

But what if the updater must wait for the completion of code to be @@ -1838,11 +1850,11 @@ kthreads to be spawned. Therefore, invoking synchronize_rcu() during scheduler initialization can result in deadlock. -

Quick Quiz 14: +

Quick Quiz 15: So what happens with synchronize_rcu() during scheduler initialization for CONFIG_PREEMPT=n kernels? -
Answer +
Answer

I learned of these boot-time requirements as a result of a series of @@ -2171,6 +2183,14 @@ This real-time requirement motivated the grace-period kthread, which also simplified handling of a number of race conditions.

+RCU must avoid degrading real-time response for CPU-bound threads, whether +executing in usermode (which is one use case for +CONFIG_NO_HZ_FULL=y) or in the kernel. +That said, CPU-bound loops in the kernel must execute +cond_resched_rcu_qs() at least once per few tens of milliseconds +in order to avoid receiving an IPI from RCU. + +

Finally, RCU's status as a synchronization primitive means that any RCU failure can result in arbitrary memory corruption that can be extremely difficult to debug. @@ -2223,6 +2243,8 @@ described in a separate section.

  • Sched Flavor
  • Sleepable RCU
  • Tasks RCU +
  • + Waiting for Multiple Grace Periods

    Bottom-Half Flavor

    @@ -2472,6 +2494,81 @@ The tasks-RCU API is quite compact, consisting only of synchronize_rcu_tasks(), and rcu_barrier_tasks(). +

    +Waiting for Multiple Grace Periods

    + +

    +Perhaps you have an RCU protected data structure that is accessed from +RCU read-side critical sections, from softirq handlers, and from +hardware interrupt handlers. +That is three flavors of RCU, the normal flavor, the bottom-half flavor, +and the sched flavor. +How to wait for a compound grace period? + +

    +The best approach is usually to “just say no!” and +insert rcu_read_lock() and rcu_read_unlock() +around each RCU read-side critical section, regardless of what +environment it happens to be in. +But suppose that some of the RCU read-side critical sections are +on extremely hot code paths, and that use of CONFIG_PREEMPT=n +is not a viable option, so that rcu_read_lock() and +rcu_read_unlock() are not free. +What then? + +

    +You could wait on all three grace periods in succession, as follows: + +

    +
    + 1 synchronize_rcu();
    + 2 synchronize_rcu_bh();
    + 3 synchronize_sched();
    +
    +
    + +

    +This works, but triples the update-side latency penalty. +In cases where this is not acceptable, synchronize_rcu_mult() +may be used to wait on all three flavors of grace period concurrently: + +

    +
    + 1 synchronize_rcu_mult(call_rcu, call_rcu_bh, call_rcu_sched);
    +
    +
    + +

    +But what if it is necessary to also wait on SRCU? +This can be done as follows: + +

    +
    + 1 static void call_my_srcu(struct rcu_head *head,
    + 2        void (*func)(struct rcu_head *head))
    + 3 {
    + 4   call_srcu(&my_srcu, head, func);
    + 5 }
    + 6
    + 7 synchronize_rcu_mult(call_rcu, call_rcu_bh, call_rcu_sched, call_my_srcu);
    +
    +
    + +

    +If you needed to wait on multiple different flavors of SRCU +(but why???), you would need to create a wrapper function resembling +call_my_srcu() for each SRCU flavor. + +

    Quick Quiz 16: +But what if I need to wait for multiple RCU flavors, but I also need +the grace periods to be expedited? +
    Answer + +

    +Again, it is usually better to adjust the RCU read-side critical sections +to use a single flavor of RCU, but when this is not feasible, you can use +synchronize_rcu_mult(). +

    Possible Future Changes

    @@ -2742,18 +2839,51 @@ adhered to the as-if rule than it is to actually adhere to it!

    Quick Quiz 7: -But how does the upgrade-to-write operation exclude other readers? +You claim that rcu_read_lock() and rcu_read_unlock() +generate absolutely no code in some kernel builds. +This means that the compiler might arbitrarily rearrange consecutive +RCU read-side critical sections. +Given such rearrangement, if a given RCU read-side critical section +is done, how can you be sure that all prior RCU read-side critical +sections are done? +Won't the compiler rearrangements make that impossible to determine?

    Answer: -It doesn't, just like normal RCU updates, which also do not exclude -RCU readers. +In cases where rcu_read_lock() and rcu_read_unlock() +generate absolutely no code, RCU infers quiescent states only at +special locations, for example, within the scheduler. +Because calls to schedule() had better prevent calling-code +accesses to shared variables from being rearranged across the call to +schedule(), if RCU detects the end of a given RCU read-side +critical section, it will necessarily detect the end of all prior +RCU read-side critical sections, no matter how aggressively the +compiler scrambles the code. + +

    +Again, this all assumes that the compiler cannot scramble code across +calls to the scheduler, out of interrupt handlers, into the idle loop, +into user-mode code, and so on. +But if your kernel build allows that sort of scrambling, you have broken +far more than just RCU!

    Back to Quick Quiz 7.

    Quick Quiz 8: +But how does the upgrade-to-write operation exclude other readers? + + +

    Answer: +It doesn't, just like normal RCU updates, which also do not exclude +RCU readers. + + +

    Back to Quick Quiz 8. + + +

    Quick Quiz 9: Can't the compiler also reorder this code? @@ -2763,10 +2893,10 @@ No, the volatile casts in READ_ONCE() and this particular case. -

    Back to Quick Quiz 8. +

    Back to Quick Quiz 9. - -

    Quick Quiz 9: + +

    Quick Quiz 10: Suppose that synchronize_rcu() did wait until all readers had completed. Would the updater be able to rely on this? @@ -2781,10 +2911,10 @@ Therefore, the code following in any case. -

    Back to Quick Quiz 9. +

    Back to Quick Quiz 10. - -

    Quick Quiz 10: + +

    Quick Quiz 11: How long a sequence of grace periods, each separated by an RCU read-side critical section, would be required to partition the RCU read-side critical sections at the beginning and end of the chain? @@ -2798,10 +2928,10 @@ Therefore, even in practice, RCU users must abide by the theoretical rather than the practical answer. -

    Back to Quick Quiz 10. +

    Back to Quick Quiz 11. - -

    Quick Quiz 11: + +

    Quick Quiz 12: What about sleeping locks? @@ -2829,10 +2959,10 @@ the mutex was not immediately available. Either way, mutex_trylock() returns immediately without sleeping. -

    Back to Quick Quiz 11. +

    Back to Quick Quiz 12. - -

    Quick Quiz 12: + +

    Quick Quiz 13: Why does line 19 use rcu_access_pointer()? After all, call_rcu() on line 25 stores into the structure, which would interact badly with concurrent insertions. @@ -2848,10 +2978,10 @@ is released on line 25, which in turn means that rcu_access_pointer() suffices. -

