* [PATCH v1 0/5] hw/ppc: SPI model
@ 2024-02-07 16:08 Chalapathi V
2024-02-07 16:08 ` [PATCH v1 1/5] hw/ppc: SPI responder model Chalapathi V
` (5 more replies)
0 siblings, 6 replies; 15+ messages in thread
From: Chalapathi V @ 2024-02-07 16:08 UTC (permalink / raw)
To: qemu-devel
Cc: qemu-ppc, fbarrat, npiggin, clg, calebs, chalapathi.v,
chalapathi.v, saif.abrar
Hello,
In this series of patchset, SPI controller and responder models
for Power10 processor are modelled.
Serial peripheral interface provides full-duplex synchronous serial
communication between single controller and multiple responder devices.
The current configuration supports a single SPI controller reside on the
SPI bus. In p10, SPI controller device model supports a connection to a
single SPI responder such as SPI seeproms, TPM, flash device and an ADC
controller.
SPI controller model is divided into configuration unit, sequencer FSM
and shifter engine. All SPI function control is mapped into the SPI register
space to enable full control by firmware.
SPI configuration component is modelled which contains all SPI configuration
and status registers as well as the hold registers for data to be sent or
having been received.
Shift engine performs serialization and de-serialization according to the
control by the sequencer and according to the setup defined in the
configuration registers.
Sequencer implements the main control logic and
FSM to handle data transmit and data receive control of the shift engine.
Microchip's 25CSM04 SEEPROM device is modelled and connected to SPI bus
"spi_bus2" of SPI controller "PIB_SPIC[2]".
Patches overview in V1.
PATCH1: Create a SPI responder model which includes responder methods
and SPI bus implementation.
PATCH2: Create a SPI controller model and implement configuration unit
to model SCOM registers.
PATCH3: SPI controller model: implement sequencer FSM and shift engine.
PATCH4: create SPI SEEPROM model.
PATCH5: Connect SPI controllers to p10 chip and create keystore seeprom
device on spi_bus2 of PIB_SPIC[2].
Thank You,
Chalapathi
Chalapathi V (5):
hw/ppc: SPI responder model
hw/ppc: SPI controller model - registers implementation
hw/ppc: SPI controller model - sequencer and shifter
hw/ppc: SPI SEEPROM model
hw/ppc: SPI controller wiring to P10 chip and create seeprom device
include/hw/ppc/pnv_chip.h | 4 +
include/hw/ppc/pnv_spi_controller.h | 101 ++
include/hw/ppc/pnv_spi_responder.h | 109 ++
include/hw/ppc/pnv_spi_seeprom.h | 70 ++
include/hw/ppc/pnv_xscom.h | 3 +
hw/ppc/pnv.c | 32 +
hw/ppc/pnv_spi_controller.c | 1609 +++++++++++++++++++++++++++
hw/ppc/pnv_spi_responder.c | 166 +++
hw/ppc/pnv_spi_seeprom.c | 989 ++++++++++++++++
hw/ppc/meson.build | 3 +
10 files changed, 3086 insertions(+)
create mode 100644 include/hw/ppc/pnv_spi_controller.h
create mode 100644 include/hw/ppc/pnv_spi_responder.h
create mode 100644 include/hw/ppc/pnv_spi_seeprom.h
create mode 100644 hw/ppc/pnv_spi_controller.c
create mode 100644 hw/ppc/pnv_spi_responder.c
create mode 100644 hw/ppc/pnv_spi_seeprom.c
--
2.31.1
^ permalink raw reply [flat|nested] 15+ messages in thread
* [PATCH v1 1/5] hw/ppc: SPI responder model
2024-02-07 16:08 [PATCH v1 0/5] hw/ppc: SPI model Chalapathi V
@ 2024-02-07 16:08 ` Chalapathi V
2024-03-08 16:00 ` Stefan Berger
2024-02-07 16:08 ` [PATCH v1 2/5] hw/ppc: SPI controller model - registers implementation Chalapathi V
` (4 subsequent siblings)
5 siblings, 1 reply; 15+ messages in thread
From: Chalapathi V @ 2024-02-07 16:08 UTC (permalink / raw)
To: qemu-devel
Cc: qemu-ppc, fbarrat, npiggin, clg, calebs, chalapathi.v,
chalapathi.v, saif.abrar
Serial pheripheral interface provides full-duplex synchronous serial
communication between single controller and multiple responder devices.
One SPI Controller is implemented and supported on a SPI Bus, there is
no support for multiple controllers on the SPI bus.
The current implemetation assumes that single responder is connected to
bus, hence chip_select is not modelled.
Signed-off-by: Chalapathi V <chalapathi.v@linux.ibm.com>
---
include/hw/ppc/pnv_spi_responder.h | 109 +++++++++++++++++++
hw/ppc/pnv_spi_responder.c | 166 +++++++++++++++++++++++++++++
hw/ppc/meson.build | 1 +
3 files changed, 276 insertions(+)
create mode 100644 include/hw/ppc/pnv_spi_responder.h
create mode 100644 hw/ppc/pnv_spi_responder.c
diff --git a/include/hw/ppc/pnv_spi_responder.h b/include/hw/ppc/pnv_spi_responder.h
new file mode 100644
index 0000000000..1cf7279aad
--- /dev/null
+++ b/include/hw/ppc/pnv_spi_responder.h
@@ -0,0 +1,109 @@
+/*
+ * QEMU SPI Responder.
+ *
+ * Copyright (c) 2024, IBM Corporation.
+ *
+ * SPDX-License-Identifier: GPL-2.0-or-later
+ *
+ * SPI provides full-duplex synchronous serial communication between single
+ * controller and multiple responder devices. One SPI Controller is
+ * implemented and supported on a SPI Bus, there is no support for multiple
+ * controllers on the SPI bus.
+ *
+ * The current implementation assumes that single responder is connected to
+ * bus, hence chip_select is not modelled.
+ */
+
+#ifndef PPC_PNV_SPI_RESPONDER_H
+#define PPC_PNV_SPI_RESPONDER_H
+
+#include "hw/qdev-core.h"
+#include "qom/object.h"
+#include "qemu/log.h"
+
+#define TYPE_PNV_SPI_RESPONDER "spi-responder"
+OBJECT_DECLARE_TYPE(PnvSpiResponder, PnvSpiResponderClass,
+ PNV_SPI_RESPONDER)
+
+typedef struct xfer_buffer xfer_buffer;
+
+struct PnvSpiResponderClass {
+ DeviceClass parent_class;
+
+ /*
+ * These methods are from controller to responder and implemented
+ * by all responders.
+ * Connect_controller/disconnect_controller methods are called by
+ * controller to initiate/stop the SPI transfer.
+ */
+ void (*connect_controller)(PnvSpiResponder *responder, const char *port);
+ void (*disconnect_controller)(PnvSpiResponder *responder);
+ /*
+ * SPI transfer consists of a number of consecutive calls to the request
+ * method.
+ * The parameter first is true on first call of the transfer and last is on
+ * the final call of the transfer. Parameter bits and payload defines the
+ * number of bits and data payload sent by controller.
+ * Responder returns the response payload.
+ */
+ xfer_buffer *(*request)(PnvSpiResponder *responder, int first, int last,
+ int bits, xfer_buffer *payload);
+};
+
+struct PnvSpiResponder {
+ DeviceState parent_obj;
+};
+
+#define TYPE_SPI_BUS "spi-bus"
+OBJECT_DECLARE_SIMPLE_TYPE(SpiBus, SPI_BUS)
+
+struct SpiBus {
+ BusState parent_obj;
+};
+
+/*
+ * spi_realize_and_unref: realize and unref an SPI responder
+ * @dev: SPI responder to realize
+ * @bus: SPI bus to put it on
+ * @errp: error pointer
+ */
+bool spi_realize_and_unref(DeviceState *dev, SpiBus *bus, Error **errp);
+
+/*
+ * spi_create_responder: create a SPI responder.
+ * @bus: SPI bus to put it on
+ * @name: name of the responder object.
+ * call spi_realize_and_unref() after creating the responder.
+ */
+
+PnvSpiResponder *spi_create_responder(SpiBus *bus, const char *name);
+
+/* xfer_buffer */
+typedef struct xfer_buffer {
+
+ uint32_t len;
+ uint8_t *data;
+
+} xfer_buffer;
+
+/*
+ * xfer_buffer_read_ptr: Increment the payload length and return the pointer
+ * to the data at offset
+ */
+uint8_t *xfer_buffer_write_ptr(xfer_buffer *payload, uint32_t offset,
+ uint32_t length);
+/* xfer_buffer_read_ptr: Return the pointer to the data at offset */
+void xfer_buffer_read_ptr(xfer_buffer *payload, uint8_t **read_buf,
+ uint32_t offset, uint32_t length);
+/* xfer_buffer_new: Allocate memory and return the pointer */
+xfer_buffer *xfer_buffer_new(void);
+/* xfer_buffer_free: free the payload */
+void xfer_buffer_free(xfer_buffer *payload);
+
+/* Controller interface */
+SpiBus *spi_create_bus(DeviceState *parent, const char *name);
+xfer_buffer *spi_request(SpiBus *bus, int first, int last, int bits,
+ xfer_buffer *payload);
+bool spi_connect_controller(SpiBus *bus, const char *port);
+bool spi_disconnect_controller(SpiBus *bus);
+#endif /* PPC_PNV_SPI_SEEPROM_H */
diff --git a/hw/ppc/pnv_spi_responder.c b/hw/ppc/pnv_spi_responder.c
new file mode 100644
index 0000000000..c3bc659b1b
--- /dev/null
+++ b/hw/ppc/pnv_spi_responder.c
@@ -0,0 +1,166 @@
+/*
+ * QEMU PowerPC SPI Responder
+ *
+ * Copyright (c) 2024, IBM Corporation.
+ *
+ * SPDX-License-Identifier: GPL-2.0-or-later
+ */
+
+#include "qemu/osdep.h"
+#include "hw/ppc/pnv_spi_responder.h"
+#include "qapi/error.h"
+
+static const TypeInfo spi_bus_info = {
+ .name = TYPE_SPI_BUS,
+ .parent = TYPE_BUS,
+ .instance_size = sizeof(SpiBus),
+};
+
+SpiBus *spi_create_bus(DeviceState *parent, const char *name)
+{
+ BusState *bus;
+ bus = qbus_new(TYPE_SPI_BUS, parent, name);
+ return SPI_BUS(bus);
+}
+
+/* xfer_buffer_methods */
+xfer_buffer *xfer_buffer_new(void)
+{
+ xfer_buffer *payload = g_malloc0(sizeof(*payload));
+ payload->data = g_malloc0(payload->len * sizeof(uint8_t));
+ return payload;
+}
+
+void xfer_buffer_free(xfer_buffer *payload)
+{
+ free(payload->data);
+ payload->data = NULL;
+ free(payload);
+}
+
+uint8_t *xfer_buffer_write_ptr(xfer_buffer *payload, uint32_t offset,
+ uint32_t length)
+{
+ if (payload->len < (offset + length)) {
+ payload->len = offset + length;
+ payload->data = g_realloc(payload->data,
+ payload->len * sizeof(uint8_t));
+ }
+ return &payload->data[offset];
+}
+
+void xfer_buffer_read_ptr(xfer_buffer *payload, uint8_t **read_buf,
+ uint32_t offset, uint32_t length)
+{
+ static uint32_t prev_len;
+ uint32_t offset_org = offset;
+ if (offset > payload->len) {
+ if (length < payload->len) {
+ offset = payload->len - length;
+ } else {
+ offset = 0;
+ length = payload->len;
+ }
+ qemu_log_mask(LOG_GUEST_ERROR, "Read offset(%d) exceeds buffer "
+ "length(%d), altered offset to %d and length to %d to "
+ "read within buffer\n", offset_org, payload->len,
+ offset, length);
+ } else if ((offset + length) > payload->len) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Read length(%d) bytes from offset (%d)"
+ ", exceeds buffer length(%d)\n", length, offset,
+ payload->len);
+ length = payload->len - offset;
+ }
+
+ if ((prev_len != length) || (*read_buf == NULL)) {
+ *read_buf = g_realloc(*read_buf, length * sizeof(uint8_t));
+ prev_len = length;
+ }
+ *read_buf = &payload->data[offset];
+}
+
+/* Controller interface methods */
+bool spi_connect_controller(SpiBus *bus, const char *port)
+{
+ BusState *b = BUS(bus);
+ BusChild *kid;
+ QTAILQ_FOREACH(kid, &b->children, sibling) {
+ PnvSpiResponder *r = PNV_SPI_RESPONDER(kid->child);
+ PnvSpiResponderClass *rc = PNV_SPI_RESPONDER_GET_CLASS(r);
+ rc->connect_controller(r, port);
+ return true;
+ }
+ return false;
+}
+bool spi_disconnect_controller(SpiBus *bus)
+{
+ BusState *b = BUS(bus);
+ BusChild *kid;
+ QTAILQ_FOREACH(kid, &b->children, sibling) {
+ PnvSpiResponder *r = PNV_SPI_RESPONDER(kid->child);
+ PnvSpiResponderClass *rc = PNV_SPI_RESPONDER_GET_CLASS(r);
+ rc->disconnect_controller(r);
+ return true;
+ }
+ return false;
+}
+
+xfer_buffer *spi_request(SpiBus *bus,
+ int first, int last, int bits, xfer_buffer *payload)
+{
+ BusState *b = BUS(bus);
+ BusChild *kid;
+ xfer_buffer *rsp_payload = NULL;
+ uint8_t *buf = NULL;
+
+ QTAILQ_FOREACH(kid, &b->children, sibling) {
+ PnvSpiResponder *r = PNV_SPI_RESPONDER(kid->child);
+ PnvSpiResponderClass *rc = PNV_SPI_RESPONDER_GET_CLASS(r);
+ rsp_payload = rc->request(r, first, last, bits, payload);
+ return rsp_payload;
+ }
+ if (rsp_payload == NULL) {
+ rsp_payload = xfer_buffer_new();
+ }
+ buf = xfer_buffer_write_ptr(rsp_payload, 0, payload->len);
+ memset(buf, 0, payload->len);
+ return rsp_payload;
+}
+
+/* create and realise spi responder device */
+bool spi_realize_and_unref(DeviceState *dev, SpiBus *bus, Error **errp)
+{
+ return qdev_realize_and_unref(dev, &bus->parent_obj, errp);
+}
+
+PnvSpiResponder *spi_create_responder(SpiBus *bus, const char *name)
+{
+ DeviceState *dev = qdev_new(name);
+
+ spi_realize_and_unref(dev, bus, &error_fatal);
+ return PNV_SPI_RESPONDER(dev);
+}
+
+static void pnv_spi_responder_class_init(ObjectClass *klass, void *data)
+{
+ DeviceClass *dc = DEVICE_CLASS(klass);
+
+ dc->desc = "PowerNV SPI RESPONDER";
+}
+
+static const TypeInfo pnv_spi_responder_info = {
+ .name = TYPE_PNV_SPI_RESPONDER,
+ .parent = TYPE_DEVICE,
+ .instance_size = sizeof(PnvSpiResponder),
+ .class_init = pnv_spi_responder_class_init,
+ .abstract = true,
+ .class_size = sizeof(PnvSpiResponderClass),
+};
+
+static void pnv_spi_responder_register_types(void)
+{
+ type_register_static(&pnv_spi_responder_info);
+ type_register_static(&spi_bus_info);
+}
+
+type_init(pnv_spi_responder_register_types);
diff --git a/hw/ppc/meson.build b/hw/ppc/meson.build
index eba3406e7f..9bfd5a5613 100644
--- a/hw/ppc/meson.build
+++ b/hw/ppc/meson.build
@@ -53,6 +53,7 @@ ppc_ss.add(when: 'CONFIG_POWERNV', if_true: files(
'pnv_bmc.c',
'pnv_homer.c',
'pnv_pnor.c',
+ 'pnv_spi_responder.c',
))
# PowerPC 4xx boards
ppc_ss.add(when: 'CONFIG_PPC405', if_true: files(
--
2.31.1
^ permalink raw reply related [flat|nested] 15+ messages in thread
* [PATCH v1 2/5] hw/ppc: SPI controller model - registers implementation
2024-02-07 16:08 [PATCH v1 0/5] hw/ppc: SPI model Chalapathi V
2024-02-07 16:08 ` [PATCH v1 1/5] hw/ppc: SPI responder model Chalapathi V
@ 2024-02-07 16:08 ` Chalapathi V
2024-03-07 18:54 ` Stefan Berger
2024-02-07 16:08 ` [PATCH v1 3/5] hw/ppc: SPI controller model - sequencer and shifter Chalapathi V
` (3 subsequent siblings)
5 siblings, 1 reply; 15+ messages in thread
From: Chalapathi V @ 2024-02-07 16:08 UTC (permalink / raw)
To: qemu-devel
Cc: qemu-ppc, fbarrat, npiggin, clg, calebs, chalapathi.v,
chalapathi.v, saif.abrar
SPI controller device model supports a connection to a single SPI responder.
This provide access to SPI seeproms, TPM, flash device and an ADC controller.
All SPI function control is mapped into the SPI register space to enable full
control by firmware. In this commit SPI configuration component is modelled
which contains all SPI configuration and status registers as well as the hold
registers for data to be sent or having been received.
Signed-off-by: Chalapathi V <chalapathi.v@linux.ibm.com>
---
include/hw/ppc/pnv_spi_controller.h | 43 ++++
include/hw/ppc/pnv_xscom.h | 3 +
hw/ppc/pnv_spi_controller.c | 337 ++++++++++++++++++++++++++++
hw/ppc/meson.build | 1 +
4 files changed, 384 insertions(+)
create mode 100644 include/hw/ppc/pnv_spi_controller.h
create mode 100644 hw/ppc/pnv_spi_controller.c
diff --git a/include/hw/ppc/pnv_spi_controller.h b/include/hw/ppc/pnv_spi_controller.h
new file mode 100644
index 0000000000..8afaabdd1b
--- /dev/null
+++ b/include/hw/ppc/pnv_spi_controller.h
@@ -0,0 +1,43 @@
+/*
+ * QEMU PowerPC SPI Controller model
+ *
+ * Copyright (c) 2024, IBM Corporation.
+ *
+ * SPDX-License-Identifier: GPL-2.0-or-later
+ *
+ * This model Supports a connection to a single SPI responder.
+ * Introduced for P10 to provide access to SPI seeproms, TPM, flash device
+ * and an ADC controller.
+ */
+
+#ifndef PPC_PNV_SPI_CONTROLLER_H
+#define PPC_PNV_SPI_CONTROLLER_H
+
+#define TYPE_PNV_SPI_CONTROLLER "pnv-spi-controller"
+#define PNV_SPICONTROLLER(obj) \
+ OBJECT_CHECK(PnvSpiController, (obj), TYPE_PNV_SPI_CONTROLLER)
+
+#define SPI_CONTROLLER_REG_SIZE 8
+
+typedef struct SpiBus SpiBus;
+
+typedef struct PnvSpiController {
+ DeviceState parent;
+
+ SpiBus *spi_bus;
+ MemoryRegion xscom_spic_regs;
+ /* SPI controller object number */
+ uint32_t spic_num;
+
+ /* SPI Controller registers */
+ uint64_t error_reg;
+ uint64_t counter_config_reg;
+ uint64_t config_reg1;
+ uint64_t clock_config_reset_control;
+ uint64_t memory_mapping_reg;
+ uint64_t transmit_data_reg;
+ uint64_t receive_data_reg;
+ uint8_t sequencer_operation_reg[SPI_CONTROLLER_REG_SIZE];
+ uint64_t status_reg;
+} PnvSpiController;
+#endif /* PPC_PNV_SPI_CONTROLLER_H */
diff --git a/include/hw/ppc/pnv_xscom.h b/include/hw/ppc/pnv_xscom.h
index f5becbab41..0575bf0985 100644
--- a/include/hw/ppc/pnv_xscom.h
+++ b/include/hw/ppc/pnv_xscom.h
@@ -176,6 +176,9 @@ struct PnvXScomInterfaceClass {
#define PNV10_XSCOM_PEC_PCI_BASE 0x8010800 /* index goes upwards ... */
#define PNV10_XSCOM_PEC_PCI_SIZE 0x200
+#define PNV10_XSCOM_PIB_SPIC_BASE 0xc0000
+#define PNV10_XSCOM_PIB_SPIC_SIZE 0x20
+
void pnv_xscom_init(PnvChip *chip, uint64_t size, hwaddr addr);
int pnv_dt_xscom(PnvChip *chip, void *fdt, int root_offset,
uint64_t xscom_base, uint64_t xscom_size,
diff --git a/hw/ppc/pnv_spi_controller.c b/hw/ppc/pnv_spi_controller.c
new file mode 100644
index 0000000000..0f2bc25e82
--- /dev/null
+++ b/hw/ppc/pnv_spi_controller.c
@@ -0,0 +1,337 @@
+/*
+ * QEMU PowerPC SPI Controller model
+ *
+ * Copyright (c) 2024, IBM Corporation.
+ *
+ * SPDX-License-Identifier: GPL-2.0-or-later
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/log.h"
+#include "hw/qdev-properties.h"
+#include "hw/ppc/pnv.h"
+#include "hw/ppc/pnv_xscom.h"
+#include "hw/ppc/pnv_spi_controller.h"
+#include "hw/ppc/pnv_spi_responder.h"
+#include "hw/ppc/fdt.h"
+#include <libfdt.h>
+#include <math.h>
+
+#define SPI_DEBUG(x)
+
+/* Error Register */
+#define ERROR_REG 0x00
+
+/* counter_config_reg */
+#define COUNTER_CONFIG_REG 0x01
+#define COUNTER_CONFIG_REG_SHIFT_COUNT_N1 PPC_BITMASK(0 , 7)
+#define COUNTER_CONFIG_REG_SHIFT_COUNT_N2 PPC_BITMASK(8 , 15)
+#define COUNTER_CONFIG_REG_COUNT_COMPARE1 PPC_BITMASK(24 , 31)
+#define COUNTER_CONFIG_REG_COUNT_COMPARE2 PPC_BITMASK(32 , 39)
+#define COUNTER_CONFIG_REG_N1_COUNT_CONTROL PPC_BITMASK(48 , 51)
+#define COUNTER_CONFIG_REG_N2_COUNT_CONTROL PPC_BITMASK(52 , 55)
+
+/* config_reg */
+#define CONFIG_REG1 0x02
+
+/* clock_config_reset_control_ecc_enable_reg */
+#define CLOCK_CONFIG_REG 0x03
+#define CLOCK_CONFIG_RESET_CONTROL_HARD_RESET 0x0084000000000000;
+#define CLOCK_CONFIG_REG_RESET_CONTROL PPC_BITMASK(24 , 27)
+#define CLOCK_CONFIG_REG_ECC_CONTROL PPC_BITMASK(28 , 30)
+
+/* memory_mapping_reg */
+#define MEMORY_MAPPING_REG 0x04
+#define MEMORY_MAPPING_REG_MMSPISM_BASE_ADDR PPC_BITMASK(0 , 15)
+#define MEMORY_MAPPING_REG_MMSPISM_ADDR_MASK PPC_BITMASK(16 , 31)
+#define MEMORY_MAPPING_REG_RDR_MATCH_VAL PPC_BITMASK(32 , 47)
+#define MEMORY_MAPPING_REG_RDR_MATCH_MASK PPC_BITMASK(48 , 63)
+
+/* transmit_data_reg */
+#define TRANSMIT_DATA_REG 0x05
+
+/* receive_data_reg */
+#define RECEIVE_DATA_REG 0x06
+
+/* sequencer_operation_reg */
+#define SEQUENCER_OPERATION_REG 0x07
+
+/* status_reg */
+#define STATUS_REG 0x08
+#define STATUS_REG_RDR_FULL PPC_BIT(0)
+#define STATUS_REG_RDR_OVERRUN PPC_BIT(1)
+#define STATUS_REG_RDR_UNDERRUN PPC_BIT(2)
+#define STATUS_REG_TDR_FULL PPC_BIT(4)
+#define STATUS_REG_TDR_OVERRUN PPC_BIT(5)
+#define STATUS_REG_TDR_UNDERRUN PPC_BIT(6)
+#define STATUS_REG_SEQUENCER_FSM PPC_BITMASK(8 , 15)
+#define STATUS_REG_SHIFTER_FSM PPC_BITMASK(16 , 27)
+#define STATUS_REG_SEQUENCER_INDEX PPC_BITMASK(28 , 31)
+#define STATUS_REG_GENERAL_SPI_STATUS PPC_BITMASK(32 , 63)
+#define STATUS_REG_RDR PPC_BITMASK(1 , 3)
+#define STATUS_REG_TDR PPC_BITMASK(5 , 7)
+
+/*
+ * Shifter states
+ *
+ * These are the same values defined for the Shifter FSM field of the
+ * status register. It's a 12 bit field so we will represent it as three
+ * nibbles in the constants.
+ *
+ * These are shifter_fsm values
+ *
+ * Status reg bits 16-27 -> field bits 0-11
+ * bits 0,1,2,5 unused/reserved
+ * bit 4 crc shift in (unused)
+ * bit 8 crc shift out (unused)
+ */
+
+#define FSM_DONE 0x100 /* bit 3 */
+#define FSM_SHIFT_N2 0x020 /* bit 6 */
+#define FSM_WAIT 0x010 /* bit 7 */
+#define FSM_SHIFT_N1 0x004 /* bit 9 */
+#define FSM_START 0x002 /* bit 10 */
+#define FSM_IDLE 0x001 /* bit 11 */
+
+/*
+ * Sequencer states
+ *
+ * These are sequencer_fsm values
+ *
+ * Status reg bits 8-15 -> field bits 0-7
+ * bits 0-3 unused/reserved
+ *
+ */
+#define SEQ_STATE_INDEX_INCREMENT 0x08 /* bit 4 */
+#define SEQ_STATE_EXECUTE 0x04 /* bit 5 */
+#define SEQ_STATE_DECODE 0x02 /* bit 6 */
+#define SEQ_STATE_IDLE 0x01 /* bit 7 */
+
+/*
+ * These are the supported sequencer operations.
+ * Only the upper nibble is significant because for many operations
+ * the lower nibble is a variable specific to the operation.
+ */
+#define SEQ_OP_STOP 0x00
+#define SEQ_OP_SELECT_SLAVE 0x10
+#define SEQ_OP_SHIFT_N1 0x30
+#define SEQ_OP_SHIFT_N2 0x40
+#define SEQ_OP_BRANCH_IFNEQ_RDR 0x60
+#define SEQ_OP_TRANSFER_TDR 0xC0
+#define SEQ_OP_BRANCH_IFNEQ_INC_1 0xE0
+#define SEQ_OP_BRANCH_IFNEQ_INC_2 0xF0
+
+
+static uint64_t pnv_spi_controller_read(void *opaque, hwaddr addr,
+ unsigned size)
+{
+ PnvSpiController *sc = PNV_SPICONTROLLER(opaque);
+ uint32_t reg = addr >> 3;
+
+ uint64_t val = ~0ull;
+
+ switch (reg) {
+ case ERROR_REG:
+ val = sc->error_reg;
+ break;
+ case COUNTER_CONFIG_REG:
+ val = sc->counter_config_reg;
+ break;
+ case CONFIG_REG1:
+ val = sc->config_reg1;
+ break;
+ case CLOCK_CONFIG_REG:
+ val = sc->clock_config_reset_control;
+ break;
+ case MEMORY_MAPPING_REG:
+ val = sc->memory_mapping_reg;
+ break;
+ case TRANSMIT_DATA_REG:
+ val = sc->transmit_data_reg;
+ break;
+ case RECEIVE_DATA_REG:
+ val = sc->receive_data_reg;
+ SPI_DEBUG(qemu_log("RDR being read, data extracted = 0x%16.16lx\n",
+ val));
+ sc->status_reg = SETFIELD(STATUS_REG_RDR_FULL, sc->status_reg, 0);
+ SPI_DEBUG(qemu_log("RDR being read, RDR_full set to 0\n"));
+ break;
+ case SEQUENCER_OPERATION_REG:
+ for (int i = 0; i < SPI_CONTROLLER_REG_SIZE; i++) {
+ val |= ((uint64_t)sc->sequencer_operation_reg[i] <<
+ (64 - ((i + 1) * 8)));
+ }
+ break;
+ case STATUS_REG:
+ val = sc->status_reg;
+ break;
+ default:
+ qemu_log_mask(LOG_GUEST_ERROR, "spi_controller_regs: Invalid xscom "
+ "read at 0x%08x\n", reg);
+ }
+ return val;
+}
+
+static void pnv_spi_controller_write(void *opaque, hwaddr addr,
+ uint64_t val, unsigned size)
+{
+ PnvSpiController *sc = PNV_SPICONTROLLER(opaque);
+ uint32_t reg = addr >> 3;
+
+ switch (reg) {
+ case ERROR_REG:
+ sc->error_reg = val;
+ break;
+ case COUNTER_CONFIG_REG:
+ sc->counter_config_reg = val;
+ break;
+ case CONFIG_REG1:
+ sc->config_reg1 = val;
+ break;
+ case CLOCK_CONFIG_REG:
+ /*
+ * To reset the SPI controller write the sequence 0x5 0xA to
+ * reset_control field
+ */
+ if (GETFIELD(CLOCK_CONFIG_REG_RESET_CONTROL,
+ sc->clock_config_reset_control) == 0x5) {
+ if (GETFIELD(CLOCK_CONFIG_REG_RESET_CONTROL, val) == 0xA) {
+ SPI_DEBUG(qemu_log("SPI controller reset sequence completed, "
+ "resetting..."));
+ sc->clock_config_reset_control =
+ CLOCK_CONFIG_RESET_CONTROL_HARD_RESET;
+ } else {
+ sc->clock_config_reset_control = val;
+ }
+ } else {
+ sc->clock_config_reset_control = val;
+ }
+ break;
+ case MEMORY_MAPPING_REG:
+ sc->memory_mapping_reg = val;
+ break;
+ case TRANSMIT_DATA_REG:
+ /*
+ * Writing to the transmit data register causes the transmit data
+ * register full status bit in the status register to be set. Writing
+ * when the transmit data register full status bit is already set
+ * causes a "Resource Not Available" condition. This is not possible
+ * in the model since writes to this register are not asynchronous to
+ * the operation sequence like it would be in hardware.
+ */
+ sc->transmit_data_reg = val;
+ SPI_DEBUG(qemu_log("TDR being written, data written = 0x%16.16lx\n",
+ val));
+ sc->status_reg = SETFIELD(STATUS_REG_TDR_FULL, sc->status_reg, 1);
+ SPI_DEBUG(qemu_log("TDR being written, TDR_full set to 1\n"));
+ sc->status_reg = SETFIELD(STATUS_REG_TDR_UNDERRUN, sc->status_reg, 0);
+ SPI_DEBUG(qemu_log("TDR being written, TDR_underrun set to 0\n"));
+ SPI_DEBUG(qemu_log("TDR being written, starting sequencer\n"));
+ break;
+ case RECEIVE_DATA_REG:
+ sc->receive_data_reg = val;
+ break;
+ case SEQUENCER_OPERATION_REG:
+ for (int i = 0; i < SPI_CONTROLLER_REG_SIZE; i++) {
+ sc->sequencer_operation_reg[i] =
+ (val & PPC_BITMASK(i * 8 , i * 8 + 7)) >> (63 - (i * 8 + 7));
+ }
+ break;
+ case STATUS_REG:
+ ;
+ uint8_t rdr_val = GETFIELD(STATUS_REG_RDR, val);
+ uint8_t tdr_val = GETFIELD(STATUS_REG_TDR, val);
+ /* other fields are ignore_write */
+ sc->status_reg = SETFIELD(STATUS_REG_RDR_OVERRUN,
+ sc->status_reg, rdr_val);
+ sc->status_reg = SETFIELD(STATUS_REG_TDR_OVERRUN,
+ sc->status_reg, tdr_val);
+ break;
+ default:
+ qemu_log_mask(LOG_GUEST_ERROR, "spi_controller_regs: Invalid xscom "
+ "write at 0x%08x\n", reg);
+ }
+ return;
+}
+
+static const MemoryRegionOps pnv_spi_controller_xscom_ops = {
+ .read = pnv_spi_controller_read,
+ .write = pnv_spi_controller_write,
+ .valid.min_access_size = 8,
+ .valid.max_access_size = 8,
+ .impl.min_access_size = 8,
+ .impl.max_access_size = 8,
+ .endianness = DEVICE_BIG_ENDIAN,
+};
+
+static Property pnv_spi_controller_properties[] = {
+ DEFINE_PROP_UINT32("spic_num", PnvSpiController, spic_num, 0),
+ DEFINE_PROP_END_OF_LIST(),
+};
+
+static void pnv_spi_controller_realize(DeviceState *dev, Error **errp)
+{
+ PnvSpiController *sc = PNV_SPICONTROLLER(dev);
+ g_autofree char *bus_name;
+ bus_name = g_strdup_printf("spi_bus%x", sc->spic_num);
+ sc->spi_bus = spi_create_bus(dev, bus_name);
+
+ /* spi controller scoms */
+ pnv_xscom_region_init(&sc->xscom_spic_regs, OBJECT(sc),
+ &pnv_spi_controller_xscom_ops, sc,
+ "xscom-spi-controller-regs",
+ PNV10_XSCOM_PIB_SPIC_SIZE);
+}
+
+static int pnv_spi_controller_dt_xscom(PnvXScomInterface *dev, void *fdt,
+ int offset)
+{
+ PnvSpiController *sc = PNV_SPICONTROLLER(dev);
+ g_autofree char *name;
+ int sc_offset;
+ const char compat[] = "ibm,power10-spi_controller";
+ uint32_t spic_pcba = PNV10_XSCOM_PIB_SPIC_BASE +
+ sc->spic_num * PNV10_XSCOM_PIB_SPIC_SIZE;
+ uint32_t reg[] = {
+ cpu_to_be32(spic_pcba),
+ cpu_to_be32(PNV10_XSCOM_PIB_SPIC_SIZE)
+ };
+ name = g_strdup_printf("spi_controller@%x", spic_pcba);
+ sc_offset = fdt_add_subnode(fdt, offset, name);
+ _FDT(sc_offset);
+
+ _FDT(fdt_setprop(fdt, sc_offset, "reg", reg, sizeof(reg)));
+ _FDT(fdt_setprop(fdt, sc_offset, "compatible", compat, sizeof(compat)));
+ _FDT((fdt_setprop_cell(fdt, sc_offset, "spic_num#", sc->spic_num)));
+ return 0;
+}
+
+static void pnv_spi_controller_class_init(ObjectClass *klass, void *data)
+{
+ DeviceClass *dc = DEVICE_CLASS(klass);
+ PnvXScomInterfaceClass *xscomc = PNV_XSCOM_INTERFACE_CLASS(klass);
+
+ xscomc->dt_xscom = pnv_spi_controller_dt_xscom;
+
+ dc->desc = "PowerNV SPI Controller";
+ dc->realize = pnv_spi_controller_realize;
+ device_class_set_props(dc, pnv_spi_controller_properties);
+}
+
+static const TypeInfo pnv_spi_controller_info = {
+ .name = TYPE_PNV_SPI_CONTROLLER,
+ .parent = TYPE_DEVICE,
+ .instance_size = sizeof(PnvSpiController),
+ .class_init = pnv_spi_controller_class_init,
+ .interfaces = (InterfaceInfo[]) {
+ { TYPE_PNV_XSCOM_INTERFACE },
+ { }
+ }
+};
+
+static void pnv_spi_controller_register_types(void)
+{
+ type_register_static(&pnv_spi_controller_info);
+}
+
+type_init(pnv_spi_controller_register_types);
diff --git a/hw/ppc/meson.build b/hw/ppc/meson.build
index 9bfd5a5613..de25cac763 100644
--- a/hw/ppc/meson.build
+++ b/hw/ppc/meson.build
@@ -54,6 +54,7 @@ ppc_ss.add(when: 'CONFIG_POWERNV', if_true: files(
'pnv_homer.c',
'pnv_pnor.c',
'pnv_spi_responder.c',
+ 'pnv_spi_controller.c',
))
# PowerPC 4xx boards
ppc_ss.add(when: 'CONFIG_PPC405', if_true: files(
--
2.31.1
^ permalink raw reply related [flat|nested] 15+ messages in thread
* [PATCH v1 3/5] hw/ppc: SPI controller model - sequencer and shifter
2024-02-07 16:08 [PATCH v1 0/5] hw/ppc: SPI model Chalapathi V
2024-02-07 16:08 ` [PATCH v1 1/5] hw/ppc: SPI responder model Chalapathi V
2024-02-07 16:08 ` [PATCH v1 2/5] hw/ppc: SPI controller model - registers implementation Chalapathi V
@ 2024-02-07 16:08 ` Chalapathi V
2024-03-08 19:36 ` Stefan Berger
2024-02-07 16:08 ` [PATCH v1 4/5] hw/ppc: SPI SEEPROM model Chalapathi V
` (2 subsequent siblings)
5 siblings, 1 reply; 15+ messages in thread
From: Chalapathi V @ 2024-02-07 16:08 UTC (permalink / raw)
To: qemu-devel
Cc: qemu-ppc, fbarrat, npiggin, clg, calebs, chalapathi.v,
chalapathi.v, saif.abrar
In this commit SPI shift engine and sequencer logic is implemented.
