From: "Alex Bennée" <alex.bennee@linaro.org>
To: Greg McGary <gkm@rivosinc.com>
Cc: qemu-devel@nongnu.org
Subject: Re: [PATCH v2] Add plugin bbvgen: basic block icounts for topblocks + simpoints
Date: Mon, 21 Oct 2024 11:21:18 +0100 [thread overview]
Message-ID: <87sespoixt.fsf@draig.linaro.org> (raw)
In-Reply-To: <20241004225748.1402134-1-gkm@rivosinc.com> (Greg McGary's message of "Fri, 4 Oct 2024 15:57:48 -0700")
Greg McGary <gkm@rivosinc.com> writes:
> Tally icounts for basic blocks. The data is useful for producing
> human-readable topblocks reports, and for creating simpoints to guide
> accurate & efficient machine simulation runs.
>
> QEMU's The Tiny Code Generator creates TCG blocks in a way that is
> expedient for JIT translation but does not conform to the model of CFG
> basic blocks. TCG greedily translates straight-line code until it must
> end the block for one of four reasons: (1) page boundary, or (2)
> maximum TCG block length, or (3) CSR-hacking insn, or (4) jump/branch
> insn. A single TCG block can span multiple CFG blocks when there are
> internal branch targets. Multiple TCG blocks can constitute a single
> CFG block when the component TCG blocks terminate at page boundary,
> max block length, or CSR-hacking insn.
>
> The bbvgen plugin normalizes TCG blocks into CFG blocks.
> ---
> contrib/plugins/Makefile | 1 +
> contrib/plugins/bbvgen.c | 2007 ++++++++++++++++++++++++++++++++++++++
> docs/about/emulation.rst | 69 ++
> scripts/process_bbvi.py | 385 ++++++++
> 4 files changed, 2462 insertions(+)
> create mode 100644 contrib/plugins/bbvgen.c
> create mode 100755 scripts/process_bbvi.py
>
> diff --git a/contrib/plugins/Makefile b/contrib/plugins/Makefile
> index bbddd4800f..f70fbbc2ee 100644
> --- a/contrib/plugins/Makefile
> +++ b/contrib/plugins/Makefile
> @@ -31,6 +31,7 @@ NAMES += drcov
> NAMES += ips
> NAMES += stoptrigger
> NAMES += cflow
> +NAMES += bbvgen
Just FYI I've just pulled Pierricks conversion to meson so this will
change.
>
> ifeq ($(CONFIG_WIN32),y)
> SO_SUFFIX := .dll
> diff --git a/contrib/plugins/bbvgen.c b/contrib/plugins/bbvgen.c
> new file mode 100644
> index 0000000000..b9cbe7e5f8
> --- /dev/null
> +++ b/contrib/plugins/bbvgen.c
> @@ -0,0 +1,2007 @@
> +/*
> + * Copyright (c) 2021-2024 by Rivos Inc.
> + *
> + * Generate Basic Block Vectors for simpoints. Generate human-readable
> + * reports for identifying hot blocks whose analysis might be interesting for
> + * compiler optimization work.
> + *
> + * Authors:
> + * Kip Walker <kip@rivosinc.com> OG: infra & TCG block handlers
> + * Greg McGary <gkm@rivosinc.com> CFG block derivation
> + * Sergei Lewis <slewis@rivosinc.com> proc_map & so_save_path handlers
> + *
> + * License: GNU GPL, version 2 or later.
> + * See the COPYING file in the top-level directory.
> + */
> +
> +#include <sys/syscall.h>
> +#include <sys/mman.h>
> +#include <sys/stat.h>
> +#include <sys/types.h>
> +#include <inttypes.h>
> +#include <assert.h>
> +#include <stdlib.h>
> +#include <stddef.h>
> +#include <inttypes.h>
> +#include <string.h>
> +#include <unistd.h>
> +#include <stdio.h>
> +#include <glib.h>
> +#include <fcntl.h>
> +#include <errno.h>
> +#include <zlib.h>
> +
> +#ifdef __linux__
> +#include <linux/sched.h>
> +#endif
What do you need this for?
> +
> +#include <qemu-plugin.h>
> +
> +QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION;
> +
> +static bool hex_addrs; /* print addrs as hex (needs slower pyjson5 parser) */
> +static bool print_next_pc; /* also print NEXT_PC in addition to PC */
> +
> +static GMutex lock;
> +static _Thread_local bool enabled;
We use __thread for all other thread locals in the code base although we
are now C11 maybe we should move to the standardised keyword?
> +
> +#ifdef CONFIG_M5
> +#include <gem5/m5ops.h>
> +static bool m5ops;
> +#endif
Where is this coming from/used? Otherwise it seems like dead code.
> +
> +/****************************************************************/
> +/*
> + * TCG = Tiny Code Generator
> + * CFG = Control-Flow Graph
> + *
> + * The core problem for BBVGEN is converting TCG blocks into CFG basic
> + * blocks.
> + *
> + * The Tiny Code Generator creates TCG blocks in a way that is expedient for
> + * JIT translation but does not conform to the model of CFG basic blocks. TCG
> + * greedily translates straight-line code until it must end the block for one
> + * of four reasons: (1) page boundary, or (2) maximum TCG block length, or (3)
> + * CSR-hacking insn,
I think this can be generalised to I/O instructions or instructions that
might change system state.
> or (4) jump/branch insn.
> + *
> + * QEMU's plugin API does not convey the reason why TCG terminated the block,
> + * though such information is important when recognizing control-flow graph
> + * topology. The BBVGEN plugin must infer relationships between adjacent
> + * blocks by observing runtime behavior. In this discussion, "current" and
> + * "previous" pertain to dynamic execution sequence, NOT to static address
> + * sequence.
> + *
> + * * The TCG block's JUMP_IN flag asserts that the block that statically
> + * precedes it does not dominate it. I.e., control can flow to the JUMP_IN
> + * block from some other textually discontiguous block. Similarly, the
> + * JUMP_OUT flag asserts that this block does not dominate its textually
> + * contiguous successor.
> + *
> + * Note: In comments below, "dominator" means a block that immediately
> + * preceeds in address sequence, such that control falls through to
> + * its successor, and the successor is not a branch target. I.e., the
> + * successor only and always executes immediately after the textual
> + * predecessor executes.
> + *
> + * * When control enters a TCG block with JUMP_IN==FALSE, and the previous
> + * block is its textual predecessor with JUMP_OUT==FALSE, then the two
> + * blocks are tentatively SPLICED and considered part of the same CFG block,
> + * until proven otherwise.
> + *
> + * * When BBVBEN's EXEC callback sees that the previous block is discontiguous
> + * with the current block, then the previous block's JUMP_OUT flag and the
> + * current block'sJUMP_IN flag both become TRUE. If the previous block was
> + * spliced to textual successor(s), then that splice sequence is broken
> + * after it. If the current block was spliced to textual predecessor(s),
> + * then that splice is broken prior to it.
> + *
> + * Because splice sequences are made & broken based on runtime behavior,
> + * errors are possible. For example: a sequence of code might contain an inner
> + * loop that is only executed a single time, such that internal conditional
> + * branches are never taken, and always fall-through. At runtime, the BBVGEN
> + * EXEC callback will always see contiguous blocks execute in sequence, will
> + * never see discontiguous block entry or exit, will never set JUMP_IN or
> + * JUMP_OUT to TRUE, and will thus recognize the sequence of three TCG blocks
> + * as a single CFG block, when in fact, each TCG block corresponse to a
> + * separate CFG block.
> + *
> + * Notable differences between TCG and CFG blocks:
> + *
> + * * TCG blocks can overlap, while CFG blocks do not. I.e., a text address can
> + * fall within multiple TCG blocks, whereas each text address falls within
> + * only one CFG block.
> + *
> + * * A single CFG block can be split into multiple TCG blocks, where the
> + * initial TCG block(s) terminate for reasons 1, 2, or 3, and the final TCG
> + * block terminates for reason 4.
> + *
> + * * A single TCG block can have multiple entrypoints (jump_in targets),
> + * vs. each CFG basic block has a single entrypoint. [caveat: The plugin API
> + * does not convey static information about the nature of block
> + * termination. The plugin cannot tell why TCG terminated the block ]
> + *
> + * Consider branch target addresses A, B, C which are entrypoints into
> + * straight-line code, and block termination address X. The ascii-art diagram
> + * below illustrates TCG's way of representing blocks and their execution
> + * counts. (Addresses increase vertically down the Y axis, and execution
> + * counts increase rightward across the X axis.)
> + *
> + * A +-------+
> + * | |
> + * | |
> + * B | +-------+
> + * | | |
> + * C | | +-------+
> + * | | | |
> + * | | | |
> + * | | | |
> + * X +-------+-------+-------+
You will also get the other way around, where a block becomes shorter
when we detect an I/O memory operation (c.f. cpu_io_recompile).
> + *
> + * When control jumps to A, TCG translates [A..X), when control jumps to B,
> + * TCG translates [B..X), and similarly for a jump to C. TCG block [A..X)
> + * comprises multiple CFG blocks [A..B) + [B..C) + [C..X), and similarly for
> + * TCG block B.
> + *
> + * This diagram shows the CFG view of these same blocks:
> + *
> + * A +-------+
> + * | |
> + * | |
> + * B +-------+-------+
> + * | |
> + * C |---------------+-------+
> + * | |
> + * | |
> + * | |
> + * x +-------+-------+-------+
> + *
> + */
> +
> +typedef struct {
> + uint64_t execs; /* unweighted exec count */
> + uint64_t icount; /* weighted insn-exec count */
> +} BlockCounts;
> +
> +typedef struct {
> + BlockCounts intv; /* current interval counts */
> + BlockCounts total; /* total counts across all intervals */
> + uint64_t next_pc; /* PC beyond this block */
> + uint32_t insns; /* insn count for this block */
> + uint32_t rank; /* weighted icount rank among blocks */
> +} BlockTrack;
> +
> +typedef struct {
> + uint64_t intv_icount; /* current interval counts */
> + uint64_t total_icount; /* total counts across all intervals */
> + char *bbv_path;
> + char *bbvi_path;
> + gzFile bbv_file;
> + gzFile bbvi_file;
> +} GlobalTrack;
> +
> +/*
> + * tcg() data tally TCG's native block counts. TCG blocks might overlap,
> + * and/or be artifically broken at page boundaries, at maximum TCG block
> + * sizes, or at CSR-hacking insns.
> + *
> + * cfg() data reinterpret TCG block boundaries and counters, eliminating (a)
> + * overlaps, and (b) coaliescing adjacent dominators to form proper CFG
> + * blocks.
> + */
> +
> +enum {
> + BBV_TCG = 0, /* TCG (tiny-code generator) blocks */
> + BBV_CFG = 1, /* CFG (control-flow graph) blocks */
> + BBV_MAX = 2,
> +};
> +
> +static GlobalTrack t[BBV_MAX];
> +
> +#define tcg(m) t[BBV_TCG].m
> +#define cfg(m) t[BBV_CFG].m
> +
> +/*
> + * BlockInfo records details about a particular TCG translation block
> + * and its execution stats. The '*_count' members track the number of
> + * instructions executed as part of this block (block executions * block
> + * instruction count).
> + */
> +typedef struct _BlockInfo {
> + /* The splice and tile chains are rings: the tail points back to the head */
> + struct _BlockInfo *splice_prev; /* spliced predecessor block */
> + struct _BlockInfo *tile_next; /* tiled successor block */
> + uint64_t pc; /* starting PC of this TB */
> + uint32_t id; /* ID assigned for BB */
> + bool jump_in : 1; /* can enter from a non-adjacent predecessor */
> + bool jump_out : 1; /* can exit to a non-adjacent successor */
> + bool tile_member : 1; /* this TCG belongs to a set of tiles */
> + bool tile_successor : 1; /* dominated by a predecessor set of tiles */
> + bool executed : 1; /* tcg_gen_code() was happy with this block */
> + bool retranslated : 1; /* tcg_gen_code() returned -2 at least once */
> + BlockTrack t[BBV_MAX];
> + char const *so_path_original;
> + char const *so_path_saved;
> + uint64_t so_pc;
> +} BlockInfo;
> +
> +static uint64_t tcg_intv_icount_drift; /* track drift of interval start */
> +
> +static GHashTable *blocks_pc_table; /* all TCG blocks, by unique PC */
> +static GHashTable *blocks_next_pc_table; /* CFG-block heads of tile groups */
> +static GTree *blocks_pc_tree; /* all TCG blocks, by PC */
> +static GPtrArray *blocks_id_array; /* all TCG by ID */
> +
> +static uint32_t qemu_bbv_blocks = 200; /* nblocks or $QEMU_BBV_BLOCKS */
> +static uint64_t qemu_bbv_interval = 200000000; /* ilen or $QEMU_BBV_INTERVAL */
> +static char *qemu_bbv_trace_path;
> +static gzFile trace_file;
> +static bool trace_exec;
> +
> +static uint64_t next_bi_id = 1; /* uniq block ID */
> +static uint32_t interval; /* current interval number */
> +static uint64_t intv_start_pc; /* first PC executed in current interval */
> +
> +static void reset_block_counters(gpointer key, gpointer value,
> + gpointer user_data)
> +{
> + BlockInfo* bi = (BlockInfo *)value;
> + bi->tcg(intv.execs) = 0;
> + bi->tcg(intv.icount) = 0;
> + bi->tcg(total.execs) = 0;
> + bi->tcg(total.icount) = 0;
> + bi->cfg(intv.execs) = 0;
> + bi->cfg(intv.icount) = 0;
> + bi->cfg(total.execs) = 0;
> + bi->cfg(total.icount) = 0;
> +};
> +
> +static void reset_all_counters()
> +{
> + tcg(intv_icount) = 0;
> + tcg(total_icount) = 0;
> + cfg(intv_icount) = 0;
> + cfg(total_icount) = 0;
> + tcg_intv_icount_drift = 0;
> + interval = 0;
> +
> + g_mutex_lock(&lock);
> + g_hash_table_foreach(blocks_pc_table, reset_block_counters, NULL);
> + g_mutex_unlock(&lock);
> +}
> +
> +static gboolean keep_all(gpointer key, gpointer value, gpointer data)
> +{
> + GPtrArray *blocks = (GPtrArray *) data;
> + g_ptr_array_add(blocks, value);
> + return false;
> +}
> +
> +/*
> + * Blocks are adjacent in memory, and control cannot exit from the middle via
> + * a call, jump, or (un)conditional branch from the end of the first block.
