* [Qemu-devel] [PATCH v21 1/7] target/avr: Add outward facing interfaces and core CPU logic
2019-06-06 19:30 [Qemu-devel] [PATCH v21 0/7] QEMU AVR 8 bit cores Michael Rolnik
@ 2019-06-06 19:30 ` Michael Rolnik
2019-06-06 19:30 ` [Qemu-devel] [PATCH v21 2/7] target/avr: Add instruction helpers Michael Rolnik
` (5 subsequent siblings)
6 siblings, 0 replies; 18+ messages in thread
From: Michael Rolnik @ 2019-06-06 19:30 UTC (permalink / raw)
To: qemu-devel; +Cc: Sarah Harris, Michael Rolnik, rth
From: Sarah Harris <S.E.Harris@kent.ac.uk>
This includes:
- CPU data structures
- object model classes and functions
- migration functions
- GDB hooks
Signed-off-by: Michael Rolnik <mrolnik@gmail.com>
---
target/avr/cpu-qom.h | 83 +++++++
target/avr/cpu.c | 558 +++++++++++++++++++++++++++++++++++++++++++
target/avr/cpu.h | 244 +++++++++++++++++++
target/avr/gdbstub.c | 85 +++++++
target/avr/machine.c | 123 ++++++++++
5 files changed, 1093 insertions(+)
create mode 100644 target/avr/cpu-qom.h
create mode 100644 target/avr/cpu.c
create mode 100644 target/avr/cpu.h
create mode 100644 target/avr/gdbstub.c
create mode 100644 target/avr/machine.c
diff --git a/target/avr/cpu-qom.h b/target/avr/cpu-qom.h
new file mode 100644
index 0000000000..8085567b87
--- /dev/null
+++ b/target/avr/cpu-qom.h
@@ -0,0 +1,83 @@
+/*
+ * QEMU AVR CPU
+ *
+ * Copyright (c) 2016 Michael Rolnik
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see
+ * <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+#ifndef QEMU_AVR_CPU_QOM_H
+#define QEMU_AVR_CPU_QOM_H
+
+#include "qom/cpu.h"
+
+#define TYPE_AVR_CPU "avr"
+
+#define AVR_CPU_CLASS(klass) \
+ OBJECT_CLASS_CHECK(AVRCPUClass, (klass), TYPE_AVR_CPU)
+#define AVR_CPU(obj) \
+ OBJECT_CHECK(AVRCPU, (obj), TYPE_AVR_CPU)
+#define AVR_CPU_GET_CLASS(obj) \
+ OBJECT_GET_CLASS(AVRCPUClass, (obj), TYPE_AVR_CPU)
+
+/**
+ * AVRCPUClass:
+ * @parent_realize: The parent class' realize handler.
+ * @parent_reset: The parent class' reset handler.
+ * @vr: Version Register value.
+ *
+ * A AVR CPU model.
+ */
+typedef struct AVRCPUClass {
+ CPUClass parent_class;
+
+ DeviceRealize parent_realize;
+ void (*parent_reset)(CPUState *cpu);
+} AVRCPUClass;
+
+/**
+ * AVRCPU:
+ * @env: #CPUAVRState
+ *
+ * A AVR CPU.
+ */
+typedef struct AVRCPU {
+ /*< private >*/
+ CPUState parent_obj;
+ /*< public >*/
+
+ CPUAVRState env;
+} AVRCPU;
+
+static inline AVRCPU *avr_env_get_cpu(CPUAVRState *env)
+{
+ return container_of(env, AVRCPU, env);
+}
+
+#define ENV_GET_CPU(e) CPU(avr_env_get_cpu(e))
+#define ENV_OFFSET offsetof(AVRCPU, env)
+
+#ifndef CONFIG_USER_ONLY
+extern const struct VMStateDescription vms_avr_cpu;
+#endif
+
+void avr_cpu_do_interrupt(CPUState *cpu);
+bool avr_cpu_exec_interrupt(CPUState *cpu, int int_req);
+void avr_cpu_dump_state(CPUState *cs, FILE *f, int flags);
+hwaddr avr_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
+int avr_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
+int avr_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
+
+#endif
diff --git a/target/avr/cpu.c b/target/avr/cpu.c
new file mode 100644
index 0000000000..4da095447a
--- /dev/null
+++ b/target/avr/cpu.c
@@ -0,0 +1,558 @@
+/*
+ * QEMU AVR CPU
+ *
+ * Copyright (c) 2016 Michael Rolnik
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see
+ * <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/qemu-print.h"
+#include "qapi/error.h"
+#include "cpu.h"
+#include "qemu-common.h"
+#include "migration/vmstate.h"
+
+static void avr_cpu_set_pc(CPUState *cs, vaddr value)
+{
+ AVRCPU *cpu = AVR_CPU(cs);
+
+ cpu->env.pc_w = value / 2; /* internally PC points to words */
+}
+
+static bool avr_cpu_has_work(CPUState *cs)
+{
+ AVRCPU *cpu = AVR_CPU(cs);
+ CPUAVRState *env = &cpu->env;
+
+ return (cs->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_RESET))
+ && cpu_interrupts_enabled(env);
+}
+
+static void avr_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
+{
+ AVRCPU *cpu = AVR_CPU(cs);
+ CPUAVRState *env = &cpu->env;
+
+ env->pc_w = tb->pc / 2; /* internally PC points to words */
+}
+
+static void avr_cpu_reset(CPUState *s)
+{
+ AVRCPU *cpu = AVR_CPU(s);
+ AVRCPUClass *mcc = AVR_CPU_GET_CLASS(cpu);
+ CPUAVRState *env = &cpu->env;
+
+ mcc->parent_reset(s);
+
+ env->pc_w = 0;
+ env->sregI = 1;
+ env->sregC = 0;
+ env->sregZ = 0;
+ env->sregN = 0;
+ env->sregV = 0;
+ env->sregS = 0;
+ env->sregH = 0;
+ env->sregT = 0;
+
+ env->rampD = 0;
+ env->rampX = 0;
+ env->rampY = 0;
+ env->rampZ = 0;
+ env->eind = 0;
+ env->sp = 0;
+
+ env->skip = 0;
+
+ memset(env->r, 0, sizeof(env->r));
+
+ tlb_flush(s);
+}
+
+static void avr_cpu_disas_set_info(CPUState *cpu, disassemble_info *info)
+{
+ info->mach = bfd_arch_avr;
+ info->print_insn = NULL;
+}
+
+static void avr_cpu_realizefn(DeviceState *dev, Error **errp)
+{
+ CPUState *cs = CPU(dev);
+ AVRCPUClass *mcc = AVR_CPU_GET_CLASS(dev);
+ Error *local_err = NULL;
+
+ cpu_exec_realizefn(cs, &local_err);
+ if (local_err != NULL) {
+ error_propagate(errp, local_err);
+ return;
+ }
+ qemu_init_vcpu(cs);
+ cpu_reset(cs);
+
+ mcc->parent_realize(dev, errp);
+}
+
+static void avr_cpu_set_int(void *opaque, int irq, int level)
+{
+ AVRCPU *cpu = opaque;
+ CPUAVRState *env = &cpu->env;
+ CPUState *cs = CPU(cpu);
+
+ uint64_t mask = (1ull << irq);
+ if (level) {
+ env->intsrc |= mask;
+ cpu_interrupt(cs, CPU_INTERRUPT_HARD);
+ } else {
+ env->intsrc &= ~mask;
+ if (env->intsrc == 0) {
+ cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
+ }
+ }
+}
+
+static void avr_cpu_initfn(Object *obj)
+{
+ CPUState *cs = CPU(obj);
+ AVRCPU *cpu = AVR_CPU(obj);
+
+ cs->env_ptr = &cpu->env;
+
+#ifndef CONFIG_USER_ONLY
+ /* Set the number of interrupts supported by the CPU. */
+ qdev_init_gpio_in(DEVICE(cpu), avr_cpu_set_int, 57);
+#endif
+}
+
+static ObjectClass *avr_cpu_class_by_name(const char *cpu_model)
+{
+ ObjectClass *oc;
+ char *typename;
+ char **cpuname;
+
+ cpuname = g_strsplit(cpu_model, ",", 1);
+ typename = g_strdup_printf(AVR_CPU_TYPE_NAME("%s"), cpuname[0]);
+ oc = object_class_by_name(typename);
+ g_strfreev(cpuname);
+ g_free(typename);
+ if (!oc || !object_class_dynamic_cast(oc, TYPE_AVR_CPU) ||
+ object_class_is_abstract(oc)) {
+ return NULL;
+ }
+ return oc;
+}
+
+static void avr_cpu_class_init(ObjectClass *oc, void *data)
+{
+ DeviceClass *dc = DEVICE_CLASS(oc);
+ CPUClass *cc = CPU_CLASS(oc);
+ AVRCPUClass *mcc = AVR_CPU_CLASS(oc);
+
+ mcc->parent_realize = dc->realize;
+ dc->realize = avr_cpu_realizefn;
+
+ mcc->parent_reset = cc->reset;
+ cc->reset = avr_cpu_reset;
+
+ cc->class_by_name = avr_cpu_class_by_name;
+
+ cc->has_work = avr_cpu_has_work;
+ cc->do_interrupt = avr_cpu_do_interrupt;
+ cc->cpu_exec_interrupt = avr_cpu_exec_interrupt;
+ cc->dump_state = avr_cpu_dump_state;
+ cc->set_pc = avr_cpu_set_pc;
+#if !defined(CONFIG_USER_ONLY)
+ cc->memory_rw_debug = avr_cpu_memory_rw_debug;
+#endif
+#ifdef CONFIG_USER_ONLY
+ cc->handle_mmu_fault = avr_cpu_handle_mmu_fault;
+#else
+ cc->get_phys_page_debug = avr_cpu_get_phys_page_debug;
+ cc->vmsd = &vms_avr_cpu;
+#endif
+ cc->disas_set_info = avr_cpu_disas_set_info;
+ cc->tlb_fill = avr_cpu_tlb_fill;
+ cc->tcg_initialize = avr_cpu_tcg_init;
+ cc->synchronize_from_tb = avr_cpu_synchronize_from_tb;
+ cc->gdb_read_register = avr_cpu_gdb_read_register;
+ cc->gdb_write_register = avr_cpu_gdb_write_register;
+ cc->gdb_num_core_regs = 35;
+}
+
+static void avr_avr1_initfn(Object *obj)
+{
+ AVRCPU *cpu = AVR_CPU(obj);
+ CPUAVRState *env = &cpu->env;
+
+ avr_set_feature(env, AVR_FEATURE_LPM);
+ avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+ avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+}
+
+static void avr_avr2_initfn(Object *obj)
+{
+ AVRCPU *cpu = AVR_CPU(obj);
+ CPUAVRState *env = &cpu->env;
+
+ avr_set_feature(env, AVR_FEATURE_LPM);
+ avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+ avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+ avr_set_feature(env, AVR_FEATURE_SRAM);
+ avr_set_feature(env, AVR_FEATURE_BREAK);
+
+ avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+ avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+}
+
+static void avr_avr25_initfn(Object *obj)
+{
+ AVRCPU *cpu = AVR_CPU(obj);
+ CPUAVRState *env = &cpu->env;
+
+ avr_set_feature(env, AVR_FEATURE_LPM);
+ avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+ avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+ avr_set_feature(env, AVR_FEATURE_SRAM);
+ avr_set_feature(env, AVR_FEATURE_BREAK);
+
+ avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+ avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+ avr_set_feature(env, AVR_FEATURE_LPMX);
+ avr_set_feature(env, AVR_FEATURE_MOVW);
+}
+
+static void avr_avr3_initfn(Object *obj)
+{
+ AVRCPU *cpu = AVR_CPU(obj);
+ CPUAVRState *env = &cpu->env;
+
+ avr_set_feature(env, AVR_FEATURE_LPM);
+ avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+ avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+ avr_set_feature(env, AVR_FEATURE_SRAM);
+ avr_set_feature(env, AVR_FEATURE_BREAK);
+
+ avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+ avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+ avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+}
+
+static void avr_avr31_initfn(Object *obj)
+{
+ AVRCPU *cpu = AVR_CPU(obj);
+ CPUAVRState *env = &cpu->env;
+
+ avr_set_feature(env, AVR_FEATURE_LPM);
+ avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+ avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+ avr_set_feature(env, AVR_FEATURE_SRAM);
+ avr_set_feature(env, AVR_FEATURE_BREAK);
+
+ avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+ avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+ avr_set_feature(env, AVR_FEATURE_RAMPZ);
+ avr_set_feature(env, AVR_FEATURE_ELPM);
+ avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+}
+
+static void avr_avr35_initfn(Object *obj)
+{
+ AVRCPU *cpu = AVR_CPU(obj);
+ CPUAVRState *env = &cpu->env;
+
+ avr_set_feature(env, AVR_FEATURE_LPM);
+ avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+ avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+ avr_set_feature(env, AVR_FEATURE_SRAM);
+ avr_set_feature(env, AVR_FEATURE_BREAK);
+
+ avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+ avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+ avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+ avr_set_feature(env, AVR_FEATURE_LPMX);
+ avr_set_feature(env, AVR_FEATURE_MOVW);
+}
+
+static void avr_avr4_initfn(Object *obj)
+{
+ AVRCPU *cpu = AVR_CPU(obj);
+ CPUAVRState *env = &cpu->env;
+
+ avr_set_feature(env, AVR_FEATURE_LPM);
+ avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+ avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+ avr_set_feature(env, AVR_FEATURE_SRAM);
+ avr_set_feature(env, AVR_FEATURE_BREAK);
+
+ avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+ avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+ avr_set_feature(env, AVR_FEATURE_LPMX);
+ avr_set_feature(env, AVR_FEATURE_MOVW);
+ avr_set_feature(env, AVR_FEATURE_MUL);
+}
+
+static void avr_avr5_initfn(Object *obj)
+{
+ AVRCPU *cpu = AVR_CPU(obj);
+ CPUAVRState *env = &cpu->env;
+
+ avr_set_feature(env, AVR_FEATURE_LPM);
+ avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+ avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+ avr_set_feature(env, AVR_FEATURE_SRAM);
+ avr_set_feature(env, AVR_FEATURE_BREAK);
+
+ avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+ avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+ avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+ avr_set_feature(env, AVR_FEATURE_LPMX);
+ avr_set_feature(env, AVR_FEATURE_MOVW);
+ avr_set_feature(env, AVR_FEATURE_MUL);
+}
+
+static void avr_avr51_initfn(Object *obj)
+{
+ AVRCPU *cpu = AVR_CPU(obj);
+ CPUAVRState *env = &cpu->env;
+
+ avr_set_feature(env, AVR_FEATURE_LPM);
+ avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+ avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+ avr_set_feature(env, AVR_FEATURE_SRAM);
+ avr_set_feature(env, AVR_FEATURE_BREAK);
+
+ avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+ avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+ avr_set_feature(env, AVR_FEATURE_RAMPZ);
+ avr_set_feature(env, AVR_FEATURE_ELPMX);
+ avr_set_feature(env, AVR_FEATURE_ELPM);
+ avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+ avr_set_feature(env, AVR_FEATURE_LPMX);
+ avr_set_feature(env, AVR_FEATURE_MOVW);
+ avr_set_feature(env, AVR_FEATURE_MUL);
+}
+
+static void avr_avr6_initfn(Object *obj)
+{
+ AVRCPU *cpu = AVR_CPU(obj);
+ CPUAVRState *env = &cpu->env;
+
+ avr_set_feature(env, AVR_FEATURE_LPM);
+ avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+ avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+ avr_set_feature(env, AVR_FEATURE_SRAM);
+ avr_set_feature(env, AVR_FEATURE_BREAK);
+
+ avr_set_feature(env, AVR_FEATURE_3_BYTE_PC);
+ avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+ avr_set_feature(env, AVR_FEATURE_RAMPZ);
+ avr_set_feature(env, AVR_FEATURE_EIJMP_EICALL);
+ avr_set_feature(env, AVR_FEATURE_ELPMX);
+ avr_set_feature(env, AVR_FEATURE_ELPM);
+ avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+ avr_set_feature(env, AVR_FEATURE_LPMX);
+ avr_set_feature(env, AVR_FEATURE_MOVW);
+ avr_set_feature(env, AVR_FEATURE_MUL);
+}
+
+static void avr_xmega2_initfn(Object *obj)
+{
+ AVRCPU *cpu = AVR_CPU(obj);
+ CPUAVRState *env = &cpu->env;
+
+ avr_set_feature(env, AVR_FEATURE_LPM);
+ avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+ avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+ avr_set_feature(env, AVR_FEATURE_SRAM);
+ avr_set_feature(env, AVR_FEATURE_BREAK);
+
+ avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+ avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+ avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+ avr_set_feature(env, AVR_FEATURE_LPMX);
+ avr_set_feature(env, AVR_FEATURE_MOVW);
+ avr_set_feature(env, AVR_FEATURE_MUL);
+ avr_set_feature(env, AVR_FEATURE_RMW);
+}
+
+static void avr_xmega4_initfn(Object *obj)
+{
+ AVRCPU *cpu = AVR_CPU(obj);
+ CPUAVRState *env = &cpu->env;
+
+ avr_set_feature(env, AVR_FEATURE_LPM);
+ avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+ avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+ avr_set_feature(env, AVR_FEATURE_SRAM);
+ avr_set_feature(env, AVR_FEATURE_BREAK);
+
+ avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+ avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+ avr_set_feature(env, AVR_FEATURE_RAMPZ);
+ avr_set_feature(env, AVR_FEATURE_ELPMX);
+ avr_set_feature(env, AVR_FEATURE_ELPM);
+ avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+ avr_set_feature(env, AVR_FEATURE_LPMX);
+ avr_set_feature(env, AVR_FEATURE_MOVW);
+ avr_set_feature(env, AVR_FEATURE_MUL);
+ avr_set_feature(env, AVR_FEATURE_RMW);
+}
+
+static void avr_xmega5_initfn(Object *obj)
+{
+ AVRCPU *cpu = AVR_CPU(obj);
+ CPUAVRState *env = &cpu->env;
+
+ avr_set_feature(env, AVR_FEATURE_LPM);
+ avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+ avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+ avr_set_feature(env, AVR_FEATURE_SRAM);
+ avr_set_feature(env, AVR_FEATURE_BREAK);
+
+ avr_set_feature(env, AVR_FEATURE_2_BYTE_PC);
+ avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+ avr_set_feature(env, AVR_FEATURE_RAMPD);
+ avr_set_feature(env, AVR_FEATURE_RAMPX);
+ avr_set_feature(env, AVR_FEATURE_RAMPY);
+ avr_set_feature(env, AVR_FEATURE_RAMPZ);
+ avr_set_feature(env, AVR_FEATURE_ELPMX);
+ avr_set_feature(env, AVR_FEATURE_ELPM);
+ avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+ avr_set_feature(env, AVR_FEATURE_LPMX);
+ avr_set_feature(env, AVR_FEATURE_MOVW);
+ avr_set_feature(env, AVR_FEATURE_MUL);
+ avr_set_feature(env, AVR_FEATURE_RMW);
+}
+
+static void avr_xmega6_initfn(Object *obj)
+{
+ AVRCPU *cpu = AVR_CPU(obj);
+ CPUAVRState *env = &cpu->env;
+
+ avr_set_feature(env, AVR_FEATURE_LPM);
+ avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+ avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+ avr_set_feature(env, AVR_FEATURE_SRAM);
+ avr_set_feature(env, AVR_FEATURE_BREAK);
+
+ avr_set_feature(env, AVR_FEATURE_3_BYTE_PC);
+ avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+ avr_set_feature(env, AVR_FEATURE_RAMPZ);
+ avr_set_feature(env, AVR_FEATURE_EIJMP_EICALL);
+ avr_set_feature(env, AVR_FEATURE_ELPMX);
+ avr_set_feature(env, AVR_FEATURE_ELPM);
+ avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+ avr_set_feature(env, AVR_FEATURE_LPMX);
+ avr_set_feature(env, AVR_FEATURE_MOVW);
+ avr_set_feature(env, AVR_FEATURE_MUL);
+ avr_set_feature(env, AVR_FEATURE_RMW);
+}
+
+static void avr_xmega7_initfn(Object *obj)
+{
+ AVRCPU *cpu = AVR_CPU(obj);
+ CPUAVRState *env = &cpu->env;
+
+ avr_set_feature(env, AVR_FEATURE_LPM);
+ avr_set_feature(env, AVR_FEATURE_IJMP_ICALL);
+ avr_set_feature(env, AVR_FEATURE_ADIW_SBIW);
+ avr_set_feature(env, AVR_FEATURE_SRAM);
+ avr_set_feature(env, AVR_FEATURE_BREAK);
+
+ avr_set_feature(env, AVR_FEATURE_3_BYTE_PC);
+ avr_set_feature(env, AVR_FEATURE_2_BYTE_SP);
+ avr_set_feature(env, AVR_FEATURE_RAMPD);
+ avr_set_feature(env, AVR_FEATURE_RAMPX);
+ avr_set_feature(env, AVR_FEATURE_RAMPY);
+ avr_set_feature(env, AVR_FEATURE_RAMPZ);
+ avr_set_feature(env, AVR_FEATURE_EIJMP_EICALL);
+ avr_set_feature(env, AVR_FEATURE_ELPMX);
+ avr_set_feature(env, AVR_FEATURE_ELPM);
+ avr_set_feature(env, AVR_FEATURE_JMP_CALL);
+ avr_set_feature(env, AVR_FEATURE_LPMX);
+ avr_set_feature(env, AVR_FEATURE_MOVW);
+ avr_set_feature(env, AVR_FEATURE_MUL);
+ avr_set_feature(env, AVR_FEATURE_RMW);
+}
+
+typedef struct AVRCPUInfo {
+ const char *name;
+ void (*initfn)(Object *obj);
+} AVRCPUInfo;
+
+static gint avr_cpu_list_compare(gconstpointer a, gconstpointer b)
+{
+ ObjectClass *class_a = (ObjectClass *)a;
+ ObjectClass *class_b = (ObjectClass *)b;
+ const char *name_a;
+ const char *name_b;
+
+ name_a = object_class_get_name(class_a);
+ name_b = object_class_get_name(class_b);
+
+ return strcmp(name_a, name_b);
+}
+
+static void avr_cpu_list_entry(gpointer data, gpointer user_data)
+{
+ const char *typename = object_class_get_name(OBJECT_CLASS(data));
+ int len = strlen(typename) - strlen(AVR_CPU_TYPE_SUFFIX);
+ qemu_printf("%.*s\n", len, typename);
+}
+
+void avr_cpu_list(void)
+{
+ GSList *list;
+ list = object_class_get_list(TYPE_AVR_CPU, false);
+ list = g_slist_sort(list, avr_cpu_list_compare);
+ qemu_printf("Available CPUs:\n");
+ g_slist_foreach(list, avr_cpu_list_entry, NULL);
+ g_slist_free(list);
+}
+
+#define DEFINE_AVR_CPU_TYPE(model, initfn) \
+ { \
+ .parent = TYPE_AVR_CPU, \
+ .instance_init = initfn, \
+ .name = AVR_CPU_TYPE_NAME(model), \
+ }
+
+static const TypeInfo avr_cpu_type_info[] = {
+ {
+ .name = TYPE_AVR_CPU,
+ .parent = TYPE_CPU,
+ .instance_size = sizeof(AVRCPU),
+ .instance_init = avr_cpu_initfn,
+ .class_size = sizeof(AVRCPUClass),
+ .class_init = avr_cpu_class_init,
+ .abstract = true,
+ },
+ DEFINE_AVR_CPU_TYPE("avr1", avr_avr1_initfn),
+ DEFINE_AVR_CPU_TYPE("avr2", avr_avr2_initfn),
+ DEFINE_AVR_CPU_TYPE("avr25", avr_avr25_initfn),
+ DEFINE_AVR_CPU_TYPE("avr3", avr_avr3_initfn),
+ DEFINE_AVR_CPU_TYPE("avr31", avr_avr31_initfn),
+ DEFINE_AVR_CPU_TYPE("avr35", avr_avr35_initfn),
+ DEFINE_AVR_CPU_TYPE("avr4", avr_avr4_initfn),
+ DEFINE_AVR_CPU_TYPE("avr5", avr_avr5_initfn),
+ DEFINE_AVR_CPU_TYPE("avr51", avr_avr51_initfn),
+ DEFINE_AVR_CPU_TYPE("avr6", avr_avr6_initfn),
+ DEFINE_AVR_CPU_TYPE("xmega2", avr_xmega2_initfn),
+ DEFINE_AVR_CPU_TYPE("xmega4", avr_xmega4_initfn),
+ DEFINE_AVR_CPU_TYPE("xmega5", avr_xmega5_initfn),
+ DEFINE_AVR_CPU_TYPE("xmega6", avr_xmega6_initfn),
+ DEFINE_AVR_CPU_TYPE("xmega7", avr_xmega7_initfn),
+};
+
+DEFINE_TYPES(avr_cpu_type_info)
diff --git a/target/avr/cpu.h b/target/avr/cpu.h
new file mode 100644
index 0000000000..a086aca30c
--- /dev/null
+++ b/target/avr/cpu.h
@@ -0,0 +1,244 @@
+/*
+ * QEMU AVR CPU
+ *
+ * Copyright (c) 2016 Michael Rolnik
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see
+ * <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+#if !defined(CPU_AVR_H)
+#define CPU_AVR_H
+
+#include "qemu-common.h"
+
+#define TARGET_LONG_BITS 32
+
+#define CPUArchState struct CPUAVRState
+
+#include "exec/cpu-defs.h"
+#include "fpu/softfloat.h"
+
+/*
+ * TARGET_PAGE_BITS cannot be more than 8 bits because
+ * 1. all IO registers occupy [0x0000 .. 0x00ff] address range, and they
+ * should be implemented as a device and not memory
+ * 2. SRAM starts at the address 0x0100
+ */
+#define TARGET_PAGE_BITS 8
+#define TARGET_PHYS_ADDR_SPACE_BITS 24
+#define TARGET_VIRT_ADDR_SPACE_BITS 24
+#define NB_MMU_MODES 2
+
+/*
+ * AVR has two memory spaces, data & code.