    Back to Quick Quiz 12. +

    Back to Quick Quiz 13. - -

    Quick Quiz 13: + +

    Quick Quiz 14: Earlier it was claimed that call_rcu() and kfree_rcu() allowed updaters to avoid being blocked by readers. @@ -2872,10 +3002,10 @@ next update as soon as it has invoked call_rcu() or grace period. -

    Back to Quick Quiz 13. +

    Back to Quick Quiz 14. - -

    Quick Quiz 14: + +

    Quick Quiz 15: So what happens with synchronize_rcu() during scheduler initialization for CONFIG_PREEMPT=n kernels? @@ -2891,7 +3021,22 @@ so it is still necessary to avoid invoking synchronize_rcu() during scheduler initialization. -

    Back to Quick Quiz 14. +

    Back to Quick Quiz 15. + + +

    Quick Quiz 16: +But what if I need to wait for multiple RCU flavors, but I also need +the grace periods to be expedited? + + +

    Answer: +If you are using expedited grace periods, there should be less penalty +for waiting on them in succession. +But if that is nevertheless a problem, you can use workqueues or multiple +kthreads to wait on the various expedited grace periods concurrently. + + +

    Back to Quick Quiz 16. diff --git a/Documentation/RCU/Design/Requirements/Requirements.htmlx b/Documentation/RCU/Design/Requirements/Requirements.htmlx index 3a97ba490c42..3355f1f9384c 100644 --- a/Documentation/RCU/Design/Requirements/Requirements.htmlx +++ b/Documentation/RCU/Design/Requirements/Requirements.htmlx @@ -682,6 +682,34 @@ That said, it is much easier to fool yourself into believing that you have adhered to the as-if rule than it is to actually adhere to it!

    @@QQE@@ +

    @@QQ@@ +You claim that rcu_read_lock() and rcu_read_unlock() +generate absolutely no code in some kernel builds. +This means that the compiler might arbitrarily rearrange consecutive +RCU read-side critical sections. +Given such rearrangement, if a given RCU read-side critical section +is done, how can you be sure that all prior RCU read-side critical +sections are done? +Won't the compiler rearrangements make that impossible to determine? +

    @@QQA@@ +In cases where rcu_read_lock() and rcu_read_unlock() +generate absolutely no code, RCU infers quiescent states only at +special locations, for example, within the scheduler. +Because calls to schedule() had better prevent calling-code +accesses to shared variables from being rearranged across the call to +schedule(), if RCU detects the end of a given RCU read-side +critical section, it will necessarily detect the end of all prior +RCU read-side critical sections, no matter how aggressively the +compiler scrambles the code. + +

    +Again, this all assumes that the compiler cannot scramble code across +calls to the scheduler, out of interrupt handlers, into the idle loop, +into user-mode code, and so on. +But if your kernel build allows that sort of scrambling, you have broken +far more than just RCU! +

    @@QQE@@ +

    Note that these memory-barrier requirements do not replace the fundamental RCU requirement that a grace period wait for all pre-existing readers. @@ -1485,7 +1513,8 @@ situations where neither synchronize_rcu() nor synchronize_rcu_expedited() would be legal, including within preempt-disable code, local_bh_disable() code, interrupt-disable code, and interrupt handlers. -However, even call_rcu() is illegal within NMI handlers. +However, even call_rcu() is illegal within NMI handlers +and from offline CPUs. The callback function (remove_gp_cb() in this case) will be executed within softirq (software interrupt) environment within the Linux kernel, @@ -2338,6 +2367,14 @@ This real-time requirement motivated the grace-period kthread, which also simplified handling of a number of race conditions.

    +RCU must avoid degrading real-time response for CPU-bound threads, whether +executing in usermode (which is one use case for +CONFIG_NO_HZ_FULL=y) or in the kernel. +That said, CPU-bound loops in the kernel must execute +cond_resched_rcu_qs() at least once per few tens of milliseconds +in order to avoid receiving an IPI from RCU. + +

    Finally, RCU's status as a synchronization primitive means that any RCU failure can result in arbitrary memory corruption that can be extremely difficult to debug. @@ -2390,6 +2427,8 @@ described in a separate section.

  • Sched Flavor
  • Sleepable RCU
  • Tasks RCU +
  • + Waiting for Multiple Grace Periods

    Bottom-Half Flavor

    @@ -2639,6 +2678,86 @@ The tasks-RCU API is quite compact, consisting only of synchronize_rcu_tasks(), and rcu_barrier_tasks(). +

    +Waiting for Multiple Grace Periods

    + +

    +Perhaps you have an RCU protected data structure that is accessed from +RCU read-side critical sections, from softirq handlers, and from +hardware interrupt handlers. +That is three flavors of RCU, the normal flavor, the bottom-half flavor, +and the sched flavor. +How to wait for a compound grace period? + +

    +The best approach is usually to “just say no!” and +insert rcu_read_lock() and rcu_read_unlock() +around each RCU read-side critical section, regardless of what +environment it happens to be in. +But suppose that some of the RCU read-side critical sections are +on extremely hot code paths, and that use of CONFIG_PREEMPT=n +is not a viable option, so that rcu_read_lock() and +rcu_read_unlock() are not free. +What then? + +

    +You could wait on all three grace periods in succession, as follows: + +

    +
    + 1 synchronize_rcu();
    + 2 synchronize_rcu_bh();
    + 3 synchronize_sched();
    +
    +
    + +

    +This works, but triples the update-side latency penalty. +In cases where this is not acceptable, synchronize_rcu_mult() +may be used to wait on all three flavors of grace period concurrently: + +

    +
    + 1 synchronize_rcu_mult(call_rcu, call_rcu_bh, call_rcu_sched);
    +
    +
    + +

    +But what if it is necessary to also wait on SRCU? +This can be done as follows: + +

    +
    + 1 static void call_my_srcu(struct rcu_head *head,
    + 2        void (*func)(struct rcu_head *head))
    + 3 {
    + 4   call_srcu(&my_srcu, head, func);
    + 5 }
    + 6
    + 7 synchronize_rcu_mult(call_rcu, call_rcu_bh, call_rcu_sched, call_my_srcu);
    +
    +
    + +

    +If you needed to wait on multiple different flavors of SRCU +(but why???), you would need to create a wrapper function resembling +call_my_srcu() for each SRCU flavor. + +

    @@QQ@@ +But what if I need to wait for multiple RCU flavors, but I also need +the grace periods to be expedited? +

    @@QQA@@ +If you are using expedited grace periods, there should be less penalty +for waiting on them in succession. +But if that is nevertheless a problem, you can use workqueues or multiple +kthreads to wait on the various expedited grace periods concurrently. +

