From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: X-Spam-Checker-Version: SpamAssassin 3.4.0 (2014-02-07) on aws-us-west-2-korg-lkml-1.web.codeaurora.org X-Spam-Level: X-Spam-Status: No, score=-13.6 required=3.0 tests=BAYES_00,DKIM_INVALID, DKIM_SIGNED,HEADER_FROM_DIFFERENT_DOMAINS,INCLUDES_CR_TRAILER,INCLUDES_PATCH, MAILING_LIST_MULTI,SPF_HELO_NONE,SPF_PASS,URIBL_BLOCKED autolearn=ham autolearn_force=no version=3.4.0 Received: from mail.kernel.org (mail.kernel.org [198.145.29.99]) by smtp.lore.kernel.org (Postfix) with ESMTP id 8EBC7C2B9F4 for ; Mon, 14 Jun 2021 14:21:42 +0000 (UTC) Received: from lists.gnu.org (lists.gnu.org [209.51.188.17]) (using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits)) (No client certificate requested) by mail.kernel.org (Postfix) with ESMTPS id 142C261244 for ; Mon, 14 Jun 2021 14:21:42 +0000 (UTC) DMARC-Filter: OpenDMARC Filter v1.3.2 mail.kernel.org 142C261244 Authentication-Results: mail.kernel.org; dmarc=fail (p=none dis=none) header.from=redhat.com Authentication-Results: mail.kernel.org; spf=pass smtp.mailfrom=qemu-devel-bounces+qemu-devel=archiver.kernel.org@nongnu.org Received: from localhost ([::1]:34388 helo=lists1p.gnu.org) by lists.gnu.org with esmtp (Exim 4.90_1) (envelope-from ) id 1lsnTB-0005HX-66 for qemu-devel@archiver.kernel.org; Mon, 14 Jun 2021 10:21:41 -0400 Received: from eggs.gnu.org ([2001:470:142:3::10]:34630) by lists.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from ) id 1lsnO5-0003eP-1U for qemu-devel@nongnu.org; Mon, 14 Jun 2021 10:16:25 -0400 Received: from us-smtp-delivery-124.mimecast.com ([170.10.133.124]:42557) by eggs.gnu.org with esmtps (TLS1.2:ECDHE_RSA_AES_256_GCM_SHA384:256) (Exim 4.90_1) (envelope-from ) id 1lsnO2-0007p4-UA for qemu-devel@nongnu.org; Mon, 14 Jun 2021 10:16:24 -0400 DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=redhat.com; s=mimecast20190719; t=1623680182; h=from:from:reply-to:subject:subject:date:date:message-id:message-id: to:to:cc:cc:mime-version:mime-version:content-type:content-type: content-transfer-encoding:content-transfer-encoding: in-reply-to:in-reply-to:references:references; bh=yd5d2rLmFJaosKaaq29Ixv8bBGbbx0rjk1eit7ZkOtI=; b=gjokhw4ysRjJg1yN0P4OwYpwOFeDc72Z/M2bkdtvAJAo/8BaX4LchReWjTjesX67mt2IOH I2e1wF7g9zmbhCLHffky3OgEZEUxGFpf5caoE8KndMypSHN3QWQwfAUSUnWeWBwvq2ksPK GMk2xJkA6B+kLP33H2TTbfMouhWtdn0= Received: from mimecast-mx01.redhat.com (mimecast-mx01.redhat.com [209.132.183.4]) (Using TLS) by relay.mimecast.com with ESMTP id us-mta-200-5U7WdAskOGmBTfySjO2nRQ-1; Mon, 14 Jun 2021 10:16:19 -0400 X-MC-Unique: 5U7WdAskOGmBTfySjO2nRQ-1 Received: from smtp.corp.redhat.com (int-mx08.intmail.prod.int.phx2.redhat.com [10.5.11.23]) (using TLSv1.2 with cipher AECDH-AES256-SHA (256/256 bits)) (No client certificate requested) by mimecast-mx01.redhat.com (Postfix) with ESMTPS id 09E41100C668; Mon, 14 Jun 2021 14:16:18 +0000 (UTC) Received: from localhost.localdomain.com (ovpn-115-55.ams2.redhat.com [10.36.115.55]) by smtp.corp.redhat.com (Postfix) with ESMTP id B794519C46; Mon, 14 Jun 2021 14:16:08 +0000 (UTC) From: =?UTF-8?q?Daniel=20P=2E=20Berrang=C3=A9?= To: qemu-devel@nongnu.org Subject: [PULL 03/13] docs: document usage of the authorization framework Date: Mon, 14 Jun 2021 15:15:39 +0100 Message-Id: <20210614141549.100410-4-berrange@redhat.com> In-Reply-To: <20210614141549.100410-1-berrange@redhat.com> References: <20210614141549.100410-1-berrange@redhat.com> MIME-Version: 1.0 X-Scanned-By: MIMEDefang 2.84 on 10.5.11.23 Authentication-Results: relay.mimecast.com; auth=pass smtp.auth=CUSA124A263 smtp.mailfrom=berrange@redhat.com X-Mimecast-Spam-Score: 0 X-Mimecast-Originator: redhat.com Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Received-SPF: pass client-ip=170.10.133.124; envelope-from=berrange@redhat.com; helo=us-smtp-delivery-124.mimecast.com X-Spam_score_int: -29 X-Spam_score: -3.0 X-Spam_bar: --- X-Spam_report: (-3.0 / 5.0 requ) BAYES_00=-1.9, DKIMWL_WL_HIGH=-0.2, DKIM_SIGNED=0.1, DKIM_VALID=-0.1, DKIM_VALID_AU=-0.1, DKIM_VALID_EF=-0.1, RCVD_IN_DNSWL_LOW=-0.7, RCVD_IN_MSPIKE_H4=0.001, RCVD_IN_MSPIKE_WL=0.001, SPF_HELO_NONE=0.001, SPF_PASS=-0.001 autolearn=unavailable autolearn_force=no X-Spam_action: no action X-BeenThere: qemu-devel@nongnu.org X-Mailman-Version: 2.1.23 Precedence: list List-Id: List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Cc: Kevin Wolf , =?UTF-8?q?Daniel=20P=2E=20Berrang=C3=A9?= , qemu-block@nongnu.org, Juan Quintela , Michael Roth , Richard Henderson , Markus Armbruster , Max Reitz , Gerd Hoffmann , =?UTF-8?q?Marc-Andr=C3=A9=20Lureau?