> + */
> +
> +static bool dominates(BlockInfo *bi0, BlockInfo *bi1)
> +{
> + return (bi0->tcg(next_pc) == bi1->pc && !bi0->jump_out && !bi1->jump_in);
> +}
> +
> +static bool is_splice_head(BlockInfo *bi)
> +{
> + return (bi->splice_prev && bi->pc < bi->splice_prev->pc);
> +}
> +
> +static bool is_splice_non_head(BlockInfo *bi)
> +{
> + return bi->splice_prev && !is_splice_head(bi);
> +}
> +
> +static BlockInfo *get_splice_head(BlockInfo *bi)
> +{
> + if (bi->splice_prev) {
> + while (!is_splice_head(bi)) {
> + bi = bi->splice_prev;
> + }
> + }
> + return bi;
> +}
> +
> +static BlockInfo *get_splice_tail(BlockInfo *bi)
> +{
> + return bi->splice_prev ? get_splice_head(bi)->splice_prev : bi;
> +}
> +
> +static bool is_splice_tail(BlockInfo *bi)
> +{
> + return (bi->splice_prev && bi == get_splice_tail(bi));
> +}
> +
> +static bool is_splice_non_tail(BlockInfo *bi)
> +{
> + return bi->splice_prev && !is_splice_tail(bi);
> +}
> +
> +static bool is_tile_tail(BlockInfo *bi)
> +{
> + return (bi->tile_next && bi->pc > bi->tile_next->pc);
> +}
> +
> +static bool is_tile_non_tail(BlockInfo *bi)
> +{
> + return bi->tile_next && !is_tile_tail(bi);
> +}
> +
> +static BlockInfo *get_tile_tail(BlockInfo *bi)
> +{
> + if (bi->tile_next) {
> + while (!is_tile_tail(bi)) {
> + bi = bi->tile_next;
> + }
> + return bi;
> + }
> + return bi;
> +}
> +
> +static BlockInfo *get_tile_head(BlockInfo *bi)
> +{
> + return bi->tile_next ? get_tile_tail(bi)->tile_next : bi;
> +}
> +
> +static bool is_tile_head(BlockInfo *bi)
> +{
> + return (bi->tile_next && bi == get_tile_head(bi));
> +}
> +
> +static bool is_tile_non_head(BlockInfo *bi)
> +{
> + return (bi->tile_next && bi != get_tile_head(bi));
> +}
> +
> +static BlockInfo *get_tile_predecessor(BlockInfo *bi0)
> +{
> + BlockInfo *bi = bi0->tile_next;
> + while (bi->tile_next != bi0) {
> + bi = bi->tile_next;
> + }
> + return bi;
> +}
> +
> +/*
> + * All tiles within a sequence have a common NEXT_PC address. Tiles are
> + * sequenced by ascending PC address, where the longest tile has the lowest
> + * PC, and comes first. This longest tile is entered into a hash table. (see
> + * below)
> + */
> +
> +static BlockInfo *insert_tile(BlockInfo *bi0, BlockInfo *bi1)
> +{
> + assert(bi1->tile_next == NULL);
> + uint64_t next_pc = bi1->cfg(next_pc);
> + assert(bi0->cfg(next_pc) == next_pc);
> + assert(!is_splice_non_head(bi0));
> + assert(!is_splice_non_head(bi1));
> + BlockInfo *bi0N = get_splice_tail(bi0);
> + BlockInfo *bi1N = get_splice_tail(bi1);
> + assert(bi0N->tcg(next_pc) == next_pc);
> + assert(bi1N->tcg(next_pc) == next_pc);
> + if (bi0->tile_next == NULL) {
> + bi0->tile_next = bi1;
> + bi1->tile_next = bi0;
> + bi0N->tile_member = true;
> + bi1N->tile_member = true;
> + return (bi0->pc < bi1->pc ? bi0 : bi1);
> + } else if (bi1->pc < bi0->pc) {
> + bi1->tile_next = bi0;
> + get_tile_tail(bi0)->tile_next = bi1;
> + bi1N->tile_member = true;
> + return bi1;
> + } else {
> + BlockInfo **bip = &bi0->tile_next;
> + while (*bip != bi0 && bi1->pc > (*bip)->pc) {
> + bip = &(*bip)->tile_next;
> + }
> + bi1->tile_next = *bip;
> + *bip = bi1;
> + bi1N->tile_member = true;
> + return bi0;
> + }
> +}
> +
> +/*
> + * B0 was part of a tile sequence. B0 used to be spliced to B1, but they are
> + * now being split apart. That means B0 is no longer part of the tile
> + * sequence, and B1 will assume its role. Since the tile sequence is linked by
> + * ascending PC address, and this newly split tile is now shorter, and its
> + * position within the sequence might need to shift.
> + */
> +
> +static void relocate_tile(BlockInfo *bi0, BlockInfo *bi1)
> +{
> + BlockInfo *biT = bi0->tile_next;
> + uint64_t next_pc = bi1->cfg(next_pc);
> + assert(biT->cfg(next_pc) == next_pc);
> + BlockInfo *biN = get_tile_predecessor(bi0);
> + if (bi1->pc < biT->pc) {
> + biN->tile_next = bi1;
> + bi1->tile_next = biT;
> + } else {
> + assert(biN->cfg(next_pc) == next_pc);
> + biN->tile_next = biT;
> + BlockInfo **bip = &biT->tile_next;
> + while (*bip != biN && bi1->pc > (*bip)->pc) {
> + bip = &(*bip)->tile_next;
> + }
> + bi1->tile_next = *bip;
> + *bip = bi1;
> + }
> + bi0->tile_next = NULL;
> + if (bi1->pc < biN->pc) {
> + gpointer gp_next_pc = GUINT_TO_POINTER(next_pc);
> + g_hash_table_replace(blocks_next_pc_table, gp_next_pc, bi1);
> + }
> +}
> +
> +/*
> + * Bifurcate a splice chain. This happens when bi1->jump_in becomes true. bi1
> + * is a new head. bi1->splice_prev is a new tail
> + */
> +
> +static void split_splice_at(BlockInfo *bi1)
> +{
> + BlockInfo *bi0 = get_splice_head(bi1);
> + BlockInfo *bi0N = bi1->splice_prev;
> + BlockInfo *bi1N = bi0->splice_prev;
> + if (trace_file) {
> + gzprintf(trace_file, "bbvgen: intv %"PRIu32
> + ": morph: split splice %"PRIu32" %"PRIu32"\n",
> + interval, bi0->id, bi1->id);
> + }
> + bi0->splice_prev = (bi0 == bi0N ? NULL : bi0N);
> + bi1->splice_prev = (bi1 == bi1N ? NULL : bi1N);
> + bi0->cfg(next_pc) = bi0N->tcg(next_pc);
> + bi1->cfg(next_pc) = bi1N->tcg(next_pc);
> + if (bi0->tile_next) {
> + relocate_tile(bi0, bi1);
> + }
> +}
> +
> +static BlockInfo *split_splice_after(BlockInfo *bi0)
> +{
> + BlockInfo *bi = get_splice_tail(bi0);
> + assert(bi != bi0);
> + while (bi->splice_prev != bi0) {
> + bi = bi->splice_prev;
> + }
> + split_splice_at(bi);
> + return bi;
> +}
> +
> +/* biN is a newly-created TCG block, possibly at the end of a splice chain */
> +
> +static void maybe_insert_tile(BlockInfo *biN)
> +{
> + uint64_t next_pc = biN->tcg(next_pc);
> + gpointer gp_next_pc = GUINT_TO_POINTER(next_pc);
> + BlockInfo *bi0 = get_splice_head(biN);
> + assert(bi0->cfg(next_pc) == next_pc);
> + BlockInfo *bit = g_hash_table_lookup(blocks_next_pc_table, gp_next_pc);
> + if (bit == NULL) {
> + /*
> + * initially, insert the block at TCG(NEXT_PC), i.e., not some other
> + * block further up a splice sequence. Once we have a second block at
> + * this NEXT_PC, we begin storing the splice head of the longest tile.
> + */
> + g_hash_table_insert(blocks_next_pc_table, gp_next_pc, biN);
> + } else {
> + BlockInfo *bit0 = get_splice_head(bit);
> + if (bit0->cfg(next_pc) > next_pc) {
> + assert(bit->tcg(next_pc) == next_pc);
> + assert(!bit->tile_member);
> + BlockInfo *bitN = bit0->splice_prev;
> + while (bitN->splice_prev != bit) {
> + bitN = bitN->splice_prev;
> + }
> + bitN->tile_successor = true;
> + split_splice_at(bitN);
> + assert(bit0->cfg(next_pc) == next_pc);
> + assert(bitN->pc == next_pc);
> + }
> + BlockInfo *bi = insert_tile(bit0, bi0);
> + if (bi != bit) {
> + assert(bi->cfg(next_pc) == next_pc);
> + g_hash_table_replace(blocks_next_pc_table, gp_next_pc, bi);
> + }
> + if (trace_file) {
> + gzprintf(trace_file, "bbvgen: intv %"PRIu32
> + ": insert tile ..%"PRIx64"):", interval, next_pc);
> + for (;;) {
> + assert(bi->cfg(next_pc) == next_pc);
> + assert(!is_splice_non_head(bi));
> + gzprintf(trace_file, " %"PRIu32",%"PRIu32,
> + bi->id, bi->tcg(insns));
> + if (is_tile_tail(bi)) {
> + break;
> + }
> + bi = bi->tile_next;
> + }
> + gzprintf(trace_file, "\n");
> + }
> + }
> +}
> +
> +/*
> + * bi1 and biN are sequential blocks, and bi1 dominates biN. bi1 has executed
> + * at least once, biN is newly created. Caveats:
> + *
> + * * All splices are provisional: we might later discover that bi1 is a jump
> + * target, and therefore, bi1 does not dominate biN. If/when the splice is
> + * invalidated, we must undo it in split_splice_at()
> + *
> + * * bi1 might later become a member of a tile chain. If/when shorter tiles
> + * are added, biN's splice link will need to migrate to the shortest tile.