    @@QQE@@ + +

    +Again, it is usually better to adjust the RCU read-side critical sections +to use a single flavor of RCU, but when this is not feasible, you can use +synchronize_rcu_mult(). +

    Possible Future Changes

    diff --git a/Documentation/memory-barriers.txt b/Documentation/memory-barriers.txt index 904ee42d078e..3729cbe60e41 100644 --- a/Documentation/memory-barriers.txt +++ b/Documentation/memory-barriers.txt @@ -232,7 +232,7 @@ GUARANTEES with memory references that are not protected by READ_ONCE() and WRITE_ONCE(). Without them, the compiler is within its rights to do all sorts of "creative" transformations, which are covered in - the Compiler Barrier section. + the COMPILER BARRIER section. (*) It _must_not_ be assumed that independent loads and stores will be issued in the order given. This means that for: @@ -555,6 +555,30 @@ To deal with this, a data dependency barrier or better must be inserted This enforces the occurrence of one of the two implications, and prevents the third possibility from arising. +A data-dependency barrier must also order against dependent writes: + + CPU 1 CPU 2 + =============== =============== + { A == 1, B == 2, C = 3, P == &A, Q == &C } + B = 4; + + WRITE_ONCE(P, &B); + Q = READ_ONCE(P); + + *Q = 5; + +The data-dependency barrier must order the read into Q with the store +into *Q. This prohibits this outcome: + + (Q == B) && (B == 4) + +Please note that this pattern should be rare. After all, the whole point +of dependency ordering is to -prevent- writes to the data structure, along +with the expensive cache misses associated with those writes. This pattern +can be used to record rare error conditions and the like, and the ordering +prevents such records from being lost. + + [!] Note that this extremely counterintuitive situation arises most easily on machines with split caches, so that, for example, one cache bank processes even-numbered cache lines and the other bank processes odd-numbered cache @@ -565,21 +589,6 @@ odd-numbered bank is idle, one can see the new value of the pointer P (&B), but the old value of the variable B (2). -Another example of where data dependency barriers might be required is where a -number is read from memory and then used to calculate the index for an array -access: - - CPU 1 CPU 2 - =============== =============== - { M[0] == 1, M[1] == 2, M[3] = 3, P == 0, Q == 3 } - M[1] = 4; - - WRITE_ONCE(P, 1); - Q = READ_ONCE(P); - - D = M[Q]; - - The data dependency barrier is very important to the RCU system, for example. See rcu_assign_pointer() and rcu_dereference() in include/linux/rcupdate.h. This permits the current target of an RCU'd @@ -800,9 +809,13 @@ site: https://www.cl.cam.ac.uk/~pes20/ppcmem/index.html. use smp_rmb(), smp_wmb(), or, in the case of prior stores and later loads, smp_mb(). - (*) If both legs of the "if" statement begin with identical stores - to the same variable, a barrier() statement is required at the - beginning of each leg of the "if" statement. + (*) If both legs of the "if" statement begin with identical stores to + the same variable, then those stores must be ordered, either by + preceding both of them with smp_mb() or by using smp_store_release() + to carry out the stores. Please note that it is -not- sufficient + to use barrier() at beginning of each leg of the "if" statement, + as optimizing compilers do not necessarily respect barrier() + in this case. (*) Control dependencies require at least one run-time conditional between the prior load and the subsequent store, and this @@ -814,7 +827,7 @@ site: https://www.cl.cam.ac.uk/~pes20/ppcmem/index.html. (*) Control dependencies require that the compiler avoid reordering the dependency into nonexistence. Careful use of READ_ONCE() or atomic{,64}_read() can help to preserve your control dependency. - Please see the Compiler Barrier section for more information. + Please see the COMPILER BARRIER section for more information. (*) Control dependencies pair normally with other types of barriers. @@ -1257,7 +1270,7 @@ TRANSITIVITY Transitivity is a deeply intuitive notion about ordering that is not always provided by real computer systems. The following example -demonstrates transitivity (also called "cumulativity"): +demonstrates transitivity: CPU 1 CPU 2 CPU 3 ======================= ======================= ======================= @@ -1305,8 +1318,86 @@ or a level of cache, CPU 2 might have early access to CPU 1's writes. General barriers are therefore required to ensure that all CPUs agree on the combined order of CPU 1's and CPU 2's accesses. -To reiterate, if your code requires transitivity, use general barriers -throughout. +General barriers provide "global transitivity", so that all CPUs will +agree on the order of operations. In contrast, a chain of release-acquire +pairs provides only "local transitivity", so that only those CPUs on +the chain are guaranteed to agree on the combined order of the accesses. +For example, switching to C code in deference to Herman Hollerith: + + int u, v, x, y, z; + + void cpu0(void) + { + r0 = smp_load_acquire(&x); + WRITE_ONCE(u, 1); + smp_store_release(&y, 1); + } + + void cpu1(void) + { + r1 = smp_load_acquire(&y); + r4 = READ_ONCE(v); + r5 = READ_ONCE(u); + smp_store_release(&z, 1); + } + + void cpu2(void) + { + r2 = smp_load_acquire(&z); + smp_store_release(&x, 1); + } + + void cpu3(void) + { + WRITE_ONCE(v, 1); + smp_mb(); + r3 = READ_ONCE(u); + } + +Because cpu0(), cpu1(), and cpu2() participate in a local transitive +chain of smp_store_release()/smp_load_acquire() pairs, the following +outcome is prohibited: + + r0 == 1 && r1 == 1 && r2 == 1 + +Furthermore, because of the release-acquire relationship between cpu0() +and cpu1(), cpu1() must see cpu0()'s writes, so that the following +outcome is prohibited: + + r1 == 1 && r5 == 0 + +However, the transitivity of release-acquire is local to the participating +CPUs and does not apply to cpu3(). Therefore, the following outcome +is possible: + + r0 == 0 && r1 == 1 && r2 == 1 && r3 == 0 && r4 == 0 + +As an aside, the following outcome is also possible: + + r0 == 0 && r1 == 1 && r2 == 1 && r3 == 0 && r4 == 0 && r5 == 1 + +Although cpu0(), cpu1(), and cpu2() will see their respective reads and +writes in order, CPUs not involved in the release-acquire chain might +well disagree on the order. This disagreement stems from the fact that +the weak memory-barrier instructions used to implement smp_load_acquire() +and smp_store_release() are not required to order prior stores against +subsequent loads in all cases. This means that