Shift engine performs serialization and de-serialization according to the
control by the sequencer and according to the setup defined in the
configuration registers. Sequencer implements the main control logic and
FSM to handle data transmit and data receive control of the shift engine.
Signed-off-by: Chalapathi V <chalapathi.v@linux.ibm.com>
---
include/hw/ppc/pnv_spi_controller.h | 58 ++
hw/ppc/pnv_spi_controller.c | 1274 ++++++++++++++++++++++++++-
2 files changed, 1331 insertions(+), 1 deletion(-)
diff --git a/include/hw/ppc/pnv_spi_controller.h b/include/hw/ppc/pnv_spi_controller.h
index 8afaabdd1b..8160c35f5c 100644
--- a/include/hw/ppc/pnv_spi_controller.h
+++ b/include/hw/ppc/pnv_spi_controller.h
@@ -8,6 +8,14 @@
* This model Supports a connection to a single SPI responder.
* Introduced for P10 to provide access to SPI seeproms, TPM, flash device
* and an ADC controller.
+ *
+ * All SPI function control is mapped into the SPI register space to enable
+ * full control by firmware.
+ *
+ * SPI Controller has sequencer and shift engine. The SPI shift engine
+ * performs serialization and de-serialization according to the control by
+ * the sequencer and according to the setup defined in the configuration
+ * registers and the SPI sequencer implements the main control logic.
*/
#ifndef PPC_PNV_SPI_CONTROLLER_H
@@ -20,6 +28,7 @@
#define SPI_CONTROLLER_REG_SIZE 8
typedef struct SpiBus SpiBus;
+typedef struct xfer_buffer xfer_buffer;
typedef struct PnvSpiController {
DeviceState parent;
@@ -28,6 +37,39 @@ typedef struct PnvSpiController {
MemoryRegion xscom_spic_regs;
/* SPI controller object number */
uint32_t spic_num;
+ uint8_t responder_select;
+ /* To verify if shift_n1 happens prior to shift_n2 */
+ bool shift_n1_done;
+ /*
+ * Internal flags for the first and last indicators for the SPI
+ * interface methods
+ */
+ uint8_t first;
+ uint8_t last;
+ /* Loop counter for branch operation opcode Ex/Fx */
+ uint8_t loop_counter_1;
+ uint8_t loop_counter_2;
+ /* N1/N2_bits specifies the size of the N1/N2 segment of a frame in bits.*/
+ uint8_t N1_bits;
+ uint8_t N2_bits;
+ /* Number of bytes in a payload for the N1/N2 frame segment.*/
+ uint8_t N1_bytes;
+ uint8_t N2_bytes;
+ /* Number of N1/N2 bytes marked for transmit */
+ uint8_t N1_tx;
+ uint8_t N2_tx;
+ /* Number of N1/N2 bytes marked for receive */
+ uint8_t N1_rx;
+ uint8_t N2_rx;
+ /*
+ * Setting this attribute to true will cause the engine to reverse the
+ * bit order of each byte it appends to a payload before sending the
+ * payload to a device. There may be cases where an end device expects
+ * a reversed order, like in the case of the Nuvoton TPM device. The
+ * order of bytes in the payload is not reversed, only the order of the
+ * 8 bits in each payload byte.
+ */
+ bool reverse_bits;
/* SPI Controller registers */
uint64_t error_reg;
@@ -40,4 +82,20 @@ typedef struct PnvSpiController {
uint8_t sequencer_operation_reg[SPI_CONTROLLER_REG_SIZE];
uint64_t status_reg;
} PnvSpiController;
+
+void log_all_N_counts(PnvSpiController *spi_controller);
+void spi_response(PnvSpiController *spi_controller, int bits,
+ xfer_buffer *rsp_payload);
+void operation_sequencer(PnvSpiController *spi_controller);
+bool operation_shiftn1(PnvSpiController *spi_controller, uint8_t opcode,
+ xfer_buffer **payload, bool send_n1_alone);
+bool operation_shiftn2(PnvSpiController *spi_controller, uint8_t opcode,
+ xfer_buffer **payload);
+bool does_rdr_match(PnvSpiController *spi_controller);
+uint8_t get_from_offset(PnvSpiController *spi_controller, uint8_t offset);
+void shift_byte_in(PnvSpiController *spi_controller, uint8_t byte);
+void calculate_N1(PnvSpiController *spi_controller, uint8_t opcode);
+void calculate_N2(PnvSpiController *spi_controller, uint8_t opcode);
+void do_reset(PnvSpiController *spi_controller);
+uint8_t reverse_bits8(uint8_t x);
#endif /* PPC_PNV_SPI_CONTROLLER_H */
diff --git a/hw/ppc/pnv_spi_controller.c b/hw/ppc/pnv_spi_controller.c
index 0f2bc25e82..ef48af5d03 100644
--- a/hw/ppc/pnv_spi_controller.c
+++ b/hw/ppc/pnv_spi_controller.c
@@ -9,7 +9,6 @@
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "hw/qdev-properties.h"
-#include "hw/ppc/pnv.h"
#include "hw/ppc/pnv_xscom.h"
#include "hw/ppc/pnv_spi_controller.h"
#include "hw/ppc/pnv_spi_responder.h"
@@ -155,6 +154,12 @@ static uint64_t pnv_spi_controller_read(void *opaque, hwaddr addr,
val));
sc->status_reg = SETFIELD(STATUS_REG_RDR_FULL, sc->status_reg, 0);
SPI_DEBUG(qemu_log("RDR being read, RDR_full set to 0\n"));
+ if (GETFIELD(STATUS_REG_SHIFTER_FSM, sc->status_reg) == FSM_WAIT) {
+ /* call $operation_sequencer(); */
+ SPI_DEBUG(qemu_log("RDR being read while shifter is waiting, "
+ "starting sequencer\n"));
+ operation_sequencer(sc);
+ }
break;
case SEQUENCER_OPERATION_REG:
for (int i = 0; i < SPI_CONTROLLER_REG_SIZE; i++) {
@@ -227,6 +232,9 @@ static void pnv_spi_controller_write(void *opaque, hwaddr addr,
sc->status_reg = SETFIELD(STATUS_REG_TDR_UNDERRUN, sc->status_reg, 0);
SPI_DEBUG(qemu_log("TDR being written, TDR_underrun set to 0\n"));
SPI_DEBUG(qemu_log("TDR being written, starting sequencer\n"));
+ /* call $operation_sequencer(); */
+ operation_sequencer(sc);
+
break;
case RECEIVE_DATA_REG:
sc->receive_data_reg = val;
@@ -264,8 +272,1272 @@ static const MemoryRegionOps pnv_spi_controller_xscom_ops = {
.endianness = DEVICE_BIG_ENDIAN,
};
+uint8_t reverse_bits8(uint8_t x)
+{
+ x = (x << 4) | (x >> 4);
+ x = ((x & 0x33) << 2) | ((x & 0xcc) >> 2);
+ x = ((x & 0x55) << 1) | ((x & 0xaa) >> 1);
+ return x;
+}
+
+bool does_rdr_match(PnvSpiController *sc)
+{
+ /*
+ * The mask bits that are 0 are compared and the
+ * bits that are 1 are ignored.
+ */
+ uint16_t rdr_match_mask = GETFIELD(MEMORY_MAPPING_REG_RDR_MATCH_MASK,
+ sc->memory_mapping_reg);
+ uint16_t rdr_match_val = GETFIELD(MEMORY_MAPPING_REG_RDR_MATCH_VAL,
+ sc->memory_mapping_reg);
+ if ((~rdr_match_mask & rdr_match_val) == ((~rdr_match_mask) &
+ GETFIELD(PPC_BITMASK(48, 63), sc->receive_data_reg))) {
+ SPI_DEBUG(qemu_log("RDR match successful, match=0x%4.4x, "
+ "mask=0x%4.4x, RDR[48:63]=0x%4.4llx\n",
+ rdr_match_val, rdr_match_mask,
+ GETFIELD(PPC_BITMASK(48, 63),
+ sc->receive_data_reg)));
+ return true;
+ } else {
+ SPI_DEBUG(qemu_log("RDR match failed, match=0x%4.4x, mask=0x%4.4x, "
+ "RDR[48:63]=0x%4.4llx\n", rdr_match_val, rdr_match_mask,
+ GETFIELD(PPC_BITMASK(48, 63), sc->receive_data_reg)));
+ return false;
+ }
+}
+
+uint8_t get_from_offset(PnvSpiController *sc, uint8_t offset)
+{
+ uint8_t byte;
+ /*
+ * Offset is an index between 0 and SPI_CONTROLLER_REG_SIZE - 1
+ * Check the offset before using it.
+ */
+ if (offset < SPI_CONTROLLER_REG_SIZE) {
+ byte = GETFIELD(PPC_BITMASK(offset * 8 , (offset * 8) + 7),
+ sc->transmit_data_reg);
+ } else {
+ /*
+ * Log an error and return a 0xFF since we have to assign something
+ * to byte before returning.
+ */
+ qemu_log_mask(LOG_GUEST_ERROR, "Invalid offset = %d used to get byte "
+ "from TDR\n", offset);
+ byte = 0xff;
+ }
+ return byte;
+}
+
+void shift_byte_in(PnvSpiController *sc, uint8_t byte)
+{
+ sc->receive_data_reg = (sc->receive_data_reg << 8) | byte;
+ SPI_DEBUG(qemu_log("0x%2.2x shifted in, RDR now = 0x%16.16lx\n", byte,
+ sc->receive_data_reg));
+}
+
+void spi_response(PnvSpiController *sc, int bits, xfer_buffer *rsp_payload)
+{
+ uint8_t *read_buf = NULL;
+ /*
+ * Processing here must handle:
+ * - Which bytes in the payload we should move to the RDR
+ * - Explicit mode counter configuration settings
+ * - RDR full and RDR overrun status
+ */
+
+ /*
+ * First check that the response payload is the exact same
+ * number of bytes as the request payload was
+ */
+ if (rsp_payload->len != (sc->N1_bytes + sc->N2_bytes)) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Invalid response payload size in "
+ "bytes, expected %d, got %d\n",
+ (sc->N1_bytes + sc->N2_bytes), rsp_payload->len);
+ } else {
+ SPI_DEBUG(qemu_log("SPI response received, payload len = %d\n",
+ rsp_payload->len));
+ log_all_N_counts(sc);
+ /*
+ * Adding an ECC count let's us know when we have found a payload byte
+ * that was shifted in but cannot be loaded into RDR. Bits 29-30
+ * equal to either 0b00 or 0b10 indicate that we are taking in data
+ * with ECC and either applying the ECC or discarding it.
+ */
+ uint8_t ecc_count = 0;
+ uint8_t ecc_control = GETFIELD(CLOCK_CONFIG_REG_ECC_CONTROL,
+ sc->clock_config_reset_control);
+ uint8_t ecc_control_1_2 = GETFIELD(PPC_BITMASK8(1, 2), ecc_control);
+ if (ecc_control_1_2 == 0 || ecc_control_1_2 == 2) {
+ ecc_count = 1;
+ }
+ /*
+ * Use the N1_rx and N2_rx counts to control shifting data from the
+ * payload into the RDR. Keep an overall count of the number of bytes
+ * shifted into RDR so we can discard every 9th byte when ECC is
+ * enabled.
+ */
+ uint8_t shift_in_count = 0;
+ /* Handle the N1 portion of the frame first */
+ if (sc->N1_rx != 0) {
+ uint8_t n1_count = 0;
+ while (n1_count < sc->N1_bytes) {
+ shift_in_count++;
+ xfer_buffer_read_ptr(rsp_payload, &read_buf, n1_count, 1);
+ if ((ecc_count != 0) &&
+ (shift_in_count == (SPI_CONTROLLER_REG_SIZE + ecc_count))) {
+ SPI_DEBUG(qemu_log("Discarding rx N1 ECC byte = 0x%2.2x at "
+ "payload index = %d\n", read_buf[0], n1_count));
+ shift_in_count = 0;
+ } else {
+ uint8_t n1_byte = 0x00;
+ n1_byte = read_buf[0];
+ SPI_DEBUG(qemu_log("Extracting rx n1_byte = 0x%2.2x from "
+ "payload at index = %d\n", n1_byte, n1_count));
+ if (sc->reverse_bits) {
+ SPI_DEBUG(qemu_log("Reversing bit order of rx "
+ "n1_byte\n"));
+ n1_byte = reverse_bits8(n1_byte);
+ }
+ SPI_DEBUG(qemu_log("Shifting rx N1 byte = 0x%2.2x into "
+ "RDR\n", n1_byte));
+ shift_byte_in(sc, n1_byte);
+ }
+ n1_count++;
+ } /* end of while */
+ }
+ /* Handle the N2 portion of the frame */
+ if (sc->N2_rx != 0) {
+ uint8_t n2_count = 0;
+ while (n2_count < sc->N2_bytes) {
+ shift_in_count++;
+ xfer_buffer_read_ptr(rsp_payload, &read_buf,
+ (sc->N1_bytes + n2_count), 1);
+ if ((ecc_count != 0) &&
+ (shift_in_count == (SPI_CONTROLLER_REG_SIZE + ecc_count))) {
+ SPI_DEBUG(qemu_log("Discarding rx N1 ECC byte = 0x%2.2x at "
+ "payload index = %d\n", read_buf[0],
+ (sc->N1_bytes + n2_count)));
+ shift_in_count = 0;
+ } else {
+ /*
+ * The code handles shifting data from the payload received
+ * from the responder into the responder's RDR. Since this
+ * is an N2 frame segment it is safe to assume that there
+ * was a preceding N1 segment which was combined with an N2
+ * segment to create a single frame. The response data will
+ * then have N1_bytes of data in the payload representing a
+ * responder response to the N1 section of the frame. If N2
+ * is set to receive the shifting for N2 data begins after
+ * the N1 bytes regardless of whether or not N1 was marked
+ * for transmit or receive.
+ */
+ uint8_t n2_byte = 0x00;
+ n2_byte = read_buf[0];
+ SPI_DEBUG(qemu_log("Extracting rx n2_byte = 0x%2.2x from "
+ "payload at index = %d\n", n2_byte,
+ (sc->N1_bytes + n2_count)));
+ if (sc->reverse_bits) {
+ SPI_DEBUG(qemu_log("Reversing bit order of rx "
+ "n2_byte\n"));
+ n2_byte = reverse_bits8(n2_byte);
+ }
+ SPI_DEBUG(qemu_log("Shifting rx N2 byte = 0x%2.2x into "
+ "RDR\n", n2_byte));
+ shift_byte_in(sc, n2_byte);
+ }
+ n2_count++;
+ }
+ }
+ if ((sc->N1_rx + sc->N2_rx) > 0) {
+ /*
+ * Data was received so handle RDR status.
+ * It is easier to handle RDR_full and RDR_overrun status here
+ * since the RDR register's shift_byte_in method is called
+ * multiple times in a row. Controlling RDR status is done here
+ * instead of in the RDR scoped methods for that reason.
+ */
+ if (GETFIELD(STATUS_REG_RDR_FULL, sc->status_reg) == 1) {
+ /*
+ * Data was shifted into the RDR before having been read
+ * causing previous data to have been overrun.
+ */
+ sc->status_reg = SETFIELD(STATUS_REG_RDR_OVERRUN,
+ sc->status_reg, 1);
+ } else {
+ /*
+ * Set status to indicate that the received data register is
+ * full. This flag is only cleared once the RDR is unloaded.
+ */
+ sc->status_reg = SETFIELD(STATUS_REG_RDR_FULL,
+ sc->status_reg, 1);
+ SPI_DEBUG(qemu_log("RDR_full set to 1\n"));
+ }
+ }
+ } /* end of else */
+} /* end of spi_response() */
+
+void log_all_N_counts(PnvSpiController *sc)
+{
+ SPI_DEBUG(qemu_log("N1_bits = %d, N1_bytes = %d, N1_tx = %d, N1_rx = %d, "
+ "N2_bits = %d, N2_bytes = %d, N2_tx = %d, N2_rx = %d\n",
+ sc->N1_bits, sc->N1_bytes, sc->N1_tx, sc->N1_rx, sc->N2_bits,
+ sc->N2_bytes, sc->N2_tx, sc->N2_rx));
+}
+
+void operation_sequencer(PnvSpiController *sc)
+{
+ /*
+ * Loop through each sequencer operation ID and perform the requested
+ * operations.
+ * Flag for indicating if we should send the N1 frame or wait to combine
+ * it with a preceding N2 frame.
+ */
+ bool send_n1_alone = true;
+ /* Flag to stop the sequencer */
+ bool stop = false;
+
+ /*
+ * xfer_buffer for containing the payload of the SPI frame.
+ * This is a static because there are cases where a sequence has to stop
+ * and wait for the target application to unload the RDR. If this occurs
+ * during a sequence where N1 is not sent alone and instead combined with
+ * N2 since the N1 tx length + the N2 tx length is less than the size of
+ * the TDR.
+ */
+ static xfer_buffer *payload;
+ if (payload == NULL) {
+ payload = xfer_buffer_new();
+ }
+ /*
+ * Clear the sequencer FSM error bit - general_SPI_status[3]
+ * before starting a sequence.
+ */
+ sc->status_reg = SETFIELD(PPC_BIT(35), sc->status_reg, 0);
+ /*
+ * If the FSM is idle set the sequencer index to 0
+ * (new/restarted sequence)
+ */
+ if (GETFIELD(STATUS_REG_SEQUENCER_FSM, sc->status_reg) ==
+ SEQ_STATE_IDLE) {
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg, 0);
+ }
+ /*
+ * There are only 8 possible operation IDs to iterate through though
+ * some operations may cause more than one frame to be sequenced.
+ */
+ while (GETFIELD(STATUS_REG_SEQUENCER_INDEX, sc->status_reg) < 8) {
+ uint8_t opcode = 0;
+ uint8_t masked_opcode = 0;
+
+ opcode = sc->sequencer_operation_reg[GETFIELD(
+ STATUS_REG_SEQUENCER_INDEX, sc->status_reg)];
+ /* Set sequencer state to decode */
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM, sc->status_reg,
+ SEQ_STATE_DECODE);
+ /*
+ * Only the upper nibble of the operation ID is needed to know what
+ * kind of operation is requested.
+ */
+ masked_opcode = opcode & 0xF0;
+ switch (masked_opcode) {
+ /*
+ * Increment the operation index in each case instead of just
+ * once at the end in case an operation like the branch
+ * operation needs to change the index.
+ */
+ case SEQ_OP_STOP:
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
+ sc->status_reg, SEQ_STATE_EXECUTE);
+ /* A stop operation in any position stops the sequencer */
+ SPI_DEBUG(qemu_log("Sequencer STOP at index = 0x%llx, sequencer "
+ "idling\n", GETFIELD(
+ STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg)));
+ stop = true;
+ sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM, sc->status_reg,
+ FSM_IDLE);
+ sc->loop_counter_1 = 0;
+ sc->loop_counter_2 = 0;
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
+ sc->status_reg, SEQ_STATE_IDLE);
+ break;
+
+ case SEQ_OP_SELECT_SLAVE:
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
+ sc->status_reg, SEQ_STATE_EXECUTE);
+ SPI_DEBUG(qemu_log("Sequencer SELECT_SLAVE at index = 0x%llx\n",
+ GETFIELD(STATUS_REG_SEQUENCER_INDEX, sc->status_reg)));
+ /*
+ * This device currently only supports a single responder
+ * connection at position 0. De-selecting a responder is fine
+ * and expected at the end of a sequence but selecting any
+ * responder other than 0 should cause an error.
+ */
+ sc->responder_select = opcode & 0x0F;
+ if (sc->responder_select == 0) {
+ if (spi_disconnect_controller(sc->spi_bus)) {
+ SPI_DEBUG(qemu_log("Slave (present) de-selected, "
+ "shifter done\n"));
+ } else {
+ SPI_DEBUG(qemu_log("Slave (not-present) de-selected "
+ "(no-op), shifter done\n"));
+ }
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg,
+ (GETFIELD(
+ STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg) + 1));
+ sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM,
+ sc->status_reg, FSM_DONE);
+ } else if (sc->responder_select != 1) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Slave selection other than 1 "
+ "not supported, select = 0x%x\n",
+ sc->responder_select);
+ SPI_DEBUG(qemu_log("Sequencer stop requested due to invalid "
+ "responder select at index = 0x%llx, "
+ "shifter idling\n", GETFIELD(
+ STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg)));
+ sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM,
+ sc->status_reg, FSM_IDLE);
+ stop = true;
+ } else {
+ /*
+ * Only allow an FSM_START state when a responder is
+ * selected
+ */
+ sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM,
+ sc->status_reg, FSM_START);
+ if (spi_connect_controller(sc->spi_bus, NULL)) {
+ SPI_DEBUG(qemu_log("Slave 0x%x (present) selected, "
+ "shifter starting\n",
+ sc->responder_select));
+ } else {
+ SPI_DEBUG(qemu_log("Slave 0x%x (not-present) selected "
+ "(no-op), shifter starting\n",
+ sc->responder_select));
+ }
+ sc->first = 1;
+ sc->last = 0;
+ /*
+ * A Shift_N2 operation is only valid after a Shift_N1. We
+ * will track the occurrence of a Shift_N1 to enforce this
+ * requirement in the most generic way possible by assuming
+ * that the rule applies once a valid responder select has
+ * occurred.
+ */
+ sc->shift_n1_done = false;
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
+ sc->status_reg,
+ SEQ_STATE_INDEX_INCREMENT);
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg,
+ (GETFIELD(STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg) + 1));
+ }
+ break;
+
+ case SEQ_OP_SHIFT_N1:
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
+ sc->status_reg, SEQ_STATE_EXECUTE);
+ SPI_DEBUG(qemu_log("Sequencer SHIFT_N1 at index = 0x%llx\n",
+ GETFIELD(STATUS_REG_SEQUENCER_INDEX, sc->status_reg)));
+ /*
+ * Only allow a shift_n1 when the state is not IDLE or DONE.
+ * In either of those two cases the sequencer is not in a proper
+ * state to perform shift operations because the sequencer has:
+ * - processed a responder deselect (DONE)
+ * - processed a stop opcode (IDLE)
+ * - encountered an error (IDLE)
+ */
+ if ((GETFIELD(STATUS_REG_SHIFTER_FSM,
+ sc->status_reg) == FSM_IDLE) ||
+ (GETFIELD(STATUS_REG_SHIFTER_FSM,
+ sc->status_reg) == FSM_DONE)) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Shift_N1 not allowed in "
+ "shifter state = 0x%llx", GETFIELD(
+ STATUS_REG_SHIFTER_FSM, sc->status_reg));
+ /*
+ * Set sequencer FSM error bit 3 (general_SPI_status[3])
+ * in status reg.
+ */
+ sc->status_reg = SETFIELD(PPC_BIT(35), sc->status_reg, 1);
+ SPI_DEBUG(qemu_log("Sequencer stop requested due to invalid "
+ "shifter state at index = 0x%llx\n", GETFIELD(
+ STATUS_REG_SEQUENCER_INDEX, sc->status_reg)));
+ stop = true;
+ } else {
+ /*
+ * Look for the special case where there is a shift_n1 set for
+ * transmit and it is followed by a shift_n2 set for transmit
+ * AND the combined transmit length of the two operations is
+ * less than or equal to the size of the TDR register. In this
+ * case we want to use both this current shift_n1 opcode and the
+ * following shift_n2 opcode to assemble the frame for
+ * transmission to the responder without requiring a refill of
+ * the TDR between the two operations.
+ */
+ if ((sc->sequencer_operation_reg[GETFIELD(
+ STATUS_REG_SEQUENCER_INDEX, sc->status_reg) + 1] & 0xF0)
+ == SEQ_OP_SHIFT_N2) {
+ SPI_DEBUG(qemu_log("Not sending N1 alone\n"));
+ send_n1_alone = false;
+ }
+ /*
+ * If the next opcode is 0x10, which deselects the SPI device
+ * then this is the last shift
+ */
+ if (sc->sequencer_operation_reg[GETFIELD(
+ STATUS_REG_SEQUENCER_INDEX, sc->status_reg) + 1] ==
+ SEQ_OP_SELECT_SLAVE) {
+ sc->last = 1;
+ }
+ sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM,
+ sc->status_reg, FSM_SHIFT_N1);
+ stop = operation_shiftn1(sc, opcode, &payload, send_n1_alone);
+ if (stop) {
+ /*
+ * The operation code says to stop, this can occur if:
+ * (1) RDR is full and the N1 shift is set for receive
+ * (2) TDR was empty at the time of the N1 shift so we need
+ * to wait for data.
+ * (3) Neither 1 nor 2 are occurring and we aren't sending
+ * N1 alone and N2 counter reload is set (bit 0 of the N2
+ * counter reload field). In this case TDR_underrun will
+ * will be set and the Payload has been loaded so it is
+ * ok to advance the sequencer.
+ */
+ if (GETFIELD(STATUS_REG_TDR_UNDERRUN, sc->status_reg)) {
+ SPI_DEBUG(qemu_log("Sequencer stop requested due to N2 "
+ "counter reload active.\n"));
+ sc->shift_n1_done = true;
+ sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM,
+ sc->status_reg,
+ FSM_SHIFT_N2);
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg,
+ (GETFIELD(
+ STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg) + 1));
+ SPI_DEBUG(qemu_log("Set new sequencer index to = "
+ "0x%llx\n", GETFIELD(
+ STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg)));
+ } else {
+ /*
+ * This is case (1) or (2) so the sequencer needs to
+ * wait and NOT go to the next sequence yet.
+ */
+ sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM,
+ sc->status_reg, FSM_WAIT);
+ }
+ } else {
+ /* Ok to move on to the next index */
+ sc->shift_n1_done = true;
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
+ sc->status_reg, SEQ_STATE_INDEX_INCREMENT);
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg,
+ (GETFIELD(
+ STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg) + 1));
+ }
+ }
+ break;
+
+ case SEQ_OP_SHIFT_N2:
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
+ sc->status_reg, SEQ_STATE_EXECUTE);
+ SPI_DEBUG(qemu_log("Sequencer SHIFT_N2 at index = %lld\n",
+ GETFIELD(STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg)));
+ if (!sc->shift_n1_done) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Shift_N2 is not allowed if a "
+ "Shift_N1 is not done, shifter state = 0x%llx",
+ GETFIELD(STATUS_REG_SHIFTER_FSM,
+ sc->status_reg));
+ /*
+ * In case the sequencer actually stops if an N2 shift is
+ * requested before any N1 shift is done. Set sequencer FSM
+ * error bit 3 (general_SPI_status[3]) in status reg.
+ */
+ sc->status_reg = SETFIELD(PPC_BIT(35), sc->status_reg, 1);
+ SPI_DEBUG(qemu_log("Sequencer stop requested due to shift_n2 "
+ "w/no shift_n1 done at index = 0x%llx\n",
+ GETFIELD(STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg)));
+ stop = true;
+ } else {
+ /*
+ * If the next opcode is 0x10, which deselects the SPI device
+ * then this is the last shift
+ */
+ if (sc->sequencer_operation_reg[GETFIELD(
+ STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg) + 1] == SEQ_OP_SELECT_SLAVE) {
+ sc->last = 1;
+ }
+ /* Ok to do a Shift_N2 */
+ sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM,
+ sc->status_reg, FSM_SHIFT_N2);
+ stop = operation_shiftn2(sc, opcode, &payload);
+ /*
+ * If the operation code says to stop set the shifter state to
+ * wait and stop
+ */
+ if (stop) {
+ sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM,
+ sc->status_reg, FSM_WAIT);
+ } else {
+ /* Ok to move on to the next index */
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
+ sc->status_reg,
+ SEQ_STATE_INDEX_INCREMENT);
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg,
+ (GETFIELD(
+ STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg) + 1));
+ }
+ }
+ break;
+
+ case SEQ_OP_BRANCH_IFNEQ_RDR:
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
+ sc->status_reg, SEQ_STATE_EXECUTE);
+ SPI_DEBUG(qemu_log("Sequencer BRANCH_IFNEQ_RDR at "
+ "index = 0x%llx\n", GETFIELD(
+ STATUS_REG_SEQUENCER_INDEX, sc->status_reg)));
+ /*
+ * The memory mapping register RDR match value is compared against
+ * the 16 rightmost bytes of the RDR (potentially with masking).
+ * Since this comparison is performed against the contents of the
+ * RDR then a receive must have previously occurred otherwise
+ * there is no data to compare and the operation cannot be
+ * completed and will stop the sequencer until RDR full is set to
+ * 1.
+ */
+ if (GETFIELD(STATUS_REG_RDR_FULL, sc->status_reg) == 1) {
+ bool rdr_matched = false;
+ rdr_matched = does_rdr_match(sc);
+ if (rdr_matched) {
+ SPI_DEBUG(qemu_log("Proceed to next sequencer index "
+ "(increment on RDR match)\n"));
+ /* A match occurred, increment the sequencer index. */
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
+ sc->status_reg,
+ SEQ_STATE_INDEX_INCREMENT);
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg,
+ (GETFIELD(
+ STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg) + 1));
+ } else {
+ SPI_DEBUG(qemu_log("Proceed to sequencer index=0x%x "
+ "(branch on RDR match fail)\n", (opcode & 0x7)));
+ /*
+ * Branch the sequencer to the index coded into the op
+ * code.
+ */
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg, (opcode & 0x7));
+ }
+ /*
+ * Regardless of where the branch ended up we want the
+ * sequencer to continue shifting so we have to clear
+ * RDR_full.
+ */
+ sc->status_reg = SETFIELD(STATUS_REG_RDR_FULL,
+ sc->status_reg, 0);
+ } else {
+ SPI_DEBUG(qemu_log("RDR not full for 0x6x opcode! Stopping "
+ "sequencer.\n"));
+ stop = true;
+ sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM,
+ sc->status_reg, FSM_WAIT);
+ }
+ break;
+
+ case SEQ_OP_TRANSFER_TDR:
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
+ sc->status_reg, SEQ_STATE_EXECUTE);
+ qemu_log_mask(LOG_GUEST_ERROR, "Transfer TDR is not supported\n");
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
+ sc->status_reg,
+ SEQ_STATE_INDEX_INCREMENT);
+ /* status_reg.sequencer_index++ */
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg,
+ (GETFIELD(
+ STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg) + 1));
+ break;
+
+ case SEQ_OP_BRANCH_IFNEQ_INC_1:
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
+ sc->status_reg, SEQ_STATE_EXECUTE);
+ SPI_DEBUG(qemu_log("Sequencer BRANCH_IFNEQ_INC_1 at index = "
+ "0x%llx, next index = %d, count_compare_1 = "
+ "0x%llx, loop_counter_1 = %d\n", GETFIELD(
+ STATUS_REG_SEQUENCER_INDEX, sc->status_reg),
+ (opcode & 0x07),
+ GETFIELD(COUNTER_CONFIG_REG_COUNT_COMPARE1,
+ sc->status_reg), sc->loop_counter_1));
+ if (sc->loop_counter_1 !=
+ GETFIELD(COUNTER_CONFIG_REG_COUNT_COMPARE1,
+ sc->counter_config_reg)) {
+ /*
+ * If the next opcode is 0x10, which deselects the SPI device
+ * and we know that the next opcode is the last one in the
+ * loop then the next shift is the last shift
+ */
+ uint8_t condition1 = sc->sequencer_operation_reg[
+ GETFIELD(STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg) + 1];
+ uint8_t condition2 =
+ GETFIELD(COUNTER_CONFIG_REG_COUNT_COMPARE1,
+ sc->counter_config_reg);
+ if ((condition1 == SEQ_OP_SELECT_SLAVE) &&
+ ((sc->loop_counter_1 + 1) == condition2)) {
+ sc->last = 1;
+ }
+ /*
+ * Next index is the lower nibble of the branch operation ID,
+ * mask off all but the first three bits so we don't try to
+ * access beyond the sequencer_operation_reg boundary.
+ */
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg, (opcode & 0x7));
+ sc->loop_counter_1++;
+ SPI_DEBUG(qemu_log("Branching to index = %d, loop_counter_1 = "
+ "%d\n", (opcode & 0x7), sc->loop_counter_1));
+ } else {
+ /* Continue to next index if loop counter is reached */
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
+ sc->status_reg,
+ SEQ_STATE_INDEX_INCREMENT);
+ /* status_reg.sequencer_index++ */
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg,
+ (GETFIELD(
+ STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg) + 1));
+ SPI_DEBUG(qemu_log("loop counter 1 achieved, next sequencer "
+ "index = 0x%llx\n", GETFIELD(STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg)));
+ }
+ break;
+
+ case SEQ_OP_BRANCH_IFNEQ_INC_2:
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
+ sc->status_reg, SEQ_STATE_EXECUTE);
+ SPI_DEBUG(qemu_log("Sequencer BRANCH_IFNEQ_INC_2 at index = "
+ "0x%llx, next index = %d, count_compare_2 = "
+ "0x%llx, loop_counter_2 = %d\n", GETFIELD(
+ STATUS_REG_SEQUENCER_INDEX, sc->status_reg),
+ (opcode & 0x07), GETFIELD(
+ COUNTER_CONFIG_REG_COUNT_COMPARE2,
+ sc->status_reg), sc->loop_counter_2));
+ /*
+ * If the next opcode is 0x10, which deselects the SPI device
+ * and we know that the next opcode is the last one in the
+ * loop then the next shift is the last shift
+ */
+ uint8_t condition1 = sc->sequencer_operation_reg[
+ GETFIELD(STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg) + 1];
+
+ uint8_t condition2 = GETFIELD(COUNTER_CONFIG_REG_COUNT_COMPARE2,
+ sc->counter_config_reg);
+
+ if ((condition1 == SEQ_OP_SELECT_SLAVE) &&
+ ((sc->loop_counter_2 + 1) == condition2)) {
+ sc->last = 1;
+ }
+ if (sc->loop_counter_2 != condition2) {
+ /*
+ * Next index is the lower nibble of the branch operation ID,
+ * mask off all but the first three bits so we don't try to
+ * access beyond the sequencer_operation_reg boundary.
