From: Chalapathi V <chalapathi.v@linux.ibm.com>
To: "Cédric Le Goater" <clg@kaod.org>, qemu-devel@nongnu.org
Cc: qemu-ppc@nongnu.org, fbarrat@linux.ibm.com, npiggin@gmail.com,
calebs@us.ibm.com, chalapathi.v@ibm.com,
saif.abrar@linux.vnet.ibm.com, dantan@us.ibm.com
Subject: Re: [PATCH v2 3/6] hw/ppc: SPI controller model - sequencer and shifter
Date: Tue, 16 Apr 2024 22:38:28 +0530 [thread overview]
Message-ID: <dfe3ef32-3dab-4559-a873-c25266db8bac@linux.ibm.com> (raw)
In-Reply-To: <d41c21ae-cf32-415d-94bb-694c8e47d0f4@kaod.org>
On 16-04-2024 15:09, Cédric Le Goater wrote:
> Hello,
>
> Please rephrase the subject to something like:
>
> "ppc/pnv: Extend SPI model ..."
>
> Using a verb is preferable.
Sure. Will update. Thank You.
>
> On 4/9/24 19:56, Chalapathi V wrote:
>> In this commit SPI shift engine and sequencer logic is implemented.
>> Shift engine performs serialization and de-serialization according to
>> the
>> control by the sequencer and according to the setup defined in the
>> configuration registers. Sequencer implements the main control logic and
>> FSM to handle data transmit and data receive control of the shift
>> engine.
>>
>> Signed-off-by: Chalapathi V <chalapathi.v@linux.ibm.com>
>> ---
>> include/hw/ppc/pnv_spi_controller.h | 72 ++
>> hw/ppc/pnv_spi_controller.c | 1311 ++++++++++++++++++++++++++-
>> 2 files changed, 1382 insertions(+), 1 deletion(-)
>>
>> diff --git a/include/hw/ppc/pnv_spi_controller.h
>> b/include/hw/ppc/pnv_spi_controller.h
>> index 5ec50fb14c..ee8e7a17da 100644
>> --- a/include/hw/ppc/pnv_spi_controller.h
>> +++ b/include/hw/ppc/pnv_spi_controller.h
>> @@ -8,6 +8,14 @@
>> * This model Supports a connection to a single SPI responder.
>> * Introduced for P10 to provide access to SPI seeproms, TPM, flash
>> device
>> * and an ADC controller.
>> + *
>> + * All SPI function control is mapped into the SPI register space to
>> enable
>> + * full control by firmware.
>> + *
>> + * SPI Controller has sequencer and shift engine. The SPI shift engine
>> + * performs serialization and de-serialization according to the
>> control by
>> + * the sequencer and according to the setup defined in the
>> configuration
>> + * registers and the SPI sequencer implements the main control logic.
>> */
>> #include "hw/ssi/ssi.h"
>> @@ -21,6 +29,7 @@
>> #define SPI_CONTROLLER_REG_SIZE 8
>> typedef struct SSIBus SSIBus;
>> +typedef struct xfer_buffer xfer_buffer;
>
> Please use CamelCase names for typedef. The forward declaration doesn't
> seem useful.
Sure. Will remove and test.
>
>> #define TYPE_PNV_SPI_BUS "pnv-spi-bus"
>> OBJECT_DECLARE_SIMPLE_TYPE(PnvSPIBus, PNV_SPI_BUS)
>> @@ -33,6 +42,21 @@ typedef struct PnvSPIBus {
>> uint32_t id;
>> } PnvSPIBus;
>> +/* xfer_buffer */
>> +typedef struct xfer_buffer {
>> +
>> + uint32_t len;
>> + uint8_t *data;
>> +
>> +} xfer_buffer;
>> +
>> +uint8_t *xfer_buffer_write_ptr(xfer_buffer *payload, uint32_t offset,
>> + uint32_t length);
>> +void xfer_buffer_read_ptr(xfer_buffer *payload, uint8_t **read_buf,
>> + uint32_t offset, uint32_t length);
>> +xfer_buffer *xfer_buffer_new(void);
>> +void xfer_buffer_free(xfer_buffer *payload);
>> +
>
> I don't think these helper routines need to be defined in the header file
> of the PnvPsi model. They look internal to me.
Sure. Will move them.
>
>> typedef struct PnvSpiController {
>> DeviceState parent;
>> @@ -40,6 +64,39 @@ typedef struct PnvSpiController {
>> MemoryRegion xscom_spic_regs;
>> /* SPI controller object number */
>> uint32_t spic_num;
>> + uint8_t responder_select;
>> + /* To verify if shift_n1 happens prior to shift_n2 */
>> + bool shift_n1_done;
>> + /*
>> + * Internal flags for the first and last indicators for the SPI
>> + * interface methods
>> + */
>> + uint8_t first;
>> + uint8_t last;
>> + /* Loop counter for branch operation opcode Ex/Fx */
>> + uint8_t loop_counter_1;
>> + uint8_t loop_counter_2;
>> + /* N1/N2_bits specifies the size of the N1/N2 segment of a frame
>> in bits.*/
>> + uint8_t N1_bits;
>> + uint8_t N2_bits;
>> + /* Number of bytes in a payload for the N1/N2 frame segment.*/
>> + uint8_t N1_bytes;
>> + uint8_t N2_bytes;
>> + /* Number of N1/N2 bytes marked for transmit */
>> + uint8_t N1_tx;
>> + uint8_t N2_tx;
>> + /* Number of N1/N2 bytes marked for receive */
>> + uint8_t N1_rx;
>> + uint8_t N2_rx;
>> + /*
>> + * Setting this attribute to true will cause the engine to
>> reverse the
>> + * bit order of each byte it appends to a payload before sending
>> the
>> + * payload to a device. There may be cases where an end device
>> expects
>> + * a reversed order, like in the case of the Nuvoton TPM device.
>> The
>> + * order of bytes in the payload is not reversed, only the order
>> of the
>> + * 8 bits in each payload byte.
>> + */
>> + bool reverse_bits;
>> /* SPI Controller registers */
>> uint64_t error_reg;
>> @@ -52,4 +109,19 @@ typedef struct PnvSpiController {
>> uint8_t sequencer_operation_reg[SPI_CONTROLLER_REG_SIZE];
>> uint64_t status_reg;
>> } PnvSpiController;
>> +
>> +void log_all_N_counts(PnvSpiController *spi_controller);
>> +void spi_response(PnvSpiController *spi_controller, int bits,
>> + xfer_buffer *rsp_payload);
>> +void operation_sequencer(PnvSpiController *spi_controller);
>> +bool operation_shiftn1(PnvSpiController *spi_controller, uint8_t
>> opcode,
>> + xfer_buffer **payload, bool send_n1_alone);
>> +bool operation_shiftn2(PnvSpiController *spi_controller, uint8_t
>> opcode,
>> + xfer_buffer **payload);
>> +bool does_rdr_match(PnvSpiController *spi_controller);
>> +uint8_t get_from_offset(PnvSpiController *spi_controller, uint8_t
>> offset);
>> +void shift_byte_in(PnvSpiController *spi_controller, uint8_t byte);
>> +void calculate_N1(PnvSpiController *spi_controller, uint8_t opcode);
>> +void calculate_N2(PnvSpiController *spi_controller, uint8_t opcode);
>> +uint8_t reverse_bits8(uint8_t x);
>
> These routines are internal and belong to hw/ppc/pnv_spi_controller.c.
> Please
> don't export them. Also, adding a pnv_psi_ prefix would be a plus to
> identify
> the sympbols.
Will move them to pnv_spi_controller.c. Thank You.
>
>
>> #endif /* PPC_PNV_SPI_CONTROLLER_H */
>> diff --git a/hw/ppc/pnv_spi_controller.c b/hw/ppc/pnv_spi_controller.c
>> index e2478a47f2..afe7f17565 100644
>> --- a/hw/ppc/pnv_spi_controller.c
>> +++ b/hw/ppc/pnv_spi_controller.c
>> @@ -52,6 +52,11 @@ static uint64_t pnv_spi_controller_read(void
>> *opaque, hwaddr addr,
>> val));
>> sc->status_reg = SETFIELD(STATUS_REG_RDR_FULL,
>> sc->status_reg, 0);
>> SPI_DEBUG(qemu_log("RDR being read, RDR_full set to 0\n"));
>> + if (GETFIELD(STATUS_REG_SHIFTER_FSM, sc->status_reg) ==
>> FSM_WAIT) {
>> + SPI_DEBUG(qemu_log("RDR being read while shifter is
>> waiting, "
>> + "starting sequencer\n"));
>
> Please use trace events instead.
Sure, will update.
>
>> + operation_sequencer(sc);
>> + }
>> break;
>> case SEQUENCER_OPERATION_REG:
>> val = 0;
>> @@ -124,13 +129,15 @@ static void pnv_spi_controller_write(void
>> *opaque, hwaddr addr,
>> sc->status_reg = SETFIELD(STATUS_REG_TDR_UNDERRUN,
>> sc->status_reg, 0);
>> SPI_DEBUG(qemu_log("TDR being written, TDR_underrun set to
>> 0\n"));
>> SPI_DEBUG(qemu_log("TDR being written, starting
>> sequencer\n"));
>> + operation_sequencer(sc);
>> +
>> break;
>> case RECEIVE_DATA_REG:
>> sc->receive_data_reg = val;
>> break;
>> case SEQUENCER_OPERATION_REG:
>> for (int i = 0; i < SPI_CONTROLLER_REG_SIZE; i++) {
>> - sc->sequencer_operation_reg[i] = (val >> (56 - i * 8)) & 0xFF;
>> + sc->sequencer_operation_reg[i] = (val >> (56 - i * 8)) &
>> 0xFF;
>
> This change belongs to the previous patch.