+ * e.g. both have 0 address
+ * ST/LD instructions access data space
+ * LPM/SPM and instruction fetching access code memory space
+ */
+#define MMU_CODE_IDX 0
+#define MMU_DATA_IDX 1
+
+#define EXCP_RESET 1
+#define EXCP_INT(n) (EXCP_RESET + (n) + 1)
+
+/* Number of CPU registers */
+#define NO_CPU_REGISTERS 32
+/* Number of IO registers accessible by ld/st/in/out */
+#define NO_IO_REGISTERS 64
+
+/*
+ * Offsets of AVR memory regions in host memory space.
+ *
+ * This is needed because the AVR has separate code and data address
+ * spaces that both have start from zero but have to go somewhere in
+ * host memory.
+ *
+ * It's also useful to know where some things are, like the IO registers.
+ */
+/* Flash program memory */
+#define OFFSET_CODE 0x00000000
+/* CPU registers, IO registers, and SRAM */
+#define OFFSET_DATA 0x00800000
+/* CPU registers specifically, these are mapped at the start of data */
+#define OFFSET_CPU_REGISTERS OFFSET_DATA
+/*
+ * IO registers, including status register, stack pointer, and memory
+ * mapped peripherals, mapped just after CPU registers
+ */
+#define OFFSET_IO_REGISTERS (OFFSET_DATA + NO_CPU_REGISTERS)
+
+enum avr_features {
+ AVR_FEATURE_SRAM,
+
+ AVR_FEATURE_1_BYTE_PC,
+ AVR_FEATURE_2_BYTE_PC,
+ AVR_FEATURE_3_BYTE_PC,
+
+ AVR_FEATURE_1_BYTE_SP,
+ AVR_FEATURE_2_BYTE_SP,
+
+ AVR_FEATURE_BREAK,
+ AVR_FEATURE_DES,
+ AVR_FEATURE_RMW, /* Read Modify Write - XCH LAC LAS LAT */
+
+ AVR_FEATURE_EIJMP_EICALL,
+ AVR_FEATURE_IJMP_ICALL,
+ AVR_FEATURE_JMP_CALL,
+
+ AVR_FEATURE_ADIW_SBIW,
+
+ AVR_FEATURE_SPM,
+ AVR_FEATURE_SPMX,
+
+ AVR_FEATURE_ELPMX,
+ AVR_FEATURE_ELPM,
+ AVR_FEATURE_LPMX,
+ AVR_FEATURE_LPM,
+
+ AVR_FEATURE_MOVW,
+ AVR_FEATURE_MUL,
+ AVR_FEATURE_RAMPD,
+ AVR_FEATURE_RAMPX,
+ AVR_FEATURE_RAMPY,
+ AVR_FEATURE_RAMPZ,
+};
+
+typedef struct CPUAVRState CPUAVRState;
+
+struct CPUAVRState {
+ uint32_t pc_w; /* 0x003fffff up to 22 bits */
+
+ uint32_t sregC; /* 0x00000001 1 bits */
+ uint32_t sregZ; /* 0x0000ffff 16 bits, negative logic; */
+ /* 0=flag set, >0=flag cleared */
+ uint32_t sregN; /* 0x00000001 1 bits */
+ uint32_t sregV; /* 0x00000001 1 bits */
+ uint32_t sregS; /* 0x00000001 1 bits */
+ uint32_t sregH; /* 0x00000001 1 bits */
+ uint32_t sregT; /* 0x00000001 1 bits */
+ uint32_t sregI; /* 0x00000001 1 bits */
+
+ uint32_t rampD; /* 0x00ff0000 8 bits */
+ uint32_t rampX; /* 0x00ff0000 8 bits */
+ uint32_t rampY; /* 0x00ff0000 8 bits */
+ uint32_t rampZ; /* 0x00ff0000 8 bits */
+ uint32_t eind; /* 0x00ff0000 8 bits */
+
+ uint32_t r[NO_CPU_REGISTERS]; /* 8 bits each */
+ uint32_t sp; /* 16 bits */
+
+ uint32_t skip; /* if set skip instruction */
+
+ uint64_t intsrc; /* interrupt sources */
+ bool fullacc; /* CPU/MEM if true MEM only otherwise */
+
+ uint32_t features;
+
+ /* Those resources are used only in QEMU core */
+ CPU_COMMON
+};
+
+static inline int avr_feature(CPUAVRState *env, int feature)
+{
+ return (env->features & (1U << feature)) != 0;
+}
+
+static inline void avr_set_feature(CPUAVRState *env, int feature)
+{
+ env->features |= (1U << feature);
+}
+
+#define cpu_list avr_cpu_list
+#define cpu_signal_handler cpu_avr_signal_handler
+
+#include "exec/cpu-all.h"
+#include "cpu-qom.h"
+
+#define AVR_CPU_TYPE_SUFFIX "-" TYPE_AVR_CPU
+#define AVR_CPU_TYPE_NAME(model) model AVR_CPU_TYPE_SUFFIX
+#define CPU_RESOLVING_TYPE TYPE_AVR_CPU
+
+static inline int cpu_mmu_index(CPUAVRState *env, bool ifetch)
+{
+ return ifetch ? MMU_CODE_IDX : MMU_DATA_IDX;
+}
+
+void avr_cpu_tcg_init(void);
+
+void avr_cpu_list(void);
+int cpu_avr_exec(CPUState *cpu);
+int cpu_avr_signal_handler(int host_signum, void *pinfo, void *puc);
+int avr_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int size,
+ int rw, int mmu_idx);
+int avr_cpu_memory_rw_debug(CPUState *cs, vaddr address, uint8_t *buf,
+ int len, bool is_write);
+
+enum {
+ TB_FLAGS_FULL_ACCESS = 1,
+};
+
+static inline void cpu_get_tb_cpu_state(CPUAVRState *env, target_ulong *pc,
+ target_ulong *cs_base, uint32_t *pflags)
+{
+ uint32_t flags = 0;
+
+ *pc = env->pc_w * 2;
+ *cs_base = 0;
+
+ if (env->fullacc) {
+ flags |= TB_FLAGS_FULL_ACCESS;
+ }
+
+ *pflags = flags;
+}
+
+static inline int cpu_interrupts_enabled(CPUAVRState *env)
+{
+ return env->sregI != 0;
+}
+
+static inline uint8_t cpu_get_sreg(CPUAVRState *env)
+{
+ uint8_t sreg;
+ sreg = (env->sregC & 0x01) << 0
+ | (env->sregZ == 0 ? 1 : 0) << 1
+ | (env->sregN) << 2
+ | (env->sregV) << 3
+ | (env->sregS) << 4
+ | (env->sregH) << 5
+ | (env->sregT) << 6
+ | (env->sregI) << 7;
+ return sreg;
+}
+
+static inline void cpu_set_sreg(CPUAVRState *env, uint8_t sreg)
+{
+ env->sregC = (sreg >> 0) & 0x01;
+ env->sregZ = (sreg >> 1) & 0x01 ? 0 : 1;
+ env->sregN = (sreg >> 2) & 0x01;
+ env->sregV = (sreg >> 3) & 0x01;
+ env->sregS = (sreg >> 4) & 0x01;
+ env->sregH = (sreg >> 5) & 0x01;
+ env->sregT = (sreg >> 6) & 0x01;
+ env->sregI = (sreg >> 7) & 0x01;
+}
+
+bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
+ MMUAccessType access_type, int mmu_idx,
+ bool probe, uintptr_t retaddr);
+
+#include "exec/exec-all.h"
+
+#endif /* !defined (CPU_AVR_H) */
diff --git a/target/avr/gdbstub.c b/target/avr/gdbstub.c
new file mode 100644
index 0000000000..537dc7226e
--- /dev/null
+++ b/target/avr/gdbstub.c
@@ -0,0 +1,85 @@
+/*
+ * QEMU AVR CPU
+ *
+ * Copyright (c) 2016 Michael Rolnik
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see
+ * <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+#include "qemu/osdep.h"
+#include "qemu-common.h"
+#include "exec/gdbstub.h"
+
+int avr_cpu_gdb_read_register(CPUState *cs, uint8_t *mem_buf, int n)
+{
+ AVRCPU *cpu = AVR_CPU(cs);
+ CPUAVRState *env = &cpu->env;
+
+ /* R */
+ if (n < 32) {
+ return gdb_get_reg8(mem_buf, env->r[n]);
+ }
+
+ /* SREG */
+ if (n == 32) {
+ uint8_t sreg = cpu_get_sreg(env);
+
+ return gdb_get_reg8(mem_buf, sreg);
+ }
+
+ /* SP */
+ if (n == 33) {
+ return gdb_get_reg16(mem_buf, env->sp & 0x0000ffff);
+ }
+
+ /* PC */
+ if (n == 34) {
+ return gdb_get_reg32(mem_buf, env->pc_w * 2);
+ }
+
+ return 0;
+}
+
+int avr_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
+{
+ AVRCPU *cpu = AVR_CPU(cs);
+ CPUAVRState *env = &cpu->env;
+
+ /* R */
+ if (n < 32) {
+ env->r[n] = *mem_buf;
+ return 1;
+ }
+
+ /* SREG */
+ if (n == 32) {
+ cpu_set_sreg(env, *mem_buf);
+ return 1;
+ }
+
+ /* SP */
+ if (n == 33) {
+ env->sp = lduw_p(mem_buf);
+ return 2;
+ }
+
+ /* PC */
+ if (n == 34) {
+ env->pc_w = ldl_p(mem_buf) / 2;
+ return 4;
+ }
+
+ return 0;
+}
diff --git a/target/avr/machine.c b/target/avr/machine.c
new file mode 100644
index 0000000000..389b5eb95d
--- /dev/null
+++ b/target/avr/machine.c
@@ -0,0 +1,123 @@
+/*
+ * QEMU AVR CPU
+ *
+ * Copyright (c) 2016 Michael Rolnik
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see
+ * <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+#include "qemu/osdep.h"
+#include "hw/hw.h"
+#include "cpu.h"
+#include "hw/boards.h"
+#include "migration/qemu-file.h"
+
+static int get_sreg(QEMUFile *f, void *opaque, size_t size,
+ const VMStateField *field)
+{
+ CPUAVRState *env = opaque;
+ uint8_t sreg;
+
+ sreg = qemu_get_byte(f);
+ cpu_set_sreg(env, sreg);
+ return 0;
+}
+
+static int put_sreg(
+ QEMUFile *f, void *opaque, size_t size,
+ const VMStateField *field, QJSON *vmdesc)
+{
+ CPUAVRState *env = opaque;
+ uint8_t sreg = cpu_get_sreg(env);
+
+ qemu_put_byte(f, sreg);
+ return 0;
+}
+
+static const VMStateInfo vms_sreg = {
+ .name = "sreg",
+ .get = get_sreg,
+ .put = put_sreg,
+};
+
+static int get_segment(
+ QEMUFile *f, void *opaque, size_t size, const VMStateField *field)
+{
+ uint32_t *ramp = opaque;
+ uint8_t temp;
+
+ temp = qemu_get_byte(f);
+ *ramp = ((uint32_t)temp) << 16;
+ return 0;
+}
+
+static int put_segment(
+ QEMUFile *f, void *opaque, size_t size,
+ const VMStateField *field, QJSON *vmdesc)
+{
+ uint32_t *ramp = opaque;
+ uint8_t temp = *ramp >> 16;
+
+ qemu_put_byte(f, temp);
+ return 0;
+}
+
+static const VMStateInfo vms_rampD = {
+ .name = "rampD",
+ .get = get_segment,
+ .put = put_segment,
+};
+static const VMStateInfo vms_rampX = {
+ .name = "rampX",
+ .get = get_segment,
+ .put = put_segment,
+};
+static const VMStateInfo vms_rampY = {
+ .name = "rampY",
+ .get = get_segment,
+ .put = put_segment,
+};
+static const VMStateInfo vms_rampZ = {
+ .name = "rampZ",
+ .get = get_segment,
+ .put = put_segment,
+};
+static const VMStateInfo vms_eind = {
+ .name = "eind",
+ .get = get_segment,
+ .put = put_segment,
+};
+
+const VMStateDescription vms_avr_cpu = {
+ .name = "cpu",
+ .version_id = 0,
+ .minimum_version_id = 0,
+ .fields = (VMStateField[]) {
+ VMSTATE_UINT32(env.pc_w, AVRCPU),
+ VMSTATE_UINT32(env.sp, AVRCPU),
+ VMSTATE_UINT32(env.skip, AVRCPU),
+
+ VMSTATE_UINT32_ARRAY(env.r, AVRCPU, NO_CPU_REGISTERS),
+
+ VMSTATE_SINGLE(env, AVRCPU, 0, vms_sreg, CPUAVRState),
+ VMSTATE_SINGLE(env.rampD, AVRCPU, 0, vms_rampD, uint32_t),
+ VMSTATE_SINGLE(env.rampX, AVRCPU, 0, vms_rampX, uint32_t),
+ VMSTATE_SINGLE(env.rampY, AVRCPU, 0, vms_rampY, uint32_t),
+ VMSTATE_SINGLE(env.rampZ, AVRCPU, 0, vms_rampZ, uint32_t),
+ VMSTATE_SINGLE(env.eind, AVRCPU, 0, vms_eind, uint32_t),
+
+ VMSTATE_END_OF_LIST()
+ }
+};
--
2.18.0
^ permalink raw reply related [flat|nested] 18+ messages in thread
* [Qemu-devel] [PATCH v21 4/7] target/avr: Add instruction translation
2019-06-06 19:30 [Qemu-devel] [PATCH v21 0/7] QEMU AVR 8 bit cores Michael Rolnik
` (2 preceding siblings ...)