= , Paolo Bonzini , "Dr. David Alan Gilbert" Errors-To: qemu-devel-bounces+qemu-devel=archiver.kernel.org@nongnu.org Sender: "Qemu-devel" The authorization framework provides a way to control access to network services after a client has been authenticated. This documents how to actually use it. Reviewed-by: Marc-André Lureau Signed-off-by: Daniel P. Berrangé --- docs/system/authz.rst | 263 ++++++++++++++++++++++++++++++++++++++++++ docs/system/index.rst | 1 + 2 files changed, 264 insertions(+) create mode 100644 docs/system/authz.rst diff --git a/docs/system/authz.rst b/docs/system/authz.rst new file mode 100644 index 0000000000..942af39602 --- /dev/null +++ b/docs/system/authz.rst @@ -0,0 +1,263 @@ +.. _client authorization: + +Client authorization +-------------------- + +When configuring a QEMU network backend with either TLS certificates or SASL +authentication, access will be granted if the client successfully proves +their identity. If the authorization identity database is scoped to the QEMU +client this may be sufficient. It is common, however, for the identity database +to be much broader and thus authentication alone does not enable sufficient +access control. In this case QEMU provides a flexible system for enforcing +finer grained authorization on clients post-authentication. + +Identity providers +~~~~~~~~~~~~~~~~~~ + +At the time of writing there are two authentication frameworks used by QEMU +that emit an identity upon completion. + + * TLS x509 certificate distinguished name. + + When configuring the QEMU backend as a network server with TLS, there + are a choice of credentials to use. The most common scenario is to utilize + x509 certificates. The simplest configuration only involves issuing + certificates to the servers, allowing the client to avoid a MITM attack + against their intended server. + + It is possible, however, to enable mutual verification by requiring that + the client provide a certificate to the server to prove its own identity. + This is done by setting the property ``verify-peer=yes`` on the + ``tls-creds-x509`` object, which is in fact the default. + + When peer verification is enabled, client will need to be issued with a + certificate by the same certificate authority as the server. If this is + still not sufficiently strong access control the Distinguished Name of + the certificate can be used as an identity in the QEMU authorization + framework. + + * SASL username. + + When configuring the QEMU backend as a network server with SASL, upon + completion of the SASL authentication mechanism, a username will be + provided. The format of this username will vary depending on the choice + of mechanism configured for SASL. It might be a simple UNIX style user + ``joebloggs``, while if using Kerberos/GSSAPI it can have a realm + attached ``joebloggs@QEMU.ORG``. Whatever format the username is presented + in, it can be used with the QEMU authorization framework. + +Authorization drivers +~~~~~~~~~~~~~~~~~~~~~ + +The QEMU authorization framework is a general purpose design with choice of +user customizable drivers. These are provided as objects that can be +created at startup using the ``-object`` argument, or at runtime using the +``object_add`` monitor command. + +Simple +^^^^^^ + +This authorization driver provides a simple mechanism for granting access +based on an exact match against a single identity. This is useful when it is +known that only a single client is to be allowed access. + +A possible use case would be when configuring QEMU for an incoming live +migration. It is known exactly which source QEMU the migration is expected +to arrive from. The x509 certificate associated with this source QEMU would +thus be used as the identity to match against. Alternatively if the virtual +machine is dedicated to a specific tenant, then the VNC server would be +configured with SASL and the username of only that tenant listed. + +To create an instance of this driver via QMP: + +:: + + { + "execute": "object-add", + "arguments": { + "qom-type": "authz-simple", + "id": "authz0", + "props": { + "identity": "fred" + } + } + } + + +Or via the command line + +:: + + -object authz-simple,id=authz0,identity=fred + + +List +^^^^ + +In some network backends it will be desirable to grant access to a range of +clients. This authorization driver provides a list mechanism for granting +access by matching identities against a list of permitted one. Each match +rule has an associated policy and a catch all policy applies