Yes, Thank you for catching. will update in v3.
>
>> }
>> break;
>> case STATUS_REG:
>> @@ -157,6 +164,1306 @@ static const MemoryRegionOps
>> pnv_spi_controller_xscom_ops = {
>> .endianness = DEVICE_BIG_ENDIAN,
>> };
>> +/* xfer_buffer_methods */
>> +xfer_buffer *xfer_buffer_new(void)
>> +{
>> + xfer_buffer *payload = g_malloc0(sizeof(*payload));
>> +
>> + payload->data = g_malloc0(payload->len);
>
> euh. payload->len is 0. This allocation is pointless.
>
>> + return payload;
>> +}
>> +
>> +void xfer_buffer_free(xfer_buffer *payload)
>> +{
>> + free(payload->data);
>> + free(payload);
>> +}
>> +
>> +uint8_t *xfer_buffer_write_ptr(xfer_buffer *payload, uint32_t offset,
>> + uint32_t length)
>> +{
>> + if (payload->len < (offset + length)) {
>> + payload->len = offset + length;
>> + payload->data = g_realloc(payload->data, payload->len);
>> + }
>> + return &payload->data[offset];
>> +}
>> +
>> +void xfer_buffer_read_ptr(xfer_buffer *payload, uint8_t **read_buf,
>> + uint32_t offset, uint32_t length)
>> +{
>> + static uint32_t prev_len;
>> + if ((prev_len != length) || (*read_buf == NULL)) {
>> + *read_buf = g_realloc(*read_buf, length);
>> + prev_len = length;
>> + }
>> + if (offset > payload->len) {
>> + /* Reading outside payload, just return */
>> + return;
>> + }
>> + *read_buf = &payload->data[offset];
>> +}
>
> Isn't there a maximum buffer size ? It would simplify the implementation
> and avoid all these alloc/realloc/free calls.
Will check and rework on this. Thank You.
>
>> +uint8_t reverse_bits8(uint8_t x)
>> +{
>> + x = (x << 4) | (x >> 4);
>> + x = ((x & 0x33) << 2) | ((x & 0xcc) >> 2);
>> + x = ((x & 0x55) << 1) | ((x & 0xaa) >> 1);
>> + return x;
>> +}
>
> revbit8() in qemu/host-utils.h should do the same.
>
> The rest is difficult to comment on without an intimitate knowledge of
> the controller and the datasheet. Can teammates help ?
>
> Thanks,
>
> C.
>
>
>
>> +bool does_rdr_match(PnvSpiController *sc)
>> +{
>> + /*
>> + * According to spec, the mask bits that are 0 are compared and the
>> + * bits that are 1 are ignored.
>> + */
>> + uint16_t rdr_match_mask =
>> GETFIELD(MEMORY_MAPPING_REG_RDR_MATCH_MASK,
>> + sc->memory_mapping_reg);
>> + uint16_t rdr_match_val = GETFIELD(MEMORY_MAPPING_REG_RDR_MATCH_VAL,
>> + sc->memory_mapping_reg);
>> + if ((~rdr_match_mask & rdr_match_val) == ((~rdr_match_mask) &
>> + GETFIELD(PPC_BITMASK(48, 63), sc->receive_data_reg))) {
>> + SPI_DEBUG(qemu_log("RDR match successful, match=0x%4.4x, "
>> + "mask=0x%4.4x,
>> RDR[48:63]=0x%4.4llx\n",
>> + rdr_match_val, rdr_match_mask,
>> + GETFIELD(PPC_BITMASK(48, 63),
>> + sc->receive_data_reg)));
>> + return true;
>> + } else {
>> + SPI_DEBUG(qemu_log("RDR match failed, match=0x%4.4x,
>> mask=0x%4.4x, "
>> + "RDR[48:63]=0x%4.4llx\n", rdr_match_val, rdr_match_mask,
>> + GETFIELD(PPC_BITMASK(48, 63), sc->receive_data_reg)));
>> + return false;
>> + }
>> +}
>> +
>> +uint8_t get_from_offset(PnvSpiController *sc, uint8_t offset)
>> +{
>> + uint8_t byte;
>> +
>> + /*
>> + * Offset is an index between 0 and SPI_CONTROLLER_REG_SIZE - 1
>> + * Check the offset before using it.
>> + */
>> + if (offset < SPI_CONTROLLER_REG_SIZE) {
>> + byte = (sc->transmit_data_reg >> (56 - offset * 8)) & 0xFF;
>> + } else {
>> + /*
>> + * Log an error and return a 0xFF since we have to assign
>> something
>> + * to byte before returning.
>> + */
>> + qemu_log_mask(LOG_GUEST_ERROR, "Invalid offset = %d used to
>> get byte "
>> + "from TDR\n", offset);
>> + byte = 0xff;
>> + }
>> + return byte;
>> +}
>> +
>> +void shift_byte_in(PnvSpiController *sc, uint8_t byte)
>> +{
>> + sc->receive_data_reg = (sc->receive_data_reg << 8) | byte;
>> + SPI_DEBUG(qemu_log("0x%2.2x shifted in, RDR now = 0x%16.16lx\n",
>> byte,
>> + sc->receive_data_reg));
>> +}
>> +
>> +void spi_response(PnvSpiController *sc, int bits, xfer_buffer
>> *rsp_payload)
>> +{
>> + uint8_t *read_buf = NULL;
>> + uint8_t ecc_count;
>> + uint8_t shift_in_count;
>> +
>> + /*
>> + * Processing here must handle:
>> + * - Which bytes in the payload we should move to the RDR
>> + * - Explicit mode counter configuration settings
>> + * - RDR full and RDR overrun status
>> + */
>> +
>> + /*
>> + * First check that the response payload is the exact same
>> + * number of bytes as the request payload was
>> + */
>> + if (rsp_payload->len != (sc->N1_bytes + sc->N2_bytes)) {
>> + qemu_log_mask(LOG_GUEST_ERROR, "Invalid response payload
>> size in "
>> + "bytes, expected %d, got %d\n",
>> + (sc->N1_bytes + sc->N2_bytes),
>> rsp_payload->len);
>> + } else {
>> + uint8_t ecc_control;
>> + SPI_DEBUG(qemu_log("SPI response received, payload len = %d\n",
>> + rsp_payload->len));
>> + log_all_N_counts(sc);
>> + /*
>> + * Adding an ECC count let's us know when we have found a
>> payload byte
>> + * that was shifted in but cannot be loaded into RDR. Bits
>> 29-30
>> + * equal to either 0b00 or 0b10 indicate that we are taking
>> in data
>> + * with ECC and either applying the ECC or discarding it.
>> + */
>> + ecc_count = 0;
>> + ecc_control = GETFIELD(PPC_BITMASK(29, 30),
>> + sc->clock_config_reset_control);
>> + if (ecc_control == 0 || ecc_control == 2) {
>> + ecc_count = 1;
>> + }
>> + /*
>> + * Use the N1_rx and N2_rx counts to control shifting data
>> from the
>> + * payload into the RDR. Keep an overall count of the
>> number of bytes
>> + * shifted into RDR so we can discard every 9th byte when
>> ECC is
>> + * enabled.
>> + */
>> + shift_in_count = 0;
>> + /* Handle the N1 portion of the frame first */
>> + if (sc->N1_rx != 0) {
>> + uint8_t n1_count = 0;
>> + while (n1_count < sc->N1_bytes) {
>> + shift_in_count++;
>> + xfer_buffer_read_ptr(rsp_payload, &read_buf,
>> n1_count, 1);
>> + if ((ecc_count != 0) &&
>> + (shift_in_count == (SPI_CONTROLLER_REG_SIZE +
>> ecc_count))) {
>> + SPI_DEBUG(qemu_log("Discarding rx N1 ECC byte =
>> 0x%2.2x at "
>> + "payload index = %d\n", read_buf[0],
>> n1_count));
>> + shift_in_count = 0;
>> + } else {
>> + uint8_t n1_byte = 0x00;
>> + n1_byte = read_buf[0];
>> + SPI_DEBUG(qemu_log("Extracting rx n1_byte =
>> 0x%2.2x from "
>> + "payload at index = %d\n", n1_byte,
>> n1_count));
>> + if (sc->reverse_bits) {
>> + SPI_DEBUG(qemu_log("Reversing bit order of rx "
>> + "n1_byte\n"));
>> + n1_byte = reverse_bits8(n1_byte);
>> + }
>> + SPI_DEBUG(qemu_log("Shifting rx N1 byte =
>> 0x%2.2x into "
>> + "RDR\n", n1_byte));
>> + shift_byte_in(sc, n1_byte);
>> + }
>> + n1_count++;
>> + } /* end of while */
>> + }
>> + /* Handle the N2 portion of the frame */
>> + if (sc->N2_rx != 0) {
>> + uint8_t n2_count = 0;
>> + while (n2_count < sc->N2_bytes) {
>> + shift_in_count++;
>> + xfer_buffer_read_ptr(rsp_payload, &read_buf,
>> + (sc->N1_bytes + n2_count), 1);
>> + if ((ecc_count != 0) &&
>> + (shift_in_count == (SPI_CONTROLLER_REG_SIZE +
>> ecc_count))) {
>> + SPI_DEBUG(qemu_log("Discarding rx N1 ECC byte =
>> 0x%2.2x at "
>> + "payload index = %d\n", read_buf[0],
>> + (sc->N1_bytes + n2_count)));
>> + shift_in_count = 0;
>> + } else {
>> + /*
>> + * The code handles shifting data from the
>> payload received
>> + * from the responder into the responder's RDR.