2019-06-06 19:30 ` [Qemu-devel] [PATCH v21 3/7] target/avr: Add instruction decoding Michael Rolnik
@ 2019-06-06 19:30 ` Michael Rolnik
2019-06-10 15:09 ` Richard Henderson
` (4 more replies)
2019-06-06 19:30 ` [Qemu-devel] [PATCH v21 5/7] target/avr: Add limited support for USART and 16 bit timer peripherals Michael Rolnik
` (2 subsequent siblings)
6 siblings, 5 replies; 18+ messages in thread
From: Michael Rolnik @ 2019-06-06 19:30 UTC (permalink / raw)
To: qemu-devel; +Cc: Sarah Harris, Michael Rolnik, rth
From: Sarah Harris <S.E.Harris@kent.ac.uk>
This includes:
- TCG translations for each instruction
Signed-off-by: Michael Rolnik <mrolnik@gmail.com>
---
target/avr/translate.c | 2937 ++++++++++++++++++++++++++++++++++++++++
1 file changed, 2937 insertions(+)
create mode 100644 target/avr/translate.c
diff --git a/target/avr/translate.c b/target/avr/translate.c
new file mode 100644
index 0000000000..03b1a344cb
--- /dev/null
+++ b/target/avr/translate.c
@@ -0,0 +1,2937 @@
+/*
+ * QEMU AVR CPU
+ *
+ * Copyright (c) 2016 Michael Rolnik
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see
+ * <http://www.gnu.org/licenses/lgpl-2.1.html>
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/qemu-print.h"
+#include "tcg/tcg.h"
+#include "cpu.h"
+#include "exec/exec-all.h"
+#include "disas/disas.h"
+#include "tcg-op.h"
+#include "exec/cpu_ldst.h"
+#include "exec/helper-proto.h"
+#include "exec/helper-gen.h"
+#include "exec/log.h"
+#include "exec/gdbstub.h"
+#include "exec/translator.h"
+
+static TCGv cpu_pc;
+
+static TCGv cpu_Cf;
+static TCGv cpu_Zf;
+static TCGv cpu_Nf;
+static TCGv cpu_Vf;
+static TCGv cpu_Sf;
+static TCGv cpu_Hf;
+static TCGv cpu_Tf;
+static TCGv cpu_If;
+
+static TCGv cpu_rampD;
+static TCGv cpu_rampX;
+static TCGv cpu_rampY;
+static TCGv cpu_rampZ;
+
+static TCGv cpu_r[32];
+static TCGv cpu_eind;
+static TCGv cpu_sp;
+
+static TCGv cpu_skip;
+
+#define REG(x) (cpu_r[x])
+
+enum {
+ BS_NONE = 0, /* Nothing special (none of the below) */
+ BS_STOP = 1, /* We want to stop translation for any reason */
+ BS_BRANCH = 2, /* A branch condition is reached */
+ BS_EXCP = 3, /* An exception condition is reached */
+};
+
+typedef struct DisasContext DisasContext;
+
+/* This is the state at translation time. */
+struct DisasContext {
+ TranslationBlock *tb;
+
+ CPUAVRState *env;
+ CPUState *cs;
+
+ target_long cpc;
+ target_long npc;
+ uint32_t opcode;
+
+ /* Routine used to access memory */
+ int memidx;
+ int bstate;
+ int singlestep;
+ int check_skip;
+};
+
+static int to_A(DisasContext *ctx, int indx) { return 16 + (indx % 16); }
+static int to_B(DisasContext *ctx, int indx) { return 16 + (indx % 8); }
+static int to_C(DisasContext *ctx, int indx) { return 24 + (indx % 4) * 2; }
+static int to_D(DisasContext *ctx, int indx) { return (indx % 16) * 2; }
+
+static uint16_t next_word(DisasContext *ctx)
+{
+ return cpu_lduw_code(ctx->env, ctx->npc++ * 2);
+}
+
+static int append_16(DisasContext *ctx, int x)
+{
+ return x << 16 | next_word(ctx);
+}
+
+static bool decode_insn(DisasContext *ctx, uint16_t insn);
+#include "decode_insn.inc.c"
+
+static void gen_goto_tb(DisasContext *ctx, int n, target_ulong dest)
+{
+ TranslationBlock *tb = ctx->tb;
+
+ if (ctx->singlestep == 0) {
+ tcg_gen_goto_tb(n);
+ tcg_gen_movi_i32(cpu_pc, dest);
+ tcg_gen_exit_tb(tb, n);
+ } else {
+ tcg_gen_movi_i32(cpu_pc, dest);
+ gen_helper_debug(cpu_env);
+ tcg_gen_exit_tb(NULL, 0);
+ }
+}
+
+#include "exec/gen-icount.h"
+
+static void gen_add_CHf(TCGv R, TCGv Rd, TCGv Rr)
+{
+ TCGv t1 = tcg_temp_new_i32();
+ TCGv t2 = tcg_temp_new_i32();
+ TCGv t3 = tcg_temp_new_i32();
+
+ tcg_gen_and_tl(t1, Rd, Rr); /* t1 = Rd & Rr */
+ tcg_gen_andc_tl(t2, Rd, R); /* t2 = Rd & ~R */
+ tcg_gen_andc_tl(t3, Rr, R); /* t3 = Rr & ~R */
+ tcg_gen_or_tl(t1, t1, t2); /* t1 = t1 | t2 | t3 */
+ tcg_gen_or_tl(t1, t1, t3);
+
+ tcg_gen_shri_tl(cpu_Cf, t1, 7); /* Cf = t1(7) */
+ tcg_gen_shri_tl(cpu_Hf, t1, 3); /* Hf = t1(3) */
+ tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1);
+
+ tcg_temp_free_i32(t3);
+ tcg_temp_free_i32(t2);
+ tcg_temp_free_i32(t1);
+}
+
+static void gen_add_Vf(TCGv R, TCGv Rd, TCGv Rr)
+{
+ TCGv t1 = tcg_temp_new_i32();
+ TCGv t2 = tcg_temp_new_i32();
+
+ /* t1 = Rd & Rr & ~R | ~Rd & ~Rr & R = (Rd ^ R) & ~(Rd ^ Rr) */
+ tcg_gen_xor_tl(t1, Rd, R);
+ tcg_gen_xor_tl(t2, Rd, Rr);
+ tcg_gen_andc_tl(t1, t1, t2);
+
+ tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */
+
+ tcg_temp_free_i32(t2);
+ tcg_temp_free_i32(t1);
+}
+
+static void gen_sub_CHf(TCGv R, TCGv Rd, TCGv Rr)
+{
+ TCGv t1 = tcg_temp_new_i32();
+ TCGv t2 = tcg_temp_new_i32();
+ TCGv t3 = tcg_temp_new_i32();
+
+ /* Cf & Hf */
+ tcg_gen_not_tl(t1, Rd); /* t1 = ~Rd */
+ tcg_gen_and_tl(t2, t1, Rr); /* t2 = ~Rd & Rr */
+ tcg_gen_or_tl(t3, t1, Rr); /* t3 = (~Rd | Rr) & R */
+ tcg_gen_and_tl(t3, t3, R);
+ tcg_gen_or_tl(t2, t2, t3); /* t2 = ~Rd & Rr | ~Rd & R | R & Rr */
+ tcg_gen_shri_tl(cpu_Cf, t2, 7); /* Cf = t2(7) */
+ tcg_gen_shri_tl(cpu_Hf, t2, 3); /* Hf = t2(3) */
+ tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1);
+
+ tcg_temp_free_i32(t3);
+ tcg_temp_free_i32(t2);
+ tcg_temp_free_i32(t1);
+}
+
+static void gen_sub_Vf(TCGv R, TCGv Rd, TCGv Rr)
+{
+ TCGv t1 = tcg_temp_new_i32();
+ TCGv t2 = tcg_temp_new_i32();
+
+ /* Vf */
+ /* t1 = Rd & ~Rr & ~R | ~Rd & Rr & R = (Rd ^ R) & (Rd ^ R) */
+ tcg_gen_xor_tl(t1, Rd, R);
+ tcg_gen_xor_tl(t2, Rd, Rr);
+ tcg_gen_and_tl(t1, t1, t2);
+ tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */
+
+ tcg_temp_free_i32(t2);
+ tcg_temp_free_i32(t1);
+}
+
+static void gen_rshift_ZNVSf(TCGv R)
+{
+ tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
+ tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
+ tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf);
+ tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
+}
+
+static void gen_NSf(TCGv R)
+{
+ tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
+ tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
+}
+
+static void gen_ZNSf(TCGv R)
+{
+ tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
+ tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */
+ tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
+}
+
+static void gen_push_ret(DisasContext *ctx, int ret)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) {
+
+ TCGv t0 = tcg_const_i32((ret & 0x0000ff));
+
+ tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_UB);
+ tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+
+ tcg_temp_free_i32(t0);
+ } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) {
+
+ TCGv t0 = tcg_const_i32((ret & 0x00ffff));
+
+ tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+ tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_BEUW);
+ tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+
+ tcg_temp_free_i32(t0);
+
+ } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) {
+
+ TCGv lo = tcg_const_i32((ret & 0x0000ff));
+ TCGv hi = tcg_const_i32((ret & 0xffff00) >> 8);
+
+ tcg_gen_qemu_st_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB);
+ tcg_gen_subi_tl(cpu_sp, cpu_sp, 2);
+ tcg_gen_qemu_st_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW);
+ tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+
+ tcg_temp_free_i32(lo);
+ tcg_temp_free_i32(hi);
+ }
+}
+
+static void gen_pop_ret(DisasContext *ctx, TCGv ret)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) {
+
+ tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+ tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_UB);
+
+ } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) {
+
+ tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+ tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_BEUW);
+ tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+
+ } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) {
+
+ TCGv lo = tcg_temp_new_i32();
+ TCGv hi = tcg_temp_new_i32();
+
+ tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+ tcg_gen_qemu_ld_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW);
+
+ tcg_gen_addi_tl(cpu_sp, cpu_sp, 2);
+ tcg_gen_qemu_ld_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB);
+
+ tcg_gen_deposit_tl(ret, lo, hi, 8, 16);
+
+ tcg_temp_free_i32(lo);
+ tcg_temp_free_i32(hi);
+ }
+}
+
+static void gen_jmp_ez(void)
+{
+ tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8);
+ tcg_gen_or_tl(cpu_pc, cpu_pc, cpu_eind);
+ tcg_gen_exit_tb(NULL, 0);
+}
+
+static void gen_jmp_z(void)
+{
+ tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8);
+ tcg_gen_exit_tb(NULL, 0);
+}
+
+/*
+ * in the gen_set_addr & gen_get_addr functions
+ * H assumed to be in 0x00ff0000 format
+ * M assumed to be in 0x000000ff format
+ * L assumed to be in 0x000000ff format
+ */
+static void gen_set_addr(TCGv addr, TCGv H, TCGv M, TCGv L)
+{
+
+ tcg_gen_andi_tl(L, addr, 0x000000ff);
+
+ tcg_gen_andi_tl(M, addr, 0x0000ff00);
+ tcg_gen_shri_tl(M, M, 8);
+
+ tcg_gen_andi_tl(H, addr, 0x00ff0000);
+}
+
+static void gen_set_xaddr(TCGv addr)
+{
+ gen_set_addr(addr, cpu_rampX, cpu_r[27], cpu_r[26]);
+}
+
+static void gen_set_yaddr(TCGv addr)
+{
+ gen_set_addr(addr, cpu_rampY, cpu_r[29], cpu_r[28]);
+}
+
+static void gen_set_zaddr(TCGv addr)
+{
+ gen_set_addr(addr, cpu_rampZ, cpu_r[31], cpu_r[30]);
+}
+
+static TCGv gen_get_addr(TCGv H, TCGv M, TCGv L)
+{
+ TCGv addr = tcg_temp_new_i32();
+
+ tcg_gen_deposit_tl(addr, M, H, 8, 8);
+ tcg_gen_deposit_tl(addr, L, addr, 8, 16);
+
+ return addr;
+}
+
+static TCGv gen_get_xaddr(void)
+{
+ return gen_get_addr(cpu_rampX, cpu_r[27], cpu_r[26]);
+}
+
+static TCGv gen_get_yaddr(void)
+{
+ return gen_get_addr(cpu_rampY, cpu_r[29], cpu_r[28]);
+}
+
+static TCGv gen_get_zaddr(void)
+{
+ return gen_get_addr(cpu_rampZ, cpu_r[31], cpu_r[30]);
+}
+
+/*
+ * Adds two registers and the contents of the C Flag and places the result in
+ * the destination register Rd.
+ */
+static bool trans_ADC(DisasContext *ctx, arg_ADC *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+
+ /* op */
+ tcg_gen_add_tl(R, Rd, Rr); /* R = Rd + Rr + Cf */
+ tcg_gen_add_tl(R, R, cpu_Cf);
+ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+ gen_add_CHf(R, Rd, Rr);
+ gen_add_Vf(R, Rd, Rr);
+ gen_ZNSf(R);
+
+ /* R */
+ tcg_gen_mov_tl(Rd, R);
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * Adds two registers without the C Flag and places the result in the
+ * destination register Rd.
+ */
+static bool trans_ADD(DisasContext *ctx, arg_ADD *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+
+ /* op */
+ tcg_gen_add_tl(R, Rd, Rr); /* Rd = Rd + Rr */
+ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+ gen_add_CHf(R, Rd, Rr);
+ gen_add_Vf(R, Rd, Rr);
+ gen_ZNSf(R);
+
+ /* R */
+ tcg_gen_mov_tl(Rd, R);
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * Adds an immediate value (0 - 63) to a register pair and places the result
+ * in the register pair. This instruction operates on the upper four register
+ * pairs, and is well suited for operations on the pointer registers. This
+ * instruction is not available in all devices. Refer to the device specific
+ * instruction set summary.
+ */
+static bool trans_ADIW(DisasContext *ctx, arg_ADIW *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_ADIW_SBIW) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv RdL = cpu_r[a->rd];
+ TCGv RdH = cpu_r[a->rd + 1];
+ int Imm = (a->imm);
+ TCGv R = tcg_temp_new_i32();
+ TCGv Rd = tcg_temp_new_i32();
+
+ /* op */
+ tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */
+ tcg_gen_addi_tl(R, Rd, Imm); /* R = Rd + Imm */
+ tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
+
+ /* Cf */
+ tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */
+ tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15);
+
+ /* Vf */
+ tcg_gen_andc_tl(cpu_Vf, R, Rd); /* Vf = R & ~Rd */
+ tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15);
+
+ /* Zf */
+ tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
+
+ /* Nf */
+ tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */
+
+ /* Sf */
+ tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf);/* Sf = Nf ^ Vf */
+
+ /* R */
+ tcg_gen_andi_tl(RdL, R, 0xff);
+ tcg_gen_shri_tl(RdH, R, 8);
+
+ tcg_temp_free_i32(Rd);
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * Performs the logical AND between the contents of register Rd and register
+ * Rr and places the result in the destination register Rd.
+ */
+static bool trans_AND(DisasContext *ctx, arg_AND *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+
+ /* op */
+ tcg_gen_and_tl(R, Rd, Rr); /* Rd = Rd and Rr */
+
+ /* Vf */
+ tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
+
+ /* Zf */
+ tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
+
+ gen_ZNSf(R);
+
+ /* R */
+ tcg_gen_mov_tl(Rd, R);
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * Performs the logical AND between the contents of register Rd and a constant
+ * and places the result in the destination register Rd.
+ */
+static bool trans_ANDI(DisasContext *ctx, arg_ANDI *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ int Imm = (a->imm);
+
+ /* op */
+ tcg_gen_andi_tl(Rd, Rd, Imm); /* Rd = Rd & Imm */
+
+ tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
+ gen_ZNSf(Rd);
+
+ return true;
+}
+
+/*
+ * Shifts all bits in Rd one place to the right. Bit 7 is held constant. Bit 0
+ * is loaded into the C Flag of the SREG. This operation effectively divides a
+ * signed value by two without changing its sign. The Carry Flag can be used to
+ * round the result.
+ */
+static bool trans_ASR(DisasContext *ctx, arg_ASR *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv t0 = tcg_temp_new_i32();
+
+ /* Cf */
+ tcg_gen_andi_tl(cpu_Cf, Rd, 1); /* Cf = Rd(0) */
+
+ /* op */
+ tcg_gen_andi_tl(t0, Rd, 0x80); /* Rd = (Rd & 0x80) | (Rd >> 1) */
+ tcg_gen_shri_tl(Rd, Rd, 1);
+ tcg_gen_or_tl(Rd, Rd, t0);
+
+ gen_rshift_ZNVSf(Rd);
+
+ tcg_temp_free_i32(t0);
+
+ return true;
+}
+
+/*
+ * Clears a single Flag in SREG.
+ */
+static bool trans_BCLR(DisasContext *ctx, arg_BCLR *a)
+{
+ switch (a->bit) {
+ case 0x00:
+ tcg_gen_movi_tl(cpu_Cf, 0x00);
+ break;
+ case 0x01:
+ tcg_gen_movi_tl(cpu_Zf, 0x01);
+ break;
+ case 0x02:
+ tcg_gen_movi_tl(cpu_Nf, 0x00);
+ break;
+ case 0x03:
+ tcg_gen_movi_tl(cpu_Vf, 0x00);
+ break;
+ case 0x04:
+ tcg_gen_movi_tl(cpu_Sf, 0x00);
+ break;
+ case 0x05:
+ tcg_gen_movi_tl(cpu_Hf, 0x00);
+ break;
+ case 0x06:
+ tcg_gen_movi_tl(cpu_Tf, 0x00);
+ break;
+ case 0x07:
+ tcg_gen_movi_tl(cpu_If, 0x00);
+ break;
+ }
+
+ return true;
+}
+
+/*
+ * Copies the T Flag in the SREG (Status Register) to bit b in register Rd.
+ */
+static bool trans_BLD(DisasContext *ctx, arg_BLD *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv t1 = tcg_temp_new_i32();
+
+ tcg_gen_andi_tl(Rd, Rd, ~(1u << a->bit)); /* clear bit */
+ tcg_gen_shli_tl(t1, cpu_Tf, a->bit); /* create mask */
+ tcg_gen_or_tl(Rd, Rd, t1);
+
+ tcg_temp_free_i32(t1);
+
+ return true;
+}
+
+/*
+ * Conditional relative branch. Tests a single bit in SREG and branches
+ * relatively to PC if the bit is cleared. This instruction branches relatively
+ * to PC in either direction (PC - 63 < = destination <= PC + 64). The
+ * parameter k is the offset from PC and is represented in two's complement
+ * form.
+ */
+static bool trans_BRBC(DisasContext *ctx, arg_BRBC *a)
+{
+ TCGLabel *taken = gen_new_label();
+
+ switch (a->bit) {
+ case 0x00:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Cf, 0, taken);
+ break;
+ case 0x01:
+ tcg_gen_brcondi_i32(TCG_COND_NE, cpu_Zf, 0, taken);
+ break;
+ case 0x02:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Nf, 0, taken);
+ break;
+ case 0x03:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Vf, 0, taken);
+ break;
+ case 0x04:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Sf, 0, taken);
+ break;
+ case 0x05:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Hf, 0, taken);
+ break;
+ case 0x06:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Tf, 0, taken);
+ break;
+ case 0x07:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_If, 0, taken);
+ break;
+ }
+
+ gen_goto_tb(ctx, 1, ctx->npc);
+ gen_set_label(taken);
+ gen_goto_tb(ctx, 0, ctx->npc + a->imm);
+
+ ctx->bstate = BS_BRANCH;
+ return true;
+}
+
+/*
+ * Conditional relative branch. Tests a single bit in SREG and branches
+ * relatively to PC if the bit is set. This instruction branches relatively to
+ * PC in either direction (PC - 63 < = destination <= PC + 64). The parameter k
+ * is the offset from PC and is represented in two's complement form.
+ */
+static bool trans_BRBS(DisasContext *ctx, arg_BRBS *a)
+{
+ TCGLabel *taken = gen_new_label();
+
+ switch (a->bit) {
+ case 0x00:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Cf, 1, taken);
+ break;
+ case 0x01:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Zf, 0, taken);
+ break;
+ case 0x02:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Nf, 1, taken);
+ break;
+ case 0x03:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Vf, 1, taken);
+ break;
+ case 0x04:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Sf, 1, taken);
+ break;
+ case 0x05:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Hf, 1, taken);
+ break;
+ case 0x06:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_Tf, 1, taken);
+ break;
+ case 0x07:
+ tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_If, 1, taken);
+ break;
+ }
+
+ gen_goto_tb(ctx, 1, ctx->npc);
+ gen_set_label(taken);
+ gen_goto_tb(ctx, 0, ctx->npc + a->imm);
+
+ ctx->bstate = BS_BRANCH;
+ return true;
+}
+
+/*
+ * Sets a single Flag or bit in SREG.