cpu3() can see cpu0()'s +store to u as happening -after- cpu1()'s load from v, even though +both cpu0() and cpu1() agree that these two operations occurred in the +intended order. + +However, please keep in mind that smp_load_acquire() is not magic. +In particular, it simply reads from its argument with ordering. It does +-not- ensure that any particular value will be read. Therefore, the +following outcome is possible: + + r0 == 0 && r1 == 0 && r2 == 0 && r5 == 0 + +Note that this outcome can happen even on a mythical sequentially +consistent system where nothing is ever reordered. + +To reiterate, if your code requires global transitivity, use general +barriers throughout. ======================== @@ -1459,7 +1550,7 @@ be fatal in concurrent code. Here are some examples of these sorts the following: a = 0; - /* Code that does not store to variable a. */ + ... Code that does not store to variable a ... a = 0; The compiler sees that the value of variable 'a' is already zero, so @@ -1471,7 +1562,7 @@ be fatal in concurrent code. Here are some examples of these sorts wrong guess: WRITE_ONCE(a, 0); - /* Code that does not store to variable a. */ + ... Code that does not store to variable a ... WRITE_ONCE(a, 0); (*) The compiler is within its rights to reorder memory accesses unless diff --git a/include/linux/compiler.h b/include/linux/compiler.h index 48f5aab117ae..7cfc58a6e61c 100644 --- a/include/linux/compiler.h +++ b/include/linux/compiler.h @@ -20,12 +20,14 @@ # define __pmem __attribute__((noderef, address_space(5))) #ifdef CONFIG_SPARSE_RCU_POINTER # define __rcu __attribute__((noderef, address_space(4))) -#else +#else /* CONFIG_SPARSE_RCU_POINTER */ # define __rcu -#endif +#endif /* CONFIG_SPARSE_RCU_POINTER */ +# define __private __attribute__((noderef)) extern void __chk_user_ptr(const volatile void __user *); extern void __chk_io_ptr(const volatile void __iomem *); -#else +# define ACCESS_PRIVATE(p, member) (*((typeof((p)->member) __force *) &(p)->member)) +#else /* __CHECKER__ */ # define __user # define __kernel # define __safe @@ -44,7 +46,9 @@ extern void __chk_io_ptr(const volatile void __iomem *); # define __percpu # define __rcu # define __pmem -#endif +# define __private +# define ACCESS_PRIVATE(p, member) ((p)->member) +#endif /* __CHECKER__ */ /* Indirect macros required for expanded argument pasting, eg. __LINE__. */ #define ___PASTE(a,b) a##b diff --git a/include/linux/irq.h b/include/linux/irq.h index 3c1c96786248..cd14cd4a22b4 100644 --- a/include/linux/irq.h +++ b/include/linux/irq.h @@ -137,7 +137,7 @@ struct irq_domain; * @msi_desc: MSI descriptor */ struct irq_common_data { - unsigned int state_use_accessors; + unsigned int __private state_use_accessors; #ifdef CONFIG_NUMA unsigned int node; #endif @@ -208,7 +208,7 @@ enum { IRQD_FORWARDED_TO_VCPU = (1 << 20), }; -#define __irqd_to_state(d) ((d)->common->state_use_accessors) +#define __irqd_to_state(d) ACCESS_PRIVATE((d)->common, state_use_accessors) static inline bool irqd_is_setaffinity_pending(struct irq_data *d) { @@ -299,6 +299,8 @@ static inline void irqd_clr_forwarded_to_vcpu(struct irq_data *d) __irqd_to_state(d) &= ~IRQD_FORWARDED_TO_VCPU; } +#undef __irqd_to_state + static inline irq_hw_number_t irqd_to_hwirq(struct irq_data *d) { return d->hwirq; diff --git a/include/linux/rcupdate.h b/include/linux/rcupdate.h index 14e6f47ee16f..b5d48bd56e3f 100644 --- a/include/linux/rcupdate.h +++ b/include/linux/rcupdate.h @@ -360,8 +360,6 @@ void rcu_user_exit(void); #else static inline void rcu_user_enter(void) { } static inline void rcu_user_exit(void) { } -static inline void rcu_user_hooks_switch(struct task_struct *prev, - struct task_struct *next) { } #endif /* CONFIG_NO_HZ_FULL */ #ifdef CONFIG_RCU_NOCB_CPU diff --git a/include/linux/srcu.h b/include/linux/srcu.h index f5f80c5643ac..dc8eb63c6568 100644 --- a/include/linux/srcu.h +++ b/include/linux/srcu.h @@ -99,8 +99,23 @@ void process_srcu(struct work_struct *work); } /* - * define and init a srcu struct at build time. - * dont't call init_srcu_struct() nor cleanup_srcu_struct() on it. + * Define and initialize a srcu struct at build time. + * Do -not- call init_srcu_struct() nor cleanup_srcu_struct() on it. + * + * Note that although DEFINE_STATIC_SRCU() hides the name from other + * files, the per-CPU variable rules nevertheless require that the + * chosen name be globally unique. These rules also prohibit use of + * DEFINE_STATIC_SRCU() within a function. If these rules are too + * restrictive, declare the srcu_struct manually. For example, in + * each file: + * + * static struct srcu_struct my_srcu; + * + * Then, before the first use of each my_srcu, manually initialize it: + * + * init_srcu_struct(&my_srcu); + * + * See include/linux/percpu-defs.h for the rules on per-CPU variables. */ #define __DEFINE_SRCU(name, is_static) \ static DEFINE_PER_CPU(struct srcu_struct_array, name##_srcu_array);\ diff --git a/kernel/irq/internals.h b/kernel/irq/internals.h index fcab63c66905..3d182932d2d1 100644 --- a/kernel/irq/internals.h +++ b/kernel/irq/internals.h @@ -160,6 +160,8 @@ irq_put_desc_unlock(struct irq_desc *desc, unsigned long flags) __irq_put_desc_unlock(desc, flags, false); } +#define __irqd_to_state(d) ACCESS_PRIVATE((d)->common, state_use_accessors) + /* * Manipulation functions for irq_data.state */ @@ -188,6 +190,8 @@ static inline bool irqd_has_set(struct irq_data *d, unsigned int mask) return __irqd_to_state(d) & mask; } +#undef __irqd_to_state + static inline void kstat_incr_irqs_this_cpu(struct irq_desc *desc) { __this_cpu_inc(*desc->kstat_irqs); diff --git a/kernel/rcu/rcutorture.c b/kernel/rcu/rcutorture.c index d2988d047d66..65ae0e5c35da 100644 --- a/kernel/rcu/rcutorture.c +++ b/kernel/rcu/rcutorture.c @@ -932,12 +932,14 @@ rcu_torture_writer(void *arg) int nsynctypes = 0; VERBOSE_TOROUT_STRING("rcu_torture_writer task started"); - pr_alert("%s" TORTURE_FLAG - " Grace periods expedited from boot/sysfs for %s,\n", - torture_type, cur_ops->name); - pr_alert("%s" TORTURE_FLAG - " Testing of dynamic grace-period expediting diabled.\n", - torture_type); + if (!can_expedite) { + pr_alert("%s" TORTURE_FLAG + " Grace periods expedited from boot/sysfs for %s,\n", + torture_type, cur_ops->name); + pr_alert("%s" TORTURE_FLAG + " Disabled dynamic grace-period expediting.