> + */
> +
> +static void append_to_splice_ring(BlockInfo *bi1, BlockInfo *biN)
> +{
> + BlockInfo *bi0 = get_splice_head(bi1);
> + bi0->splice_prev = biN;
> + biN->splice_prev = bi1;
> + bi1->cfg(next_pc) = biN->tcg(next_pc);
> + bi0->cfg(next_pc) = biN->tcg(next_pc);
> + if (trace_file) {
> + gzprintf(trace_file, "bbvgen: intv %"PRIu32": morph: append %"PRIu32
> + "+%"PRIu32" [%"PRIx64"..%"PRIx64"..%"PRIx64")\n", interval,
> + bi0->id, biN->id, bi0->pc, biN->pc, biN->tcg(next_pc));
> + }
> +}
> +
> +/*
> + * Principles / abstractions:
> + *
> + * * blocks are only created, never destroyed
> + *
> + * * splices: aggregate TCG blocks into a CFG block:
> + * * spliced chains are created all at once, never built incrementally
> + * * all cfg(next_pc) == final tcg(next_pc)
> + * * first cfg(insns) == sum of all tcg(insns)
> + * * spliced chains can bifurcate incrementally
> + *
> + * * tiles: resolve overlapped TCG blocks into non-overlapping CFG blocks
> + * * tiles can be added incrementally
> + * * tiled blocks are identified by common NEXT_PC
> + * * shortest TCG tile (largest PC) can splice to successor blocks
> + * * longest TCG tile (smallest PC) can splice to predecessor blocks
> + */
> +
> +static void derive_cfg_from_splices(BlockInfo *bi0)
> +{
> + BlockInfo *biN = get_splice_tail(bi0);
> + bi0->cfg(next_pc) = biN->tcg(next_pc);
> + biN->cfg(next_pc) = biN->tcg(next_pc);
> + uint32_t insns = bi0->tcg(insns);
> + for (BlockInfo *bi = biN; bi != bi0; bi = bi->splice_prev) {
> + insns += bi->tcg(insns);
> + }
> + bi0->cfg(insns) = insns;
> +}
> +
> +static void derive_cfg_from_tiles(BlockInfo *biN)
> +{
> + uint64_t next_pc = biN->cfg(next_pc);
> + BlockInfo *bi0 = biN->tile_next;
> + for (BlockInfo *bi = bi0; bi != biN; bi = bi->tile_next) {
> + assert(bi->cfg(next_pc) == next_pc);
> + assert(bi->pc < bi->tile_next->pc);
> + }
> + for (; bi0 != biN; bi0 = bi0->tile_next) {
> + BlockInfo *bi1 = bi0->tile_next;
> + bi0->cfg(next_pc) = bi1->pc;
> + bi0->cfg(insns) -= bi1->cfg(insns);
> + bi1->cfg(intv.execs) += bi0->cfg(intv.execs);
> + bi1->cfg(total.execs) += bi0->cfg(total.execs);
> + if (trace_file && bi0->cfg(intv.execs)) {
> + gzprintf(trace_file, "bbvgen: intv %"PRIu32": tile spill %"PRIu64
> + ": %"PRIu32" > %"PRIu32"\n",
> + interval, bi0->cfg(intv.execs), bi0->id, bi1->id);
> + }
> + }
> +}
> +
> +/*
> + * When printing an audit trail for TCG vs. CFG icount mismatches in the trace
> + * log, annotate TCG blocks with symbols that indicate how it is related with
> + * its neighbors, as a member of a splice or tile chain.
> + */
> +
> +static const char *block_join_prefix(BlockInfo *bi)
> +{
> + unsigned tile_head = (is_tile_head(bi) ? 8 : 0);
> + unsigned tile_non_head = (is_tile_non_head(bi) ? 4 : 0);
> + unsigned splice_head = (is_splice_head(bi) ? 2 : 0);
> + unsigned splice_non_head = (is_splice_non_head(bi) ? 1 : 0);
> + switch (tile_head | tile_non_head | splice_head | splice_non_head) {
> + case 0b0000: return "";
> + case 0b0001: return "+";
> + case 0b0010: return "(";
> + case 0b0011: return "! (+";
> + case 0b0100: return "|";
> + case 0b0101: return "|+";
> + case 0b0110: return "|(";
> + case 0b0111: return "! |(+";
> + case 0b1000: return "[";
> + case 0b1001: return "! [+";
> + case 0b1010: return "[(";
> + case 0b1011: return "! [(+";
> + case 0b1100: return "! [|";
> + case 0b1101: return "! [|+";
> + case 0b1110: return "! [|(";
> + case 0b1111: return "! [|(+";
> + default: return "<wut?>";
> + }
> +}
> +
> +static const char *block_join_suffix(BlockInfo *bi)
> +{
> + unsigned tile_tail = (is_tile_tail(bi) ? 8 : 0);
> + unsigned tile_non_tail = (is_tile_non_tail(bi) ? 4 : 0);
> + unsigned splice_tail = (is_splice_tail(bi) ? 2 : 0);
> + unsigned splice_non_tail = (is_splice_non_tail(bi) ? 1 : 0);
> + switch (tile_tail | tile_non_tail | splice_tail | splice_non_tail) {
> + case 0b0000: return "";
> + case 0b0001: return "+";
> + case 0b0010: return ")";
> + case 0b0011: return "+) !";
> + case 0b0100: return "|";
> + case 0b0101: return "|+";
> + case 0b0110: return "|)";
> + case 0b0111: return "|+) !";
> + case 0b1000: return "]";
> + case 0b1001: return "+] !";
> + case 0b1010: return "])";
> + case 0b1011: return "+)] !";
> + case 0b1100: return "|] !";
> + case 0b1101: return "+|] !";
> + case 0b1110: return ")|] !";
> + case 0b1111: return "+)|] !";
> + default: return "<wut?>";
> + }
> +}
> +
> +static void derive_cfg_from_tcg(void)
> +{
> + /*
> + * Dump GTree into a PC-sequenced GPtrArray for easy iteration. We could
> + * traverse the GTree directly, but since we make multiple passes, overall
> + * performance is better if we traverse once, and save the result in an
> + * array.
> + */
> + assert(blocks_id_array->len == g_tree_nnodes(blocks_pc_tree));
> + GPtrArray *blocks = g_ptr_array_sized_new(g_tree_nnodes(blocks_pc_tree));
> + g_tree_foreach(blocks_pc_tree, keep_all, blocks);
> +
> + for (int i = 0; i < blocks->len; i++) {
> + BlockInfo *bi = g_ptr_array_index(blocks, i);
> + if (bi->splice_prev == NULL) {
> + bi->cfg(insns) = bi->tcg(insns);
> + bi->cfg(next_pc) = bi->tcg(next_pc);
> + } else if (is_splice_head(bi)) {
> + derive_cfg_from_splices(bi);
> + }
> + if (bi->cfg(insns)) {
> + bi->cfg(intv.execs) += bi->tcg(intv.execs);
> + bi->cfg(total.execs) += bi->tcg(total.execs);
> + }
> + }
> + for (int i = blocks->len - 1; i >= 0; i--) {
> + BlockInfo *bi = g_ptr_array_index(blocks, i);
> + if (is_tile_tail(bi)) {
> + derive_cfg_from_tiles(bi);
> + }
> + }
> + /* Finalize TCG & CFG block icounts */
> + for (int i = 0; i < blocks->len; i++) {
> + BlockInfo *bi = g_ptr_array_index(blocks, i);
> + /* Accumulate TCG totals */
> + bi->tcg(total.execs) += bi->tcg(intv.execs);
> + bi->tcg(total.icount) += bi->tcg(intv.icount);
> + if (is_tile_tail(bi)) {
> + uint64_t next_pc = bi->cfg(next_pc);
> + BlockInfo *biN = get_splice_tail(bi);
> + assert(biN->tile_member);
> + assert(next_pc == biN->tcg(next_pc));
> + if (!biN->jump_out) {
> + gpointer gp_pc = GUINT_TO_POINTER(next_pc);
> + BlockInfo *biX = g_hash_table_lookup(blocks_pc_table, gp_pc);
> + if (biX && biX->tile_successor) {
> + bi->cfg(insns) += biX->cfg(insns);
> + biX->cfg(insns) = 0;
> + }
> + }
> + }
> + /* Derive CFG icounts */
> + bi->cfg(intv.icount) += bi->cfg(intv.execs) * bi->cfg(insns);
> + bi->cfg(total.execs) += bi->cfg(intv.execs);
> + bi->cfg(total.icount) += bi->cfg(total.execs) * bi->cfg(insns);
> + cfg(intv_icount) += bi->cfg(intv.icount);
> + }
> +
> + /* Sanity checks ... */
> + if (trace_file && cfg(intv_icount) != tcg(intv_icount)) {
> + gzprintf(trace_file, "bbvgen: intv %"PRIu32": error: intv cfg %"PRIu64
> + " - tcg %"PRIu64" = %"PRIi64" = %.4f%%\n",
> + interval, cfg(intv_icount), tcg(intv_icount),
> + cfg(intv_icount) - tcg(intv_icount),
> + 100.0 * (int64_t) (cfg(intv_icount) -
> + tcg(intv_icount)) / tcg(intv_icount));
> + if (trace_file) {
> + for (int i = 0; i < blocks->len; i++) {
> + BlockInfo *bi = g_ptr_array_index(blocks, i);
> + if (bi->tcg(intv.execs) || bi->cfg(intv.execs) ||
> + bi->cfg(insns) > (1 << 31u)) {
> + gzprintf(trace_file, "bbvgen: intv %"PRIu32
> + ": audit: %s%"PRIu32"%s tcg %"PRIu32"*%"PRIu64
> + "=%"PRIu64" cfg %"PRIu32"*%"PRIu64"=%"PRIu64"\n",
> + interval, block_join_prefix(bi), bi->id,
> + block_join_suffix(bi), bi->tcg(insns),
> + bi->tcg(intv.execs), bi->tcg(intv.icount),
> + bi->cfg(insns), bi->cfg(intv.execs),
> + bi->cfg(intv.icount));
> + }
> + }
> + }
> + }
> + g_ptr_array_free(blocks, true);
> + tcg(total_icount) += tcg(intv_icount);
> + cfg(total_icount) += cfg(intv_icount);
> + if (trace_file && cfg(total_icount) != tcg(total_icount)) {
> + gzprintf(trace_file, "bbvgen: intv %"PRIu32": error: total cfg %"PRIu64
> + " - tcg %"PRIu64" = %"PRIi64" = %.4f%%\n",
> + interval, cfg(total_icount), tcg(total_icount),
> + cfg(total_icount) - tcg(total_icount),
> + 100.0 * (int64_t) (cfg(total_icount) -
> + tcg(total_icount)) / tcg(total_icount));
> + }
> +}
> +
> +/****************************************************************/
> +
> +/*
> + * The output functions are generic, and can print either the
> + * TCG or CFG representation. This is mostly done for debugging.
> + * Now that the CFG code is clean, there isn't much use for the
> + * TCG representation, but it is retained for now ...
> + */
> +
> +static char const * const anonymous_block_name = "anonymous";
> +static char *anonymous_save_filename;
> +static char const *so_save_path;
> +
> +static gint cmp_tcg_intv_icount(gconstpointer a, gconstpointer b)
> +{
> + BlockInfo *ea = *(BlockInfo **) a;
> + BlockInfo *eb = *(BlockInfo **) b;
> + return ea->tcg(intv.icount) > eb->tcg(intv.icount) ? -1 : 1;
> +}
> +
> +static gint cmp_cfg_intv_icount(gconstpointer a, gconstpointer b)
> +{
> + BlockInfo *ea = *(BlockInfo **) a;
> + BlockInfo *eb = *(BlockInfo **) b;
> + return ea->cfg(intv.icount) > eb->cfg(intv.icount) ? -1 : 1;
> +}
> +
> +static GCompareFunc cmp_intv_icount[BBV_MAX] = {
> + [BBV_TCG] = cmp_tcg_intv_icount,
> + [BBV_CFG] = cmp_cfg_intv_icount,
> +};
> +
> +static void print_hot_blocks(GPtrArray *blocks, unsigned o, unsigned indent)
> +{
> + unsigned n = qemu_bbv_blocks < blocks->len ? qemu_bbv_blocks : blocks->len;
> + g_ptr_array_sort(blocks, cmp_intv_icount[o]);
> + for (int i = 0; i < n; i++) {
> + BlockInfo *bi = g_ptr_array_index(blocks, i);
> + bi->t[o].rank = i;
> + if (i) {
> + gzprintf(t[o].bbvi_file, ",\n");
> + }
> + gzprintf(t[o].bbvi_file, "%*s{ \"pc\": ", indent, " ");
> + gzprintf(t[o].bbvi_file, hex_addrs ? "0x%"PRIx64", " : "%"PRIu64", ",
> + bi->pc);
> + if (print_next_pc) {
> + gzprintf(t[o].bbvi_file, "\"next_pc\": ");
> + gzprintf(t[o].bbvi_file,
> + hex_addrs ? "0x%"PRIx64", " : "%"PRIu64", ",
> + bi->t[o].next_pc);
> + }
> + gzprintf(t[o].bbvi_file, "\"len\": %2"PRIu32", \"icount\": %"PRIu64
> + ", \"pct\": %.2f",
> + bi->t[o].insns, bi->t[o].intv.icount,
> + 100.0 * bi->t[o].intv.icount / t[o].intv_icount);
> + if (bi->so_path_original) {
> + gzprintf(t[o].bbvi_file, ", \"so_src\": \"%s\", \"so_cpy\":"
> + " \"%s\", \"%s\": ",
> + bi->so_path_original, bi->so_path_saved,
> + (bi->so_path_original == anonymous_block_name) ?