+ */
+static bool trans_BSET(DisasContext *ctx, arg_BSET *a)
+{
+ switch (a->bit) {
+ case 0x00:
+ tcg_gen_movi_tl(cpu_Cf, 0x01);
+ break;
+ case 0x01:
+ tcg_gen_movi_tl(cpu_Zf, 0x00);
+ break;
+ case 0x02:
+ tcg_gen_movi_tl(cpu_Nf, 0x01);
+ break;
+ case 0x03:
+ tcg_gen_movi_tl(cpu_Vf, 0x01);
+ break;
+ case 0x04:
+ tcg_gen_movi_tl(cpu_Sf, 0x01);
+ break;
+ case 0x05:
+ tcg_gen_movi_tl(cpu_Hf, 0x01);
+ break;
+ case 0x06:
+ tcg_gen_movi_tl(cpu_Tf, 0x01);
+ break;
+ case 0x07:
+ tcg_gen_movi_tl(cpu_If, 0x01);
+ break;
+ }
+
+ return true;
+}
+
+/*
+ * The BREAK instruction is used by the On-chip Debug system, and is
+ * normally not used in the application software. When the BREAK instruction is
+ * executed, the AVR CPU is set in the Stopped Mode. This gives the On-chip
+ * Debugger access to internal resources. If any Lock bits are set, or either
+ * the JTAGEN or OCDEN Fuses are unprogrammed, the CPU will treat the BREAK
+ * instruction as a NOP and will not enter the Stopped mode. This instruction
+ * is not available in all devices. Refer to the device specific instruction
+ * set summary.
+ */
+static bool trans_BREAK(DisasContext *ctx, arg_BREAK *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_BREAK) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ /* NOP */
+
+ return true;
+}
+
+/*
+ * Stores bit b from Rd to the T Flag in SREG (Status Register).
+ */
+static bool trans_BST(DisasContext *ctx, arg_BST *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+
+ tcg_gen_andi_tl(cpu_Tf, Rd, 1 << a->bit);
+ tcg_gen_shri_tl(cpu_Tf, cpu_Tf, a->bit);
+
+ return true;
+}
+
+/*
+ * Calls to a subroutine within the entire Program memory. The return
+ * address (to the instruction after the CALL) will be stored onto the Stack.
+ * (See also RCALL). The Stack Pointer uses a post-decrement scheme during
+ * CALL. This instruction is not available in all devices. Refer to the device
+ * specific instruction set summary.
+ */
+static bool trans_CALL(DisasContext *ctx, arg_CALL *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_JMP_CALL) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ int Imm = a->imm;
+ int ret = ctx->npc;
+
+ gen_push_ret(ctx, ret);
+ gen_goto_tb(ctx, 0, Imm);
+
+ ctx->bstate = BS_BRANCH;
+ return true;
+}
+
+/*
+ * Clears a specified bit in an I/O Register. This instruction operates on
+ * the lower 32 I/O Registers -- addresses 0-31.
+ */
+static bool trans_CBI(DisasContext *ctx, arg_CBI *a)
+{
+ TCGv data = tcg_temp_new_i32();
+ TCGv port = tcg_const_i32(a->reg);
+
+ gen_helper_inb(data, cpu_env, port);
+ tcg_gen_andi_tl(data, data, ~(1 << a->bit));
+ gen_helper_outb(cpu_env, port, data);
+
+ tcg_temp_free_i32(data);
+ tcg_temp_free_i32(port);
+
+ return true;
+}
+
+/*
+ * Clears the specified bits in register Rd. Performs the logical AND
+ * between the contents of register Rd and the complement of the constant mask
+ * K. The result will be placed in register Rd.
+ */
+static bool trans_COM(DisasContext *ctx, arg_COM *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv R = tcg_temp_new_i32();
+
+ tcg_gen_xori_tl(Rd, Rd, 0xff);
+
+ tcg_gen_movi_tl(cpu_Cf, 1); /* Cf = 1 */
+ tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */
+ gen_ZNSf(Rd);
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * This instruction performs a compare between two registers Rd and Rr.
+ * None of the registers are changed. All conditional branches can be used
+ * after this instruction.
+ */
+static bool trans_CP(DisasContext *ctx, arg_CP *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+
+ /* op */
+ tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
+ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+ gen_sub_CHf(R, Rd, Rr);
+ gen_sub_Vf(R, Rd, Rr);
+ gen_ZNSf(R);
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * This instruction performs a compare between two registers Rd and Rr and
+ * also takes into account the previous carry. None of the registers are
+ * changed. All conditional branches can be used after this instruction.
+ */
+static bool trans_CPC(DisasContext *ctx, arg_CPC *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+
+ /* op */
+ tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
+ tcg_gen_sub_tl(R, R, cpu_Cf);
+ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+ gen_sub_CHf(R, Rd, Rr);
+ gen_sub_Vf(R, Rd, Rr);
+ gen_NSf(R);
+
+ /*
+ * Previous value remains unchanged when the result is zero;
+ * cleared otherwise.
+ */
+ tcg_gen_or_tl(cpu_Zf, cpu_Zf, R);
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * This instruction performs a compare between register Rd and a constant.
+ * The register is not changed. All conditional branches can be used after this
+ * instruction.
+ */
+static bool trans_CPI(DisasContext *ctx, arg_CPI *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ int Imm = a->imm;
+ TCGv Rr = tcg_const_i32(Imm);
+ TCGv R = tcg_temp_new_i32();
+
+ /* op */
+ tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
+ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+ gen_sub_CHf(R, Rd, Rr);
+ gen_sub_Vf(R, Rd, Rr);
+ gen_ZNSf(R);
+
+ tcg_temp_free_i32(R);
+ tcg_temp_free_i32(Rr);
+
+ return true;
+}
+
+/*
+ * This instruction performs a compare between two registers Rd and Rr, and
+ * skips the next instruction if Rd = Rr.
+ */
+static bool trans_CPSE(DisasContext *ctx, arg_CPSE *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+
+ tcg_gen_setcond_tl(TCG_COND_EQ, cpu_skip, Rd, Rr);
+
+ ctx->check_skip++;
+
+ return true;
+}
+
+/*
+ * Subtracts one -1- from the contents of register Rd and places the result
+ * in the destination register Rd. The C Flag in SREG is not affected by the
+ * operation, thus allowing the DEC instruction to be used on a loop counter in
+ * multiple-precision computations. When operating on unsigned values, only
+ * BREQ and BRNE branches can be expected to perform consistently. When
+ * operating on two's complement values, all signed branches are available.
+ */
+static bool trans_DEC(DisasContext *ctx, arg_DEC *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+
+ tcg_gen_subi_tl(Rd, Rd, 1); /* Rd = Rd - 1 */
+ tcg_gen_andi_tl(Rd, Rd, 0xff); /* make it 8 bits */
+
+ /* cpu_Vf = Rd == 0x7f */
+ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x7f);
+ gen_ZNSf(Rd);
+
+ return true;
+}
+
+/*
+ * The module is an instruction set extension to the AVR CPU, performing
+ * DES iterations. The 64-bit data block (plaintext or ciphertext) is placed in
+ * the CPU register file, registers R0-R7, where LSB of data is placed in LSB
+ * of R0 and MSB of data is placed in MSB of R7. The full 64-bit key (including
+ * parity bits) is placed in registers R8- R15, organized in the register file
+ * with LSB of key in LSB of R8 and MSB of key in MSB of R15. Executing one DES
+ * instruction performs one round in the DES algorithm. Sixteen rounds must be
+ * executed in increasing order to form the correct DES ciphertext or
+ * plaintext. Intermediate results are stored in the register file (R0-R15)
+ * after each DES instruction. The instruction's operand (K) determines which
+ * round is executed, and the half carry flag (H) determines whether encryption
+ * or decryption is performed. The DES algorithm is described in
+ * "Specifications for the Data Encryption Standard" (Federal Information
+ * Processing Standards Publication 46). Intermediate results in this
+ * implementation differ from the standard because the initial permutation and
+ * the inverse initial permutation are performed each iteration. This does not
+ * affect the result in the final ciphertext or plaintext, but reduces
+ * execution time.
+ */
+static bool trans_DES(DisasContext *ctx, arg_DES *a)
+{
+ /* TODO */
+ if (avr_feature(ctx->env, AVR_FEATURE_DES) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ return true;
+}
+
+/*
+ * Indirect call of a subroutine pointed to by the Z (16 bits) Pointer
+ * Register in the Register File and the EIND Register in the I/O space. This
+ * instruction allows for indirect calls to the entire 4M (words) Program
+ * memory space. See also ICALL. The Stack Pointer uses a post-decrement scheme
+ * during EICALL. This instruction is not available in all devices. Refer to
+ * the device specific instruction set summary.
+ */
+static bool trans_EICALL(DisasContext *ctx, arg_EICALL *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_EIJMP_EICALL) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ int ret = ctx->npc;
+
+ gen_push_ret(ctx, ret);
+
+ gen_jmp_ez();
+
+ ctx->bstate = BS_BRANCH;
+ return true;
+}
+
+/*
+ * Indirect jump to the address pointed to by the Z (16 bits) Pointer
+ * Register in the Register File and the EIND Register in the I/O space. This
+ * instruction allows for indirect jumps to the entire 4M (words) Program
+ * memory space. See also IJMP. This instruction is not available in all
+ * devices. Refer to the device specific instruction set summary.
+ */
+static bool trans_EIJMP(DisasContext *ctx, arg_EIJMP *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_EIJMP_EICALL) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ gen_jmp_ez();
+
+ ctx->bstate = BS_BRANCH;
+ return true;
+}
+
+/*
+ * Loads one byte pointed to by the Z-register and the RAMPZ Register in
+ * the I/O space, and places this byte in the destination register Rd. This
+ * instruction features a 100% space effective constant initialization or
+ * constant data fetch. The Program memory is organized in 16-bit words while
+ * the Z-pointer is a byte address. Thus, the least significant bit of the
+ * Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB = 1). This
+ * instruction can address the entire Program memory space. The Z-pointer
+ * Register can either be left unchanged by the operation, or it can be
+ * incremented. The incrementation applies to the entire 24-bit concatenation
+ * of the RAMPZ and Z-pointer Registers. Devices with Self-Programming
+ * capability can use the ELPM instruction to read the Fuse and Lock bit value.
+ * Refer to the device documentation for a detailed description. This
+ * instruction is not available in all devices. Refer to the device specific
+ * instruction set summary.
+ */
+static bool trans_ELPM1(DisasContext *ctx, arg_ELPM1 *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_ELPM) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv Rd = cpu_r[0];
+ TCGv addr = gen_get_zaddr();
+
+ tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_ELPM2(DisasContext *ctx, arg_ELPM2 *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_ELPM) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+
+ tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_ELPMX(DisasContext *ctx, arg_ELPMX *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_ELPMX) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+
+ tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+ tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+ gen_set_zaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+/*
+ * Performs the logical EOR between the contents of register Rd and
+ * register Rr and places the result in the destination register Rd.
+ */
+static bool trans_EOR(DisasContext *ctx, arg_EOR *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+
+ tcg_gen_xor_tl(Rd, Rd, Rr);
+
+ tcg_gen_movi_tl(cpu_Vf, 0);
+ gen_ZNSf(Rd);
+
+ return true;
+}
+
+/*
+ * This instruction performs 8-bit x 8-bit -> 16-bit unsigned
+ * multiplication and shifts the result one bit left.
+ */
+static bool trans_FMUL(DisasContext *ctx, arg_FMUL *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv R0 = cpu_r[0];
+ TCGv R1 = cpu_r[1];
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+
+ tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd *Rr */
+ tcg_gen_shli_tl(R, R, 1);
+
+ tcg_gen_andi_tl(R0, R, 0xff);
+ tcg_gen_shri_tl(R1, R, 8);
+ tcg_gen_andi_tl(R1, R1, 0xff);
+
+ tcg_gen_shri_tl(cpu_Cf, R, 16); /* Cf = R(16) */
+ tcg_gen_andi_tl(cpu_Zf, R, 0x0000ffff);
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication
+ * and shifts the result one bit left.
+ */
+static bool trans_FMULS(DisasContext *ctx, arg_FMULS *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv R0 = cpu_r[0];
+ TCGv R1 = cpu_r[1];
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+ TCGv t0 = tcg_temp_new_i32();
+ TCGv t1 = tcg_temp_new_i32();
+
+ tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
+ tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */
+ tcg_gen_mul_tl(R, t0, t1); /* R = Rd *Rr */
+ tcg_gen_shli_tl(R, R, 1);
+
+ tcg_gen_andi_tl(R0, R, 0xff);
+ tcg_gen_shri_tl(R1, R, 8);
+ tcg_gen_andi_tl(R1, R1, 0xff);
+
+ tcg_gen_shri_tl(cpu_Cf, R, 16); /* Cf = R(16) */
+ tcg_gen_andi_tl(cpu_Zf, R, 0x0000ffff);
+
+ tcg_temp_free_i32(t1);
+ tcg_temp_free_i32(t0);
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication
+ * and shifts the result one bit left.
+ */
+static bool trans_FMULSU(DisasContext *ctx, arg_FMULSU *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv R0 = cpu_r[0];
+ TCGv R1 = cpu_r[1];
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+ TCGv t0 = tcg_temp_new_i32();
+
+ tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
+ tcg_gen_mul_tl(R, t0, Rr); /* R = Rd *Rr */
+ tcg_gen_shli_tl(R, R, 1);
+
+ tcg_gen_andi_tl(R0, R, 0xff);
+ tcg_gen_shri_tl(R1, R, 8);
+ tcg_gen_andi_tl(R1, R1, 0xff);
+
+ tcg_gen_shri_tl(cpu_Cf, R, 16); /* Cf = R(16) */
+ tcg_gen_andi_tl(cpu_Zf, R, 0x0000ffff);
+
+ tcg_temp_free_i32(t0);
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * Calls to a subroutine within the entire 4M (words) Program memory. The
+ * return address (to the instruction after the CALL) will be stored onto the
+ * Stack. See also RCALL. The Stack Pointer uses a post-decrement scheme during
+ * CALL. This instruction is not available in all devices. Refer to the device
+ * specific instruction set summary.
+ */
+static bool trans_ICALL(DisasContext *ctx, arg_ICALL *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_IJMP_ICALL) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ int ret = ctx->npc;
+
+ gen_push_ret(ctx, ret);
+ gen_jmp_z();
+
+ ctx->bstate = BS_BRANCH;
+ return true;
+}
+
+/*
+ * Indirect jump to the address pointed to by the Z (16 bits) Pointer
+ * Register in the Register File. The Z-pointer Register is 16 bits wide and
+ * allows jump within the lowest 64K words (128KB) section of Program memory.
+ * This instruction is not available in all devices. Refer to the device
+ * specific instruction set summary.
+ */
+static bool trans_IJMP(DisasContext *ctx, arg_IJMP *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_IJMP_ICALL) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ gen_jmp_z();
+
+ ctx->bstate = BS_BRANCH;
+ return true;
+}
+
+/*
+ * Loads data from the I/O Space (Ports, Timers, Configuration Registers,
+ * etc.) into register Rd in the Register File.
+ */
+static bool trans_IN(DisasContext *ctx, arg_IN *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv port = tcg_const_i32(a->imm);
+
+ gen_helper_inb(Rd, cpu_env, port);
+
+ tcg_temp_free_i32(port);
+
+ return true;
+}
+
+/*
+ * Adds one -1- to the contents of register Rd and places the result in the
+ * destination register Rd. The C Flag in SREG is not affected by the
+ * operation, thus allowing the INC instruction to be used on a loop counter in
+ * multiple-precision computations. When operating on unsigned numbers, only
+ * BREQ and BRNE branches can be expected to perform consistently. When
+ * operating on two's complement values, all signed branches are available.
+ */
+static bool trans_INC(DisasContext *ctx, arg_INC *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+
+ tcg_gen_addi_tl(Rd, Rd, 1);
+ tcg_gen_andi_tl(Rd, Rd, 0xff);
+
+ /* cpu_Vf = Rd == 0x80 */
+ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x80);
+ gen_ZNSf(Rd);
+ return true;
+}
+
+/*
+ * Jump to an address within the entire 4M (words) Program memory. See also
+ * RJMP. This instruction is not available in all devices. Refer to the device
+ * specific instruction set summary.0
+ */
+static bool trans_JMP(DisasContext *ctx, arg_JMP *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_JMP_CALL) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ gen_goto_tb(ctx, 0, a->imm);
+ ctx->bstate = BS_BRANCH;
+ return true;
+}
+
+/*
+ * Load one byte indirect from data space to register and stores an clear
+ * the bits in data space specified by the register. The instruction can only
+ * be used towards internal SRAM. The data location is pointed to by the Z (16
+ * bits) Pointer Register in the Register File. Memory access is limited to the
+ * current data segment of 64KB. To access another data segment in devices with
+ * more than 64KB data space, the RAMPZ in register in the I/O area has to be
+ * changed. The Z-pointer Register is left unchanged by the operation. This
+ * instruction is especially suited for clearing status bits stored in SRAM.
+ */
+static void gen_data_store(DisasContext *ctx, TCGv data, TCGv addr)
+{
+ if (ctx->tb->flags & TB_FLAGS_FULL_ACCESS) {
+ gen_helper_fullwr(cpu_env, data, addr);
+ } else {
+ tcg_gen_qemu_st8(data, addr, MMU_DATA_IDX); /* mem[addr] = data */
+ }
+}
+
+static void gen_data_load(DisasContext *ctx, TCGv data, TCGv addr)
+{
+ if (ctx->tb->flags & TB_FLAGS_FULL_ACCESS) {
+ gen_helper_fullrd(data, cpu_env, addr);
+ } else {
+ tcg_gen_qemu_ld8u(data, addr, MMU_DATA_IDX); /* data = mem[addr] */
+ }
+}
+
+static bool trans_LAC(DisasContext *ctx, arg_LAC *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_RMW) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv Rr = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+ TCGv t0 = tcg_temp_new_i32();
+ TCGv t1 = tcg_temp_new_i32();
+
+ gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
+ /* t1 = t0 & (0xff - Rr) = t0 and ~Rr */
+ tcg_gen_andc_tl(t1, t0, Rr);
+
+ tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
+ gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
+
+ tcg_temp_free_i32(t1);
+ tcg_temp_free_i32(t0);
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+/*
+ * Load one byte indirect from data space to register and set bits in data
+ * space specified by the register. The instruction can only be used towards
+ * internal SRAM. The data location is pointed to by the Z (16 bits) Pointer
+ * Register in the Register File. Memory access is limited to the current data
+ * segment of 64KB. To access another data segment in devices with more than
+ * 64KB data space, the RAMPZ in register in the I/O area has to be changed.
+ * The Z-pointer Register is left unchanged by the operation. This instruction
+ * is especially suited for setting status bits stored in SRAM.
+ */
+static bool trans_LAS(DisasContext *ctx, arg_LAS *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_RMW) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv Rr = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+ TCGv t0 = tcg_temp_new_i32();
+ TCGv t1 = tcg_temp_new_i32();
+
+ gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
+ tcg_gen_or_tl(t1, t0, Rr);
+
+ tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */
+ gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
+
+ tcg_temp_free_i32(t1);
+ tcg_temp_free_i32(t0);
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+/*
+ * Load one byte indirect from data space to register and toggles bits in
+ * the data space specified by the register. The instruction can only be used
+ * towards SRAM. The data location is pointed to by the Z (16 bits) Pointer
+ * Register in the Register File. Memory access is limited to the current data
+ * segment of 64KB. To access another data segment in devices with more than
+ * 64KB data space, the RAMPZ in register in the I/O area has to be changed.
+ * The Z-pointer Register is left unchanged by the operation. This instruction
+ * is especially suited for changing status bits stored in SRAM.
+ */
+static bool trans_LAT(DisasContext *ctx, arg_LAT *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_RMW) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+ TCGv t0 = tcg_temp_new_i32();
+ TCGv t1 = tcg_temp_new_i32();
+
+ gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */
+ tcg_gen_xor_tl(t1, t0, Rd);
+
+ tcg_gen_mov_tl(Rd, t0); /* Rd = t0 */
+ gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */
+
+ tcg_temp_free_i32(t1);
+ tcg_temp_free_i32(t0);
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+/*
+ * Loads one byte indirect from the data space to a register. For parts
+ * with SRAM, the data space consists of the Register File, I/O memory and
+ * internal SRAM (and external SRAM if applicable). For parts without SRAM, the
+ * data space consists of the Register File only. In some parts the Flash
+ * Memory has been mapped to the data space and can be read using this command.
+ * The EEPROM has a separate address space. The data location is pointed to by
+ * the X (16 bits) Pointer Register in the Register File. Memory access is
+ * limited to the current data segment of 64KB. To access another data segment
+ * in devices with more than 64KB data space, the RAMPX in register in the I/O
+ * area has to be changed. The X-pointer Register can either be left unchanged
+ * by the operation, or it can be post-incremented or predecremented. These
+ * features are especially suited for accessing arrays, tables, and Stack
+ * Pointer usage of the X-pointer Register. Note that only the low byte of the
+ * X-pointer is updated in devices with no more than 256 bytes data space. For
+ * such devices, the high byte of the pointer is not used by this instruction
+ * and can be used for other purposes. The RAMPX Register in the I/O area is
+ * updated in parts with more than 64KB data space or more than 64KB Program
+ * memory, and the increment/decrement is added to the entire 24-bit address on
+ * such devices. Not all variants of this instruction is available in all
+ * devices. Refer to the device specific instruction set summary. In the
+ * Reduced Core tinyAVR the LD instruction can be used to achieve the same
+ * operation as LPM since the program memory is mapped to the data memory
+ * space.