\n", + torture_type); + } /* Initialize synctype[] array. If none set, take default. */ if (!gp_cond1 && !gp_exp1 && !gp_normal1 && !gp_sync1) diff --git a/kernel/rcu/tiny_plugin.h b/kernel/rcu/tiny_plugin.h index e492a5253e0f..196f0302e2f4 100644 --- a/kernel/rcu/tiny_plugin.h +++ b/kernel/rcu/tiny_plugin.h @@ -23,7 +23,7 @@ */ #include -#include +#include #include #include @@ -122,18 +122,7 @@ static int __init rcutiny_trace_init(void) debugfs_remove_recursive(rcudir); return 1; } - -static void __exit rcutiny_trace_cleanup(void) -{ - debugfs_remove_recursive(rcudir); -} - -module_init(rcutiny_trace_init); -module_exit(rcutiny_trace_cleanup); - -MODULE_AUTHOR("Paul E. McKenney"); -MODULE_DESCRIPTION("Read-Copy Update tracing for tiny implementation"); -MODULE_LICENSE("GPL"); +device_initcall(rcutiny_trace_init); static void check_cpu_stall(struct rcu_ctrlblk *rcp) { diff --git a/kernel/rcu/tree.c b/kernel/rcu/tree.c index e41dd4131f7a..39f9c73d33c5 100644 --- a/kernel/rcu/tree.c +++ b/kernel/rcu/tree.c @@ -108,7 +108,6 @@ RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched); RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh); static struct rcu_state *const rcu_state_p; -static struct rcu_data __percpu *const rcu_data_p; LIST_HEAD(rcu_struct_flavors); /* Dump rcu_node combining tree at boot to verify correct setup. */ @@ -1083,13 +1082,12 @@ static int dyntick_save_progress_counter(struct rcu_data *rdp, rcu_sysidle_check_cpu(rdp, isidle, maxj); if ((rdp->dynticks_snap & 0x1) == 0) { trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); - return 1; - } else { if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4, rdp->mynode->gpnum)) WRITE_ONCE(rdp->gpwrap, true); - return 0; + return 1; } + return 0; } /* @@ -1173,15 +1171,16 @@ static int rcu_implicit_dynticks_qs(struct rcu_data *rdp, smp_mb(); /* ->cond_resched_completed before *rcrmp. */ WRITE_ONCE(*rcrmp, READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask); - resched_cpu(rdp->cpu); /* Force CPU into scheduler. */ - rdp->rsp->jiffies_resched += 5; /* Enable beating. */ - } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) { - /* Time to beat on that CPU again! */ - resched_cpu(rdp->cpu); /* Force CPU into scheduler. */ - rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */ } + rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */ } + /* And if it has been a really long time, kick the CPU as well. */ + if (ULONG_CMP_GE(jiffies, + rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) || + ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs)) + resched_cpu(rdp->cpu); /* Force CPU into scheduler. */ + return 0; } @@ -1246,7 +1245,7 @@ static void rcu_dump_cpu_stacks(struct rcu_state *rsp) if (rnp->qsmask & (1UL << cpu)) dump_cpu_task(rnp->grplo + cpu); } - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } } @@ -1266,12 +1265,12 @@ static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum) raw_spin_lock_irqsave_rcu_node(rnp, flags); delta = jiffies - READ_ONCE(rsp->jiffies_stall); if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); return; } WRITE_ONCE(rsp->jiffies_stall, jiffies + 3 * rcu_jiffies_till_stall_check() + 3); - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); /* * OK, time to rat on our buddy... @@ -1292,7 +1291,7 @@ static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum) ndetected++; } } - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } print_cpu_stall_info_end(); @@ -1357,7 +1356,7 @@ static void print_cpu_stall(struct rcu_state *rsp) if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall))) WRITE_ONCE(rsp->jiffies_stall, jiffies + 3 * rcu_jiffies_till_stall_check() + 3); - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); /* * Attempt to revive the RCU machinery by forcing a context switch. @@ -1595,7 +1594,7 @@ rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, } unlock_out: if (rnp != rnp_root) - raw_spin_unlock(&rnp_root->lock); + raw_spin_unlock_rcu_node(rnp_root); out: if (c_out != NULL) *c_out = c; @@ -1815,7 +1814,7 @@ static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp) return; } needwake = __note_gp_changes(rsp, rnp, rdp); - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); if (needwake) rcu_gp_kthread_wake(rsp); } @@ -1840,7 +1839,7 @@ static bool rcu_gp_init(struct rcu_state *rsp) raw_spin_lock_irq_rcu_node(rnp); if (!READ_ONCE(rsp->gp_flags)) { /* Spurious wakeup, tell caller to go back to sleep. */ - raw_spin_unlock_irq(&rnp->lock); + raw_spin_unlock_irq_rcu_node(rnp); return false; } WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */ @@ -1850,7 +1849,7 @@ static bool rcu_gp_init(struct rcu_state *rsp) * Grace period already in progress, don't start another. * Not supposed to be able to happen. */ - raw_spin_unlock_irq(&rnp->lock); + raw_spin_unlock_irq_rcu_node(rnp); return false; } @@ -1859,7 +1858,7 @@ static bool rcu_gp_init(struct rcu_state *rsp) /* Record GP times before starting GP, hence smp_store_release(). */ smp_store_release(&rsp->gpnum, rsp->gpnum + 1); trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start")); - raw_spin_unlock_irq(&rnp->lock); + raw_spin_unlock_irq_rcu_node(rnp); /* * Apply per-leaf buffered online and offline operations to the @@ -1873,7 +1872,7 @@ static bool rcu_gp_init(struct rcu_state *rsp) if (rnp->qsmaskinit == rnp->qsmaskinitnext && !rnp->wait_blkd_tasks) { /* Nothing to do on this leaf rcu_node structure. */ - raw_spin_unlock_irq(&rnp->lock); + raw_spin_unlock_irq_rcu_node(rnp); continue; } @@ -1907,7 +1906,7 @@ static bool rcu_gp_init(struct rcu_state *rsp) rcu_cleanup_dead_rnp(rnp); } - raw_spin_unlock_irq(&rnp->lock); + raw_spin_unlock_irq_rcu_node(rnp); } /* @@ -1938,7 +1937,7 @@ static bool rcu_gp_init(struct rcu_state *rsp) trace_rcu_grace_period_init(rsp->name, rnp->gpnum, rnp->level, rnp->grplo, rnp->grphi, rnp->qsmask); - raw_spin_unlock_irq(&rnp->lock); + raw_spin_unlock_irq_rcu_node(rnp); cond_resched_rcu_qs(); WRITE_ONCE(rsp->gp_activity, jiffies); } @@ -1996,7 +1995,7 @@ static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time) raw_spin_lock_irq_rcu_node(rnp); WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS); - raw_spin_unlock_irq(&rnp->lock); + raw_spin_unlock_irq_rcu_node(rnp); } } @@ -2025,7 +2024,7 @@ static void rcu_gp_cleanup(struct rcu_state *rsp) * safe for us to drop the lock in order to mark the grace * period as completed in all of the rcu_node structures. */ - raw_spin_unlock_irq(&rnp->lock); + raw_spin_unlock_irq_rcu_node(rnp); /* * Propagate new ->completed value to rcu_node structures so @@ -2046,7 +2045,7 @@ static void rcu_gp_cleanup(struct rcu_state *rsp) needgp = __note_gp_changes(rsp, rnp, rdp) || needgp; /* smp_mb() provided by prior unlock-lock pair. */ nocb += rcu_future_gp_cleanup(rsp, rnp); - raw_spin_unlock_irq(&rnp->lock); + raw_spin_unlock_irq_rcu_node(rnp); cond_resched_rcu_qs(); WRITE_ONCE(rsp->gp_activity, jiffies); rcu_gp_slow(rsp, gp_cleanup_delay); @@ -2068,7 +2067,7 @@ static void rcu_gp_cleanup(struct rcu_state *rsp) READ_ONCE(rsp->gpnum), TPS("newreq")); } - raw_spin_unlock_irq(&rnp->lock); + raw_spin_unlock_irq_rcu_node(rnp); } /* @@ -2234,18 +2233,20 @@ static bool rcu_start_gp(struct rcu_state *rsp) } /* - * Report a full set of quiescent states to the specified rcu_state - * data structure. This involves cleaning up after the prior grace - * period and letting rcu_start_gp() start up the next grace period - * if one is needed. Note that the caller must hold rnp->lock, which - * is released before return. + * Report a full set of quiescent states to the specified rcu_state data + * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period + * kthread if another grace period is required. Whether we wake + * the grace-period kthread or it awakens itself for the next round + * of quiescent-state forcing, that kthread will clean up after the + * just-completed grace period. Note that the caller must hold rnp->lock, + * which is released before return. */ static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) __releases(rcu_get_root(rsp)->lock) { WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); - raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags); rcu_gp_kthread_wake(rsp); } @@ -2275,7 +2276,7 @@ rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, * Our bit has already been cleared, or the * relevant grace period is already over, so done. */ - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); return; } WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ @@ -2287,7 +2288,7 @@ rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { /* Other bits still set at this level, so done. */ - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); return; } mask = rnp->grpmask; @@ -2297,7 +2298,7 @@ rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, break; } - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); rnp_c = rnp; rnp = rnp->parent; raw_spin_lock_irqsave_rcu_node(rnp, flags); @@ -2329,7 +2330,7 @@ static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp, if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p || rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); return; /* Still need more quiescent states! */ } @@ -2346,19 +2347,14 @@ static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp, /* Report up the rest of the hierarchy, tracking current ->gpnum. */ gps = rnp->gpnum; mask = rnp->grpmask; - raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ + raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags); } /* * Record a quiescent state for the specified CPU to that CPU's rcu_data - * structure. This must be either called from the specified CPU, or - * called when the specified CPU is known to be offline (and when it is - * also known that no other CPU is concurrently trying to help the offline - * CPU). The lastcomp argument is used to make sure we are still in the - * grace period of interest. We don't want to end the current grace period - * based on quiescent states detected in an earlier grace period! + * structure. This must be called from the specified CPU. */ static void rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) @@ -2383,14 +2379,14 @@ rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) */ rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr); - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); return; } mask = rdp->grpmask; if ((rnp->qsmask & mask) == 0) { - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } else { - rdp->core_needs_qs = 0; + rdp->core_needs_qs = false; /* * This GP can't end until cpu checks in, so all of our @@ -2599,10 +2595,11 @@ static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) rnp->qsmaskinit &= ~mask; rnp->qsmask &= ~mask; if (rnp->qsmaskinit) { - raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ + raw_spin_unlock_rcu_node(rnp); + /* irqs remain disabled. */ return; } - raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ + raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ } } @@ -2625,7 +2622,7 @@ static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp) mask = rdp->grpmask; raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ rnp->qsmaskinitnext &= ~mask; - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } /* @@ -2859,7 +2856,7 @@ static void force_qs_rnp(struct rcu_state *rsp, rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); } else { /* Nothing to do here, so just drop the lock. */ - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } } } @@ -2895,11 +2892,11 @@ static void force_quiescent_state(struct rcu_state *rsp) raw_spin_unlock(&rnp_old->fqslock); if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { rsp->n_force_qs_lh++; - raw_spin_unlock_irqrestore(&rnp_old->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); return; /* Someone beat us to it. */ } WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); - raw_spin_unlock_irqrestore(&rnp_old->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); rcu_gp_kthread_wake(rsp); } @@ -2925,7 +2922,7 @@ __rcu_process_callbacks(struct rcu_state *rsp) if (cpu_needs_another_gp(rsp, rdp)) { raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */ needwake = rcu_start_gp(rsp); - raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags); if (needwake) rcu_gp_kthread_wake(rsp); } else { @@ -3016,7 +3013,7 @@ static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, raw_spin_lock_rcu_node(rnp_root); needwake = rcu_start_gp(rsp); - raw_spin_unlock(&rnp_root->lock); + raw_spin_unlock_rcu_node(rnp_root); if (needwake) rcu_gp_kthread_wake(rsp); } else { @@ -3436,14 +3433,14 @@ static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp) rcu_for_each_leaf_node(rsp, rnp) { raw_spin_lock_irqsave_rcu_node(rnp, flags); if (rnp->expmaskinit == rnp->expmaskinitnext) { - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); continue; /* No new CPUs, nothing to do. */ } /* Update this node's mask, track old value for propagation. */ oldmask = rnp->expmaskinit; rnp->expmaskinit = rnp->expmaskinitnext; - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); /* If was already nonzero, nothing to propagate. */ if (oldmask) @@ -3458,7 +3455,7 @@ static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp) if (rnp_up->expmaskinit) done = true; rnp_up->expmaskinit |= mask; - raw_spin_unlock_irqrestore(&rnp_up->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp_up, flags); if (done) break; mask = rnp_up->grpmask; @@ -3481,7 +3478,7 @@ static void __maybe_unused sync_exp_reset_tree(struct rcu_state *rsp) raw_spin_lock_irqsave_rcu_node(rnp, flags); WARN_ON_ONCE(rnp->expmask); rnp->expmask = rnp->expmaskinit; - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } } @@ -3522,11 +3519,11 @@ static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, if (!rnp->expmask) rcu_initiate_boost(rnp, flags); else - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); break; } if (rnp->parent == NULL) { - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); if (wake) { smp_mb(); /* EGP done before wake_up(). */ wake_up(&rsp->expedited_wq); @@ -3534,7 +3531,7 @@ static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, break; } mask = rnp->grpmask; - raw_spin_unlock(&rnp->lock); /* irqs remain disabled */ + raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled */ rnp = rnp->parent; raw_spin_lock_rcu_node(rnp); /* irqs already disabled */ WARN_ON_ONCE(!