+ */
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg,
+ (opcode & 0x7));
+ sc->loop_counter_2++;
+ SPI_DEBUG(qemu_log("Branching to index = %d, loop_counter_2 "
+ "= %d", (opcode & 0x7),
+ sc->loop_counter_2));
+ } else {
+ /* Continue to next index if loop counter is reached */
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
+ sc->status_reg,
+ SEQ_STATE_INDEX_INCREMENT);
+ /* status_reg.sequencer_index++ */
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg,
+ (GETFIELD(
+ STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg) + 1));
+ SPI_DEBUG(qemu_log("loop counter 2 achieved, next sequencer "
+ "index = 0x%llx\n", GETFIELD(STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg)));
+ }
+ break;
+
+ default:
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
+ sc->status_reg, SEQ_STATE_EXECUTE);
+ qemu_log_mask(LOG_GUEST_ERROR, "Sequencer opcode 0x%x is not "
+ "supported\n", opcode);
+ /* Ignore unsupported operations. */
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
+ sc->status_reg,
+ SEQ_STATE_INDEX_INCREMENT);
+ /* status_reg.sequencer_index++ */
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg,
+ (GETFIELD(
+ STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg) + 1));
+ break;
+ } /* end of switch */
+ /*
+ * If we used all 8 opcodes without seeing a 00 - STOP in the sequence
+ * we need to go ahead and end things as if there was a STOP at the
+ * end.
+ */
+ if (GETFIELD(STATUS_REG_SEQUENCER_INDEX, sc->status_reg) == 8) {
+ SPI_DEBUG(qemu_log("All 8 opcodes completed, sequencer "
+ "idling\n"));
+ sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM, sc->status_reg,
+ FSM_IDLE);
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
+ sc->status_reg, 0);
+ sc->loop_counter_1 = 0;
+ sc->loop_counter_2 = 0;
+ sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
+ sc->status_reg, SEQ_STATE_IDLE);
+ break;
+ }
+ /* Break the loop if a stop was requested */
+ if (stop) {
+ break;
+ }
+ } /* end of while */
+ return;
+} /* end of operation_sequencer() */
+
+/*
+ * Calculate the N1 counters based on passed in opcode and
+ * internal register values.
+ * The method assumes that the opcode is a Shift_N1 opcode
+ * and doesn't test it.
+ * The counters returned are:
+ * N1 bits: Number of bits in the payload data that are significant
+ * to the responder.
+ * N1_bytes: Total count of payload bytes for the N1 (portion of the) frame.
+ * N1_tx: Total number of bytes taken from TDR for N1
+ * N1_rx: Total number of bytes taken from the payload for N1
+ */
+void calculate_N1(PnvSpiController *sc, uint8_t opcode)
+{
+ /*
+ * Shift_N1 opcode form: 0x3M
+ * Implicit mode:
+ * If M != 0 the shift count is M bytes and M is the number of tx bytes.
+ * Forced Implicit mode:
+ * M is the shift count but tx and rx is determined by the count control
+ * register fields. Note that we only check for forced Implicit mode when
+ * M != 0 since the mode doesn't make sense when M = 0.
+ * Explicit mode:
+ * If M == 0 then shift count is number of bits defined in the
+ * Counter Configuration Register's shift_count_N1 field.
+ */
+ if (GETFIELD(PPC_BITMASK8(4, 7), opcode) == 0) {
+ /* Explicit mode */
+ sc->N1_bits = GETFIELD(COUNTER_CONFIG_REG_SHIFT_COUNT_N1,
+ sc->counter_config_reg);
+ sc->N1_bytes = ceil(sc->N1_bits / 8);
+ sc->N1_tx = 0;
+ sc->N1_rx = 0;
+ /* If tx count control for N1 is set, load the tx value */
+ if (GETFIELD(PPC_BIT(50), sc->counter_config_reg) == 1) {
+ sc->N1_tx = sc->N1_bytes;
+ }
+ /* If rx count control for N1 is set, load the rx value */
+ if (GETFIELD(PPC_BIT(51), sc->counter_config_reg) == 1) {
+ sc->N1_rx = sc->N1_bytes;
+ }
+ } else {
+ /* Implicit mode/Forced Implicit mode, use M field from opcode */
+ sc->N1_bytes = GETFIELD(PPC_BITMASK8(4, 7), opcode);
+ sc->N1_bits = sc->N1_bytes * 8;
+ /*
+ * Assume that we are going to transmit the count
+ * (pure Implicit only)
+ */
+ sc->N1_tx = sc->N1_bytes;
+ sc->N1_rx = 0;
+ /* Let Forced Implicit mode have an effect on the counts */
+ if (GETFIELD(PPC_BIT(49), sc->counter_config_reg) == 1) {
+ /*
+ * If Forced Implicit mode and count control doesn't
+ * indicate transmit then reset the tx count to 0
+ */
+ if (GETFIELD(PPC_BIT(50), sc->counter_config_reg) == 0) {
+ sc->N1_tx = 0;
+ }
+ /* If rx count control for N1 is set, load the rx value */
+ if (GETFIELD(PPC_BIT(51), sc->counter_config_reg) == 1) {
+ sc->N1_rx = sc->N1_bytes;
+ }
+ }
+ }
+ /*
+ * Enforce an upper limit on the size of N1 that is equal to the known size
+ * of the shift register, 64 bits or 72 bits if ECC is enabled.
+ * If the size exceeds 72 bits it is a user error so log an error,
+ * cap the size at a max of 64 bits or 72 bits and set the sequencer FSM
+ * error bit.
+ */
+ uint8_t ecc_control = GETFIELD(CLOCK_CONFIG_REG_ECC_CONTROL,
+ sc->clock_config_reset_control);
+ uint8_t ecc_control_1_2 = GETFIELD(PPC_BITMASK8(1, 2), ecc_control);
+ if (ecc_control_1_2 == 0 || ecc_control_1_2 == 2) {
+ if (sc->N1_bytes > (SPI_CONTROLLER_REG_SIZE + 1)) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Unsupported N1 shift size when "
+ "ECC enabled, bytes = 0x%x, bits = 0x%x\n",
+ sc->N1_bytes, sc->N1_bits);
+ sc->N1_bytes = SPI_CONTROLLER_REG_SIZE + 1;
+ sc->N1_bits = sc->N1_bytes * 8;
+ }
+ } else if (sc->N1_bytes > SPI_CONTROLLER_REG_SIZE) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Unsupported N1 shift size, "
+ "bytes = 0x%x, bits = 0x%x\n",
+ sc->N1_bytes, sc->N1_bits);
+ sc->N1_bytes = SPI_CONTROLLER_REG_SIZE;
+ sc->N1_bits = sc->N1_bytes * 8;
+ }
+} /* end of calculate_N1 */
+
+/*
+ * Shift_N1 operation handler method
+ */
+bool operation_shiftn1(PnvSpiController *sc, uint8_t opcode,
+ xfer_buffer **payload, bool send_n1_alone)
+{
+ bool stop = false;
+ /*
+ * If there isn't a current payload left over from a stopped sequence
+ * create a new one.
+ */
+ if (*payload == NULL) {
+ SPI_DEBUG(qemu_log("Creating new payload xfer_buffer\n"));
+ *payload = xfer_buffer_new();
+ }
+ /*
+ * Use a combination of N1 counters to build the N1 portion of the
+ * transmit payload.
+ * We only care about transmit at this time since the request payload
+ * only represents data going out on the controller output line.
+ * Leave mode specific considerations in the calculate function since
+ * all we really care about are counters that tell use exactly how
+ * many bytes are in the payload and how many of those bytes to
+ * include from the TDR into the payload.
+ */
+ calculate_N1(sc, opcode);
+ SPI_DEBUG(qemu_log("Shift N1 started..\n"));
+ log_all_N_counts(sc);
+ /*
+ * Zero out the N2 counters here in case there is no N2 operation following
+ * the N1 operation in the sequencer. This keeps leftover N2 information
+ * from interfering with spi_response logic.
+ */
+ sc->N2_bits = 0;
+ sc->N2_bytes = 0;
+ sc->N2_tx = 0;
+ sc->N2_rx = 0;
+ /*
+ * N1_bytes is the overall size of the N1 portion of the frame regardless of
+ * whether N1 is used for tx, rx or both. Loop over the size to build a
+ * payload that is N1_bytes long.
+ * N1_tx is the count of bytes to take from the TDR and "shift" into the
+ * frame which means append those bytes to the payload for the N1 portion
+ * of the frame.
+ * If N1_tx is 0 or if the count exceeds the size of the TDR append 0xFF to
+ * the frame until the overall N1 count is reached.
+ */
+ uint8_t n1_count = 0;
+ while (n1_count < sc->N1_bytes) {
+ /*
+ * Assuming that if N1_tx is not equal to 0 then it is the same as
+ * N1_bytes.
+ */
+ if ((sc->N1_tx != 0) && (n1_count < SPI_CONTROLLER_REG_SIZE)) {
+
+ if (GETFIELD(STATUS_REG_TDR_FULL, sc->status_reg) == 1) {
+ /*
+ * Note that we are only appending to the payload IF the TDR
+ * is full otherwise we don't touch the payload because we are
+ * going to NOT send the payload and instead tell the sequencer
+ * that called us to stop and wait for a TDR write so we have
+ * data to load into the payload.
+ */
+ uint8_t n1_byte = 0x00;
+ n1_byte = get_from_offset(sc, n1_count);
+ SPI_DEBUG(qemu_log("Extracting tx n1_byte = 0x%2.2x at index "
+ "%d from TDR\n", n1_byte, n1_count));
+ if (sc->reverse_bits) {
+ SPI_DEBUG(qemu_log("Reversing bit order of tx n1_byte\n"));
+ n1_byte = reverse_bits8(n1_byte);
+ }
+ SPI_DEBUG(qemu_log("Appending tx n1_byte = 0x%2.2x to Payload\n"
+ , n1_byte));
+ *(xfer_buffer_write_ptr(*payload, (*payload)->len, 1)) =
+ n1_byte;
+ } else {
+ /*
+ * We hit a shift_n1 opcode TX but the TDR is empty, tell the
+ * sequencer to stop and break this loop.
+ */
+ SPI_DEBUG(qemu_log("Shift N1 set for transmit but TDR is empty,"
+ " requesting sequencer stop\n"));
+ stop = true;
+ break;
+ }
+ } else {
+ /*
+ * Cases here:
+ * - we are receiving during the N1 frame segment and the RDR
+ * is full so we need to stop until the RDR is read
+ * - we are transmitting and we don't care about RDR status
+ * since we won't be loading RDR during the frame segment.
+ * - we are receiving and the RDR is empty so we allow the operation
+ * to proceed.
+ */
+ if ((sc->N1_rx != 0) && (GETFIELD(STATUS_REG_RDR_FULL,
+ sc->status_reg) == 1)) {
+ SPI_DEBUG(qemu_log("Shift N1 set for receive but RDR is full, "
+ "requesting sequencer stop\n"));
+ stop = true;
+ break;
+ } else {
+ SPI_DEBUG(qemu_log("Appending tx n1_byte = 0xFF to Payload\n"));
+ *(xfer_buffer_write_ptr(*payload, (*payload)->len, 1)) = 0xff;
+ }
+ }
+ n1_count++;
+ } /* end of while */
+ /*
+ * If we are not stopping due to an empty TDR and we are doing an N1 TX
+ * and the TDR is full we need to clear the TDR_full status.
+ * Do this here instead of up in the loop above so we don't log the message
+ * in every loop iteration.
+ * Ignore the send_n1_alone flag, all that does is defer the TX until the N2
+ * operation, which was found immediately after the current opcode. The TDR
+ * was unloaded and will be shifted so we have to clear the TDR_full status.
+ */
+ if (!stop && (sc->N1_tx != 0) &&
+ (GETFIELD(STATUS_REG_TDR_FULL, sc->status_reg) == 1)) {
+
+ sc->status_reg = SETFIELD(STATUS_REG_TDR_FULL, sc->status_reg, 0);
+ SPI_DEBUG(qemu_log("TDR_full set to 0\n"));
+ }
+ /*
+ * There are other reasons why the shifter would stop, such as a TDR empty
+ * or RDR full condition with N1 set to receive. If we haven't stopped due
+ * to either one of those conditions then check if the send_n1_alone flag is
+ * equal to False, indicating the next opcode is an N2 operation, AND if
+ * the N2 counter reload switch (bit 0 of the N2 count control field) is
+ * set. This condition requires a pacing write to "kick" off the N2
+ * shift which includes the N1 shift as well when send_n1_alone is False.
+ */
+ if (!stop && !send_n1_alone &&
+ (GETFIELD(PPC_BIT(52), sc->counter_config_reg) == 1)) {
+ SPI_DEBUG(qemu_log("N2 counter reload active, stop N1 shift, "
+ "TDR_underrun set to 1\n"));
+ stop = true;
+ sc->status_reg = SETFIELD(STATUS_REG_TDR_UNDERRUN, sc->status_reg, 1);
+ }
+ /*
+ * If send_n1_alone is set AND we have a full TDR then this is the first and
+ * last payload to send and we don't have an N2 frame segment to add to the
+ * payload.
+ */
+ if (send_n1_alone && !stop) {
+ /* We have a TX and a full TDR or an RX and an empty RDR */
+ SPI_DEBUG(qemu_log("Shifting N1 frame: first = %d, last = %d, "
+ "n1 bits = %d\n", sc->first, sc->last,
+ sc->N1_bits));
+ xfer_buffer *rsp_payload = NULL;
+ rsp_payload = spi_request(sc->spi_bus, sc->first, sc->last,
+ sc->N1_bits, *payload);
+ if (rsp_payload != NULL) {
+ spi_response(sc, sc->N1_bits, rsp_payload);
+ }
+ sc->first = 0;
+ sc->last = 0;
+ /* The N1 frame shift is complete so reset the N1 counters */
+ sc->N2_bits = 0;
+ sc->N2_bytes = 0;
+ sc->N2_tx = 0;
+ sc->N2_rx = 0;
+ xfer_buffer_free(*payload);
+ *payload = NULL;
+ SPI_DEBUG(qemu_log("Payload buffer freed\n"));
+ } else {
+ SPI_DEBUG(qemu_log("Not shifting N1, send_n1_alone = %d, stop = %d\n",
+ send_n1_alone, stop));
+ }
+ return stop;
+} /* end of operation_shiftn1() */
+
+/*
+ * Calculate the N2 counters based on passed in opcode and
+ * internal register values.
+ * The method assumes that the opcode is a Shift_N2 opcode
+ * and doesn't test it.
+ * The counters returned are:
+ * N2 bits: Number of bits in the payload data that are significant
+ * to the responder.
+ * N2_bytes: Total count of payload bytes for the N2 frame.
+ * N2_tx: Total number of bytes taken from TDR for N2
+ * N2_rx: Total number of bytes taken from the payload for N2
+ */
+void calculate_N2(PnvSpiController *sc, uint8_t opcode)
+{
+ /*
+ * Shift_N2 opcode form: 0x4M
+ * Implicit mode:
+ * If M!=0 the shift count is M bytes and M is the number of rx bytes.
+ * Forced Implicit mode:
+ * M is the shift count but tx and rx is determined by the count control
+ * register fields. Note that we only check for Forced Implicit mode when
+ * M != 0 since the mode doesn't make sense when M = 0.
+ * Explicit mode:
+ * If M==0 then shift count is number of bits defined in the
+ * Counter Configuration Register's shift_count_N1 field.
+ */
+ if (GETFIELD(PPC_BITMASK8(4, 7), opcode) == 0) {
+ /* Explicit mode */
+ sc->N2_bits = GETFIELD(COUNTER_CONFIG_REG_SHIFT_COUNT_N2,
+ sc->counter_config_reg);
+ sc->N2_bytes = ceil(sc->N2_bits / 8);
+ sc->N2_tx = 0;
+ sc->N2_rx = 0;
+ /* If tx count control for N2 is set, load the tx value */
+ if (GETFIELD(PPC_BIT(54), sc->counter_config_reg) == 1) {
+ sc->N2_tx = sc->N2_bytes;
+ }
+ /* If rx count control for N2 is set, load the rx value */
+ if (GETFIELD(PPC_BIT(55), sc->counter_config_reg) == 1) {
+ sc->N2_rx = sc->N2_bytes;
+ }
+ } else {
+ /* Implicit mode/Forced Implicit mode, use M field from opcode */
+ sc->N2_bytes = GETFIELD(PPC_BITMASK8(4, 7), opcode);
+ sc->N2_bits = sc->N2_bytes * 8;
+ /* Assume that we are going to receive the count */
+ sc->N2_rx = sc->N2_bytes;
+ sc->N2_tx = 0;
+ /* Let Forced Implicit mode have an effect on the counts */
+ if (GETFIELD(PPC_BIT(53), sc->counter_config_reg) == 1) {
+ /*
+ * If Forced Implicit mode and count control doesn't
+ * indicate a receive then reset the rx count to 0
+ */
+ if (GETFIELD(PPC_BIT(55), sc->counter_config_reg) == 0) {
+ sc->N2_rx = 0;
+ }
+ /* If tx count control for N2 is set, load the tx value */
+ if (GETFIELD(PPC_BIT(54), sc->counter_config_reg) == 1) {
+ sc->N2_tx = sc->N2_bytes;
+ }
+ }
+ }
+ /*
+ * Enforce an upper limit on the size of N1 that is equal to the
+ * known size of the shift register, 64 bits or 72 bits if ECC
+ * is enabled.
+ * If the size exceeds 72 bits it is a user error so log an error,
+ * cap the size at a max of 64 bits or 72 bits and set the sequencer FSM
+ * error bit.
+ */
+ uint8_t ecc_control = GETFIELD(CLOCK_CONFIG_REG_ECC_CONTROL,
+ sc->clock_config_reset_control);
+ uint8_t ecc_control_1_2 = GETFIELD(PPC_BITMASK8(1, 2), ecc_control);
+ if (ecc_control_1_2 == 0 || ecc_control_1_2 == 2) {
+ if (sc->N2_bytes > (SPI_CONTROLLER_REG_SIZE + 1)) {
+ SPI_DEBUG(qemu_log("Unsupported N2 shift size when ECC enabled, "
+ "bytes = 0x%x, bits = 0x%x\n",
+ sc->N2_bytes, sc->N2_bits));
+ sc->N2_bytes = SPI_CONTROLLER_REG_SIZE + 1;
+ sc->N2_bits = sc->N2_bytes * 8;
+ }
+ } else if (sc->N2_bytes > SPI_CONTROLLER_REG_SIZE) {
+ SPI_DEBUG(qemu_log("Unsupported N2 shift size, bytes = 0x%x, "
+ "bits = 0x%x\n", sc->N2_bytes, sc->N2_bits));
+ sc->N2_bytes = SPI_CONTROLLER_REG_SIZE;
+ sc->N2_bits = sc->N2_bytes * 8;
+ }
+} /* end of calculate_N2 */
+
+/*
+ * Shift_N2 operation handler method
+ */
+
+bool operation_shiftn2(PnvSpiController *sc, uint8_t opcode,
+ xfer_buffer **payload)
+{
+ bool stop = false;
+ /*
+ * If there isn't a current payload left over from a stopped sequence
+ * create a new one.
+ */
+ if (*payload == NULL) {
+ SPI_DEBUG(qemu_log("Creating new payload xfer_buffer\n"));
+ *payload = xfer_buffer_new();
+ }
+ /*
+ * Use a combination of N2 counters to build the N2 portion of the
+ * transmit payload.
+ */
+ calculate_N2(sc, opcode);
+ SPI_DEBUG(qemu_log("Shift N2 started\n"));
+ log_all_N_counts(sc);
+ /*
+ * The only difference between this code and the code for shift N1 is
+ * that this code has to account for the possible presence of N1 transmit
+ * bytes already taken from the TDR.
+ * If there are bytes to be transmitted for the N2 portion of the frame
+ * and there are still bytes in TDR that have not been copied into the
+ * TX data of the payload, this code will handle transmitting those
+ * remaining bytes.
+ * If for some reason the transmit count(s) add up to more than the size
+ * of the TDR we will just append 0xFF to the transmit payload data until
+ * the payload is N1 + N2 bytes long.
+ */
+ uint8_t n2_count = 0;
+ while (n2_count < sc->N2_bytes) {
+ /*
+ * If the RDR is full and we need to RX just bail out, letting the
+ * code continue will end up building the payload twice in the same
+ * buffer since RDR full causes a sequence stop and restart.
+ */
+ if ((sc->N2_rx != 0) &&
+ (GETFIELD(STATUS_REG_RDR_FULL, sc->status_reg) == 1)) {
+ SPI_DEBUG(qemu_log("Shift N2 set for receive but RDR is full, "
+ "requesting sequencer stop\n"));
+ stop = true;
+ break;
+ }
+ if ((sc->N2_tx != 0) && ((sc->N1_tx + n2_count) <
+ SPI_CONTROLLER_REG_SIZE)) {
+ /* Always append data for the N2 segment if it is set for TX */
+ uint8_t n2_byte = 0x00;
+ n2_byte = get_from_offset(sc, (sc->N1_tx + n2_count));
+ SPI_DEBUG(qemu_log("Extracting tx n2_byte = 0x%2.2x at index %d "
+ "from TDR\n", n2_byte, (sc->N1_tx + n2_count)));
+ if (sc->reverse_bits) {
+ SPI_DEBUG(qemu_log("Reversing bit order of tx n2_byte\n"));
+ n2_byte = reverse_bits8(n2_byte);
+ }
+ SPI_DEBUG(qemu_log("Appending tx n2_byte = 0x%2.2x to Payload\n",
+ n2_byte));
+ *(xfer_buffer_write_ptr(*payload, (*payload)->len, 1)) = n2_byte;
+ } else {
+ /*
+ * Regardless of whether or not N2 is set for TX or RX, we need
+ * the number of bytes in the payload to match the overall length
+ * of the operation.
+ */
+ SPI_DEBUG(qemu_log("Appending tx n2_byte = 0xFF to Payload\n"));
+ *(xfer_buffer_write_ptr(*payload, (*payload)->len, 1)) = 0xff;
+ }
+ n2_count++;
+ } /* end of while */
+ if (!stop) {
+ /* We have a TX and a full TDR or an RX and an empty RDR */
+ SPI_DEBUG(qemu_log("Shifting N2 frame: first = %d, last = %d, "
+ "n1+n2 bits = %d\n", sc->first, sc->last,
+ (sc->N1_bits + sc->N2_bits)));
+ xfer_buffer *rsp_payload = NULL;
+ rsp_payload = spi_request(sc->spi_bus, sc->first, sc->last,
+ (sc->N1_bits + sc->N2_bits), *payload);
+ if (rsp_payload != NULL) {
+ spi_response(sc, (sc->N1_bits + sc->N2_bits), rsp_payload);
+ }
+ sc->first = 0;
+ sc->last = 0;
+ /*
+ * If we are doing an N2 TX and the TDR is full we need to clear the
+ * TDR_full status. Do this here instead of up in the loop above so we
+ * don't log the message in every loop iteration.
+ */
+ if ((sc->N2_tx != 0) &&
+ (GETFIELD(STATUS_REG_TDR_FULL, sc->status_reg) == 1)) {
+ sc->status_reg = SETFIELD(STATUS_REG_TDR_FULL, sc->status_reg, 0);
+ SPI_DEBUG(qemu_log("TDR_full set to 0\n"));
+ }
+ /*
+ * The N2 frame shift is complete so reset the N2 counters.
+ * Reset the N1 counters also in case the frame was a combination of
+ * N1 and N2 segments.
+ */
+ sc->N2_bits = 0;
+ sc->N2_bytes = 0;
+ sc->N2_tx = 0;
+ sc->N2_rx = 0;
+ sc->N1_bits = 0;
+ sc->N1_bytes = 0;
+ sc->N1_tx = 0;
+ sc->N1_rx = 0;
+ xfer_buffer_free(*payload);
+ *payload = NULL;
+ SPI_DEBUG(qemu_log("Payload buffer freed\n"));
+ } else {
+ SPI_DEBUG(qemu_log("Not shifting N2, stop = %d\n", stop));
+ }
+ return stop;
+} /* end of operation_shiftn2()*/
+
+/*
+ * The SPIC engine and its internal sequencer can be interrupted and reset by
+ * a hardware signal, the sbe_spicst_hard_reset bits from Pervasive
+ * Miscellaneous Register of sbe_register_bo device.
+ * Reset immediately aborts any SPI transaction in progress and returns the
+ * sequencer and state machines to idle state.
+ * The configuration register values are not changed. The status register is
+ * not reset. The engine registers are not reset.
+ * The SPIC engine reset does not have any affect on the attached devices.
+ * Reset handling of any attached devices is beyond the scope of the engine.
+ */
+void do_reset(PnvSpiController *sc)
+{
+ SPI_DEBUG(qemu_log("Resetting spic engine sequencer configuration and spi "
+ "communication\n"));
+ /* Reset all N1 and N2 counters, and other constants */
+ sc->first = 0;
+ sc->last = 0;
+ sc->N2_bits = 0;
+ sc->N2_bytes = 0;
+ sc->N2_tx = 0;
+ sc->N2_rx = 0;
+ sc->N1_bits = 0;
+ sc->N1_bytes = 0;
+ sc->N1_tx = 0;
+ sc->N1_rx = 0;
+ sc->loop_counter_1 = 0;
+ sc->loop_counter_2 = 0;
+ if (spi_disconnect_controller(sc->spi_bus)) {
+ SPI_DEBUG(qemu_log("Disconnected from responder\n"));
+ }
+}
+
static Property pnv_spi_controller_properties[] = {
DEFINE_PROP_UINT32("spic_num", PnvSpiController, spic_num, 0),
+ DEFINE_PROP_BOOL("reverse_bits", PnvSpiController, reverse_bits, false),
DEFINE_PROP_END_OF_LIST(),
};
--
2.31.1
^ permalink raw reply related [flat|nested] 15+ messages in thread
* [PATCH v1 4/5] hw/ppc: SPI SEEPROM model
2024-02-07 16:08 [PATCH v1 0/5] hw/ppc: SPI model Chalapathi V
` (2 preceding siblings ...)
2024-02-07 16:08 ` [PATCH v1 3/5] hw/ppc: SPI controller model - sequencer and shifter Chalapathi V
@ 2024-02-07 16:08 ` Chalapathi V
2024-03-08 15:14 ` Stefan Berger
2024-02-07 16:08 ` [PATCH v1 5/5] hw/ppc: SPI controller wiring to P10 chip and create seeprom device Chalapathi V
2024-03-01 16:17 ` [PATCH v1 0/5] hw/ppc: SPI model Chalapathi V
5 siblings, 1 reply; 15+ messages in thread
From: Chalapathi V @ 2024-02-07 16:08 UTC (permalink / raw)
To: qemu-devel
Cc: qemu-ppc, fbarrat, npiggin, clg, calebs, chalapathi.v,
chalapathi.v, saif.abrar
This commit implements a Serial EEPROM utilizing the Serial Peripheral
Interface (SPI) compatible bus.
Currently implemented SEEPROM is Microchip's 25CSM04 which provides 4 Mbits
of Serial EEPROM utilizing the Serial Peripheral Interface (SPI) compatible
bus. The device is organized as 524288 bytes of 8 bits each (512Kbyte) and
is optimized for use in consumer and industrial applications where reliable
and dependable nonvolatile memory storage is essential.
Signed-off-by: Chalapathi V <chalapathi.v@linux.ibm.com>
---
include/hw/ppc/pnv_spi_seeprom.h | 70 +++
hw/ppc/pnv_spi_seeprom.c | 989 +++++++++++++++++++++++++++++++
hw/ppc/meson.build | 1 +
3 files changed, 1060 insertions(+)
create mode 100644 include/hw/ppc/pnv_spi_seeprom.h
create mode 100644 hw/ppc/pnv_spi_seeprom.c
diff --git a/include/hw/ppc/pnv_spi_seeprom.h b/include/hw/ppc/pnv_spi_seeprom.h
new file mode 100644
index 0000000000..9739e411b5
--- /dev/null
+++ b/include/hw/ppc/pnv_spi_seeprom.h
@@ -0,0 +1,70 @@
+/*
+ * QEMU PowerPC SPI SEEPROM model
+ *
+ * Copyright (c) 2024, IBM Corporation.
+ *
+ * SPDX-License-Identifier: GPL-2.0-or-later
+ *
+ * This model implements a Serial EEPROM utilizing the Serial Peripheral
+ * Interface (SPI) compatible bus.
+ * Currently supported variants: 25CSM04.
+ * The Microchip Technology Inc. 25CSM04 provides 4 Mbits of Serial EEPROM
+ * utilizing the Serial Peripheral Interface (SPI) compatible bus. The device
+ * is organized as 524288 bytes of 8 bits each (512Kbyte) and is optimized
+ * for use in consumer and industrial applications where reliable and
+ * dependable nonvolatile memory storage is essential
+ */
+
+#ifndef PPC_PNV_SPI_SEEPROM_H
+#define PPC_PNV_SPI_SEEPROM_H
+
+#include "hw/ppc/pnv_spi_responder.h"
+#include "qom/object.h"
+
+#define TYPE_PNV_SPI_SEEPROM "pnv-spi-seeprom"
+
+OBJECT_DECLARE_SIMPLE_TYPE(PnvSpiSeeprom, PNV_SPI_SEEPROM)
+
+typedef struct xfer_buffer xfer_buffer;
+
+typedef struct PnvSpiSeeprom {
+ PnvSpiResponder resp;
+
+ char *file; /* SEEPROM image file */
+ uint8_t opcode; /* SEEPROM Opcode */
+ uint32_t addr; /* SEEPROM Command Address */
+ uint8_t rd_state; /* READ State Machine state variable */
+ bool locked; /* Security Register Locked */
+ bool controller_connected; /* Flag for master connection */
+ /*
+ * Device registers
+ * The 25CSM04 contains four types of registers that modulate device
+ * operation and/or report on the current status of the device. These
+ * registers are:
+ * STATUS register
+ * Security register
+ * Memory Partition registers (eight total)
+ * Identification register
+ */
+ uint8_t status0;
+ uint8_t status1;
+ /*
+ * The Security register is split into
+ * 1. user-programmable lockable ID page section.
+ * 2. The read-only section contains a preprogrammed, globally unique,
+ * 128-bit serial number.
+ */
+ uint8_t uplid[256];
+ uint8_t dsn[16];
+ uint8_t mpr[8];
+ uint8_t idr[5];
+} PnvSpiSeeprom;
+
+xfer_buffer *seeprom_spi_request(PnvSpiResponder *resp, int first, int last,
+ int bits, xfer_buffer *payload);
+void seeprom_connect_controller(PnvSpiResponder *resp, const char *port);
+void seeprom_disconnect_controller(PnvSpiResponder *resp);
+bool compute_addr(PnvSpiSeeprom *spi_resp, xfer_buffer *req_payload,
+ xfer_buffer *rsp_payload, int bits, uint32_t *data_offset);
+bool validate_addr(PnvSpiSeeprom *spi_resp);
+#endif /* PPC_PNV_SPI_SEEPROM_H */
diff --git a/hw/ppc/pnv_spi_seeprom.c b/hw/ppc/pnv_spi_seeprom.c
new file mode 100644
index 0000000000..ae46610045
--- /dev/null
+++ b/hw/ppc/pnv_spi_seeprom.c
@@ -0,0 +1,989 @@
+/*
+ * QEMU PowerPC SPI SEEPROM model
+ *
+ * Copyright (c) 2024, IBM Corporation.
+ *
+ * SPDX-License-Identifier: GPL-2.0-or-later
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/log.h"
+#include "hw/ppc/pnv_spi_seeprom.h"
+#include <math.h>
+
+#define SPI_DEBUG(x)
+
+/*
+ * 2-byte STATUS register which is a combination of six nonvolatile bits of
+ * EEPROM and five volatile latches.
+ *
+ * status 0:
+ * bit 7 WPEN: Write-Protect Enable bit
+ * 1 = Write-Protect pin is enabled, 0 = Write-Protect pin is ignored
+ *
+ * bit 3-2 BP<1:0>: Block Protection bits
+ * 00 = No array write protection
+ * 01 = Upper quarter memory array protection
+ * 10 = Upper half memory array protection
+ * 11 = Entire memory array protection
+ *
+ * bit 1 WEL: Write Enable Latch bit
+ * 1 = WREN has been executed and device is enabled for writing
+ * 0 = Device is not write-enabled
+ *
+ * bit 0 RDY/BSY: Ready/Busy Status Latch bit
+ * 1 = Device is busy with an internal write cycle
+ * 0 = Device is ready for a new sequence
+ */
+#define STATUS0_WPEN 0x7
+#define STATUS0_BP 0x2
+#define STATUS0_WEL 0x1
+#define STATUS0_BUSY 0x0
+
+/*
+ * status 1:
+ * bit 7 WPM: Write Protection Mode bit(1)
+ * 1 = Enhanced Write Protection mode selected (factory default)
+ * 0 = Legacy Write Protection mode selected
+ *
+ * bit 6 ECS: Error Correction State Latch bit
+ * 1 = The previously executed read sequence did require the ECC
+ * 0 = The previous executed read sequence did not require the ECC
+ *
+ * bit 5 FMPC: Freeze Memory Protection Configuration bit(2)
+ * 1 = Memory Partition registers and write protection mode are permanently
+ * frozen and cannot be modified
+ * 0 = Memory Partition registers and write protection mode are not frozen
+ * and are modifiable
+ *
+ * bit 4 PREL: Partition Register Write Enable Latch bit
+ * 1 = PRWE has been executed and WMPR, FRZR and PPAB instructions are enabled
+ * 0 = WMPR, FRZR and PPAB instructions are disabled
+ *
+ * bit 3 PABP: Partition Address Boundary Protection bit
+ * 1 = Partition Address Endpoints set in Memory Partition registers
+ * cannot be modified
+ * 0 = Partition Address Endpoints set in Memory Partition registers
+ * are modifiable
+ *
+ * bit 0 RDY/BSY: Ready/Busy Status Latch bit
+ * 1 = Device is busy with an internal write cycle
+ * 0 = Device is ready for a new sequence
+ */
+#define STATUS1_WPM 0x7
+#define STATUS1_ECS 0x6
+#define STATUS1_FMPC 0x5
+#define STATUS1_PREL 0x4
+#define STATUS1_PABP 0x3
+#define STATUS1_BUSY 0x0
+
+/*
+ * MEMORY PARTITION REGISTERS
+ * Note 1: The MPR cannot be written if the FMPC bit has been set.
+ * 2: The Partition Endpoint Address bits cannot be written if the PABP
+ * bit has been set.
+ *
+ * bits 7-6 PB<1:0>: Partition Behavior bits(1)
+ * 00 = Partition is open and writing is permitted
+ * factory default is unprotected.
+ * 01 = Partition is always write-protected but can be reversed at a later
+ * time (software write-protected).
+ * 10 = Partition is write-protected only when WP pin is asserted
+ * (hardware write-protected).
+ * 11 = Partition is software write-protected and MPR is permanently locked
+ *
+ * bit 5-0 A<18:13>: Partition Endpoint Address bits(1, 2)
+ * 000000 = Endpoint address of partition is set to 01FFFh.
+ * 000001 = Endpoint address of partition is set to 03FFFh.
+ * ----
+ * 111110 = Endpoint address of partition is set to 7DFFFh.
+ * 111111 = Endpoint address of partition is set to 7FFFFh.