+ */
+static bool trans_LDX1(DisasContext *ctx, arg_LDX1 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_xaddr();
+
+ gen_data_load(ctx, Rd, addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_LDX2(DisasContext *ctx, arg_LDX2 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_xaddr();
+
+ gen_data_load(ctx, Rd, addr);
+ tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+ gen_set_xaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_LDX3(DisasContext *ctx, arg_LDX3 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_xaddr();
+
+ tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+ gen_data_load(ctx, Rd, addr);
+ gen_set_xaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+/*
+ * Loads one byte indirect with or without displacement from the data space
+ * to a register. For parts with SRAM, the data space consists of the Register
+ * File, I/O memory and internal SRAM (and external SRAM if applicable). For
+ * parts without SRAM, the data space consists of the Register File only. In
+ * some parts the Flash Memory has been mapped to the data space and can be
+ * read using this command. The EEPROM has a separate address space. The data
+ * location is pointed to by the Y (16 bits) Pointer Register in the Register
+ * File. Memory access is limited to the current data segment of 64KB. To
+ * access another data segment in devices with more than 64KB data space, the
+ * RAMPY in register in the I/O area has to be changed. The Y-pointer Register
+ * can either be left unchanged by the operation, or it can be post-incremented
+ * or predecremented. These features are especially suited for accessing
+ * arrays, tables, and Stack Pointer usage of the Y-pointer Register. Note that
+ * only the low byte of the Y-pointer is updated in devices with no more than
+ * 256 bytes data space. For such devices, the high byte of the pointer is not
+ * used by this instruction and can be used for other purposes. The RAMPY
+ * Register in the I/O area is updated in parts with more than 64KB data space
+ * or more than 64KB Program memory, and the increment/decrement/displacement
+ * is added to the entire 24-bit address on such devices. Not all variants of
+ * this instruction is available in all devices. Refer to the device specific
+ * instruction set summary. In the Reduced Core tinyAVR the LD instruction can
+ * be used to achieve the same operation as LPM since the program memory is
+ * mapped to the data memory space.
+ */
+static bool trans_LDY2(DisasContext *ctx, arg_LDY2 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_yaddr();
+
+ gen_data_load(ctx, Rd, addr);
+ tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+ gen_set_yaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_LDY3(DisasContext *ctx, arg_LDY3 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_yaddr();
+
+ tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+ gen_data_load(ctx, Rd, addr);
+ gen_set_yaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_LDDY(DisasContext *ctx, arg_LDDY *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_yaddr();
+
+ tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
+ gen_data_load(ctx, Rd, addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+/*
+ * Loads one byte indirect with or without displacement from the data space
+ * to a register. For parts with SRAM, the data space consists of the Register
+ * File, I/O memory and internal SRAM (and external SRAM if applicable). For
+ * parts without SRAM, the data space consists of the Register File only. In
+ * some parts the Flash Memory has been mapped to the data space and can be
+ * read using this command. The EEPROM has a separate address space. The data
+ * location is pointed to by the Z (16 bits) Pointer Register in the Register
+ * File. Memory access is limited to the current data segment of 64KB. To
+ * access another data segment in devices with more than 64KB data space, the
+ * RAMPZ in register in the I/O area has to be changed. The Z-pointer Register
+ * can either be left unchanged by the operation, or it can be post-incremented
+ * or predecremented. These features are especially suited for Stack Pointer
+ * usage of the Z-pointer Register, however because the Z-pointer Register can
+ * be used for indirect subroutine calls, indirect jumps and table lookup, it
+ * is often more convenient to use the X or Y-pointer as a dedicated Stack
+ * Pointer. Note that only the low byte of the Z-pointer is updated in devices
+ * with no more than 256 bytes data space. For such devices, the high byte of
+ * the pointer is not used by this instruction and can be used for other
+ * purposes. The RAMPZ Register in the I/O area is updated in parts with more
+ * than 64KB data space or more than 64KB Program memory, and the
+ * increment/decrement/displacement is added to the entire 24-bit address on
+ * such devices. Not all variants of this instruction is available in all
+ * devices. Refer to the device specific instruction set summary. In the
+ * Reduced Core tinyAVR the LD instruction can be used to achieve the same
+ * operation as LPM since the program memory is mapped to the data memory
+ * space. For using the Z-pointer for table lookup in Program memory see the
+ * LPM and ELPM instructions.
+ */
+static bool trans_LDZ2(DisasContext *ctx, arg_LDZ2 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+
+ gen_data_load(ctx, Rd, addr);
+ tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+ gen_set_zaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_LDZ3(DisasContext *ctx, arg_LDZ3 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+
+ tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+ gen_data_load(ctx, Rd, addr);
+
+ gen_set_zaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_LDDZ(DisasContext *ctx, arg_LDDZ *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+
+ tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
+ gen_data_load(ctx, Rd, addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+/*
+ * Loads an 8 bit constant directly to register 16 to 31.
+ */
+static bool trans_LDI(DisasContext *ctx, arg_LDI *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ int imm = a->imm;
+
+ tcg_gen_movi_tl(Rd, imm);
+
+ return true;
+}
+
+/*
+ * Loads one byte from the data space to a register. For parts with SRAM,
+ * the data space consists of the Register File, I/O memory and internal SRAM
+ * (and external SRAM if applicable). For parts without SRAM, the data space
+ * consists of the register file only. The EEPROM has a separate address space.
+ * A 16-bit address must be supplied. Memory access is limited to the current
+ * data segment of 64KB. The LDS instruction uses the RAMPD Register to access
+ * memory above 64KB. To access another data segment in devices with more than
+ * 64KB data space, the RAMPD in register in the I/O area has to be changed.
+ * This instruction is not available in all devices. Refer to the device
+ * specific instruction set summary.
+ */
+static bool trans_LDS(DisasContext *ctx, arg_LDS *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = tcg_temp_new_i32();
+ TCGv H = cpu_rampD;
+ a->imm = next_word(ctx);
+
+ tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
+ tcg_gen_shli_tl(addr, addr, 16);
+ tcg_gen_ori_tl(addr, addr, a->imm);
+
+ gen_data_load(ctx, Rd, addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+/*
+ * Loads one byte pointed to by the Z-register into the destination
+ * register Rd. This instruction features a 100% space effective constant
+ * initialization or constant data fetch. The Program memory is organized in
+ * 16-bit words while the Z-pointer is a byte address. Thus, the least
+ * significant bit of the Z-pointer selects either low byte (ZLSB = 0) or high
+ * byte (ZLSB = 1). This instruction can address the first 64KB (32K words) of
+ * Program memory. The Zpointer Register can either be left unchanged by the
+ * operation, or it can be incremented. The incrementation does not apply to
+ * the RAMPZ Register. Devices with Self-Programming capability can use the
+ * LPM instruction to read the Fuse and Lock bit values. Refer to the device
+ * documentation for a detailed description. The LPM instruction is not
+ * available in all devices. Refer to the device specific instruction set
+ * summary
+ */
+static bool trans_LPM1(DisasContext *ctx, arg_LPM1 *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_LPM) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv Rd = cpu_r[0];
+ TCGv addr = tcg_temp_new_i32();
+ TCGv H = cpu_r[31];
+ TCGv L = cpu_r[30];
+
+ tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
+ tcg_gen_or_tl(addr, addr, L);
+
+ tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_LPM2(DisasContext *ctx, arg_LPM2 *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_LPM) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = tcg_temp_new_i32();
+ TCGv H = cpu_r[31];
+ TCGv L = cpu_r[30];
+
+ tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
+ tcg_gen_or_tl(addr, addr, L);
+
+ tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_LPMX(DisasContext *ctx, arg_LPMX *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_LPMX) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = tcg_temp_new_i32();
+ TCGv H = cpu_r[31];
+ TCGv L = cpu_r[30];
+
+ tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */
+ tcg_gen_or_tl(addr, addr, L);
+
+ tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */
+
+ tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+ tcg_gen_andi_tl(L, addr, 0xff);
+
+ tcg_gen_shri_tl(addr, addr, 8);
+ tcg_gen_andi_tl(H, addr, 0xff);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+/*
+ * Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0 is
+ * loaded into the C Flag of the SREG. This operation effectively divides an
+ * unsigned value by two. The C Flag can be used to round the result.
+ */
+static bool trans_LSR(DisasContext *ctx, arg_LSR *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+
+ tcg_gen_andi_tl(cpu_Cf, Rd, 1);
+
+ tcg_gen_shri_tl(Rd, Rd, 1);
+
+ tcg_gen_mov_tl(cpu_Zf, Rd);
+ tcg_gen_movi_tl(cpu_Nf, 0);
+ tcg_gen_mov_tl(cpu_Vf, cpu_Cf);
+ tcg_gen_mov_tl(cpu_Sf, cpu_Vf);
+
+ return true;
+}
+
+/*
+ * This instruction makes a copy of one register into another. The source
+ * register Rr is left unchanged, while the destination register Rd is loaded
+ * with a copy of Rr.
+ */
+static bool trans_MOV(DisasContext *ctx, arg_MOV *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+
+ tcg_gen_mov_tl(Rd, Rr);
+
+ return true;
+}
+
+/*
+ * This instruction makes a copy of one register pair into another register
+ * pair. The source register pair Rr+1:Rr is left unchanged, while the
+ * destination register pair Rd+1:Rd is loaded with a copy of Rr + 1:Rr. This
+ * instruction is not available in all devices. Refer to the device specific
+ * instruction set summary.
+ */
+static bool trans_MOVW(DisasContext *ctx, arg_MOVW *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_MOVW) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv RdL = cpu_r[a->rd];
+ TCGv RdH = cpu_r[a->rd + 1];
+ TCGv RrL = cpu_r[a->rr];
+ TCGv RrH = cpu_r[a->rr + 1];
+
+ tcg_gen_mov_tl(RdH, RrH);
+ tcg_gen_mov_tl(RdL, RrL);
+
+ return true;
+}
+
+/*
+ * This instruction performs 8-bit x 8-bit -> 16-bit unsigned multiplication.
+ */
+static bool trans_MUL(DisasContext *ctx, arg_MUL *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv R0 = cpu_r[0];
+ TCGv R1 = cpu_r[1];
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+
+ tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd *Rr */
+
+ tcg_gen_andi_tl(R0, R, 0xff);
+ tcg_gen_shri_tl(R1, R, 8);
+
+ tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(16) */
+ tcg_gen_mov_tl(cpu_Zf, R);
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication.
+ */
+static bool trans_MULS(DisasContext *ctx, arg_MULS *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv R0 = cpu_r[0];
+ TCGv R1 = cpu_r[1];
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+ TCGv t0 = tcg_temp_new_i32();
+ TCGv t1 = tcg_temp_new_i32();
+
+ tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
+ tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */
+ tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */
+
+ tcg_gen_andi_tl(R0, R, 0xff);
+ tcg_gen_shri_tl(R1, R, 8);
+
+ tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(16) */
+ tcg_gen_mov_tl(cpu_Zf, R);
+
+ tcg_temp_free_i32(t1);
+ tcg_temp_free_i32(t0);
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * This instruction performs 8-bit x 8-bit -> 16-bit multiplication of a
+ * signed and an unsigned number.
+ */
+static bool trans_MULSU(DisasContext *ctx, arg_MULSU *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_MUL) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv R0 = cpu_r[0];
+ TCGv R1 = cpu_r[1];
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+ TCGv t0 = tcg_temp_new_i32();
+
+ tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */
+ tcg_gen_mul_tl(R, t0, Rr); /* R = Rd *Rr */
+
+ tcg_gen_andi_tl(R0, R, 0xff);
+ tcg_gen_shri_tl(R1, R, 8);
+
+ tcg_gen_shri_tl(cpu_Cf, R, 16); /* Cf = R(16) */
+ tcg_gen_mov_tl(cpu_Zf, R);
+
+ tcg_temp_free_i32(t0);
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * Replaces the contents of register Rd with its two's complement; the
+ * value $80 is left unchanged.
+ */
+static bool trans_NEG(DisasContext *ctx, arg_NEG *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv t0 = tcg_const_i32(0);
+ TCGv R = tcg_temp_new_i32();
+
+ /* op */
+ tcg_gen_sub_tl(R, t0, Rd); /* R = 0 - Rd */
+ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+ gen_sub_CHf(R, t0, Rd);
+ gen_sub_Vf(R, t0, Rd);
+ gen_ZNSf(R);
+
+ /* R */
+ tcg_gen_mov_tl(Rd, R);
+
+ tcg_temp_free_i32(t0);
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * This instruction performs a single cycle No Operation.
+ */
+static bool trans_NOP(DisasContext *ctx, arg_NOP *a)
+{
+
+ /* NOP */
+
+ return true;
+}
+
+/*
+ * Performs the logical OR between the contents of register Rd and register
+ * Rr and places the result in the destination register Rd.
+ */
+static bool trans_OR(DisasContext *ctx, arg_OR *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+
+ tcg_gen_or_tl(R, Rd, Rr);
+
+ tcg_gen_movi_tl(cpu_Vf, 0);
+ gen_ZNSf(R);
+
+ tcg_gen_mov_tl(Rd, R);
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * Performs the logical OR between the contents of register Rd and a
+ * constant and places the result in the destination register Rd.
+ */
+static bool trans_ORI(DisasContext *ctx, arg_ORI *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ int Imm = (a->imm);
+
+ tcg_gen_ori_tl(Rd, Rd, Imm); /* Rd = Rd | Imm */
+
+ tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */
+ gen_ZNSf(Rd);
+
+ return true;
+}
+
+/*
+ * Stores data from register Rr in the Register File to I/O Space (Ports,
+ * Timers, Configuration Registers, etc.).
+ */
+static bool trans_OUT(DisasContext *ctx, arg_OUT *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv port = tcg_const_i32(a->imm);
+
+ gen_helper_outb(cpu_env, port, Rd);
+
+ tcg_temp_free_i32(port);
+
+ return true;
+}
+
+/*
+ * This instruction loads register Rd with a byte from the STACK. The Stack
+ * Pointer is pre-incremented by 1 before the POP. This instruction is not
+ * available in all devices. Refer to the device specific instruction set
+ * summary.
+ */
+static bool trans_POP(DisasContext *ctx, arg_POP *a)
+{
+ /*
+ * Using a temp to work around some strange behaviour:
+ * tcg_gen_addi_tl(cpu_sp, cpu_sp, 1);
+ * gen_data_load(ctx, Rd, cpu_sp);
+ * seems to cause the add to happen twice.
+ * This doesn't happen if either the add or the load is removed.
+ */
+ TCGv t1 = tcg_temp_new_i32();
+ TCGv Rd = cpu_r[a->rd];
+
+ tcg_gen_addi_tl(t1, cpu_sp, 1);
+ gen_data_load(ctx, Rd, t1);
+ tcg_gen_mov_tl(cpu_sp, t1);
+
+ return true;
+}
+
+/*
+ * This instruction stores the contents of register Rr on the STACK. The
+ * Stack Pointer is post-decremented by 1 after the PUSH. This instruction is
+ * not available in all devices. Refer to the device specific instruction set
+ * summary.
+ */
+static bool trans_PUSH(DisasContext *ctx, arg_PUSH *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+
+ gen_data_store(ctx, Rd, cpu_sp);
+ tcg_gen_subi_tl(cpu_sp, cpu_sp, 1);
+
+ return true;
+}
+
+/*
+ * Relative call to an address within PC - 2K + 1 and PC + 2K (words). The
+ * return address (the instruction after the RCALL) is stored onto the Stack.
+ * See also CALL. For AVR microcontrollers with Program memory not exceeding 4K
+ * words (8KB) this instruction can address the entire memory from every
+ * address location. The Stack Pointer uses a post-decrement scheme during
+ * RCALL.
+ */
+static bool trans_RCALL(DisasContext *ctx, arg_RCALL *a)
+{
+ int ret = ctx->npc;
+ int dst = ctx->npc + a->imm;
+
+ gen_push_ret(ctx, ret);
+ gen_goto_tb(ctx, 0, dst);
+
+ ctx->bstate = BS_BRANCH;
+ return true;
+}
+
+/*
+ * Returns from subroutine. The return address is loaded from the STACK.
+ * The Stack Pointer uses a preincrement scheme during RET.
+ */
+static bool trans_RET(DisasContext *ctx, arg_RET *a)
+{
+ gen_pop_ret(ctx, cpu_pc);
+
+ tcg_gen_exit_tb(NULL, 0);
+
+ ctx->bstate = BS_BRANCH;
+ return true;
+}
+
+/*
+ * Returns from interrupt. The return address is loaded from the STACK and
+ * the Global Interrupt Flag is set. Note that the Status Register is not
+ * automatically stored when entering an interrupt routine, and it is not
+ * restored when returning from an interrupt routine. This must be handled by
+ * the application program. The Stack Pointer uses a pre-increment scheme
+ * during RETI.
+ */
+static bool trans_RETI(DisasContext *ctx, arg_RETI *a)
+{
+ gen_pop_ret(ctx, cpu_pc);
+
+ tcg_gen_movi_tl(cpu_If, 1);
+
+ tcg_gen_exit_tb(NULL, 0);
+
+ ctx->bstate = BS_BRANCH;
+ return true;
+}
+
+/*
+ * Relative jump to an address within PC - 2K +1 and PC + 2K (words). For
+ * AVR microcontrollers with Program memory not exceeding 4K words (8KB) this
+ * instruction can address the entire memory from every address location. See
+ * also JMP.
+ */
+static bool trans_RJMP(DisasContext *ctx, arg_RJMP *a)
+{
+ int dst = ctx->npc + a->imm;
+
+ gen_goto_tb(ctx, 0, dst);
+
+ ctx->bstate = BS_BRANCH;
+ return true;
+}
+
+/*
+ * Shifts all bits in Rd one place to the right. The C Flag is shifted into
+ * bit 7 of Rd. Bit 0 is shifted into the C Flag. This operation, combined
+ * with ASR, effectively divides multi-byte signed values by two. Combined with
+ * LSR it effectively divides multi-byte unsigned values by two. The Carry Flag
+ * can be used to round the result.
+ */
+static bool trans_ROR(DisasContext *ctx, arg_ROR *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv t0 = tcg_temp_new_i32();
+
+ tcg_gen_shli_tl(t0, cpu_Cf, 7);
+ tcg_gen_andi_tl(cpu_Cf, Rd, 1);
+ tcg_gen_shri_tl(Rd, Rd, 1);
+ tcg_gen_or_tl(Rd, Rd, t0);
+
+ gen_rshift_ZNVSf(Rd);
+
+ tcg_temp_free_i32(t0);
+
+ return true;
+}
+
+/*
+ * Subtracts two registers and subtracts with the C Flag and places the
+ * result in the destination register Rd.
+ */
+static bool trans_SBC(DisasContext *ctx, arg_SBC *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+
+ /* op */
+ tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
+ tcg_gen_sub_tl(R, R, cpu_Cf);
+ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+ gen_sub_CHf(R, Rd, Rr);
+ gen_sub_Vf(R, Rd, Rr);
+ gen_NSf(R);
+
+ /*
+ * Previous value remains unchanged when the result is zero;
+ * cleared otherwise.
+ */
+ tcg_gen_or_tl(cpu_Zf, cpu_Zf, R);
+
+ /* R */
+ tcg_gen_mov_tl(Rd, R);
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * SBCI -- Subtract Immediate with Carry
+ */
+static bool trans_SBCI(DisasContext *ctx, arg_SBCI *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = tcg_const_i32(a->imm);
+ TCGv R = tcg_temp_new_i32();
+
+ /* op */
+ tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */
+ tcg_gen_sub_tl(R, R, cpu_Cf);
+ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+ gen_sub_CHf(R, Rd, Rr);
+ gen_sub_Vf(R, Rd, Rr);
+ gen_NSf(R);
+
+ /*
+ * Previous value remains unchanged when the result is zero;
+ * cleared otherwise.