> + "file_ofs" : "so_pc");
> + gzprintf(t[o].bbvi_file, hex_addrs ? "0x%"PRIx64 : "%"PRIu64,
> + bi->so_pc);
> + }
> + gzprintf(t[o].bbvi_file, " }");
> + }
> + for (int i = n; i < blocks->len; i++) {
> + BlockInfo *bi = g_ptr_array_index(blocks, i);
> + bi->t[o].rank = i;
> + }
> + gzprintf(t[o].bbvi_file, "\n");
> +}
> +
> +static void keep_tcg_intv_icount(gpointer data, gpointer user_data)
> +{
> + BlockInfo *bi = (BlockInfo *) data;
> + if (bi->tcg(intv.icount)) {
> + GPtrArray *blocks = (GPtrArray *) user_data;
> + g_ptr_array_add(blocks, data);
> + }
> +}
> +
> +static void keep_cfg_intv_icount(gpointer data, gpointer user_data)
> +{
> + BlockInfo *bi = (BlockInfo *) data;
> + if (bi->cfg(intv.icount)) {
> + GPtrArray *blocks = (GPtrArray *) user_data;
> + g_ptr_array_add(blocks, data);
> + }
> +}
> +
> +static GFunc keep_intv_icount[BBV_MAX] = {
> + [BBV_TCG] = keep_tcg_intv_icount,
> + [BBV_CFG] = keep_cfg_intv_icount,
> +};
> +
> +static void print_interval(unsigned o)
> +{
> + if (t[o].bbv_file == Z_NULL && t[o].bbvi_file == Z_NULL) {
> + return;
> + }
> + GPtrArray *blocks = g_ptr_array_sized_new(blocks_id_array->len);
> + g_ptr_array_foreach(blocks_id_array, keep_intv_icount[o], blocks);
> +
> + /* Generate the BBV and BBVI vectors for this interval */
> + if (t[o].bbv_file) {
> + gzprintf(t[o].bbv_file, "T");
> + for (int i = 0; i < blocks->len; i++) {
> + BlockInfo *bi = g_ptr_array_index(blocks, i);
> + gzprintf(t[o].bbv_file, ":%"PRIu32":%"PRIu64" ",
> + bi->id, bi->t[o].intv.icount);
> + }
> + gzprintf(t[o].bbv_file, "\n");
> + }
> + if (t[o].bbvi_file) {
> + if (interval > 0) {
> + gzprintf(t[o].bbvi_file, ",\n");
> + }
> + gzprintf(t[o].bbvi_file, "%*s{\n", 8, " ");
> + gzprintf(t[o].bbvi_file, "%*s\"index\": %"PRIu32", \"pc\": ", 12, " ",
> + interval);
> + gzprintf(t[o].bbvi_file, hex_addrs ? "0x%"PRIx64 : "%"PRIu64,
> + intv_start_pc);
> + gzprintf(t[o].bbvi_file, ", \"len\": %2"PRIu64", \"icount\": %"PRIu64
> + ", \"blocks\": [\n", t[o].intv_icount, t[o].total_icount);
> + print_hot_blocks(blocks, o, 16);
> + gzprintf(t[o].bbvi_file, "%*s]\n%*s}", 12, " ", 8, " ");
> + }
> + g_ptr_array_free(blocks, true);
> +}
> +
> +static void end_output_files(unsigned o);
> +
> +static void keep_tcg_total_icount(gpointer data, gpointer user_data)
> +{
> + BlockInfo *bi = (BlockInfo *) data;
> + if (bi->tcg(total.icount)) {
> + GPtrArray *blocks = (GPtrArray *) user_data;
> + /*
> + * Copy tcg(total.icount) into tcg(intv.count), so print_hot_blocks()
> + * is usable for both the interval & summary reports
> + */
> + bi->tcg(intv.icount) = bi->tcg(total.icount);
> + g_ptr_array_add(blocks, data);
> + }
> +}
> +
> +static void keep_cfg_total_icount(gpointer data, gpointer user_data)
> +{
> + BlockInfo *bi = (BlockInfo *) data;
> + if (bi->cfg(total.icount)) {
> + GPtrArray *blocks = (GPtrArray *) user_data;
> + /*
> + * Copy cfg(total.icount) into cfg(intv.count), so print_hot_blocks()
> + * is usable for both the interval & summary reports
> + */
> + bi->cfg(intv.icount) = bi->cfg(total.icount);
> + g_ptr_array_add(blocks, data);
> + }
> +}
> +
> +static GFunc keep_total_icount[BBV_MAX] = {
> + [BBV_TCG] = keep_tcg_total_icount,
> + [BBV_CFG] = keep_cfg_total_icount,
> +};
> +
> +static void end_output_files(unsigned o)
> +{
> + if (t[o].bbvi_file) {
> + gzclose_w(t[o].bbv_file);
> + t[o].bbv_file = Z_NULL;
> + free(t[o].bbv_path);
> + t[o].bbv_path = NULL;
> + }
> + if (t[o].bbvi_file) {
> + GPtrArray *blocks = g_ptr_array_sized_new(blocks_id_array->len);
> + g_ptr_array_foreach(blocks_id_array, keep_total_icount[o], blocks);
> + t[o].intv_icount = t[o].total_icount; /* for print_hot_blocks */
> +
> + /* Write out some details covering the entire execution */
> + gzprintf(t[o].bbvi_file, "\n ],\n");
> + gzprintf(t[o].bbvi_file, " \"instructions\": %"PRIu64",\n",
> + t[o].total_icount);
> + gzprintf(t[o].bbvi_file, " \"blocks\": [\n");
> + print_hot_blocks(blocks, o, 8);
> + gzprintf(t[o].bbvi_file, " ],\n");
> + g_ptr_array_free(blocks, true);
> +
> + /* Dump a sorted list of block IDs with block info */
> + gzprintf(t[o].bbvi_file, " \"ids\": [\n");
> + for (int i = 0; i < blocks_id_array->len; i++) {
> + BlockInfo *bi = g_ptr_array_index(blocks_id_array, i);
> + if (i) {
> + gzprintf(t[o].bbvi_file, ",\n");
> + }
> + gzprintf(t[o].bbvi_file, "%*s{ \"id\": %"PRIu64", \"pc\": ",
> + 8, " ", bi->id);
> + gzprintf(t[o].bbvi_file, hex_addrs ? "0x%"PRIx64
> + ", " : "%"PRIu64", ", bi->pc);
> + if (print_next_pc) {
> + gzprintf(t[o].bbvi_file, "\"next_pc\": ");
> + gzprintf(t[o].bbvi_file, hex_addrs ? "0x%"PRIx64
> + ", " : "%"PRIu64", ", bi->t[o].next_pc);
> + }
> + gzprintf(t[o].bbvi_file, "\"len\": %2"PRIu32, bi->t[o].insns);
> +
> + if (bi->so_path_original) {
> + gzprintf(t[o].bbvi_file, ", \"so_src\": \"%s\", \"so_cpy\":"
> + " \"%s\", \"%s\": ",
> + bi->so_path_original, bi->so_path_saved,
> + (bi->so_path_original == anonymous_block_name) ?
> + "file_ofs" : "so_pc");
> + gzprintf(t[o].bbvi_file, hex_addrs ? "0x%"PRIx64 : "%"PRIu64,
> + bi->so_pc);
> + }
> + gzprintf(t[o].bbvi_file, " }");
> + }
> + gzprintf(t[o].bbvi_file, "\n ]\n}\n");
> + gzclose_w(t[o].bbvi_file);
> + t[o].bbvi_file = Z_NULL;
> + free(t[o].bbvi_path);
> + t[o].bbvi_path = NULL;
> + }
> +}
> +
> +static void end_interval(void)
> +{
> + derive_cfg_from_tcg();
> + print_interval(BBV_TCG);
> + print_interval(BBV_CFG);
> + interval++;
> + if (enabled) {
> + for (int i = 0; i < blocks_id_array->len; i++) {
> + BlockInfo *bi = g_ptr_array_index(blocks_id_array, i);
> + bi->tcg(intv.execs) = 0;
> + bi->tcg(intv.icount) = 0;
> + bi->cfg(insns) = 0;
> + bi->cfg(intv.execs) = 0;
> + bi->cfg(intv.icount) = 0;
> + bi->cfg(total.execs) = 0;
> + bi->cfg(total.icount) = 0;
> + if (is_tile_tail(bi)) {
> + uint64_t next_pc = get_splice_tail(bi)->tcg(next_pc);
> + BlockInfo *biN = bi;
> + BlockInfo *bi0 = bi->tile_next;
> + biN->cfg(next_pc) = next_pc;
> + for (bi = bi0; bi != biN; bi = bi->tile_next) {
> + bi->cfg(next_pc) = next_pc;
> + }
> + }
> + }
> + tcg(intv_icount) = 0;
> + cfg(intv_icount) = 0;
> + } else {
> + end_output_files(BBV_TCG);
> + end_output_files(BBV_CFG);
> + if (trace_file) {
> + gzclose_w(trace_file);
> + free(qemu_bbv_trace_path);
> + qemu_bbv_trace_path = NULL;
> + }
> + }
> +}
> +
> +static void begin_output_files(unsigned o)
> +{
> + if (t[o].bbv_path) {
> + t[o].bbv_file = gzopen(t[o].bbv_path, "wb9");
> + if (t[o].bbv_file == Z_NULL) {
> + fprintf(stderr, "bbvgen: cannot open `%s' for compressed writing (%s)\n",
> + t[o].bbv_path, strerror(errno));
> + free(t[o].bbv_path);
> + t[o].bbv_path = NULL;
> + }
> + }
> + if (t[o].bbvi_path) {
> + t[o].bbvi_file = gzopen(t[o].bbvi_path, "wb9");
> + if (t[o].bbvi_file == Z_NULL) {
> + fprintf(stderr, "bbvgen: cannot open `%s' for compressed writing (%s)\n",
> + t[o].bbvi_path, strerror(errno));
> + free(t[o].bbv_path);
> + t[o].bbv_path = NULL;
> + }
> + }
> + if (t[o].bbvi_file) {
> + static const char *block_type[BBV_MAX] = {
> + [BBV_TCG] = "TCG",
> + [BBV_CFG] = "CFG",
> + };
> + gzprintf(t[o].bbvi_file, "{\n \"source\": \"qemu-bbvgen\",\n");
> + gzprintf(t[o].bbvi_file, " \"version\": 2,\n");
> + gzprintf(t[o].bbvi_file, " \"block_type\": \"%s\",\n", block_type[o]);
> + gzprintf(t[o].bbvi_file, " \"intervals\": [\n");
> + }
> +}
> +
> +static char *pidify_path(char *path, pid_t pid)
> +{
> + int length = strlen(path);
> + char *new_path = malloc(length + 11);
> + path[length - 3] = '\0';
> + sprintf(new_path, "%s.%"PRIu32".gz", path, pid);
> + free(path);
> + return new_path;
> +}
> +
> +static void fork_output_files_1(unsigned o, pid_t pid)
> +{
> + if (t[o].bbv_file == NULL && t[o].bbvi_file == NULL) {
> + return;
> + }
> + if (t[o].bbv_file) {
> + t[o].bbv_path = pidify_path(t[o].bbv_path, pid);
> + }
> + if (t[o].bbvi_file) {
> + t[o].bbvi_path = pidify_path(t[o].bbvi_path, pid);
> + }
> + /*
> + * Zlib doesn't seem to have a way to tear down local state +
> + * close the underlying file descriptor, which we would prefer
> + * (since the parent process will continue writing to this
> + * file). Instead, we leak.
> + */
> + /* FIXME: Don't leak memory for reopened FILE and gzFile structs. */
> + begin_output_files(o);
> +}
> +
> +static void fork_output_files(void)
> +{
> + pid_t pid = getpid();
> + fork_output_files_1(BBV_TCG, pid);
> + fork_output_files_1(BBV_CFG, pid);
> + if (so_save_path) {
> + char save_target_path_buf[PATH_MAX];
> + snprintf(save_target_path_buf, sizeof(save_target_path_buf),
> + "anonymous-%d.dump", (int)pid);
> + anonymous_save_filename = strdup(save_target_path_buf);
> + }
> +}
> +
> +/****************************************************************/
> +
> +static BlockInfo *exec_bi;
> +
> +static const char *block_in_out_signature(BlockInfo *bi, bool jump_in)
> +{
> + static char signature[3] = "..";
> + signature[0] = (jump_in ? 'J' : bi->jump_in ? 'j' : 'f');
> + signature[1] = (bi->jump_out ? 'j' : 'f');
> + return signature;
> +}
> +
> +static void maybe_end_interval()
> +{
> + /* Don't end an interval inside a TCG chain that forms a long CFG block */
> + if (exec_bi && exec_bi->jump_out &&
> + tcg(intv_icount) + tcg_intv_icount_drift >= qemu_bbv_interval) {
> + /*
> + * Track drift due to ending intervals on block boundaries. We
> + * want interval starts to stay close to (intv_num * qemu_bbv_interval).
> + */
> + tcg_intv_icount_drift += tcg(intv_icount) - qemu_bbv_interval;
> + end_interval();
> + }
> +}
> +
> +static void maybe_save_proc_map_entry(BlockInfo *bi);
> +
> +static void vcpu_tb_exec(unsigned int cpu_index, void *udata)
> +{
> +#ifdef CONFIG_M5
> + if (m5ops && !enabled) {
> + return;
> + }
> +#endif
> + BlockInfo *bi = (BlockInfo *) udata;
> + /*
> + * The callback has to run for every TB execution so we can detect
> + * the end of an interval.
I've seen interval mentioned a few times but I don't think I've quite
followed what it means. Is it the span of a CFG block?
> Most of the time we just bail
> + * immediately. Note that inline operations (counter increment)
> + * run after callbacks, which means we're evaluating the number of
> + * instructions executed up through the *previous* TB.
> + * Use the lock to make sure there is no race between updating
> + * tcg(intv_icount) and bi and dumping them
> + */
Would scoreboards help here? I assume the control flow you are detecting
should be occurring on the same vCPU to be a flow and not just two vCPUs
executing different portions of the code?