+ */
+#define MPR_PB 0x6
+#define MPR_PEA 0x5
+
+/* INSTRUCTION SET FOR 25CSM04 */
+#define RDSR 0x05
+#define WRBP 0x08
+#define WREN 0x06
+#define WRDI 0x04
+#define WRSR 0x01
+#define READ 0x03
+#define WRITE 0x0
+#define RDEX_CHLK 0x83
+#define WREX_LOCK 0x82
+#define RMPR 0x31
+#define PRWE 0x07
+#define PRWD 0x0A
+#define WMPR 0x32
+#define PPAB 0x34
+#define FRZR 0x37
+#define SPID 0x9F
+#define SRST 0x7C
+
+/* READ FSM state */
+#define ST_IDLE 0
+#define ST_READ 1
+#define ST_SEC_READ 2
+
+xfer_buffer *seeprom_spi_request(PnvSpiResponder *resp,
+ int first, int last, int bits, xfer_buffer *payload)
+{
+ PnvSpiSeeprom *seeprom = PNV_SPI_SEEPROM(resp);
+ uint32_t data_offset = 0;
+ int data_len = 0;
+ xfer_buffer *rsp_payload = NULL;
+ uint8_t *read_buf = NULL;
+ uint8_t *buf = NULL;
+ uint16_t idx;
+ bool failed = false;
+ SPI_DEBUG(qemu_log("Received SPI request, first=%d, last=%d, bits=%d, "
+ "payload length=%d\n", first, last, bits, payload->len));
+ if (seeprom->controller_connected == false) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Controller is disconnected, invoke "
+ "connect method of spi_responder interface\n");
+ return rsp_payload;
+ }
+ if (rsp_payload == NULL) {
+ rsp_payload = xfer_buffer_new();
+ }
+ buf = xfer_buffer_write_ptr(rsp_payload, 0, payload->len);
+ memset(buf, 0xFF, payload->len);
+ /*
+ * SPI communication is always full-duplex, so the controller receives as
+ * many bits as it sends, although often both the responder and controller
+ * device ignores some incoming bits. To simulate half-duplex the controller
+ * sends zeros to the responder when controller is receiving and ignores
+ * incoming data when the controller transmitting. So, a SPI response should
+ * always have the same length in bits as the corresponding request.
+ */
+ if ((payload->len != ceil(bits / 8)) || (payload->len <= 0)) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Incorrect Payload size bits(%d) "
+ "Payload_len(%d bytes)\n", bits, payload->len);
+ return rsp_payload;
+ }
+ if ((bits % 8) != 0) {
+ qemu_log_mask(LOG_GUEST_ERROR, "non-8bit aligned SPI transfer is "
+ "unimplemented\n");
+ return rsp_payload;
+ }
+ /*
+ * Different scenarios for first and last SPI interface method parameters
+ *
+ * first(1) and last(1)
+ * SPI Controller can invoke spi_request with parameters first(1) and
+ * last(1), which indicates this is first and last spi_request in this
+ * transaction. This can be used when the valid data (excluding fake bytes)
+ * transmitted or received over SPI is less than or equal to 8 Bytes
+ *
+ * first(1) and last(0), # (required) first request
+ * first(0) and last(0), # (optional) in-between requests
+ * first(0) and last(0), # (optional) in-between requests
+ * ..
+ * ..
+ * first(0) and last(1), # (required) last request in the transaction
+ * SPI Controller can invoke spi_request multiple times with parameters
+ * first and last as shown in the sequence above for a transaction. This
+ * can be used when the valid data(excluding fake bytes) transmitted or
+ * received over SPI is more than 8 Bytes, SPI controller splits the
+ * transaction into multiple requests, this is due to TDR and RDR size(8B)
+ * restriction in SPI Controller.
+ */
+
+ /*
+ * check if first is "1", indicates a new incoming command sequence fetch
+ * the opcode and address from payload.
+ */
+ if (first == 1) {
+ /* Fetch opcode from offset 0 of payload */
+ xfer_buffer_read_ptr(payload, &read_buf, 0, 1);
+ seeprom->opcode = read_buf[0];
+ SPI_DEBUG(qemu_log("Command Opcode (0x%x)\n", seeprom->opcode));
+ /*
+ * Check if device is busy with internal write cycle, During this
+ * time, only the Read STATUS Register (RDSR) and the Write Ready/Busy
+ * Poll (WRBP) instructions will be executed by the device.
+ */
+ bool status0_busy = extract8(seeprom->status0, STATUS0_BUSY, 1);
+ bool status1_busy = extract8(seeprom->status1, STATUS1_BUSY, 1);
+ if (((status0_busy == 1) || (status1_busy == 1)) &&
+ ((seeprom->opcode != RDSR) || (seeprom->opcode != WRBP))) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Busy with Internal Write Cycle, "
+ "opcode(0x%x) not executed\n", seeprom->opcode);
+ return rsp_payload;
+ }
+ /*
+ * Implement a state machine for READ sequence, to catch an error
+ * scenario when controller generates a new command sequence, with out
+ * properly terminating the READ sequence, as shown below
+ * first(1) and last(0), # READ command
+ * first(0) and last(0), # READ command continues
+ * ...
+ * first(1) and last(0,1), # New command sequence
+ * Not required to implement a state machine for write sequence as
+ * we can leverage status register for it
+ */
+ if (seeprom->rd_state != ST_IDLE) {
+ qemu_log_mask(LOG_GUEST_ERROR, "New Command Sequence with "
+ "opcode(0x%x)is ignored Previous READ sequence is "
+ "not terminated properly!!! Continuing the previous "
+ "READ sequence\n", seeprom->opcode);
+ seeprom->opcode = (seeprom->rd_state == ST_READ) ? READ :
+ RDEX_CHLK;
+ } else {
+ /*
+ * For a new command sequence compute Address and data offset in
+ * xfer_buffer.
+ */
+ failed = compute_addr(seeprom, payload, rsp_payload, bits,
+ &data_offset);
+ /*
+ * Address computation failed, nothing to do further, just send
+ * response and return from here.
+ */
+ if (failed == true) {
+ return rsp_payload;
+ }
+ }
+ } /* end of branch if (first == 1) */
+ switch (seeprom->opcode) {
+ case READ:
+ SPI_DEBUG(qemu_log("READ(0x%x), addr(0x%x)\n",
+ seeprom->opcode, seeprom->addr));
+ seeprom->rd_state = ST_READ;
+ data_len = payload->len - data_offset;
+ /* Make sure data is at least 1 Byte */
+ if (data_len <= 0) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB), "
+ "should be at least 1 Byte\n", data_len);
+ break;
+ }
+ /* Fill the buffer with the data read from image */
+ buf = xfer_buffer_write_ptr(rsp_payload, data_offset, data_len);
+ FILE *f;
+ if (seeprom->file) {
+ f = fopen(seeprom->file, "rb+");
+ if (f) {
+ fseek(f, seeprom->addr, SEEK_SET);
+ int read_len = fread(buf, sizeof(uint8_t), data_len, f);
+ if (read_len == data_len) {
+ SPI_DEBUG(qemu_log("Read %d bytes from seeprom\n",
+ read_len));
+ } else {
+ if (ferror(f)) {
+ SPI_DEBUG(qemu_log("Error reading seeprom\n"));
+ }
+ }
+ }
+ fclose(f);
+ }
+ /* Check if last is 0 and increase address by data length */
+ if (last == 0) {
+ seeprom->addr = (seeprom->addr & 0x7FFFF) + data_len;
+ } else {
+ seeprom->rd_state = ST_IDLE;
+ }
+ break;
+
+ case RDSR:
+ SPI_DEBUG(qemu_log("READ Status Register RDSR(0x%x)\n",
+ seeprom->opcode));
+ data_len = payload->len - data_offset;
+ /* Make sure data is at least 1 Byte */
+ if (data_len <= 0) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB), "
+ "should be at least 1 Byte\n", data_len);
+ break;
+ }
+ buf = xfer_buffer_write_ptr(rsp_payload, data_offset, data_len);
+ buf[0] = seeprom->status0;
+ if (data_len == 2) {
+ buf[1] = seeprom->status1;
+ }
+ break;
+
+ case WRBP:
+ SPI_DEBUG(qemu_log("Write Ready/Busy Poll WRBP(0x%x)\n",
+ seeprom->opcode));
+ data_len = payload->len - data_offset;
+ /* Make sure data is at least 1 Byte */
+ if (data_len <= 0) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB), "
+ "should be at least 1 Byte\n", data_len);
+ break;
+ }
+ buf = xfer_buffer_write_ptr(rsp_payload, data_offset, 0x1);
+ bool status0_busy = extract8(seeprom->status0, STATUS0_BUSY, 1);
+ bool status1_busy = extract8(seeprom->status1, STATUS1_BUSY, 1);
+ if ((status0_busy == 1) || (status1_busy == 1)) {
+ buf[0] = 0xFF;
+ } else {
+ buf[0] = 0x00;
+ }
+ break;
+
+ case WREN:
+ SPI_DEBUG(qemu_log("Set Write Enable Latch (WEL) WREN(0x%x)\n",
+ seeprom->opcode));
+ seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 1);
+ break;
+
+ case WRDI:
+ SPI_DEBUG(qemu_log("Set Write Enable Latch (WEL) WRDI(0x%x)\n",
+ seeprom->opcode));
+ seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0);
+ break;
+
+ case WRSR:
+ SPI_DEBUG(qemu_log("Write STATUS Register WRSR(0x%x)\n",
+ seeprom->opcode));
+ if (extract8(seeprom->status0, STATUS0_WEL, 1) == 1) {
+ data_len = payload->len - data_offset;
+ /* Make sure data is at least 1 Byte */
+ if (data_len <= 0) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB),"
+ " should be at least 1 Byte\n", data_len);
+ break;
+ }
+ /* Mask and update status0/1 bytes */
+ xfer_buffer_read_ptr(payload, &read_buf, 1, 2);
+ seeprom->status0 = read_buf[0] & 0x8C;
+ /* 2nd Status Byte is optional */
+ if (data_len == 2) {
+ seeprom->status1 = read_buf[1] & 0x80;
+ }
+ } else {
+ qemu_log_mask(LOG_GUEST_ERROR, "Set Write Enable Latch (WEL) "
+ "before doing WRSR\n");
+ }
+ break;
+
+ case SPID:
+ SPI_DEBUG(qemu_log("READ IDENTIFICATION REGISTER, SPID(0x%x)\n",
+ seeprom->opcode));
+ data_len = payload->len - data_offset;
+ buf = xfer_buffer_write_ptr(rsp_payload, data_offset, data_len);
+ for (idx = 0; idx < data_len; idx++) {
+ buf[idx] = seeprom->idr[idx];
+ }
+ break;
+
+ case SRST:
+ SPI_DEBUG(qemu_log("Software Device Reset, SRST(0x%x)\n",
+ seeprom->opcode));
+ /*
+ * Note: The SRST instruction cannot interrupt the device while it is
+ * in a Busy state (Section 6.1.4 Ready/Busy Status Latch).
+ * This is already taken care when the command opcode is fetched
+ *
+ * 1.2 Device Default State
+ * 1.2.1 POWER-UP DEFAULT STATE
+ * The 25CSM04 default state upon power-up consists of:
+ * - Standby Power mode (CS = HIGH)
+ * - A high-to-low level transition on CS is required to enter the
+ * active state
+ `* - WEL bit in the STATUS register = 0
+ * - ECS bit in the STATUS register = 0
+ * - PREL bit in the STATUS register = 0
+ * - Ready/Busy (RDY/BUSY) bit in the STATUS register = 0, indicating
+ * the device is ready to accept a new instruction.
+ */
+ seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0);
+ seeprom->status1 = deposit32(seeprom->status1, STATUS1_ECS, 1, 0);
+ seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 0);
+ seeprom->status0 = deposit32(seeprom->status0, STATUS0_BUSY, 1, 0);
+ seeprom->status1 = deposit32(seeprom->status1, STATUS1_BUSY, 1, 0);
+ break;
+
+ case WRITE:
+ SPI_DEBUG(qemu_log("WRITE(0x%x), addr(0x%x)\n",
+ seeprom->opcode, seeprom->addr));
+ if (extract8(seeprom->status0, STATUS0_WEL, 1) != 1) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Device is not Write Enabled, "
+ "ignoring WRITE instruction\n");
+ break;
+ }
+ /* Make sure data is at least 1 Byte */
+ if (data_len <= 0) {
+ /*
+ * first last comment
+ * 0 0 data length cannot be 0
+ * 0 1 data length cannot be 0
+ * 1 0 data length can be 0, don't log error
+ * 1 1 data length cannot be 0
+ */
+ if (!(first == 1 && (last == 0))) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB),"
+ " should be at least 1 Byte\n", data_len);
+ break;
+ }
+ }
+ /* Write into SEEPROM Array */
+ SPI_DEBUG(qemu_log("(%d)%s Write sequence\n", data_len,
+ (data_len == 1) ? "Byte" : "Bytes Page"));
+ xfer_buffer_read_ptr(payload, &read_buf, data_offset, data_len);
+ if (seeprom->file) {
+ f = fopen(seeprom->file, "rb+");
+ if (f) {
+ fseek(f, seeprom->addr, SEEK_SET);
+ int write_len = fwrite(read_buf, sizeof(uint8_t), data_len, f);
+ if (write_len == data_len) {
+ SPI_DEBUG(qemu_log("Write %d bytes to seeprom\n",
+ write_len));
+ } else {
+ SPI_DEBUG(qemu_log("Failed to write seeprom\n"));
+ }
+ }
+ fclose(f);
+ }
+ /* Increase offset in the page */
+ seeprom->addr += data_len;
+ /* Check if last is 1 and end the sequence */
+ if (last == 1) {
+ seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0);
+ }
+ break;
+
+ case RMPR:
+ SPI_DEBUG(qemu_log("RMPR(0x%x) for MPR[%d]\n", seeprom->opcode,
+ extract8(seeprom->addr, 16, 2)));
+ data_len = payload->len - data_offset;
+ /* Make sure data is at least 1 Byte */
+ if (data_len <= 0) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB),"
+ " should be at least 1 Byte\n", data_len);
+ break;
+ }
+ buf = xfer_buffer_write_ptr(rsp_payload, data_offset, 0x1);
+ buf[0] = seeprom->mpr[extract8(seeprom->addr, 16, 2)];
+ break;
+
+ case PRWE:
+ SPI_DEBUG(qemu_log("Set Memory Partition Write Enable Latch "
+ "PRWE(0x%x)\n", seeprom->opcode));
+ seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 1);
+ break;
+
+ case PRWD:
+ SPI_DEBUG(qemu_log("Reset Memory Partition Write Enable Latch "
+ "PRWD(0x%x)\n", seeprom->opcode));
+ seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 0);
+ break;
+
+ case WMPR:
+ SPI_DEBUG(qemu_log("Write Memory Partition Register[%d] WMPR(0x%x)\n",
+ extract8(seeprom->addr, 16, 2), seeprom->opcode));
+ /*
+ * Once the WEL and PREL bits in the STATUS register have been set to
+ * 1, the Memory Partition registers can be programmed provided that
+ * the FMPC bit in the STATUS register has not already been set to a
+ * logic 1.
+ */
+ if ((extract8(seeprom->status0, STATUS0_WEL, 1) != 1) ||
+ (extract8(seeprom->status1, STATUS1_PREL, 1) != 1) ||
+ (extract8(seeprom->status1, STATUS1_FMPC, 1) == 1)) {
+ qemu_log_mask(LOG_GUEST_ERROR, "ignoring Write to MPR\n");
+ break;
+ }
+ data_len = payload->len - data_offset;
+ /* Make sure data is at least 1 Byte */
+ if (data_len <= 0) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB),"
+ " should be at least 1 Byte\n", data_len);
+ break;
+ }
+ xfer_buffer_read_ptr(payload, &read_buf, data_offset, 0x1);
+ if (extract8(seeprom->status1, STATUS1_PABP, 1) == 1) {
+ /* Partition Address Boundaries Protected */
+ seeprom->mpr[extract8(seeprom->addr, 16, 2)] =
+ ((read_buf[0] >> 6) & 0x3);
+ } else {
+ seeprom->mpr[extract8(seeprom->addr, 16, 2)] = read_buf[0];
+ }
+ seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0);
+ seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 0);
+ break;
+
+ case PPAB:
+ SPI_DEBUG(qemu_log("Protect Partition Address Boundaries PPAB(0x%x)\n",
+ seeprom->opcode));
+ if ((extract8(seeprom->status0, STATUS0_WEL, 1) != 1) ||
+ (extract8(seeprom->status1, STATUS1_PREL, 1) != 1) ||
+ (extract8(seeprom->status1, STATUS1_FMPC, 1) == 1)) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Ignoring PPAB command\n");
+ break;
+ }
+ data_len = payload->len - data_offset;
+ /* Make sure data is at least 1 Byte */
+ if (data_len <= 0) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB),"
+ " should be at least 1 Byte\n", data_len);
+ break;
+ }
+ xfer_buffer_read_ptr(payload, &read_buf, data_offset, 0x1);
+ if (read_buf[0] == 0xFF) {
+ seeprom->status1 = deposit32(seeprom->status1,
+ STATUS1_PABP, 1, 1);
+ } else if (read_buf[0] == 0x0) {
+ seeprom->status1 = deposit32(seeprom->status1,
+ STATUS1_PABP, 1, 0);
+ } else {
+ qemu_log_mask(LOG_GUEST_ERROR, "Incorrect Data Byte(0x%x), "
+ "should be 0x0 or 0xFF\n", read_buf[0]);
+ }
+ seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0);
+ seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 0);
+ break;
+
+ case FRZR:
+ SPI_DEBUG(qemu_log("Freeze Memory Protection Configuration "
+ "FRZR(0x%x)\n", seeprom->opcode));
+ if ((extract8(seeprom->status0, STATUS0_WEL, 1) != 1) ||
+ (extract8(seeprom->status1, STATUS1_PREL, 1) != 1) ||
+ (extract8(seeprom->status1, STATUS1_FMPC, 1) == 1)) {
+ qemu_log_mask(LOG_GUEST_ERROR, "ignoring FRZR command\n");
+ break;
+ }
+ data_len = payload->len - data_offset;
+ /* Make sure data is at least 1 Byte */
+ if (data_len <= 0) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB),"
+ " should be at least 1 Byte\n", data_len);
+ break;
+ }
+ xfer_buffer_read_ptr(payload, &read_buf, data_offset, 0x1);
+ if (read_buf[0] == 0xD2) {
+ seeprom->status1 = deposit32(seeprom->status1,
+ STATUS1_FMPC, 1, 1);
+ } else {
+ qemu_log_mask(LOG_GUEST_ERROR, "Invalid Confirmation Data "
+ "byte(0x%x), expecting 0xD2", read_buf[0]);
+ }
+ seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0);
+ seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 0);
+ break;
+
+ case RDEX_CHLK:
+ SPI_DEBUG(qemu_log("OPCODE = (0x%x)\n", seeprom->opcode));
+ data_len = payload->len - data_offset;
+ /* Make sure data is at least 1 Byte */
+ if (data_len <= 0) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB),"
+ " should be at least 1 Byte\n", data_len);
+ break;
+ }
+ buf = xfer_buffer_write_ptr(rsp_payload, data_offset, data_len);
+ if (extract8(seeprom->addr, 10, 1) == 0) {
+ /* RDEX */
+ seeprom->rd_state = ST_SEC_READ;
+ for (idx = 0; idx < data_len; idx++) {
+ if (extract32(seeprom->addr, 0, 9) <= 0xFF) {
+ buf[idx] = seeprom->dsn[extract8(seeprom->addr, 0, 8)];
+ } else {
+ buf[idx] = seeprom->uplid[extract8(seeprom->addr, 0, 8)];
+ }
+ seeprom->addr = deposit32(seeprom->addr, 0, 9,
+ ((extract32(seeprom->addr, 0, 9)) + 1));
+ }
+ if (last == 1) {
+ seeprom->rd_state = ST_IDLE;
+ } else {
+ /* CHLK */
+ if (seeprom->locked == true) {
+ buf[0] = 0x01;
+ } else {
+ buf[0] = 0x00;
+ }
+ }
+ }
+ break;
+
+ case WREX_LOCK:
+ SPI_DEBUG(qemu_log("OPCODE = (0x%x)\n", seeprom->opcode));
+ if (seeprom->locked == true) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Device is already Locked, "
+ "command is ignored\n");
+ break;
+ }
+ if (extract8(seeprom->status0, STATUS0_WEL, 1) != 1) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Device is not Write Enabled, "
+ "command is ignored\n");
+ break;
+ }
+ data_len = payload->len - data_offset;
+ /* Make sure data is at least 1 Byte */
+ if (data_len <= 0) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB),"
+ " should be at least 1 Byte\n", data_len);
+ break;
+ }
+ xfer_buffer_read_ptr(payload, &read_buf, data_offset, data_len);
+ if (extract8(seeprom->addr, 10, 1) == 0) {
+ /* WREX */
+ for (idx = 0; idx < data_len; idx++) {
+ seeprom->uplid[extract8(seeprom->addr, 0, 8)] = read_buf[idx];
+ /* Increase address with the page, and let it rool over */
+ seeprom->addr = deposit32(seeprom->addr, 0, 8,
+ ((extract32(seeprom->addr, 0, 8)) + 1));
+ }
+ } else {
+ /*
+ * LOCK (82h) instruction is clocked in on the SI line, followed
+ * by a fake address where bits A[23:0] are don't care bits with
+ * the exception that bit A10 must be set to 1. Finally, a
+ * confirmation data byte of xxxx_xx1xb is sent
+ */
+ if ((buf[0] & 0x02) == 0x2) {
+ seeprom->locked = true;
+ }
+ }
+ break;
+
+ default:
+ qemu_log_mask(LOG_GUEST_ERROR, "Invalid instruction(0x%x)\n",
+ seeprom->opcode);
+ } /* end of switch */
+ return rsp_payload;
+} /* end of seeprom_spi_request */
+
+void seeprom_connect_controller(PnvSpiResponder *resp, const char *port)
+{
+ PnvSpiSeeprom *seeprom = PNV_SPI_SEEPROM(resp);
+ seeprom->controller_connected = true;
+}
+
+void seeprom_disconnect_controller(PnvSpiResponder *resp)
+{
+ PnvSpiSeeprom *seeprom = PNV_SPI_SEEPROM(resp);
+ /* This method is invoked when Controller wants to deslect responder */
+ seeprom->controller_connected = false;
+ seeprom->rd_state = ST_IDLE; /* Reset Read state */
+ if (seeprom->opcode == WRITE) { /* Reset Write enable */
+ seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0);
+ }
+}
+
+/*
+ * Method : compute_addr
+ * This method is used to compute address and data offset for supported
+ * opcodes and only invoked when a valid new command sequence starts aka
+ * first is 1.
+ */
+bool compute_addr(PnvSpiSeeprom *seeprom, xfer_buffer *req_payload,
+ xfer_buffer *rsp_payload, int bits, uint32_t *data_offset)
+{
+ bool addr_wr_protected = false;
+ uint8_t *read_buf = NULL;
+ *data_offset = 0;
+ bool failed = false;
+
+ xfer_buffer_read_ptr(req_payload, &read_buf, 1, 3);
+ switch (seeprom->opcode) {
+ case READ:
+ case WRITE:
+ SPI_DEBUG(qemu_log("Compute address and payload buffer data offset "
+ "for %s\n", (seeprom->opcode == READ) ? "READ" : "WRITE"));
+ /* command size is 4 bytes for READ/WRITE, data_offset is 4 */
+ *data_offset = 4;
+
+ /* Make sure buffer length is at least 4 Bytes */
+ if (req_payload->len >= 4) {
+ /*
+ * Fetch address from size 24 bit from offset 1,2,3 of payload
+ * and mask of higher 5 bits as valid memory array size is 512KB
+ */
+ seeprom->addr = deposit32(seeprom->addr, 0, 8, read_buf[2]);
+ seeprom->addr = deposit32(seeprom->addr, 8, 8, read_buf[1]);
+ seeprom->addr = deposit32(seeprom->addr, 16, 8,
+ (read_buf[0] & 0x7));
+ } else {
+ qemu_log_mask(LOG_GUEST_ERROR, "Payload_len(0x%x) should be at "
+ "least 4Bytes to fetch Address\n", req_payload->len);
+ failed = true;
+ }
+ if (seeprom->opcode == WRITE) {
+ addr_wr_protected = validate_addr(seeprom);
+ if (addr_wr_protected) {
+ qemu_log_mask(LOG_GUEST_ERROR, "SEEPROM Address(0x%x) is Write "
+ "protected\n", seeprom->addr);
+ failed = true;
+ }
+ }
+ break;
+
+ case RDSR:
+ case WRBP:
+ case WRSR:
+ case SPID:
+ /*
+ * command size is 1 bytes for RDSR, WRBP, WRSR, SPID. So data_offset
+ * is 1
+ */
+ *data_offset = 1;
+ break;
+
+ case RMPR:
+ case WMPR:
+ SPI_DEBUG(qemu_log("Compute MPR address for %s MPR\n",
+ (seeprom->opcode == RMPR) ? "READ" : "WRITE"));
+ /* command size is 4 bytes for WMPR/RMPR, data_offset is 4 */
+ *data_offset = 4;
+
+ /* Make sure buffer length is at least 4 Bytes */
+ if (req_payload->len >= 4) {
+ /*
+ * The address for each Memory Partition register is embedded into
+ * the first address byte sent to the device,in bit positions A18
+ * through A16.
+ */
+ seeprom->addr = deposit32(seeprom->addr, 0, 15, 0);
+ seeprom->addr = deposit32(seeprom->addr, 16, 8,
+ (read_buf[0] & 0x7));
+ } else {
+ qemu_log_mask(LOG_GUEST_ERROR, "Payload_len(0x%x) should be at "
+ "least 4Bytes to fetch Address\n", req_payload->len);
+ failed = true;
+ }
+ break;
+
+ case PPAB:
+ case FRZR:
+ SPI_DEBUG(qemu_log("Validate if addr[15:0] is %s\n",
+ (seeprom->opcode == PPAB) ? "0xCCFF for PPAB" :
+ "0xAA40 for FRZR"));
+ /* command size is 4 bytes for PPAB/FRZR, data_offset is 4 */
+ *data_offset = 4;
+ /* Make sure buffer length is at least 4 Bytes */
+ if (req_payload->len >= 4) {
+ /* Address bits A23-A16 are ignored. */
+ seeprom->addr = deposit32(seeprom->addr, 0, 8, read_buf[2]);
+ seeprom->addr = deposit32(seeprom->addr, 8, 8, read_buf[1]);
+ seeprom->addr = deposit32(seeprom->addr, 16, 8, 0);
+ } else {
+ qemu_log_mask(LOG_GUEST_ERROR, "Payload_len(0x%x) should be at "
+ "least 4Bytes to fetch Address\n", req_payload->len);
+ failed = true;
+ break;
+ }
+ /* Address bits A15-A0 must be set to CC55h. */
+ if ((seeprom->opcode == PPAB) &&
+ (extract32(seeprom->addr, 0, 15) != 0xCC55)) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Invalid addr[15:0] = 0x%x sent for "
+ "PPAB\n", extract32(seeprom->addr, 0, 15));
+ failed = true;
+ }
+ /* Address bits A15-A0 must be set to AA40h. */
+ if ((seeprom->opcode == FRZR) &&
+ (extract32(seeprom->addr, 0, 15) != 0xAA40)) {
+ qemu_log_mask(LOG_GUEST_ERROR, "Invalid addr[15:0] = 0x%x sent for "
+ "FRZR\n", extract32(seeprom->addr, 0, 15));
+ failed = true;
+ }
+ break;
+
+ case RDEX_CHLK:
+ case WREX_LOCK:
+ SPI_DEBUG(qemu_log("Compute Address for Security reg command\n"));
+ /* command size is 4 bytes for PPAB/FRZR, data_offset is 4 */
+ *data_offset = 4;
+
+ /* Make sure buffer length is at least 4 Bytes */
+ if (req_payload->len >= 4) {
+ /*
+ * RDEX : A[23:9] are don't care bits, except A10 which must be a
+ * logic 0.
+ * WREX : A[23:9] are don't care bits, except A10 which must be a
+ * logic 0 and A8 which must be a logic 1 to address the
+ * second Security register byte that is user programmable.
+ * CHLK : A[23:0] are don't care bits, except A10 which must be a
+ * logic 1.
+ * LOCK : A[23:0] are don't care bits, except A10 which must be a
+ * logic 1.
+ */
+ seeprom->addr = deposit32(seeprom->addr, 0, 8, read_buf[2]);
+ seeprom->addr = deposit32(seeprom->addr, 8, 8,
+ (read_buf[1] & 0x05));
+ seeprom->addr = deposit32(seeprom->addr, 16, 8, 0);
+ SPI_DEBUG(qemu_log("Received Command %s\n",
+ (seeprom->opcode == RDEX_CHLK)
+ ? (extract32(seeprom->addr, 10, 1) ?
+ "CHLK : Check Lock Status of Security Register" :
+ "RDEX : Read from the Security Register")
+ : (extract32(seeprom->addr, 10, 1) ?
+ "LOCK : Lock the Security Register (permanent)" :
+ "WREX : Write to the Security Register")));
+ } else {
+ qemu_log_mask(LOG_GUEST_ERROR, "Payload_len(0x%x) should be at "
+ "least 4Bytes to fetch Address\n", req_payload->len);
+ failed = true;
+ }
+
+ if ((seeprom->opcode == WREX_LOCK) &&
+ (extract32(seeprom->addr, 10, 1) == 0)) {
+ /*
+ * WREX
+ * In Legacy Write Protection mode, the Security register is
+ * write-protected when the BP <1:0> bits (bits 3-2 byte0) of
+ * the STATUS register = 11.
+ */
+ if (extract8(seeprom->status1, STATUS1_WPM, 1) == 0) {
+ addr_wr_protected = validate_addr(seeprom);
+ } else {
+ if (extract32(seeprom->addr, 0, 9) <= 0xFF) {
+ addr_wr_protected = true;
+ }
+ }
+ if (addr_wr_protected) {
+ qemu_log_mask(LOG_GUEST_ERROR, "SEEPROM Address(0x%x) is "
+ "Write protected\n", seeprom->addr);
+ failed = true;
+ }
+ }
+ break;
+ } /* end of switch */
+ return failed;
+} /* end of method compute_addr */
+
+/*
+ * Method : validate_addr
+ * This method validates whether SEEPROM address is write protected or not
+ */
+
+bool validate_addr(PnvSpiSeeprom *seeprom)
+{
+ bool addr_wr_protected = false;
+ uint8_t mpr_idx = 0;
+
+ if (extract8(seeprom->status1, STATUS1_WPM, 1) == 1) {
+ /*
+ * enhanced write protection
+ * Memory partition register Bit5 through bit0 contain the Partition
+ * Endpoint Address of A18:A13, where A12:A0 are a logic "1". For
+ * example, if the first partition of the memory array is desired to
+ * stop after 128-Kbit of memory, that end point address is 03FFFh. The
+ * corresponding A18:A13 address bits to be loaded into MPR0 are
+ * therefore 000001b. The eight MPRs are each decoded sequentially by
+ * the device, starting with MPR0. Each MPR should be set to a
+ * Partition Endpoint Address greater than the ending address of the
+ * previous MPR. If a higher order MPR sets a Partition Endpoint Address
+ * less than or equal to the ending address of a lower order MPR, that
+ * higher order MPR is ignored and no protection is set by it's
+ * contents.
+ */
+ for (mpr_idx = 0; mpr_idx < 8; mpr_idx++) {
+ if ((extract32(seeprom->addr, 13, 6)) <=
+ (extract8(seeprom->mpr[mpr_idx], MPR_PEA, 1))) {
+ switch (extract8(seeprom->mpr[mpr_idx], MPR_PB, 1)) {
+ case 0:
+ /*
+ * 0b00 = Partition is open and writing is permitted
+ * (factory default is unprotected).
+ */
+ addr_wr_protected = false;
+ break;
+ case 1:
+ /*
+ * 0b01 = Partition is always write-protected but can be
+ * reversed at a later time (software write-protected).
+ */
+ addr_wr_protected = true;
+ break;
+ case 2:
+ /*
+ * 0b10 = Partition is write-protected only when WP pin is
+ * asserted (hardware write-protected).
+ */
+ addr_wr_protected = false;
+ break;
+ case 3:
+ /*
+ * 0b11 = Partition is software write-protected and Memory
+ * Partition register is permanently locked.
+ */
+ addr_wr_protected = true;
+ break;
+ } /* end of switch */
+ break; /* break from for loop. */
+ }
+ } /* end of for loop */
+ } else {
+ /* Legacy write protection mode */
+ switch (extract8(seeprom->status0, STATUS0_BP, 2)) {
+ case 0:
+ /*
+ * 0b00 = No array write protection
+ * EEPROM None
+ * Security Register 00000h - 000FFh
+ */
+ if ((seeprom->opcode == WREX_LOCK) &&
+ (extract32(seeprom->addr, 0, 9) <= 0xFF)) {
+ addr_wr_protected = true;
+ }
+ break;
+ case 1:
+ /*
+ * 0b01 = Upper quarter memory array protection
+ * EEPROM 60000h - 7FFFFh
+ * Security Register 00000h - 000FFh
+ */
+ if ((seeprom->opcode == WREX_LOCK) &&
+ (extract32(seeprom->addr, 0, 9) <= 0xFF)) {
+ addr_wr_protected = true;
+ } else if ((seeprom->opcode == WRITE) &&
+ (extract32(seeprom->addr, 0, 19) <= 0x60000)) {
+ addr_wr_protected = true;
+ }
+ break;
+ case 2:
+ /*
+ * 0b10 = Upper half memory array protection
+ * EEPROM 40000h - 7FFFFh
+ * Security Register 00000h - 000FFh
+ */
+ if ((seeprom->opcode == WREX_LOCK) &&
+ (extract32(seeprom->addr, 0, 9) <= 0xFF)) {
+ addr_wr_protected = true;
+ } else if ((seeprom->opcode == WRITE) &&
+ (extract32(seeprom->addr, 0, 19) <= 0x40000)) {
+ addr_wr_protected = true;
+ }
+ break;
+ case 3:
+ /*
+ * 0b11 = Entire memory array protection
+ * EEPROM 00000h - 7FFFFh
+ * Security Register 00000h - 001FFh
+ */
+ addr_wr_protected = true;
+ break;
+ } /* end of switch */
+ }
+ return addr_wr_protected;
+} /* end of validate_addr */
+
+static void pnv_spi_seeprom_class_init(ObjectClass *klass, void *data)
+{
+ DeviceClass *dc = DEVICE_CLASS(klass);
+ PnvSpiResponderClass *resp_class = PNV_SPI_RESPONDER_CLASS(klass);
+
+ resp_class->connect_controller = seeprom_connect_controller;
+ resp_class->disconnect_controller = seeprom_disconnect_controller;
+ resp_class->request = seeprom_spi_request;
+
+ dc->desc = "PowerNV SPI SEEPROM";
+ dc->bus_type = TYPE_SPI_BUS;
+}
+
+static const TypeInfo pnv_spi_seeprom_info = {
+ .name = TYPE_PNV_SPI_SEEPROM,
+ .parent = TYPE_PNV_SPI_RESPONDER,
+ .instance_size = sizeof(PnvSpiSeeprom),
+ .class_init = pnv_spi_seeprom_class_init,
+};
+
+static void pnv_spi_seeprom_register_types(void)
+{
+ type_register_static(&pnv_spi_seeprom_info);
+}
+
+type_init(pnv_spi_seeprom_register_types);
diff --git a/hw/ppc/meson.build b/hw/ppc/meson.build
index de25cac763..2c1ef0c937 100644
--- a/hw/ppc/meson.build
+++ b/hw/ppc/meson.build
@@ -55,6 +55,7 @@ ppc_ss.add(when: 'CONFIG_POWERNV', if_true: files(
'pnv_pnor.c',
'pnv_spi_responder.c',
'pnv_spi_controller.c',
+ 'pnv_spi_seeprom.c',
))
# PowerPC 4xx boards
ppc_ss.add(when: 'CONFIG_PPC405', if_true: files(
--
2.31.1
^ permalink raw reply related [flat|nested] 15+ messages in thread
* [PATCH v1 5/5] hw/ppc: SPI controller wiring to P10 chip and create seeprom device
2024-02-07 16:08 [PATCH v1 0/5] hw/ppc: SPI model Chalapathi V
` (3 preceding siblings ...)