>> Since this
>> + * is an N2 frame segment it is safe to assume
>> that there
>> + * was a preceding N1 segment which was combined
>> with an N2
>> + * segment to create a single frame. The
>> response data will
>> + * then have N1_bytes of data in the payload
>> representing a
>> + * responder response to the N1 section of the
>> frame. If N2
>> + * is set to receive the shifting for N2 data
>> begins after
>> + * the N1 bytes regardless of whether or not N1
>> was marked
>> + * for transmit or receive.
>> + */
>> + uint8_t n2_byte = 0x00;
>> + n2_byte = read_buf[0];
>> + SPI_DEBUG(qemu_log("Extracting rx n2_byte =
>> 0x%2.2x from "
>> + "payload at index = %d\n", n2_byte,
>> + (sc->N1_bytes + n2_count)));
>> + if (sc->reverse_bits) {
>> + SPI_DEBUG(qemu_log("Reversing bit order of rx "
>> + "n2_byte\n"));
>> + n2_byte = reverse_bits8(n2_byte);
>> + }
>> + SPI_DEBUG(qemu_log("Shifting rx N2 byte =
>> 0x%2.2x into "
>> + "RDR\n", n2_byte));
>> + shift_byte_in(sc, n2_byte);
>> + }
>> + n2_count++;
>> + }
>> + }
>> + if ((sc->N1_rx + sc->N2_rx) > 0) {
>> + /*
>> + * Data was received so handle RDR status.
>> + * It is easier to handle RDR_full and RDR_overrun
>> status here
>> + * since the RDR register's shift_byte_in method is called
>> + * multiple times in a row. Controlling RDR status is
>> done here
>> + * instead of in the RDR scoped methods for that reason.
>> + */
>> + if (GETFIELD(STATUS_REG_RDR_FULL, sc->status_reg) == 1) {
>> + /*
>> + * Data was shifted into the RDR before having been
>> read
>> + * causing previous data to have been overrun.
>> + */
>> + sc->status_reg = SETFIELD(STATUS_REG_RDR_OVERRUN,
>> + sc->status_reg, 1);
>> + } else {
>> + /*
>> + * Set status to indicate that the received data
>> register is
>> + * full. This flag is only cleared once the RDR is
>> unloaded.
>> + */
>> + sc->status_reg = SETFIELD(STATUS_REG_RDR_FULL,
>> + sc->status_reg, 1);
>> + SPI_DEBUG(qemu_log("RDR_full set to 1\n"));
>> + }
>> + }
>> + } /* end of else */
>> +} /* end of spi_response() */
>> +
>> +void log_all_N_counts(PnvSpiController *sc)
>> +{
>> + SPI_DEBUG(qemu_log("N1_bits = %d, N1_bytes = %d, N1_tx = %d,
>> N1_rx = %d, "
>> + "N2_bits = %d, N2_bytes = %d, N2_tx = %d, N2_rx = %d\n",
>> + sc->N1_bits, sc->N1_bytes, sc->N1_tx, sc->N1_rx,
>> sc->N2_bits,
>> + sc->N2_bytes, sc->N2_tx, sc->N2_rx));
>> +}
>> +
>> +static inline void next_sequencer_fsm(PnvSpiController *sc)
>> +{
>> + uint8_t seq_index = GETFIELD(STATUS_REG_SEQUENCER_INDEX,
>> sc->status_reg);
>> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
>> sc->status_reg,
>> + (seq_index + 1));
>> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM, sc->status_reg,
>> + SEQ_STATE_INDEX_INCREMENT);
>> +}
>> +
>> +void operation_sequencer(PnvSpiController *sc)
>> +{
>> + /*
>> + * Loop through each sequencer operation ID and perform the
>> requested
>> + * operations.
>> + * Flag for indicating if we should send the N1 frame or wait to
>> combine
>> + * it with a preceding N2 frame.
>> + */
>> + bool send_n1_alone = true;
>> + bool stop = false; /* Flag to stop the sequencer */
>> + uint8_t opcode = 0;
>> + uint8_t masked_opcode = 0;
>> +
>> + /*
>> + * xfer_buffer for containing the payload of the SPI frame.
>> + * This is a static because there are cases where a sequence has
>> to stop
>> + * and wait for the target application to unload the RDR. If
>> this occurs
>> + * during a sequence where N1 is not sent alone and instead
>> combined with
>> + * N2 since the N1 tx length + the N2 tx length is less than the
>> size of
>> + * the TDR.
>> + */
>> + static xfer_buffer *payload;
>> +
>> + if (payload == NULL) {
>> + payload = xfer_buffer_new();
>> + }
>> + /*
>> + * Clear the sequencer FSM error bit - general_SPI_status[3]
>> + * before starting a sequence.
>> + */
>> + sc->status_reg = SETFIELD(PPC_BIT(35), sc->status_reg, 0);
>> + /*
>> + * If the FSM is idle set the sequencer index to 0
>> + * (new/restarted sequence)
>> + */
>> + if (GETFIELD(STATUS_REG_SEQUENCER_FSM, sc->status_reg) ==
>> + SEQ_STATE_IDLE) {
>> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
>> + sc->status_reg, 0);
>> + }
>> + /*
>> + * There are only 8 possible operation IDs to iterate through
>> though
>> + * some operations may cause more than one frame to be sequenced.
>> + */
>> + while (GETFIELD(STATUS_REG_SEQUENCER_INDEX, sc->status_reg) < 8) {
>> + opcode = sc->sequencer_operation_reg[GETFIELD(
>> + STATUS_REG_SEQUENCER_INDEX, sc->status_reg)];
>> + /* Set sequencer state to decode */
>> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
>> sc->status_reg,
>> + SEQ_STATE_DECODE);
>> + /*
>> + * Only the upper nibble of the operation ID is needed to
>> know what
>> + * kind of operation is requested.
>> + */
>> + masked_opcode = opcode & 0xF0;
>> + switch (masked_opcode) {
>> + /*
>> + * Increment the operation index in each case instead of just
>> + * once at the end in case an operation like the branch
>> + * operation needs to change the index.
>> + */
>> + case SEQ_OP_STOP:
>> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
>> + sc->status_reg,
>> SEQ_STATE_EXECUTE);
>> + /* A stop operation in any position stops the sequencer */
>> + SPI_DEBUG(qemu_log("Sequencer STOP at index = 0x%llx,
>> sequencer "
>> + "idling\n", GETFIELD(
>> + STATUS_REG_SEQUENCER_INDEX,
>> + sc->status_reg)));
>> + stop = true;
>> + sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM,
>> sc->status_reg,
>> + FSM_IDLE);
>> + sc->loop_counter_1 = 0;
>> + sc->loop_counter_2 = 0;
>> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
>> + sc->status_reg, SEQ_STATE_IDLE);
>> + break;
>> +
>> + case SEQ_OP_SELECT_SLAVE:
>> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
>> + sc->status_reg,
>> SEQ_STATE_EXECUTE);
>> + SPI_DEBUG(qemu_log("Sequencer SELECT_SLAVE at index =
>> 0x%llx\n",
>> + GETFIELD(STATUS_REG_SEQUENCER_INDEX, sc->status_reg)));
>> + /*
>> + * This device currently only supports a single responder
>> + * connection at position 0. De-selecting a responder
>> is fine
>> + * and expected at the end of a sequence but selecting any
>> + * responder other than 0 should cause an error.
>> + */
>> + sc->responder_select = opcode & 0x0F;
>> + if (sc->responder_select == 0) {
>> + SPI_DEBUG(qemu_log("Shifter done, pull the CS line
>> high\n"));
>> + qemu_set_irq((sc->bus).cs_line[0], 1);
>> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
>> + sc->status_reg,
>> + (GETFIELD(
>> + STATUS_REG_SEQUENCER_INDEX,
>> + sc->status_reg) + 1));
>> + sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM,
>> + sc->status_reg, FSM_DONE);
>> + } else if (sc->responder_select != 1) {
>> + qemu_log_mask(LOG_GUEST_ERROR, "Slave selection
>> other than 1 "
>> + "not supported, select = 0x%x\n",
>> + sc->responder_select);
>> + SPI_DEBUG(qemu_log("Sequencer stop requested due to
>> invalid "
>> + "responder select at index =
>> 0x%llx, "
>> + "shifter idling\n", GETFIELD(
>> + STATUS_REG_SEQUENCER_INDEX,
>> + sc->status_reg)));
>> + sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM,
>> + sc->status_reg, FSM_IDLE);
>> + stop = true;
>> + } else {
>> + /*
>> + * Only allow an FSM_START state when a responder is
>> + * selected
>> + */
>> + sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM,
>> + sc->status_reg, FSM_START);
>> + SPI_DEBUG(qemu_log("shifter starting, pull CS line
>> low\n"));
>> + qemu_set_irq((sc->bus).cs_line[0], 0);
>> + sc->first = 1;
>> + sc->last = 0;
>> + /*
>> + * A Shift_N2 operation is only valid after a Shift_N1
>> + * according to the spec. The spec doesn't say if
>> that means
>> + * immediately after or just after at any point. We
>> will track
>> + * the occurrence of a Shift_N1 to enforce this
>> requirement in
>> + * the most generic way possible by assuming that
>> the rule
>> + * applies once a valid responder select has occurred.
>> + */
>> + sc->shift_n1_done = false;
>> + next_sequencer_fsm(sc);
>> + }
>> + break;
>> +
>> + case SEQ_OP_SHIFT_N1:
>> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
>> + sc->status_reg,
>> SEQ_STATE_EXECUTE);
>> + SPI_DEBUG(qemu_log("Sequencer SHIFT_N1 at index =
>> 0x%llx\n",
>> + GETFIELD(STATUS_REG_SEQUENCER_INDEX, sc->status_reg)));
>> + /*
>> + * Only allow a shift_n1 when the state is not IDLE or
>> DONE.
