From: Laszlo Ersek <lersek@redhat.com>
To: Tom Lendacky <thomas.lendacky@amd.com>, qemu-devel@nongnu.org
Cc: Pavel Hrdina <phrdina@redhat.com>,
"Daniel P . Berrange" <berrange@redhat.com>,
Eduardo Habkost <ehabkost@redhat.com>,
Michal Privoznik <mprivozn@redhat.com>,
"Dr. David Alan Gilbert" <dgilbert@redhat.com>,
Brijesh Singh <brijesh.singh@amd.com>,
Paolo Bonzini <pbonzini@redhat.com>
Subject: Re: [PATCH v2 1/3] doc: Fix some mistakes in the SEV documentation
Date: Thu, 3 Jun 2021 10:29:35 +0200 [thread overview]
Message-ID: <4b4fee23-96be-740b-87dc-cbee8ef7ea53@redhat.com> (raw)
In-Reply-To: <95a079ae-a6b3-b7f6-5d22-c8114b3da991@amd.com>
On 06/02/21 21:19, Tom Lendacky wrote:
> Just a quick ping on this series...
Right, I'm unsure who is supposed to merge this... Do you remember who
usually merges the SEV-related patch series (plural)?
Thanks
Laszlo
>
> Thanks,
> Tom
>
> On 4/23/21 3:08 PM, Tom Lendacky wrote:
>> From: Tom Lendacky <thomas.lendacky@amd.com>
>>
>> Fix some spelling and grammar mistakes in the amd-memory-encryption.txt
>> file. No new information added.
>>
>> Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
>> ---
>> docs/amd-memory-encryption.txt | 59 +++++++++++++++++-----------------
>> 1 file changed, 29 insertions(+), 30 deletions(-)
>>
>> diff --git a/docs/amd-memory-encryption.txt b/docs/amd-memory-encryption.txt
>> index 145896aec7..ed85159ea7 100644
>> --- a/docs/amd-memory-encryption.txt
>> +++ b/docs/amd-memory-encryption.txt
>> @@ -1,38 +1,38 @@
>> Secure Encrypted Virtualization (SEV) is a feature found on AMD processors.
>>
>> SEV is an extension to the AMD-V architecture which supports running encrypted
>> -virtual machine (VMs) under the control of KVM. Encrypted VMs have their pages
>> +virtual machines (VMs) under the control of KVM. Encrypted VMs have their pages
>> (code and data) secured such that only the guest itself has access to the
>> unencrypted version. Each encrypted VM is associated with a unique encryption
>> -key; if its data is accessed to a different entity using a different key the
>> +key; if its data is accessed by a different entity using a different key the
>> encrypted guests data will be incorrectly decrypted, leading to unintelligible
>> data.
>>
>> -The key management of this feature is handled by separate processor known as
>> -AMD secure processor (AMD-SP) which is present in AMD SOCs. Firmware running
>> -inside the AMD-SP provide commands to support common VM lifecycle. This
>> +Key management for this feature is handled by a separate processor known as the
>> +AMD secure processor (AMD-SP), which is present in AMD SOCs. Firmware running
>> +inside the AMD-SP provides commands to support a common VM lifecycle. This
>> includes commands for launching, snapshotting, migrating and debugging the
>> -encrypted guest. Those SEV command can be issued via KVM_MEMORY_ENCRYPT_OP
>> +encrypted guest. These SEV commands can be issued via KVM_MEMORY_ENCRYPT_OP
>> ioctls.
>>
>> Launching
>> ---------
>> -Boot images (such as bios) must be encrypted before guest can be booted.
>> -MEMORY_ENCRYPT_OP ioctl provides commands to encrypt the images :LAUNCH_START,
>> +Boot images (such as bios) must be encrypted before a guest can be booted. The
>> +MEMORY_ENCRYPT_OP ioctl provides commands to encrypt the images: LAUNCH_START,
>> LAUNCH_UPDATE_DATA, LAUNCH_MEASURE and LAUNCH_FINISH. These four commands
>> together generate a fresh memory encryption key for the VM, encrypt the boot
>> -images and provide a measurement than can be used as an attestation of the
>> +images and provide a measurement than can be used as an attestation of a
>> successful launch.
>>
>> LAUNCH_START is called first to create a cryptographic launch context within
>> -the firmware. To create this context, guest owner must provides guest policy,
>> +the firmware. To create this context, guest owner must provide a guest policy,
>> its public Diffie-Hellman key (PDH) and session parameters. These inputs
>> -should be treated as binary blob and must be passed as-is to the SEV firmware.
>> +should be treated as a binary blob and must be passed as-is to the SEV firmware.
>>
>> -The guest policy is passed as plaintext and hypervisor may able to read it
>> +The guest policy is passed as plaintext. A hypervisor may choose to read it,
>> but should not modify it (any modification of the policy bits will result
>> in bad measurement). The guest policy is a 4-byte data structure containing
>> -several flags that restricts what can be done on running SEV guest.
>> +several flags that restricts what can be done on a running SEV guest.
>> See KM Spec section 3 and 6.2 for more details.