2024-02-07 16:08 ` [PATCH v1 4/5] hw/ppc: SPI SEEPROM model Chalapathi V
@ 2024-02-07 16:08 ` Chalapathi V
2024-03-01 16:17 ` [PATCH v1 0/5] hw/ppc: SPI model Chalapathi V
5 siblings, 0 replies; 15+ messages in thread
From: Chalapathi V @ 2024-02-07 16:08 UTC (permalink / raw)
To: qemu-devel
Cc: qemu-ppc, fbarrat, npiggin, clg, calebs, chalapathi.v,
chalapathi.v, saif.abrar
This commit creates SPI controller to p10 chip and create the keystore seeprom
device on spi_bus2 of PIB_SPIC[2].
Signed-off-by: Chalapathi V <chalapathi.v@linux.ibm.com>
---
include/hw/ppc/pnv_chip.h | 4 ++++
hw/ppc/pnv.c | 32 ++++++++++++++++++++++++++++++++
2 files changed, 36 insertions(+)
diff --git a/include/hw/ppc/pnv_chip.h b/include/hw/ppc/pnv_chip.h
index 0ab5c42308..0d67516ede 100644
--- a/include/hw/ppc/pnv_chip.h
+++ b/include/hw/ppc/pnv_chip.h
@@ -4,6 +4,8 @@
#include "hw/pci-host/pnv_phb4.h"
#include "hw/ppc/pnv_core.h"
#include "hw/ppc/pnv_homer.h"
+#include "hw/ppc/pnv_spi_controller.h"
+#include "hw/ppc/pnv_spi_seeprom.h"
#include "hw/ppc/pnv_lpc.h"
#include "hw/ppc/pnv_occ.h"
#include "hw/ppc/pnv_psi.h"
@@ -113,6 +115,8 @@ struct Pnv10Chip {
PnvOCC occ;
PnvSBE sbe;
PnvHomer homer;
+#define PNV10_CHIP_MAX_PIB_SPIC 6
+ PnvSpiController pib_spic[PNV10_CHIP_MAX_PIB_SPIC];
uint32_t nr_quads;
PnvQuad *quads;
diff --git a/hw/ppc/pnv.c b/hw/ppc/pnv.c
index 0297871bdd..8fffd999f6 100644
--- a/hw/ppc/pnv.c
+++ b/hw/ppc/pnv.c
@@ -1691,6 +1691,11 @@ static void pnv_chip_power10_instance_init(Object *obj)
for (i = 0; i < pcc->i2c_num_engines; i++) {
object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C);
}
+
+ for (i = 0; i < PNV10_CHIP_MAX_PIB_SPIC ; i++) {
+ object_initialize_child(obj, "pib_spic[*]", &chip10->pib_spic[i],
+ TYPE_PNV_SPI_CONTROLLER);
+ }
}
static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
@@ -1879,6 +1884,33 @@ static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
qdev_get_gpio_in(DEVICE(&chip10->psi),
PSIHB9_IRQ_SBE_I2C));
}
+
+ /* PIB SPI Controller */
+ for (i = 0; i < PNV10_CHIP_MAX_PIB_SPIC; i++) {
+ object_property_set_int(OBJECT(&chip10->pib_spic[i]), "spic_num",
+ i , &error_fatal);
+ /*
+ * The TPM attached SPIC needs to reverse the bit order in each byte
+ * it sends to the TPM.
+ */
+ if (i == 4) {
+ object_property_set_bool(OBJECT(&chip10->pib_spic[i]),
+ "reverse_bits", true, &error_fatal);
+ }
+ if (!qdev_realize(DEVICE(&chip10->pib_spic[i]), NULL, errp)) {
+ return;
+ }
+ pnv_xscom_add_subregion(chip, PNV10_XSCOM_PIB_SPIC_BASE +
+ i * PNV10_XSCOM_PIB_SPIC_SIZE,
+ &chip10->pib_spic[i].xscom_spic_regs);
+ }
+
+ /* Primary MEAS/MVPD/Keystore SEEPROM connected to pib_spic[2]*/
+ PnvSpiSeeprom *meas_mvpd_ks_p = PNV_SPI_SEEPROM(spi_create_responder(
+ (&chip10->pib_spic[2])->spi_bus,
+ TYPE_PNV_SPI_SEEPROM));
+ meas_mvpd_ks_p->file = qemu_find_file(QEMU_FILE_TYPE_BIOS,
+ "sbe_measurement_seeprom.bin.ecc");
}
static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
--
2.31.1
^ permalink raw reply related [flat|nested] 15+ messages in thread
* Re: [PATCH v1 0/5] hw/ppc: SPI model
2024-02-07 16:08 [PATCH v1 0/5] hw/ppc: SPI model Chalapathi V
` (4 preceding siblings ...)
2024-02-07 16:08 ` [PATCH v1 5/5] hw/ppc: SPI controller wiring to P10 chip and create seeprom device Chalapathi V
@ 2024-03-01 16:17 ` Chalapathi V
2024-03-01 16:36 ` Cédric Le Goater
5 siblings, 1 reply; 15+ messages in thread
From: Chalapathi V @ 2024-03-01 16:17 UTC (permalink / raw)
To: qemu-devel
Cc: qemu-ppc, fbarrat, npiggin, clg, calebs, chalapathi.v, saif.abrar
Hello,
I would greatly appreciate the review comments/suggestions on PATCH V1.
Thank You and Regards,
Chalapathi
On 07-02-2024 21:38, Chalapathi V wrote:
> Hello,
>
> In this series of patchset, SPI controller and responder models
> for Power10 processor are modelled.
>
> Serial peripheral interface provides full-duplex synchronous serial
> communication between single controller and multiple responder devices.
>
> The current configuration supports a single SPI controller reside on the
> SPI bus. In p10, SPI controller device model supports a connection to a
> single SPI responder such as SPI seeproms, TPM, flash device and an ADC
> controller.
>
> SPI controller model is divided into configuration unit, sequencer FSM
> and shifter engine. All SPI function control is mapped into the SPI register
> space to enable full control by firmware.
>
> SPI configuration component is modelled which contains all SPI configuration
> and status registers as well as the hold registers for data to be sent or
> having been received.
> Shift engine performs serialization and de-serialization according to the
> control by the sequencer and according to the setup defined in the
> configuration registers.
> Sequencer implements the main control logic and
> FSM to handle data transmit and data receive control of the shift engine.
>
> Microchip's 25CSM04 SEEPROM device is modelled and connected to SPI bus
> "spi_bus2" of SPI controller "PIB_SPIC[2]".
>
> Patches overview in V1.
> PATCH1: Create a SPI responder model which includes responder methods
> and SPI bus implementation.
> PATCH2: Create a SPI controller model and implement configuration unit
> to model SCOM registers.
> PATCH3: SPI controller model: implement sequencer FSM and shift engine.
> PATCH4: create SPI SEEPROM model.
> PATCH5: Connect SPI controllers to p10 chip and create keystore seeprom
> device on spi_bus2 of PIB_SPIC[2].
>
> Thank You,
> Chalapathi
>
> Chalapathi V (5):
> hw/ppc: SPI responder model
> hw/ppc: SPI controller model - registers implementation
> hw/ppc: SPI controller model - sequencer and shifter
> hw/ppc: SPI SEEPROM model
> hw/ppc: SPI controller wiring to P10 chip and create seeprom device
>
> include/hw/ppc/pnv_chip.h | 4 +
> include/hw/ppc/pnv_spi_controller.h | 101 ++
> include/hw/ppc/pnv_spi_responder.h | 109 ++
> include/hw/ppc/pnv_spi_seeprom.h | 70 ++
> include/hw/ppc/pnv_xscom.h | 3 +
> hw/ppc/pnv.c | 32 +
> hw/ppc/pnv_spi_controller.c | 1609 +++++++++++++++++++++++++++
> hw/ppc/pnv_spi_responder.c | 166 +++
> hw/ppc/pnv_spi_seeprom.c | 989 ++++++++++++++++
> hw/ppc/meson.build | 3 +
> 10 files changed, 3086 insertions(+)
> create mode 100644 include/hw/ppc/pnv_spi_controller.h
> create mode 100644 include/hw/ppc/pnv_spi_responder.h
> create mode 100644 include/hw/ppc/pnv_spi_seeprom.h
> create mode 100644 hw/ppc/pnv_spi_controller.c
> create mode 100644 hw/ppc/pnv_spi_responder.c
> create mode 100644 hw/ppc/pnv_spi_seeprom.c
>
^ permalink raw reply [flat|nested] 15+ messages in thread
* Re: [PATCH v1 0/5] hw/ppc: SPI model
2024-03-01 16:17 ` [PATCH v1 0/5] hw/ppc: SPI model Chalapathi V
@ 2024-03-01 16:36 ` Cédric Le Goater
2024-03-01 18:33 ` Chalapathi V
0 siblings, 1 reply; 15+ messages in thread
From: Cédric Le Goater @ 2024-03-01 16:36 UTC (permalink / raw)
To: Chalapathi V, qemu-devel
Cc: qemu-ppc, fbarrat, npiggin, calebs, chalapathi.v, saif.abrar
Chalapathi,
On 3/1/24 17:17, Chalapathi V wrote:
> Hello,
>
> I would greatly appreciate the review comments/suggestions on PATCH V1.
>
> Thank You and Regards,
I didn't forget but I lacked the time in this release cycle. Sorry
about that.
I have one quick comment though. There are already a few models
implementing SPI controllers in QEMU. When I skimmed through the
patches, I was surprised to see no use of the available SSI
framework. Doesn't the current framework fit your needs ?
Please take a look at files in : include/hw/ssi/* hw/ssi/*
Same comment for the Serial EEPROM model. This device is generic
and not POWER specific. It should be possible to attach the device
model on other machines and different SPI bus provided by QEMU.
This doesn't mean rewriting everything, but the "HW" interface
probably needs to be reworked. It would make it easier to write
unit test (see ests/qtest/) and ease the review also.
Thanks,
C.
>
> Chalapathi
>
> On 07-02-2024 21:38, Chalapathi V wrote:
>> Hello,
>>
>> In this series of patchset, SPI controller and responder models
>> for Power10 processor are modelled.
>>
>> Serial peripheral interface provides full-duplex synchronous serial
>> communication between single controller and multiple responder devices.
>>
>> The current configuration supports a single SPI controller reside on the
>> SPI bus. In p10, SPI controller device model supports a connection to a
>> single SPI responder such as SPI seeproms, TPM, flash device and an ADC
>> controller.
>>
>> SPI controller model is divided into configuration unit, sequencer FSM
>> and shifter engine. All SPI function control is mapped into the SPI register
>> space to enable full control by firmware.
>>
>> SPI configuration component is modelled which contains all SPI configuration
>> and status registers as well as the hold registers for data to be sent or
>> having been received.
>> Shift engine performs serialization and de-serialization according to the
>> control by the sequencer and according to the setup defined in the
>> configuration registers.
>> Sequencer implements the main control logic and
>> FSM to handle data transmit and data receive control of the shift engine.
>>
>> Microchip's 25CSM04 SEEPROM device is modelled and connected to SPI bus
>> "spi_bus2" of SPI controller "PIB_SPIC[2]".
>>
>> Patches overview in V1.
>> PATCH1: Create a SPI responder model which includes responder methods
>> and SPI bus implementation.
>> PATCH2: Create a SPI controller model and implement configuration unit
>> to model SCOM registers.
>> PATCH3: SPI controller model: implement sequencer FSM and shift engine.
>> PATCH4: create SPI SEEPROM model.
>> PATCH5: Connect SPI controllers to p10 chip and create keystore seeprom
>> device on spi_bus2 of PIB_SPIC[2].
>>
>> Thank You,
>> Chalapathi
>>
>> Chalapathi V (5):
>> hw/ppc: SPI responder model
>> hw/ppc: SPI controller model - registers implementation
>> hw/ppc: SPI controller model - sequencer and shifter
>> hw/ppc: SPI SEEPROM model
>> hw/ppc: SPI controller wiring to P10 chip and create seeprom device
>>
>> include/hw/ppc/pnv_chip.h | 4 +
>> include/hw/ppc/pnv_spi_controller.h | 101 ++
>> include/hw/ppc/pnv_spi_responder.h | 109 ++
>> include/hw/ppc/pnv_spi_seeprom.h | 70 ++
>> include/hw/ppc/pnv_xscom.h | 3 +
>> hw/ppc/pnv.c | 32 +
>> hw/ppc/pnv_spi_controller.c | 1609 +++++++++++++++++++++++++++
>> hw/ppc/pnv_spi_responder.c | 166 +++
>> hw/ppc/pnv_spi_seeprom.c | 989 ++++++++++++++++
>> hw/ppc/meson.build | 3 +
>> 10 files changed, 3086 insertions(+)
>> create mode 100644 include/hw/ppc/pnv_spi_controller.h
>> create mode 100644 include/hw/ppc/pnv_spi_responder.h
>> create mode 100644 include/hw/ppc/pnv_spi_seeprom.h
>> create mode 100644 hw/ppc/pnv_spi_controller.c
>> create mode 100644 hw/ppc/pnv_spi_responder.c
>> create mode 100644 hw/ppc/pnv_spi_seeprom.c
>>
^ permalink raw reply [flat|nested] 15+ messages in thread
* Re: [PATCH v1 0/5] hw/ppc: SPI model
2024-03-01 16:36 ` Cédric Le Goater
@ 2024-03-01 18:33 ` Chalapathi V
0 siblings, 0 replies; 15+ messages in thread
From: Chalapathi V @ 2024-03-01 18:33 UTC (permalink / raw)
To: Cédric Le Goater, qemu-devel
Cc: qemu-ppc, fbarrat, npiggin, calebs, chalapathi.v, saif.abrar
[-- Attachment #1: Type: text/plain, Size: 4797 bytes --]
On 01-03-2024 22:06, Cédric Le Goater wrote:
> Chalapathi,
>
> On 3/1/24 17:17, Chalapathi V wrote:
>> Hello,
>>
>> I would greatly appreciate the review comments/suggestions on PATCH V1.
>>
>> Thank You and Regards,
>
> I didn't forget but I lacked the time in this release cycle. Sorry
> about that.
>
> I have one quick comment though. There are already a few models
> implementing SPI controllers in QEMU. When I skimmed through the
> patches, I was surprised to see no use of the available SSI
> framework. Doesn't the current framework fit your needs ?
>
> Please take a look at files in : include/hw/ssi/* hw/ssi/*
>
> Same comment for the Serial EEPROM model. This device is generic
> and not POWER specific. It should be possible to attach the device
> model on other machines and different SPI bus provided by QEMU.
> This doesn't mean rewriting everything, but the "HW" interface
> probably needs to be reworked. It would make it easier to write
> unit test (see ests/qtest/) and ease the review also.
>
> Thanks,
>
> C.
>
Hello Cedric,
Thank You so much for the suggestions. Current implementation of
SPI_controller and Serial EEPROM device using xfer_buffer payload allows
me to use the *SSI_BUS* and *ssi_create_peripheral(). *I will modify the
spi_controller and Serial EEPROM models to use *ssi_transfer()* and
transfer control using CS line and update in PATCH V2.
Thank You,
Chalapathi
>
>
>>
>> Chalapathi
>>
>> On 07-02-2024 21:38, Chalapathi V wrote:
>>> Hello,
>>>
>>> In this series of patchset, SPI controller and responder models
>>> for Power10 processor are modelled.
>>>
>>> Serial peripheral interface provides full-duplex synchronous serial
>>> communication between single controller and multiple responder devices.
>>>
>>> The current configuration supports a single SPI controller reside on
>>> the
>>> SPI bus. In p10, SPI controller device model supports a connection to a
>>> single SPI responder such as SPI seeproms, TPM, flash device and an ADC
>>> controller.
>>>
>>> SPI controller model is divided into configuration unit, sequencer FSM
>>> and shifter engine. All SPI function control is mapped into the SPI
>>> register
>>> space to enable full control by firmware.
>>>
>>> SPI configuration component is modelled which contains all SPI
>>> configuration
>>> and status registers as well as the hold registers for data to be
>>> sent or
>>> having been received.
>>> Shift engine performs serialization and de-serialization according
>>> to the
>>> control by the sequencer and according to the setup defined in the
>>> configuration registers.
>>> Sequencer implements the main control logic and
>>> FSM to handle data transmit and data receive control of the shift
>>> engine.
>>>
>>> Microchip's 25CSM04 SEEPROM device is modelled and connected to SPI bus
>>> "spi_bus2" of SPI controller "PIB_SPIC[2]".
>>>
>>> Patches overview in V1.
>>> PATCH1: Create a SPI responder model which includes responder methods
>>> and SPI bus implementation.
>>> PATCH2: Create a SPI controller model and implement configuration unit
>>> to model SCOM registers.
>>> PATCH3: SPI controller model: implement sequencer FSM and shift engine.
>>> PATCH4: create SPI SEEPROM model.
>>> PATCH5: Connect SPI controllers to p10 chip and create keystore seeprom
>>> device on spi_bus2 of PIB_SPIC[2].
>>>
>>> Thank You,
>>> Chalapathi
>>>
>>> Chalapathi V (5):
>>> hw/ppc: SPI responder model
>>> hw/ppc: SPI controller model - registers implementation
>>> hw/ppc: SPI controller model - sequencer and shifter
>>> hw/ppc: SPI SEEPROM model
>>> hw/ppc: SPI controller wiring to P10 chip and create seeprom device
>>>
>>> include/hw/ppc/pnv_chip.h | 4 +
>>> include/hw/ppc/pnv_spi_controller.h | 101 ++
>>> include/hw/ppc/pnv_spi_responder.h | 109 ++
>>> include/hw/ppc/pnv_spi_seeprom.h | 70 ++
>>> include/hw/ppc/pnv_xscom.h | 3 +
>>> hw/ppc/pnv.c | 32 +
>>> hw/ppc/pnv_spi_controller.c | 1609
>>> +++++++++++++++++++++++++++
>>> hw/ppc/pnv_spi_responder.c | 166 +++
>>> hw/ppc/pnv_spi_seeprom.c | 989 ++++++++++++++++
>>> hw/ppc/meson.build | 3 +
>>> 10 files changed, 3086 insertions(+)
>>> create mode 100644 include/hw/ppc/pnv_spi_controller.h
>>> create mode 100644 include/hw/ppc/pnv_spi_responder.h
>>> create mode 100644 include/hw/ppc/pnv_spi_seeprom.h
>>> create mode 100644 hw/ppc/pnv_spi_controller.c
>>> create mode 100644 hw/ppc/pnv_spi_responder.c
>>> create mode 100644 hw/ppc/pnv_spi_seeprom.c
>>>
>
[-- Attachment #2: Type: text/html, Size: 7407 bytes --]
^ permalink raw reply [flat|nested] 15+ messages in thread
* Re: [PATCH v1 2/5] hw/ppc: SPI controller model - registers implementation
2024-02-07 16:08 ` [PATCH v1 2/5] hw/ppc: SPI controller model - registers implementation Chalapathi V
@ 2024-03-07 18:54 ` Stefan Berger
2024-03-07 19:11 ` Stefan Berger
2024-03-08 15:17 ` Stefan Berger
0 siblings, 2 replies; 15+ messages in thread
From: Stefan Berger @ 2024-03-07 18:54 UTC (permalink / raw)
To: Chalapathi V, qemu-devel
Cc: qemu-ppc, fbarrat, npiggin, clg, calebs, chalapathi.v, saif.abrar
On 2/7/24 11:08, Chalapathi V wrote:
> SPI controller device model supports a connection to a single SPI responder.
> This provide access to SPI seeproms, TPM, flash device and an ADC controller.
>
> All SPI function control is mapped into the SPI register space to enable full
> control by firmware. In this commit SPI configuration component is modelled
> which contains all SPI configuration and status registers as well as the hold
> registers for data to be sent or having been received.
>
> Signed-off-by: Chalapathi V <chalapathi.v@linux.ibm.com>
> ---
> include/hw/ppc/pnv_spi_controller.h | 43 ++++
> include/hw/ppc/pnv_xscom.h | 3 +
> hw/ppc/pnv_spi_controller.c | 337 ++++++++++++++++++++++++++++
> hw/ppc/meson.build | 1 +
> 4 files changed, 384 insertions(+)
> create mode 100644 include/hw/ppc/pnv_spi_controller.h
> create mode 100644 hw/ppc/pnv_spi_controller.c
>
> diff --git a/include/hw/ppc/pnv_spi_controller.h b/include/hw/ppc/pnv_spi_controller.h
> new file mode 100644
> index 0000000000..8afaabdd1b
> --- /dev/null
> +++ b/include/hw/ppc/pnv_spi_controller.h
> @@ -0,0 +1,43 @@
> +/*
> + * QEMU PowerPC SPI Controller model
> + *
> + * Copyright (c) 2024, IBM Corporation.
> + *
> + * SPDX-License-Identifier: GPL-2.0-or-later
> + *
> + * This model Supports a connection to a single SPI responder.
> + * Introduced for P10 to provide access to SPI seeproms, TPM, flash device
> + * and an ADC controller.
> + */
> +
> +#ifndef PPC_PNV_SPI_CONTROLLER_H
> +#define PPC_PNV_SPI_CONTROLLER_H
> +
> +#define TYPE_PNV_SPI_CONTROLLER "pnv-spi-controller"
> +#define PNV_SPICONTROLLER(obj) \
> + OBJECT_CHECK(PnvSpiController, (obj), TYPE_PNV_SPI_CONTROLLER)
> +
> +#define SPI_CONTROLLER_REG_SIZE 8
> +
> +typedef struct SpiBus SpiBus;
> +
> +typedef struct PnvSpiController {
> + DeviceState parent;
> +
> + SpiBus *spi_bus;
> + MemoryRegion xscom_spic_regs;
> + /* SPI controller object number */
> + uint32_t spic_num;
> +
> + /* SPI Controller registers */
> + uint64_t error_reg;
> + uint64_t counter_config_reg;
> + uint64_t config_reg1;
> + uint64_t clock_config_reset_control;
> + uint64_t memory_mapping_reg;
> + uint64_t transmit_data_reg;
> + uint64_t receive_data_reg;
> + uint8_t sequencer_operation_reg[SPI_CONTROLLER_REG_SIZE];
> + uint64_t status_reg;
> +} PnvSpiController;
> +#endif /* PPC_PNV_SPI_CONTROLLER_H */
> diff --git a/include/hw/ppc/pnv_xscom.h b/include/hw/ppc/pnv_xscom.h
> index f5becbab41..0575bf0985 100644
> --- a/include/hw/ppc/pnv_xscom.h
> +++ b/include/hw/ppc/pnv_xscom.h
> @@ -176,6 +176,9 @@ struct PnvXScomInterfaceClass {
> #define PNV10_XSCOM_PEC_PCI_BASE 0x8010800 /* index goes upwards ... */
> #define PNV10_XSCOM_PEC_PCI_SIZE 0x200
>
> +#define PNV10_XSCOM_PIB_SPIC_BASE 0xc0000
> +#define PNV10_XSCOM_PIB_SPIC_SIZE 0x20
> +
> void pnv_xscom_init(PnvChip *chip, uint64_t size, hwaddr addr);
> int pnv_dt_xscom(PnvChip *chip, void *fdt, int root_offset,
> uint64_t xscom_base, uint64_t xscom_size,
> diff --git a/hw/ppc/pnv_spi_controller.c b/hw/ppc/pnv_spi_controller.c
> new file mode 100644
> index 0000000000..0f2bc25e82
> --- /dev/null
> +++ b/hw/ppc/pnv_spi_controller.c
> @@ -0,0 +1,337 @@
> +/*
> + * QEMU PowerPC SPI Controller model
> + *
> + * Copyright (c) 2024, IBM Corporation.
> + *
> + * SPDX-License-Identifier: GPL-2.0-or-later
> + */
> +
> +#include "qemu/osdep.h"
> +#include "qemu/log.h"
> +#include "hw/qdev-properties.h"
> +#include "hw/ppc/pnv.h"
> +#include "hw/ppc/pnv_xscom.h"
> +#include "hw/ppc/pnv_spi_controller.h"
> +#include "hw/ppc/pnv_spi_responder.h"
> +#include "hw/ppc/fdt.h"
> +#include <libfdt.h>
> +#include <math.h>
> +
> +#define SPI_DEBUG(x)
> +
> +/* Error Register */
> +#define ERROR_REG 0x00
> +
> +/* counter_config_reg */
> +#define COUNTER_CONFIG_REG 0x01
> +#define COUNTER_CONFIG_REG_SHIFT_COUNT_N1 PPC_BITMASK(0 , 7)
> +#define COUNTER_CONFIG_REG_SHIFT_COUNT_N2 PPC_BITMASK(8 , 15)
> +#define COUNTER_CONFIG_REG_COUNT_COMPARE1 PPC_BITMASK(24 , 31)
> +#define COUNTER_CONFIG_REG_COUNT_COMPARE2 PPC_BITMASK(32 , 39)
> +#define COUNTER_CONFIG_REG_N1_COUNT_CONTROL PPC_BITMASK(48 , 51)
> +#define COUNTER_CONFIG_REG_N2_COUNT_CONTROL PPC_BITMASK(52 , 55)
> +
> +/* config_reg */
> +#define CONFIG_REG1 0x02
> +
> +/* clock_config_reset_control_ecc_enable_reg */
> +#define CLOCK_CONFIG_REG 0x03
> +#define CLOCK_CONFIG_RESET_CONTROL_HARD_RESET 0x0084000000000000;
> +#define CLOCK_CONFIG_REG_RESET_CONTROL PPC_BITMASK(24 , 27)
> +#define CLOCK_CONFIG_REG_ECC_CONTROL PPC_BITMASK(28 , 30)
> +
> +/* memory_mapping_reg */
> +#define MEMORY_MAPPING_REG 0x04
> +#define MEMORY_MAPPING_REG_MMSPISM_BASE_ADDR PPC_BITMASK(0 , 15)
> +#define MEMORY_MAPPING_REG_MMSPISM_ADDR_MASK PPC_BITMASK(16 , 31)
> +#define MEMORY_MAPPING_REG_RDR_MATCH_VAL PPC_BITMASK(32 , 47)
> +#define MEMORY_MAPPING_REG_RDR_MATCH_MASK PPC_BITMASK(48 , 63)
> +
> +/* transmit_data_reg */
> +#define TRANSMIT_DATA_REG 0x05
> +
> +/* receive_data_reg */
> +#define RECEIVE_DATA_REG 0x06
> +
> +/* sequencer_operation_reg */
> +#define SEQUENCER_OPERATION_REG 0x07
> +
> +/* status_reg */
> +#define STATUS_REG 0x08
> +#define STATUS_REG_RDR_FULL PPC_BIT(0)
> +#define STATUS_REG_RDR_OVERRUN PPC_BIT(1)
> +#define STATUS_REG_RDR_UNDERRUN PPC_BIT(2)
> +#define STATUS_REG_TDR_FULL PPC_BIT(4)
> +#define STATUS_REG_TDR_OVERRUN PPC_BIT(5)
> +#define STATUS_REG_TDR_UNDERRUN PPC_BIT(6)
> +#define STATUS_REG_SEQUENCER_FSM PPC_BITMASK(8 , 15)
> +#define STATUS_REG_SHIFTER_FSM PPC_BITMASK(16 , 27)
> +#define STATUS_REG_SEQUENCER_INDEX PPC_BITMASK(28 , 31)
> +#define STATUS_REG_GENERAL_SPI_STATUS PPC_BITMASK(32 , 63)
> +#define STATUS_REG_RDR PPC_BITMASK(1 , 3)
> +#define STATUS_REG_TDR PPC_BITMASK(5 , 7)
> +
> +/*
> + * Shifter states
> + *
> + * These are the same values defined for the Shifter FSM field of the
> + * status register. It's a 12 bit field so we will represent it as three
> + * nibbles in the constants.
> + *
> + * These are shifter_fsm values
> + *
> + * Status reg bits 16-27 -> field bits 0-11
> + * bits 0,1,2,5 unused/reserved
> + * bit 4 crc shift in (unused)
> + * bit 8 crc shift out (unused)
> + */
> +
> +#define FSM_DONE 0x100 /* bit 3 */
> +#define FSM_SHIFT_N2 0x020 /* bit 6 */
> +#define FSM_WAIT 0x010 /* bit 7 */
> +#define FSM_SHIFT_N1 0x004 /* bit 9 */
> +#define FSM_START 0x002 /* bit 10 */
> +#define FSM_IDLE 0x001 /* bit 11 */
> +
> +/*
> + * Sequencer states
> + *
> + * These are sequencer_fsm values
> + *
> + * Status reg bits 8-15 -> field bits 0-7
> + * bits 0-3 unused/reserved
> + *
> + */
> +#define SEQ_STATE_INDEX_INCREMENT 0x08 /* bit 4 */
> +#define SEQ_STATE_EXECUTE 0x04 /* bit 5 */
> +#define SEQ_STATE_DECODE 0x02 /* bit 6 */
> +#define SEQ_STATE_IDLE 0x01 /* bit 7 */
> +
> +/*
> + * These are the supported sequencer operations.
> + * Only the upper nibble is significant because for many operations
> + * the lower nibble is a variable specific to the operation.
> + */
> +#define SEQ_OP_STOP 0x00
> +#define SEQ_OP_SELECT_SLAVE 0x10
> +#define SEQ_OP_SHIFT_N1 0x30
> +#define SEQ_OP_SHIFT_N2 0x40
> +#define SEQ_OP_BRANCH_IFNEQ_RDR 0x60
> +#define SEQ_OP_TRANSFER_TDR 0xC0
> +#define SEQ_OP_BRANCH_IFNEQ_INC_1 0xE0
> +#define SEQ_OP_BRANCH_IFNEQ_INC_2 0xF0
> +
I heared there's a TPM SPI model coming up, so I looked at this now
under the aspect of modifying tests/qtest/tpm-tis-i2c-test.c for it.
The I2C test relies on tests/qtest/qtest_aspeed.c which in turn gets
register constants from include/hw/i2c/aspeed_i2c.h. So it may be good
to make registers available in a header file for others to use in this
case as well.
> +
> +static uint64_t pnv_spi_controller_read(void *opaque, hwaddr addr,
> + unsigned size)
> +{
> + PnvSpiController *sc = PNV_SPICONTROLLER(opaque);
> + uint32_t reg = addr >> 3;
> +
> + uint64_t val = ~0ull;
> +
> + switch (reg) {
> + case ERROR_REG:
> + val = sc->error_reg;
> + break;
> + case COUNTER_CONFIG_REG:
> + val = sc->counter_config_reg;
> + break;
> + case CONFIG_REG1:
> + val = sc->config_reg1;
> + break;
> + case CLOCK_CONFIG_REG:
> + val = sc->clock_config_reset_control;
> + break;
> + case MEMORY_MAPPING_REG:
> + val = sc->memory_mapping_reg;
> + break;
> + case TRANSMIT_DATA_REG:
> + val = sc->transmit_data_reg;
> + break;
> + case RECEIVE_DATA_REG:
> + val = sc->receive_data_reg;
> + SPI_DEBUG(qemu_log("RDR being read, data extracted = 0x%16.16lx\n",
> + val));
> + sc->status_reg = SETFIELD(STATUS_REG_RDR_FULL, sc->status_reg, 0);
> + SPI_DEBUG(qemu_log("RDR being read, RDR_full set to 0\n"));
> + break;
> + case SEQUENCER_OPERATION_REG:
> + for (int i = 0; i < SPI_CONTROLLER_REG_SIZE; i++) {
> + val |= ((uint64_t)sc->sequencer_operation_reg[i] <<
> + (64 - ((i + 1) * 8)));
Probably there's a missing val = 0 initialization here otherwise one
gets only ~0ull back from the initial initialization.
> + }
> + break;
> + case STATUS_REG:
> + val = sc->status_reg;
> + break;
> + default:
> + qemu_log_mask(LOG_GUEST_ERROR, "spi_controller_regs: Invalid xscom "
> + "read at 0x%08x\n", reg);
> + }
> + return val;
> +}
> +
> +static void pnv_spi_controller_write(void *opaque, hwaddr addr,
> + uint64_t val, unsigned size)
> +{
> + PnvSpiController *sc = PNV_SPICONTROLLER(opaque);
> + uint32_t reg = addr >> 3;
> +
> + switch (reg) {
> + case ERROR_REG:
> + sc->error_reg = val;
> + break;
> + case COUNTER_CONFIG_REG:
> + sc->counter_config_reg = val;
> + break;
> + case CONFIG_REG1:
> + sc->config_reg1 = val;
> + break;
> + case CLOCK_CONFIG_REG:
> + /*
> + * To reset the SPI controller write the sequence 0x5 0xA to
> + * reset_control field
> + */
> + if (GETFIELD(CLOCK_CONFIG_REG_RESET_CONTROL,
> + sc->clock_config_reset_control) == 0x5) {
> + if (GETFIELD(CLOCK_CONFIG_REG_RESET_CONTROL, val) == 0xA) {
> + SPI_DEBUG(qemu_log("SPI controller reset sequence completed, "
> + "resetting..."));
> + sc->clock_config_reset_control =
> + CLOCK_CONFIG_RESET_CONTROL_HARD_RESET;
> + } else {
> + sc->clock_config_reset_control = val;
> + }
> + } else {
> + sc->clock_config_reset_control = val;
> + }
> + break;
> + case MEMORY_MAPPING_REG:
> + sc->memory_mapping_reg = val;
> + break;
> + case TRANSMIT_DATA_REG:
> + /*
> + * Writing to the transmit data register causes the transmit data
> + * register full status bit in the status register to be set. Writing
> + * when the transmit data register full status bit is already set
> + * causes a "Resource Not Available" condition. This is not possible
> + * in the model since writes to this register are not asynchronous to
> + * the operation sequence like it would be in hardware.
> + */
> + sc->transmit_data_reg = val;
> + SPI_DEBUG(qemu_log("TDR being written, data written = 0x%16.16lx\n",
> + val));
> + sc->status_reg = SETFIELD(STATUS_REG_TDR_FULL, sc->status_reg, 1);
> + SPI_DEBUG(qemu_log("TDRsequencer_operation_reg[i] = being written, TDR_full set to 1\n"));
> + sc->status_reg = SETFIELD(STATUS_REG_TDR_UNDERRUN, sc->status_reg, 0);
> + SPI_DEBUG(qemu_log("TDR being written, TDR_underrun set to 0\n"));
> + SPI_DEBUG(qemu_log("TDR being written, starting sequencer\n"));
> + break;
> + case RECEIVE_DATA_REG:
> + sc->receive_data_reg = val;
> + break;
> + case SEQUENCER_OPERATION_REG:
> + for (int i = 0; i < SPI_CONTROLLER_REG_SIZE; i++) {
> + sc->sequencer_operation_reg[i] =
> + (val & PPC_BITMASK(i * 8 , i * 8 + 7)) >> (63 - (i * 8 + 7));
To me it would be more obvious if you used a mask here like this:
mask = PPC_BIT_MASK(0, 7);
mask = (0xff << 56);
for (...) {
sc->sequencer_operation_reg[i] = (val & mask) >> (56 - i * 8);
mask >>= 8;
}
> + }
> + break;
> + case STATUS_REG:
> + ;
stray ';'?