>> + * In either of those two cases the sequencer is not in
>> a proper
>> + * state to perform shift operations because the
>> sequencer has:
>> + * - processed a responder deselect (DONE)
>> + * - processed a stop opcode (IDLE)
>> + * - encountered an error (IDLE)
>> + */
>> + if ((GETFIELD(STATUS_REG_SHIFTER_FSM,
>> + sc->status_reg) == FSM_IDLE) ||
>> + (GETFIELD(STATUS_REG_SHIFTER_FSM,
>> + sc->status_reg) == FSM_DONE)) {
>> + qemu_log_mask(LOG_GUEST_ERROR, "Shift_N1 not allowed
>> in "
>> + "shifter state = 0x%llx", GETFIELD(
>> + STATUS_REG_SHIFTER_FSM, sc->status_reg));
>> + /*
>> + * Set sequencer FSM error bit 3
>> (general_SPI_status[3])
>> + * in status reg.
>> + */
>> + sc->status_reg = SETFIELD(PPC_BIT(35),
>> sc->status_reg, 1);
>> + SPI_DEBUG(qemu_log("Sequencer stop requested due to
>> invalid "
>> + "shifter state at index = 0x%llx\n", GETFIELD(
>> + STATUS_REG_SEQUENCER_INDEX, sc->status_reg)));
>> + stop = true;
>> + } else {
>> + /*
>> + * Look for the special case where there is a
>> shift_n1 set for
>> + * transmit and it is followed by a shift_n2 set for
>> transmit
>> + * AND the combined transmit length of the two
>> operations is
>> + * less than or equal to the size of the TDR
>> register. In this
>> + * case we want to use both this current shift_n1
>> opcode and the
>> + * following shift_n2 opcode to assemble the frame for
>> + * transmission to the responder without requiring a
>> refill of
>> + * the TDR between the two operations.
>> + */
>> + if ((sc->sequencer_operation_reg[GETFIELD(
>> + STATUS_REG_SEQUENCER_INDEX, sc->status_reg) +
>> 1] & 0xF0)
>> + == SEQ_OP_SHIFT_N2) {
>> + SPI_DEBUG(qemu_log("Not sending N1 alone\n"));
>> + send_n1_alone = false;
>> + }
>> + /*
>> + * If the next opcode is 0x10, which deselects the
>> SPI device
>> + * then this is the last shift
>> + */
>> + if (sc->sequencer_operation_reg[GETFIELD(
>> + STATUS_REG_SEQUENCER_INDEX, sc->status_reg) + 1] ==
>> + SEQ_OP_SELECT_SLAVE) {
>> + sc->last = 1;
>> + }
>> + sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM,
>> + sc->status_reg, FSM_SHIFT_N1);
>> + stop = operation_shiftn1(sc, opcode, &payload,
>> send_n1_alone);
>> + if (stop) {
>> + /*
>> + * The operation code says to stop, this can
>> occur if:
>> + * (1) RDR is full and the N1 shift is set for
>> receive
>> + * (2) TDR was empty at the time of the N1 shift
>> so we need
>> + * to wait for data.
>> + * (3) Neither 1 nor 2 are occurring and we
>> aren't sending
>> + * N1 alone and N2 counter reload is set (bit 0
>> of the N2
>> + * counter reload field). In this case
>> TDR_underrun will
>> + * will be set and the Payload has been loaded
>> so it is
>> + * ok to advance the sequencer.
>> + */
>> + if (GETFIELD(STATUS_REG_TDR_UNDERRUN,
>> sc->status_reg)) {
>> + SPI_DEBUG(qemu_log("Sequencer stop requested
>> due to N2 "
>> + "counter reload active.\n"));
>> + sc->shift_n1_done = true;
>> + sc->status_reg =
>> SETFIELD(STATUS_REG_SHIFTER_FSM,
>> + sc->status_reg,
>> + FSM_SHIFT_N2);
>> + sc->status_reg =
>> SETFIELD(STATUS_REG_SEQUENCER_INDEX,
>> + sc->status_reg,
>> + (GETFIELD(
>> + STATUS_REG_SEQUENCER_INDEX,
>> + sc->status_reg) + 1));
>> + SPI_DEBUG(qemu_log("Set new sequencer index
>> to = "
>> + "0x%llx\n", GETFIELD(
>> + STATUS_REG_SEQUENCER_INDEX,
>> + sc->status_reg)));
>> + } else {
>> + /*
>> + * This is case (1) or (2) so the sequencer
>> needs to
>> + * wait and NOT go to the next sequence yet.
>> + */
>> + sc->status_reg =
>> SETFIELD(STATUS_REG_SHIFTER_FSM,
>> + sc->status_reg, FSM_WAIT);
>> + }
>> + } else {
>> + /* Ok to move on to the next index */
>> + sc->shift_n1_done = true;
>> + next_sequencer_fsm(sc);
>> + }
>> + }
>> + break;
>> +
>> + case SEQ_OP_SHIFT_N2:
>> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
>> + sc->status_reg,
>> SEQ_STATE_EXECUTE);
>> + SPI_DEBUG(qemu_log("Sequencer SHIFT_N2 at index = %lld\n",
>> + GETFIELD(STATUS_REG_SEQUENCER_INDEX,
>> + sc->status_reg)));
>> + if (!sc->shift_n1_done) {
>> + qemu_log_mask(LOG_GUEST_ERROR, "Shift_N2 is not
>> allowed if a "
>> + "Shift_N1 is not done, shifter state =
>> 0x%llx",
>> + GETFIELD(STATUS_REG_SHIFTER_FSM,
>> + sc->status_reg));
>> + /*
>> + * In case the sequencer actually stops if an N2
>> shift is
>> + * requested before any N1 shift is done. Set
>> sequencer FSM
>> + * error bit 3 (general_SPI_status[3]) in status reg.
>> + */
>> + sc->status_reg = SETFIELD(PPC_BIT(35),
>> sc->status_reg, 1);
>> + SPI_DEBUG(qemu_log("Sequencer stop requested due to
>> shift_n2 "
>> + "w/no shift_n1 done at index =
>> 0x%llx\n",
>> + GETFIELD(STATUS_REG_SEQUENCER_INDEX,
>> + sc->status_reg)));
>> + stop = true;
>> + } else {
>> + /*
>> + * If the next opcode is 0x10, which deselects the
>> SPI device
>> + * then this is the last shift
>> + */
>> + if (sc->sequencer_operation_reg[GETFIELD(
>> + STATUS_REG_SEQUENCER_INDEX,
>> + sc->status_reg) + 1] == SEQ_OP_SELECT_SLAVE) {
>> + sc->last = 1;
>> + }
>> + /* Ok to do a Shift_N2 */
>> + sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM,
>> + sc->status_reg,
>> FSM_SHIFT_N2);
>> + stop = operation_shiftn2(sc, opcode, &payload);
>> + /*
>> + * If the operation code says to stop set the
>> shifter state to
>> + * wait and stop
>> + */
>> + if (stop) {
>> + sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM,
>> + sc->status_reg, FSM_WAIT);
>> + } else {
>> + /* Ok to move on to the next index */
>> + next_sequencer_fsm(sc);
>> + }
>> + }
>> + break;
>> +
>> + case SEQ_OP_BRANCH_IFNEQ_RDR:
>> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
>> + sc->status_reg,
>> SEQ_STATE_EXECUTE);
>> + SPI_DEBUG(qemu_log("Sequencer BRANCH_IFNEQ_RDR at "
>> + "index = 0x%llx\n", GETFIELD(
>> + STATUS_REG_SEQUENCER_INDEX,
>> sc->status_reg)));
>> + /*
>> + * The memory mapping register RDR match value is
>> compared against
>> + * the 16 rightmost bytes of the RDR (potentially with
>> masking).
>> + * Since this comparison is performed against the
>> contents of the
>> + * RDR then a receive must have previously occurred
>> otherwise
>> + * there is no data to compare and the operation cannot be
>> + * completed and will stop the sequencer until RDR full
>> is set to
>> + * 1.
>> + */
>> + if (GETFIELD(STATUS_REG_RDR_FULL, sc->status_reg) == 1) {
>> + bool rdr_matched = false;
>> + rdr_matched = does_rdr_match(sc);
>> + if (rdr_matched) {
>> + SPI_DEBUG(qemu_log("Proceed to next sequencer
>> index "
>> + "(increment on RDR match)\n"));
>> + /* A match occurred, increment the sequencer
>> index. */
>> + next_sequencer_fsm(sc);
>> + } else {
>> + SPI_DEBUG(qemu_log("Proceed to sequencer
>> index=0x%x "
>> + "(branch on RDR match fail)\n", (opcode &
>> 0x7)));
>> + /*
>> + * Branch the sequencer to the index coded into
>> the op
>> + * code.
>> + */
>> + sc->status_reg =
>> SETFIELD(STATUS_REG_SEQUENCER_INDEX,
>> + sc->status_reg, (opcode & 0x7));
>> + }
>> + /*
>> + * Regardless of where the branch ended up we want the
>> + * sequencer to continue shifting so we have to clear
>> + * RDR_full.
>> + */
>> + sc->status_reg = SETFIELD(STATUS_REG_RDR_FULL,
>> + sc->status_reg, 0);
>> + } else {
>> + SPI_DEBUG(qemu_log("RDR not full for 0x6x opcode!