> + g_mutex_lock(&lock);
> +
> + maybe_end_interval();
> +
> + if (!bi->executed) {
> + /*
> + * Initialize size-sensitive pieces of BlockInfo that should only
> + * happen on a block that is stable and won't be retranslated due
> + * to excessive size.
> + */
> + bi->executed = true;
> + if (!bi->jump_in && !exec_bi->tile_member) {
> + append_to_splice_ring(exec_bi, bi);
> + }
> + assert(!bi->tile_member);
> + maybe_insert_tile(bi);
> + maybe_save_proc_map_entry(bi);
> + }
> + if (tcg(intv_icount) == 0) {
> + intv_start_pc = bi->pc;
> + }
> + if (exec_bi && !dominates(exec_bi, bi)) {
> + if (!bi->jump_in) {
> + if (is_splice_non_head(bi)) {
> + split_splice_at(bi);
> + }
> + bi->jump_in = true;
> + bi->tile_successor = false;
> + }
> + if (!exec_bi->jump_out) {
> + BlockInfo *bi1 =
> + (is_splice_non_tail(exec_bi) ? split_splice_after(exec_bi) :
> + g_hash_table_lookup(blocks_pc_table,
> + GUINT_TO_POINTER(exec_bi->tcg(next_pc))));
> + if (bi1 && exec_bi->tile_member) {
> + bi1->tile_successor = false;
> + }
> + exec_bi->jump_out = true;
> + }
> + }
> + bi->tcg(intv.execs)++;
> + bi->tcg(intv.icount) += bi->tcg(insns);
> + if (trace_file && trace_exec) {
> + gzprintf(trace_file, "bbvgen: intv %"PRIu32
> + ": exec %"PRIu32" tcg %"PRIu32"*%"PRIu64"=%"PRIu64" <%s>\n",
> + interval, bi->id, bi->tcg(insns), bi->tcg(intv.execs),
> + bi->tcg(intv.icount),
> + block_in_out_signature(bi, bi->jump_in));
> + }
> + tcg(intv_icount) += bi->tcg(insns);
> + exec_bi = bi;
> +
> + g_mutex_unlock(&lock);
> +}
> +
> +static BlockInfo *fetch_block(uint64_t pc, uint64_t size, uint32_t tcg_insns)
> +{
> + const uint64_t next_pc = pc + size;
> + gpointer gp_pc = GUINT_TO_POINTER(pc);
> + BlockInfo *bi = g_hash_table_lookup(blocks_pc_table, gp_pc);
> + /*
> + * TCG sometimes translate a block, calls the translation plugin
> + * (vcpu_tb_trans), later determines the block is too big, retranslates
> + * with a smaller limit on guest-insn count, and calls the translation
> + * plugin again. All retranslations occur before a block can execute,
> + * so by the time the execution plugin (vcpu_tb_exec) runs, the block
> + * has a stable size. Therefore, any size-sensitive BlockInfo-member
> + * initialization occurs in the execution plugin.
> + */
I guess these are cases when the generated code is too big, we don't
call the vcpu_tb_trans callback until translator_loop() has iterated
over all the instructions.
> + bool retranslated = (bi && !bi->executed);
> + if (bi) {
> + bi->retranslated |= retranslated;
> + /*
> + * When TCG must regenerate a block dropped from its translation
> + * cache, it follows the same sequence of tossing too-large blocks
> + * and retranslating. That is why the assertion on stable NEXT_PC
> + * is relaxed for blocks subject to size-induced retranslation.
> + */
> + assert(bi->retranslated || bi->tcg(next_pc) == next_pc);
> + } else {
> + bi = g_new0(BlockInfo, 1);
> + bi->id = next_bi_id++;
> + bi->pc = pc;
> + g_hash_table_insert(blocks_pc_table, gp_pc, bi);
> + g_ptr_array_insert(blocks_id_array, bi->id - 1, bi);
> + g_tree_insert(blocks_pc_tree, gp_pc, bi);
> + assert(blocks_id_array->len == g_tree_nnodes(blocks_pc_tree));
> + bi->jump_out = false;
> + bi->jump_in = !(exec_bi && dominates(exec_bi, bi));
> + }
> + if (!bi->executed) {
> + bi->tcg(next_pc) = next_pc;
> + bi->cfg(next_pc) = next_pc;
> + bi->tcg(insns) = tcg_insns;
> + if (trace_file) {
> + const char *re = (retranslated ? "re" : "");
> + gzprintf(trace_file, "bbvgen: intv %"PRIu32
> + ": %strans %"PRIu32" [%"PRIx64"..%"PRIx64"),%"PRIu32" <%s>\n",
> + interval, re, bi->id, bi->pc, bi->tcg(next_pc), bi->tcg(insns),
> + block_in_out_signature(bi, bi->jump_in));
> + }
> + }
> + return bi;
> +}
> +
> +/*
> + * Blocks are only added, never removed. Isolated blocks are identical between
> + * TCG and CFG. Blocks only need icount adjustment for splice sequences and
> + * tilings.
> + *
> + * At block translation time, the CFG can change in these ways:
> + * * extend a splice sequence
> + * * augment a tiling group
> + *
> + * Later, at block execution time, we can bifurcate a splice sequence when we
> + * see mid-sequence block entered non-sequentially as a jump target.
> + */
> +
> +static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb)
> +{
> + const uint64_t pc = qemu_plugin_tb_vaddr(tb);
> + const uint32_t tcg_insns = qemu_plugin_tb_n_insns(tb);
> + /*
> + * plugin api won't tell us the size of the basic block directly :(
> + * but we can query the size of each instruction
> + */
> + uint64_t size = 0;
> + for (int i = 0; i < tcg_insns; i++) {
> + size += qemu_plugin_insn_size(qemu_plugin_tb_get_insn(tb, i));
> + }
> +
> + g_mutex_lock(&lock);
> + BlockInfo *bi = fetch_block(pc, size, tcg_insns);
> + g_mutex_unlock(&lock);
> +
> + /* Run the callback for this block's execution */
> + qemu_plugin_register_vcpu_tb_exec_cb(tb, vcpu_tb_exec,
> + QEMU_PLUGIN_CB_NO_REGS, bi);
> +}
> +
> +/****************************************************************/
> +/* process map */
> +
> +typedef struct {
> + uint64_t start;
> + uint64_t size;
> + char const *original_path;
> + char const *saved_path;
> +} proc_map_entry;
> +
> +typedef struct {
> + uint64_t fd;
> + char const *path;
> +} fd_entry;
> +
> +static int so_save_fd = -1;
> +
> +static proc_map_entry *proc_map;
> +static size_t proc_map_size;
> +static int proc_map_sequence;
> +
> +static fd_entry *fd_map;
> +static size_t fd_map_size;
> +
> +static size_t lower_bound_uint64(char const *haystack, size_t stride,
> + size_t element_count, uint64_t needle)
> +{
> + size_t l = 0;
> + size_t h = element_count;
> + while (l < h) {
> + int mid = l + (h - l) / 2;
> + if (memcmp(&needle, &haystack[mid * stride], sizeof(needle)) <= 0) {
> + h = mid;
> + } else {
> + l = mid + 1;
> + }
> + }
> + return l;
> +}
> +
> +static void handle_fopen(uint64_t fd, char const *path)
> +{
> + if (so_save_path == NULL) {
> + return;
> + }
> + size_t pos = lower_bound_uint64((char const *) fd_map, sizeof(fd_entry),
> + fd_map_size, fd);
> + if ((pos < fd_map_size) && fd_map[pos].fd == fd) {
> + /* don't bother handling close(), just update the entry instead */
> + free((void *) fd_map[pos].path);
> + } else {
> + fd_map = realloc(fd_map, (fd_map_size + 1) * sizeof(fd_entry));
> + memmove(&fd_map[pos + 1], &fd_map[pos],
> + (fd_map_size - pos) * sizeof(fd_entry));
> + ++fd_map_size;
> + }
> + fd_map[pos].fd = fd;
> + fd_map[pos].path = strdup(path);
> +}
> +
> +static size_t add_entry_to_proc_map(uint64_t start, uint64_t size,
> + char const *original, char const *saved)
> +{
> + /* find pos of target region in map */
> + size_t proc_map_pos = lower_bound_uint64((char const *) proc_map,
> + sizeof(proc_map_entry),
> + proc_map_size, start);
> + if ((proc_map_pos < proc_map_size) &&
> + (proc_map[proc_map_pos].start < (start + size)) &&
> + ((proc_map[proc_map_pos].start +
> + proc_map[proc_map_pos].size) > start)) {
> + fprintf(stderr, "bbvgen: mmap() call overlaps an existing memory map"
> + " entry for %s while attempting shared object tracking\n",
> + original);
> + exit(EXIT_FAILURE);
> + }
> + /* insert an entry into the map */
> + proc_map = realloc(proc_map, (proc_map_size + 1) * sizeof(proc_map_entry));
> + memmove(&proc_map[proc_map_pos + 1], &proc_map[proc_map_pos],
> + (proc_map_size - proc_map_pos) * sizeof(proc_map_entry));
> + ++proc_map_size;
> +
> + proc_map[proc_map_pos].start = start;
> + proc_map[proc_map_pos].size = size;
> + proc_map[proc_map_pos].original_path = original;
> + proc_map[proc_map_pos].saved_path = saved;
> +
> + return proc_map_pos;
> +}
> +
> +static void handle_mmap_fd(uint64_t fd, uint64_t start, uint64_t size)
> +{
> + if (so_save_path == NULL) {
> + return;
> + }
> + /* find file mapping in question */
> + size_t fd_pos = lower_bound_uint64((char const *) fd_map, sizeof(fd_entry),
> + fd_map_size, fd);
> + if ((fd_pos >= fd_map_size) || (fd_map[fd_pos].fd != fd)) {
> + return;
> + }
> + /* generate filename for the copy of the .so */
> + char save_target_path_buf[PATH_MAX];
> + pid_t me = getpid();
> + snprintf(save_target_path_buf, sizeof(save_target_path_buf),
> + "%d-%d.so", (int) me, proc_map_sequence);
> + ++proc_map_sequence;
> +
> + size_t proc_map_pos = add_entry_to_proc_map(start, size,
> + strdup(fd_map[fd_pos].path),
> + strdup(save_target_path_buf));
> + /* copy the .so */
> + int srcfd = open(fd_map[fd_pos].path, O_RDONLY);
> + if (srcfd == -1) {
> + fprintf(stderr, "bbvgen: failed to open %s for reading (%s)\n",
> + fd_map[fd_pos].path, strerror(errno));
> + exit(EXIT_FAILURE);
> + }
> +
> + int dstfd = openat(so_save_fd, save_target_path_buf,
> + O_CREAT | O_TRUNC | O_WRONLY, 0700);
> + if (dstfd == -1) {
> + fprintf(stderr, "bbvgen: failed to open %s for writing"
> + " while trying to copy %s (%s)\n",
> + proc_map[proc_map_pos].saved_path, fd_map[fd_pos].path,
> + strerror(errno));
> + exit(EXIT_FAILURE);
> + }
> +
> + char buf[65536];
> + for (;;) {
> + ssize_t r = read(srcfd, buf, sizeof(buf));
> + if (r == 0) {
> + break;
> + }
> + if (r == -1) {
> + fprintf(stderr, "bbvgen: read failure while trying to copy %s (%s)\n",
> + fd_map[fd_pos].path, strerror(errno));
> + exit(EXIT_FAILURE);
> + }
> + ssize_t w = write(dstfd, buf, r);
> + if (w == -1) {
> + fprintf(stderr, "bbvgen: write failure while"
> + " trying to copy %s to %s (%s)\n",
> + fd_map[fd_pos].path, proc_map[proc_map_pos].saved_path,
> + strerror(errno));
> + exit(EXIT_FAILURE);
> + }
> + }
> + close(dstfd);
> + close(srcfd);
> +}
> +
> +static uint64_t write_memory_to_file(char const *dst, uint64_t start,
> + uint64_t size, off_t offset)
> +{
> + int dstfd = openat(so_save_fd, dst, O_CREAT | O_WRONLY, 0600);
> + if (dstfd == -1) {
> + fprintf(stderr, "bbvgen: failed to open %s for writing anonymous"
> + " memory dump (%s)\n", dst, strerror(errno));
> + exit(EXIT_FAILURE);
> + }
> + off_t new_offset = -1;
> + if (offset == (off_t) -1) {
> + new_offset = lseek(dstfd, 0, SEEK_END);
> + if (new_offset == (off_t) -1) {
> + fprintf(stderr, "bbvgen: failed to seek to end of %s for writing"
> + " anonymous memory dump (%s)\n", dst, strerror(errno));
> + exit(EXIT_FAILURE);
> + }
> + } else {
> + new_offset = lseek(dstfd, offset, SEEK_SET);
> + if (new_offset != offset) {
> + fprintf(stderr, "bbvgen: failed to seek within %s for updating"
> + " anonymous memory dump (%s)\n", dst, strerror(errno));
> + exit(EXIT_FAILURE);
> + }
> + }
> + if (new_offset < 0) {
> + fprintf(stderr, "bbvgen: lseek within %s for updating anonymous memory"
> + " dump returned negative offset (%s)\n", dst, strerror(errno));
> + exit(EXIT_FAILURE);
> + }
> + if (write(dstfd, (void *) start, size) < 0) {
> + fprintf(stderr, "bbvgen: failed to write to %s while writing anonymous"
> + " memory dump (%s)\n", dst, strerror(errno));
> + exit(EXIT_FAILURE);
> + }
> + if (close(dstfd) < 0) {
> + fprintf(stderr, "bbvgen: failed to close %s after writing anonymous"
> + " memory dump (%s)\n", dst, strerror(errno));
> + exit(EXIT_FAILURE);
> + }
> + return (uint64_t) new_offset;
> +}
> +
> +static void maybe_save_proc_map_entry(BlockInfo *bi)
> +{
> + if (so_save_path == NULL) {
> + return;
> + }
> + uint64_t pc = bi->pc;
> + size_t proc_map_pos = lower_bound_uint64((char const *) proc_map,
> + sizeof(proc_map_entry),
> + proc_map_size, pc);
> + if ((proc_map_pos < proc_map_size) &&
> + (proc_map[proc_map_pos].start <= pc) &&
> + ((proc_map[proc_map_pos].start +
> + proc_map[proc_map_pos].size) > pc)) {
> + proc_map_entry const *pentry = &proc_map[proc_map_pos];
> + bi->so_path_original = pentry->original_path;
> + bi->so_path_saved = pentry->saved_path;
> + bi->so_pc = pentry->start;
> + if (pentry->original_path == anonymous_block_name) {
> + uint64_t size = bi->tcg(next_pc) - pc;
> + uint64_t bb_file_offset = write_memory_to_file(pentry->saved_path,
> + pc, size, (off_t)-1);
> + /*
> + * record the file offset so we can later locate
> + * the basic block in the file for disassembly
> + */
> + bi->so_pc = bb_file_offset;
> + }
> + }
> +}
> +
> +static void handle_mmap_anonymous(uint64_t start, uint64_t size)
> +{
> + if (so_save_path == NULL) {
> + return;
> + }
> + add_entry_to_proc_map(start, size, anonymous_block_name,
> + anonymous_save_filename);
> +}
> +
> +static void handle_munmap(uint64_t start, uint64_t size)
> +{
> + if (so_save_path == NULL) {
> + return;
> + }
> + size_t proc_map_pos = lower_bound_uint64((char const *) proc_map,
> + sizeof(proc_map_entry),
> + proc_map_size, start);
> + if (proc_map_pos >= proc_map_size) {
> + return;
> + }
> +
> + if ((proc_map[proc_map_pos].start != start) ||
> + (proc_map[proc_map_pos].size != size)) {
> + if ((proc_map[proc_map_pos].start < (start + size)) &&
> + ((proc_map[proc_map_pos].start +
> + proc_map[proc_map_pos].size) > start)) {
> + fprintf(stderr, "bbvgen: munmap() call overlaps"
> + " but does not exactly match entry for %s"
> + " while attempting shared object tracking\n",
> + proc_map[proc_map_pos].original_path);
> + exit(EXIT_FAILURE);
> + }
> + return;
> + }
> +
> + --proc_map_size;
> + /*
> + * leak the paths: they're small, there's not many of them over the
> + * process lifetime and it's the easiest way to deal with BlockInfo
> + * wanting to refer to them
> + * free(proc_map[proc_map_pos].original_path);
> + * free(proc_map[proc_map_pos].saved_path);
> + */
> + memmove(&proc_map[proc_map_pos], &proc_map[proc_map_pos + 1],
> + (proc_map_size - proc_map_pos) * sizeof(proc_map_entry));
> +}
> +
> +/*
> + * Called on the child process after a fork. Resets counts and opens new
> + * output files with the child pid appended to the filename.