> + uint8_t rdr_val = GETFIELD(STATUS_REG_RDR, val);
> + uint8_t tdr_val = GETFIELD(STATUS_REG_TDR, val);
> + /* other fields are ignore_write */
> + sc->status_reg = SETFIELD(STATUS_REG_RDR_OVERRUN,
> + sc->status_reg, rdr_val);
> + sc->status_reg = SETFIELD(STATUS_REG_TDR_OVERRUN,
> + sc->status_reg, tdr_val);
> + break;
> + default:
> + qemu_log_mask(LOG_GUEST_ERROR, "spi_controller_regs: Invalid xscom "
> + "write at 0x%08x\n", reg);
> + }
> + return;
> +}
> +
> +static const MemoryRegionOps pnv_spi_controller_xscom_ops = {
> + .read = pnv_spi_controller_read,
> + .write = pnv_spi_controller_write,
> + .valid.min_access_size = 8,
> + .valid.max_access_size = 8,
> + .impl.min_access_size = 8,
> + .impl.max_access_size = 8,
> + .endianness = DEVICE_BIG_ENDIAN,
> +};
> +
> +static Property pnv_spi_controller_properties[] = {
> + DEFINE_PROP_UINT32("spic_num", PnvSpiController, spic_num, 0),
> + DEFINE_PROP_END_OF_LIST(),
> +};
> +
> +static void pnv_spi_controller_realize(DeviceState *dev, Error **errp)
> +{
> + PnvSpiController *sc = PNV_SPICONTROLLER(dev);
> + g_autofree char *bus_name;
> + bus_name = g_strdup_printf("spi_bus%x", sc->spic_num);
> + sc->spi_bus = spi_create_bus(dev, bus_name);
> +
> + /* spi controller scoms */
> + pnv_xscom_region_init(&sc->xscom_spic_regs, OBJECT(sc),
> + &pnv_spi_controller_xscom_ops, sc,
> + "xscom-spi-controller-regs",
> + PNV10_XSCOM_PIB_SPIC_SIZE);
> +}
> +
> +static int pnv_spi_controller_dt_xscom(PnvXScomInterface *dev, void *fdt,
> + int offset)
> +{
> + PnvSpiController *sc = PNV_SPICONTROLLER(dev);
> + g_autofree char *name;
> + int sc_offset;
> + const char compat[] = "ibm,power10-spi_controller";
> + uint32_t spic_pcba = PNV10_XSCOM_PIB_SPIC_BASE +
> + sc->spic_num * PNV10_XSCOM_PIB_SPIC_SIZE;
> + uint32_t reg[] = {
> + cpu_to_be32(spic_pcba),
> + cpu_to_be32(PNV10_XSCOM_PIB_SPIC_SIZE)
> + };
> + name = g_strdup_printf("spi_controller@%x", spic_pcba);
> + sc_offset = fdt_add_subnode(fdt, offset, name);
> + _FDT(sc_offset);
> +
> + _FDT(fdt_setprop(fdt, sc_offset, "reg", reg, sizeof(reg)));
> + _FDT(fdt_setprop(fdt, sc_offset, "compatible", compat, sizeof(compat)));
> + _FDT((fdt_setprop_cell(fdt, sc_offset, "spic_num#", sc->spic_num)));
> + return 0;
> +}
> +
> +static void pnv_spi_controller_class_init(ObjectClass *klass, void *data)
> +{
> + DeviceClass *dc = DEVICE_CLASS(klass);
> + PnvXScomInterfaceClass *xscomc = PNV_XSCOM_INTERFACE_CLASS(klass);
> +
> + xscomc->dt_xscom = pnv_spi_controller_dt_xscom;
> +
> + dc->desc = "PowerNV SPI Controller";
> + dc->realize = pnv_spi_controller_realize;
> + device_class_set_props(dc, pnv_spi_controller_properties);
> +}
> +
> +static const TypeInfo pnv_spi_controller_info = {
> + .name = TYPE_PNV_SPI_CONTROLLER,
> + .parent = TYPE_DEVICE,
> + .instance_size = sizeof(PnvSpiController),
> + .class_init = pnv_spi_controller_class_init,
> + .interfaces = (InterfaceInfo[]) {
> + { TYPE_PNV_XSCOM_INTERFACE },
> + { }
> + }
> +};
> +
> +static void pnv_spi_controller_register_types(void)
> +{
> + type_register_static(&pnv_spi_controller_info);
> +}
> +
> +type_init(pnv_spi_controller_register_types);
> diff --git a/hw/ppc/meson.build b/hw/ppc/meson.build
> index 9bfd5a5613..de25cac763 100644
> --- a/hw/ppc/meson.build
> +++ b/hw/ppc/meson.build
> @@ -54,6 +54,7 @@ ppc_ss.add(when: 'CONFIG_POWERNV', if_true: files(
> 'pnv_homer.c',
> 'pnv_pnor.c',
> 'pnv_spi_responder.c',
> + 'pnv_spi_controller.c',
> ))
> # PowerPC 4xx boards
> ppc_ss.add(when: 'CONFIG_PPC405', if_true: files(
^ permalink raw reply [flat|nested] 15+ messages in thread
* Re: [PATCH v1 2/5] hw/ppc: SPI controller model - registers implementation
2024-03-07 18:54 ` Stefan Berger
@ 2024-03-07 19:11 ` Stefan Berger
2024-03-08 15:17 ` Stefan Berger
1 sibling, 0 replies; 15+ messages in thread
From: Stefan Berger @ 2024-03-07 19:11 UTC (permalink / raw)
To: Chalapathi V, qemu-devel
Cc: qemu-ppc, fbarrat, npiggin, clg, calebs, chalapathi.v, saif.abrar
On 3/7/24 13:54, Stefan Berger wrote:
>
>
> On 2/7/24 11:08, Chalapathi V wrote:
>> +#define COUNTER_CONFIG_REG_SHIFT_COUNT_N1 PPC_BITMASK(0 , 7)
No space before the ',' ==> PPC_BITMASK(0, 7)
^ permalink raw reply [flat|nested] 15+ messages in thread
* Re: [PATCH v1 4/5] hw/ppc: SPI SEEPROM model
2024-02-07 16:08 ` [PATCH v1 4/5] hw/ppc: SPI SEEPROM model Chalapathi V
@ 2024-03-08 15:14 ` Stefan Berger
0 siblings, 0 replies; 15+ messages in thread
From: Stefan Berger @ 2024-03-08 15:14 UTC (permalink / raw)
To: Chalapathi V, qemu-devel
Cc: qemu-ppc, fbarrat, npiggin, clg, calebs, chalapathi.v, saif.abrar
On 2/7/24 11:08, Chalapathi V wrote:
> This commit implements a Serial EEPROM utilizing the Serial Peripheral
> Interface (SPI) compatible bus.
> Currently implemented SEEPROM is Microchip's 25CSM04 which provides 4 Mbits
> of Serial EEPROM utilizing the Serial Peripheral Interface (SPI) compatible
> bus. The device is organized as 524288 bytes of 8 bits each (512Kbyte) and
> is optimized for use in consumer and industrial applications where reliable
> and dependable nonvolatile memory storage is essential.
>
> Signed-off-by: Chalapathi V <chalapathi.v@linux.ibm.com>
> ---
> include/hw/ppc/pnv_spi_seeprom.h | 70 +++
> hw/ppc/pnv_spi_seeprom.c | 989 +++++++++++++++++++++++++++++++
> hw/ppc/meson.build | 1 +
> 3 files changed, 1060 insertions(+)
> create mode 100644 include/hw/ppc/pnv_spi_seeprom.h
> create mode 100644 hw/ppc/pnv_spi_seeprom.c
>
> diff --git a/include/hw/ppc/pnv_spi_seeprom.h b/include/hw/ppc/pnv_spi_seeprom.h
> new file mode 100644
> index 0000000000..9739e411b5
> --- /dev/null
> +++ b/include/hw/ppc/pnv_spi_seeprom.h
> @@ -0,0 +1,70 @@
> +/*
> + * QEMU PowerPC SPI SEEPROM model
> + *
> + * Copyright (c) 2024, IBM Corporation.
> + *
> + * SPDX-License-Identifier: GPL-2.0-or-later
> + *
> + * This model implements a Serial EEPROM utilizing the Serial Peripheral
> + * Interface (SPI) compatible bus.
> + * Currently supported variants: 25CSM04.
> + * The Microchip Technology Inc. 25CSM04 provides 4 Mbits of Serial EEPROM
> + * utilizing the Serial Peripheral Interface (SPI) compatible bus. The device
> + * is organized as 524288 bytes of 8 bits each (512Kbyte) and is optimized
> + * for use in consumer and industrial applications where reliable and
> + * dependable nonvolatile memory storage is essential
> + */
> +
> +#ifndef PPC_PNV_SPI_SEEPROM_H
> +#define PPC_PNV_SPI_SEEPROM_H
> +
> +#include "hw/ppc/pnv_spi_responder.h"
> +#include "qom/object.h"
> +
> +#define TYPE_PNV_SPI_SEEPROM "pnv-spi-seeprom"
> +
> +OBJECT_DECLARE_SIMPLE_TYPE(PnvSpiSeeprom, PNV_SPI_SEEPROM)
> +
> +typedef struct xfer_buffer xfer_buffer;
> +
> +typedef struct PnvSpiSeeprom {
> + PnvSpiResponder resp;
> +
> + char *file; /* SEEPROM image file */
> + uint8_t opcode; /* SEEPROM Opcode */
> + uint32_t addr; /* SEEPROM Command Address */
> + uint8_t rd_state; /* READ State Machine state variable */
> + bool locked; /* Security Register Locked */
> + bool controller_connected; /* Flag for master connection */
> + /*
> + * Device registers
> + * The 25CSM04 contains four types of registers that modulate device
> + * operation and/or report on the current status of the device. These
> + * registers are:
> + * STATUS register
> + * Security register
> + * Memory Partition registers (eight total)
> + * Identification register
> + */
> + uint8_t status0;
> + uint8_t status1;
> + /*
> + * The Security register is split into
> + * 1. user-programmable lockable ID page section.
> + * 2. The read-only section contains a preprogrammed, globally unique,
> + * 128-bit serial number.
> + */
> + uint8_t uplid[256];
> + uint8_t dsn[16];
> + uint8_t mpr[8];
> + uint8_t idr[5];
> +} PnvSpiSeeprom;
> +
> +xfer_buffer *seeprom_spi_request(PnvSpiResponder *resp, int first, int last,
> + int bits, xfer_buffer *payload);
> +void seeprom_connect_controller(PnvSpiResponder *resp, const char *port);
> +void seeprom_disconnect_controller(PnvSpiResponder *resp);
> +bool compute_addr(PnvSpiSeeprom *spi_resp, xfer_buffer *req_payload,
> + xfer_buffer *rsp_payload, int bits, uint32_t *data_offset);
> +bool validate_addr(PnvSpiSeeprom *spi_resp);
> +#endif /* PPC_PNV_SPI_SEEPROM_H */
> diff --git a/hw/ppc/pnv_spi_seeprom.c b/hw/ppc/pnv_spi_seeprom.c
> new file mode 100644
> index 0000000000..ae46610045
> --- /dev/null
> +++ b/hw/ppc/pnv_spi_seeprom.c
> @@ -0,0 +1,989 @@
> +/*
> + * QEMU PowerPC SPI SEEPROM model
> + *
> + * Copyright (c) 2024, IBM Corporation.
> + *
> + * SPDX-License-Identifier: GPL-2.0-or-later
> + */
> +
> +#include "qemu/osdep.h"
> +#include "qemu/log.h"
> +#include "hw/ppc/pnv_spi_seeprom.h"
> +#include <math.h>
> +
> +#define SPI_DEBUG(x)
> +
> +/*
> + * 2-byte STATUS register which is a combination of six nonvolatile bits of
> + * EEPROM and five volatile latches.
> + *
> + * status 0:
> + * bit 7 WPEN: Write-Protect Enable bit
> + * 1 = Write-Protect pin is enabled, 0 = Write-Protect pin is ignored
> + *
> + * bit 3-2 BP<1:0>: Block Protection bits
> + * 00 = No array write protection
> + * 01 = Upper quarter memory array protection
> + * 10 = Upper half memory array protection
> + * 11 = Entire memory array protection
> + *
> + * bit 1 WEL: Write Enable Latch bit
> + * 1 = WREN has been executed and device is enabled for writing
> + * 0 = Device is not write-enabled
> + *
> + * bit 0 RDY/BSY: Ready/Busy Status Latch bit
> + * 1 = Device is busy with an internal write cycle
> + * 0 = Device is ready for a new sequence
> + */
> +#define STATUS0_WPEN 0x7
> +#define STATUS0_BP 0x2
> +#define STATUS0_WEL 0x1
> +#define STATUS0_BUSY 0x0
> +
> +/*
> + * status 1:
> + * bit 7 WPM: Write Protection Mode bit(1)
> + * 1 = Enhanced Write Protection mode selected (factory default)
> + * 0 = Legacy Write Protection mode selected
> + *
> + * bit 6 ECS: Error Correction State Latch bit
> + * 1 = The previously executed read sequence did require the ECC
> + * 0 = The previous executed read sequence did not require the ECC
> + *
> + * bit 5 FMPC: Freeze Memory Protection Configuration bit(2)
> + * 1 = Memory Partition registers and write protection mode are permanently
> + * frozen and cannot be modified
> + * 0 = Memory Partition registers and write protection mode are not frozen
> + * and are modifiable
> + *
> + * bit 4 PREL: Partition Register Write Enable Latch bit
> + * 1 = PRWE has been executed and WMPR, FRZR and PPAB instructions are enabled
> + * 0 = WMPR, FRZR and PPAB instructions are disabled
> + *
> + * bit 3 PABP: Partition Address Boundary Protection bit
> + * 1 = Partition Address Endpoints set in Memory Partition registers
> + * cannot be modified
> + * 0 = Partition Address Endpoints set in Memory Partition registers
> + * are modifiable
> + *
> + * bit 0 RDY/BSY: Ready/Busy Status Latch bit
> + * 1 = Device is busy with an internal write cycle
> + * 0 = Device is ready for a new sequence
> + */
> +#define STATUS1_WPM 0x7
> +#define STATUS1_ECS 0x6
> +#define STATUS1_FMPC 0x5
> +#define STATUS1_PREL 0x4
> +#define STATUS1_PABP 0x3
> +#define STATUS1_BUSY 0x0
> +
> +/*
> + * MEMORY PARTITION REGISTERS
> + * Note 1: The MPR cannot be written if the FMPC bit has been set.
> + * 2: The Partition Endpoint Address bits cannot be written if the PABP
> + * bit has been set.
> + *
> + * bits 7-6 PB<1:0>: Partition Behavior bits(1)
> + * 00 = Partition is open and writing is permitted
> + * factory default is unprotected.
> + * 01 = Partition is always write-protected but can be reversed at a later
> + * time (software write-protected).
> + * 10 = Partition is write-protected only when WP pin is asserted
> + * (hardware write-protected).
> + * 11 = Partition is software write-protected and MPR is permanently locked
> + *
> + * bit 5-0 A<18:13>: Partition Endpoint Address bits(1, 2)
> + * 000000 = Endpoint address of partition is set to 01FFFh.
> + * 000001 = Endpoint address of partition is set to 03FFFh.
> + * ----
> + * 111110 = Endpoint address of partition is set to 7DFFFh.
> + * 111111 = Endpoint address of partition is set to 7FFFFh.
> + */
> +#define MPR_PB 0x6
> +#define MPR_PEA 0x5
> +
> +/* INSTRUCTION SET FOR 25CSM04 */
> +#define RDSR 0x05
> +#define WRBP 0x08
> +#define WREN 0x06
> +#define WRDI 0x04
> +#define WRSR 0x01
> +#define READ 0x03
> +#define WRITE 0x0
> +#define RDEX_CHLK 0x83
> +#define WREX_LOCK 0x82
> +#define RMPR 0x31
> +#define PRWE 0x07
> +#define PRWD 0x0A
> +#define WMPR 0x32
> +#define PPAB 0x34
> +#define FRZR 0x37
> +#define SPID 0x9F
> +#define SRST 0x7C
> +
> +/* READ FSM state */
> +#define ST_IDLE 0
> +#define ST_READ 1
> +#define ST_SEC_READ 2
> +
> +xfer_buffer *seeprom_spi_request(PnvSpiResponder *resp,
> + int first, int last, int bits, xfer_buffer *payload)
> +{
> + PnvSpiSeeprom *seeprom = PNV_SPI_SEEPROM(resp);
> + uint32_t data_offset = 0;
> + int data_len = 0;
> + xfer_buffer *rsp_payload = NULL;
> + uint8_t *read_buf = NULL;
> + uint8_t *buf = NULL;
> + uint16_t idx;
> + bool failed = false;
Add empty line after variables declaration.
> + SPI_DEBUG(qemu_log("Received SPI request, first=%d, last=%d, bits=%d, "
> + "payload length=%d\n", first, last, bits, payload->len));
> + if (seeprom->controller_connected == false) {
> + qemu_log_mask(LOG_GUEST_ERROR, "Controller is disconnected, invoke "
> + "connect method of spi_responder interface\n");
> + return rsp_payload;
> + }
> + if (rsp_payload == NULL) {
> + rsp_payload = xfer_buffer_new();
> + }
> + buf = xfer_buffer_write_ptr(rsp_payload, 0, payload->len);
> + memset(buf, 0xFF, payload->len);
> + /*
> + * SPI communication is always full-duplex, so the controller receives as
> + * many bits as it sends, although often both the responder and controller
> + * device ignores some incoming bits. To simulate half-duplex the controller
> + * sends zeros to the responder when controller is receiving and ignores
> + * incoming data when the controller transmitting. So, a SPI response should
> + * always have the same length in bits as the corresponding request.
> + */
> + if ((payload->len != ceil(bits / 8)) || (payload->len <= 0)) {
len is a uint32 and can never be < 0.
> + qemu_log_mask(LOG_GUEST_ERROR, "Incorrect Payload size bits(%d) "
> + "Payload_len(%d bytes)\n", bits, payload->len);
> + return rsp_payload;
> + }
> + if ((bits % 8) != 0) {
> + qemu_log_mask(LOG_GUEST_ERROR, "non-8bit aligned SPI transfer is "
> + "unimplemented\n");
> + return rsp_payload;
> + }
> + /*
> + * Different scenarios for first and last SPI interface method parameters
> + *
> + * first(1) and last(1)
> + * SPI Controller can invoke spi_request with parameters first(1) and
> + * last(1), which indicates this is first and last spi_request in this
> + * transaction. This can be used when the valid data (excluding fake bytes)
> + * transmitted or received over SPI is less than or equal to 8 Bytes
> + *
> + * first(1) and last(0), # (required) first request
> + * first(0) and last(0), # (optional) in-between requests
> + * first(0) and last(0), # (optional) in-between requests
> + * ..
> + * ..
> + * first(0) and last(1), # (required) last request in the transaction
> + * SPI Controller can invoke spi_request multiple times with parameters
> + * first and last as shown in the sequence above for a transaction. This
> + * can be used when the valid data(excluding fake bytes) transmitted or
> + * received over SPI is more than 8 Bytes, SPI controller splits the
> + * transaction into multiple requests, this is due to TDR and RDR size(8B)
> + * restriction in SPI Controller.
> + */
> +
> + /*
> + * check if first is "1", indicates a new incoming command sequence fetch
> + * the opcode and address from payload.
> + */
> + if (first == 1) {
> + /* Fetch opcode from offset 0 of payload */
> + xfer_buffer_read_ptr(payload, &read_buf, 0, 1);
> + seeprom->opcode = read_buf[0];
> + SPI_DEBUG(qemu_log("Command Opcode (0x%x)\n", seeprom->opcode));
> + /*
> + * Check if device is busy with internal write cycle, During this
> + * time, only the Read STATUS Register (RDSR) and the Write Ready/Busy
> + * Poll (WRBP) instructions will be executed by the device.
> + */
> + bool status0_busy = extract8(seeprom->status0, STATUS0_BUSY, 1);
> + bool status1_busy = extract8(seeprom->status1, STATUS1_BUSY, 1);
Variables should be declared at the top of the function or block.
> + if (((status0_busy == 1) || (status1_busy == 1)) &&
> + ((seeprom->opcode != RDSR) || (seeprom->opcode != WRBP))) {
> + qemu_log_mask(LOG_GUEST_ERROR, "Busy with Internal Write Cycle, "
> + "opcode(0x%x) not executed\n", seeprom->opcode);
> + return rsp_payload;
> + }
> + /*
> + * Implement a state machine for READ sequence, to catch an error
> + * scenario when controller generates a new command sequence, with out
> + * properly terminating the READ sequence, as shown below
> + * first(1) and last(0), # READ command
> + * first(0) and last(0), # READ command continues
> + * ...
> + * first(1) and last(0,1), # New command sequence
> + * Not required to implement a state machine for write sequence as
> + * we can leverage status register for it
> + */
> + if (seeprom->rd_state != ST_IDLE) {
> + qemu_log_mask(LOG_GUEST_ERROR, "New Command Sequence with "
> + "opcode(0x%x)is ignored Previous READ sequence is "
> + "not terminated properly!!! Continuing the previous "
> + "READ sequence\n", seeprom->opcode);
> + seeprom->opcode = (seeprom->rd_state == ST_READ) ? READ :
> + RDEX_CHLK;
> + } else {
> + /*
> + * For a new command sequence compute Address and data offset in
> + * xfer_buffer.
> + */
> + failed = compute_addr(seeprom, payload, rsp_payload, bits,
> + &data_offset);
> + /*
> + * Address computation failed, nothing to do further, just send
> + * response and return from here.
> + */ > + if (failed == true) {
if (failed) {
> + return rsp_payload;
> + }
> + }
> + } /* end of branch if (first == 1) */
add empty line here
> + switch (seeprom->opcode) {
> + case READ:
> + SPI_DEBUG(qemu_log("READ(0x%x), addr(0x%x)\n",
> + seeprom->opcode, seeprom->addr));
> + seeprom->rd_state = ST_READ;
> + data_len = payload->len - data_offset;
> + /* Make sure data is at least 1 Byte */
> + if (data_len <= 0) {
> + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB), "
> + "should be at least 1 Byte\n", data_len);
> + break;
> + }
> + /* Fill the buffer with the data read from image */
> + buf = xfer_buffer_write_ptr(rsp_payload, data_offset, data_len);
> + FILE *f;
Move variable decl to top of the block.
> + if (seeprom->file) {
> + f = fopen(seeprom->file, "rb+");
> + if (f) {
> + fseek(f, seeprom->addr, SEEK_SET);
Check return code.
> + int read_len = fread(buf, sizeof(uint8_t), data_len, f);
move variable declaration to top of block
> + if (read_len == data_len) {
> + SPI_DEBUG(qemu_log("Read %d bytes from seeprom\n",
> + read_len));
> + } else {
> + if (ferror(f)) {
> + SPI_DEBUG(qemu_log("Error reading seeprom\n"));
> + }
> + }
> + }
> + fclose(f);
> + }
> + /* Check if last is 0 and increase address by data length */
> + if (last == 0) {
> + seeprom->addr = (seeprom->addr & 0x7FFFF) + data_len;
> + } else {
> + seeprom->rd_state = ST_IDLE;
> + }
> + break;
> +
> + case RDSR:
> + SPI_DEBUG(qemu_log("READ Status Register RDSR(0x%x)\n",
> + seeprom->opcode));
> + data_len = payload->len - data_offset;
> + /* Make sure data is at least 1 Byte */
> + if (data_len <= 0) {
> + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB), "
> + "should be at least 1 Byte\n", data_len);
> + break;
> + }
> + buf = xfer_buffer_write_ptr(rsp_payload, data_offset, data_len);
> + buf[0] = seeprom->status0;
> + if (data_len == 2) {
> + buf[1] = seeprom->status1;
> + }
> + break;
> +
> + case WRBP:
> + SPI_DEBUG(qemu_log("Write Ready/Busy Poll WRBP(0x%x)\n",
> + seeprom->opcode));
> + data_len = payload->len - data_offset;
> + /* Make sure data is at least 1 Byte */
> + if (data_len <= 0) {
> + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB), "
> + "should be at least 1 Byte\n", data_len);
> + break;
> + }
> + buf = xfer_buffer_write_ptr(rsp_payload, data_offset, 0x1);
> + bool status0_busy = extract8(seeprom->status0, STATUS0_BUSY, 1);
> + bool status1_busy = extract8(seeprom->status1, STATUS1_BUSY, 1);
variable declaration
> + if ((status0_busy == 1) || (status1_busy == 1)) {
> + buf[0] = 0xFF;
> + } else {
> + buf[0] = 0x00;
> + }
> + break;
> +
> + case WREN:
> + SPI_DEBUG(qemu_log("Set Write Enable Latch (WEL) WREN(0x%x)\n",
> + seeprom->opcode));
> + seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 1);
> + break;
> +
> + case WRDI:
> + SPI_DEBUG(qemu_log("Set Write Enable Latch (WEL) WRDI(0x%x)\n",
> + seeprom->opcode));
> + seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0);
> + break;
> +
> + case WRSR:
> + SPI_DEBUG(qemu_log("Write STATUS Register WRSR(0x%x)\n",
> + seeprom->opcode));
> + if (extract8(seeprom->status0, STATUS0_WEL, 1) == 1) {
> + data_len = payload->len - data_offset;
> + /* Make sure data is at least 1 Byte */
> + if (data_len <= 0) {
> + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB),"
> + " should be at least 1 Byte\n", data_len);
> + break;
> + }
> + /* Mask and update status0/1 bytes */
> + xfer_buffer_read_ptr(payload, &read_buf, 1, 2);
> + seeprom->status0 = read_buf[0] & 0x8C;
> + /* 2nd Status Byte is optional */
> + if (data_len == 2) {
> + seeprom->status1 = read_buf[1] & 0x80;
> + }
> + } else {
> + qemu_log_mask(LOG_GUEST_ERROR, "Set Write Enable Latch (WEL) "
> + "before doing WRSR\n");
> + }
> + break;
> +
> + case SPID:
> + SPI_DEBUG(qemu_log("READ IDENTIFICATION REGISTER, SPID(0x%x)\n",
> + seeprom->opcode));
> + data_len = payload->len - data_offset;
Missing check here for data_len <= 0?
> + buf = xfer_buffer_write_ptr(rsp_payload, data_offset, data_len);
> + for (idx = 0; idx < data_len; idx++) {
> + buf[idx] = seeprom->idr[idx];
> + }
Use memcpy().
> + break;
> +
> + case SRST:
> + SPI_DEBUG(qemu_log("Software Device Reset, SRST(0x%x)\n",
> + seeprom->opcode));
> + /*
> + * Note: The SRST instruction cannot interrupt the device while it is
> + * in a Busy state (Section 6.1.4 Ready/Busy Status Latch).
> + * This is already taken care when the command opcode is fetched
... taken care of ...
> + *
> + * 1.2 Device Default State
> + * 1.2.1 POWER-UP DEFAULT STATE
> + * The 25CSM04 default state upon power-up consists of:
> + * - Standby Power mode (CS = HIGH)
> + * - A high-to-low level transition on CS is required to enter the
> + * active state
> + `* - WEL bit in the STATUS register = 0
stray '`'
> + * - ECS bit in the STATUS register = 0
> + * - PREL bit in the STATUS register = 0
> + * - Ready/Busy (RDY/BUSY) bit in the STATUS register = 0, indicating
> + * the device is ready to accept a new instruction.
> + */
> + seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0);
> + seeprom->status1 = deposit32(seeprom->status1, STATUS1_ECS, 1, 0);
> + seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 0);
> + seeprom->status0 = deposit32(seeprom->status0, STATUS0_BUSY, 1, 0);
> + seeprom->status1 = deposit32(seeprom->status1, STATUS1_BUSY, 1, 0);
> + break;
> +
> + case WRITE:
> + SPI_DEBUG(qemu_log("WRITE(0x%x), addr(0x%x)\n",
> + seeprom->opcode, seeprom->addr));
> + if (extract8(seeprom->status0, STATUS0_WEL, 1) != 1) {
> + qemu_log_mask(LOG_GUEST_ERROR, "Device is not Write Enabled, "
> + "ignoring WRITE instruction\n");
> + break;
> + }
> + /* Make sure data is at least 1 Byte */
You forgot to calculate data_len here it seems.
> + if (data_len <= 0) {
> + /*
> + * first last comment
> + * 0 0 data length cannot be 0
> + * 0 1 data length cannot be 0
> + * 1 0 data length can be 0, don't log error
> + * 1 1 data length cannot be 0
> + */
> + if (!(first == 1 && (last == 0))) {
(first == 1) so it looks like (last == 0)
> + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB),"
> + " should be at least 1 Byte\n", data_len);
> + break;
> + }
> + }
> + /* Write into SEEPROM Array */
> + SPI_DEBUG(qemu_log("(%d)%s Write sequence\n", data_len,
> + (data_len == 1) ? "Byte" : "Bytes Page"));
> + xfer_buffer_read_ptr(payload, &read_buf, data_offset, data_len);
> + if (seeprom->file) {
> + f = fopen(seeprom->file, "rb+");
> + if (f) {
> + fseek(f, seeprom->addr, SEEK_SET);
check return code
> + int write_len = fwrite(read_buf, sizeof(uint8_t), data_len, f);
variable declaration
> + if (write_len == data_len) {
> + SPI_DEBUG(qemu_log("Write %d bytes to seeprom\n",
> + write_len));
> + } else {
> + SPI_DEBUG(qemu_log("Failed to write seeprom\n"));
> + }
> + }
> + fclose(f);
> + }
> + /* Increase offset in the page */
> + seeprom->addr += data_len;
> + /* Check if last is 1 and end the sequence */
> + if (last == 1) {
> + seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0);
> + }
> + break;
> +
> + case RMPR:
> + SPI_DEBUG(qemu_log("RMPR(0x%x) for MPR[%d]\n", seeprom->opcode,
> + extract8(seeprom->addr, 16, 2)));
> + data_len = payload->len - data_offset
It may be worth considering another switch statement before this one
where you do this repetitive data_len handling just once:
switch (seeprom->opcode) {
case READ:
...
case RMPR:
case WMPR:
case PPAB:
data_len = payload->len - data_offset;
if (data_len <= 0) {
qem_log_mask(LOG_GUEST_ERROR, "%s: Insufficient number of
bytes: %d", __func__, data_len););
return NULL;
}
break;
default:
/* does not access payload */
}
> + /* Make sure data is at least 1 Byte */
> + if (data_len <= 0) {
> + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB),"
> + " should be at least 1 Byte\n", data_len);
> + break;
> + }
> + buf = xfer_buffer_write_ptr(rsp_payload, data_offset, 0x1);
> + buf[0] = seeprom->mpr[extract8(seeprom->addr, 16, 2)];
What is '16' in this case (used agaoin below also)? Add comment or
define a constant?
> + break;
> +
> + case PRWE:
> + SPI_DEBUG(qemu_log("Set Memory Partition Write Enable Latch "
> + "PRWE(0x%x)\n", seeprom->opcode));
> + seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 1);
> + break;
> +
> + case PRWD:
> + SPI_DEBUG(qemu_log("Reset Memory Partition Write Enable Latch "
> + "PRWD(0x%x)\n", seeprom->opcode));
> + seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 0);
> + break;
> +
> + case WMPR:
> + SPI_DEBUG(qemu_log("Write Memory Partition Register[%d] WMPR(0x%x)\n",
> + extract8(seeprom->addr, 16, 2), seeprom->opcode));
> + /*
> + * Once the WEL and PREL bits in the STATUS register have been set to
> + * 1, the Memory Partition registers can be programmed provided that
> + * the FMPC bit in the STATUS register has not already been set to a
> + * logic 1.
> + */
> + if ((extract8(seeprom->status0, STATUS0_WEL, 1) != 1) ||
> + (extract8(seeprom->status1, STATUS1_PREL, 1) != 1) ||
> + (extract8(seeprom->status1, STATUS1_FMPC, 1) == 1)) {
> + qemu_log_mask(LOG_GUEST_ERROR, "ignoring Write to MPR\n");
> + break;
> + }
> + data_len = payload->len - data_offset;
> + /* Make sure data is at least 1 Byte */
> + if (data_len <= 0) {
> + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB),"
> + " should be at least 1 Byte\n", data_len);
> + break;
> + }
> + xfer_buffer_read_ptr(payload, &read_buf, data_offset, 0x1);
> + if (extract8(seeprom->status1, STATUS1_PABP, 1) == 1) {
> + /* Partition Address Boundaries Protected */
> + seeprom->mpr[extract8(seeprom->addr, 16, 2)] =
> + ((read_buf[0] >> 6) & 0x3);
> + } else {
> + seeprom->mpr[extract8(seeprom->addr, 16, 2)] = read_buf[0];
> + }
> + seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0);
> + seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 0);
> + break;
> +
> + case PPAB:
> + SPI_DEBUG(qemu_log("Protect Partition Address Boundaries PPAB(0x%x)\n",
> + seeprom->opcode));
> + if ((extract8(seeprom->status0, STATUS0_WEL, 1) != 1) ||
> + (extract8(seeprom->status1, STATUS1_PREL, 1) != 1) ||
> + (extract8(seeprom->status1, STATUS1_FMPC, 1) == 1)) {
> + qemu_log_mask(LOG_GUEST_ERROR, "Ignoring PPAB command\n");
> + break;
> + }
> + data_len = payload->len - data_offset;
> + /* Make sure data is at least 1 Byte */
> + if (data_len <= 0) {
> + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB),"
> + " should be at least 1 Byte\n", data_len);
> + break;
> + }
> + xfer_buffer_read_ptr(payload, &read_buf, data_offset, 0x1);
> + if (read_buf[0] == 0xFF) {
> + seeprom->status1 = deposit32(seeprom->status1,
> + STATUS1_PABP, 1, 1);
> + } else if (read_buf[0] == 0x0) {
> + seeprom->status1 = deposit32(seeprom->status1,
> + STATUS1_PABP, 1, 0);
> + } else {
> + qemu_log_mask(LOG_GUEST_ERROR, "Incorrect Data Byte(0x%x), "
> + "should be 0x0 or 0xFF\n", read_buf[0]);
> + }
> + seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0);
> + seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 0);
> + break;
> +
> + case FRZR:
> + SPI_DEBUG(qemu_log("Freeze Memory Protection Configuration "
> + "FRZR(0x%x)\n", seeprom->opcode));
> + if ((extract8(seeprom->status0, STATUS0_WEL, 1) != 1) ||
> + (extract8(seeprom->status1, STATUS1_PREL, 1) != 1) ||
> + (extract8(seeprom->status1, STATUS1_FMPC, 1) == 1)) {
> + qemu_log_mask(LOG_GUEST_ERROR, "ignoring FRZR command\n");
> + break;
> + }
> + data_len = payload->len - data_offset;
> + /* Make sure data is at least 1 Byte */
> + if (data_len <= 0) {
> + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB),"
> + " should be at least 1 Byte\n", data_len);
> + break;
> + }
> + xfer_buffer_read_ptr(payload, &read_buf, data_offset, 0x1);
> + if (read_buf[0] == 0xD2) {
> + seeprom->status1 = deposit32(seeprom->status1,
> + STATUS1_FMPC, 1, 1);
> + } else {
> + qemu_log_mask(LOG_GUEST_ERROR, "Invalid Confirmation Data "
> + "byte(0x%x), expecting 0xD2", read_buf[0]);
> + }
> + seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0);
> + seeprom->status1 = deposit32(seeprom->status1, STATUS1_PREL, 1, 0);
> + break;
> +
> + case RDEX_CHLK:
> + SPI_DEBUG(qemu_log("OPCODE = (0x%x)\n", seeprom->opcode));
> + data_len = payload->len - data_offset;
> + /* Make sure data is at least 1 Byte */
byte not Byte -- everywhere
> + if (data_len <= 0) {
> + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB),"
> + " should be at least 1 Byte\n", data_len);
> + break;
> + }
> + buf = xfer_buffer_write_ptr(rsp_payload, data_offset, data_len);
> + if (extract8(seeprom->addr, 10, 1) == 0) {
> + /* RDEX */
> + seeprom->rd_state = ST_SEC_READ;
> + for (idx = 0; idx < data_len; idx++) {
Probably the same and IMO easier to follow:
sidx = seeprom->addr & 0x1ff;
if (sidx <= 0xff)
buf[idx] = seeprom->dsn[sidx]
else
buf[idx] = seeprom->uplid[sidx & 0xff];
> + if (extract32(seeprom->addr, 0, 9) <= 0xFF) {
> + buf[idx] = seeprom->dsn[extract8(seeprom->addr, 0, 8)];
> + } else {
> + buf[idx] = seeprom->uplid[extract8(seeprom->addr, 0, 8)];
> + }
> + seeprom->addr = deposit32(seeprom->addr, 0, 9,
> + ((extract32(seeprom->addr, 0, 9)) + 1));
I wonder what this is doing ...
seeprom->addr = (seeprom->addr & ~0x1ff) | ((seeprom->addr + 1) & 0x1ff)
> + }
> + if (last == 1) {
> + seeprom->rd_state = ST_IDLE;
> + } else {
> + /* CHLK */
> + if (seeprom->locked == true) {
if (seeprom->locked)
> + buf[0] = 0x01;
> + } else {
> + buf[0] = 0x00;
> + }
> + }
> + }
> + break;
> +
> + case WREX_LOCK:
> + SPI_DEBUG(qemu_log("OPCODE = (0x%x)\n", seeprom->opcode));
> + if (seeprom->locked == true) {
if (seeprom->locked)
> + qemu_log_mask(LOG_GUEST_ERROR, "Device is already Locked, "
> + "command is ignored\n");
> + break;
> + }
> + if (extract8(seeprom->status0, STATUS0_WEL, 1) != 1) {
> + qemu_log_mask(LOG_GUEST_ERROR, "Device is not Write Enabled, "
> + "command is ignored\n");
> + break;
> + }
> + data_len = payload->len - data_offset;
> + /* Make sure data is at least 1 Byte */
> + if (data_len <= 0) {
> + qemu_log_mask(LOG_GUEST_ERROR, "Insufficient Data Bytes(%dB),"
> + " should be at least 1 Byte\n", data_len);
> + break;
> + }
> + xfer_buffer_read_ptr(payload, &read_buf, data_offset, data_len);
> + if (extract8(seeprom->addr, 10, 1) == 0) {
Can you add a comment why bit 10 must be 0?