>> Stopping "
>> + "sequencer.\n"));
>> + stop = true;
>> + sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM,
>> + sc->status_reg, FSM_WAIT);
>> + }
>> + break;
>> +
>> + case SEQ_OP_TRANSFER_TDR:
>> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
>> + sc->status_reg,
>> SEQ_STATE_EXECUTE);
>> + qemu_log_mask(LOG_GUEST_ERROR, "Transfer TDR is not
>> supported\n");
>> + next_sequencer_fsm(sc);
>> + break;
>> +
>> + case SEQ_OP_BRANCH_IFNEQ_INC_1:
>> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
>> + sc->status_reg,
>> SEQ_STATE_EXECUTE);
>> + SPI_DEBUG(qemu_log("Sequencer BRANCH_IFNEQ_INC_1 at
>> index = "
>> + "0x%llx, next index = %d,
>> count_compare_1 = "
>> + "0x%llx, loop_counter_1 = %d\n",
>> GETFIELD(
>> + STATUS_REG_SEQUENCER_INDEX,
>> sc->status_reg),
>> + (opcode & 0x07),
>> + GETFIELD(COUNTER_CONFIG_REG_COUNT_COMPARE1,
>> + sc->status_reg), sc->loop_counter_1));
>> + /*
>> + * The spec says the loop should execute count compare +
>> 1 times.
>> + * However we learned from engineering that we really
>> only loop
>> + * count_compare times, count compare = 0 makes this op
>> code a
>> + * no-op
>> + */
>> + if (sc->loop_counter_1 !=
>> + GETFIELD(COUNTER_CONFIG_REG_COUNT_COMPARE1,
>> + sc->counter_config_reg)) {
>> + /*
>> + * If the next opcode is 0x10, which deselects the
>> SPI device
>> + * and we know that the next opcode is the last one
>> in the
>> + * loop then the next shift is the last shift
>> + */
>> + uint8_t condition1 = sc->sequencer_operation_reg[
>> + GETFIELD(STATUS_REG_SEQUENCER_INDEX,
>> + sc->status_reg) + 1];
>> + uint8_t condition2 =
>> GETFIELD(COUNTER_CONFIG_REG_COUNT_COMPARE1,
>> + sc->counter_config_reg);
>> +
>> + if ((condition1 == SEQ_OP_SELECT_SLAVE) &&
>> + ((sc->loop_counter_1 + 1) == condition2)) {
>> + sc->last = 1;
>> + }
>> + /*
>> + * Next index is the lower nibble of the branch
>> operation ID,
>> + * mask off all but the first three bits so we don't
>> try to
>> + * access beyond the sequencer_operation_reg boundary.
>> + */
>> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
>> + sc->status_reg, (opcode &
>> 0x7));
>> + sc->loop_counter_1++;
>> + SPI_DEBUG(qemu_log("Branching to index = %d,
>> loop_counter_1 = "
>> + "%d\n", (opcode & 0x7), sc->loop_counter_1));
>> + } else {
>> + /* Continue to next index if loop counter is reached */
>> + next_sequencer_fsm(sc);
>> + SPI_DEBUG(qemu_log("loop counter 1 achieved, next
>> sequencer "
>> + "index = 0x%llx\n",
>> GETFIELD(STATUS_REG_SEQUENCER_INDEX,
>> + sc->status_reg)));
>> + }
>> + break;
>> +
>> + case SEQ_OP_BRANCH_IFNEQ_INC_2:
>> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
>> + sc->status_reg,
>> SEQ_STATE_EXECUTE);
>> + SPI_DEBUG(qemu_log("Sequencer BRANCH_IFNEQ_INC_2 at
>> index = "
>> + "0x%llx, next index = %d,
>> count_compare_2 = "
>> + "0x%llx, loop_counter_2 = %d\n",
>> GETFIELD(
>> + STATUS_REG_SEQUENCER_INDEX,
>> sc->status_reg),
>> + (opcode & 0x07), GETFIELD(
>> + COUNTER_CONFIG_REG_COUNT_COMPARE2,
>> + sc->status_reg), sc->loop_counter_2));
>> + /*
>> + * If the next opcode is 0x10, which deselects the SPI
>> device
>> + * and we know that the next opcode is the last one in the
>> + * loop then the next shift is the last shift
>> + */
>> + uint8_t condition1 = sc->sequencer_operation_reg[
>> + GETFIELD(STATUS_REG_SEQUENCER_INDEX,
>> + sc->status_reg) + 1];
>> + uint8_t condition2 =
>> GETFIELD(COUNTER_CONFIG_REG_COUNT_COMPARE2,
>> + sc->counter_config_reg);
>> +
>> + if ((condition1 == SEQ_OP_SELECT_SLAVE) &&
>> + ((sc->loop_counter_2 + 1) == condition2)) {
>> + sc->last = 1;
>> + }
>> + /*
>> + * The spec says the loop should execute count compare +
>> 1 times.
>> + * However we learned from engineering that we really
>> only loop
>> + * count_compare times, count compare = 0 makes this op
>> code a
>> + * no-op
>> + */
>> + if (sc->loop_counter_2 != condition2) {
>> + /*
>> + * Next index is the lower nibble of the branch
>> operation ID,
>> + * mask off all but the first three bits so we don't
>> try to
>> + * access beyond the sequencer_operation_reg boundary.
>> + */
>> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
>> + sc->status_reg,
>> + (opcode & 0x7));
>> + sc->loop_counter_2++;
>> + SPI_DEBUG(qemu_log("Branching to index = %d,
>> loop_counter_2 "
>> + "= %d", (opcode & 0x7),
>> + sc->loop_counter_2));
>> + } else {
>> + /* Continue to next index if loop counter is reached */
>> + next_sequencer_fsm(sc);
>> + SPI_DEBUG(qemu_log("loop counter 2 achieved, next
>> sequencer "
>> + "index = 0x%llx\n",
>> GETFIELD(STATUS_REG_SEQUENCER_INDEX,
>> + sc->status_reg)));
>> + }
>> + break;
>> +
>> + default:
>> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
>> + sc->status_reg,
>> SEQ_STATE_EXECUTE);
>> + qemu_log_mask(LOG_GUEST_ERROR, "Sequencer opcode 0x%x is
>> not "
>> + "supported\n", opcode);
>> + /* Ignore unsupported operations. */
>> + next_sequencer_fsm(sc);
>> + break;
>> + } /* end of switch */
>> + /*
>> + * If we used all 8 opcodes without seeing a 00 - STOP in
>> the sequence
>> + * we need to go ahead and end things as if there was a STOP
>> at the
>> + * end.
>> + */
>> + if (GETFIELD(STATUS_REG_SEQUENCER_INDEX, sc->status_reg) ==
>> 8) {
>> + SPI_DEBUG(qemu_log("All 8 opcodes completed, sequencer "
>> + "idling\n"));
>> + sc->status_reg = SETFIELD(STATUS_REG_SHIFTER_FSM,
>> sc->status_reg,
>> + FSM_IDLE);
>> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_INDEX,
>> + sc->status_reg, 0);
>> + sc->loop_counter_1 = 0;
>> + sc->loop_counter_2 = 0;
>> + sc->status_reg = SETFIELD(STATUS_REG_SEQUENCER_FSM,
>> + sc->status_reg, SEQ_STATE_IDLE);
>> + break;
>> + }
>> + /* Break the loop if a stop was requested */
>> + if (stop) {
>> + break;
>> + }
>> + } /* end of while */
>> + return;
>> +} /* end of operation_sequencer() */
>> +
>> +/*
>> + * Calculate the N1 counters based on passed in opcode and
>> + * internal register values.
>> + * The method assumes that the opcode is a Shift_N1 opcode
>> + * and doesn't test it.
>> + * The counters returned are:
>> + * N1 bits: Number of bits in the payload data that are significant
>> + * to the responder.
>> + * N1_bytes: Total count of payload bytes for the N1 (portion of
>> the) frame.
>> + * N1_tx: Total number of bytes taken from TDR for N1
>> + * N1_rx: Total number of bytes taken from the payload for N1
>> + */
>> +void calculate_N1(PnvSpiController *sc, uint8_t opcode)
>> +{
>> + /*
>> + * Shift_N1 opcode form: 0x3M
>> + * Implicit mode:
>> + * If M != 0 the shift count is M bytes and M is the number of
>> tx bytes.
>> + * Forced Implicit mode:
>> + * M is the shift count but tx and rx is determined by the count
>> control
>> + * register fields. Note that we only check for forced Implicit
>> mode when
>> + * M != 0 since the mode doesn't make sense when M = 0.
>> + * Explicit mode:
>> + * If M == 0 then shift count is number of bits defined in the
>> + * Counter Configuration Register's shift_count_N1 field.