>>
>> The guest policy can be provided via the 'policy' property (see below)
>> @@ -40,31 +40,30 @@ The guest policy can be provided via the 'policy' property (see below)
>> # ${QEMU} \
>> sev-guest,id=sev0,policy=0x1...\
>>
>> -Guest owners provided DH certificate and session parameters will be used to
>> +The guest owner provided DH certificate and session parameters will be used to
>> establish a cryptographic session with the guest owner to negotiate keys used
>> for the attestation.
>>
>> -The DH certificate and session blob can be provided via 'dh-cert-file' and
>> -'session-file' property (see below
>> +The DH certificate and session blob can be provided via the 'dh-cert-file' and
>> +'session-file' properties (see below)
>>
>> # ${QEMU} \
>> sev-guest,id=sev0,dh-cert-file=<file1>,session-file=<file2>
>>
>> LAUNCH_UPDATE_DATA encrypts the memory region using the cryptographic context
>> -created via LAUNCH_START command. If required, this command can be called
>> +created via the LAUNCH_START command. If required, this command can be called
>> multiple times to encrypt different memory regions. The command also calculates
>> the measurement of the memory contents as it encrypts.
>>
>> -LAUNCH_MEASURE command can be used to retrieve the measurement of encrypted
>> -memory. This measurement is a signature of the memory contents that can be
>> -sent to the guest owner as an attestation that the memory was encrypted
>> -correctly by the firmware. The guest owner may wait to provide the guest
>> -confidential information until it can verify the attestation measurement.
>> -Since the guest owner knows the initial contents of the guest at boot, the
>> -attestation measurement can be verified by comparing it to what the guest owner
>> -expects.
>> +LAUNCH_MEASURE can be used to retrieve the measurement of encrypted memory.
>> +This measurement is a signature of the memory contents that can be sent to the
>> +guest owner as an attestation that the memory was encrypted correctly by the
>> +firmware. The guest owner may wait to provide the guest confidential information
>> +until it can verify the attestation measurement. Since the guest owner knows the
>> +initial contents of the guest at boot, the attestation measurement can be
>> +verified by comparing it to what the guest owner expects.
>>
>> -LAUNCH_FINISH command finalizes the guest launch and destroy's the cryptographic
>> +LAUNCH_FINISH finalizes the guest launch and destroys the cryptographic
>> context.
>>
>> See SEV KM API Spec [1] 'Launching a guest' usage flow (Appendix A) for the
>> @@ -78,10 +77,10 @@ To launch a SEV guest
>>
>> Debugging
>> -----------
>> -Since memory contents of SEV guest is encrypted hence hypervisor access to the
>> -guest memory will get a cipher text. If guest policy allows debugging, then
>> -hypervisor can use DEBUG_DECRYPT and DEBUG_ENCRYPT commands access the guest
>> -memory region for debug purposes. This is not supported in QEMU yet.
>> +Since the memory contents of a SEV guest are encrypted, hypervisor access to
>> +the guest memory will return cipher text. If the guest policy allows debugging,
>> +then a hypervisor can use the DEBUG_DECRYPT and DEBUG_ENCRYPT commands to access
>> +the guest memory region for debug purposes. This is not supported in QEMU yet.
>>
>> Snapshot/Restore
>> -----------------
>>
>
next prev parent reply other threads:[~2021-06-03 8:52 UTC|newest]
Thread overview: 10+ messages / expand[flat|nested] mbox.gz Atom feed top
2021-04-23 20:08 [PATCH v2 1/3] doc: Fix some mistakes in the SEV documentation Tom Lendacky
2021-04-23 20:08 ` [PATCH v2 2/3] docs: Add SEV-ES documentation to amd-memory-encryption.txt Tom Lendacky
2021-04-26 12:33 ` Laszlo Ersek
2021-04-23 20:08 ` [PATCH v2 3/3] docs/interop/firmware.json: Add SEV-ES support Tom Lendacky
2021-04-26 12:39 ` Laszlo Ersek
2021-04-26 12:11 ` [PATCH v2 1/3] doc: Fix some mistakes in the SEV documentation Laszlo Ersek
2021-06-02 19:19 ` Tom Lendacky
2021-06-03 8:29 ` Laszlo Ersek [this message]
2021-06-03 19:54 ` Eduardo Habkost
2021-06-02 20:07 ` Connor Kuehl
Reply instructions:
You may reply publicly to this message via plain-text email
using any one of the following methods:
* Save the following mbox file, import it into your mail client,
and reply-to-all from there: mbox
Avoid top-posting and favor interleaved quoting:
https://en.wikipedia.org/wiki/Posting_style#Interleaved_style
* Reply using the --to, --cc, and --in-reply-to
switches of git-send-email(1):
git send-email \
--in-reply-to=4b4fee23-96be-740b-87dc-cbee8ef7ea53@redhat.com \
--to=lersek@redhat.com \
--cc=berrange@redhat.com \
--cc=brijesh.singh@amd.com \
--cc=dgilbert@redhat.com \
--cc=ehabkost@redhat.com \
--cc=mprivozn@redhat.com \
--cc=pbonzini@redhat.com \
--cc=phrdina@redhat.com \
--cc=qemu-devel@nongnu.org \
--cc=thomas.lendacky@amd.com \
/path/to/YOUR_REPLY
https://kernel.org/pub/software/scm/git/docs/git-send-email.html
* If your mail client supports setting the In-Reply-To header
via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line
before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).