> + /* WREX */
> + for (idx = 0; idx < data_len; idx++) {
> + seeprom->uplid[extract8(seeprom->addr, 0, 8)] = read_buf[idx];
> + /* Increase address with the page, and let it rool over */
you mean 'roll' over ? not sure what this means, though.
> + seeprom->addr = deposit32(seeprom->addr, 0, 8,
> + ((extract32(seeprom->addr, 0, 8)) + 1));
Are you just advancing the addr by '1' but then only modifying the
lowest 9 bit and never touching bit 9?
> + }
> + } else {
> + /*
> + * LOCK (82h) instruction is clocked in on the SI line, followed
> + * by a fake address where bits A[23:0] are don't care bits with
> + * the exception that bit A10 must be set to 1. Finally, a
> + * confirmation data byte of xxxx_xx1xb is sent
> + */
> + if ((buf[0] & 0x02) == 0x2) {
> + seeprom->locked = true;
> + }
> + }
> + break;
> +
> + default:
> + qemu_log_mask(LOG_GUEST_ERROR, "Invalid instruction(0x%x)\n",
> + seeprom->opcode);
> + } /* end of switch */
> + return rsp_payload;
> +} /* end of seeprom_spi_request */
> +
> +void seeprom_connect_controller(PnvSpiResponder *resp, const char *port)
> +{
> + PnvSpiSeeprom *seeprom = PNV_SPI_SEEPROM(resp);
> + seeprom->controller_connected = true;
> +}
> +
> +void seeprom_disconnect_controller(PnvSpiResponder *resp)
> +{
> + PnvSpiSeeprom *seeprom = PNV_SPI_SEEPROM(resp);
> + /* This method is invoked when Controller wants to deslect responder */
This method is called when the controller wants to deselect the responder
> + seeprom->controller_connected = false;
> + seeprom->rd_state = ST_IDLE; /* Reset Read state */
> + if (seeprom->opcode == WRITE) { /* Reset Write enable */
> + seeprom->status0 = deposit32(seeprom->status0, STATUS0_WEL, 1, 0);
> + }
> +}
> +
> +/*
> + * Method : compute_addr
> + * This method is used to compute address and data offset for supported
> + * opcodes and only invoked when a valid new command sequence starts aka
> + * first is 1.
> + */
> +bool compute_addr(PnvSpiSeeprom *seeprom, xfer_buffer *req_payload,
> + xfer_buffer *rsp_payload, int bits, uint32_t *data_offset)
remove additional space: uint32_t *data_offset
> +{
> + bool addr_wr_protected = false;
> + uint8_t *read_buf = NULL;
> + *data_offset = 0;
move below variable declarations
> + bool failed = false;
> +
> + xfer_buffer_read_ptr(req_payload, &read_buf, 1, 3);
> + switch (seeprom->opcode) {
> + case READ:
> + case WRITE:
> + SPI_DEBUG(qemu_log("Compute address and payload buffer data offset "
> + "for %s\n", (seeprom->opcode == READ) ? "READ" : "WRITE"));
> + /* command size is 4 bytes for READ/WRITE, data_offset is 4 */
> + *data_offset = 4;
> +
> + /* Make sure buffer length is at least 4 Bytes */
> + if (req_payload->len >= 4) {
> + /*
> + * Fetch address from size 24 bit from offset 1,2,3 of payload
> + * and mask of higher 5 bits as valid memory array size is 512KB
> + */
> + seeprom->addr = deposit32(seeprom->addr, 0, 8, read_buf[2]);
> + seeprom->addr = deposit32(seeprom->addr, 8, 8, read_buf[1]);
> + seeprom->addr = deposit32(seeprom->addr, 16, 8,
> + (read_buf[0] & 0x7));
seeprom->addr = ((read_buf[0] & 7) << 16) | (read_buf[1] << 8) |
read_buf[2];
> + } else {
> + qemu_log_mask(LOG_GUEST_ERROR, "Payload_len(0x%x) should be at "
> + "least 4Bytes to fetch Address\n", req_payload->len);
> + failed = true;
> + }
> + if (seeprom->opcode == WRITE) {
> + addr_wr_protected = validate_addr(seeprom);
> + if (addr_wr_protected) {
> + qemu_log_mask(LOG_GUEST_ERROR, "SEEPROM Address(0x%x) is Write "
> + "protected\n", seeprom->addr);
> + failed = true;
> + }
> + }
> + break;
> +
> + case RDSR:
> + case WRBP:
> + case WRSR:
> + case SPID:
> + /*
> + * command size is 1 bytes for RDSR, WRBP, WRSR, SPID. So data_offset
> + * is 1
> + */
> + *data_offset = 1;
> + break;
> +
> + case RMPR:
> + case WMPR:
> + SPI_DEBUG(qemu_log("Compute MPR address for %s MPR\n",
> + (seeprom->opcode == RMPR) ? "READ" : "WRITE"));
> + /* command size is 4 bytes for WMPR/RMPR, data_offset is 4 */
> + *data_offset = 4;
> +
> + /* Make sure buffer length is at least 4 Bytes */
> + if (req_payload->len >= 4) {
> + /*
> + * The address for each Memory Partition register is embedded into
> + * the first address byte sent to the device,in bit positions A18
> + * through A16.
> + */
> + seeprom->addr = deposit32(seeprom->addr, 0, 15, 0);
> + seeprom->addr = deposit32(seeprom->addr, 16, 8,
> + (read_buf[0] & 0x7));
Imo the following would be better to read and understand:
seeprom->addr = (read_buf[0] & 7) << 16;
> + } else {
> + qemu_log_mask(LOG_GUEST_ERROR, "Payload_len(0x%x) should be at "
> + "least 4Bytes to fetch Address\n", req_payload->len);
> + failed = true;
> + }
> + break;
> +
> + case PPAB:
> + case FRZR:
> + SPI_DEBUG(qemu_log("Validate if addr[15:0] is %s\n",
> + (seeprom->opcode == PPAB) ? "0xCCFF for PPAB" :
> + "0xAA40 for FRZR"));
> + /* command size is 4 bytes for PPAB/FRZR, data_offset is 4 */
> + *data_offset = 4;
> + /* Make sure buffer length is at least 4 Bytes */
> + if (req_payload->len >= 4) {
> + /* Address bits A23-A16 are ignored. */
> + seeprom->addr = deposit32(seeprom->addr, 0, 8, read_buf[2]);
> + seeprom->addr = deposit32(seeprom->addr, 8, 8, read_buf[1]);
> + seeprom->addr = deposit32(seeprom->addr, 16, 8, 0);
seeprom->addr = (read_buf[1] << 8) | read_buf[2];
> + } else {
> + qemu_log_mask(LOG_GUEST_ERROR, "Payload_len(0x%x) should be at "
> + "least 4Bytes to fetch Address\n", req_payload->len);
> + failed = true;
> + break;
> + }
> + /* Address bits A15-A0 must be set to CC55h. */
> + if ((seeprom->opcode == PPAB) &&
> + (extract32(seeprom->addr, 0, 15) != 0xCC55)) {
> + qemu_log_mask(LOG_GUEST_ERROR, "Invalid addr[15:0] = 0x%x sent for "
> + "PPAB\n", extract32(seeprom->addr, 0, 15));
> + failed = true;
> + }
> + /* Address bits A15-A0 must be set to AA40h. */
> + if ((seeprom->opcode == FRZR) &&
> + (extract32(seeprom->addr, 0, 15) != 0xAA40)) {
> + qemu_log_mask(LOG_GUEST_ERROR, "Invalid addr[15:0] = 0x%x sent for "
> + "FRZR\n", extract32(seeprom->addr, 0, 15));
> + failed = true;
> + }
> + break;
> +
> + case RDEX_CHLK:
> + case WREX_LOCK:
> + SPI_DEBUG(qemu_log("Compute Address for Security reg command\n"));
> + /* command size is 4 bytes for PPAB/FRZR, data_offset is 4 */
> + *data_offset = 4;
> +
> + /* Make sure buffer length is at least 4 Bytes */
> + if (req_payload->len >= 4) {
> + /*
> + * RDEX : A[23:9] are don't care bits, except A10 which must be a
> + * logic 0.
> + * WREX : A[23:9] are don't care bits, except A10 which must be a
> + * logic 0 and A8 which must be a logic 1 to address the
> + * second Security register byte that is user programmable.
> + * CHLK : A[23:0] are don't care bits, except A10 which must be a
> + * logic 1.
> + * LOCK : A[23:0] are don't care bits, except A10 which must be a
> + * logic 1.
> + */
> + seeprom->addr = deposit32(seeprom->addr, 0, 8, read_buf[2]);
> + seeprom->addr = deposit32(seeprom->addr, 8, 8,
> + (read_buf[1] & 0x05));
> + seeprom->addr = deposit32(seeprom->addr, 16, 8, 0);
seeprom->addr = ((read_buf[1] & 0x5) << 8) | read_buf[2];
> + SPI_DEBUG(qemu_log("Received Command %s\n",
> + (seeprom->opcode == RDEX_CHLK)
> + ? (extract32(seeprom->addr, 10, 1) ?
> + "CHLK : Check Lock Status of Security Register" :
> + "RDEX : Read from the Security Register")
> + : (extract32(seeprom->addr, 10, 1) ?
> + "LOCK : Lock the Security Register (permanent)" :
> + "WREX : Write to the Security Register")));
> + } else {
> + qemu_log_mask(LOG_GUEST_ERROR, "Payload_len(0x%x) should be at "
> + "least 4Bytes to fetch Address\n", req_payload->len);
> + failed = true;
> + }
> +
> + if ((seeprom->opcode == WREX_LOCK) &&
> + (extract32(seeprom->addr, 10, 1) == 0)) {
> + /*
> + * WREX
> + * In Legacy Write Protection mode, the Security register is
> + * write-protected when the BP <1:0> bits (bits 3-2 byte0) of
> + * the STATUS register = 11.
> + */
> + if (extract8(seeprom->status1, STATUS1_WPM, 1) == 0) {
> + addr_wr_protected = validate_addr(seeprom);
> + } else {
> + if (extract32(seeprom->addr, 0, 9) <= 0xFF) {
> + addr_wr_protected = true;
> + }
> + }
> + if (addr_wr_protected) {
> + qemu_log_mask(LOG_GUEST_ERROR, "SEEPROM Address(0x%x) is "
> + "Write protected\n", seeprom->addr);
> + failed = true;
> + }
> + }
> + break;
> + } /* end of switch */
> + return failed;
> +} /* end of method compute_addr */
> +
> +/*
> + * Method : validate_addr
> + * This method validates whether SEEPROM address is write protected or not
> + */
> +
> +bool validate_addr(PnvSpiSeeprom *seeprom)
> +{
> + bool addr_wr_protected = false;
> + uint8_t mpr_idx = 0;
> +
> + if (extract8(seeprom->status1, STATUS1_WPM, 1) == 1) {
> + /*
> + * enhanced write protection
> + * Memory partition register Bit5 through bit0 contain the Partition
> + * Endpoint Address of A18:A13, where A12:A0 are a logic "1". For
> + * example, if the first partition of the memory array is desired to
> + * stop after 128-Kbit of memory, that end point address is 03FFFh. The
> + * corresponding A18:A13 address bits to be loaded into MPR0 are
> + * therefore 000001b. The eight MPRs are each decoded sequentially by
> + * the device, starting with MPR0. Each MPR should be set to a
> + * Partition Endpoint Address greater than the ending address of the
> + * previous MPR. If a higher order MPR sets a Partition Endpoint Address
> + * less than or equal to the ending address of a lower order MPR, that
> + * higher order MPR is ignored and no protection is set by it's
> + * contents.
> + */
> + for (mpr_idx = 0; mpr_idx < 8; mpr_idx++) {
> + if ((extract32(seeprom->addr, 13, 6)) <=
> + (extract8(seeprom->mpr[mpr_idx], MPR_PEA, 1))) {
> + switch (extract8(seeprom->mpr[mpr_idx], MPR_PB, 1)) {
Don't you have to extract 2 bits for the case values 0..3 below?
> + case 0:
> + /*
> + * 0b00 = Partition is open and writing is permitted
> + * (factory default is unprotected).
> + */
> + addr_wr_protected = false;
> + break;
> + case 1:
> + /*
> + * 0b01 = Partition is always write-protected but can be
> + * reversed at a later time (software write-protected).
> + */
> + addr_wr_protected = true;
> + break;
> + case 2:
> + /*
> + * 0b10 = Partition is write-protected only when WP pin is
> + * asserted (hardware write-protected).
> + */
> + addr_wr_protected = false;
> + break;
> + case 3:
> + /*
> + * 0b11 = Partition is software write-protected and Memory
> + * Partition register is permanently locked.
> + */
> + addr_wr_protected = true;
> + break;
> + } /* end of switch */
> + break; /* break from for loop. */
> + }
> + } /* end of for loop */
> + } else {
> + /* Legacy write protection mode */
> + switch (extract8(seeprom->status0, STATUS0_BP, 2)) {
2 bits extracted -- good
> + case 0:
> + /*
> + * 0b00 = No array write protection
> + * EEPROM None
> + * Security Register 00000h - 000FFh
> + */
> + if ((seeprom->opcode == WREX_LOCK) &&
> + (extract32(seeprom->addr, 0, 9) <= 0xFF)) {
> + addr_wr_protected = true;
> + }
> + break;
> + case 1:
> + /*
> + * 0b01 = Upper quarter memory array protection
> + * EEPROM 60000h - 7FFFFh
> + * Security Register 00000h - 000FFh
> + */
> + if ((seeprom->opcode == WREX_LOCK) &&
> + (extract32(seeprom->addr, 0, 9) <= 0xFF)) {
> + addr_wr_protected = true;
> + } else if ((seeprom->opcode == WRITE) &&
> + (extract32(seeprom->addr, 0, 19) <= 0x60000)) {
> + addr_wr_protected = true;
> + }
> + break;
> + case 2:
> + /*
> + * 0b10 = Upper half memory array protection
> + * EEPROM 40000h - 7FFFFh
> + * Security Register 00000h - 000FFh
> + */
> + if ((seeprom->opcode == WREX_LOCK) &&
> + (extract32(seeprom->addr, 0, 9) <= 0xFF)) {
> + addr_wr_protected = true;
> + } else if ((seeprom->opcode == WRITE) &&
> + (extract32(seeprom->addr, 0, 19) <= 0x40000)) {
> + addr_wr_protected = true;
> + }
> + break;
> + case 3:
> + /*
> + * 0b11 = Entire memory array protection
> + * EEPROM 00000h - 7FFFFh
> + * Security Register 00000h - 001FFh
> + */
> + addr_wr_protected = true;
> + break;
> + } /* end of switch */
> + }
> + return addr_wr_protected;
> +} /* end of validate_addr */
> +
> +static void pnv_spi_seeprom_class_init(ObjectClass *klass, void *data)
> +{
> + DeviceClass *dc = DEVICE_CLASS(klass);
> + PnvSpiResponderClass *resp_class = PNV_SPI_RESPONDER_CLASS(klass);
> +
> + resp_class->connect_controller = seeprom_connect_controller;
> + resp_class->disconnect_controller = seeprom_disconnect_controller;
> + resp_class->request = seeprom_spi_request;
> +
> + dc->desc = "PowerNV SPI SEEPROM";
> + dc->bus_type = TYPE_SPI_BUS;
> +}
> +
> +static const TypeInfo pnv_spi_seeprom_info = {
> + .name = TYPE_PNV_SPI_SEEPROM,
> + .parent = TYPE_PNV_SPI_RESPONDER,
> + .instance_size = sizeof(PnvSpiSeeprom),
> + .class_init = pnv_spi_seeprom_class_init,
> +};
> +
> +static void pnv_spi_seeprom_register_types(void)
> +{
> + type_register_static(&pnv_spi_seeprom_info);
> +}
> +
> +type_init(pnv_spi_seeprom_register_types);
> diff --git a/hw/ppc/meson.build b/hw/ppc/meson.build
> index de25cac763..2c1ef0c937 100644
> --- a/hw/ppc/meson.build
> +++ b/hw/ppc/meson.build
> @@ -55,6 +55,7 @@ ppc_ss.add(when: 'CONFIG_POWERNV', if_true: files(
> 'pnv_pnor.c',
> 'pnv_spi_responder.c',
> 'pnv_spi_controller.c',
> + 'pnv_spi_seeprom.c',
> ))
> # PowerPC 4xx boards
> ppc_ss.add(when: 'CONFIG_PPC405', if_true: files(
^ permalink raw reply [flat|nested] 15+ messages in thread
* Re: [PATCH v1 2/5] hw/ppc: SPI controller model - registers implementation
2024-03-07 18:54 ` Stefan Berger
2024-03-07 19:11 ` Stefan Berger
@ 2024-03-08 15:17 ` Stefan Berger
1 sibling, 0 replies; 15+ messages in thread
From: Stefan Berger @ 2024-03-08 15:17 UTC (permalink / raw)
To: Chalapathi V, qemu-devel
Cc: qemu-ppc, fbarrat, npiggin, clg, calebs, chalapathi.v, saif.abrar
On 3/7/24 13:54, Stefan Berger wrote:
>
>
> On 2/7/24 11:08, Chalapathi V wrote:
>> SPI controller device model supports a connection to a single SPI
>> responder.
>> This provide access to SPI seeproms, TPM, flash device and an ADC
>> controller.
>>
>> All SPI function control is mapped into the SPI register space to
>> enable full
>> control by firmware. In this commit SPI configuration component is
>> modelled
>> which contains all SPI configuration and status registers as well as
>> the hold
>> registers for data to be sent or having been received.
>>
>> Signed-off-by: Chalapathi V <chalapathi.v@linux.ibm.com>
>
>> + case SEQUENCER_OPERATION_REG:
>> + for (int i = 0; i < SPI_CONTROLLER_REG_SIZE; i++) {
>> + sc->sequencer_operation_reg[i] =
>> + (val & PPC_BITMASK(i * 8 , i * 8 + 7)) >> (63 - (i *
>> 8 + 7));
>
> To me it would be more obvious if you used a mask here like this:
>
> mask = PPC_BIT_MASK(0, 7);
> mask = (0xff << 56);
>
> for (...) {
> sc->sequencer_operation_reg[i] = (val & mask) >> (56 - i * 8);
> mask >>= 8;
> }
>
Actually simpler and even this masking is not necessary:
for (...) {
sc->sequencer_operation_reg[i] = (val >> (56 - i * 8)) & 0xff;
}
^ permalink raw reply [flat|nested] 15+ messages in thread
* Re: [PATCH v1 1/5] hw/ppc: SPI responder model
2024-02-07 16:08 ` [PATCH v1 1/5] hw/ppc: SPI responder model Chalapathi V
@ 2024-03-08 16:00 ` Stefan Berger
0 siblings, 0 replies; 15+ messages in thread
From: Stefan Berger @ 2024-03-08 16:00 UTC (permalink / raw)
To: Chalapathi V, qemu-devel
Cc: qemu-ppc, fbarrat, npiggin, clg, calebs, chalapathi.v, saif.abrar
On 2/7/24 11:08, Chalapathi V wrote:
> Serial pheripheral interface provides full-duplex synchronous serial
> communication between single controller and multiple responder devices.
> One SPI Controller is implemented and supported on a SPI Bus, there is
> no support for multiple controllers on the SPI bus.
>
> The current implemetation assumes that single responder is connected to
> bus, hence chip_select is not modelled.
>
> Signed-off-by: Chalapathi V <chalapathi.v@linux.ibm.com>
> ---
> include/hw/ppc/pnv_spi_responder.h | 109 +++++++++++++++++++
> hw/ppc/pnv_spi_responder.c | 166 +++++++++++++++++++++++++++++
> hw/ppc/meson.build | 1 +
> 3 files changed, 276 insertions(+)
> create mode 100644 include/hw/ppc/pnv_spi_responder.h
> create mode 100644 hw/ppc/pnv_spi_responder.c
>
> diff --git a/include/hw/ppc/pnv_spi_responder.h b/include/hw/ppc/pnv_spi_responder.h
> new file mode 100644
> index 0000000000..1cf7279aad
> --- /dev/null
> +++ b/include/hw/ppc/pnv_spi_responder.h
> @@ -0,0 +1,109 @@
> +/*
> + * QEMU SPI Responder.
> + *
> + * Copyright (c) 2024, IBM Corporation.
> + *
> + * SPDX-License-Identifier: GPL-2.0-or-later
> + *
> + * SPI provides full-duplex synchronous serial communication between single
> + * controller and multiple responder devices. One SPI Controller is
> + * implemented and supported on a SPI Bus, there is no support for multiple
an SPI Bus
> + * controllers on the SPI bus.
> + *
> + * The current implementation assumes that single responder is connected to > + * bus, hence chip_select is not modelled.
to the bus, hence chip_select is not modeled.
> + */
> +
> +#ifndef PPC_PNV_SPI_RESPONDER_H
> +#define PPC_PNV_SPI_RESPONDER_H
> +
> +#include "hw/qdev-core.h"
> +#include "qom/object.h"
> +#include "qemu/log.h"
> +
> +#define TYPE_PNV_SPI_RESPONDER "spi-responder"
> +OBJECT_DECLARE_TYPE(PnvSpiResponder, PnvSpiResponderClass,
> + PNV_SPI_RESPONDER)
> +
> +typedef struct xfer_buffer xfer_buffer;
> +
> +struct PnvSpiResponderClass {
> + DeviceClass parent_class;
> +
> + /*
> + * These methods are from controller to responder and implemented
> + * by all responders.
> + * Connect_controller/disconnect_controller methods are called by
> + * controller to initiate/stop the SPI transfer.
> + */
> + void (*connect_controller)(PnvSpiResponder *responder, const char *port);
> + void (*disconnect_controller)(PnvSpiResponder *responder);
> + /*
> + * SPI transfer consists of a number of consecutive calls to the request
> + * method.
> + * The parameter first is true on first call of the transfer and last is on
> + * the final call of the transfer. Parameter bits and payload defines the
> + * number of bits and data payload sent by controller.
> + * Responder returns the response payload.
> + */
> + xfer_buffer *(*request)(PnvSpiResponder *responder, int first, int last,
> + int bits, xfer_buffer *payload);
> +};
> +
> +struct PnvSpiResponder {
> + DeviceState parent_obj;
> +};
> +
> +#define TYPE_SPI_BUS "spi-bus"
> +OBJECT_DECLARE_SIMPLE_TYPE(SpiBus, SPI_BUS)
> +
> +struct SpiBus {
> + BusState parent_obj;
> +};
> +
> +/*
> + * spi_realize_and_unref: realize and unref an SPI responder
> + * @dev: SPI responder to realize
> + * @bus: SPI bus to put it on
> + * @errp: error pointer
> + */
> +bool spi_realize_and_unref(DeviceState *dev, SpiBus *bus, Error **errp);
> +
> +/*
> + * spi_create_responder: create a SPI responder.
a -> an
> + * @bus: SPI bus to put it on
> + * @name: name of the responder object.
> + * call spi_realize_and_unref() after creating the responder.
> + */
> +
> +PnvSpiResponder *spi_create_responder(SpiBus *bus, const char *name);
> +
> +/* xfer_buffer */
> +typedef struct xfer_buffer {
> +
> + uint32_t len;
> + uint8_t *data;
> +
> +} xfer_buffer;
> +
> +/*
> + * xfer_buffer_read_ptr: Increment the payload length and return the pointer
> + * to the data at offset
> + */
> +uint8_t *xfer_buffer_write_ptr(xfer_buffer *payload, uint32_t offset,
> + uint32_t length);
> +/* xfer_buffer_read_ptr: Return the pointer to the data at offset */
> +void xfer_buffer_read_ptr(xfer_buffer *payload, uint8_t **read_buf,
> + uint32_t offset, uint32_t length);
> +/* xfer_buffer_new: Allocate memory and return the pointer */
> +xfer_buffer *xfer_buffer_new(void);
> +/* xfer_buffer_free: free the payload */
> +void xfer_buffer_free(xfer_buffer *payload);
> +
> +/* Controller interface */
> +SpiBus *spi_create_bus(DeviceState *parent, const char *name);
> +xfer_buffer *spi_request(SpiBus *bus, int first, int last, int bits,
> + xfer_buffer *payload);
> +bool spi_connect_controller(SpiBus *bus, const char *port);
> +bool spi_disconnect_controller(SpiBus *bus);
> +#endif /* PPC_PNV_SPI_SEEPROM_H */
> diff --git a/hw/ppc/pnv_spi_responder.c b/hw/ppc/pnv_spi_responder.c
> new file mode 100644
> index 0000000000..c3bc659b1b
> --- /dev/null
> +++ b/hw/ppc/pnv_spi_responder.c
> @@ -0,0 +1,166 @@
> +/*
> + * QEMU PowerPC SPI Responder
> + *
> + * Copyright (c) 2024, IBM Corporation.
> + *
> + * SPDX-License-Identifier: GPL-2.0-or-later
> + */
> +
> +#include "qemu/osdep.h"
> +#include "hw/ppc/pnv_spi_responder.h"
> +#include "qapi/error.h"
> +
> +static const TypeInfo spi_bus_info = {
> + .name = TYPE_SPI_BUS,
> + .parent = TYPE_BUS,
> + .instance_size = sizeof(SpiBus),
> +};
> +
> +SpiBus *spi_create_bus(DeviceState *parent, const char *name)
> +{
> + BusState *bus;
empty line after var decl
> + bus = qbus_new(TYPE_SPI_BUS, parent, name);
> + return SPI_BUS(bus);
> +}
> +
> +/* xfer_buffer_methods */
> +xfer_buffer *xfer_buffer_new(void)
> +{
> + xfer_buffer *payload = g_malloc0(sizeof(*payload));
empty line after var decl
> + payload->data = g_malloc0(payload->len * sizeof(uint8_t));
sizeof(uint8_t) doesn't seem necessary
> + return payload;
> +}
> +
> +void xfer_buffer_free(xfer_buffer *payload)
> +{
> + free(payload->data);
> + payload->data = NULL;
not necessary to do this
> + free(payload);
> +}
> +
> +uint8_t *xfer_buffer_write_ptr(xfer_buffer *payload, uint32_t offset,
> + uint32_t length)
> +{
> + if (payload->len < (offset + length)) {
> + payload->len = offset + length;
> + payload->data = g_realloc(payload->data,
> + payload->len * sizeof(uint8_t));
sizeof(uint8_t) does not seem necessary
> + }
> + return &payload->data[offset];
> +}
> +
> +void xfer_buffer_read_ptr(xfer_buffer *payload, uint8_t **read_buf,
> + uint32_t offset, uint32_t length)
> +{
> + static uint32_t prev_len;
Why do you keep prev_len around?
> + uint32_t offset_org = offset;
empty line after var decl
> + if (offset > payload->len) {
if (offset + length > payload->len) ?
> + if (length < payload->len) {
> + offset = payload->len - length;
> + } else {
> + offset = 0;
> + length = payload->len;
> + }
If the user passes in length (1000) and now you artificially lower it
(10) he may assume he got 1000 bytes to read and end up reading over the
end of the buffer in the end becasue there are only 10 bytes. I don't
think you should neither adjust offset nor length but realloc (if at all
necessary to do this here) to accomodate these values.
> + qemu_log_mask(LOG_GUEST_ERROR, "Read offset(%d) exceeds buffer "
> + "length(%d), altered offset to %d and length to %d to "
> + "read within buffer\n", offset_org, payload->len,
> + offset, length);
> + } else if ((offset + length) > payload->len) {
> + qemu_log_mask(LOG_GUEST_ERROR, "Read length(%d) bytes from offset (%d)"
> + ", exceeds buffer length(%d)\n", length, offset,
> + payload->len);
> + length = payload->len - offset;
> + }
> +
> + if ((prev_len != length) || (*read_buf == NULL)) {
> + *read_buf = g_realloc(*read_buf, length * sizeof(uint8_t));
> + prev_len = length;
> + }
> + *read_buf = &payload->data[offset];
> +}
> +
> +/* Controller interface methods */
> +bool spi_connect_controller(SpiBus *bus, const char *port)
> +{
> + BusState *b = BUS(bus);
> + BusChild *kid;
empty line
> + QTAILQ_FOREACH(kid, &b->children, sibling) {
> + PnvSpiResponder *r = PNV_SPI_RESPONDER(kid->child);
> + PnvSpiResponderClass *rc = PNV_SPI_RESPONDER_GET_CLASS(r);
empty line
> + rc->connect_controller(r, port);
> + return true;
you didn't process the whole list but returned on the first element?
> + }
> + return false;
> +}
> +bool spi_disconnect_controller(SpiBus *bus)
> +{
> + BusState *b = BUS(bus);
> + BusChild *kid;
empty line
> + QTAILQ_FOREACH(kid, &b->children, sibling) {
> + PnvSpiResponder *r = PNV_SPI_RESPONDER(kid->child);
> + PnvSpiResponderClass *rc = PNV_SPI_RESPONDER_GET_CLASS(r);
> + rc->disconnect_controller(r);
> + return true;
same comments here
> + }
> + return false;
> +}
> +
> +xfer_buffer *spi_request(SpiBus *bus,
> + int first, int last, int bits, xfer_buffer *payload)
> +{
> + BusState *b = BUS(bus);
> + BusChild *kid;
> + xfer_buffer *rsp_payload = NULL;
> + uint8_t *buf = NULL;
> +
> + QTAILQ_FOREACH(kid, &b->children, sibling) {
> + PnvSpiResponder *r = PNV_SPI_RESPONDER(kid->child);
> + PnvSpiResponderClass *rc = PNV_SPI_RESPONDER_GET_CLASS(r);
> + rsp_payload = rc->request(r, first, last, bits, payload);
> + return rsp_payload;
Also here you seem to stop processing in the first element.
> + }
> + if (rsp_payload == NULL) {
> + rsp_payload = xfer_buffer_new();
> + }
> + buf = xfer_buffer_write_ptr(rsp_payload, 0, payload->len);
> + memset(buf, 0, payload->len);
> + return rsp_payload;
> +}
> +
> +/* create and realise spi responder device */
> +bool spi_realize_and_unref(DeviceState *dev, SpiBus *bus, Error **errp)
> +{
> + return qdev_realize_and_unref(dev, &bus->parent_obj, errp);
> +}
> +
> +PnvSpiResponder *spi_create_responder(SpiBus *bus, const char *name)
> +{
> + DeviceState *dev = qdev_new(name);
> +
> + spi_realize_and_unref(dev, bus, &error_fatal);
> + return PNV_SPI_RESPONDER(dev);
> +}
> +
> +static void pnv_spi_responder_class_init(ObjectClass *klass, void *data)
> +{
> + DeviceClass *dc = DEVICE_CLASS(klass);
> +
> + dc->desc = "PowerNV SPI RESPONDER";
> +}
> +
> +static const TypeInfo pnv_spi_responder_info = {
> + .name = TYPE_PNV_SPI_RESPONDER,
> + .parent = TYPE_DEVICE,
> + .instance_size = sizeof(PnvSpiResponder),
> + .class_init = pnv_spi_responder_class_init,
> + .abstract = true,
> + .class_size = sizeof(PnvSpiResponderClass),
> +};
> +
> +static void pnv_spi_responder_register_types(void)
> +{
> + type_register_static(&pnv_spi_responder_info);
> + type_register_static(&spi_bus_info);
> +}
> +
> +type_init(pnv_spi_responder_register_types);
> diff --git a/hw/ppc/meson.build b/hw/ppc/meson.build
> index eba3406e7f..9bfd5a5613 100644
> --- a/hw/ppc/meson.build
> +++ b/hw/ppc/meson.build
> @@ -53,6 +53,7 @@ ppc_ss.add(when: 'CONFIG_POWERNV', if_true: files(
> 'pnv_bmc.c',
> 'pnv_homer.c',
> 'pnv_pnor.c',
> + 'pnv_spi_responder.c',
> ))
> # PowerPC 4xx boards
> ppc_ss.add(when: 'CONFIG_PPC405', if_true: files(
^ permalink raw reply [flat|nested] 15+ messages in thread
* Re: [PATCH v1 3/5] hw/ppc: SPI controller model - sequencer and shifter
2024-02-07 16:08 ` [PATCH v1 3/5] hw/ppc: SPI controller model - sequencer and shifter Chalapathi V
@ 2024-03-08 19:36 ` Stefan Berger
0 siblings, 0 replies; 15+ messages in thread
From: Stefan Berger @ 2024-03-08 19:36 UTC (permalink / raw)
To: Chalapathi V, qemu-devel
Cc: qemu-ppc, fbarrat, npiggin, clg, calebs, chalapathi.v, saif.abrar
On 2/7/24 11:08, Chalapathi V wrote:
> In this commit SPI shift engine and sequencer logic is implemented.
> Shift engine performs serialization and de-serialization according to the
> control by the sequencer and according to the setup defined in the
> configuration registers. Sequencer implements the main control logic and
> FSM to handle data transmit and data receive control of the shift engine.
>
> Signed-off-by: Chalapathi V <chalapathi.v@linux.ibm.com>
> ---
> include/hw/ppc/pnv_spi_controller.h | 58 ++
> hw/ppc/pnv_spi_controller.c | 1274 ++++++++++++++++++++++++++-
> 2 files changed, 1331 insertions(+), 1 deletion(-)
>
> diff --git a/include/hw/ppc/pnv_spi_controller.h b/include/hw/ppc/pnv_spi_controller.h
> index 8afaabdd1b..8160c35f5c 100644
> --- a/include/hw/ppc/pnv_spi_controller.h
> +++ b/include/hw/ppc/pnv_spi_controller.h
> @@ -8,6 +8,14 @@
> * This model Supports a connection to a single SPI responder.
> * Introduced for P10 to provide access to SPI seeproms, TPM, flash device
> * and an ADC controller.
> + *
> + * All SPI function control is mapped into the SPI register space to enable
> + * full control by firmware.
> + *
> + * SPI Controller has sequencer and shift engine. The SPI shift engine
> + * performs serialization and de-serialization according to the control by
> + * the sequencer and according to the setup defined in the configuration
> + * registers and the SPI sequencer implements the main control logic.