> + */
> +
> +static void reset_all_counters();
> +static void fork_output_files();
> +
> +static void handle_fork_child(void)
> +{
> + fork_output_files();
> + reset_all_counters();
> +}
> +
> +typedef struct {
> + int64_t num;
> + uint64_t a1;
> + uint64_t a2;
> + uint64_t a3;
> + uint64_t a4;
> + uint64_t a5;
> + uint64_t a6;
> + uint64_t a7;
> + uint64_t a8;
> +} syscall_params;
> +
> +static _Thread_local syscall_params last_syscall_params = {0};
> +
> +static int64_t clone_syscall_num = -1;
> +static int64_t openat_syscall_num = -1;
> +static int64_t mmap_syscall_num = -1;
> +static int64_t munmap_syscall_num = -1;
> +
> +#ifdef __linux__
> +static void vcpu_syscall(qemu_plugin_id_t id, unsigned int vcpu_idx,
> + int64_t num, uint64_t a1, uint64_t a2,
> + uint64_t a3, uint64_t a4, uint64_t a5,
> + uint64_t a6, uint64_t a7, uint64_t a8)
> +{
> + last_syscall_params.num = num;
> + last_syscall_params.a1 = a1;
> + last_syscall_params.a2 = a2;
> + last_syscall_params.a3 = a3;
> + last_syscall_params.a4 = a4;
> + last_syscall_params.a5 = a5;
> + last_syscall_params.a6 = a6;
> + last_syscall_params.a7 = a7;
> + last_syscall_params.a8 = a8;
> +}
> +#endif
> +
> +static void vcpu_syscall_ret(qemu_plugin_id_t id, unsigned int vcpu_idx,
> + int64_t num, int64_t ret)
> +{
> + if (num == clone_syscall_num) {
> + if (ret != 0) {
> + return;
> + }
> +#ifdef CONFIG_M5
> + if (m5ops) {
> + return;
> + }
> +#endif
> +#ifdef __linux__
> + if ((last_syscall_params.num == clone_syscall_num)
> + && (last_syscall_params.a1 & CLONE_VM)) {
This seems a bit sketchy as if you are running under translation you may
be using a different syscall number. Could you consider detecting this
on a vcpu_init?
> + /*
> + * We're sharing memory with the parent - it's a new thread, not a
> + * new process. leave counters alone so they can contribute to
> + * parent.
> + */
> + return;
> + }
> +#endif
> + /* We are officialy the child process in a fork that's returning. */
> + handle_fork_child();
> + return;
> + }
> +
> + if (so_save_path == NULL || (last_syscall_params.num != num)) {
> + return;
> + }
> +
> + if (num == openat_syscall_num) {
> + /*
> + * catch opening a file with an absolute path (as the dynamic library
> + * loader does) so we can update our map of file descriptor ->
> + * filename.
> + */
> + if ((ret < 0)
> + || (last_syscall_params.a1 != AT_FDCWD)
> + || (last_syscall_params.a2 == 0)
> + || ((*(char const *) last_syscall_params.a2) != '/')
> + ) {
> + return;
> + }
> +
> + g_mutex_lock(&lock);
> + /*
> + * FIXME: this only works in user mode, we need access to qemu's
> + * address mapping functions for system!
> + */
> + handle_fopen(ret, (char const *) last_syscall_params.a2);
> + g_mutex_unlock(&lock);
> + return;
> + }
> +
I wouldn't be averse to adding a user-mode helper/callback for mmap
changes. Detecting this from the "outside" is potentially going to run
into confusion between QEMU and its guest.
> + if (num == mmap_syscall_num) {
> + /*
> + * we handle executable memory mappings of files by taking a copy of
> + * the file, recording the original and copy filenames and where the
> + * file is mapped.
> + */
> + if ((ret != -1)
> + && (last_syscall_params.a1 == 0)
> + && (last_syscall_params.a2 != 0)
> + && ((last_syscall_params.a3 & (PROT_EXEC | PROT_READ | PROT_WRITE))
> + == (PROT_EXEC | PROT_READ))
> + && !(last_syscall_params.a4 & MAP_FIXED)
> + && (last_syscall_params.a5 != -1)
> + && (last_syscall_params.a6 == 0))
> + {
> + g_mutex_lock(&lock);
> + handle_mmap_fd(last_syscall_params.a5, ret,
> + last_syscall_params.a2);
> + g_mutex_unlock(&lock);
> + }
> + /*
> + * we also handle anonymous fixed address blocks as used by the
> + * openjdk jit compiler by appending them to a file and recording the
> + * offset
> + */
> + if ((last_syscall_params.a1 == ret)
> + && (last_syscall_params.a2 > 0)
> + && ((last_syscall_params.a3 & (PROT_EXEC | PROT_READ)) ==
> + (PROT_EXEC | PROT_READ))
> + && (last_syscall_params.a4 & MAP_FIXED)
> + && (last_syscall_params.a5 == -1)
> + && (last_syscall_params.a6 == 0))
> + {
> + g_mutex_lock(&lock);
> + handle_mmap_anonymous(ret, last_syscall_params.a2);
> + g_mutex_unlock(&lock);
> + }
> + return;
> + }
> +
> + if (num == munmap_syscall_num) {
> + if (ret == 0) {
> + g_mutex_lock(&lock);
> + handle_munmap(last_syscall_params.a1, last_syscall_params.a2);
> + g_mutex_unlock(&lock);
> + }
> + return;
> + }
> +}
> +
> +/****************************************************************/
> +
> +static gint cmp_pc(gconstpointer a, gconstpointer b)
> +{
> + uint64_t pca = GPOINTER_TO_UINT(a);
> + uint64_t pcb = GPOINTER_TO_UINT(b);
> + return pca < pcb ? -1 : 1;
> +}
> +
> +static void plugin_init(const char *target)
> +{
> + if (g_strcmp0(target, "riscv64") == 0 ||
> + g_strcmp0(target, "aarch64") == 0) {
> + clone_syscall_num = 220;
> + openat_syscall_num = 56;
> + mmap_syscall_num = 222;
> + munmap_syscall_num = 215;
> + } else if (g_strcmp0(target, "x86_64") == 0) {
> + clone_syscall_num = 56;
> + /*
> + * Don't support dynamic libs on x86 for now
> + * (need to hook open instead of openat)
> + */
> + free((void *) so_save_path);
> + so_save_path = NULL;
> + /* open_syscall_num = 2; */
> + /* mmap_syscall_num = 9; */
> + /* munmap_syscall_num = 11; */
> + } else {
> + printf("%s:%d: Unhandled target! Please fix!\n", __FILE__, __LINE__);
> + }
If we can come up with a clean abstraction for this it would save
plugins getting overly complex handling arch difference. I can see some
key system calls that make sense exposing with specific callbacks
although I guess we have to be careful that things can't be done through
multiple syscalls (compat, 32 bit etc).
> +
> + if (so_save_path) {
> + so_save_fd = open(so_save_path, O_DIRECTORY);
> + if (so_save_fd == -1 && errno == ENOENT) {
> + /* Make a simple attempt to create a non-existent directory. There
> + are plenty of ways this might fail, and we could work harder,
> + similar to the shell command `mkdir -p', but it's not worth the
> + effort. Let the user intervene and fix it if we fail here. */
> + mkdir(so_save_path, 0777);
> + so_save_fd = open(so_save_path, O_DIRECTORY);
> + }
> + if (so_save_fd == -1) {
> + fprintf(stderr, "bbvgen: failed to open dir %s (%s)\n",
> + so_save_path, strerror(errno));
> + exit(EXIT_FAILURE);
> + }
> + char save_target_path_buf[PATH_MAX];
> + pid_t me = getpid();
> + snprintf(save_target_path_buf, sizeof(save_target_path_buf),
> + "anonymous-%d.dump", (int)me);
> + anonymous_save_filename = strdup(save_target_path_buf);
> + }
> +
> + blocks_pc_table = g_hash_table_new(NULL, NULL);
> + blocks_next_pc_table = g_hash_table_new(NULL, NULL);
> + blocks_id_array = g_ptr_array_sized_new(4096);
> + blocks_pc_tree = g_tree_new(cmp_pc);
> +}
> +
> +static void roi_begin(void)
> +{
> + begin_output_files(BBV_TCG);
> + begin_output_files(BBV_CFG);
> + enabled = true;
> +}
> +
> +static void roi_end(void)
> +{
> + enabled = false;
> + /*
> + * Flush the partial interval that was in progress when the
> + * program exited.
> + */
> + end_interval();
> +}
> +
> +static void plugin_exit(qemu_plugin_id_t id, void *p)
> +{
> + roi_end();
> + qemu_plugin_register_vcpu_tb_trans_cb(id, NULL);
> +}
> +
> +#ifdef CONFIG_M5
> +static void handle_m5op(qemu_plugin_id_t id, unsigned int vcpu_index,
> + uint32_t m5op_num)
> +{
> + switch (m5op_num) {
> + case M5OP_WORK_BEGIN:
> + roi_begin();
> + break;
> + case M5OP_WORK_END:
> + roi_end();
> + break;
> + default:
> + return;
> + }
> +}
> +#endif
> +
> +/*
> + * These are simplified versions of the qemu/cutils functions, for sake of
> + * nicer error-case control flow, and for stifling scripts/checkpatch.pl
> + */
You could use the glib equivalents maybe?