+ */
+ tcg_gen_or_tl(cpu_Zf, cpu_Zf, R);
+
+ /* R */
+ tcg_gen_mov_tl(Rd, R);
+
+ tcg_temp_free_i32(R);
+ tcg_temp_free_i32(Rr);
+
+ return true;
+}
+
+/*
+ * Sets a specified bit in an I/O Register. This instruction operates on
+ * the lower 32 I/O Registers -- addresses 0-31.
+ */
+static bool trans_SBI(DisasContext *ctx, arg_SBI *a)
+{
+ TCGv data = tcg_temp_new_i32();
+ TCGv port = tcg_const_i32(a->reg);
+
+ gen_helper_inb(data, cpu_env, port);
+ tcg_gen_ori_tl(data, data, 1 << a->bit);
+ gen_helper_outb(cpu_env, port, data);
+
+ tcg_temp_free_i32(port);
+ tcg_temp_free_i32(data);
+
+ return true;
+}
+
+/*
+ * This instruction tests a single bit in an I/O Register and skips the
+ * next instruction if the bit is cleared. This instruction operates on the
+ * lower 32 I/O Registers -- addresses 0-31.
+ */
+static bool trans_SBIC(DisasContext *ctx, arg_SBIC *a)
+{
+ TCGv data = tcg_temp_new_i32();
+ TCGv port = tcg_const_i32(a->reg);
+
+ gen_helper_inb(data, cpu_env, port);
+
+ tcg_gen_andi_tl(data, data, 1 << a->bit);
+ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_skip, data, 0);
+
+ tcg_temp_free_i32(port);
+ tcg_temp_free_i32(data);
+
+ ctx->check_skip++;
+
+ return true;
+}
+
+/*
+ * This instruction tests a single bit in an I/O Register and skips the
+ * next instruction if the bit is set. This instruction operates on the lower
+ * 32 I/O Registers -- addresses 0-31.
+ */
+static bool trans_SBIS(DisasContext *ctx, arg_SBIS *a)
+{
+ TCGv data = tcg_temp_new_i32();
+ TCGv port = tcg_const_i32(a->reg);
+
+ gen_helper_inb(data, cpu_env, port);
+
+ tcg_gen_andi_tl(data, data, 1 << a->bit);
+ tcg_gen_setcondi_tl(TCG_COND_NE, cpu_skip, data, 0);
+
+ tcg_temp_free_i32(port);
+ tcg_temp_free_i32(data);
+
+ ctx->check_skip++;
+
+ return true;
+}
+
+/*
+ * Subtracts an immediate value (0-63) from a register pair and places the
+ * result in the register pair. This instruction operates on the upper four
+ * register pairs, and is well suited for operations on the Pointer Registers.
+ * This instruction is not available in all devices. Refer to the device
+ * specific instruction set summary.
+ */
+static bool trans_SBIW(DisasContext *ctx, arg_SBIW *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_ADIW_SBIW) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv RdL = cpu_r[a->rd];
+ TCGv RdH = cpu_r[a->rd + 1];
+ int Imm = (a->imm);
+ TCGv R = tcg_temp_new_i32();
+ TCGv Rd = tcg_temp_new_i32();
+
+ /* op */
+ tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */
+ tcg_gen_subi_tl(R, Rd, Imm); /* R = Rd - Imm */
+ tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */
+
+ /* Cf */
+ tcg_gen_andc_tl(cpu_Cf, R, Rd);
+ tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15); /* Cf = R & ~Rd */
+
+ /* Vf */
+ tcg_gen_andc_tl(cpu_Vf, Rd, R);
+ tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15); /* Vf = Rd & ~R */
+
+ /* Zf */
+ tcg_gen_mov_tl(cpu_Zf, R); /* Zf = R */
+
+ /* Nf */
+ tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */
+
+ /* Sf */
+ tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */
+
+ /* R */
+ tcg_gen_andi_tl(RdL, R, 0xff);
+ tcg_gen_shri_tl(RdH, R, 8);
+
+ tcg_temp_free_i32(Rd);
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * This instruction tests a single bit in a register and skips the next
+ * instruction if the bit is cleared.
+ */
+static bool trans_SBRC(DisasContext *ctx, arg_SBRC *a)
+{
+ TCGv Rr = cpu_r[a->rr];
+ TCGv t0 = tcg_temp_new_i32();
+
+ tcg_gen_andi_tl(t0, Rr, 1 << a->bit);
+ tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_skip, t0, 0);
+
+ tcg_temp_free_i32(t0);
+
+ ctx->check_skip++;
+
+ return true;
+}
+
+/*
+ * This instruction tests a single bit in a register and skips the next
+ * instruction if the bit is set.
+ */
+static bool trans_SBRS(DisasContext *ctx, arg_SBRS *a)
+{
+ TCGv Rr = cpu_r[a->rr];
+ TCGv t0 = tcg_temp_new_i32();
+
+ tcg_gen_andi_tl(t0, Rr, 1 << a->bit);
+ tcg_gen_setcondi_tl(TCG_COND_NE, cpu_skip, t0, 0);
+
+ tcg_temp_free_i32(t0);
+
+ ctx->check_skip++;
+
+ return true;
+}
+
+/*
+ * This instruction sets the circuit in sleep mode defined by the MCU
+ * Control Register.
+ */
+static bool trans_SLEEP(DisasContext *ctx, arg_SLEEP *a)
+{
+ gen_helper_sleep(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+}
+
+/*
+ * SPM can be used to erase a page in the Program memory, to write a page
+ * in the Program memory (that is already erased), and to set Boot Loader Lock
+ * bits. In some devices, the Program memory can be written one word at a time,
+ * in other devices an entire page can be programmed simultaneously after first
+ * filling a temporary page buffer. In all cases, the Program memory must be
+ * erased one page at a time. When erasing the Program memory, the RAMPZ and
+ * Z-register are used as page address. When writing the Program memory, the
+ * RAMPZ and Z-register are used as page or word address, and the R1:R0
+ * register pair is used as data(1). When setting the Boot Loader Lock bits,
+ * the R1:R0 register pair is used as data. Refer to the device documentation
+ * for detailed description of SPM usage. This instruction can address the
+ * entire Program memory. The SPM instruction is not available in all devices.
+ * Refer to the device specific instruction set summary. Note: 1. R1
+ * determines the instruction high byte, and R0 determines the instruction low
+ * byte.
+ */
+static bool trans_SPM(DisasContext *ctx, arg_SPM *a)
+{
+ /* TODO */
+ if (avr_feature(ctx->env, AVR_FEATURE_SPM) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ return true;
+}
+
+static bool trans_SPMX(DisasContext *ctx, arg_SPMX *a)
+{
+ /* TODO */
+ if (avr_feature(ctx->env, AVR_FEATURE_SPMX) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ return true;
+}
+
+static bool trans_STX1(DisasContext *ctx, arg_STX1 *a)
+{
+ TCGv Rd = cpu_r[a->rr];
+ TCGv addr = gen_get_xaddr();
+
+ gen_data_store(ctx, Rd, addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_STX2(DisasContext *ctx, arg_STX2 *a)
+{
+ TCGv Rd = cpu_r[a->rr];
+ TCGv addr = gen_get_xaddr();
+
+ gen_data_store(ctx, Rd, addr);
+ tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+ gen_set_xaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_STX3(DisasContext *ctx, arg_STX3 *a)
+{
+ TCGv Rd = cpu_r[a->rr];
+ TCGv addr = gen_get_xaddr();
+
+ tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+ gen_data_store(ctx, Rd, addr);
+ gen_set_xaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_STY2(DisasContext *ctx, arg_STY2 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_yaddr();
+
+ gen_data_store(ctx, Rd, addr);
+ tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+ gen_set_yaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_STY3(DisasContext *ctx, arg_STY3 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_yaddr();
+
+ tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+ gen_data_store(ctx, Rd, addr);
+ gen_set_yaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_STDY(DisasContext *ctx, arg_STDY *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_yaddr();
+
+ tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
+ gen_data_store(ctx, Rd, addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_STZ2(DisasContext *ctx, arg_STZ2 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+
+ gen_data_store(ctx, Rd, addr);
+ tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */
+
+ gen_set_zaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_STZ3(DisasContext *ctx, arg_STZ3 *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+
+ tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */
+ gen_data_store(ctx, Rd, addr);
+
+ gen_set_zaddr(addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+static bool trans_STDZ(DisasContext *ctx, arg_STDZ *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = gen_get_zaddr();
+
+ tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */
+ gen_data_store(ctx, Rd, addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+/*
+ * Stores one byte from a Register to the data space. For parts with SRAM,
+ * the data space consists of the Register File, I/O memory and internal SRAM
+ * (and external SRAM if applicable). For parts without SRAM, the data space
+ * consists of the Register File only. The EEPROM has a separate address space.
+ * A 16-bit address must be supplied. Memory access is limited to the current
+ * data segment of 64KB. The STS instruction uses the RAMPD Register to access
+ * memory above 64KB. To access another data segment in devices with more than
+ * 64KB data space, the RAMPD in register in the I/O area has to be changed.
+ * This instruction is not available in all devices. Refer to the device
+ * specific instruction set summary.
+ */
+static bool trans_STS(DisasContext *ctx, arg_STS *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv addr = tcg_temp_new_i32();
+ TCGv H = cpu_rampD;
+ a->imm = next_word(ctx);
+
+ tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
+ tcg_gen_shli_tl(addr, addr, 16);
+ tcg_gen_ori_tl(addr, addr, a->imm);
+
+ gen_data_store(ctx, Rd, addr);
+
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+/*
+ * Subtracts two registers and places the result in the destination
+ * register Rd.
+ */
+static bool trans_SUB(DisasContext *ctx, arg_SUB *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = cpu_r[a->rr];
+ TCGv R = tcg_temp_new_i32();
+
+ /* op */
+ tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */
+ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+ gen_sub_CHf(R, Rd, Rr);
+ gen_sub_Vf(R, Rd, Rr);
+ gen_ZNSf(R);
+
+ /* R */
+ tcg_gen_mov_tl(Rd, R);
+
+ tcg_temp_free_i32(R);
+
+ return true;
+}
+
+/*
+ * Subtracts a register and a constant and places the result in the
+ * destination register Rd. This instruction is working on Register R16 to R31
+ * and is very well suited for operations on the X, Y, and Z-pointers.
+ */
+static bool trans_SUBI(DisasContext *ctx, arg_SUBI *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv Rr = tcg_const_i32(a->imm);
+ TCGv R = tcg_temp_new_i32();
+
+ /* op */
+ tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Imm */
+ tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */
+
+ gen_sub_CHf(R, Rd, Rr);
+ gen_sub_Vf(R, Rd, Rr);
+ gen_ZNSf(R);
+
+ /* R */
+ tcg_gen_mov_tl(Rd, R);
+
+ tcg_temp_free_i32(R);
+ tcg_temp_free_i32(Rr);
+
+ return true;
+}
+
+/*
+ * Swaps high and low nibbles in a register.
+ */
+static bool trans_SWAP(DisasContext *ctx, arg_SWAP *a)
+{
+ TCGv Rd = cpu_r[a->rd];
+ TCGv t0 = tcg_temp_new_i32();
+ TCGv t1 = tcg_temp_new_i32();
+
+ tcg_gen_andi_tl(t0, Rd, 0x0f);
+ tcg_gen_shli_tl(t0, t0, 4);
+ tcg_gen_andi_tl(t1, Rd, 0xf0);
+ tcg_gen_shri_tl(t1, t1, 4);
+ tcg_gen_or_tl(Rd, t0, t1);
+
+ tcg_temp_free_i32(t1);
+ tcg_temp_free_i32(t0);
+
+ return true;
+}
+
+/*
+ * This instruction resets the Watchdog Timer. This instruction must be
+ * executed within a limited time given by the WD prescaler. See the Watchdog
+ * Timer hardware specification.
+ */
+static bool trans_WDR(DisasContext *ctx, arg_WDR *a)
+{
+ gen_helper_wdr(cpu_env);
+
+ return true;
+}
+
+/*
+ * Exchanges one byte indirect between register and data space. The data
+ * location is pointed to by the Z (16 bits) Pointer Register in the Register
+ * File. Memory access is limited to the current data segment of 64KB. To
+ * access another data segment in devices with more than 64KB data space, the
+ * RAMPZ in register in the I/O area has to be changed. The Z-pointer Register
+ * is left unchanged by the operation. This instruction is especially suited
+ * for writing/reading status bits stored in SRAM.
+ */
+static bool trans_XCH(DisasContext *ctx, arg_XCH *a)
+{
+ if (avr_feature(ctx->env, AVR_FEATURE_RMW) == false) {
+ gen_helper_unsupported(cpu_env);
+
+ ctx->bstate = BS_EXCP;
+ return true;
+ }
+
+ TCGv Rd = cpu_r[a->rd];
+ TCGv t0 = tcg_temp_new_i32();
+ TCGv addr = gen_get_zaddr();
+
+ gen_data_load(ctx, t0, addr);
+ gen_data_store(ctx, Rd, addr);
+ tcg_gen_mov_tl(Rd, t0);
+
+ tcg_temp_free_i32(t0);
+ tcg_temp_free_i32(addr);
+
+ return true;
+}
+
+void avr_cpu_tcg_init(void)
+{
+ int i;
+
+#define AVR_REG_OFFS(x) offsetof(CPUAVRState, x)
+ cpu_pc = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(pc_w), "pc");
+ cpu_Cf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregC), "Cf");
+ cpu_Zf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregZ), "Zf");
+ cpu_Nf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregN), "Nf");
+ cpu_Vf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregV), "Vf");
+ cpu_Sf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregS), "Sf");
+ cpu_Hf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregH), "Hf");
+ cpu_Tf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregT), "Tf");
+ cpu_If = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregI), "If");
+ cpu_rampD = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampD), "rampD");
+ cpu_rampX = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampX), "rampX");
+ cpu_rampY = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampY), "rampY");
+ cpu_rampZ = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampZ), "rampZ");
+ cpu_eind = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(eind), "eind");
+ cpu_sp = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sp), "sp");
+ cpu_skip = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(skip), "skip");
+
+ for (i = 0; i < 32; i++) {
+ char name[16];
+
+ sprintf(name, "r[%d]", i);
+
+ cpu_r[i] = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(r[i]), name);
+ }
+}
+
+static void translate(DisasContext *ctx)
+{
+ uint32_t opcode;
+ int res;
+ /* PC points to words. */
+ opcode = cpu_ldl_code(ctx->env, ctx->cpc * 2) & 0x0000ffff;
+
+ ctx->npc = ctx->cpc + 1;
+
+ res = decode_insn(ctx, opcode);
+
+ if (res == false) {
+ gen_helper_unsupported(cpu_env);
+ ctx->bstate = BS_EXCP;
+ }
+}
+
+void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns)
+{
+ CPUAVRState *env = cs->env_ptr;
+ DisasContext ctx = {
+ .tb = tb,
+ .cs = cs,
+ .env = env,
+ .memidx = 0,
+ .bstate = BS_NONE,
+ .singlestep = cs->singlestep_enabled,
+ };
+ target_ulong pc_start = tb->pc / 2;
+ int num_insns = 0;
+
+ if (tb->flags & TB_FLAGS_FULL_ACCESS) {
+ /*
+ * This flag is set by ST/LD instruction we will regenerate it ONLY
+ * with mem/cpu memory access instead of mem access
+ */
+ max_insns = 1;
+ }
+
+ gen_tb_start(tb);
+
+ ctx.cpc = pc_start;
+ ctx.check_skip = 1;
+ do {
+ /* translate current instruction */
+ tcg_gen_insn_start(ctx.cpc);
+ num_insns++;
+
+ /*
+ * this is due to some strange GDB behavior
+ * let's assume main has address 0x100
+ * b main - sets breakpoint at address 0x00000100 (code)
+ * b *0x100 - sets breakpoint at address 0x00800100 (data)
+ */
+ if (unlikely(!ctx.singlestep &&
+ (cpu_breakpoint_test(cs, OFFSET_CODE + ctx.cpc * 2, BP_ANY) ||
+ cpu_breakpoint_test(cs, OFFSET_DATA + ctx.cpc * 2, BP_ANY)))) {
+ tcg_gen_movi_tl(cpu_pc, ctx.cpc);
+ gen_helper_debug(cpu_env);
+ ctx.bstate = BS_EXCP;
+ goto done_generating;
+ }
+
+ if (ctx.check_skip > 0) {
+ TCGLabel *skip = gen_new_label();
+ TCGLabel *done = gen_new_label();
+
+ tcg_gen_brcondi_tl(TCG_COND_NE, cpu_skip, 0, skip);
+ translate(&ctx);
+ tcg_gen_br(done);
+ gen_set_label(skip);
+ tcg_gen_movi_tl(cpu_skip, 0);
+ tcg_gen_movi_tl(cpu_pc, ctx.npc);
+ gen_set_label(done);
+ ctx.check_skip--;
+ } else {
+ translate(&ctx);
+ }
+
+ if (num_insns >= max_insns) {
+ break; /* max translated instructions limit reached */
+ }
+ if (ctx.singlestep) {
+ break; /* single step */
+ }
+ if ((ctx.cpc & (TARGET_PAGE_SIZE - 1)) == 0) {
+ break; /* page boundary */
+ }
+
+ ctx.cpc = ctx.npc;
+ } while (ctx.bstate == BS_NONE && !tcg_op_buf_full());
+
+ if (tb->cflags & CF_LAST_IO) {
+ gen_io_end();
+ }
+
+ if (ctx.singlestep) {
+ if (ctx.bstate == BS_STOP || ctx.bstate == BS_NONE) {
+ tcg_gen_movi_tl(cpu_pc, ctx.npc);
+ }
+ gen_helper_debug(cpu_env);
+ tcg_gen_exit_tb(NULL, 0);
+ } else {
+ switch (ctx.bstate) {
+ case BS_STOP:
+ case BS_NONE:
+ gen_goto_tb(&ctx, 0, ctx.npc);
+ break;
+ case BS_EXCP:
+ case BS_BRANCH:
+ tcg_gen_exit_tb(NULL, 0);
+ break;
+ default:
+ break;
+ }
+ }
+
+done_generating:
+ gen_tb_end(tb, num_insns);
+
+ tb->size = (ctx.npc - pc_start) * 2;
+ tb->icount = num_insns;
+}
+
+void restore_state_to_opc(CPUAVRState *env, TranslationBlock *tb,
+ target_ulong *data)
+{
+ env->pc_w = data[0];
+}
+
+void avr_cpu_dump_state(CPUState *cs, FILE *f, int flags)
+{
+ AVRCPU *cpu = AVR_CPU(cs);
+ CPUAVRState *env = &cpu->env;
+ int i;
+
+ qemu_fprintf(f, "\n");
+ qemu_fprintf(f, "PC: %06x\n", env->pc_w);
+ qemu_fprintf(f, "SP: %04x\n", env->sp);
+ qemu_fprintf(f, "rampD: %02x\n", env->rampD >> 16);
+ qemu_fprintf(f, "rampX: %02x\n", env->rampX >> 16);
+ qemu_fprintf(f, "rampY: %02x\n", env->rampY >> 16);
+ qemu_fprintf(f, "rampZ: %02x\n", env->rampZ >> 16);
+ qemu_fprintf(f, "EIND: %02x\n", env->eind >> 16);
+ qemu_fprintf(f, "X: %02x%02x\n", env->r[27], env->r[26]);
+ qemu_fprintf(f, "Y: %02x%02x\n", env->r[29], env->r[28]);
+ qemu_fprintf(f, "Z: %02x%02x\n", env->r[31], env->r[30]);
+ qemu_fprintf(f, "SREG: [ %c %c %c %c %c %c %c %c ]\n",
+ env->sregI ? 'I' : '-',
+ env->sregT ? 'T' : '-',
+ env->sregH ? 'H' : '-',
+ env->sregS ? 'S' : '-',
+ env->sregV ? 'V' : '-',
+ env->sregN ? '-' : 'N', /* Zf has negative logic */
+ env->sregZ ? 'Z' : '-',
+ env->sregC ? 'I' : '-');
+ qemu_fprintf(f, "SKIP: %02x\n", env->skip);
+
+ qemu_fprintf(f, "\n");
+ for (i = 0; i < ARRAY_SIZE(env->r); i++) {
+ qemu_fprintf(f, "R[%02d]: %02x ", i, env->r[i]);
+
+ if ((i % 8) == 7) {
+ qemu_fprintf(f, "\n");
+ }
+ }
+ qemu_fprintf(f, "\n");
+}
--
2.18.0
^ permalink raw reply related [flat|nested] 18+ messages in thread
* [Qemu-devel] [PATCH v21 5/7] target/avr: Add limited support for USART and 16 bit timer peripherals
2019-06-06 19:30 [Qemu-devel] [PATCH v21 0/7] QEMU AVR 8 bit cores Michael Rolnik
` (3 preceding siblings ...)