(rnp->expmask & mask)); @@ -3569,7 +3566,7 @@ static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp, raw_spin_lock_irqsave_rcu_node(rnp, flags); if (!(rnp->expmask & mask)) { - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); return; } rnp->expmask &= ~mask; @@ -3730,7 +3727,7 @@ static void sync_rcu_exp_select_cpus(struct rcu_state *rsp, */ if (rcu_preempt_has_tasks(rnp)) rnp->exp_tasks = rnp->blkd_tasks.next; - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); /* IPI the remaining CPUs for expedited quiescent state. */ mask = 1; @@ -3747,7 +3744,7 @@ static void sync_rcu_exp_select_cpus(struct rcu_state *rsp, raw_spin_lock_irqsave_rcu_node(rnp, flags); if (cpu_online(cpu) && (rnp->expmask & mask)) { - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); schedule_timeout_uninterruptible(1); if (cpu_online(cpu) && (rnp->expmask & mask)) @@ -3756,7 +3753,7 @@ static void sync_rcu_exp_select_cpus(struct rcu_state *rsp, } if (!(rnp->expmask & mask)) mask_ofl_ipi &= ~mask; - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } /* Report quiescent states for those that went offline. */ mask_ofl_test |= mask_ofl_ipi; @@ -4163,7 +4160,7 @@ static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) return; raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ rnp->qsmaskinit |= mask; - raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */ + raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ } } @@ -4187,7 +4184,7 @@ rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) rdp->rsp = rsp; mutex_init(&rdp->exp_funnel_mutex); rcu_boot_init_nocb_percpu_data(rdp); - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } /* @@ -4215,7 +4212,7 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp) rcu_sysidle_init_percpu_data(rdp->dynticks); atomic_set(&rdp->dynticks->dynticks, (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1); - raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ + raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ /* * Add CPU to leaf rcu_node pending-online bitmask. Any needed @@ -4236,7 +4233,7 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp) rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu); rdp->core_needs_qs = false; trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl")); - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } static void rcu_prepare_cpu(int cpu) @@ -4358,7 +4355,7 @@ static int __init rcu_spawn_gp_kthread(void) sp.sched_priority = kthread_prio; sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); } - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); wake_up_process(t); } rcu_spawn_nocb_kthreads(); @@ -4449,8 +4446,8 @@ static void __init rcu_init_one(struct rcu_state *rsp) cpustride *= levelspread[i]; rnp = rsp->level[i]; for (j = 0; j < levelcnt[i]; j++, rnp++) { - raw_spin_lock_init(&rnp->lock); - lockdep_set_class_and_name(&rnp->lock, + raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); + lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), &rcu_node_class[i], buf[i]); raw_spin_lock_init(&rnp->fqslock); lockdep_set_class_and_name(&rnp->fqslock, diff --git a/kernel/rcu/tree.h b/kernel/rcu/tree.h index 83360b4f4352..4886d6a03353 100644 --- a/kernel/rcu/tree.h +++ b/kernel/rcu/tree.h @@ -149,8 +149,9 @@ struct rcu_dynticks { * Definition for node within the RCU grace-period-detection hierarchy. */ struct rcu_node { - raw_spinlock_t lock; /* Root rcu_node's lock protects some */ - /* rcu_state fields as well as following. */ + raw_spinlock_t __private lock; /* Root rcu_node's lock protects */ + /* some rcu_state fields as well as */ + /* following. */ unsigned long gpnum; /* Current grace period for this node. */ /* This will either be equal to or one */ /* behind the root rcu_node's gpnum. */ @@ -680,7 +681,7 @@ static inline void rcu_nocb_q_lengths(struct rcu_data *rdp, long *ql, long *qll) #endif /* #else #ifdef CONFIG_PPC */ /* - * Wrappers for the rcu_node::lock acquire. + * Wrappers for the rcu_node::lock acquire and release. * * Because the rcu_nodes form a tree, the tree traversal locking will observe * different lock values, this in turn means that an UNLOCK of one level @@ -689,29 +690,48 @@ static inline void rcu_nocb_q_lengths(struct rcu_data *rdp, long *ql, long *qll) * * In order to restore full ordering between tree levels, augment the regular * lock acquire functions with smp_mb__after_unlock_lock(). + * + * As ->lock of struct rcu_node is a __private field, therefore one should use + * these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock. */ static inline void raw_spin_lock_rcu_node(struct rcu_node *rnp) { - raw_spin_lock(&rnp->lock); + raw_spin_lock(&ACCESS_PRIVATE(rnp, lock)); smp_mb__after_unlock_lock(); } +static inline void raw_spin_unlock_rcu_node(struct rcu_node *rnp) +{ + raw_spin_unlock(&ACCESS_PRIVATE(rnp, lock)); +} + static inline void raw_spin_lock_irq_rcu_node(struct rcu_node *rnp) { - raw_spin_lock_irq(&rnp->lock); + raw_spin_lock_irq(&ACCESS_PRIVATE(rnp, lock)); smp_mb__after_unlock_lock(); } -#define raw_spin_lock_irqsave_rcu_node(rnp, flags) \ -do { \ - typecheck(unsigned long, flags); \ - raw_spin_lock_irqsave(&(rnp)->lock, flags); \ - smp_mb__after_unlock_lock(); \ +static inline void raw_spin_unlock_irq_rcu_node(struct rcu_node *rnp) +{ + raw_spin_unlock_irq(&ACCESS_PRIVATE(rnp, lock)); +} + +#define raw_spin_lock_irqsave_rcu_node(rnp, flags) \ +do { \ + typecheck(unsigned long, flags); \ + raw_spin_lock_irqsave(&ACCESS_PRIVATE(rnp, lock), flags); \ + smp_mb__after_unlock_lock(); \ +} while (0) + +#define raw_spin_unlock_irqrestore_rcu_node(rnp, flags) \ +do { \ + typecheck(unsigned long, flags); \ + raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(rnp, lock), flags); \ } while (0) static inline bool raw_spin_trylock_rcu_node(struct rcu_node *rnp) { - bool locked = raw_spin_trylock(&rnp->lock); + bool locked = raw_spin_trylock(&ACCESS_PRIVATE(rnp, lock)); if (locked) smp_mb__after_unlock_lock(); diff --git a/kernel/rcu/tree_plugin.h b/kernel/rcu/tree_plugin.h index 9467a8b7e756..43e9b4a4bcd9 100644 --- a/kernel/rcu/tree_plugin.h +++ b/kernel/rcu/tree_plugin.h @@ -235,7 +235,7 @@ static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp) rnp->gp_tasks = &t->rcu_node_entry; if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD)) rnp->exp_tasks = &t->rcu_node_entry; - raw_spin_unlock(&rnp->lock); /* rrupts remain disabled. */ + raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */ /* * Report the quiescent state for the expedited GP. This expedited @@ -489,7 +489,7 @@ void rcu_read_unlock_special(struct task_struct *t) !!rnp->gp_tasks); rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags); } else { - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } /* Unboost if we were boosted. */ @@ -518,14 +518,14 @@ static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp) raw_spin_lock_irqsave_rcu_node(rnp, flags); if (!rcu_preempt_blocked_readers_cgp(rnp)) { - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); return; } t = list_entry(rnp->gp_tasks->prev, struct task_struct, rcu_node_entry); list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) sched_show_task(t); - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } /* @@ -807,7 +807,6 @@ void exit_rcu(void) #else /* #ifdef CONFIG_PREEMPT_RCU */ static struct rcu_state *const rcu_state_p = &rcu_sched_state; -static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data; /* * Tell them what RCU they are running. @@ -991,7 +990,7 @@ static int rcu_boost(struct rcu_node *rnp) * might exit their RCU read-side critical sections on their own. */ if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) { - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); return 0; } @@ -1028,7 +1027,7 @@ static int rcu_boost(struct rcu_node *rnp) */ t = container_of(tb, struct task_struct, rcu_node_entry); rt_mutex_init_proxy_locked(&rnp->boost_mtx, t); - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); /* Lock only for side effect: boosts task t's priority. */ rt_mutex_lock(&rnp->boost_mtx); rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */ @@ -1088,7 +1087,7 @@ static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) { rnp->n_balk_exp_gp_tasks++; - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); return; } if (rnp->exp_tasks != NULL || @@ -1098,13 +1097,13 @@ static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) ULONG_CMP_GE(jiffies, rnp->boost_time))) { if (rnp->exp_tasks == NULL) rnp->boost_tasks = rnp->gp_tasks; - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); t = rnp->boost_kthread_task; if (t) rcu_wake_cond(t, rnp->boost_kthread_status); } else { rcu_initiate_boost_trace(rnp); - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } } @@ -1172,7 +1171,7 @@ static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp, return PTR_ERR(t); raw_spin_lock_irqsave_rcu_node(rnp, flags); rnp->boost_kthread_task = t; - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); sp.sched_priority = kthread_prio; sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */ @@ -1308,7 +1307,7 @@ static void rcu_prepare_kthreads(int cpu) static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags) __releases(rnp->lock) { - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } static void invoke_rcu_callbacks_kthread(void) @@ -1559,7 +1558,7 @@ static void rcu_prepare_for_idle(void) rnp = rdp->mynode; raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ needwake = rcu_accelerate_cbs(rsp, rnp, rdp); - raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ + raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ if (needwake) rcu_gp_kthread_wake(rsp); } @@ -2059,7 +2058,7 @@ static void rcu_nocb_wait_gp(struct rcu_data *rdp) raw_spin_lock_irqsave_rcu_node(rnp, flags); needwake = rcu_start_future_gp(rnp, rdp, &c); - raw_spin_unlock_irqrestore(&rnp->lock, flags); + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); if (needwake) rcu_gp_kthread_wake(rdp->rsp); diff --git a/kernel/rcu/update.c b/kernel/rcu/update.c index 76b94e19430b..ca828b41c938 100644 --- a/kernel/rcu/update.c +++ b/kernel/rcu/update.c @@ -128,6 +128,7 @@ bool rcu_gp_is_normal(void) { return READ_ONCE(rcu_normal); } +EXPORT_SYMBOL_GPL(rcu_gp_is_normal); static atomic_t rcu_expedited_nesting = ATOMIC_INIT(IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT) ? 1 : 0); diff --git a/scripts/checkpatch.pl b/scripts/checkpatch.pl index 0147c91fa549..874132b26d23 100755 --- a/scripts/checkpatch.pl +++ b/scripts/checkpatch.pl @@ -269,7 +269,8 @@ our $Sparse = qr{ __init_refok| __kprobes| __ref| - __rcu + __rcu| + __private }x; our $InitAttributePrefix = qr{__(?:mem|cpu|dev|net_|)}; our $InitAttributeData = qr{$InitAttributePrefix(?:initdata\b)}; diff --git a/tools/testing/selftests/rcutorture/bin/parse-console.sh b/tools/testing/selftests/rcutorture/bin/parse-console.sh index 844787a0d7be..5eb49b7f864c 100755 --- a/tools/testing/selftests/rcutorture/bin/parse-console.sh +++ b/tools/testing/selftests/rcutorture/bin/parse-console.sh @@ -33,7 +33,7 @@ if grep -Pq '\x00' < $file then print_warning Console output contains nul bytes, old qemu still running? fi -egrep 'Badness|WARNING:|Warn|BUG|===========|Call Trace:|Oops:|detected stalls on CPUs/tasks:|Stall ended before state dump start' < $file | grep -v 'ODEBUG: ' | grep -v 'Warning: unable to open an initial console' > $1.diags +egrep 'Badness|WARNING:|Warn|BUG|===========|Call Trace:|Oops:|detected stalls on CPUs/tasks:|self-detected stall on CPU|Stall ended before state dump start|\?\?\? Writer stall state' < $file | grep -v 'ODEBUG: ' | grep -v 'Warning: unable to open an initial console' > $1.diags if test -s $1.diags then print_warning Assertion failure in $file $title @@ -64,10 +64,12 @@ then then summary="$summary lockdep: $n_badness" fi - n_stalls=`egrep -c 'detected stalls on CPUs/tasks:|Stall ended before state dump start' $1` + n_stalls=`egrep -c 'detected stalls on CPUs/tasks:|self-detected stall on CPU|Stall ended before state dump start|\?\?\? Writer stall state' $1` if test "$n_stalls" -ne 0 then summary="$summary Stalls: $n_stalls" fi print_warning Summary: $summary +else + rm $1.diags fi