> */
>
> #ifndef PPC_PNV_SPI_CONTROLLER_H
> @@ -20,6 +28,7 @@
> #define SPI_CONTROLLER_REG_SIZE 8
>
> typedef struct SpiBus SpiBus;
> +typedef struct xfer_buffer xfer_buffer;
>
> typedef struct PnvSpiController {
> DeviceState parent;
> @@ -28,6 +37,39 @@ typedef struct PnvSpiController {
> MemoryRegion xscom_spic_regs;
> /* SPI controller object number */
> uint32_t spic_num;
> + uint8_t responder_select;
> + /* To verify if shift_n1 happens prior to shift_n2 */
> + bool shift_n1_done;
> + /*
> + * Internal flags for the first and last indicators for the SPI
> + * interface methods
> + */
> + uint8_t first;
> + uint8_t last;
Do these two correspond to the first and liast here?
xfer_buffer *seeprom_spi_request(PnvSpiResponder *resp, int first, int
last, int bits, xfer_buffer *payload);
If so I think the data types in the prototype should be set to uint8_t
as well and also bits should probably be an unsigned int or uint8_t?
> + /* Loop counter for branch operation opcode Ex/Fx */
> + uint8_t loop_counter_1;
> + uint8_t loop_counter_2;
> + /* N1/N2_bits specifies the size of the N1/N2 segment of a frame in bits.*/
> + uint8_t N1_bits;
> + uint8_t N2_bits;
> + /* Number of bytes in a payload for the N1/N2 frame segment.*/
> + uint8_t N1_bytes;
> + uint8_t N2_bytes;
> + /* Number of N1/N2 bytes marked for transmit */
> + uint8_t N1_tx;
> + uint8_t N2_tx;
> + /* Number of N1/N2 bytes marked for receive */
> + uint8_t N1_rx;
> + uint8_t N2_rx;
> + /*
> + * Setting this attribute to true will cause the engine to reverse the
> + * bit order of each byte it appends to a payload before sending the
> + * payload to a device. There may be cases where an end device expects
> + * a reversed order, like in the case of the Nuvoton TPM device. The
> + * order of bytes in the payload is not reversed, only the order of the
> + * 8 bits in each payload byte.
> + */
> + bool reverse_bits;
>
> /* SPI Controller registers */
> uint64_t error_reg;
> @@ -40,4 +82,20 @@ typedef struct PnvSpiController {
> uint8_t sequencer_operation_reg[SPI_CONTROLLER_REG_SIZE];
> uint64_t status_reg;
> } PnvSpiController;
> +
> +void log_all_N_counts(PnvSpiController *spi_controller);
> +void spi_response(PnvSpiController *spi_controller, int bits,
> + xfer_buffer *rsp_payload);
> +void operation_sequencer(PnvSpiController *spi_controller);
> +bool operation_shiftn1(PnvSpiController *spi_controller, uint8_t opcode,
> + xfer_buffer **payload, bool send_n1_alone);
> +bool operation_shiftn2(PnvSpiController *spi_controller, uint8_t opcode,
> + xfer_buffer **payload);
> +bool does_rdr_match(PnvSpiController *spi_controller);
> +uint8_t get_from_offset(PnvSpiController *spi_controller, uint8_t offset);
> +void shift_byte_in(PnvSpiController *spi_controller, uint8_t byte);
> +void calculate_N1(PnvSpiController *spi_controller, uint8_t opcode);
> +void calculate_N2(PnvSpiController *spi_controller, uint8_t opcode);
> +void do_reset(PnvSpiController *spi_controller);
> +uint8_t reverse_bits8(uint8_t x);
> #endif /* PPC_PNV_SPI_CONTROLLER_H */
> diff --git a/hw/ppc/pnv_spi_controller.c b/hw/ppc/pnv_spi_controller.c
> index 0f2bc25e82..ef48af5d03 100644
> --- a/hw/ppc/pnv_spi_controller.c
> +++ b/hw/ppc/pnv_spi_controller.c
> @@ -9,7 +9,6 @@
> #include "qemu/osdep.h"
> #include "qemu/log.h"
> #include "hw/qdev-properties.h"
> -#include "hw/ppc/pnv.h"
> #include "hw/ppc/pnv_xscom.h"
> #include "hw/ppc/pnv_spi_controller.h"
> #include "hw/ppc/pnv_spi_responder.h"
> @@ -155,6 +154,12 @@ static uint64_t pnv_spi_controller_read(void *opaque, hwaddr addr,
> val));
> sc->status_reg = SETFIELD(STATUS_REG_RDR_FULL, sc->status_reg, 0);
> SPI_DEBUG(qemu_log("RDR being read, RDR_full set to 0\n"));
> + if (GETFIELD(STATUS_REG_SHIFTER_FSM, sc->status_reg) == FSM_WAIT) {
In the other patch you seemed to have used extract() and deposit(). Now
you are switching to GETFIELD() and SETFIELD(). Any reason for this?
> + /* call $operation_sequencer(); */
You can remove this comment -- it doesn't add much
> + SPI_DEBUG(qemu_log("RDR being read while shifter is waiting, "
> + "starting sequencer\n"));
> + operation_sequencer(sc);
> + }
> break;
> case SEQUENCER_OPERATION_REG:
> for (int i = 0; i < SPI_CONTROLLER_REG_SIZE; i++) {
> @@ -227,6 +232,9 @@ static void pnv_spi_controller_write(void *opaque, hwaddr addr,
> sc->status_reg = SETFIELD(STATUS_REG_TDR_UNDERRUN, sc->status_reg, 0);
> SPI_DEBUG(qemu_log("TDR being written, TDR_underrun set to 0\n"));
> SPI_DEBUG(qemu_log("TDR being written, starting sequencer\n"));
> + /* call $operation_sequencer(); */
> + operation_sequencer(sc);
> +
> break;
> case RECEIVE_DATA_REG:
> sc->receive_data_reg = val;
> @@ -264,8 +272,1272 @@ static const MemoryRegionOps pnv_spi_controller_xscom_ops = {
> .endianness = DEVICE_BIG_ENDIAN,
> };
>
> +uint8_t reverse_bits8(uint8_t x)
> +{
> + x = (x << 4) | (x >> 4);
> + x = ((x & 0x33) << 2) | ((x & 0xcc) >> 2);
> + x = ((x & 0x55) << 1) | ((x & 0xaa) >> 1);
> + return x;
> +}
> +
> +bool does_rdr_match(PnvSpiController *sc)
> +{
> + /*
> + * The mask bits that are 0 are compared and the
> + * bits that are 1 are ignored.
> + */
> + uint16_t rdr_match_mask = GETFIELD(MEMORY_MAPPING_REG_RDR_MATCH_MASK,
> + sc->memory_mapping_reg);
> + uint16_t rdr_match_val = GETFIELD(MEMORY_MAPPING_REG_RDR_MATCH_VAL,
> + sc->memory_mapping_reg);
empty line after var decl -- applies to rest of file / all patches
> + if ((~rdr_match_mask & rdr_match_val) == ((~rdr_match_mask) &
> + GETFIELD(PPC_BITMASK(48, 63), sc->receive_data_reg))) {
> + SPI_DEBUG(qemu_log("RDR match successful, match=0x%4.4x, "
> + "mask=0x%4.4x, RDR[48:63]=0x%4.4llx\n",
> + rdr_match_val, rdr_match_mask,
> + GETFIELD(PPC_BITMASK(48, 63),
> + sc->receive_data_reg)));
> + return true;
> + } else {
No else branch necessary.
> + SPI_DEBUG(qemu_log("RDR match failed, match=0x%4.4x, mask=0x%4.4x, "
> + "RDR[48:63]=0x%4.4llx\n", rdr_match_val, rdr_match_mask,
> + GETFIELD(PPC_BITMASK(48, 63), sc->receive_data_reg)));
> + return false;
> + }
> +}
> +
> +uint8_t get_from_offset(PnvSpiController *sc, uint8_t offset)
> +{
> + uint8_t byte;
> + /*
> + * Offset is an index between 0 and SPI_CONTROLLER_REG_SIZE - 1
> + * Check the offset before using it.
> + */
> + if (offset < SPI_CONTROLLER_REG_SIZE) {
> + byte = GETFIELD(PPC_BITMASK(offset * 8 , (offset * 8) + 7),
> + sc->transmit_data_reg);
Would find this easier to read:
byte = sc->transmit_data_reg >> (56 - (offset * 8))
> + } else {
> + /*
> + * Log an error and return a 0xFF since we have to assign something
> + * to byte before returning.
> + */
> + qemu_log_mask(LOG_GUEST_ERROR, "Invalid offset = %d used to get byte "
> + "from TDR\n", offset);
> + byte = 0xff;
> + }
> + return byte;
> +}
> +
> +void shift_byte_in(PnvSpiController *sc, uint8_t byte)
> +{
> + sc->receive_data_reg = (sc->receive_data_reg << 8) | byte;
No extract/deposit or SETFIELD & GETFIELD. :-) thanks
> + SPI_DEBUG(qemu_log("0x%2.2x shifted in, RDR now = 0x%16.16lx\n", byte,
> + sc->receive_data_reg));
> +}
> +
> +void spi_response(PnvSpiController *sc, int bits, xfer_buffer *rsp_payload)
> +{
> + uint8_t *read_buf = NULL;
> + /*
> + * Processing here must handle:
> + * - Which bytes in the payload we should move to the RDR
> + * - Explicit mode counter configuration settings
> + * - RDR full and RDR overrun status
> + */
> +
> + /*
> + * First check that the response payload is the exact same
> + * number of bytes as the request payload was
> + */
> + if (rsp_payload->len != (sc->N1_bytes + sc->N2_bytes)) {
> + qemu_log_mask(LOG_GUEST_ERROR, "Invalid response payload size in "
> + "bytes, expected %d, got %d\n",
> + (sc->N1_bytes + sc->N2_bytes), rsp_payload->len);
> + } else {
> + SPI_DEBUG(qemu_log("SPI response received, payload len = %d\n",
> + rsp_payload->len));
> + log_all_N_counts(sc);
> + /*
> + * Adding an ECC count let's us know when we have found a payload byte
> + * that was shifted in but cannot be loaded into RDR. Bits 29-30
Bits 29-30 of 'what' ? clock_config_reset_control?
> + * equal to either 0b00 or 0b10 indicate that we are taking in data
> + * with ECC and either applying the ECC or discarding it.
> + */
> + uint8_t ecc_count = 0;
> + uint8_t ecc_control = GETFIELD(CLOCK_CONFIG_REG_ECC_CONTROL,
> + sc->clock_config_reset_control);
> + uint8_t ecc_control_1_2 = GETFIELD(PPC_BITMASK8(1, 2), ecc_control);
Var devcls to top of block (vdttob).
Hm, I wished you were using extract/extract8 again...
> + if (ecc_control_1_2 == 0 || ecc_control_1_2 == 2) {
> + ecc_count = 1;
> + }
> + /*
> + * Use the N1_rx and N2_rx counts to control shifting data from the
> + * payload into the RDR. Keep an overall count of the number of bytes
> + * shifted into RDR so we can discard every 9th byte when ECC is
> + * enabled.
> + */
> + uint8_t shift_in_count = 0;
vdttob
> + /* Handle the N1 portion of the frame first */
> + if (sc->N1_rx != 0) {
> + uint8_t n1_count = 0;
> + while (n1_count < sc->N1_bytes) {
> + shift_in_count++;
> + xfer_buffer_read_ptr(rsp_payload, &read_buf, n1_count, 1);
> + if ((ecc_count != 0) &&
> + (shift_in_count == (SPI_CONTROLLER_REG_SIZE + ecc_count))) {
> + SPI_DEBUG(qemu_log("Discarding rx N1 ECC byte = 0x%2.2x at "
> + "payload index = %d\n", read_buf[0], n1_count));
> + shift_in_count = 0;
> + } else { > + uint8_t n1_byte = 0x00;
no need to initialize it since you assign it immediately read_buf[0].
> + n1_byte = read_buf[0];
> + SPI_DEBUG(qemu_log("Extracting rx n1_byte = 0x%2.2x from "
> + "payload at index = %d\n", n1_byte, n1_count));
> + if (sc->reverse_bits) {
> + SPI_DEBUG(qemu_log("Reversing bit order of rx "
> + "n1_byte\n"));
> + n1_byte = reverse_bits8(n1_byte);
> + }
> + SPI_DEBUG(qemu_log("Shifting rx N1 byte = 0x%2.2x into "
> + "RDR\n", n1_byte));
> + shift_byte_in(sc, n1_byte);
> + }
> + n1_count++;
> + } /* end of while */
> + }
> + /* Handle the N2 portion of the frame */
> + if (sc->N2_rx != 0) {
> + uint8_t n2_count = 0;
> + while (n2_count < sc->N2_bytes) {
> + shift_in_count++;
> + xfer_buffer_read_ptr(rsp_payload, &read_buf,
> + (sc->N1_bytes + n2_count), 1);
Could you not move this outside the loop :
xfer_buffer_read_ptr(rsp_payload, &read_buf, sc->N1_bytes, sc->N2_bytes);
Same in the n1 loop above. And then you could think of creating a
function for what seems to be almost duplicate code for the n1 and n2 loops.
> + if ((ecc_count != 0) &&
> + (shift_in_count == (SPI_CONTROLLER_REG_SIZE + ecc_count))) {
> + SPI_DEBUG(qemu_log("Discarding rx N1 ECC byte = 0x%2.2x at "
> + "payload index = %d\n", read_buf[0],
> + (sc->N1_bytes + n2_count)));
> + shift_in_count = 0;
> + } else {
> + /*
> + * The code handles shifting data from the payload received
> + * from the responder into the responder's RDR. Since this
> + * is an N2 frame segment it is safe to assume that there
> + * was a preceding N1 segment which was combined with an N2
> + * segment to create a single frame. The response data will
> + * then have N1_bytes of data in the payload representing a
> + * responder response to the N1 section of the frame. If N2
> + * is set to receive the shifting for N2 data begins after
> + * the N1 bytes regardless of whether or not N1 was marked
> + * for transmit or receive.
> + */
> + uint8_t n2_byte = 0x00;
same comment as above
> + n2_byte = read_buf[0];
> + SPI_DEBUG(qemu_log("Extracting rx n2_byte = 0x%2.2x from "
> + "payload at index = %d\n", n2_byte,
> + (sc->N1_bytes + n2_count)));
> + if (sc->reverse_bits) {
> + SPI_DEBUG(qemu_log("Reversing bit order of rx "
> + "n2_byte\n"));
> + n2_byte = reverse_bits8(n2_byte);
> + }
> + SPI_DEBUG(qemu_log("Shifting rx N2 byte = 0x%2.2x into "
> + "RDR\n", n2_byte));
> + shift_byte_in(sc, n2_byte);
> + }
> + n2_count++;
> + }
> + }
> + if ((sc->N1_rx + sc->N2_rx) > 0) {
> + /*
> + * Data was received so handle RDR status.
> + * It is easier to handle RDR_full and RDR_overrun status here
> + * since the RDR register's shift_byte_in method is called
> + * multiple times in a row. Controlling RDR status is done here
> + * instead of in the RDR scoped methods for that reason.
> + */
> + if (GETFIELD(STATUS_REG_RDR_FULL, sc->status_reg) == 1) {
> + /*
> + * Data was shifted into the RDR before having been read
> + * causing previous data to have been overrun.
> + */
> + sc->status_reg = SETFIELD(STATUS_REG_RDR_OVERRUN,
> + sc->status_reg, 1);
> + } else {
> + /*
> + * Set status to indicate that the received data register is
> + * full. This flag is only cleared once the RDR is unloaded.
> + */
> + sc->status_reg = SETFIELD(STATUS_REG_RDR_FULL,
> + sc->status_reg, 1);
> + SPI_DEBUG(qemu_log("RDR_full set to 1\n"));
> + }
> + }
> + } /* end of else */
> +} /* end of spi_response() */
> +
> +void log_all_N_counts(PnvSpiController *sc)
> +{
> + SPI_DEBUG(qemu_log("N1_bits = %d, N1_bytes = %d, N1_tx = %d, N1_rx = %d, "
> + "N2_bits = %d, N2_bytes = %d, N2_tx = %d, N2_rx = %d\n",
> + sc->N1_bits, sc->N1_bytes, sc->N1_tx, sc->N1_rx, sc->N2_bits,
> + sc->N2_bytes, sc->N2_tx, sc->N2_rx));
> +}
> +
> +void operation_sequencer(PnvSpiController *sc)
All function namees in this file should have a prefix I would say.
> +{
> + /*
> + * Loop through each sequencer operation ID and perform the requested
> + * operations.
> + * Flag for indicating if we should send the N1 frame or wait to combine
> + * it with a preceding N2 frame.
> + */
> + bool send_n1_alone = true;
> + /* Flag to stop the sequencer */
> + bool stop = false;
> +
> + /*
> + * xfer_buffer for containing the payload of the SPI frame.
> + * This is a static because there are cases where a sequence has to stop
> + * and wait for the target application to unload the RDR. If this occurs
> + * during a sequence where N1 is not sent alone and instead combined with
> + * N2 since the N1 tx length + the N2 tx length is less than the size of
> + * the TDR.
> + */
> + static xfer_buffer *payload;
> + if (payload == NULL) {
> + payload = xfer_buffer_new();
> + }
> + /*
> + * Clear the sequencer FSM error bit - general_SPI_status[3]
> + * before starting a sequence.
> + */
> + sc->status_reg = SETFIELD(PPC_BIT(35), sc->status_reg, 0);
> + /*
> + * If the FSM is idle set the sequencer index to 0
> + * (new/restarted sequence)
> + */
> + if (GETFIELD(STATUS_REG_SEQUENCER_FSM, sc->status_reg) ==
> + SEQ_STATE_IDLE) {
> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
> + sc->status_reg, 0);
> + }
> + /*
> + * There are only 8 possible operation IDs to iterate through though
> + * some operations may cause more than one frame to be sequenced.
> + */
> + while (GETFIELD(STATUS_REG_SEQUENCER_INDEX, sc->status_reg) < 8) {
> + uint8_t opcode = 0;
no need to assign a value.
> + uint8_t masked_opcode = 0;
> +
> + opcode = sc->sequencer_operation_reg[GETFIELD(
> + STATUS_REG_SEQUENCER_INDEX, sc->status_reg)];
> + /* Set sequencer state to decode */
> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM, sc->status_reg,
> + SEQ_STATE_DECODE);
> + /*
> + * Only the upper nibble of the operation ID is needed to know what
> + * kind of operation is requested.
> + */
> + masked_opcode = opcode & 0xF0;
> + switch (masked_opcode) {
> + /*
> + * Increment the operation index in each case instead of just
> + * once at the end in case an operation like the branch
> + * operation needs to change the index.
> + */
> + case SEQ_OP_STOP:
> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
> + sc->status_reg, SEQ_STATE_EXECUTE);
> + /* A stop operation in any position stops the sequencer */
> + SPI_DEBUG(qemu_log("Sequencer STOP at index = 0x%llx, sequencer "
> + "idling\n", GETFIELD(
> + STATUS_REG_SEQUENCER_INDEX,
> + sc->status_reg)));
> + stop = true;
> + sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM, sc->status_reg,
> + FSM_IDLE);
> + sc->loop_counter_1 = 0;
> + sc->loop_counter_2 = 0;
> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
> + sc->status_reg, SEQ_STATE_IDLE);
> + break;
> +
> + case SEQ_OP_SELECT_SLAVE:
> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
> + sc->status_reg, SEQ_STATE_EXECUTE);
> + SPI_DEBUG(qemu_log("Sequencer SELECT_SLAVE at index = 0x%llx\n",
> + GETFIELD(STATUS_REG_SEQUENCER_INDEX, sc->status_reg)));
> + /*
> + * This device currently only supports a single responder
> + * connection at position 0. De-selecting a responder is fine
> + * and expected at the end of a sequence but selecting any
> + * responder other than 0 should cause an error.
> + */
> + sc->responder_select = opcode & 0x0F;
> + if (sc->responder_select == 0) {
> + if (spi_disconnect_controller(sc->spi_bus)) {
> + SPI_DEBUG(qemu_log("Slave (present) de-selected, "
> + "shifter done\n"));
> + } else {
> + SPI_DEBUG(qemu_log("Slave (not-present) de-selected "
> + "(no-op), shifter done\n"));
> + }
> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
> + sc->status_reg,
> + (GETFIELD(
> + STATUS_REG_SEQUENCER_INDEX,
> + sc->status_reg) + 1));
> + sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM,
> + sc->status_reg, FSM_DONE);
> + } else if (sc->responder_select != 1) {
> + qemu_log_mask(LOG_GUEST_ERROR, "Slave selection other than 1 "
> + "not supported, select = 0x%x\n",
> + sc->responder_select);
Does this mean that the SPI controller can only support 1 slave?
what is responed_select = 1 -- some kind of slave id?
> + SPI_DEBUG(qemu_log("Sequencer stop requested due to invalid "
> + "responder select at index = 0x%llx, "
> + "shifter idling\n", GETFIELD(
> + STATUS_REG_SEQUENCER_INDEX,
> + sc->status_reg)));
> + sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM,
> + sc->status_reg, FSM_IDLE);
> + stop = true;
> + } else {
> + /*
> + * Only allow an FSM_START state when a responder is
> + * selected
> + */
> + sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM,
> + sc->status_reg, FSM_START);
> + if (spi_connect_controller(sc->spi_bus, NULL)) {
My guess is sc->responder_select should be passed to the
spi_connect_controller(). I am not much familiar with SPI but do you
need an explicit connection or should it not rather be a lookup whether
a slave with the given id is registered/available?
> + SPI_DEBUG(qemu_log("Slave 0x%x (present) selected, "
> + "shifter starting\n",
> + sc->responder_select));
> + } else {
> + SPI_DEBUG(qemu_log("Slave 0x%x (not-present) selected "
> + "(no-op), shifter starting\n",
> + sc->responder_select));
> + }
> + sc->first = 1;
> + sc->last = 0;
> + /*
> + * A Shift_N2 operation is only valid after a Shift_N1. We
> + * will track the occurrence of a Shift_N1 to enforce this
> + * requirement in the most generic way possible by assuming
> + * that the rule applies once a valid responder select has
> + * occurred.
Indentation.
> + */
> + sc->shift_n1_done = false;
> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
> + sc->status_reg,
> + SEQ_STATE_INDEX_INCREMENT);
> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
> + sc->status_reg,
> + (GETFIELD(STATUS_REG_SEQUENCER_INDEX,
> + sc->status_reg) + 1));
> + }
> + break;
> +
> + case SEQ_OP_SHIFT_N1:
> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
> + sc->status_reg, SEQ_STATE_EXECUTE);
> + SPI_DEBUG(qemu_log("Sequencer SHIFT_N1 at index = 0x%llx\n",
> + GETFIELD(STATUS_REG_SEQUENCER_INDEX, sc->status_reg)));
> + /*
> + * Only allow a shift_n1 when the state is not IDLE or DONE.
> + * In either of those two cases the sequencer is not in a proper
> + * state to perform shift operations because the sequencer has:
> + * - processed a responder deselect (DONE)
> + * - processed a stop opcode (IDLE)
> + * - encountered an error (IDLE)
> + */
> + if ((GETFIELD(STATUS_REG_SHIFTER_FSM,
> + sc->status_reg) == FSM_IDLE) ||
> + (GETFIELD(STATUS_REG_SHIFTER_FSM,
> + sc->status_reg) == FSM_DONE)) {
> + qemu_log_mask(LOG_GUEST_ERROR, "Shift_N1 not allowed in "
> + "shifter state = 0x%llx", GETFIELD(
> + STATUS_REG_SHIFTER_FSM, sc->status_reg));
> + /*
> + * Set sequencer FSM error bit 3 (general_SPI_status[3])
> + * in status reg.
> + */
> + sc->status_reg = SETFIELD(PPC_BIT(35), sc->status_reg, 1);
> + SPI_DEBUG(qemu_log("Sequencer stop requested due to invalid "
> + "shifter state at index = 0x%llx\n", GETFIELD(
> + STATUS_REG_SEQUENCER_INDEX, sc->status_reg)));
> + stop = true;
> + } else {
> + /*
> + * Look for the special case where there is a shift_n1 set for
> + * transmit and it is followed by a shift_n2 set for transmit
> + * AND the combined transmit length of the two operations is
> + * less than or equal to the size of the TDR register. In this
> + * case we want to use both this current shift_n1 opcode and the
> + * following shift_n2 opcode to assemble the frame for
> + * transmission to the responder without requiring a refill of
> + * the TDR between the two operations.
> + */
> + if ((sc->sequencer_operation_reg[GETFIELD(
> + STATUS_REG_SEQUENCER_INDEX, sc->status_reg) + 1] & 0xF0)
> + == SEQ_OP_SHIFT_N2) {
> + SPI_DEBUG(qemu_log("Not sending N1 alone\n"));
> + send_n1_alone = false;
> + }
> + /*
> + * If the next opcode is 0x10, which deselects the SPI device
> + * then this is the last shift
> + */
> + if (sc->sequencer_operation_reg[GETFIELD(
> + STATUS_REG_SEQUENCER_INDEX, sc->status_reg) + 1] ==
> + SEQ_OP_SELECT_SLAVE) {
> + sc->last = 1;
> + }
> + sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM,
> + sc->status_reg, FSM_SHIFT_N1);
> + stop = operation_shiftn1(sc, opcode, &payload, send_n1_alone);
> + if (stop) {
> + /*
> + * The operation code says to stop, this can occur if:
> + * (1) RDR is full and the N1 shift is set for receive
> + * (2) TDR was empty at the time of the N1 shift so we need
> + * to wait for data.
> + * (3) Neither 1 nor 2 are occurring and we aren't sending
> + * N1 alone and N2 counter reload is set (bit 0 of the N2
> + * counter reload field). In this case TDR_underrun will
> + * will be set and the Payload has been loaded so it is
> + * ok to advance the sequencer.
> + */
> + if (GETFIELD(STATUS_REG_TDR_UNDERRUN, sc->status_reg)) {
> + SPI_DEBUG(qemu_log("Sequencer stop requested due to N2 "
> + "counter reload active.\n"));
> + sc->shift_n1_done = true;
> + sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM,
> + sc->status_reg,
> + FSM_SHIFT_N2);
> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
> + sc->status_reg,
> + (GETFIELD(
> + STATUS_REG_SEQUENCER_INDEX,
> + sc->status_reg) + 1));
> + SPI_DEBUG(qemu_log("Set new sequencer index to = "
> + "0x%llx\n", GETFIELD(
> + STATUS_REG_SEQUENCER_INDEX,
> + sc->status_reg)));
> + } else {
> + /*
> + * This is case (1) or (2) so the sequencer needs to
> + * wait and NOT go to the next sequence yet.
> + */
> + sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM,
> + sc->status_reg, FSM_WAIT);
> + }
> + } else {
> + /* Ok to move on to the next index */
> + sc->shift_n1_done = true;
> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
> + sc->status_reg, SEQ_STATE_INDEX_INCREMENT);
> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
> + sc->status_reg,
> + (GETFIELD(
> + STATUS_REG_SEQUENCER_INDEX,
> + sc->status_reg) + 1));
> + }
> + }
> + break;
> +
> + case SEQ_OP_SHIFT_N2:
> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
> + sc->status_reg, SEQ_STATE_EXECUTE);
> + SPI_DEBUG(qemu_log("Sequencer SHIFT_N2 at index = %lld\n",
> + GETFIELD(STATUS_REG_SEQUENCER_INDEX,
> + sc->status_reg)));
> + if (!sc->shift_n1_done) {
> + qemu_log_mask(LOG_GUEST_ERROR, "Shift_N2 is not allowed if a "
> + "Shift_N1 is not done, shifter state = 0x%llx",
> + GETFIELD(STATUS_REG_SHIFTER_FSM,
> + sc->status_reg));
> + /*
> + * In case the sequencer actually stops if an N2 shift is
> + * requested before any N1 shift is done. Set sequencer FSM
> + * error bit 3 (general_SPI_status[3]) in status reg.
> + */
> + sc->status_reg = SETFIELD(PPC_BIT(35), sc->status_reg, 1);
> + SPI_DEBUG(qemu_log("Sequencer stop requested due to shift_n2 "
> + "w/no shift_n1 done at index = 0x%llx\n",
> + GETFIELD(STATUS_REG_SEQUENCER_INDEX,
> + sc->status_reg)));
> + stop = true;
> + } else {
> + /*
> + * If the next opcode is 0x10, which deselects the SPI device
... is SEQ_OP_SELECT_SLAVE (0x10), which ...
> + * then this is the last shift
> + */
> + if (sc->sequencer_operation_reg[GETFIELD(
> + STATUS_REG_SEQUENCER_INDEX,
> + sc->status_reg) + 1] == SEQ_OP_SELECT_SLAVE) {
> + sc->last = 1;
> + }
> + /* Ok to do a Shift_N2 */
> + sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM,
> + sc->status_reg, FSM_SHIFT_N2);
> + stop = operation_shiftn2(sc, opcode, &payload);
> + /*
> + * If the operation code says to stop set the shifter state to
> + * wait and stop
> + */
> + if (stop) {
> + sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM,
> + sc->status_reg, FSM_WAIT);
> + } else {
> + /* Ok to move on to the next index */
> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
> + sc->status_reg,
> + SEQ_STATE_INDEX_INCREMENT);
> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
> + sc->status_reg,
> + (GETFIELD(
> + STATUS_REG_SEQUENCER_INDEX,
> + sc->status_reg) + 1));
This sequence seems to appear multiple times. Put into 'a function'.
> + }
> + }
> + break;
> +
> + case SEQ_OP_BRANCH_IFNEQ_RDR:
> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
> + sc->status_reg, SEQ_STATE_EXECUTE);
> + SPI_DEBUG(qemu_log("Sequencer BRANCH_IFNEQ_RDR at "
> + "index = 0x%llx\n", GETFIELD(
> + STATUS_REG_SEQUENCER_INDEX, sc->status_reg)));
> + /*
> + * The memory mapping register RDR match value is compared against
> + * the 16 rightmost bytes of the RDR (potentially with masking).
> + * Since this comparison is performed against the contents of the
> + * RDR then a receive must have previously occurred otherwise
> + * there is no data to compare and the operation cannot be
> + * completed and will stop the sequencer until RDR full is set to
> + * 1.
> + */
> + if (GETFIELD(STATUS_REG_RDR_FULL, sc->status_reg) == 1) {
> + bool rdr_matched = false;
> + rdr_matched = does_rdr_match(sc);
> + if (rdr_matched) {
> + SPI_DEBUG(qemu_log("Proceed to next sequencer index "
> + "(increment on RDR match)\n"));
> + /* A match occurred, increment the sequencer index. */
> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
> + sc->status_reg,
> + SEQ_STATE_INDEX_INCREMENT);
> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
> + sc->status_reg,
> + (GETFIELD(
> + STATUS_REG_SEQUENCER_INDEX,
> + sc->status_reg) + 1));
... call 'the function'
> + } else {
> + SPI_DEBUG(qemu_log("Proceed to sequencer index=0x%x "
> + "(branch on RDR match fail)\n", (opcode & 0x7)));
> + /*
> + * Branch the sequencer to the index coded into the op
> + * code.
> + */
> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
> + sc->status_reg, (opcode & 0x7));
> + }
> + /*
> + * Regardless of where the branch ended up we want the
> + * sequencer to continue shifting so we have to clear
> + * RDR_full.
> + */
> + sc->status_reg = SETFIELD(STATUS_REG_RDR_FULL,
> + sc->status_reg, 0);
> + } else {
> + SPI_DEBUG(qemu_log("RDR not full for 0x6x opcode! Stopping "
> + "sequencer.\n"));
> + stop = true;
> + sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM,
> + sc->status_reg, FSM_WAIT);
> + }
> + break;
> +
> + case SEQ_OP_TRANSFER_TDR:
> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
> + sc->status_reg, SEQ_STATE_EXECUTE);
> + qemu_log_mask(LOG_GUEST_ERROR, "Transfer TDR is not supported\n");
> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
> + sc->status_reg,
> + SEQ_STATE_INDEX_INCREMENT);
> + /* status_reg.sequencer_index++ */
> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
> + sc->status_reg,
> + (GETFIELD(
> + STATUS_REG_SEQUENCER_INDEX, > + sc->status_reg) + 1));
... again
> + break;
> +
> + case SEQ_OP_BRANCH_IFNEQ_INC_1:
> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
> + sc->status_reg, SEQ_STATE_EXECUTE);
> + SPI_DEBUG(qemu_log("Sequencer BRANCH_IFNEQ_INC_1 at index = "
> + "0x%llx, next index = %d, count_compare_1 = "
> + "0x%llx, loop_counter_1 = %d\n", GETFIELD(
> + STATUS_REG_SEQUENCER_INDEX, sc->status_reg),
> + (opcode & 0x07),
> + GETFIELD(COUNTER_CONFIG_REG_COUNT_COMPARE1,
> + sc->status_reg), sc->loop_counter_1));
> + if (sc->loop_counter_1 !=
> + GETFIELD(COUNTER_CONFIG_REG_COUNT_COMPARE1,
> + sc->counter_config_reg)) {
> + /*
> + * If the next opcode is 0x10, which deselects the SPI device
> + * and we know that the next opcode is the last one in the
> + * loop then the next shift is the last shift
> + */
> + uint8_t condition1 = sc->sequencer_operation_reg[
> + GETFIELD(STATUS_REG_SEQUENCER_INDEX,
> + sc->status_reg) + 1];
> + uint8_t condition2 =
> + GETFIELD(COUNTER_CONFIG_REG_COUNT_COMPARE1,
> + sc->counter_config_reg);
> + if ((condition1 == SEQ_OP_SELECT_SLAVE) &&
> + ((sc->loop_counter_1 + 1) == condition2)) {
> + sc->last = 1;
> + }
> + /*
> + * Next index is the lower nibble of the branch operation ID,
> + * mask off all but the first three bits so we don't try to
> + * access beyond the sequencer_operation_reg boundary.
> + */
> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
> + sc->status_reg, (opcode & 0x7));
> + sc->loop_counter_1++;
> + SPI_DEBUG(qemu_log("Branching to index = %d, loop_counter_1 = "
> + "%d\n", (opcode & 0x7), sc->loop_counter_1));
> + } else {
> + /* Continue to next index if loop counter is reached */
> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
> + sc->status_reg,
> + SEQ_STATE_INDEX_INCREMENT);
> + /* status_reg.sequencer_index++ */
> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
> + sc->status_reg,
> + (GETFIELD(
> + STATUS_REG_SEQUENCER_INDEX,
> + sc->status_reg) + 1));
.. and again.
That's how far I got for now. I think it will take multiple passes and
others will have yet other comments on the code.
Stefan
^ permalink raw reply [flat|nested] 15+ messages in thread
end of thread, other threads:[~2024-03-08 19:38 UTC | newest]
Thread overview: 15+ messages (download: mbox.gz follow: Atom feed
-- links below jump to the message on this page --
2024-02-07 16:08 [PATCH v1 0/5] hw/ppc: SPI model Chalapathi V
2024-02-07 16:08 ` [PATCH v1 1/5] hw/ppc: SPI responder model Chalapathi V
2024-03-08 16:00 ` Stefan Berger
2024-02-07 16:08 ` [PATCH v1 2/5] hw/ppc: SPI controller model - registers implementation Chalapathi V
2024-03-07 18:54 ` Stefan Berger
2024-03-07 19:11 ` Stefan Berger
2024-03-08 15:17 ` Stefan Berger
2024-02-07 16:08 ` [PATCH v1 3/5] hw/ppc: SPI controller model - sequencer and shifter Chalapathi V
2024-03-08 19:36 ` Stefan Berger
2024-02-07 16:08 ` [PATCH v1 4/5] hw/ppc: SPI SEEPROM model Chalapathi V
2024-03-08 15:14 ` Stefan Berger
2024-02-07 16:08 ` [PATCH v1 5/5] hw/ppc: SPI controller wiring to P10 chip and create seeprom device Chalapathi V
2024-03-01 16:17 ` [PATCH v1 0/5] hw/ppc: SPI model Chalapathi V
2024-03-01 16:36 ` Cédric Le Goater
2024-03-01 18:33 ` Chalapathi V
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).