if no rule +matches. The match can either be done as an exact string comparison, or can +use the shell-like glob syntax, which allows for use of wildcards. + +To create an instance of this class via QMP: + +:: + + { + "execute": "object-add", + "arguments": { + "qom-type": "authz-list", + "id": "authz0", + "props": { + "rules": [ + { "match": "fred", "policy": "allow", "format": "exact" }, + { "match": "bob", "policy": "allow", "format": "exact" }, + { "match": "danb", "policy": "deny", "format": "exact" }, + { "match": "dan*", "policy": "allow", "format": "glob" } + ], + "policy": "deny" + } + } + } + + +Due to the way this driver requires setting nested properties, creating +it on the command line will require use of the JSON syntax for ``-object``. +In most cases, however, the next driver will be more suitable. + +List file +^^^^^^^^^ + +This is a variant on the previous driver that allows for a more dynamic +access control policy by storing the match rules in a standalone file +that can be reloaded automatically upon change. + +To create an instance of this class via QMP: + +:: + + { + "execute": "object-add", + "arguments": { + "qom-type": "authz-list-file", + "id": "authz0", + "props": { + "filename": "/etc/qemu/myvm-vnc.acl", + "refresh": true + } + } + } + + +If ``refresh`` is ``yes``, inotify is used to monitor for changes +to the file and auto-reload the rules. + +The ``myvm-vnc.acl`` file should contain the match rules in a format that +closely matches the previous driver: + +:: + + { + "rules": [ + { "match": "fred", "policy": "allow", "format": "exact" }, + { "match": "bob", "policy": "allow", "format": "exact" }, + { "match": "danb", "policy": "deny", "format": "exact" }, + { "match": "dan*", "policy": "allow", "format": "glob" } + ], + "policy": "deny" + } + + +The object can be created on the command line using + +:: + + -object authz-list-file,id=authz0,\ + filename=/etc/qemu/myvm-vnc.acl,refresh=on + + +PAM +^^^ + +In some scenarios it might be desirable to integrate with authorization +mechanisms that are implemented outside of QEMU. In order to allow maximum +flexibility, QEMU provides a driver that uses the ``PAM`` framework. + +To create an instance of this class via QMP: + +:: + + { + "execute": "object-add", + "arguments": { + "qom-type": "authz-pam", + "id": "authz0", + "parameters": { + "service": "qemu-vnc-tls" + } + } + } + + +The driver only uses the PAM "account" verification +subsystem. The above config would require a config +file /etc/pam.d/qemu-vnc-tls. For a simple file +lookup it would contain + +:: + + account requisite pam_listfile.so item=user sense=allow \ + file=/etc/qemu/vnc.allow + + +The external file would then contain a list of usernames. +If x509 cert was being used as the username, a suitable +entry would match the distinguished name: + +:: + + CN=laptop.berrange.com,O=Berrange Home,L=London,ST=London,C=GB + + +On the command line it can be created using + +:: + + -object authz-pam,id=authz0,service=qemu-vnc-tls + + +There are a variety of PAM plugins that can be used which are not illustrated +here, and it is possible to implement brand new plugins using the PAM API. + + +Connecting backends +~~~~~~~~~~~~~~~~~~~ + +The authorization driver is created using the ``-object`` argument and then +needs to be associated with a network service. The authorization driver object +will be given a unique ID that needs to be referenced. + +The property to set in the network service will vary depending on the type of +identity to verify. By convention, any network server backend that uses TLS +will provide ``tls-authz`` property, while any server using SASL will provide +a ``sasl-authz`` property. + +Thus an example using SASL and authorization for the VNC server would look +like: + +:: + + $QEMU --object authz-simple,id=authz0,identity=fred \ + --vnc 0.0.0.0:1,sasl,sasl-authz=authz0 + +While to validate both the x509 certificate and SASL username: + +:: + + echo "CN=laptop.qemu.org,O=QEMU Project,L=London,ST=London,C=GB" >> tls.acl + $QEMU --object authz-simple,id=authz0,identity=fred \ + --object authz-list-file,id=authz1,filename=tls.acl \ + --object tls-creds-x509,id=tls0,dir=/etc/qemu/tls,verify-peer=yes \ + --vnc 0.0.0.0:1,sasl,sasl-authz=auth0,tls-creds=tls0,tls-authz=authz1 diff --git a/docs/system/index.rst b/docs/system/index.rst index 6aa2f8c05c..6092eb2d91 100644 --- a/docs/system/index.rst +++ b/docs/system/index.rst @@ -31,6 +31,7 @@ Contents: vnc-security tls secrets + authz gdb managed-startup cpu-hotplug -- 2.31.1