2019-06-06 19:30 ` [Qemu-devel] [PATCH v21 4/7] target/avr: Add instruction translation Michael Rolnik
@ 2019-06-06 19:30 ` Michael Rolnik
2019-06-06 19:30 ` [Qemu-devel] [PATCH v21 6/7] target/avr: Add example board configuration Michael Rolnik
2019-06-06 19:30 ` [Qemu-devel] [PATCH v21 7/7] target/avr: Register AVR support with the rest of QEMU, the build system, and the MAINTAINERS file Michael Rolnik
6 siblings, 0 replies; 18+ messages in thread
From: Michael Rolnik @ 2019-06-06 19:30 UTC (permalink / raw)
To: qemu-devel; +Cc: Sarah Harris, Michael Rolnik, rth
From: Sarah Harris <S.E.Harris@kent.ac.uk>
These were designed to facilitate testing but should provide enough function to be useful in other contexts.
Only a subset of the functions of each peripheral is implemented, mainly due to the lack of a standard way to handle electrical connections (like GPIO pins).
Signed-off-by: Michael Rolnik <mrolnik@gmail.com>
---
hw/char/Kconfig | 3 +
hw/char/Makefile.objs | 1 +
hw/char/avr_usart.c | 316 ++++++++++++++++++
hw/timer/Kconfig | 3 +
hw/timer/Makefile.objs | 1 +
hw/timer/avr_timer16.c | 587 +++++++++++++++++++++++++++++++++
include/hw/char/avr_usart.h | 99 ++++++
include/hw/timer/avr_timer16.h | 99 ++++++
8 files changed, 1109 insertions(+)
create mode 100644 hw/char/avr_usart.c
create mode 100644 hw/timer/avr_timer16.c
create mode 100644 include/hw/char/avr_usart.h
create mode 100644 include/hw/timer/avr_timer16.h
diff --git a/hw/char/Kconfig b/hw/char/Kconfig
index 40e7a8b8bb..331b20983f 100644
--- a/hw/char/Kconfig
+++ b/hw/char/Kconfig
@@ -46,3 +46,6 @@ config SCLPCONSOLE
config TERMINAL3270
bool
+
+config AVR_USART
+ bool
diff --git a/hw/char/Makefile.objs b/hw/char/Makefile.objs
index 02d8a66925..09ed50f1d0 100644
--- a/hw/char/Makefile.objs
+++ b/hw/char/Makefile.objs
@@ -21,6 +21,7 @@ obj-$(CONFIG_PSERIES) += spapr_vty.o
obj-$(CONFIG_DIGIC) += digic-uart.o
obj-$(CONFIG_STM32F2XX_USART) += stm32f2xx_usart.o
obj-$(CONFIG_RASPI) += bcm2835_aux.o
+obj-$(CONFIG_AVR_USART) += avr_usart.o
common-obj-$(CONFIG_CMSDK_APB_UART) += cmsdk-apb-uart.o
common-obj-$(CONFIG_ETRAXFS) += etraxfs_ser.o
diff --git a/hw/char/avr_usart.c b/hw/char/avr_usart.c
new file mode 100644
index 0000000000..26c711336b
--- /dev/null
+++ b/hw/char/avr_usart.c
@@ -0,0 +1,316 @@
+/*
+ * AVR USART
+ *
+ * Copyright (c) 2018 University of Kent
+ * Author: Sarah Harris
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#include "qemu/osdep.h"
+#include "hw/char/avr_usart.h"
+#include "qemu/log.h"
+
+static int avr_usart_can_receive(void *opaque)
+{
+ AVRUsartState *usart = opaque;
+
+ if (usart->data_valid || !(usart->csrb & USART_CSRB_RXEN)) {
+ return 0;
+ }
+ return 1;
+}
+
+static void avr_usart_receive(void *opaque, const uint8_t *buffer, int size)
+{
+ AVRUsartState *usart = opaque;
+ assert(size == 1);
+ assert(!usart->data_valid);
+ usart->data = buffer[0];
+ usart->data_valid = true;
+ usart->csra |= USART_CSRA_RXC;
+ if (usart->csrb & USART_CSRB_RXCIE) {
+ qemu_set_irq(usart->rxc_irq, 1);
+ }
+}
+
+static void update_char_mask(AVRUsartState *usart)
+{
+ uint8_t mode = ((usart->csrc & USART_CSRC_CSZ0) ? 1 : 0) |
+ ((usart->csrc & USART_CSRC_CSZ1) ? 2 : 0) |
+ ((usart->csrb & USART_CSRB_CSZ2) ? 4 : 0);
+ switch (mode) {
+ case 0:
+ usart->char_mask = 0b11111;
+ break;
+ case 1:
+ usart->char_mask = 0b111111;
+ break;
+ case 2:
+ usart->char_mask = 0b1111111;
+ break;
+ case 3:
+ usart->char_mask = 0b11111111;
+ break;
+ case 4:
+ /* Fallthrough. */
+ case 5:
+ /* Fallthrough. */
+ case 6:
+ qemu_log_mask(
+ LOG_GUEST_ERROR,
+ "%s: Reserved character size 0x%x\n",
+ __func__,
+ mode);
+ break;
+ case 7:
+ qemu_log_mask(
+ LOG_GUEST_ERROR,
+ "%s: Nine bit character size not supported (forcing eight)\n",
+ __func__);
+ usart->char_mask = 0b11111111;
+ break;
+ default:
+ assert(0);
+ }
+}
+
+static void avr_usart_reset(DeviceState *dev)
+{
+ AVRUsartState *usart = AVR_USART(dev);
+ usart->data_valid = false;
+ usart->csra = 0b00100000;
+ usart->csrb = 0b00000000;
+ usart->csrc = 0b00000110;
+ usart->brrl = 0;
+ usart->brrh = 0;
+ update_char_mask(usart);
+ qemu_set_irq(usart->rxc_irq, 0);
+ qemu_set_irq(usart->txc_irq, 0);
+ qemu_set_irq(usart->dre_irq, 0);
+}
+
+static uint64_t avr_usart_read(void *opaque, hwaddr addr, unsigned int size)
+{
+ AVRUsartState *usart = opaque;
+ uint8_t prr;
+ uint8_t data;
+ assert(size == 1);
+
+ cpu_physical_memory_read(usart->prr_address, &prr, 1);
+ if (prr & usart->prr_mask) {
+ /* USART disabled, ignore. */
+ avr_usart_reset(DEVICE(usart));
+ return 0;
+ }
+
+ switch (addr) {
+ case USART_DR:
+ if (!(usart->csrb & USART_CSRB_RXEN)) {
+ /* Receiver disabled, ignore. */
+ return 0;
+ }
+ if (usart->data_valid) {
+ data = usart->data & usart->char_mask;
+ usart->data_valid = false;
+ } else {
+ data = 0;
+ }
+ usart->csra &= 0xff ^ USART_CSRA_RXC;
+ qemu_set_irq(usart->rxc_irq, 0);
+ qemu_chr_fe_accept_input(&usart->chr);
+ return data;
+ case USART_CSRA:
+ return usart->csra;
+ case USART_CSRB:
+ return usart->csrb;
+ case USART_CSRC:
+ return usart->csrc;
+ case USART_BRRL:
+ return usart->brrl;
+ case USART_BRRH:
+ return usart->brrh;
+ default:
+ qemu_log_mask(
+ LOG_GUEST_ERROR,
+ "%s: Bad offset 0x%"HWADDR_PRIx"\n",
+ __func__,
+ addr);
+ }
+ return 0;
+}
+
+static void avr_usart_write(void *opaque, hwaddr addr, uint64_t value,
+ unsigned int size)
+{
+ AVRUsartState *usart = opaque;
+ uint8_t mask;
+ uint8_t data;
+ assert((value & 0xff) == value);
+ assert(size == 1);
+
+ uint8_t prr;
+ cpu_physical_memory_read(usart->prr_address, &prr, 1);
+ if (prr & usart->prr_mask) {
+ /* USART disabled, ignore. */
+ avr_usart_reset(DEVICE(usart));
+ return;
+ }
+
+ switch (addr) {
+ case USART_DR:
+ if (!(usart->csrb & USART_CSRB_TXEN)) {
+ /* Transmitter disabled, ignore. */
+ return;
+ }
+ usart->csra |= USART_CSRA_TXC;
+ usart->csra |= USART_CSRA_DRE;
+ if (usart->csrb & USART_CSRB_TXCIE) {
+ qemu_set_irq(usart->txc_irq, 1);
+ usart->csra &= 0xff ^ USART_CSRA_TXC;
+ }
+ if (usart->csrb & USART_CSRB_DREIE) {
+ qemu_set_irq(usart->dre_irq, 1);
+ }
+ data = value;
+ qemu_chr_fe_write_all(&usart->chr, &data, 1);
+ break;
+ case USART_CSRA:
+ mask = 0b01000011;
+ /* Mask read-only bits. */
+ value = (value & mask) | (usart->csra & (0xff ^ mask));
+ usart->csra = value;
+ if (value & USART_CSRA_TXC) {
+ usart->csra ^= USART_CSRA_TXC;
+ qemu_set_irq(usart->txc_irq, 0);
+ }
+ if (value & USART_CSRA_MPCM) {
+ qemu_log_mask(
+ LOG_GUEST_ERROR,
+ "%s: MPCM not supported by USART\n",
+ __func__);
+ }
+ break;
+ case USART_CSRB:
+ mask = 0b11111101;
+ /* Mask read-only bits. */
+ value = (value & mask) | (usart->csrb & (0xff ^ mask));
+ usart->csrb = value;
+ if (!(value & USART_CSRB_RXEN)) {
+ /* Receiver disabled, flush input buffer. */
+ usart->data_valid = false;
+ }
+ qemu_set_irq(usart->rxc_irq,
+ ((value & USART_CSRB_RXCIE) &&
+ (usart->csra & USART_CSRA_RXC)) ? 1 : 0);
+ qemu_set_irq(usart->txc_irq,
+ ((value & USART_CSRB_TXCIE) &&
+ (usart->csra & USART_CSRA_TXC)) ? 1 : 0);
+ qemu_set_irq(usart->dre_irq,
+ ((value & USART_CSRB_DREIE) &&
+ (usart->csra & USART_CSRA_DRE)) ? 1 : 0);
+ update_char_mask(usart);
+ break;
+ case USART_CSRC:
+ usart->csrc = value;
+ if ((value & USART_CSRC_MSEL1) && (value & USART_CSRC_MSEL0)) {
+ qemu_log_mask(
+ LOG_GUEST_ERROR,
+ "%s: SPI mode not supported by USART\n",
+ __func__);
+ }
+ if ((value & USART_CSRC_MSEL1) && !(value & USART_CSRC_MSEL0)) {
+ qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad USART mode\n", __func__);
+ }
+ if (!(value & USART_CSRC_PM1) && (value & USART_CSRC_PM0)) {
+ qemu_log_mask(
+ LOG_GUEST_ERROR,
+ "%s: Bad USART parity mode\n",
+ __func__);
+ }
+ update_char_mask(usart);
+ break;
+ case USART_BRRL:
+ usart->brrl = value;
+ break;
+ case USART_BRRH:
+ usart->brrh = value & 0b00001111;
+ break;
+ default:
+ qemu_log_mask(
+ LOG_GUEST_ERROR,
+ "%s: Bad offset 0x%"HWADDR_PRIx"\n",
+ __func__,
+ addr);
+ }
+}
+
+static const MemoryRegionOps avr_usart_ops = {
+ .read = avr_usart_read,
+ .write = avr_usart_write,
+ .endianness = DEVICE_NATIVE_ENDIAN,
+};
+
+static Property avr_usart_properties[] = {
+ DEFINE_PROP_CHR("chardev", AVRUsartState, chr),
+ DEFINE_PROP_END_OF_LIST(),
+};
+
+static void avr_usart_init(Object *obj)
+{
+ AVRUsartState *s = AVR_USART(obj);
+ sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->rxc_irq);
+ sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->dre_irq);
+ sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->txc_irq);
+ memory_region_init_io(&s->mmio, obj, &avr_usart_ops, s, TYPE_AVR_USART, 7);
+ sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
+}
+
+static void avr_usart_realize(DeviceState *dev, Error **errp)
+{
+ AVRUsartState *s = AVR_USART(dev);
+ qemu_chr_fe_set_handlers(&s->chr, avr_usart_can_receive,
+ avr_usart_receive, NULL, NULL,
+ s, NULL, true);
+ avr_usart_reset(dev);
+}
+
+static void avr_usart_class_init(ObjectClass *klass, void *data)
+{
+ DeviceClass *dc = DEVICE_CLASS(klass);
+
+ dc->reset = avr_usart_reset;
+ dc->props = avr_usart_properties;
+ dc->realize = avr_usart_realize;
+}
+
+static const TypeInfo avr_usart_info = {
+ .name = TYPE_AVR_USART,
+ .parent = TYPE_SYS_BUS_DEVICE,
+ .instance_size = sizeof(AVRUsartState),
+ .instance_init = avr_usart_init,
+ .class_init = avr_usart_class_init,
+};
+
+static void avr_usart_register_types(void)
+{
+ type_register_static(&avr_usart_info);
+}
+
+type_init(avr_usart_register_types)
diff --git a/hw/timer/Kconfig b/hw/timer/Kconfig
index 51921eb63f..ad754df750 100644
--- a/hw/timer/Kconfig
+++ b/hw/timer/Kconfig
@@ -61,3 +61,6 @@ config CMSDK_APB_TIMER
config CMSDK_APB_DUALTIMER
bool
select PTIMER
+
+config AVR_TIMER16
+ bool
diff --git a/hw/timer/Makefile.objs b/hw/timer/Makefile.objs
index 0e9a4530f8..bf1ffcc52d 100644
--- a/hw/timer/Makefile.objs
+++ b/hw/timer/Makefile.objs
@@ -35,6 +35,7 @@ obj-$(CONFIG_PXA2XX) += pxa2xx_timer.o
obj-$(CONFIG_SH4) += sh_timer.o
obj-$(CONFIG_DIGIC) += digic-timer.o
obj-$(CONFIG_MIPS_CPS) += mips_gictimer.o
+obj-$(CONFIG_AVR_TIMER16) += avr_timer16.o
obj-$(CONFIG_MC146818RTC) += mc146818rtc.o
diff --git a/hw/timer/avr_timer16.c b/hw/timer/avr_timer16.c
new file mode 100644
index 0000000000..89f8f55eaa
--- /dev/null
+++ b/hw/timer/avr_timer16.c
@@ -0,0 +1,587 @@
+/*
+ * AVR 16 bit timer
+ *
+ * Copyright (c) 2018 University of Kent
+ * Author: Ed Robbins
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+/*
+ * Driver for 16 bit timers on 8 bit AVR devices.