>> + */
>> + if (GETFIELD(PPC_BITMASK8(4, 7), opcode) == 0) {
>> + /* Explicit mode */
>> + sc->N1_bits = GETFIELD(COUNTER_CONFIG_REG_SHIFT_COUNT_N1,
>> + sc->counter_config_reg);
>> + sc->N1_bytes = ceil(sc->N1_bits / 8);
>> + sc->N1_tx = 0;
>> + sc->N1_rx = 0;
>> + /* If tx count control for N1 is set, load the tx value */
>> + if (GETFIELD(PPC_BIT(50), sc->counter_config_reg) == 1) {
>> + sc->N1_tx = sc->N1_bytes;
>> + }
>> + /* If rx count control for N1 is set, load the rx value */
>> + if (GETFIELD(PPC_BIT(51), sc->counter_config_reg) == 1) {
>> + sc->N1_rx = sc->N1_bytes;
>> + }
>> + } else {
>> + /* Implicit mode/Forced Implicit mode, use M field from
>> opcode */
>> + sc->N1_bytes = GETFIELD(PPC_BITMASK8(4, 7), opcode);
>> + sc->N1_bits = sc->N1_bytes * 8;
>> + /*
>> + * Assume that we are going to transmit the count
>> + * (pure Implicit only)
>> + */
>> + sc->N1_tx = sc->N1_bytes;
>> + sc->N1_rx = 0;
>> + /* Let Forced Implicit mode have an effect on the counts */
>> + if (GETFIELD(PPC_BIT(49), sc->counter_config_reg) == 1) {
>> + /*
>> + * If Forced Implicit mode and count control doesn't
>> + * indicate transmit then reset the tx count to 0
>> + */
>> + if (GETFIELD(PPC_BIT(50), sc->counter_config_reg) == 0) {
>> + sc->N1_tx = 0;
>> + }
>> + /* If rx count control for N1 is set, load the rx value */
>> + if (GETFIELD(PPC_BIT(51), sc->counter_config_reg) == 1) {
>> + sc->N1_rx = sc->N1_bytes;
>> + }
>> + }
>> + }
>> + /*
>> + * Enforce an upper limit on the size of N1 that is equal to the
>> known size
>> + * of the shift register, 64 bits or 72 bits if ECC is enabled.
>> + * If the size exceeds 72 bits it is a user error so log an error,
>> + * cap the size at a max of 64 bits or 72 bits and set the
>> sequencer FSM
>> + * error bit.
>> + */
>> + uint8_t ecc_control = GETFIELD(PPC_BITMASK(29, 30),
>> + sc->clock_config_reset_control);
>> + if (ecc_control == 0 || ecc_control == 2) {
>> + if (sc->N1_bytes > (SPI_CONTROLLER_REG_SIZE + 1)) {
>> + qemu_log_mask(LOG_GUEST_ERROR, "Unsupported N1 shift
>> size when "
>> + "ECC enabled, bytes = 0x%x, bits = 0x%x\n",
>> + sc->N1_bytes, sc->N1_bits);
>> + sc->N1_bytes = SPI_CONTROLLER_REG_SIZE + 1;
>> + sc->N1_bits = sc->N1_bytes * 8;
>> + }
>> + } else if (sc->N1_bytes > SPI_CONTROLLER_REG_SIZE) {
>> + qemu_log_mask(LOG_GUEST_ERROR, "Unsupported N1 shift size, "
>> + "bytes = 0x%x, bits = 0x%x\n",
>> + sc->N1_bytes, sc->N1_bits);
>> + sc->N1_bytes = SPI_CONTROLLER_REG_SIZE;
>> + sc->N1_bits = sc->N1_bytes * 8;
>> + }
>> +} /* end of calculate_N1 */
>> +
>> +/*
>> + * Shift_N1 operation handler method
>> + */
>> +bool operation_shiftn1(PnvSpiController *sc, uint8_t opcode,
>> + xfer_buffer **payload, bool send_n1_alone)
>> +{
>> + uint8_t n1_count;
>> + bool stop = false;
>> +
>> + /*
>> + * If there isn't a current payload left over from a stopped
>> sequence
>> + * create a new one.
>> + */
>> + if (*payload == NULL) {
>> + SPI_DEBUG(qemu_log("Creating new payload xfer_buffer\n"));
>> + *payload = xfer_buffer_new();
>> + }
>> + /*
>> + * Use a combination of N1 counters to build the N1 portion of the
>> + * transmit payload.
>> + * We only care about transmit at this time since the request
>> payload
>> + * only represents data going out on the controller output line.
>> + * Leave mode specific considerations in the calculate function
>> since
>> + * all we really care about are counters that tell use exactly how
>> + * many bytes are in the payload and how many of those bytes to
>> + * include from the TDR into the payload.
>> + */
>> + calculate_N1(sc, opcode);
>> + SPI_DEBUG(qemu_log("Shift N1 started..\n"));
>> + log_all_N_counts(sc);
>> + /*
>> + * Zero out the N2 counters here in case there is no N2
>> operation following
>> + * the N1 operation in the sequencer. This keeps leftover N2
>> information
>> + * from interfering with spi_response logic.
>> + */
>> + sc->N2_bits = 0;
>> + sc->N2_bytes = 0;
>> + sc->N2_tx = 0;
>> + sc->N2_rx = 0;
>> + /*
>> + * N1_bytes is the overall size of the N1 portion of the frame
>> regardless of
>> + * whether N1 is used for tx, rx or both. Loop over the size to
>> build a
>> + * payload that is N1_bytes long.
>> + * N1_tx is the count of bytes to take from the TDR and "shift"
>> into the
>> + * frame which means append those bytes to the payload for the
>> N1 portion
>> + * of the frame.
>> + * If N1_tx is 0 or if the count exceeds the size of the TDR
>> append 0xFF to
>> + * the frame until the overall N1 count is reached.
>> + */
>> + n1_count = 0;
>> + while (n1_count < sc->N1_bytes) {
>> + /*
>> + * Assuming that if N1_tx is not equal to 0 then it is the
>> same as
>> + * N1_bytes.
>> + */
>> + if ((sc->N1_tx != 0) && (n1_count < SPI_CONTROLLER_REG_SIZE)) {
>> +
>> + if (GETFIELD(STATUS_REG_TDR_FULL, sc->status_reg) == 1) {
>> + /*
>> + * Note that we are only appending to the payload IF
>> the TDR
>> + * is full otherwise we don't touch the payload
>> because we are
>> + * going to NOT send the payload and instead tell
>> the sequencer
>> + * that called us to stop and wait for a TDR write
>> so we have
>> + * data to load into the payload.
>> + */
>> + uint8_t n1_byte = 0x00;
>> + n1_byte = get_from_offset(sc, n1_count);
>> + SPI_DEBUG(qemu_log("Extracting tx n1_byte = 0x%2.2x
>> at index "
>> + "%d from TDR\n", n1_byte,
>> n1_count));
>> + if (sc->reverse_bits) {
>> + SPI_DEBUG(qemu_log("Reversing bit order of tx
>> n1_byte\n"));
>> + n1_byte = reverse_bits8(n1_byte);
>> + }
>> + SPI_DEBUG(qemu_log("Appending tx n1_byte = 0x%2.2x to "
>> + "Payload\n", n1_byte));
>> + *(xfer_buffer_write_ptr(*payload, (*payload)->len,
>> 1)) =
>> + n1_byte;
>> + } else {
>> + /*
>> + * We hit a shift_n1 opcode TX but the TDR is empty,
>> tell the
>> + * sequencer to stop and break this loop.
>> + */
>> + SPI_DEBUG(qemu_log("Shift N1 set for transmit but
>> TDR is empty,"
>> + " requesting sequencer stop\n"));
>> + stop = true;
>> + break;
>> + }
>> + } else {
>> + /*
>> + * Cases here:
>> + * - we are receiving during the N1 frame segment and
>> the RDR
>> + * is full so we need to stop until the RDR is read
>> + * - we are transmitting and we don't care about RDR status
>> + * since we won't be loading RDR during the frame
>> segment.
>> + * - we are receiving and the RDR is empty so we allow
>> the operation
>> + * to proceed.
>> + */
>> + if ((sc->N1_rx != 0) && (GETFIELD(STATUS_REG_RDR_FULL,
>> + sc->status_reg) == 1)) {
>> + SPI_DEBUG(qemu_log("Shift N1 set for receive but RDR
>> is full, "
>> + "requesting sequencer stop\n"));
>> + stop = true;
>> + break;
>> + } else {
>> + SPI_DEBUG(qemu_log("Appending tx n1_byte = 0xFF to
>> Payload\n"));
>> + *(xfer_buffer_write_ptr(*payload, (*payload)->len,
>> 1)) = 0xff;
>> + }
>> + }
>> + n1_count++;
>> + } /* end of while */
>> + /*
>> + * If we are not stopping due to an empty TDR and we are doing
>> an N1 TX
>> + * and the TDR is full we need to clear the TDR_full status.
>> + * Do this here instead of up in the loop above so we don't log
>> the message
>> + * in every loop iteration.
>> + * Ignore the send_n1_alone flag, all that does is defer the TX
>> until the N2
>> + * operation, which was found immediately after the current
>> opcode. The TDR
>> + * was unloaded and will be shifted so we have to clear the
>> TDR_full status.
>> + */
>> + if (!stop && (sc->N1_tx != 0) &&
>> + (GETFIELD(STATUS_REG_TDR_FULL, sc->status_reg) == 1)) {
>> +
>> + sc->status_reg = SETFIELD(STATUS_REG_TDR_FULL,
>> sc->status_reg, 0);
>> + SPI_DEBUG(qemu_log("TDR_full set to 0\n"));
>> + }
>> + /*
>> + * There are other reasons why the shifter would stop, such as a
>> TDR empty
>> + * or RDR full condition with N1 set to receive. If we haven't
>> stopped due
>> + * to either one of those conditions then check if the
>> send_n1_alone flag is
>> + * equal to False, indicating the next opcode is an N2
>> operation, AND if
>> + * the N2 counter reload switch (bit 0 of the N2 count control
>> field) is
>> + * set. This condition requires a pacing write to "kick" off
>> the N2
>> + * shift which includes the N1 shift as well when send_n1_alone
>> is False.
>> + */
>> + if (!stop && !send_n1_alone &&
>> + (GETFIELD(PPC_BIT(52), sc->counter_config_reg) == 1)) {
>> + SPI_DEBUG(qemu_log("N2 counter reload active, stop N1 shift, "
>> + "TDR_underrun set to 1\n"));
>> + stop = true;
>> + sc->status_reg = SETFIELD(STATUS_REG_TDR_UNDERRUN,
>> sc->status_reg, 1);
>> + }
>> + /*
>> + * If send_n1_alone is set AND we have a full TDR then this is
>> the first and
>> + * last payload to send and we don't have an N2 frame segment to
>> add to the
>> + * payload.