> +
> +static int qemu_strtou64(const char *nptr, char **endptr, int base,
> + uint64_t *result)
> +{
> + char *ep;
> + errno = 0;
> + *result = strtoull(nptr, &ep, base);
> + if (*ep) {
> + errno = EINVAL;
> + }
> + if (endptr) {
> + *endptr = ep;
> + }
> + /* Windows returns 1 for negative out-of-range values. */
> + if (errno == ERANGE) {
> + *result = ~0;
> + }
> + return errno;
> +}
> +
> +static int qemu_strtoui(const char *nptr, char **endptr, int base,
> + unsigned int *result)
> +{
> + char *ep;
> + errno = 0;
> + long lresult = strtoull(nptr, &ep, base);
> + *result = (unsigned int) lresult;
> + if (*ep) {
> + errno = EINVAL;
> + }
> + if (endptr) {
> + *endptr = ep;
> + }
> + /* Windows returns 1 for negative out-of-range values. */
> + if (errno == ERANGE) {
> + *result = ~0;
> + }
> + return errno;
> +}
> +
> +char *strdup_gz(const char *path, const char *opt_name)
> +{
> + int length = strlen(path);
> + if (strcmp(path + length - 3, ".gz")) {
> + fprintf(stderr, "bbvgen: invalid gzip path name: %s=%s\n", opt_name, path);
> + return NULL;
> + }
> + return strdup(path);
> +}
> +
> +QEMU_PLUGIN_EXPORT
> +int qemu_plugin_install(qemu_plugin_id_t id, const qemu_info_t *info,
> + int argc, char **argv)
> +{
> + if (info->system_emulation) {
> + fprintf(stderr, "bbvgen: only user mode is supported\n");
> + return -1;
> + }
> + int opt_errors = 0;
> + for (int i = 0; i < argc; i++) {
> + char *opt = argv[i];
> + g_autofree char **tokens = g_strsplit(opt, "=", 2);
> + if (g_strcmp0(tokens[0], "bbv") == 0) {
> + cfg(bbv_path) = strdup_gz(tokens[1], tokens[0]);
> + if (cfg(bbv_path) == NULL) {
> + opt_errors++;
> + }
> + } else if (g_strcmp0(tokens[0], "bbv_tcg") == 0) {
> + tcg(bbv_path) = strdup_gz(tokens[1], tokens[0]);
> + if (cfg(bbv_path) == NULL) {
> + opt_errors++;
> + }
> + } else if (g_strcmp0(tokens[0], "bbvi") == 0) {
> + cfg(bbvi_path) = strdup_gz(tokens[1], tokens[0]);
> + if (cfg(bbv_path) == NULL) {
> + opt_errors++;
> + }
> + } else if (g_strcmp0(tokens[0], "bbvi_tcg") == 0) {
> + tcg(bbvi_path) = strdup_gz(tokens[1], tokens[0]);
> + if (cfg(bbv_path) == NULL) {
> + opt_errors++;
> + }
> + } else if (g_strcmp0(tokens[0], "trace") == 0) {
> + qemu_bbv_trace_path = strdup_gz(tokens[1], tokens[0]);
> + if (qemu_bbv_trace_path == NULL) {
> + opt_errors++;
> + }
> + } else if (g_strcmp0(tokens[0], "so_save_path") == 0) {
> + so_save_path = strdup(tokens[1]);
> + } else if (g_strcmp0(tokens[0], "ilen") == 0) {
> + if (qemu_strtou64(tokens[1], NULL, 0, &qemu_bbv_interval)) {
> + fprintf(stderr, "bbvgen: invalid integer value: %s\n", opt);
> + opt_errors++;
> + }
> + } else if (g_strcmp0(tokens[0], "nblocks") == 0) {
> + if (qemu_strtoui(tokens[1], NULL, 0, &qemu_bbv_blocks)) {
> + fprintf(stderr, "bbvgen: invalid integer value: %s\n", opt);
> + opt_errors++;
> + }
> + } else if (g_strcmp0(tokens[0], "trace_exec") == 0) {
> + if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &trace_exec)) {
> + fprintf(stderr, "bbvgen: invalid boolean value: %s\n", opt);
> + opt_errors++;
> + }
> + } else if (g_strcmp0(tokens[0], "nextpc") == 0) {
> + if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &print_next_pc)) {
> + fprintf(stderr, "bbvgen: invalid boolean value: %s\n", opt);
> + opt_errors++;
> + }
> +#ifdef CONFIG_M5
> + } else if (g_strcmp0(tokens[0], "m5ops") == 0) {
> + if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &m5ops)) {
> + fprintf(stderr, "bbvgen: invalid boolean value: %s\n", opt);
> + opt_errors++;
> + }
> +#endif
> + } else if (g_strcmp0(tokens[0], "hexaddrs") == 0) {
> + if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &hex_addrs)) {
> + fprintf(stderr, "bbvgen: invalid boolean value: %s\n", opt);
> + opt_errors++;
> + }
> + } else {
> + fprintf(stderr, "bbvgen: unknown option: %s\n", opt);
> + opt_errors++;
> + }
> + }
> +
> + if (t[BBV_CFG].bbv_path == NULL && t[BBV_CFG].bbvi_path == NULL) {
> + fprintf(stderr, "bbvgen: warning: neither output argument"
> + " \"bbv=<path>\" nor \"bbvi=<path>\" was specified\n");
> + }
> + const char *qemu_bbv_interval_str = "QEMU_BBV_INTERVAL";
> + char *opt = getenv(qemu_bbv_interval_str);
> + if (opt && qemu_strtou64(opt, NULL, 0, &qemu_bbv_interval)) {
> + fprintf(stderr, "bbvgen: invalid integer value: %s=%s\n",
> + qemu_bbv_interval_str, opt);
> + opt_errors++;
> + }
> + const char *qemu_bbv_blocks_str = "QEMU_BBV_BLOCKS";
> + opt = getenv(qemu_bbv_blocks_str);
> + if (opt && qemu_strtoui(opt, NULL, 0, &qemu_bbv_blocks)) {
> + fprintf(stderr, "bbvgen: invalid integer value: %s=%s\n",
> + qemu_bbv_blocks_str, opt);
> + opt_errors++;
> + }
> + const char *qemu_bbv_trace_str = "QEMU_BBV_TRACE";
> + opt = getenv(qemu_bbv_trace_str);
> + if (opt != NULL) {
> + qemu_bbv_trace_path = strdup_gz(opt, qemu_bbv_trace_str);
> + if (qemu_bbv_trace_path == NULL) {
> + opt_errors++;
> + }
> + }
> + if (opt_errors) {
> + return -1;
> + }
> + if (qemu_bbv_trace_path) {
> + trace_file = gzopen(qemu_bbv_trace_path, "wb9");
> + if (trace_file == Z_NULL) {
> + fprintf(stderr, "bbvgen: cannot open `%s' for compressed"
> + " writing (%s)\n", qemu_bbv_trace_path, strerror(errno));
> + free(qemu_bbv_trace_path);
> + qemu_bbv_trace_path = NULL;
> + }
> + }
> + plugin_init(info->target_name);
> +
> +#ifdef __linux__
> + qemu_plugin_register_vcpu_syscall_cb(id, vcpu_syscall);
> +#endif
> + qemu_plugin_register_vcpu_syscall_ret_cb(id, vcpu_syscall_ret);
> + qemu_plugin_register_atexit_cb(id, plugin_exit, NULL);
> + qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans);
> +#ifdef CONFIG_M5
> + if (m5ops) {
> + qemu_plugin_register_vcpu_m5op_cb(id, handle_m5op);
> + } else
> +#endif
> + {
> + roi_begin();
> + }
> + return 0;
> +}
> diff --git a/docs/about/emulation.rst b/docs/about/emulation.rst
> index 3028d5fff7..ea8d33b267 100644
> --- a/docs/about/emulation.rst
> +++ b/docs/about/emulation.rst
> @@ -496,6 +496,75 @@ The hotpages plugin can be configured using the following arguments:
> * - pagesize=N
> - The page size used. (Default: N = 4096)
>
> +Basic Block Vectors
> +...................
> +
> +``contrib/plugins/bbvgen.c``
> +
> +The bbvgen.c plugin is a much more accurate basic-block analyzer than
> +bb.c, and a more sophisticated hot path analyzer than hotblocks.c
> +
> + $ qemu-riscv64 $(QEMU_ARGS) \
> + -plugin contrib/plugins/libbbvgen.so,ilen=200000000,nblocks=200,bbv=bbv.gz,bbvi=bbvi.gz
> +
> + * ilen=N (default = 200,000,000)
> +
> + Divide counts into intervals of N instructions. Since interval
> + divisions occur at block boundaries, an interval might cover a few
> + more or fewer instructions than N.
> +
> + * nblocks=N (default = 200)
> +
> + The topblocks report contains the N most executed blocks. Block
> + counts are weighted as EXECS * INSNS, where EXECS is the number of
> + times the block executed, and INSNS is the number of instructions in
> + the block.
> +
> + * bbv=PATH.gz
> +
> + Output simple CFG block-count data into gzip stream in PATH.gz.
> +
> + * bbv_tcg=PATH.gz
> +
> + Output simple TCG block-count data into gzip stream in PATH.gz.
> +
> + * bbvi=PATH.gz
> +
> + Output richer CFG block-count data as JSON into gzip stream in PATH.gz.
> +
> + * bbvi_tcg=PATH.gz
> +
> + Output richer TCG block-count data as JSON into gzip stream in PATH.gz.
> +
> + * trace=PATH.gz
> +
> + Output debug traces whenever as TCG blocks are translated and
> + transformed to CFG blocks.
> +
> + * trace_exec=BOOL
> +
> + Augment the debug trace with a line for every time a TCG block is
> + executed. This greatly expands the trace file size.
> +
> + * hexaddrs=BOOL
> +
> + Print addresses as hex numbers in the JSON outputs. These are nicer
> + for correlating with disassembled code listings, but require
> + JSON5 parsers, which are typically much slower than standard JSON.
> +
> + * nextpc=BOOL
> +
> + Whenever a block's PC appears in the JSON output, also print its
> + NEXT_PC to fully explicate the block's range as [PC..NEXT_PC).
> +
> + * so_save_path=DIR
> +
> + Save all dynamically-linked objects in directory DIR. For each block
> + that resides in a shared object, print its filename and location in
> + the BBVI file. This info is used to produce a report annotated with
> + disassembled listings of hot blocks. Statically linked guest
> + programs do not need this option.
> +
Would it possible to reference some tools that can be used to consume
these bbv sequences?
> Instruction Distribution
> ........................
>
> diff --git a/scripts/process_bbvi.py b/scripts/process_bbvi.py
> new file mode 100755
> index 0000000000..09c5e88130
> --- /dev/null
> +++ b/scripts/process_bbvi.py
As this patch is quite big as it is this could be split into a separate
patch along with a description of what it does and why.
> @@ -0,0 +1,385 @@
> +#!/usr/bin/env python3
> +#
> +# Copyright (c) 2022 by Rivos Inc.
> +#
> +# This program is free software; you can redistribute it and/or modify
> +# it under the terms of the GNU General Public License as published by
> +# the Free Software Foundation; either version 2 of the License, or
> +# (at your option) any later version.
> +#
> +# This program is distributed in the hope that it will be useful,
> +# but WITHOUT ANY WARRANTY; without even the implied warranty of
> +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
> +# GNU General Public License for more details.
> +#
> +# You should have received a copy of the GNU General Public License
> +# along with this program; if not, see <http://www.gnu.org/licenses/>.
> +
> +"""Processes BBV info files from QEMU"""
> +
> +import argparse
> +import gzip
> +import json
> +import pathlib
> +import sys
> +import os
> +import shutil
> +import subprocess
> +
> +
> +if sys.stdout.isatty():
> + # ANSI Escape sequence for colors
> + RED = "\033[31;1m"
> + BOLD = "\033[1m"
> + BBLUE = "\033[94m"
> + GREEN = "\033[32m"
> + NORM = "\033[0m"
> +else:
> + # No color for logging to files
> + RED = ""
> + BOLD = ""
> + BBLUE = ""
> + GREEN = ""
> + NORM = ""
> +
> +
> +def find_tool(arch, tool):
> + patterns = (f"{arch}-unknown-linux-gnu-{tool}", f"{arch}-linux-gnu-{tool}")
> + return next(filter(lambda p: shutil.which(p) is not None, patterns), None)
> +
> +
> +def find_objdump(arch):
> + return find_tool(arch, "objdump")
> +
> +
> +def find_addr2line(arch):
> + return find_tool(arch, "addr2line")
> +
> +
> +def find_sources(arch, dump_lines, binary):
> + a2ltool = find_addr2line(arch)
> + if a2ltool is None:
> + raise Exception(f'Can\'t find addr2line for "{arch}" in $PATH')
> +
> + addrs = {
> + int(a.split(":")[0].strip(), 16): a.strip()
> + for a in dump_lines
> + if a.strip() != "..."