+ * Note:
+ * ATmega640/V-1280/V-1281/V-2560/V-2561/V timers 1, 3, 4 and 5 are 16 bit
+ */
+
+/*
+ * XXX TODO: Power Reduction Register support
+ * prescaler pause support
+ * PWM modes, GPIO, output capture pins, input compare pin
+ */
+
+#include "qemu/osdep.h"
+#include "hw/timer/avr_timer16.h"
+#include "qemu/log.h"
+
+/* Register offsets */
+#define T16_CRA 0x0
+#define T16_CRB 0x1
+#define T16_CRC 0x2
+#define T16_CNTL 0x4
+#define T16_CNTH 0x5
+#define T16_ICRL 0x6
+#define T16_ICRH 0x7
+#define T16_OCRAL 0x8
+#define T16_OCRAH 0x9
+#define T16_OCRBL 0xa
+#define T16_OCRBH 0xb
+#define T16_OCRCL 0xc
+#define T16_OCRCH 0xd
+
+/* Field masks */
+#define T16_CRA_WGM01 0x3
+#define T16_CRA_COMC 0xc
+#define T16_CRA_COMB 0x30
+#define T16_CRA_COMA 0xc0
+#define T16_CRA_OC_CONF \
+ (T16_CRA_COMA | T16_CRA_COMB | T16_CRA_COMC)
+
+#define T16_CRB_CS 0x7
+#define T16_CRB_WGM23 0x18
+#define T16_CRB_ICES 0x40
+#define T16_CRB_ICNC 0x80
+
+#define T16_CRC_FOCC 0x20
+#define T16_CRC_FOCB 0x40
+#define T16_CRC_FOCA 0x80
+
+/* Fields masks both TIMSK and TIFR (interrupt mask/flag registers) */
+#define T16_INT_TOV 0x1 /* Timer overflow */
+#define T16_INT_OCA 0x2 /* Output compare A */
+#define T16_INT_OCB 0x4 /* Output compare B */
+#define T16_INT_OCC 0x8 /* Output compare C */
+#define T16_INT_IC 0x20 /* Input capture */
+
+/* Clock source values */
+#define T16_CLKSRC_STOPPED 0
+#define T16_CLKSRC_DIV1 1
+#define T16_CLKSRC_DIV8 2
+#define T16_CLKSRC_DIV64 3
+#define T16_CLKSRC_DIV256 4
+#define T16_CLKSRC_DIV1024 5
+#define T16_CLKSRC_EXT_FALLING 6
+#define T16_CLKSRC_EXT_RISING 7
+
+/* Timer mode values (not including PWM modes) */
+#define T16_MODE_NORMAL 0
+#define T16_MODE_CTC_OCRA 4
+#define T16_MODE_CTC_ICR 12
+
+/* Accessors */
+#define CLKSRC(t16) (t16->crb & T16_CRB_CS)
+#define MODE(t16) (((t16->crb & T16_CRB_WGM23) >> 1) | \
+ (t16->cra & T16_CRA_WGM01))
+#define CNT(t16) VAL16(t16->cntl, t16->cnth)
+#define OCRA(t16) VAL16(t16->ocral, t16->ocrah)
+#define OCRB(t16) VAL16(t16->ocrbl, t16->ocrbh)
+#define OCRC(t16) VAL16(t16->ocrcl, t16->ocrch)
+#define ICR(t16) VAL16(t16->icrl, t16->icrh)
+
+/* Helper macros */
+#define VAL16(l, h) ((h << 8) | l)
+#define ERROR(fmt, args...) \
+ qemu_log_mask(LOG_GUEST_ERROR, "%s: " fmt "\n", __func__, ## args)
+#define DB_PRINT(fmt, args...) /* Nothing */
+/*#define DB_PRINT(fmt, args...) printf("%s: " fmt "\n", __func__, ## args)*/
+
+static inline int64_t avr_timer16_ns_to_ticks(AVRTimer16State *t16, int64_t t)
+{
+ if (t16->period_ns == 0) {
+ return 0;
+ }
+ return t / t16->period_ns;
+}
+
+static void avr_timer16_update_cnt(AVRTimer16State *t16)
+{
+ uint16_t cnt;
+ cnt = avr_timer16_ns_to_ticks(t16, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) -
+ t16->reset_time_ns);
+ t16->cntl = (uint8_t)(cnt & 0xff);
+ t16->cnth = (uint8_t)((cnt & 0xff00) >> 8);
+}
+
+static inline void avr_timer16_recalc_reset_time(AVRTimer16State *t16)
+{
+ t16->reset_time_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) -
+ CNT(t16) * t16->period_ns;
+}
+
+static void avr_timer16_clock_reset(AVRTimer16State *t16)
+{
+ t16->cntl = 0;
+ t16->cnth = 0;
+ t16->reset_time_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
+}
+
+static void avr_timer16_clksrc_update(AVRTimer16State *t16)
+{
+ uint16_t divider = 0;
+ switch (CLKSRC(t16)) {
+ case T16_CLKSRC_EXT_FALLING:
+ case T16_CLKSRC_EXT_RISING:
+ ERROR("external clock source unsupported");
+ goto end;
+ case T16_CLKSRC_STOPPED:
+ goto end;
+ case T16_CLKSRC_DIV1:
+ divider = 1;
+ break;
+ case T16_CLKSRC_DIV8:
+ divider = 8;
+ break;
+ case T16_CLKSRC_DIV64:
+ divider = 64;
+ break;
+ case T16_CLKSRC_DIV256:
+ divider = 256;
+ break;
+ case T16_CLKSRC_DIV1024:
+ divider = 1024;
+ break;
+ default:
+ goto end;
+ }
+ t16->freq_hz = t16->cpu_freq_hz / divider;
+ t16->period_ns = 1000000000ULL / t16->freq_hz;
+ DB_PRINT("Timer frequency %" PRIu64 " hz, period %" PRIu64 " ns (%f s)",
+ t16->freq_hz, t16->period_ns, 1 / (double)t16->freq_hz);
+end:
+ return;
+}
+
+static void avr_timer16_set_alarm(AVRTimer16State *t16)
+{
+ if (CLKSRC(t16) == T16_CLKSRC_EXT_FALLING ||
+ CLKSRC(t16) == T16_CLKSRC_EXT_RISING ||
+ CLKSRC(t16) == T16_CLKSRC_STOPPED) {
+ /* Timer is disabled or set to external clock source (unsupported) */
+ goto end;
+ }
+
+ uint64_t alarm_offset = 0xffff;
+ enum NextInterrupt next_interrupt = OVERFLOW;
+
+ switch (MODE(t16)) {
+ case T16_MODE_NORMAL:
+ /* Normal mode */
+ if (OCRA(t16) < alarm_offset && OCRA(t16) > CNT(t16) &&
+ (t16->imsk & T16_INT_OCA)) {
+ alarm_offset = OCRA(t16);
+ next_interrupt = COMPA;
+ }
+ break;
+ case T16_MODE_CTC_OCRA:
+ /* CTC mode, top = ocra */
+ if (OCRA(t16) < alarm_offset && OCRA(t16) > CNT(t16)) {
+ alarm_offset = OCRA(t16);
+ next_interrupt = COMPA;
+ }
+ break;
+ case T16_MODE_CTC_ICR:
+ /* CTC mode, top = icr */
+ if (ICR(t16) < alarm_offset && ICR(t16) > CNT(t16)) {
+ alarm_offset = ICR(t16);
+ next_interrupt = CAPT;
+ }
+ if (OCRA(t16) < alarm_offset && OCRA(t16) > CNT(t16) &&
+ (t16->imsk & T16_INT_OCA)) {
+ alarm_offset = OCRA(t16);
+ next_interrupt = COMPA;
+ }
+ break;
+ default:
+ ERROR("pwm modes are unsupported");
+ goto end;
+ }
+ if (OCRB(t16) < alarm_offset && OCRB(t16) > CNT(t16) &&
+ (t16->imsk & T16_INT_OCB)) {
+ alarm_offset = OCRB(t16);
+ next_interrupt = COMPB;
+ }
+ if (OCRC(t16) < alarm_offset && OCRB(t16) > CNT(t16) &&
+ (t16->imsk & T16_INT_OCC)) {
+ alarm_offset = OCRB(t16);
+ next_interrupt = COMPC;
+ }
+ alarm_offset -= CNT(t16);
+
+ t16->next_interrupt = next_interrupt;
+ uint64_t alarm_ns =
+ t16->reset_time_ns + ((CNT(t16) + alarm_offset) * t16->period_ns);
+ timer_mod(t16->timer, alarm_ns);
+
+ DB_PRINT("next alarm %" PRIu64 " ns from now",
+ alarm_offset * t16->period_ns);
+
+end:
+ return;
+}
+
+static void avr_timer16_interrupt(void *opaque)
+{
+ AVRTimer16State *t16 = opaque;
+ uint8_t mode = MODE(t16);
+
+ avr_timer16_update_cnt(t16);
+
+ if (CLKSRC(t16) == T16_CLKSRC_EXT_FALLING ||
+ CLKSRC(t16) == T16_CLKSRC_EXT_RISING ||
+ CLKSRC(t16) == T16_CLKSRC_STOPPED) {
+ /* Timer is disabled or set to external clock source (unsupported) */
+ return;
+ }
+
+ DB_PRINT("interrupt, cnt = %d", CNT(t16));
+
+ /* Counter overflow */
+ if (t16->next_interrupt == OVERFLOW) {
+ DB_PRINT("0xffff overflow");
+ avr_timer16_clock_reset(t16);
+ if (t16->imsk & T16_INT_TOV) {
+ t16->ifr |= T16_INT_TOV;
+ qemu_set_irq(t16->ovf_irq, 1);
+ }
+ }
+ /* Check for ocra overflow in CTC mode */
+ if (mode == T16_MODE_CTC_OCRA && t16->next_interrupt == COMPA) {
+ DB_PRINT("CTC OCRA overflow");
+ avr_timer16_clock_reset(t16);
+ }
+ /* Check for icr overflow in CTC mode */
+ if (mode == T16_MODE_CTC_ICR && t16->next_interrupt == CAPT) {
+ DB_PRINT("CTC ICR overflow");
+ avr_timer16_clock_reset(t16);
+ if (t16->imsk & T16_INT_IC) {
+ t16->ifr |= T16_INT_IC;
+ qemu_set_irq(t16->capt_irq, 1);
+ }
+ }
+ /* Check for output compare interrupts */
+ if (t16->imsk & T16_INT_OCA && t16->next_interrupt == COMPA) {
+ t16->ifr |= T16_INT_OCA;
+ qemu_set_irq(t16->compa_irq, 1);
+ }
+ if (t16->imsk & T16_INT_OCB && t16->next_interrupt == COMPB) {
+ t16->ifr |= T16_INT_OCB;
+ qemu_set_irq(t16->compb_irq, 1);
+ }
+ if (t16->imsk & T16_INT_OCC && t16->next_interrupt == COMPC) {
+ t16->ifr |= T16_INT_OCC;
+ qemu_set_irq(t16->compc_irq, 1);
+ }
+ avr_timer16_set_alarm(t16);
+}
+
+static void avr_timer16_reset(DeviceState *dev)
+{
+ AVRTimer16State *t16 = AVR_TIMER16(dev);
+
+ avr_timer16_clock_reset(t16);
+ avr_timer16_clksrc_update(t16);
+ avr_timer16_set_alarm(t16);
+
+ qemu_set_irq(t16->capt_irq, 0);
+ qemu_set_irq(t16->compa_irq, 0);
+ qemu_set_irq(t16->compb_irq, 0);
+ qemu_set_irq(t16->compc_irq, 0);
+ qemu_set_irq(t16->ovf_irq, 0);
+}
+
+static uint64_t avr_timer16_read(void *opaque, hwaddr offset, unsigned size)
+{
+ assert(size == 1);
+ AVRTimer16State *t16 = opaque;
+ uint8_t retval = 0;
+
+ switch (offset) {
+ case T16_CRA:
+ retval = t16->cra;
+ break;
+ case T16_CRB:
+ retval = t16->crb;
+ break;
+ case T16_CRC:
+ retval = t16->crc;
+ break;
+ case T16_CNTL:
+ avr_timer16_update_cnt(t16);
+ t16->rtmp = t16->cnth;
+ retval = t16->cntl;
+ break;
+ case T16_CNTH:
+ retval = t16->rtmp;
+ break;
+ case T16_ICRL:
+ /*
+ * The timer copies cnt to icr when the input capture pin changes
+ * state or when the analog comparator has a match. We don't
+ * emulate this behaviour. We do support it's use for defining a
+ * TOP value in T16_MODE_CTC_ICR
+ */
+ t16->rtmp = t16->icrh;
+ retval = t16->icrl;
+ break;
+ case T16_ICRH:
+ retval = t16->rtmp;
+ break;
+ case T16_OCRAL:
+ retval = t16->ocral;
+ break;
+ case T16_OCRAH:
+ retval = t16->ocrah;
+ break;
+ case T16_OCRBL:
+ retval = t16->ocrbl;
+ break;
+ case T16_OCRBH:
+ retval = t16->ocrbh;
+ break;
+ case T16_OCRCL:
+ retval = t16->ocrcl;
+ break;
+ case T16_OCRCH:
+ retval = t16->ocrch;
+ break;
+ default:
+ break;
+ }
+ return (uint64_t)retval;
+}
+
+static void avr_timer16_write(void *opaque, hwaddr offset,
+ uint64_t val64, unsigned size)
+{
+ assert(size == 1);
+ AVRTimer16State *t16 = opaque;
+ uint8_t val8 = (uint8_t)val64;
+ uint8_t prev_clk_src = CLKSRC(t16);
+
+ DB_PRINT("write %d to offset %d", val8, (uint8_t)offset);
+
+ switch (offset) {
+ case T16_CRA:
+ t16->cra = val8;
+ if (t16->cra & T16_CRA_OC_CONF) {
+ ERROR("output compare pins unsupported");
+ }
+ break;
+ case T16_CRB:
+ t16->crb = val8;
+ if (t16->crb & T16_CRB_ICNC) {
+ ERROR("input capture noise canceller unsupported");
+ }
+ if (t16->crb & T16_CRB_ICES) {
+ ERROR("input capture unsupported");
+ }
+ if (CLKSRC(t16) != prev_clk_src) {
+ avr_timer16_clksrc_update(t16);
+ if (prev_clk_src == T16_CLKSRC_STOPPED) {
+ t16->reset_time_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
+ }
+ }
+ break;
+ case T16_CRC:
+ t16->crc = val8;
+ ERROR("output compare pins unsupported");
+ break;
+ case T16_CNTL:
+ /*
+ * CNT is the 16-bit counter value, it must be read/written via
+ * a temporary register (rtmp) to make the read/write atomic.
+ */
+ /* ICR also has this behaviour, and shares rtmp */
+ /*
+ * Writing CNT blocks compare matches for one clock cycle.
+ * Writing CNT to TOP or to an OCR value (if in use) will
+ * skip the relevant interrupt
+ */
+ t16->cntl = val8;
+ t16->cnth = t16->rtmp;
+ avr_timer16_recalc_reset_time(t16);
+ break;
+ case T16_CNTH:
+ t16->rtmp = val8;
+ break;
+ case T16_ICRL:
+ /* ICR can only be written in mode T16_MODE_CTC_ICR */
+ if (MODE(t16) == T16_MODE_CTC_ICR) {
+ t16->icrl = val8;
+ t16->icrh = t16->rtmp;
+ }
+ break;
+ case T16_ICRH:
+ if (MODE(t16) == T16_MODE_CTC_ICR) {
+ t16->rtmp = val8;
+ }
+ break;
+ case T16_OCRAL:
+ /*
+ * OCRn cause the relevant output compare flag to be raised, and
+ * trigger an interrupt, when CNT is equal to the value here
+ */
+ t16->ocral = val8;
+ break;
+ case T16_OCRAH:
+ t16->ocrah = val8;
+ break;
+ case T16_OCRBL:
+ t16->ocrbl = val8;
+ break;
+ case T16_OCRBH:
+ t16->ocrbh = val8;
+ break;
+ case T16_OCRCL:
+ t16->ocrcl = val8;
+ break;
+ case T16_OCRCH:
+ t16->ocrch = val8;
+ break;
+ default:
+ break;
+ }
+ avr_timer16_set_alarm(t16);
+}
+
+static uint64_t avr_timer16_imsk_read(void *opaque,
+ hwaddr offset,
+ unsigned size)
+{
+ assert(size == 1);
+ AVRTimer16State *t16 = opaque;
+ if (offset != 0) {
+ return 0;
+ }
+ return t16->imsk;
+}
+
+static void avr_timer16_imsk_write(void *opaque, hwaddr offset,
+ uint64_t val64, unsigned size)
+{
+ assert(size == 1);
+ AVRTimer16State *t16 = opaque;
+ if (offset != 0) {
+ return;
+ }
+ t16->imsk = (uint8_t)val64;
+}
+
+static uint64_t avr_timer16_ifr_read(void *opaque,
+ hwaddr offset,
+ unsigned size)
+{
+ assert(size == 1);
+ AVRTimer16State *t16 = opaque;
+ if (offset != 0) {
+ return 0;
+ }
+ return t16->ifr;
+}
+
+static void avr_timer16_ifr_write(void *opaque, hwaddr offset,
+ uint64_t val64, unsigned size)
+{
+ assert(size == 1);
+ AVRTimer16State *t16 = opaque;
+ if (offset != 0) {
+ return;
+ }
+ t16->ifr = (uint8_t)val64;
+}
+
+static const MemoryRegionOps avr_timer16_ops = {
+ .read = avr_timer16_read,
+ .write = avr_timer16_write,
+ .endianness = DEVICE_NATIVE_ENDIAN
+};
+
+static const MemoryRegionOps avr_timer16_imsk_ops = {
+ .read = avr_timer16_imsk_read,
+ .write = avr_timer16_imsk_write,
+ .endianness = DEVICE_NATIVE_ENDIAN
+};
+
+static const MemoryRegionOps avr_timer16_ifr_ops = {
+ .read = avr_timer16_ifr_read,
+ .write = avr_timer16_ifr_write,
+ .endianness = DEVICE_NATIVE_ENDIAN
+};
+
+static Property avr_timer16_properties[] = {
+ DEFINE_PROP_UINT64("cpu-frequency-hz", struct AVRTimer16State,
+ cpu_freq_hz, 20000000),
+ DEFINE_PROP_END_OF_LIST(),
+};
+
+static void avr_timer16_init(Object *obj)
+{
+ AVRTimer16State *s = AVR_TIMER16(obj);
+
+ sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->capt_irq);
+ sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->compa_irq);
+ sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->compb_irq);
+ sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->compc_irq);
+ sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->ovf_irq);
+
+ memory_region_init_io(&s->iomem, obj, &avr_timer16_ops,
+ s, TYPE_AVR_TIMER16, 0xe);
+ memory_region_init_io(&s->imsk_iomem, obj, &avr_timer16_imsk_ops,
+ s, TYPE_AVR_TIMER16, 0x1);
+ memory_region_init_io(&s->ifr_iomem, obj, &avr_timer16_ifr_ops,
+ s, TYPE_AVR_TIMER16, 0x1);
+
+ sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
+ sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->imsk_iomem);
+ sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->ifr_iomem);
+
+ s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, avr_timer16_interrupt, s);
+}
+
+static void avr_timer16_class_init(ObjectClass *klass, void *data)
+{
+ DeviceClass *dc = DEVICE_CLASS(klass);
+
+ dc->reset = avr_timer16_reset;
+ dc->props = avr_timer16_properties;
+}
+
+static const TypeInfo avr_timer16_info = {
+ .name = TYPE_AVR_TIMER16,
+ .parent = TYPE_SYS_BUS_DEVICE,
+ .instance_size = sizeof(AVRTimer16State),
+ .instance_init = avr_timer16_init,
+ .class_init = avr_timer16_class_init,
+};
+
+static void avr_timer16_register_types(void)
+{
+ type_register_static(&avr_timer16_info);
+}
+
+type_init(avr_timer16_register_types)
diff --git a/include/hw/char/avr_usart.h b/include/hw/char/avr_usart.h
new file mode 100644
index 0000000000..ba28fbe5d1
--- /dev/null
+++ b/include/hw/char/avr_usart.h
@@ -0,0 +1,99 @@
+/*
+ * AVR USART
+ *
+ * Copyright (c) 2018 University of Kent
+ * Author: Sarah Harris
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#ifndef HW_AVR_USART_H
+#define HW_AVR_USART_H
+
+#include "hw/sysbus.h"
+#include "chardev/char-fe.h"
+#include "hw/hw.h"
+
+/* Offsets of registers. */
+#define USART_DR 0x06
+#define USART_CSRA 0x00
+#define USART_CSRB 0x01
+#define USART_CSRC 0x02
+#define USART_BRRH 0x05
+#define USART_BRRL 0x04
+
+/* Relevant bits in regiters. */
+#define USART_CSRA_RXC (1 << 7)
+#define USART_CSRA_TXC (1 << 6)
+#define USART_CSRA_DRE (1 << 5)
+#define USART_CSRA_MPCM (1 << 0)
+
+#define USART_CSRB_RXCIE (1 << 7)
+#define USART_CSRB_TXCIE (1 << 6)
+#define USART_CSRB_DREIE (1 << 5)
+#define USART_CSRB_RXEN (1 << 4)
+#define USART_CSRB_TXEN (1 << 3)
+#define USART_CSRB_CSZ2 (1 << 2)
+#define USART_CSRB_RXB8 (1 << 1)
+#define USART_CSRB_TXB8 (1 << 0)
+
+#define USART_CSRC_MSEL1 (1 << 7)
+#define USART_CSRC_MSEL0 (1 << 6)
+#define USART_CSRC_PM1 (1 << 5)
+#define USART_CSRC_PM0 (1 << 4)
+#define USART_CSRC_CSZ1 (1 << 2)
+#define USART_CSRC_CSZ0 (1 << 1)
+
+#define TYPE_AVR_USART "avr-usart"
+#define AVR_USART(obj) \
+ OBJECT_CHECK(AVRUsartState, (obj), TYPE_AVR_USART)
+
+typedef struct {
+ /* <private> */
+ SysBusDevice parent_obj;
+
+ /* <public> */
+ MemoryRegion mmio;
+
+ CharBackend chr;
+
+ /* Address of Power Reduction Register and bit that controls this UART */
+ hwaddr prr_address;
+ uint8_t prr_mask;
+
+ uint8_t data;
+ bool data_valid;
+ uint8_t char_mask;
+ /* Control and Status Registers */
+ uint8_t csra;
+ uint8_t csrb;
+ uint8_t csrc;
+ /* Baud Rate Registers (low/high byte) */
+ uint8_t brrh;
+ uint8_t brrl;
+
+ /* Receive Complete */
+ qemu_irq rxc_irq;
+ /* Transmit Complete */
+ qemu_irq txc_irq;
+ /* Data Register Empty */
+ qemu_irq dre_irq;
+} AVRUsartState;
+
+#endif /* HW_AVR_USART_H */
diff --git a/include/hw/timer/avr_timer16.h b/include/hw/timer/avr_timer16.h
new file mode 100644
index 0000000000..301e36a154
--- /dev/null
+++ b/include/hw/timer/avr_timer16.h
@@ -0,0 +1,99 @@
+/*
+ * AVR 16 bit timer
+ *
+ * Copyright (c) 2018 University of Kent
+ * Author: Ed Robbins
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+/*
+ * Driver for 16 bit timers on 8 bit AVR devices.
+ * Note:
+ * On ATmega640/V-1280/V-1281/V-2560/V-2561/V timers 1, 3, 4 and 5 are 16 bit
+ */
+
+#ifndef AVR_TIMER16_H
+#define AVR_TIMER16_H
+
+#include "hw/sysbus.h"
+#include "qemu/timer.h"
+#include "hw/hw.h"
+
+enum NextInterrupt {
+ OVERFLOW,
+ COMPA,
+ COMPB,
+ COMPC,
+ CAPT
+};
+
+#define TYPE_AVR_TIMER16 "avr-timer16"
+#define AVR_TIMER16(obj) \
+ OBJECT_CHECK(AVRTimer16State, (obj), TYPE_AVR_TIMER16)
+
+typedef struct AVRTimer16State {
+ /* <private> */
+ SysBusDevice parent_obj;
+
+ /* <public> */
+ MemoryRegion iomem;
+ MemoryRegion imsk_iomem;
+ MemoryRegion ifr_iomem;
+ QEMUTimer *timer;
+ qemu_irq capt_irq;
+ qemu_irq compa_irq;
+ qemu_irq compb_irq;
+ qemu_irq compc_irq;
+ qemu_irq ovf_irq;
+
+ /* Address of Power Reduction Register and bit that controls this timer */
+ hwaddr prr_address;
+ uint8_t prr_mask;
+
+ /* registers */
+ uint8_t cra;
+ uint8_t crb;
+ uint8_t crc;
+ uint8_t cntl;
+ uint8_t cnth;
+ uint8_t icrl;
+ uint8_t icrh;
+ uint8_t ocral;
+ uint8_t ocrah;
+ uint8_t ocrbl;
+ uint8_t ocrbh;
+ uint8_t ocrcl;
+ uint8_t ocrch;
+ /*
+ * Reads and writes to CNT and ICR utilise a bizarre temporary
+ * register, which we emulate
+ */
+ uint8_t rtmp;
+ uint8_t imsk;
+ uint8_t ifr;
+
+ uint64_t cpu_freq_hz;
+ uint64_t freq_hz;
+ uint64_t period_ns;
+ uint64_t reset_time_ns;
+ enum NextInterrupt next_interrupt;
+} AVRTimer16State;
+
+#endif /* AVR_TIMER16_H */
--
2.18.0
^ permalink raw reply related [flat|nested] 18+ messages in thread