>> + */
>> + if (send_n1_alone && !stop) {
>> + uint32_t tx;
>> + uint32_t rx;
>> + uint8_t *read_buf = NULL;
>> + xfer_buffer *rsp_payload = NULL;
>> +
>> + /* We have a TX and a full TDR or an RX and an empty RDR */
>> + SPI_DEBUG(qemu_log("Shifting N1 frame: first = %d, last = %d, "
>> + "n1 bits = %d\n", sc->first, sc->last,
>> + sc->N1_bits));
>> + rsp_payload = xfer_buffer_new();
>> + for (int offset = 0; offset < (*payload)->len; offset =
>> offset + 4) {
>> + xfer_buffer_read_ptr(*payload, &read_buf, offset, 4);
>> + tx = 0;
>> + for (int i = 0; i < 4; i++) {
>> + if ((offset + i) >= (*payload)->len) {
>> + break;
>> + }
>> + tx = (tx << 8) | read_buf[i];
>> + }
>> + rx = ssi_transfer((sc->bus).ssi_bus, tx);
>> + for (int i = 0; i < 4; i++) {
>> + if ((offset + i) >= (*payload)->len) {
>> + break;
>> + }
>> + *(xfer_buffer_write_ptr(rsp_payload,
>> rsp_payload->len, 1)) =
>> + (rx >> (24 - i * 8)) & 0xFF;
>> + }
>> + }
>> + if (rsp_payload != NULL) {
>> + spi_response(sc, sc->N1_bits, rsp_payload);
>> + }
>> + sc->first = 0;
>> + sc->last = 0;
>> + /* The N1 frame shift is complete so reset the N1 counters */
>> + sc->N2_bits = 0;
>> + sc->N2_bytes = 0;
>> + sc->N2_tx = 0;
>> + sc->N2_rx = 0;
>> + xfer_buffer_free(*payload);
>> + *payload = NULL;
>> + SPI_DEBUG(qemu_log("Payload buffer freed\n"));
>> + } else {
>> + SPI_DEBUG(qemu_log("Not shifting N1, send_n1_alone = %d,
>> stop = %d\n",
>> + send_n1_alone, stop));
>> + }
>> + return stop;
>> +} /* end of operation_shiftn1() */
>> +
>> +/*
>> + * Calculate the N2 counters based on passed in opcode and
>> + * internal register values.
>> + * The method assumes that the opcode is a Shift_N2 opcode
>> + * and doesn't test it.
>> + * The counters returned are:
>> + * N2 bits: Number of bits in the payload data that are significant
>> + * to the responder.
>> + * N2_bytes: Total count of payload bytes for the N2 frame.
>> + * N2_tx: Total number of bytes taken from TDR for N2
>> + * N2_rx: Total number of bytes taken from the payload for N2
>> + */
>> +void calculate_N2(PnvSpiController *sc, uint8_t opcode)
>> +{
>> + /*
>> + * Shift_N2 opcode form: 0x4M
>> + * Implicit mode:
>> + * If M!=0 the shift count is M bytes and M is the number of rx
>> bytes.
>> + * Forced Implicit mode:
>> + * M is the shift count but tx and rx is determined by the count
>> control
>> + * register fields. Note that we only check for Forced Implicit
>> mode when
>> + * M != 0 since the mode doesn't make sense when M = 0.
>> + * Explicit mode:
>> + * If M==0 then shift count is number of bits defined in the
>> + * Counter Configuration Register's shift_count_N1 field.
>> + */
>> + if (GETFIELD(PPC_BITMASK8(4, 7), opcode) == 0) {
>> + /* Explicit mode */
>> + sc->N2_bits = GETFIELD(COUNTER_CONFIG_REG_SHIFT_COUNT_N2,
>> + sc->counter_config_reg);
>> + sc->N2_bytes = ceil(sc->N2_bits / 8);
>> + sc->N2_tx = 0;
>> + sc->N2_rx = 0;
>> + /* If tx count control for N2 is set, load the tx value */
>> + if (GETFIELD(PPC_BIT(54), sc->counter_config_reg) == 1) {
>> + sc->N2_tx = sc->N2_bytes;
>> + }
>> + /* If rx count control for N2 is set, load the rx value */
>> + if (GETFIELD(PPC_BIT(55), sc->counter_config_reg) == 1) {
>> + sc->N2_rx = sc->N2_bytes;
>> + }
>> + } else {
>> + /* Implicit mode/Forced Implicit mode, use M field from
>> opcode */
>> + sc->N2_bytes = GETFIELD(PPC_BITMASK8(4, 7), opcode);
>> + sc->N2_bits = sc->N2_bytes * 8;
>> + /* Assume that we are going to receive the count */
>> + sc->N2_rx = sc->N2_bytes;
>> + sc->N2_tx = 0;
>> + /* Let Forced Implicit mode have an effect on the counts */
>> + if (GETFIELD(PPC_BIT(53), sc->counter_config_reg) == 1) {
>> + /*
>> + * If Forced Implicit mode and count control doesn't
>> + * indicate a receive then reset the rx count to 0
>> + */
>> + if (GETFIELD(PPC_BIT(55), sc->counter_config_reg) == 0) {
>> + sc->N2_rx = 0;
>> + }
>> + /* If tx count control for N2 is set, load the tx value */
>> + if (GETFIELD(PPC_BIT(54), sc->counter_config_reg) == 1) {
>> + sc->N2_tx = sc->N2_bytes;
>> + }
>> + }
>> + }
>> + /*
>> + * Enforce an upper limit on the size of N1 that is equal to the
>> + * known size of the shift register, 64 bits or 72 bits if ECC
>> + * is enabled.
>> + * If the size exceeds 72 bits it is a user error so log an error,
>> + * cap the size at a max of 64 bits or 72 bits and set the
>> sequencer FSM
>> + * error bit.
>> + */
>> + uint8_t ecc_control = GETFIELD(PPC_BITMASK(29, 30),
>> + sc->clock_config_reset_control);
>> + if (ecc_control == 0 || ecc_control == 2) {
>> + if (sc->N2_bytes > (SPI_CONTROLLER_REG_SIZE + 1)) {
>> + SPI_DEBUG(qemu_log("Unsupported N2 shift size when ECC
>> enabled, "
>> + "bytes = 0x%x, bits = 0x%x\n",
>> + sc->N2_bytes, sc->N2_bits));
>> + sc->N2_bytes = SPI_CONTROLLER_REG_SIZE + 1;
>> + sc->N2_bits = sc->N2_bytes * 8;
>> + }
>> + } else if (sc->N2_bytes > SPI_CONTROLLER_REG_SIZE) {
>> + SPI_DEBUG(qemu_log("Unsupported N2 shift size, bytes = 0x%x, "
>> + "bits = 0x%x\n", sc->N2_bytes,
>> sc->N2_bits));
>> + sc->N2_bytes = SPI_CONTROLLER_REG_SIZE;
>> + sc->N2_bits = sc->N2_bytes * 8;
>> + }
>> +} /* end of calculate_N2 */
>> +
>> +/*
>> + * Shift_N2 operation handler method
>> + */
>> +
>> +bool operation_shiftn2(PnvSpiController *sc, uint8_t opcode,
>> + xfer_buffer **payload)
>> +{
>> + uint8_t n2_count;
>> + bool stop = false;
>> +
>> + /*
>> + * If there isn't a current payload left over from a stopped
>> sequence
>> + * create a new one.
>> + */
>> + if (*payload == NULL) {
>> + SPI_DEBUG(qemu_log("Creating new payload xfer_buffer\n"));
>> + *payload = xfer_buffer_new();
>> + }
>> + /*
>> + * Use a combination of N2 counters to build the N2 portion of the
>> + * transmit payload.
>> + */
>> + calculate_N2(sc, opcode);
>> + SPI_DEBUG(qemu_log("Shift N2 started\n"));
>> + log_all_N_counts(sc);
>> + /*
>> + * The only difference between this code and the code for shift
>> N1 is
>> + * that this code has to account for the possible presence of N1
>> transmit
>> + * bytes already taken from the TDR.
>> + * If there are bytes to be transmitted for the N2 portion of
>> the frame
>> + * and there are still bytes in TDR that have not been copied
>> into the
>> + * TX data of the payload, this code will handle transmitting those
>> + * remaining bytes.
>> + * If for some reason the transmit count(s) add up to more than
>> the size
>> + * of the TDR we will just append 0xFF to the transmit payload
>> data until
>> + * the payload is N1 + N2 bytes long.
>> + */
>> + n2_count = 0;
>> + while (n2_count < sc->N2_bytes) {
>> + /*
>> + * If the RDR is full and we need to RX just bail out,
>> letting the
>> + * code continue will end up building the payload twice in
>> the same
>> + * buffer since RDR full causes a sequence stop and restart.