> + }
> + if len(addrs) == 0:
> + return {}
> + # Get function names and file/line numbers
> + ret = subprocess.run(
> + [a2ltool, "-C", "-f", "-e", binary] + [hex(a) for a in addrs.keys()],
> + capture_output=True,
> + check=True,
> + )
> + lines = [l.strip() for l in ret.stdout.decode("utf-8", "strict").split("\n")]
> + functions = {}
> + for ad, func, file_line in zip(addrs.keys(), lines[0::2], lines[1::2]):
> + path, line = file_line.split(":")
> + if line == "?":
> + continue
> + if "discriminator" in line:
> + line = line.split(" ")[0]
> + line_num = int(line) - 1
> + key = (path, func)
> + if key in functions:
> + functions[key][0] = min(functions[key][0], line_num)
> + functions[key][1] = max(functions[key][1], line_num)
> + functions[key][2].setdefault(line_num, []).append(addrs[ad])
> + else:
> + functions[key] = [line_num, line_num, {line_num: [addrs[ad]]}]
> + return functions
> +
> +
> +# Example nix build path: /build/build/benchspec/CPU/999.specrand_ir/build/build_base_rivos-m64.0000/specrand-common/specrand.c
> +# Want: /nix/store/dbklj8316vq409839k5dfs4gqv1554qp-cpu2017-1.1.7/benchspec/CPU/999.specrand_ir/src/specrand-common/specrand.c
> +def guess_correct_source_path(src_path, src_paths):
> + src_path = pathlib.Path(src_path)
> +
> + if src_path.exists():
> + return src_path
> +
> + src_paths = src_paths.split(":")
> + src_paths = [pathlib.Path(p) for p in src_paths]
> +
> + for candidate_src in src_paths:
> + # Keep on stripping off parts of the build dir until we find the right
> + # subtree in the src path.
> + src_path_relative = src_path.parts[1:]
> + while len(src_path_relative) >= 1:
> + combined_path = candidate_src.joinpath(*src_path_relative)
> + if combined_path.exists():
> + return combined_path
> +
> + src_path_relative = src_path_relative[1:]
> +
> + # Not found, fallback on original (missing) path
> + return src_path
> +
> +
> +# number of lines of context around the dumped sources
> +CONTEXT = 3
> +
> +
> +def dump_sources(arch, disassembly, binary, src_paths):
> + functions = find_sources(arch, disassembly, binary)
> +
> + lines = []
> + for (fpath, func), (l_min, l_max, asm) in functions.items():
> + fname = os.path.basename(fpath)
> + lines.append("")
> + lines.append(f"{BBLUE}/* ... {func} in {fname} ... */{NORM}")
> + fpath = guess_correct_source_path(fpath, src_paths)
> + try:
> + with open(fpath, "r") as f:
> + contents = f.readlines()
> + except Exception as e:
> + lines.append(str(fpath))
> + lines.append(f"/* --- NOT FOUND --- */ /* at {fpath} */")
> + continue
> + for lnum in range(
> + max(0, l_min - CONTEXT), min(l_max + CONTEXT, len(contents) - 1) + 1
> + ):
> + disasm = asm.setdefault(lnum, [""])
> + code = contents[lnum][:-1].replace("\t", " ")
> + color = BOLD if lnum >= l_min and lnum <= l_max else NORM
> + lines.append(
> + "{:4}:{}{:<82}{} > {}{}{}".format(
> + lnum + 1, color, code, NORM, GREEN, disasm[0], NORM
> + )
> + )
> + if len(disasm) > 1:
> + lines.extend([" " * 88 + f"| {GREEN}" + d + NORM for d in disasm[1:]])
> +
> + return lines
> +
> +
> +def disass_range(binary, start_addr, count, arch, pfxlines=6):
> + distool = find_objdump(arch)
> + if distool is None:
> + raise Exception(f'Can\'t find objdump for "{arch}" in $PATH')
> +
> + try:
> + # Reduce unneeded output by constructing a pessimistic end
> + # address, considering the "fanciest" architectures we might
> + # be dealing with.
> + end_addr = start_addr + 15 * count
> + ret = subprocess.run(
> + [
> + distool,
> + "-d",
> + "-C",
> + "--start-address",
> + hex(start_addr),
> + "--stop-address",
> + hex(end_addr),
> + binary,
> + ],
> + capture_output=True,
> + check=True,
> + )
> + except:
> + raise Exception("Failure during disassembly")
> +
> + # Trim down to just the label and the basic block;
> + # hopefully safe assumption about objdump output format.
> + lines = ret.stdout.decode("utf-8", "strict").splitlines()[pfxlines:]
> + # It's not safe (in some awesome architectures) to assume each
> + # line after the prefix represents an instruction.
> + # GNU objdump goes to a new line after 7 bytes of opcodes.
> + # We need to compensate for multi-line instructions.
> + # Keep only the line with the disassembly which has 3 columns.
> + inst_lines = [x for x in lines[1:] if len(x.split("\t")) > 2]
> + return lines[0:1] + inst_lines[:count]
> +
> +
> +def process_weights(weights, bbvinfo):
> + weighted_blocks = {}
> + for interval, weight in weights:
> + blocks = bbvinfo["intervals"][interval]["blocks"]
> + for block in blocks:
> + index = block["pc"]
> + if index not in weighted_blocks:
> + weighted_blocks[index] = 0.0
> + weighted_blocks[index] += weight * block["icount"]
> + return sorted(weighted_blocks.items(), key=lambda item: item[1], reverse=True)
> +
> +
> +def load_simpoint_info(simpoints_path, weights_path):
> + regions = []
> + weights = []
> +
> + # Like gem5, we ignore the 'index' column in both files. The only
> + # error is if the files have different lengths; the lines are
> + # assumed to correspond, and the "region" indexing starts at 0 and
> + # increments for each line.
> + if simpoints_path and simpoints_path.exists():
> + with open(simpoints_path) as fs:
> + for line in fs:
> + (interval, index) = line.split(" ")
> + regions.append(int(interval))
> +
> + if weights_path and weights_path.exists():
> + with open(weights_path) as fw:
> + for line in fw:
> + (weight, index) = line.split(" ")
> + weights.append((int(interval), float(weight)))
> +
> + if len(regions) > 0 and len(regions) != len(weights):
> + raise Exception("Mismatched length of simpoints and weights files")
> +
> + return (regions, weights)
> +
> +
> +def print_one_stats_line(label, misses, accesses):
> + percent = 0 if accesses == 0 else (misses * 100 / accesses)
> + print(f"%-10s miss rate: %10.6f%% {misses}/{accesses}" % (label, percent))
> +
> +
> +def print_cache_stats(stats):
> + print_one_stats_line(
> + "l1-inst", stats["l1-inst"]["misses"], stats["l1-inst"]["accesses"]
> + )
> + print_one_stats_line(
> + "l1-data", stats["l1-data"]["misses"], stats["l1-data"]["accesses"]
> + )
> + if "l2-inst" in stats and "l2-data" in stats:
> + print_one_stats_line(
> + "l2-inst", stats["l2-inst"]["misses"], stats["l2-inst"]["accesses"]
> + )
> + print_one_stats_line(
> + "l2-data", stats["l2-data"]["misses"], stats["l2-data"]["accesses"]
> + )
> + print_one_stats_line(
> + "l2-total",
> + stats["l2-data"]["misses"] + stats["l2-inst"]["misses"],
> + stats["l2-data"]["accesses"] + stats["l2-inst"]["accesses"],
> + )
> +
> +
> +def main():
> + parser = argparse.ArgumentParser(description=__doc__)
> + parser.add_argument("--simpoints", help="simpoints file", type=pathlib.Path)
> + parser.add_argument("--cache", help="cache stats", action="store_true")
> + parser.add_argument("--weights", help="simpoints weights file", type=pathlib.Path)
> + parser.add_argument(
> + "--bin", help="binary file to use for disassembly", type=pathlib.Path
> + )
> + parser.add_argument(
> + "--arch", help="architecture of the binary", type=str, default="riscv64"
> + )
> + parser.add_argument(
> + "--region", help="process the blocks for a single region", type=int, default=-1
> + )
> + parser.add_argument(
> + "--simpoint",
> + help="process the blocks for a single simpoint",
> + type=int,
> + default=-1,
> + )
> + parser.add_argument(
> + "--srcs_path",
> + help="paths to use for source code lookup, separated by colons",
> + type=str,
> + default="",
> + )
> + parser.add_argument("bbvi", help="BBV Info gzip file", type=pathlib.Path)
> + args = parser.parse_args()
> +
> + # Try to open the BBV info file; nothing else works without that.
> + try:
> + with gzip.open(args.bbvi) as fin:
> + bbvinfo = json.load(fin)
> + except:
> + print("Can't open the BBV info file")
> + sys.exit(1)
> +
> + # The simpoints file is needed for (1) simpoint index to region
> + # number mapping and (2) projecting overall top blocks from a
> + # weighted sum of the top simpoint regions. The weights file is
> + # only required for the latter computation.
> + (regions, weights) = load_simpoint_info(args.simpoints, args.weights)
> +
> + do_global = args.region == -1 and args.simpoint == -1
> + do_weights = len(weights) > 0 and do_global
> + do_disasm = args.bin is not None
> + do_cache = args.cache
> +
> + if args.simpoint != -1:
> + if len(regions) == 0:
> + print("Selecting a simpoint requires providing the simpoint/weights files")
> + sys.exit(1)
> + elif len(regions) <= args.simpoint:
> + print("Illegal simpoint index was provided")
> + sys.exit(1)
> + args.region = regions[args.simpoint]
> + print(f"Simpoint {args.simpoint} corresponds to interval/region {args.region}")
> + elif args.region != -1:
> + if len(bbvinfo["intervals"]) <= args.region:
> + print("Illegal region number was provided")
> + sys.exit(1)
> +
> + if do_cache:
> + if not "cache-stats" in bbvinfo:
> + print("BBVI has no cache stats!")
> + sys.exit(1)
> + if do_global:
> + print("\nCache statistics for entire run:")
> + print_cache_stats(bbvinfo["cache-stats"])
> + else:
> + print(f"\nCache statistics for region {args.region}:")
> + print_cache_stats(bbvinfo["intervals"][args.region]["cache-stats"])
> +
> + if do_weights:
> + print("\nComputing top blocks according to simpoint weights")
> + weighted_blocks = process_weights(weights, bbvinfo)
> + print("\nTop blocks by simpoint weights, and directly from full execution:")
> + for index, block in enumerate(bbvinfo["blocks"]):
> + if index == len(weighted_blocks):
> + break
> + print(index, hex(block["pc"]), hex(weighted_blocks[index][0]))
> +
> + if do_disasm:
> + if not args.bin.exists():
> + print(f"Bad path to binary: {args.bin}")
> + sys.exit(1)
> +
> + if do_global:
> + print(f"\nDisassembling the top blocks in {args.bin.name}:")
> + blocks = bbvinfo["blocks"]
> + else:
> + print(
> + f"\nDisassembling the top blocks for region {args.region} in {args.bin.name}:"
> + )
> + blocks = bbvinfo["intervals"][args.region]["blocks"]
> +
> + coverage = sum(float(b["pct"]) for b in blocks)
> + print(
> + "\nTop blocks account for %2.f%% of the %s"
> + % (coverage, "run" if do_global else "region")
> + )
> +
> + # For the overall top blocks, get the disassembly
> + for ind, block in enumerate(blocks):
> + try:
> + lines = disass_range(
> + args.bin, block["pc"], block["len"], args.arch
> + )
> + lines.extend(
> + dump_sources(args.arch, lines[1:], args.bin, args.srcs_path)
> + )
> + except Exception as e:
> + print(e)
> + sys.exit(1)
> + # emit the unweighted instruction count too
> + invoke = int(block["icount"] / block["len"])
> + print(
> + f'\nBlock {ind} @ {hex(block["pc"])}, {block["len"]} insns, {invoke} times, {block["pct"]}%:\n'
> + )
> + print("\n".join(lines))
> +
> +
> +if __name__ == "__main__":
> + main()
--
Alex Bennée
Virtualisation Tech Lead @ Linaro
prev parent reply other threads:[~2024-10-21 10:22 UTC|newest]
Thread overview: 2+ messages / expand[flat|nested] mbox.gz Atom feed top
2024-10-04 22:57 [PATCH v2] Add plugin bbvgen: basic block icounts for topblocks + simpoints Greg McGary
2024-10-21 10:21 ` Alex Bennée [this message]
Reply instructions:
You may reply publicly to this message via plain-text email
using any one of the following methods:
* Save the following mbox file, import it into your mail client,
and reply-to-all from there: mbox
Avoid top-posting and favor interleaved quoting:
https://en.wikipedia.org/wiki/Posting_style#Interleaved_style
* Reply using the --to, --cc, and --in-reply-to
switches of git-send-email(1):
git send-email \
--in-reply-to=87sespoixt.fsf@draig.linaro.org \
--to=alex.bennee@linaro.org \
--cc=gkm@rivosinc.com \
--cc=qemu-devel@nongnu.org \
/path/to/YOUR_REPLY
https://kernel.org/pub/software/scm/git/docs/git-send-email.html
* If your mail client supports setting the In-Reply-To header
via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line
before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).