>> + */
>> + if ((sc->N2_rx != 0) &&
>> + (GETFIELD(STATUS_REG_RDR_FULL, sc->status_reg) == 1)) {
>> + SPI_DEBUG(qemu_log("Shift N2 set for receive but RDR is
>> full, "
>> + "requesting sequencer stop\n"));
>> + stop = true;
>> + break;
>> + }
>> + if ((sc->N2_tx != 0) && ((sc->N1_tx + n2_count) <
>> + SPI_CONTROLLER_REG_SIZE)) {
>> + /* Always append data for the N2 segment if it is set
>> for TX */
>> + uint8_t n2_byte = 0x00;
>> + n2_byte = get_from_offset(sc, (sc->N1_tx + n2_count));
>> + SPI_DEBUG(qemu_log("Extracting tx n2_byte = 0x%2.2x at
>> index %d "
>> + "from TDR\n", n2_byte, (sc->N1_tx + n2_count)));
>> + if (sc->reverse_bits) {
>> + SPI_DEBUG(qemu_log("Reversing bit order of tx
>> n2_byte\n"));
>> + n2_byte = reverse_bits8(n2_byte);
>> + }
>> + SPI_DEBUG(qemu_log("Appending tx n2_byte = 0x%2.2x to
>> Payload\n",
>> + n2_byte));
>> + *(xfer_buffer_write_ptr(*payload, (*payload)->len, 1)) =
>> n2_byte;
>> + } else {
>> + /*
>> + * Regardless of whether or not N2 is set for TX or RX,
>> we need
>> + * the number of bytes in the payload to match the
>> overall length
>> + * of the operation.
>> + */
>> + SPI_DEBUG(qemu_log("Appending tx n2_byte = 0xFF to
>> Payload\n"));
>> + *(xfer_buffer_write_ptr(*payload, (*payload)->len, 1)) =
>> 0xff;
>> + }
>> + n2_count++;
>> + } /* end of while */
>> + if (!stop) {
>> + uint32_t tx;
>> + uint32_t rx;
>> + uint8_t *read_buf = NULL;
>> + xfer_buffer *rsp_payload = NULL;
>> +
>> + /* We have a TX and a full TDR or an RX and an empty RDR */
>> + SPI_DEBUG(qemu_log("Shifting N2 frame: first = %d, last = %d, "
>> + "n1+n2 bits = %d\n", sc->first, sc->last,
>> + (sc->N1_bits + sc->N2_bits)));
>> + rsp_payload = xfer_buffer_new();
>> + for (int offset = 0; offset < (*payload)->len; offset =
>> offset + 4) {
>> + xfer_buffer_read_ptr(*payload, &read_buf, offset, 4);
>> + tx = 0;
>> + for (int i = 0; i < 4; i++) {
>> + if ((offset + i) >= (*payload)->len) {
>> + break;
>> + }
>> + tx = (tx << 8) | read_buf[i];
>> + }
>> + rx = ssi_transfer((sc->bus).ssi_bus, tx);
>> + for (int i = 0; i < 4; i++) {
>> + if ((offset + i) >= (*payload)->len) {
>> + break;
>> + }
>> + *(xfer_buffer_write_ptr(rsp_payload,
>> rsp_payload->len, 1)) =
>> + (rx >> (24 - i * 8)) & 0xFF;
>> + }
>> + }
>> + if (rsp_payload != NULL) {
>> + spi_response(sc, (sc->N1_bits + sc->N2_bits), rsp_payload);
>> + }
>> + sc->first = 0;
>> + sc->last = 0;
>> + /*
>> + * If we are doing an N2 TX and the TDR is full we need to
>> clear the
>> + * TDR_full status. Do this here instead of up in the loop
>> above so we
>> + * don't log the message in every loop iteration.
>> + */
>> + if ((sc->N2_tx != 0) &&
>> + (GETFIELD(STATUS_REG_TDR_FULL, sc->status_reg) == 1)) {
>> + sc->status_reg = SETFIELD(STATUS_REG_TDR_FULL,
>> sc->status_reg, 0);
>> + SPI_DEBUG(qemu_log("TDR_full set to 0\n"));
>> + }
>> + /*
>> + * The N2 frame shift is complete so reset the N2 counters.
>> + * Reset the N1 counters also in case the frame was a
>> combination of
>> + * N1 and N2 segments.
>> + */
>> + sc->N2_bits = 0;
>> + sc->N2_bytes = 0;
>> + sc->N2_tx = 0;
>> + sc->N2_rx = 0;
>> + sc->N1_bits = 0;
>> + sc->N1_bytes = 0;
>> + sc->N1_tx = 0;
>> + sc->N1_rx = 0;
>> + xfer_buffer_free(*payload);
>> + *payload = NULL;
>> + SPI_DEBUG(qemu_log("Payload buffer freed\n"));
>> + } else {
>> + SPI_DEBUG(qemu_log("Not shifting N2, stop = %d\n", stop));
>> + }
>> + return stop;
>> +} /* end of operation_shiftn2()*/
>> +
>> +/*
>> + * The SPIC engine and its internal sequencer can be interrupted and
>> reset by
>> + * a hardware signal, the sbe_spicst_hard_reset bits from Pervasive
>> + * Miscellaneous Register of sbe_register_bo device.
>> + * Reset immediately aborts any SPI transaction in progress and
>> returns the
>> + * sequencer and state machines to idle state.
>> + * The configuration register values are not changed. The status
>> register is
>> + * not reset. The engine registers are not reset.
>> + * The SPIC engine reset does not have any affect on the attached
>> devices.
>> + * Reset handling of any attached devices is beyond the scope of the
>> engine.
>> + */
>> +static void do_reset(DeviceState *dev)
>> +{
>> + PnvSpiController *sc = PNV_SPICONTROLLER(dev);
>> + SPI_DEBUG(qemu_log("Resetting spic engine sequencer
>> configuration and spi "
>> + "communication\n"));
>> + /* Reset all N1 and N2 counters, and other constants */
>> + sc->first = 0;
>> + sc->last = 0;
>> + sc->N2_bits = 0;
>> + sc->N2_bytes = 0;
>> + sc->N2_tx = 0;
>> + sc->N2_rx = 0;
>> + sc->N1_bits = 0;
>> + sc->N1_bytes = 0;
>> + sc->N1_tx = 0;
>> + sc->N1_rx = 0;
>> + sc->loop_counter_1 = 0;
>> + sc->loop_counter_2 = 0;
>> + SPI_DEBUG(qemu_log("Disconnected from responder\n"));
>> + qemu_set_irq((sc->bus).cs_line[0], 1);
>> +}
>> +
>> static void pnv_spi_bus_realize(DeviceState *dev, Error **errp)
>> {
>> PnvSPIBus *s = PNV_SPI_BUS(dev);
>> @@ -191,6 +1498,7 @@ static const TypeInfo pnv_spi_bus_info = {
>> static Property pnv_spi_controller_properties[] = {
>> DEFINE_PROP_UINT32("spic_num", PnvSpiController, spic_num, 0),
>> + DEFINE_PROP_BOOL("reverse_bits", PnvSpiController, reverse_bits,
>> false),
>> DEFINE_PROP_END_OF_LIST(),
>> };
>> @@ -254,6 +1562,7 @@ static void
>> pnv_spi_controller_class_init(ObjectClass *klass, void *data)
>> dc->desc = "PowerNV SPI Controller";
>> dc->realize = pnv_spi_controller_realize;
>> + dc->reset = do_reset;
>> device_class_set_props(dc, pnv_spi_controller_properties);
>> }
>
next prev parent reply other threads:[~2024-04-16 17:09 UTC|newest]
Thread overview: 16+ messages / expand[flat|nested] mbox.gz Atom feed top
2024-04-09 17:56 [PATCH v2 0/6] hw/ppc: SPI model Chalapathi V
2024-04-09 17:56 ` [PATCH v2 1/6] hw/ppc: remove SPI responder model Chalapathi V
2024-04-15 14:46 ` Cédric Le Goater
2024-04-09 17:56 ` [PATCH v2 2/6] hw/ppc: SPI controller model - registers implementation Chalapathi V
2024-04-15 15:14 ` Cédric Le Goater
2024-04-16 17:02 ` Chalapathi V
2024-04-22 14:06 ` Cédric Le Goater
2024-04-09 17:56 ` [PATCH v2 3/6] hw/ppc: SPI controller model - sequencer and shifter Chalapathi V
2024-04-16 9:39 ` Cédric Le Goater
2024-04-16 17:08 ` Chalapathi V [this message]
2024-04-09 17:56 ` [PATCH v2 4/6] hw/misc: Microchip's 25CSM04 SEEPROM model Chalapathi V
2024-04-22 14:44 ` Cédric Le Goater
2024-04-09 17:56 ` [PATCH v2 5/6] hw/ppc: SPI controller wiring to P10 chip and create seeprom device Chalapathi V
2024-04-22 15:03 ` Cédric Le Goater
2024-04-24 17:12 ` Chalapathi V
2024-04-09 17:57 ` [PATCH v2 6/6] tests/qtest: Add pnv-spi-seeprom qtest Chalapathi V
Reply instructions:
You may reply publicly to this message via plain-text email
using any one of the following methods:
* Save the following mbox file, import it into your mail client,
and reply-to-all from there: mbox
Avoid top-posting and favor interleaved quoting:
https://en.wikipedia.org/wiki/Posting_style#Interleaved_style
* Reply using the --to, --cc, and --in-reply-to
switches of git-send-email(1):
git send-email \
--in-reply-to=dfe3ef32-3dab-4559-a873-c25266db8bac@linux.ibm.com \
--to=chalapathi.v@linux.ibm.com \
--cc=calebs@us.ibm.com \
--cc=chalapathi.v@ibm.com \
--cc=clg@kaod.org \
--cc=dantan@us.ibm.com \
--cc=fbarrat@linux.ibm.com \
--cc=npiggin@gmail.com \
--cc=qemu-devel@nongnu.org \
--cc=qemu-ppc@nongnu.org \
--cc=saif.abrar@linux.vnet.ibm.com \
/path/to/YOUR_REPLY
https://kernel.org/pub/software/scm/git/docs/git-send-email.html
* If your mail client supports setting the In-Reply-To header
via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line
before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).